WO2022143415A1 - 冰箱 - Google Patents

冰箱 Download PDF

Info

Publication number
WO2022143415A1
WO2022143415A1 PCT/CN2021/140884 CN2021140884W WO2022143415A1 WO 2022143415 A1 WO2022143415 A1 WO 2022143415A1 CN 2021140884 W CN2021140884 W CN 2021140884W WO 2022143415 A1 WO2022143415 A1 WO 2022143415A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
compressor
way valve
condenser
evaporator
Prior art date
Application number
PCT/CN2021/140884
Other languages
English (en)
French (fr)
Inventor
大木达也
和田芳彦
馆野恭也
Original Assignee
海尔智家股份有限公司
青岛海尔电冰箱有限公司
Aqua 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海尔智家股份有限公司, 青岛海尔电冰箱有限公司, Aqua 株式会社 filed Critical 海尔智家股份有限公司
Priority to EP21914152.0A priority Critical patent/EP4269910A1/en
Priority to CN202180087724.2A priority patent/CN116783435A/zh
Priority to US18/270,195 priority patent/US20240060694A1/en
Publication of WO2022143415A1 publication Critical patent/WO2022143415A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/24Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • F25B41/42Arrangements for diverging or converging flows, e.g. branch lines or junctions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0403Refrigeration circuit bypassing means for the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0417Refrigeration circuit bypassing means for the subcooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/054Compression system with heat exchange between particular parts of the system between the suction tube of the compressor and another part of the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2519On-off valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21175Temperatures of an evaporator of the refrigerant at the outlet of the evaporator

Definitions

  • the present invention relates to a refrigerator, in particular to a refrigerator for removing frost adhering to an evaporator by hot air.
  • Patent Document 1 discloses a method to reduce the An invention that improves the reliability of the refrigeration cycle by the amount of liquid returned to the compressor.
  • Patent Document 1 Japanese Patent Application No. 2017-554766.
  • Patent Document 1 needs to include a complicated system in order to adjust the flow rate flowing through the hot gas bypass pipe, such as the need to include a flow rate regulator, a refrigerant state detection unit, a defrost control unit, etc. which are connected to to the hot gas bypass line and adjust the flow rate of the refrigerant flowing through the hot gas bypass line, the refrigerant state detection unit detects the discharge superheat degree of the refrigerant discharged from the compressor and the suction pressure of the compressor, and the The frost control unit closes the flow regulator during normal cooling operation, and increases or decreases the flow regulator to flow through the hot gas bypass line according to the discharge superheat degree and suction pressure detected by the refrigerant state detection unit during the defrosting operation. of the refrigerant flow.
  • An object of the present invention is to provide a refrigerator that can more easily reduce the flow rate of refrigerant flowing through the hot gas bypass pipe without complicating the system, thereby avoiding the reduction of defrosting capability.
  • the present invention provides a refrigerator comprising: a cooling circuit having a first flow path for circulating a refrigerant connected in the order of a compressor, a condenser, a capillary, and an evaporator, the The compressor compresses the refrigerant sent from the evaporator, the condenser condenses the refrigerant sent from the compressor, and the capillary tube condenses the refrigerant sent from the condenser.
  • the cooling circuit includes: a hot gas bypass pipe configured to form a second flow path , the second flow path allows the refrigerant compressed by the compressor to flow from the compressor to the evaporator; a three-way valve, the a first flow path connected to the hot gas bypass pipe; and a two-way valve disposed in the first flow path between the condenser and the capillary, and the three-way valve can
  • the refrigerant discharged from the compressor flows into the condenser or the hot gas bypass pipe, and the two-way valve can be closed to cut off the flow of the refrigerant discharged from the condenser.
  • a three-way valve is provided downstream of the compressor and upstream of the condenser, and a two-way valve is provided downstream of the condenser and upstream of the capillary.
  • a hot gas defrost pipe is provided, which bypasses refrigerant in a hot gas state from downstream of the compressor to upstream of the evaporator via the three-way valve.
  • the refrigerator has a control device that switches the cooling circuit to a normal operation for cooling the evaporator and a defrosting action for defrosting the evaporator, the control device can To control which of the condenser and the hot gas bypass pipe the three-way valve causes fluid to flow to, and also to control the opening and closing of the two-way valve, the control device is switched from the normal operation to all the In the case of the above-mentioned defrosting operation, the three-way valve is controlled so that the refrigerant flows to the condenser and the two-way valve is closed to discharge the refrigerant to the condenser through the compressor. The refrigerant, and then the three-way valve, causes the refrigerant to flow to the hot gas bypass.
  • the two-way valve can be closed to store the refrigerant in the condenser before the defrosting operation is performed, and the defrosting operation can be performed by switching the three-way valve afterward to allow the refrigerant to flow to the hot gas bypass.
  • the evaporator is provided with a temperature sensor, and the control device controls the three-way valve and the two-way valve according to the temperature measured by the temperature sensor during the defrosting operation to adjust the the amount of the refrigerant.
  • control device can grasp whether or not the defrosting capability has decreased based on the temperature measured by the temperature sensor. Accordingly, when it is detected that the amount of refrigerant circulating in the cooling circuit is too large or too small, the flow path of the refrigerant can be switched by switching the three-way valve and the two-way valve, so that the refrigerant circulating in the cooling circuit can be adjusted. amount.
  • the inner diameter of the hot gas bypass pipe is larger than the inner diameter of the discharge pipe of the compressor, and the refrigerant is discharged from the compressor through the discharge pipe.
  • the pressure loss of the refrigerant when it flows through the hot gas bypass pipe can be reduced, and the condensation of the refrigerant can be suppressed.
  • the inner diameter of the three-way valve is larger than the inner diameter of the discharge pipe of the compressor.
  • the pressure loss when the refrigerant flows through the three-way valve can be reduced, and the condensation of the refrigerant can be suppressed.
  • the compressed refrigerant is sent to the condenser through a first connecting line, the first connecting line is provided with the three-way valve, and is divided into a first sub-pipeline and a Second sub-pipeline.
  • the condensed refrigerant is sent to the capillary tube through a second connecting pipeline, and the second connecting pipeline is provided with the two-way valve and is divided into a third sub-pipeline and a fourth sub-pipeline. sub-pipeline.
  • control device detects that the temperature of the evaporator temperature sensor is lower than a predetermined value although the refrigerant in a hot gas state flows to the evaporator during the defrosting operation, the control device performs control so as to adjust the flow through the second flow path. flow of refrigerant.
  • the three-way valve is in a second state in which the three-way valve is opened to allow the refrigerant to flow to the hot gas bypass pipe, and the two-way valve is in a closed state; by switching the three-way valve to the first state The compressor is operated, and the refrigerant discharged from the compressor flows to the condenser.
  • the evaporator and the fan are arranged in the cooling chamber of the refrigerator, and the fan is controlled in linkage with the operation of the compressor during normal operation. also operate; during defrosting operation and when switching to prepare for defrosting operation, the fan stops operation; when switching from defrosting operation to normal operation, after the compressor starts to operate, from the compressor Start running the fan with a certain delay after running.
  • the beneficial effects of the present invention are that the refrigerator of the present invention can more easily reduce the flow rate of the refrigerant flowing through the hot gas bypass pipe without complicating the system, so as to avoid the reduction of the defrosting ability.
  • FIG. 1 is a side sectional view of the refrigerator of the present invention.
  • Fig. 2 is a circuit diagram of a cooling circuit of the refrigerator of the present invention.
  • FIG. 3 is a block diagram of the control system of the refrigerator of the present invention.
  • Figure 4 is a circuit diagram of one example of a cooling circuit conventionally used in the prior art.
  • Fig. 5 is a timing chart of the control system of the refrigerator of the present invention.
  • FIG. 1 is a schematic side sectional view of the refrigerator of the present invention.
  • the refrigerator 1 has a refrigerator body 2, a door body 3, and a drawer 4, the door body 3 is rotatably provided on the front side of the refrigerator body 2 in a state of being placed on a horizontal plane, and the drawer 4 is rotatable in the front-rear direction. move.
  • the door body 3 joins the upper and lower parts of the door body 3 to the refrigerator main body 2 through a hinge provided on at least one of the left and right sides thereof, and rotates about the hinge axis of the hinge.
  • the refrigerator 1 of the present invention includes the door 3 and the drawer 4 which can be opened and closed, but the present invention is not limited to this, for example, it may have more drawers, or all open and close The components are all made up of doors.
  • the refrigerator 1 has the outer case 5 which comprises the exterior of the refrigerator main body 2, and the upper inner pot 6 and the lower inner pot 7 which comprise the interior storage chamber.
  • the upper inner pot 6 constitutes a refrigerating chamber
  • the lower inner pot 7 constitutes a freezing chamber.
  • a storage box (not shown) is attached to the drawer 4 , and the storage box and the drawer 4 move integrally.
  • the accommodating box is provided with an opening in the upper part, and when the user accommodates the lower inner container 7, the user arranges and accommodates the accommodating box through the opening.
  • a foamed heat insulating material 8 is filled to insulate each of the inner pots 6 and 7 and the outside of the refrigerator main body 2 .
  • a foamed heat insulating material 8 is also filled between the upper inner pot 6 and the lower inner pot 7 .
  • a cooling chamber 9 is formed in the rear of the lower inner pot 7 , and an evaporator 24 as a cooling device is provided in the cooling chamber 9 .
  • the evaporator 24 constitutes a part of the cooling circuit 20 of the refrigerator.
  • a fan 10 is provided in the cooling chamber 9, and the fan 10 blows the cool air generated by the evaporator 24 to each of the inner pots 6 and 7 via the air duct 11.
  • the air duct 11 is provided at the rear of each of the inner pots 6 and 7 , and the cool air generated in the cooling chamber 9 is guided to the front of each of the inner pots 6 and 7 through the ventilation opening provided on the front surface of the air duct 11 .
  • the damper 12 is provided in the said air duct 11, and the damper 12 is comprised so that opening and closing are controlled by the control apparatus 41 mentioned later.
  • the control device 41 senses the temperature inside the refrigerator through the refrigerator compartment temperature sensor 14 (not shown) provided in the upper inner pot 6, and controls the above-mentioned opening and closing based on the temperature.
  • the flow rate of the cool air flowing into the upper inner pot 6 (as the refrigerator compartment) can be adjusted so that the internal temperature of the upper inner pot 6 is in a temperature range different from that of the lower inner pot 7 (as the freezer compartment). keep inside.
  • a machine room 13 is provided, and an evaporating dish (not shown), etc., is provided for storing and evaporating the drain water for the compressor 21. , and is generated by defrosting the evaporator 24 with a condenser fan (not shown) that cools the compressor 21 and the condenser 22 .
  • FIG. 2 is a cooling circuit 20 of the refrigerator 1 of the present invention.
  • the cooling circuit 20 includes a compressor 21 , a condenser 22 , a capillary 23 and an evaporator 24 .
  • the components of the cooling circuit 20 are fluidly connected to each other in the order described above through pipes, and form a first flow path in which the refrigerant circulates in the cooling circuit 20 .
  • the arrows shown in FIG. 2 show the flow direction of the refrigerant.
  • the refrigerant flows from the evaporator 24 on the upstream side of the flow path to the compressor on the downstream side of the flow path via the suction pipe 28 twenty one.
  • the compressor 21 compresses the refrigerant in a gaseous state to bring it into a state of high temperature and high pressure.
  • the compressed refrigerant is sent to the condenser 22 through the first connecting line 25 .
  • the first connecting line 25 is provided with a three-way valve 31, and is divided into a first sub-line 25a and a second sub-line 25b.
  • the compressor 21 includes an inverter, and by changing the rotational speed, the amount of refrigerant discharged by the compressor per unit time can be adjusted, thereby controlling the cooling capacity of the cooling circuit 20 .
  • the compressor 21 is electrically connected to a control device 41 to be described later, and the rotational speed is controlled by a signal transmitted from the control device 41 .
  • the condenser 22 discharges heat of the refrigerant compressed by the compressor 21 to condense the refrigerant.
  • the condensed refrigerant is sent to the capillary tube 23 through the second connecting line 26 .
  • the second connecting line 26 is provided with a two-way valve 32, and is divided into a third sub-line 26a and a fourth sub-line 26b by the two-way valve 32.
  • the capillary 23 reduces the pressure of the refrigerant condensed by the condenser 22 to expand it, and the temperature decreases accordingly.
  • the expanded refrigerant is sent to evaporator 24 through line 27 .
  • the evaporator 24 evaporates the refrigerant decompressed by the capillary tube 23 and absorbs heat.
  • the evaporated and gaseous refrigerant is sent to the compressor 21 through the suction pipe 28 to be compressed again. In this way, the cooling circuit 20 operates.
  • the capillary tube 23 is connected to the condenser 22 and the evaporator 24 via the fourth sub-pipeline 26b and the pipeline 27, but the capillary tube 23 may also be provided with a fourth sub-pipeline 26b and a pipeline 27.
  • the suction pipe 28 is arranged at least partially close to the capillary tube 23 , which allows a heat exchange therewith, to flow the refrigerant from the evaporator 24 to the compressor 21 .
  • a region 29 surrounded by a dotted line in FIG. 2 shows the outline of the heat exchange portion.
  • the refrigerator 1 of the present invention adopts a hot gas defrosting method, and uses the hot gas of the refrigerant compressed by the compressor 21.
  • the cooling circuit 20 comprises a hot gas bypass 30 connected to a first connecting line 25 connecting the compressor 21 located downstream and the condenser 22 located upstream.
  • a three-way valve 31 is provided at the connection portion, and the three-way valve 31 can be switched so that the refrigerant sent from the compressor 21 via the first sub-line 25 a flows to the condenser 22 (ie, the second sub-line 25 b ). ) or either side of the hot gas bypass 30.
  • the hot gas bypass pipe 30 is connected to a pipeline connecting the capillary 23 downstream and the evaporator 24 upstream.
  • the hot gas bypass pipe 30 forms a second flow path for the refrigerant to flow through the path of the compressor 21 - the first connecting pipe 25 - the hot gas bypass pipe 30 - the pipe 27 - the evaporator 24 .
  • the flow path and the flow path where the refrigerant flows through the path of the compressor 21 - the first connection line 25 - the condenser 23 - the second connection line 26 - the capillary tube 23 - the line 27 - the evaporator 24 in the above-mentioned first flow path is different.
  • the three-way valve 31 is connected to a control device 41 to be described later, and the control device 41 controls switching of the refrigerant flow path based on predetermined conditions.
  • the control device 41 controls the three-way valve 31 so that the refrigerant flows to the condenser 22 (ie, the second sub-pipe 25b) during the normal operation described later, and flows to the hot gas bypass during the defrosting operation described later.
  • pipe 30 the refrigerant is discharged from the compressor 21 via the first sub-pipe 25a.
  • a state in which the refrigerator 1 is normally operated ie, a state in which the refrigerator 1 is operated so that the inside of the refrigerator is cooled, or the temperature inside the refrigerator is maintained
  • normal operation a state in which the refrigerator 1 is operated so that the inside of the refrigerator is cooled, or the temperature inside the refrigerator is maintained
  • the refrigerator 1 is operated so that the evaporator 24 is defrosted (ie, the refrigerator is operated so that the three-way valve 31 is opened so that the refrigerant flows from the three-way valve 31 to the hot gas bypass pipe 30 and the hot gas flows to the evaporator. 24) is appropriately referred to as the "defrost action”.
  • the cooling circuit 20 of the refrigerator 1 of the present embodiment includes a two-way valve 32 in the second connecting line 26 , which fluidly connects the condenser 22 and the capillary 23 .
  • the two-way valve 32 is connected to the control device 41 .
  • the control device 41 controls the opening and closing of the two-way valve 32 according to the refrigerant discharged from the condenser 22 . By closing the two-way valve 32, the flow of the refrigerant to the fourth sub-pipe 26b can be blocked.
  • FIG. 3 is a block diagram showing the configuration of the control system 40 of the refrigerator 1 of the present invention.
  • the control system 40 of the refrigerator 1 of the present embodiment includes a control device 41 that controls various devices.
  • the control device 41 may be composed of a plurality of control units.
  • the control device 41 includes a control unit (not shown) and a storage unit (not shown).
  • the control section includes a general-purpose processor, such as a CPU or an MPU, that implements predetermined functions by executing a program.
  • the control unit invokes and executes an arithmetic program or the like stored in the storage unit, thereby realizing various processes in the control device 41 and transmission of signals to the respective components.
  • the control unit is not limited to realizing the predetermined function through cooperation of hardware and software, and may be a hardware circuit specially designed to realize the predetermined function. That is, in addition to the CPU and MPU, the control unit can be realized by various processors such as GPU, FPGA, DSP, and ASIC.
  • Such a control unit can be constituted by, for example, a signal processing circuit as a semiconductor integrated circuit.
  • the storage unit is a recording medium capable of recording various kinds of information.
  • the storage unit is realized by memories such as DRAM, SRAM, flash memory, HDD, SSD, other storage devices, or an appropriate combination thereof.
  • the storage unit can store, for example, the temperature acquired by the refrigerator compartment temperature sensor 14 and the evaporator temperature sensor 15, the pressure value acquired by the above-described pressure sensor, and the like.
  • a program for controlling each member compressor 21, three-way valve 31, two-way valve 32, fan 10, damper 12, etc.
  • the respective components may directly transmit and receive information between the respective components through the control unit without going through the storage unit.
  • the compressor 21 , the three-way valve 31 and the two-way valve 32 are electrically connected to the control device 41 .
  • the control device 41 is also electrically connected to the fan 10, the damper 12, the condenser fan, the refrigerator compartment temperature sensor 14, the evaporator temperature sensor 15, and the like.
  • Another temperature sensor may be attached (a freezer compartment temperature sensor is attached to the lower inner pot 7 constituting the freezer compartment, etc.), and the temperature sensor may be electrically connected to the control device 41 .
  • the control apparatus 41 controls so that the temperature of a refrigerator compartment, a freezer compartment, etc. may be maintained at predetermined temperature based on the signal of the refrigerator compartment temperature sensor 14 grade
  • the control device 41 can start a defrosting operation under arbitrary conditions.
  • a defrosting switch (not shown) may be provided in the refrigerator 1, and the defrosting operation may be started when the control device 41 detects that the user has turned on the switch.
  • a timer may be provided, and a defrost operation may be started when a period set by the user in the timer elapses.
  • the control device 41 may be provided with an elapsed time detection function, and may be configured to start the defrosting operation when the elapsed time from the defrosting operation performed last time exceeds a predetermined time.
  • a sensor capable of detecting the opening and closing of at least one of the door 3 or the drawer 4 may be provided, and the number of times of opening and closing may be detected, and a defrosting operation will be started when the number of times exceeds a predetermined threshold.
  • the three-way valve 31 is opened to allow refrigerant to flow to the condenser 22 .
  • this state of the three-way valve 31 is also referred to as a "first state”.
  • the state in which the three-way valve 31 is opened so that the refrigerant flows to the hot gas bypass pipe 30 is also referred to as a "second state”.
  • the two-way valve 32 is set to open and close under the control of the control device 41 according to the operation of the compressor 21 . Therefore, during normal operation, when the compressor 21 compresses and discharges the refrigerant, the two-way valve 32 is in an open state. In addition, in the present embodiment, when the compressor 21 is stopped, the two-way valve 32 is in a closed state.
  • the present invention is not limited to this, and the two-way valve may be maintained in the open state during normal operation and the compressor 21 is stopped.
  • the control device 41 When shifting the operation of the cooling circuit 20 from the normal operation state to the defrosting operation, the control device 41 first maintains the three-way valve 31 in the first state, and simultaneously changes the two-way valve 32 to the closed state. Therefore, the refrigerant does not flow downstream of the fourth sub-pipe 26b. In this state, the control device 41 operates the compressor 21 to discharge the refrigerant to the condenser 22 . Thereby, the refrigerant can be accumulated in the condenser 22 and the second sub-line 25b and the third sub-line 26a (hereinafter, for convenience, it is referred to as accumulation of the refrigerant in the condenser 22).
  • the rotational speed of the compressor 21 can be adjusted to increase the emission amount. For example, if the discharge amount from the compressor 21 is increased, the refrigerant can be accumulated in the condenser 22 more quickly, and more refrigerant can be accumulated.
  • the control device 41 switches the three-way valve 31 to the second state to perform a defrosting operation. Therefore, the refrigerant (hot gas) is discharged from the compressor 21 to the hot gas bypass pipe 30 . At this time, the two-way valve 32 is kept closed.
  • the control device 41 may perform the above switching of the three-way valve 31 by detecting, for example, that the refrigerant has accumulated in the condenser 22 for a predetermined time. Further, the switching may be performed by detecting the load of the compressor 21 by measuring the rotational speed and the current value of the motor included in the compressor 21 .
  • a pressure sensor may be provided in the flow path from the compressor 21 to the condenser 22 or in the condenser 22, etc., and the pressure of the refrigerant at the location may be detected, and the pressure at the location may be detected by the pressure sensor. This switching is performed when it becomes equal to or more than a predetermined threshold value.
  • the cooling circuit 20 in the normal operation is a flow path in which the refrigerant flows into the evaporator 24 through the condenser 22 and the capillary tube 23 after being discharged from the compressor 21 as described above.
  • the cooling circuit 20 during the defrosting operation is a flow path in which the refrigerant flows into the evaporator 24 through the hot gas bypass pipe 30 after being discharged from the compressor 21 as described above.
  • the condenser 22 discharges the heat of the refrigerant compressed by the compressor 21, and therefore generally constitutes a long flow path. Therefore, the length of the entire flow path of the second flow path is shorter than that of the first flow path. Therefore, the amount of refrigerant may be excessive relative to the length of the flow path.
  • the refrigerant that becomes the hot gas tends to condense into a liquid state (that is, the liquid return of the hot gas tends to occur). If the refrigerant turns into liquid and flows into the compressor 21, the reliability of the compressor 21 may be reduced, for example, performance is reduced or the like. In addition, the temperature of the suction pipe 28 may drop and dew condensation may occur.
  • the cooling circuit 20 of the refrigerator 1 of the present embodiment by reducing the amount of refrigerant flowing in the cooling circuit during the defrosting operation before the defrosting operation, the condensation rate of the refrigerant in the hot gas state is reduced. possibility. Thereby, the fall of the defrosting ability can be suppressed.
  • the evaporator 24 is provided with the evaporator temperature sensor 15 .
  • the evaporator temperature sensor 15 is installed, for example, at a portion where the refrigerant is discharged from the evaporator 24 .
  • the evaporator temperature sensor 15 detects the temperature of the evaporator 24 and transmits it to the control device 41 . Thereby, the control apparatus 41 can detect whether the predetermined defrosting capability can be exhibited during a defrosting operation.
  • the defrosting of the evaporator 24 may not be sufficiently performed. In this case, it is considered that one of the reasons is that the defrosting capability is lowered due to the condensation of the refrigerant caused by the excess of the refrigerant as described above. Therefore, it is preferable to reduce the amount of refrigerant flowing through the second flow path during the defrosting operation.
  • the control device 41 detects that the temperature of the evaporator temperature sensor 15 is lower than a predetermined value even though the refrigerant in the hot gas state flows to the evaporator 24 during the defrosting operation, the control device 41 controls the flow so that the second The flow rate of the refrigerant in the flow path.
  • the flow rate of the refrigerant can be adjusted by switching the three-way valve 31 described above.
  • the three-way valve 31 is in the second state, and the two-way valve 32 is in the closed state.
  • the refrigerant discharged from the compressor 21 flows to the condenser 22 .
  • the two-way valve 32 is in a closed state, the refrigerant cannot flow downstream of the third sub-pipe 26a, but accumulates in the condenser 22 .
  • the flow rate of the refrigerant flowing through the second flow path can be reduced. Thereby, the condensation of the refrigerant in the hot gas state in the piping can be suppressed, and the reduction in the defrosting capability can be suppressed.
  • the cooling circuit 20a shown in FIG. 4 is an example of a simple cooling circuit of a conventional refrigerator using a hot gas defrosting method.
  • the same reference numerals are assigned to the same components as the cooling circuit 20 .
  • the cooling circuit 20 a of the conventional refrigerator is different from the cooling circuit 20 in that the two-way valve 32 is not included.
  • the cooling circuit 20 of the refrigerator 1 of the present embodiment can reduce the cooling flow through the second flow path only by adding the two-way valve 32 to the cooling circuit 20a of the conventional refrigerator and increasing the control of the two-way valve 32 agent flow. Therefore, it is possible to easily avoid condensation of the refrigerant in the hot gas state in the piping during the defrosting operation, and to suppress the reduction in the defrosting capability.
  • the inner diameter 30a of the hot gas bypass pipe 30 is smaller than the inner diameter 21a of the discharge pipe that discharges the refrigerant from the compressor 21 .
  • the flow velocity of the refrigerant flowing in the pipe increases, the pressure loss increases, and the refrigerant in the hot gas state tends to condense. Therefore, by setting the inner diameter 30a of the hot gas bypass pipe 30 to be larger than the inner diameter 21a of the discharge pipe of the compressor 21, the pressure loss when the refrigerant flows can be reduced, and condensation of the refrigerant can be avoided.
  • the circuit volume of the cooling circuit 20 used at the time of the defrosting operation including the second flow path can be increased.
  • the inner diameter of the smallest portion of the space in which the refrigerant flows inside the three-way valve 31 is taken as the opening diameter 31a (hereinafter, appropriately referred to as the inner diameter 31a of the three-way valve 31), and the difference between the opening diameter 31a is considered.
  • the size also affects the reduction of defrosting ability.
  • the inner diameter 31a of the three-way valve 31 is smaller than the inner diameter 21a of the discharge pipe that discharges the refrigerant from the compressor 21, the flow rate of the refrigerant flowing through the three-way valve 31 increases, the pressure loss increases, and the refrigerant in the hot gas state Easy to condense. Therefore, by making the inner diameter 31a of the three-way valve 31 larger than the inner diameter 21a of the discharge pipe of the compressor 21, the pressure loss during the flow of the refrigerant can be reduced, and the condensation of the refrigerant can be suppressed.
  • Table 1 shows the temperature T of the evaporator 24 caused by the defrosting operation when the inner diameter 30a of the hot gas bypass pipe 30 and the inner diameter 31a of the three-way valve 31 are changed from the inner diameter 21a of the discharge pipe of the compressor 21 An example of change.
  • This temperature T is a temperature measured by a temperature sensor (not shown) attached to the lower part of the evaporator 24 for measurement, which is a part of the evaporator 24 where the temperature is difficult to rise.
  • the experiment was conducted under the condition that the discharge pipe of the compressor 21 having the inner diameter 21a of ⁇ 4.76 (ie, 4.76 mm) was used, and the ambient temperature was 16°C.
  • hot gas bypass pipes 30 having inner diameters 30a of ⁇ 4 and ⁇ 6 are used.
  • three-way valves 31 having inner diameters 31a of ⁇ 2, ⁇ 4, and ⁇ 6 are used.
  • the inner diameter 31a of the three-way valve 31 is ⁇ 6, and the inner diameter 30a of the hot gas bypass pipe 30 is changed to ⁇ 4 and ⁇ 6, the temperature at the end of defrosting measured by the temperature sensor attached to the evaporator 24 is obtained. were 5.8°C and 7.2°C, respectively.
  • Table 1 by making the inner diameter 30a of the hot gas bypass pipe 30 larger than the inner diameter 21a of the discharge pipe of the compressor 21, the pressure loss during refrigerant flow can be reduced, and the reduction in the defrosting ability can be avoided.
  • FIG. 5 is a timing diagram of the operation of the cooling circuit 20 and other cooling devices of the present invention.
  • (a), (b), (c), (d), (e), and (f) illustrate the compressor 21 , the two-way valve 32 , the three-way valve 31 , the fan 10 , and the damper, respectively. 12. Operation sequence of the condensing fan.
  • the control device 41 can be controlled by transmitting control signals as described below to each device.
  • FIG. 5( a ) shows the rotational speed of the compressor 21 .
  • OFF means that the compressor 21 is stopped.
  • LOW means that the rotation speed of the motor of the compressor 21 is low.
  • HGH means that the rotational speed of the motor of the compressor 21 is high.
  • Period A in FIG. 5 is a period in which normal operation is performed.
  • the compressor 21 and the two-way valve 32 operate in conjunction with each other.
  • the two-way valve 32 is in an open state.
  • the compressor 21 is stopped, the two-way valve 32 is in a closed state.
  • the three-way valve 31 is in the first state in each case.
  • the period B is a preparatory stage before the defrosting operation is performed, and is a period during which the refrigerant is accumulated in the condenser 32 (that is, temporarily pumped down).
  • the compressor 21 continues to operate, but the two-way valve 32 is switched to a closed state.
  • the three-way valve 31 is in the first state as in normal operation.
  • the compressor 21 operates at the same rotational speed as in normal operation, but may be set to increase or decrease the above rotational speed.
  • the period C is a period in which the defrosting operation is performed.
  • the compressor 21 operates in the same manner as the periods A and B.
  • the two-way valve 32 is in a closed state.
  • the three-way valve 31 is switched to the second state and causes the refrigerant to flow to the hot gas bypass pipe 30.
  • the rotational speed of the compressor 21 is increased as compared with the normal operation, but may be the same as the normal operation, or may be reduced from the normal operation.
  • the period D is a certain period after the defrosting operation is completed.
  • the compressor 21 stops operating, and the three-way valve 31 is switched to the first state.
  • the compressor 21 is operated again for normal operation, and the two-way valve 32 is switched to the open state.
  • the temperature of the evaporator 24 is higher than usual. Therefore, in order to lower the temperature of the evaporator 24, after a certain period of time, the fan 10 and the like are operated, and normal operation is started.
  • the fan 10 is controlled in conjunction with the operation of the compressor 21 during normal operation.
  • the fan 10 is also running.
  • the operation of the fan 10 is stopped at the time of the defrosting operation and when the operation is switched to prepare for the defrosting operation.
  • the compressor 21 starts to operate, it is necessary to cool the evaporator 24 heated during the defrosting operation, so the compressor 21 is delayed for a certain period of time after the operation. Start running the fan 10.
  • the opening or closing of the damper 12 is basically controlled in conjunction with the operation of the fan 10 .
  • the damper 12 can be closed so that the temperature in the upper inner pot 6 can be kept constant according to the temperature detected by the temperature sensor of the refrigerator compartment.
  • the room temperature sensor is installed in the upper inner pot 6 which is a refrigerating room.
  • the condenser fan operates in conjunction with the compressor 21 .
  • the control device 41 can avoid a decrease in the defrosting capability by the cooling circuit of the refrigerator 1 of the present embodiment.
  • the refrigerator 1 which can easily reduce the flow rate of the refrigerant flowing through the hot gas bypass pipe without including a complicated system and avoid the reduction in the defrosting ability, thus , can be preferably used in the industrial field of such refrigerators.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Defrosting Systems (AREA)

Abstract

一种冰箱包括冷却回路,所述冷却回路具有按压缩机、冷凝器、毛细管、以及蒸发器的顺序而连接的使制冷剂循环的第一流路,所述冷却回路包括:热气旁通管,所述热气旁通管被设置为形成第二流路,所述第二流路使由所述压缩机压缩的所述制冷剂从所述压缩机流向所述蒸发器;三通阀,设置在所述压缩机与所述冷凝器之间的所述第一流路中,且与所述热气旁通管相连接;以及二通阀,设置在所述冷凝器与所述毛细管之间的所述第一流路中,所述三通阀能够使从所述压缩机排出的所述制冷剂流入到所述冷凝器或所述热气旁通管,所述二通阀能够通过关闭来切断从所述冷凝器排出的所述制冷剂的流动。

Description

冰箱 技术领域
本发明涉及一种冰箱,尤其涉及一种通过热气来去除附着在蒸发器上的霜的冰箱。
背景技术
作为冰箱的冷却回路之一的蒸发器可能由于周围的水蒸气冷却而附着有霜,从而冷却性能降低。为了解决此问题,已知一种热气除霜方式,在作为冷却回路之一的压缩机的下游,设置连接到蒸发器上游侧的热气旁通管,经由热气旁通管使高温的气体暂时流动到蒸发器,由此,对蒸发器加热来进行除霜。在热气除霜方式中,如果流过热气旁通管的制冷剂向压缩机的液体返回量增加,则压缩机的可靠性会降低,因此,例如,在专利文献1中,公开了一种减少向压缩机的液体返回量以提高冷冻循环装置的可靠性的发明。
[现有技术文献]
[专利文献]
[专利文献1]:日本特愿2017-554766号公报。
然而,专利文献1中公开的发明需要包括复杂的系统以便调整流过热气旁通管的流量,诸如需要包括流量调整器、制冷剂状态检测单元和除霜控制单元等,所述流量调整器连接到热气旁通管路并且调整流过热气旁通管路的制冷剂的流量,所述制冷剂状态检测单元检测从压缩机排出的制冷剂的排出过热程度和压缩机的吸入压力,所述除霜控制单元在通常冷却运行时关闭流量调整器,在除霜动作时根据由制冷剂状态检测单元所检测的排出过热程度和吸入压力来使所述流量调整器增减流过热气旁通管路的所述制冷剂的流量。
有鉴于此,有必要对现有的冰箱予以改进,以解决上述问题。
发明内容
本发明的目的在于提供一种冰箱,其能够在不使系统复杂化的情况下,更容易地减少流过热气旁通管的制冷剂的流量,避免除霜能力的降低。
为实现上述目的,本发明提供了一种冰箱包括:冷却回路,所述冷却回路具有按压缩机、冷凝器、毛细管、以及蒸发器的顺序而连接的使制冷剂循环的第一流路,所述压缩机对从所述蒸发器送来的所述制冷剂进行压缩,所述冷凝器使从所述压缩机送来的所述制冷剂进行冷凝,所述毛细管使从所述冷凝器送来的所述制冷剂进行膨胀,所述蒸发器使从所述毛细管送来的所述制冷剂蒸发,所述冷却回路包括:热气旁通管,所述热气旁通管被设置为形成第二流路,所述第二流路使由所述压缩机压缩的所述制冷剂从所述压缩机流向所述蒸发器;三通阀,设置在所述压缩机与所述冷凝器之间的所述第一流路中,且与所述热气旁通管相连接;以及二通阀,设置在所述冷凝器与所述毛细管之间的所述第一流路中,所述三通阀能够使从所述压缩机排出的所述制冷剂流入到所述冷凝器或所述热气旁通管,所述二通阀能够通过关闭来切断从所述冷凝器排出的所述制冷剂的流动。
如此,在利用热气除霜方式来进行蒸发器的除霜的冰箱中,在压缩机的下游且冷凝器的 上游设置了三通阀,在冷凝器的下游且毛细管的上游设置了二通阀。设置了热气除霜管,所述热气除霜管使热气状态的制冷剂经由该三通阀从压缩机下游旁通到蒸发器的上游。通过采用这种冷却回路的结构,能够变更制冷剂的流路。此外,能够切断制冷剂的流动。因此,能够期待在不包括复杂的系统的情况下,容易地减少流过热气旁通管的制冷剂的流量,抑制除霜能力的降低。
进一步地,所述冰箱具有控制装置,所述控制装置将所述冷却回路切换为对所述蒸发器进行冷却的常规运行和对所述蒸发器进行除霜的除霜动作,所述控制装置能够控制所述三通阀使流体流动到所述冷凝器和所述热气旁通管中的哪个,还能够控制所述二通阀的打开关闭,所述控制装置在从所述常规运行切换到所述除霜动作的情况下,以如下方式进行控制:所述三通阀使所述制冷剂流向所述冷凝器并且关闭所述二通阀,由此通过所述压缩机向所述冷凝器排出所述制冷剂,之后,所述三通阀使所述制冷剂流向所述热气旁通管。
如此,能够在进行除霜动作之前,通过关闭二通阀,使制冷剂积存到冷凝器,之后,切换三通阀,使制冷剂流向热气旁通管,以执行除霜动作。通过减少在除霜动作中在冷却回路内流动的制冷剂的量,从而降低了热气状态的制冷剂冷凝的可能性。由此,能够抑制除霜能力的降低。
进一步地,在所述蒸发器设有温度传感器,所述控制装置在所述除霜动作中,根据所述温度传感器所测定的温度来控制所述三通阀和所述二通阀,以调整所述制冷剂的量。
如此,控制装置能够根据由温度传感器所测定的温度来掌握除霜能力是否降低。由此,当检测到当前在冷却回路中循环的制冷剂量过多或过少时,能够通过切换三通阀和二通阀来切换制冷剂流动的流路,以调整在冷却回路内循环的制冷剂的量。
进一步地,所述热气旁通管的内径大于所述压缩机的排出管的内径,所述制冷剂通过所述排出管从所述压缩机排出。
如此,在利用热气除霜方式来进行蒸发器的除霜的冰箱中,能够降低制冷剂在热气旁通管中流动时的压力损失,从而抑制制冷剂的冷凝。
进一步地,所述三通阀的内径大于所述压缩机的排出管的内径。
如此,在利用热气除霜方式来进行蒸发器的除霜的冰箱中,能够降低制冷剂在三通阀中流动时的压力损失,从而抑制制冷剂的冷凝。
进一步地,经压缩的制冷剂通过第一连接管路被送到冷所述凝器,所述第一连接管路设有所述三通阀,并被将其分隔为第一子管路和第二子管路。
进一步地,经冷凝后的制冷剂通过第二连接管路被送到所述毛细管,所述第二连接管路设有所述二通阀,并被其分隔为第三子管路和第四子管路。
进一步地,所述控制装置在除霜动作时、检测到虽然热气状态的制冷剂流向蒸发器但是蒸发器温度传感器的温度低于预定值的情况下,进行控制以使得调整流过第二流路的制冷剂的流量。
进一步地,在除霜动作中,所述三通阀处于打开以使得制冷剂流向热气旁通管的第二状态,所述二通阀处于关闭状态;通过将该三通阀切换到第一状态并使压缩机运行,从所述压缩机排出的制冷剂流向冷凝器。
进一步地,在所述冰箱的冷却室内设置所述蒸发器及风扇,与常规运行时的压缩机的运行联动地控制所述风扇,在常规运行时,如果所述压缩机运行,则所述风扇也运行;在除霜动作时、以及转换为准备进行除霜动作时,所述风扇停止运行;当从除霜动作转移为常规运行时,在所述压缩机开始运行后,从所述压缩机运行后延迟一定时间开始运行风扇。
本发明的有益效果是:本发明的冰箱能够在不使系统复杂化的情况下,更容易地减少流过热气旁通管的制冷剂的流量,避免除霜能力的降低。
附图说明
图1是本发明冰箱的侧剖视图。
图2是本发明冰箱的冷却回路的回路图。
图3是本发明冰箱的控制系统的框图。
图4是现有技术中常规使用的冷却回路的一个示例的回路图。
图5是本发明冰箱的控制系统的时序图。
具体实施方式
为了使本发明的目的、技术方案和优点更加清楚,下面结合附图和具体实施例对本发明进行详细描述。
参照图1来说明本发明冰箱1的概况。图1是本发明冰箱的示意性侧剖视图。所述冰箱1具有冰箱主体2、门体3和抽屉4,所述门体3在载置于水平面的状态下可旋转地设置在冰箱主体2的前侧,所述抽屉4可在前后方向上移动。所述门体3通过设置在其左右中的至少任一侧的铰链,将门体3的上部和下部与冰箱主体2相接合,并以该铰链的铰链轴为中心进行旋转。如上所述,本发明的冰箱1包括门体3和抽屉4这两个可打开、关闭的部件,但是本发明不限于此,例如既可以具有更多的抽屉,也可以是所有的打开、关闭部件都由门体构成。
此外,冰箱1具有:构成冰箱主体2的外部的外壳5、以及构成内部的收容室的上部内胆6和下部内胆7。在本实施方式的冰箱1中,上部内胆6构成冷藏室,下部内胆7构成冷冻室。当打开门体3时,能够对上部内胆6内进行存取,当打开抽屉4时,能够对下部内胆7内进行存取。在抽屉4安装有收容箱(未图示),所述收容箱与抽屉4成为一体而移动。该收容箱在上部设有开口,当用户向下部内胆7收容时,经由该开口向收容箱中配置并收容。在外壳5与各内胆6、7之间,填充有发泡隔热材料8,对各内胆6、7与冰箱主体2外部进行隔热。此外,在上部内胆6和下部内胆7之间,也填充有发泡隔热材料8。
如图1所示,在下部内胆7内的后方形成有冷却室9,在所述冷却室9设置有作为冷却装置的蒸发器24。如后所述,所述蒸发器24构成了冰箱的冷却回路20的一部分。在冷却 室9设有风扇10,风扇10经由风道11将蒸发器24产生的冷空气吹送到各内胆6、7。
风道11设置在各内胆6、7内的后部,经由设置在风道11前表面的通风口,将冷却室9产生的冷空气引导到各内胆6、7内的前方。在所述风道11内设有风门12,风门12被构成为通过后述的控制装置41来控制打开关闭。控制装置41通过设置在上部内胆6内的冷藏室温度传感器14(未图示)来感测冰箱内部的温度,基于温度的高低来控制上述打开关闭。由此,能够对流向上部内胆6(作为冷藏室)的冷空气的流量进行调整,从而使上部内胆6的内部温度在与下部内胆7(作为冷冻室)的内部温度不同的温度范围内保持一定。
在所述冰箱主体2的后方且下部设有机器室13,并设置了蒸发皿(未图示)等,所述蒸发皿对排水进行积存并使其蒸发,所述排水是由于对压缩机21、对压缩机21和冷凝器22进行冷却的冷凝风扇(未图示)、和蒸发器24进行除霜而产生的。
图2是本发明冰箱1的冷却回路20。所述冷却回路20包括压缩机21、冷凝器22、毛细管23和蒸发器24。如后所述,上述冷却回路20的各构件间是通过管路按上述顺序流体地连接的,形成了制冷剂在冷却回路20内循环的第一流路。图2所示的箭头示出了制冷剂的流动方向。即,在冷却回路20中,例如,在后述的压缩机21和蒸发器24的关系中,制冷剂经由吸入管28从作为流路上游侧的蒸发器24流向作为流路下游侧的压缩机21。
所述压缩机21对气体状态的制冷剂进行压缩,使其成为高温高压的状态。经压缩的制冷剂通过第一连接管路25被送到冷凝器22。如后所述,所述第一连接管路25设有三通阀31,并被将其分隔为第一子管路25a和第二子管路25b。所述压缩机21包括逆变器,通过改变旋转速度,能够调整压缩机每单位时间排出的制冷剂的量,从而控制冷却回路20的冷却能力。所述压缩机21与后述的控制装置41电连接,通过从控制装置41传达的信号来控制旋转速度。所述冷凝器22使由压缩机21压缩的制冷剂的热进行排放,以使制冷剂进行冷凝。经冷凝后的制冷剂通过第二连接管路26被送到毛细管23。如后所述,第二连接管路26设有二通阀32,并被其分隔为第三子管路26a和第四子管路26b。
所述毛细管23降低由冷凝器22冷凝的制冷剂的压力以使其膨胀,并且温度相应地降低。膨胀后的制冷剂通过管路27被送到蒸发器24。蒸发器24使由毛细管23减压的制冷剂进行蒸发,并吸热。蒸发并处于气体状态的制冷剂通过吸入管28被送到压缩机21,再次被压缩。以此方式,冷却回路20运行。在本实施方式中,所述毛细管23经由第四子管路26b和管路27连接到冷凝器22和蒸发器24,但是也可以在所述毛细管23中设置第四子管路26b及管路27。
所述吸入管28至少部分地与所述毛细管23靠近地设置,使得能够在与所述毛细管23之间进行热交换,所述吸入管28使制冷剂从蒸发器24流向压缩机21。图2中由虚线包围的区域29表示该热交换部的概况。
当所述蒸发器24运行以对所述冰箱1内进行冷却时,周围的水蒸气可能结霜。为了进行所述蒸发器24的除霜,本发明的冰箱1采用了热气除霜方式,使用了由压缩机21压缩后 的制冷剂的热气。因此,所述冷却回路20包括连接到第一连接管路25的热气旁通管30,所述第一连接管路25连接位于下游的压缩机21和位于上游的冷凝器22。在该连接部位设有三通阀31,所述三通阀31能够进行切换,以使得从压缩机21经由第一子管路25a送来的制冷剂流向冷凝器22(即第二子管路25b)或热气旁通管30中任一侧。由此,能够控制是使制冷剂流向所述冷凝器22以冷却蒸发器24、还是使制冷剂流向热气旁通管30以对蒸发器24进行除霜。所述热气旁通管30连接到管路,所述管路连接下游的毛细管23和上游的蒸发器24。
所述热气旁通管30形成了供制冷剂流过压缩机21-第一连接管路25-热气旁通管30-管路27-蒸发器24的路径的第二流路,所述第二流路与制冷剂流过上述第一流路中的压缩机21-第一连接管路25-冷凝器23-第二连接管路26-毛细管23-管路27-蒸发器24的路径的流路是不同的。
所述三通阀31连接到后述的控制装置41,基于预定的条件,由所述控制装置41控制制冷剂流动的路径的切换。所述控制装置41对三通阀31进行控制,以使得制冷剂在后述的常规运行时流向冷凝器22(即第二子管路25b)、在后述的除霜动作时流向热气旁通管30,所述制冷剂是经由第一子管路25a从压缩机21排出的。
在本说明书中,将冰箱1常规地运行的状态(即,运行以使得对冰箱内部进行冷却、或维持冰箱内部温度的状态)适当地称为“常规运行”。此外,将冰箱1运行以使得对蒸发器24进行除霜的状态(即,冰箱运行以使得打开三通阀31使得制冷剂从三通阀31流向热气旁通管30而使热气流到蒸发器24的状态)适当地称为“除霜动作”。
本实施方式的冰箱1的冷却回路20在第二连接管路26中包括二通阀32,所述第二连接管路26在流体上连接了冷凝器22和毛细管23。二通阀32连接到控制装置41。控制装置41根据对从冷凝器22排放的制冷剂来控制二通阀32的打开关闭。通过关闭所述二通阀32,能够切断制冷剂向第四子管路26b的流动。
图3是本发明的冰箱1的控制系统40的结构框图。本实施方式的冰箱1的控制系统40包括控制各种装置控制装置41。所述控制装置41可以由多个控制单元构成。例如,所述控制装置41由控制部(未图示)和存储部(未图示)构成。
所述控制部包括通过执行程序来实现预定功能的通用处理器,如CPU或MPU。例如,控制部通过调用并执行储存在存储部中的运算程序等,从而实现控制装置41中的各种处理、向各构件的信号的传达。控制部不限于通过硬件和软件的协作来实现预定功能,也能够是专门设计用于实现预定功能的硬件电路。即,除了CPU、MPU之外,控制部还能由GPU、FPGA、DSP、ASIC等各种处理器来实现。这种控制部能由例如作为半导体集成电路的信号处理电路构成。
所述存储部是能够记录各种信息的记录介质。存储部由例如DRAM、SRAM、闪存等存储器、HDD、SSD、其他存储设备或它们的适当组合来实现。存储部能够储存例如由冷藏 室温度传感器14和蒸发器温度传感器15取得的温度、由上述压力传感器取得的压力值等。此外,能够储存基于该温度、压力等来控制各构件(压缩机21、三通阀31、二通阀32、风扇10、风门12等)的程序。也可以储存与后述的常规运行和除霜动作相关的控制程序。各构件也可以不经由存储部,而通过控制部在各构件之间直接收发信息。
如上所述,所述压缩机21、三通阀31和二通阀32电连接到控制装置41。此外,控制装置41还与风扇10、风门12、冷凝风扇、冷藏室温度传感器14和蒸发器温度传感器15等电连接。也可以安装其他温度传感器(将冷冻室温度传感器安装到构成冷冻室的下部内胆7等),将该温度传感器与控制装置41电连接。控制装置41基于冷藏室温度传感器14等的信号,控制为将冷藏室和冷冻室等的温度保持为预定温度。
所述控制装置41能够在任意的条件下,开始除霜动作。例如,能够在冰箱1设有除霜开关(未图示),当控制装置41检测到用户打开了该开关时,开始除霜动作。代替除霜开关、或除了除霜开关之外,还可以设置计时器,构成为当经过了用户在该计时器中设定的期间时,开始除霜动作。此外,也可以在控制装置41中设置经过时间检测功能,构成为当从上次进行的除霜动作起的经过时间超过了预定时间时,开始除霜动作。还可以设置能够对门体3或抽屉4中的至少一者的打开关闭进行检测的传感器,构成为检测打开关闭的次数,当该次数超过了预定的阈值时,开始除霜动作。
通过如本实施方式的冰箱1的冷却回路20那样,设置三通阀31和二通阀32,能够避免制冷剂流向热气旁通管30时的除霜动作的除霜能力的降低,下面将说明冷却回路20的运行例。
所述冰箱1在常规运行时,三通阀31打开以使得制冷剂流向冷凝器22。在下文中,将三通阀31的该状态也称为“第一状态”。此外,在下文中,将三通阀31打开以使得制冷剂流向热气旁通管30的状态也称为“第二状态”。所述二通阀32被设置为根据压缩机21的运行,由所述控制装置41控制打开关闭。因此,在常规运行时,当所述压缩机21压缩并排出制冷剂时,所述二通阀32为打开状态。此外,在本实施方式中,当压缩机21停止时,所述二通阀32为关闭状态。然而,本发明不限于此,在常规运行时且压缩机21停止的情况下,二通阀也可以维持打开状态。
当使所述冷却回路20的运行从常规运行的状态转移为除霜动作时,控制装置41首先将三通阀31维持为第一状态,同时将二通阀32变更为关闭状态。由此,制冷剂不会流向第四子管路26b的下游。在这种状态下,控制装置41使压缩机21运行,将制冷剂排出到冷凝器22。由此,能够将制冷剂积存到冷凝器22和第二子管路25b、第三子管路26a(在下文中,为了方便,称为将制冷剂积存到冷凝器22)。可以调整压缩机21的旋转速度,以增减排出量。例如,如果增加从压缩机21的排出量,则能够更快地将制冷剂积存到冷凝器22,此外,能够积存更多的制冷剂。
在向所述冷凝器22积存了制冷剂之后,所述控制装置41将三通阀31切换为第二状态, 以进行除霜动作。因此,从所述压缩机21向热气旁通管30排出制冷剂(热气)。此时,所述二通阀32维持关闭状态。所述控制装置41可以通过检测例如制冷剂已经积存在冷凝器22中预定时间,来进行所述三通阀31的上述切换。此外,也可以通过测定电机的转速和电流值,来检测压缩机21的负载,以进行该切换,所述电机包括在压缩机21中。也可以在从压缩机21到冷凝器22的流路内或冷凝器22内等,设置压力传感器,构成为能够检测该部位的制冷剂的压力,当通过该压力传感器,检测到该部位的压力变为预定的阈值以上时,进行该切换。
通过像这样控制三通阀31和二通阀32,能够减少除霜动作时的冷却回路20内的制冷剂量。常规运行时的冷却回路20,作为第一流路,如上所述,为制冷剂在从压缩机21排出之后通过冷凝器22和毛细管23流入到蒸发器24的流路。相对地,除霜动作时的冷却回路20,作为第二流路,如上所述,为制冷剂在从压缩机21排出之后通过热气旁通管30流入到蒸发器24的流路。像这样,第二流路相较于第一流路,制冷剂所通过的构件的数量减少。此外,所述冷凝器22排放由压缩机21压缩的制冷剂的热,因此,通常构成较长的流路。因此,相比于第一流路,第二流路的整体流路的长度较短。因此,相对于流路的长度,制冷剂量可能过多。
如果除霜动作中的制冷剂量过多,则成为热气的制冷剂容易冷凝成液体状态(即,容易发生热气的液体返回)。如果制冷剂变成液体并流入到压缩机21,则压缩机21的可靠性可能会降低,例如性能降低等。此外,所述吸入管28的温度可能下降,产生结露。
此外,当制冷剂流动的管路内的制冷剂量增加,而在管路内产生液体状态的制冷剂时,热气状态的制冷剂能够在管路内通过的空间会变窄。其结果是,发生制冷剂的流速增加和压力损失增加,进一步地,热气状态的制冷剂容易冷凝成液体状态。
然而,如本实施方式的冰箱1的冷却回路20那样,通过在进行除霜动作之前,减少在除霜动作中在冷却回路内流动的制冷剂的量,从而降低了热气状态的制冷剂冷凝的可能性。由此,能够抑制除霜能力的降低。
此外,在本发明冰箱1的冷却回路20中,在所述蒸发器24设有蒸发器温度传感器15。蒸发器温度传感器15安装在例如从蒸发器24排出制冷剂的部分。蒸发器温度传感器15检测蒸发器24的温度,并将其传达到控制装置41。由此,控制装置41能够检测在除霜动作中是否能够发挥预定的除霜能力。
如果在除霜动作中由蒸发器温度传感器15检测到的温度低于预定值,则可能不能充分地进行蒸发器24的除霜。在这种情况下,认为原因之一是如上所述的由于制冷剂的冷凝而降低了除霜能力,所述制冷剂的冷凝起因于制冷剂的过多。因此,优选的是,减少在除霜动作中流过第二流路的制冷剂的量。
因此,所述控制装置41在除霜动作时、检测到虽然热气状态的制冷剂流向蒸发器24但是蒸发器温度传感器15的温度低于预定值的情况下,进行控制以使得调整流过第二流路 的制冷剂的流量。具体地,例如,能够通过切换上述三通阀31来调整制冷剂的流量。
在除霜动作中,如上所述,所述三通阀31处于第二状态,所述二通阀32处于关闭状态。通过将该三通阀31切换到第一状态并使压缩机运行,从所述压缩机21排出的制冷剂流向冷凝器22。由于所述二通阀32处于关闭状态,所以制冷剂不能流向第三子管路26a的下游,而积存到冷凝器22。之后,通过将所述三通阀31切换到第二状态,能够减少流过第二流路的制冷剂的流量。由此,能够抑制热气状态的制冷剂在管路内的冷凝,从而能够抑制除霜能力的降低。
图4所示的冷却回路20a是采用热气除霜方式的常规冰箱的简易冷却回路的一个示例。对与冷却回路20相同的部件,标注相同的附图标记。从图2和图4之间的比较能够清楚地看出,常规冰箱的冷却回路20a与冷却回路20的不同之处在于,不包括二通阀32。如上所述,本实施方式的冰箱1的冷却回路20仅通过针对常规冰箱的冷却回路20a增加二通阀32并增加对该二通阀32的控制,就能够减少流过第二流路的制冷剂的流量。因此,能够容易地避免除霜动作时的热气状态的制冷剂在管路内的冷凝,从而能够抑制除霜能力的降低。
此外,关于除霜能力的降低,除了制冷剂量的过多之外,还可能存在其他原因。例如,考虑所述热气旁通管30的内径30a小于从压缩机21排出制冷剂的排出管的内径21a的情况。在这种情况下,在该管路内流动的制冷剂的流速增加,压力损失增加,热气状态的制冷剂容易冷凝。因此,通过将热气旁通管30的内径30a设为大于所述压缩机21的排出管的内径21a,能够降低制冷剂流动时的压力损失,从而避免制冷剂的冷凝。此外,通过增大热气旁通管30的内径30a,能够增大包括第二流路在内的、除霜动作时使用的冷却回路20的回路容积。
此外,将所述三通阀31内部的制冷剂所流动的空间中最小的部位的内径作为开口直径31a(以下,适当地称为三通阀31的内径31a),考虑所述开口直径31a的大小也同样影响除霜能力的降低。当所述三通阀31的内径31a小于从压缩机21排出制冷剂的排出管的内径21a时,流过所述三通阀31的制冷剂的流速增加,压力损失增加,热气状态的制冷剂容易冷凝。因此,通过将所述三通阀31的内径31a设为大于所述压缩机21的排出管的内径21a,能够降低制冷剂流动时的压力损失,从而抑制制冷剂的冷凝。
表1是当相较于压缩机21的排出管的内径21a变更了热气旁通管30的内径30a和三通阀31的内径31a时的、除霜动作所导致的蒸发器24的温度T的变化的一个示例。该温度T是由温度传感器(未图示)测量的温度,所述温度传感器安装在蒸发器24的下部以用于测定,所述下部是蒸发器24中温度难以上升的部位。
表1
Figure PCTCN2021140884-appb-000001
在上述示例中,使用了内径21a为φ4.76(即4.76mm)的压缩机21的排出管,环境温度为16℃,在此情况下进行实验。在该示例中,使用了内径30a为φ4和φ6的热气旁通管30。此外,使用了内径31a为φ2、φ4和φ6的三通阀31。
如表1所示,当所述热气旁通管30的内径30a为φ4时,若将三通阀31的内径31a变更为φ2、φ4、φ6,则由安装到蒸发器24的温度传感器测量的除霜结束时的温度T分别为-0.4℃、5.4℃、5.8℃。像这样,根据表1可知,通过使三通阀31的内径31a大于压缩机21的排出管的内径21a,能够降低制冷剂流动时的压力损失,从而避免除霜能力的降低。
此外,当所述三通阀31的内径31a为φ6时,若将热气旁通管30的内径30a变更为φ4、φ6,则由安装到蒸发器24的温度传感器测量的除霜结束时的温度分别为5.8℃、7.2°C。像这样,根据表1可知,通过使热气旁通管30的内径30a大于压缩机21的排出管的内径21a,能够降低制冷剂流动时的压力损失,从而避免除霜能力的降低。
图5是本发明冷却回路20及其他冷却装置的运行的时序图。在图5中,(a)、(b)、(c)、(d)、(e)、(f)分别图示了压缩机21、二通阀32、三通阀31、风扇10、风门12、冷凝风机的运行时序。控制装置41可以通过向各装置传达如下所述的控制信号来进行控制。
图5(a)展示了压缩机21的旋转速度。“OFF”意味着压缩机21停止工作。“LOW”意味着压缩机21的电机的转速较低。“HIGH”意味着压缩机21的电机的转速较高。
在图5(b)中,“ON”意味着二通阀32打开。此外,“OFF”意味着关闭。
在图5(c)中,“ON”意味着三通阀31处于第二状态。此外,“OFF”意味着处于第一状态。
在图5(d)、(f)中,“ON”分别意味着各风扇在运行。此外,“OFF”意味着各风扇停止。
在图5(e)中,“ON”意味着打开风门12以使得能够将来自冷却室9的冷空气吹送到风道11的上方。此外,“OFF”意味着风门12关闭。
图5的期间A是进行常规运行的期间。在常规运行时,压缩机21和二通阀32联动地运行。当压缩机21运行时,二通阀32处于打开状态。此外,当压缩机21停止时,二通阀32处于关闭状态。相对于此,三通阀31在每种情况下都处于第一状态。
期间B是进行除霜动作之前的准备阶段,是将制冷剂积存到冷凝器32(也即暂时进行抽空(Pump down))的期间。在期间B内,所述压缩机21继续运行,但二通阀32切换到关闭状态。此外,所述三通阀31如同常规运行时那样处于第一状态。在图5所示的时序图中,所述压缩机21以与常规运行时相同的转速运行,但也可以被设置为增加或减少上述的转速。
期间C是进行除霜动作的期间。所述压缩机21以与期间A、B相同的方式运行。此外,所述二通阀32处于关闭状态。所述三通阀31被切换到第二状态并使制冷剂流向热气旁通管 30。在图5所示的时序图中,所述压缩机21的转速比常规运行时增加,但既可以为与常规运行时相同的转速,也可以比常规运行时减少。
期间D是除霜动作结束后的一定期间。在除霜动作的结束后,所述压缩机21停止运行,所述三通阀31切换到第一状态。在经过一定期间之后,再次运行压缩机21以便进行常规运行,此外,将所述二通阀32切换为打开状态。此时,由于在除霜动作中,使高温的制冷剂在所述蒸发器24中流动,所以蒸发器24的温度比通常高。因此,为了降低所述蒸发器24的温度,在经过一定期间之后,运行风扇10等,并开始常规运行。
基本上,与常规运行时的压缩机21的运行联动地控制所述风扇10。在常规运行时,如果所述压缩机21运行,则所述风扇10也运行。在除霜动作时、以及转换为准备进行除霜动作时,所述风扇10停止运行。此外,当从除霜动作转移为常规运行时,在所述压缩机21开始运行后,需要对除霜动作中加热的蒸发器24进行冷却,因此,从所述压缩机21运行后延迟一定时间开始运行风扇10。
基本上与所述风扇10的运行联动地控制风门12的打开或关闭。此外,虽然未图示,但是,即使所述风扇10在运行中,也可以关闭风门12,以便根据冷藏室温度传感器检测出的温度来使上部内胆6内的温度保持为一定,所述冷藏室温度传感器安装在作为冷藏室的上部内胆6内。
冷凝风扇与所述压缩机21联动地运行。
像这样,所述控制装置41控制压缩机21、二通阀32、三通阀31,由此,能够通过本实施方式的冰箱1的冷却回路来避免除霜能力的降低。
本发明不限于所例示的实施方式,在不脱离本发明的主旨的情况下能够进行各种改进和设计上的变更。
产业上的可利用性
如上所述,根据本发明,能够提供一种冰箱1,其能够在不包括复杂的系统的情况下,容易地减少流过热气旁通管的制冷剂的流量,避免除霜能力的降低,因此,能够优选地利用于这种冰箱的产业领域中。
以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围。

Claims (10)

  1. 一种冰箱,其特征在于,包括冷却回路,所述冷却回路具有按压缩机、冷凝器、毛细管、以及蒸发器的顺序而连接的使制冷剂循环的第一流路,所述压缩机对从所述蒸发器送来的所述制冷剂进行压缩,所述冷凝器使从所述压缩机送来的所述制冷剂进行冷凝,所述毛细管使从所述冷凝器送来的所述制冷剂进行膨胀,所述蒸发器使从所述毛细管送来的所述制冷剂蒸发,
    所述冷却回路包括:
    热气旁通管,所述热气旁通管被设置为形成第二流路,所述第二流路使由所述压缩机压缩的所述制冷剂从所述压缩机流向所述蒸发器;
    三通阀,设置在所述压缩机与所述冷凝器之间的所述第一流路中,且与所述热气旁通管相连接;以及
    二通阀,设置在所述冷凝器与所述毛细管之间的所述第一流路中,
    所述三通阀能够使从所述压缩机排出的所述制冷剂流入到所述冷凝器或所述热气旁通管,
    所述二通阀能够通过关闭来切断从所述冷凝器排出的所述制冷剂的流动。
  2. 根据权利要求1所述的冰箱,其特征在于,所述冰箱具有控制装置,所述控制装置将所述冷却回路切换为对所述蒸发器进行冷却的常规运行和对所述蒸发器进行除霜的除霜动作,所述控制装置能够控制所述三通阀使流体流动到所述冷凝器和所述热气旁通管中的哪个,还能够控制所述二通阀的打开关闭,所述控制装置在从所述常规运行切换到所述除霜动作的情况下,以如下方式进行控制:所述三通阀使所述制冷剂流向所述冷凝器并且关闭所述二通阀,由此通过所述压缩机向所述冷凝器排出所述制冷剂,之后,所述三通阀使所述制冷剂流向所述热气旁通管。
  3. 根据权利要求2所述的冰箱,其特征在于,在所述蒸发器设有温度传感器,所述控制装置在所述除霜动作中,根据所述温度传感器所测定的温度来控制所述三通阀和所述二通阀,以调整所述制冷剂的量。
  4. 根据权利要求3所述的冰箱,其特征在于,所述热气旁通管的内径大于所述压缩机的排出管的内径,所述制冷剂通过所述排出管从所述压缩机排出。
  5. 根据权利要求1至4中任一项所述的冰箱,其特征在于,所述三通阀的内径大于所述压缩机的排出管的内径。
  6. 根据权利要求3所述的冰箱,其特征在于,经压缩的制冷剂通过第一连接管路被送到冷所述凝器,所述第一连接管路设有所述三通阀,并被将其分隔为第一子管路和第二子管路。
  7. 根据权利要求6所述的冰箱,其特征在于,经冷凝后的制冷剂通过第二连接管路被 送到所述毛细管,所述第二连接管路设有所述二通阀,并被其分隔为第三子管路和第四子管路。
  8. 根据权利要求3所述的冰箱,其特征在于,所述控制装置在除霜动作时、检测到虽然热气状态的制冷剂流向蒸发器但是蒸发器温度传感器的温度低于预定值的情况下,进行控制以使得调整流过第二流路的制冷剂的流量。
  9. 根据权利要求3所述的冰箱,其特征在于,在除霜动作中,所述三通阀处于打开以使得制冷剂流向热气旁通管的第二状态,所述二通阀处于关闭状态;通过将该三通阀切换到第一状态并使压缩机运行,从所述压缩机排出的制冷剂流向冷凝器。
  10. 根据权利要求3所述的冰箱,其特征在于,在所述冰箱的冷却室内设置所述蒸发器及风扇,与常规运行时的压缩机的运行联动地控制所述风扇,在常规运行时,如果所述压缩机运行,则所述风扇也运行;在除霜动作时、以及转换为准备进行除霜动作时,所述风扇停止运行;当从除霜动作转移为常规运行时,在所述压缩机开始运行后,从所述压缩机运行后延迟一定时间开始运行风扇。
PCT/CN2021/140884 2020-12-28 2021-12-23 冰箱 WO2022143415A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21914152.0A EP4269910A1 (en) 2020-12-28 2021-12-23 Refrigerator
CN202180087724.2A CN116783435A (zh) 2020-12-28 2021-12-23 冰箱
US18/270,195 US20240060694A1 (en) 2020-12-28 2021-12-23 Refrigerator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020218937A JP2022103988A (ja) 2020-12-28 2020-12-28 冷蔵庫
JP2020-218937 2020-12-28

Publications (1)

Publication Number Publication Date
WO2022143415A1 true WO2022143415A1 (zh) 2022-07-07

Family

ID=82259052

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2021/040357 WO2022145131A1 (ja) 2020-12-28 2021-11-02 冷蔵庫
PCT/CN2021/140884 WO2022143415A1 (zh) 2020-12-28 2021-12-23 冰箱

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/040357 WO2022145131A1 (ja) 2020-12-28 2021-11-02 冷蔵庫

Country Status (5)

Country Link
US (1) US20240060694A1 (zh)
EP (1) EP4269910A1 (zh)
JP (1) JP2022103988A (zh)
CN (1) CN116783435A (zh)
WO (2) WO2022145131A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090320504A1 (en) * 2005-06-23 2009-12-31 Carrier Corporation Method for Defrosting an Evaporator in a Refrigeration Circuit
CN101743449A (zh) * 2007-06-29 2010-06-16 伊莱克斯家用产品公司 热气除霜方法和装置
CN102317724A (zh) * 2009-02-11 2012-01-11 Lg电子株式会社 冰箱的控制方法
CN104613688A (zh) * 2015-01-23 2015-05-13 西安交通大学 一种冰箱的热气除霜系统及其控制方法
CN109813017A (zh) * 2019-01-16 2019-05-28 合肥美的电冰箱有限公司 一种冰箱除霜系统及具有该系统的冰箱
CN209246477U (zh) * 2016-05-27 2019-08-13 三菱电机株式会社 冷却单元

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5524527Y2 (zh) * 1976-06-09 1980-06-12
JPS55159968U (zh) * 1979-05-04 1980-11-17
JPS5670750U (zh) * 1979-11-05 1981-06-11
JPH0338620Y2 (zh) * 1984-12-24 1991-08-14
JPS61159072A (ja) * 1984-12-29 1986-07-18 ダイキン工業株式会社 冷凍装置
JPH01159564A (ja) * 1987-12-16 1989-06-22 Sanyo Electric Co Ltd 冷凍装置
JPH0752053B2 (ja) * 1987-12-29 1995-06-05 ダイキン工業株式会社 冷凍装置
JP3349251B2 (ja) * 1994-03-11 2002-11-20 三洋電機株式会社 冷凍装置
JP4119766B2 (ja) * 2003-02-18 2008-07-16 東芝キヤリア株式会社 冷凍装置
JP6173360B2 (ja) * 2015-01-07 2017-08-02 三菱電機株式会社 冷凍装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090320504A1 (en) * 2005-06-23 2009-12-31 Carrier Corporation Method for Defrosting an Evaporator in a Refrigeration Circuit
CN101743449A (zh) * 2007-06-29 2010-06-16 伊莱克斯家用产品公司 热气除霜方法和装置
CN102317724A (zh) * 2009-02-11 2012-01-11 Lg电子株式会社 冰箱的控制方法
CN104613688A (zh) * 2015-01-23 2015-05-13 西安交通大学 一种冰箱的热气除霜系统及其控制方法
CN209246477U (zh) * 2016-05-27 2019-08-13 三菱电机株式会社 冷却单元
CN109813017A (zh) * 2019-01-16 2019-05-28 合肥美的电冰箱有限公司 一种冰箱除霜系统及具有该系统的冰箱

Also Published As

Publication number Publication date
US20240060694A1 (en) 2024-02-22
JP2022103988A (ja) 2022-07-08
EP4269910A1 (en) 2023-11-01
CN116783435A (zh) 2023-09-19
WO2022145131A1 (ja) 2022-07-07

Similar Documents

Publication Publication Date Title
JP4289427B2 (ja) 冷凍装置
US10495368B2 (en) Refrigerator and operation method of the same
US20040040341A1 (en) Refrigerator
JP5110192B1 (ja) 冷凍装置
JP4760974B2 (ja) 冷凍装置
JP2009109110A (ja) 冷凍装置
JP2008138915A (ja) 冷凍装置
JP6872689B2 (ja) 冷蔵庫
JP4303062B2 (ja) 冷蔵庫
WO2022143415A1 (zh) 冰箱
JP2007309585A (ja) 冷凍装置
JP3484131B2 (ja) 冷凍冷蔵庫
JP3993540B2 (ja) 冷凍装置
JP4984770B2 (ja) 冷蔵庫
JPWO2003083380A1 (ja) 冷凍装置
JP2008232530A (ja) 冷蔵庫
KR101723284B1 (ko) 냉장고 및 그 제어방법
JPH09318205A (ja) 冷凍装置
JP5068340B2 (ja) 冷凍冷蔵庫
JP3836092B2 (ja) 冷凍装置
JP2013122328A (ja) コンテナ用冷凍装置
WO2022145130A1 (ja) 冷蔵庫
WO2023109798A1 (zh) 冰箱
JP6146428B2 (ja) 冷凍装置
JPH11142044A (ja) マルチ冷蔵庫

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21914152

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180087724.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18270195

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2021914152

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021914152

Country of ref document: EP

Effective date: 20230728