WO2022142454A1 - 举升装置及自动导引运输车 - Google Patents

举升装置及自动导引运输车 Download PDF

Info

Publication number
WO2022142454A1
WO2022142454A1 PCT/CN2021/117162 CN2021117162W WO2022142454A1 WO 2022142454 A1 WO2022142454 A1 WO 2022142454A1 CN 2021117162 W CN2021117162 W CN 2021117162W WO 2022142454 A1 WO2022142454 A1 WO 2022142454A1
Authority
WO
WIPO (PCT)
Prior art keywords
assembly
cylinder
follower
guide block
guide rail
Prior art date
Application number
PCT/CN2021/117162
Other languages
English (en)
French (fr)
Inventor
王哲
白寒
吕王彪
Original Assignee
杭州海康机器人技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州海康机器人技术有限公司 filed Critical 杭州海康机器人技术有限公司
Publication of WO2022142454A1 publication Critical patent/WO2022142454A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/063Automatically guided
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/075Constructional features or details
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present application relates to the technical field of automatic guided transportation, and in particular, to a lifting device and an automatic guided transportation vehicle.
  • the lifting and rotating mechanism of the AGV (Automated Guided Vehicle) table is a relatively mature product module.
  • Rod lifting, hydraulically driven scissor differential lifting mechanism, etc., the table rotation mechanism is generally driven by a set of gear pairs.
  • the lifting mechanism and the rotating mechanism are often driven by two independent drives, and the cost is relatively high.
  • the embodiments of the present application provide a lower-cost lifting device and an automatic guided transport vehicle.
  • an embodiment of the present application provides a lifting device, including: a driving assembly, a rotating unit assembly, a guide block assembly, and a guide rail assembly; the driving assembly is connected to the rotating unit assembly, so The rotating unit assembly is connected to the guide block assembly; the drive assembly drives the rotating unit assembly to rotate, and the rotating unit assembly drives the guide block assembly relative to the guide rail assembly through a screw motion pair wherein, the guide rail assembly is provided with a first limit structure that guides the guide block assembly to move upward or downward, and restricts the guide block assembly to perform rotational movement; The upper part is also provided with a second limit structure that restricts the guide block assembly to continue to move up or down after the guide block assembly rises or falls to a predetermined height, and guides the guide block assembly to rotate. .
  • the drive assembly includes a drive mechanism and a slewing bearing;
  • the slewing bearing includes an inner ring and an outer ring, the inner ring is fixedly arranged, and the outer ring is sleeved on the The inner ring is outside and can be rotated relative to the inner ring, the outer ring is connected with the driving mechanism; the rotating unit assembly is fixed on the outer ring.
  • the drive mechanism includes a drive motor and a reducer connected to the drive motor, and an output shaft of the reducer is connected with a driving gear;
  • the peripheral edge has external teeth, and the external teeth of the outer ring mesh with the driving gear.
  • the rotation unit assembly includes a first cylinder connected to the drive assembly;
  • the guide block assembly includes a second cylinder, and the second cylinder sleeved in the first cylinder;
  • the inner wall of the first cylinder is provided with a first follower part
  • the outer side wall of the second cylinder is provided with a first helical groove, or the first
  • the inner wall of the cylinder is provided with a first helical groove
  • the outer side wall of the second cylinder is provided with a first follower part; the first follower part is in contact with the first helical groove.
  • the guide rail assembly includes a guide rail, the bottom of the guide rail is fixed, and is vertically disposed in the second cylinder; the first limiting structure includes a guide rail along the guide rail.
  • a limit slot vertically arranged up and down in the height direction; a second follower member is arranged on the inner wall of the second cylinder, and the second follower member can move up and down in the limit slot.
  • the top and/or bottom end of the limiting slot has a second follower component inlet and outlet; the second limiting structure includes being provided above the limiting slot and/or or below, and the blocking portion corresponding to the limiting groove.
  • the blocking portion is an annular blocking portion provided on the guide rail, and the annular blocking portion is extended in the horizontal direction around the central axis of the guide rail;
  • a side of the annular blocking portion close to the limiting groove is provided with a second follower member rotation space, and the second follower member inlet and outlet are communicated with the second follower member rotation space.
  • annular supporting surface is provided below the annular blocking portion provided above the limiting groove, and the bottom surface of the annular blocking portion is connected to the bottom surface of the annular blocking portion.
  • a rotation space of the second follower component is formed between the annular support surfaces; the entrance and exit of the second follower component are opened on the annular support surface.
  • a notch is provided on one side of the entrance and exit of the second follower component, and a bridge arm is vertically arranged at the notch, and the first end of the bridge arm is
  • the hinge shaft is hinged in the slot, and the hinge shaft is provided with a return torsion spring; when the bridge arm rotates to a horizontal position in a predetermined direction, the second end of the bridge arm overlaps the second end of the bridge arm.
  • a guide block is connected to the second end of the bridging arm, and when the bridging arm is in a vertical position, the guide block is in a lateral position, which is in the same direction as the second end of the bridging arm.
  • the entrance and exit of the follower component correspond to and have a predetermined distance from the entrance and exit of the second follower component.
  • the top end of the first helical groove has a first end; when the second follow-up member comes out of the limiting groove, the first follow-up part is the part abuts the first end of the top of the first helical groove; and/or,
  • the inner wall of the first cylinder is provided with a second helical groove
  • the outer wall of the second cylinder is provided with a helical protrusion; when the second follower part comes out of the limiting groove, the The second end of the second helical groove abuts against the third end of the helical protrusion.
  • the rotating unit assembly includes a cylinder connected to the driving assembly
  • the guide block assembly includes a third cylinder, and the third cylinder is sleeved on the outer periphery of the cylinder; the side of the cylinder has a helical slope, and the inner wall of the third cylinder is provided with a third cylinder.
  • the follower part, or a third follower part is provided on the side of the cylinder, and the inner wall of the third cylinder is provided with a spiral slope; the third follower part is in contact with the spiral slope.
  • the guide rail assembly includes a fourth cylinder, the fourth cylinder is sleeved on the outer periphery of the third cylinder, and the bottom end of the fourth cylinder is fixedly arranged ;
  • the first limiting structure is a limiting groove provided on the inner wall of the fourth cylinder, and the limiting groove extends along the height direction of the fourth cylinder;
  • the outer periphery of the third cylinder is provided with A fourth follower member, which can move up and down in the limiting groove on the inner wall of the fourth cylinder.
  • the top and/or bottom end of the limiting groove on the inner wall of the fourth cylinder has a fourth follower component inlet and outlet;
  • the second limiting structure includes a Above and/or below the limiting groove on the inner wall of the fourth cylinder, and the blocking portion corresponding to the limiting groove.
  • an embodiment of the present application provides an automatic guided transport vehicle, which includes a vehicle body, and the vehicle body is provided with the lifting device described in any one of the foregoing implementations.
  • the driving assembly rotates in the first direction, which drives the rotating unit assembly to rotate; the rotation of the rotating unit assembly drives the guide block assembly to make a straight line along the guide rail assembly Lifting (lifting) movement; after the guide block assembly rises straight to the predetermined height, the drive assembly continues to rotate in the first direction, and drives the rotating unit assembly to continue to rotate; the continued rotation of the rotating unit assembly drives the guide block assembly Do rotary motion, or, the drive assembly rotates in the opposite direction to the first direction to drive the rotary unit assembly to rotate; the rotation of the rotary unit assembly drives the guide block assembly to make a straight downward motion along the guide rail assembly; the guide block assembly After descending to the predetermined height in a straight line, the drive assembly continues to rotate in the opposite direction, and drives the rotary unit assembly to continue to rotate; the continued rotation of the rotary unit assembly drives the guide block assembly to rotate, so that through a drive assembly The linear upward drive of the guide block assembly and the horizontal rotation drive at
  • FIG. 1 is a schematic structural diagram of a lifting device according to an embodiment of the present application.
  • FIG. 2 to 5 are respectively schematic structural diagrams of the drive assembly, the rotary unit assembly, the guide block assembly and the guide rail assembly in FIG. 1 .
  • FIGS. 6 and 7 are schematic structural diagrams of a first cylinder body and a second cylinder body in another embodiment of the present application, respectively.
  • Figures 8 to 11 are used to describe the guide rail assembly restricting the helical motion pair at different positions.
  • FIG. 12 is a schematic structural diagram of a lifting device according to another embodiment of the present application.
  • FIG. 13 to FIG. 15 are respectively schematic structural diagrams of the drive assembly, the rotary unit assembly and the guide block assembly in FIG. 12 .
  • FIG. 16 is a schematic diagram of a partial structure of a lifting device according to another embodiment of the present application.
  • FIG. 17 is a cross-sectional view of the lift device shown in FIG. 16 .
  • FIG. 18 is a schematic structural diagram of an automatic guided transport vehicle with a load according to another embodiment of the present application.
  • FIG. 19 is a schematic structural diagram of another embodiment of the application with an automatic guided transport vehicle.
  • FIG. 20 is a schematic diagram of the lifting device in FIG. 19 in the lifting position.
  • FIG. 21 is a top view of the lifting device of FIG. 19 .
  • the embodiment of the present application aims to provide a lifting device, including a drive assembly, a rotating unit assembly, a guide block assembly and a guide rail assembly; wherein the drive assembly is connected to the rotating unit assembly, and the rotating unit assembly and the guide The block assembly is connected.
  • the driving assembly drives the rotating unit assembly to rotate, and the rotating unit assembly drives the guide block assembly to move linearly up or down along the guide rail assembly to a predetermined height, and then drives the guide block assembly to rotate.
  • the linear ascending or descending drive of the guide block assembly and the horizontal rotational drive after ascending or descending to a predetermined height can be realized by one drive assembly, and the cost is low.
  • FIG. 1 is a schematic structural diagram of a lifting device according to an embodiment of the present application, which can be applied to an AGV.
  • the lifting device 10 of this embodiment may include: a driving assembly 20 , a rotating unit assembly 30 , and a guide block The assembly 40 and the guide rail assembly 50; the driving assembly 20 is connected with the rotating unit assembly 30, and the rotating unit assembly 30 is connected with the guide block assembly 40; the rotating unit assembly 30 can drive the guide block assembly 40 through the screw motion pair Move relative to the guide rail assembly 50; the guide rail assembly 50 is provided with a first limiting structure 501 (shown in FIG.
  • the guide rail assembly 50 is also provided with a second limit structure 502 that restricts the guide block assembly 40 to continue to move upward after the guide block assembly 40 rises to a predetermined height and guides the guide block assembly 40 to perform a rotational movement (shown in Figure 5).
  • the guide block assembly 40 can be used to lift the cargo.
  • the driving assembly 20 rotates in the first direction (eg, positive direction), which drives the rotating unit assembly 30 to rotate; the rotation of the rotating unit assembly 30 drives the guide block assembly 40 to rotate along the guide rail assembly.
  • the driving assembly 20 continues to rotate in the first direction, and drives the rotating unit assembly 30 to continue to rotate; Continue to rotate to drive the guide block assembly 40 to rotate.
  • the driving assembly 20 rotates in the reverse direction, and drives the rotating unit assembly 30 to rotate in the reverse direction; the reverse rotation of the rotating unit assembly 30 drives the guide block assembly 40 to rotate in the reverse direction, and the guide block assembly 40 rotates in the reverse direction. After moving to the predetermined position, perform a linear downward movement along the guide rail assembly 50 to a low position.
  • the linear upward driving of the guide block assembly 40 in the low position and the horizontal rotation driving in the high position can be realized by one driving assembly 20 , and the cost is low.
  • FIG. 2 is a schematic structural diagram of the drive assembly in FIG. 1 .
  • the drive assembly 20 which may also be referred to as a drive assembly or a drive module, etc., is used to drive the rotation unit assembly 30 to rotate.
  • the drive assembly 20 may include a drive mechanism 201 and a slewing bearing 202;
  • the slewing bearing 202 includes an inner ring 2021 and an outer ring 2022, the inner ring 2021 is fixedly arranged, and the outer ring 2022 is sleeved on the inner ring 2021 is outside and can rotate relative to the inner ring 2021 , the outer ring 2022 is connected with the driving mechanism 201 ;
  • the rotating unit assembly 30 is fixed on the outer ring 2022 .
  • balls may be provided between the inner ring 2021 and the outer ring 2022 , the inner ring 2021 may be fixed on a base plate 60 , and the rotating unit assembly 30 may be fixed on the first end of the outer ring 2022 .
  • the driving mechanism 201 drives the outer ring 2022 to rotate, so as to drive the rotating unit assembly 30 fixed with the outer ring 2022 to rotate.
  • the drive mechanism 201 may include a drive motor 2011 and a reducer 2012 connected to the drive motor 2011 , the output shaft of the reducer 2012 and the outer ring 2022 of the slewing bearing 202 are connected through a transmission mechanism.
  • the transmission mechanism may be a chain transmission mechanism, a belt transmission mechanism, a gear transmission mechanism, or the like.
  • the transmission mechanism is a gear transmission mechanism.
  • the output shaft of the reducer 2012 is connected with a driving gear 2013; The external teeth of 2013 mesh with the driving gear 2013.
  • a drive mounting plate 601 is mounted on the base plate 60, the drive motor 2011 is mounted with the reducer 2012, the reducer 2012 is mounted on the drive mounting plate 601, and the output shaft of the reducer 2012 is mounted with a drive
  • the gear 2013, the driving gear 2013 and the outer teeth of the outer ring 2022 of the slewing bearing 202 cooperate to form a pair of gear pairs, so that the power of the driving motor 2011 can be transmitted to the slewing bearing 202, and the outer ring 2022 of the slewing bearing 202 can be driven to rotate .
  • FIG. 3 is a schematic structural diagram of the rotating unit assembly in FIG. 1
  • FIG. 4 is a structural schematic diagram of the guide block assembly in FIG. 1 .
  • the rotating unit assembly shown in FIG. 3 and the guide block assembly shown in FIG. 4 are connected by a screw motion pair.
  • the rotary unit assembly 30, also known as a rotary unit assembly or a rotary unit module, etc., may also be referred to as a rotary unit, and is used to directly drive the guide block assembly 40 to perform linear upward motion in a low position, or rotate in a high position.
  • the rotating unit assembly 30 may include a first cylindrical body 301 connected to the driving assembly 20 , and a first follower member 302 is provided on the inner wall of the first cylindrical body 301 .
  • the first follower member 302 may be a roller or a roller or the like.
  • the number of the first follower parts 302 may be multiple. In the embodiment shown in FIG. 3 , the number of the first follower parts 302 is six.
  • the bottom of the first cylinder 301 is fixed on the outer ring 2022 of the slewing bearing 202 .
  • the guide block assembly 40 may include a second cylindrical body 401, the second cylindrical body 401 is sleeved in the first cylindrical body 301, and a first spiral groove 402 is provided on the outer side wall of the second cylindrical body 401, The first spiral groove 402 is arranged in a spiral upward manner along the height direction of the second cylindrical body 401 .
  • a second follower member 403 is provided on the inner wall of the second cylinder 401 .
  • the relative position of the second follower part 403 on the second cylinder body 401 is adjustable up and down, so that the guide block assembly 40 can have different lifting heights.
  • the second follower member 403 may be a roller or a roller or the like.
  • the number of the second follower parts 403 may be multiple. In the embodiment shown in FIG. 4 , the number of the second follower parts 403 is four.
  • the first follower member 302 on the inner wall of the first cylinder body 301 is in contact with the first helical groove 402 to form a helical motion pair.
  • the degree of freedom of the helical motion pair is 2, which can be decomposed into a rotary motion pair that rotates around the axis of the guide rail assembly 50 and a linear motion pair that moves along the axis of the guide rail assembly 50 .
  • the helical motion pair can be transformed into a linear motion pair with a degree of freedom of 1 by restricting the rotational motion pair, or the helical motion pair can be changed into a rotational motion pair with a degree of freedom of 1 by restricting the linear motion pair.
  • the above-mentioned switching can be completed by restricting the screw motion pair at different positions, so that the lifting and rotating actions can be completed by one drive.
  • the positions of the first follower member on the inner wall of the first cylinder and the first helical groove on the outer side wall of the second cylinder can be interchanged, that is, the The inner wall of the first cylinder is provided with a first helical groove, and the outer side wall of the second cylinder is provided with a first follower part; the first follower part is in contact with the first helical groove, Form a spiral motion pair.
  • FIG. 5 is a schematic structural diagram of the guide rail assembly in FIG. 1 .
  • the guide rail assembly 50 may also be referred to as a guide rail assembly, a guide rail module, a guide assembly or a guide module, and the like.
  • the guide rail assembly 50 has a first limiting structure 501 and a second limiting structure 502 .
  • the drive motor 2011 drives the rotating unit assembly 30 to rotate, the rotating unit assembly 30 drives the guide block assembly 40 to move through the screw motion pair, and the guide rail assembly 50 passes through the first limit structure 501 and the second limit structure 502 at different positions Different restrictions on the helical motion pair can realize different forms of movement of the guide block assembly 40 .
  • the guide rail assembly 50 may include a guide rail 503 , and the guide rail 503 is fixed at the bottom and vertically disposed in the second cylindrical body 401 .
  • the guide rail 503 can be cylindrical or cylindrical, and the bottom of the guide rail 503 can be fixed on the bottom plate 60 .
  • the first limiting structure 501 may include a limiting groove vertically disposed on the guide rail 503.
  • the second follower member 403 on the inner wall of the second cylindrical body 401 is located in the limiting groove.
  • the limiting groove can not only provide guidance for the vertical linear movement of the second follower part 403 , but also limit the second follower part 403 through its side to limit the rotation of the guide block assembly 40 .
  • the guide block assembly 40 is in a low position, and the second follower member 403 can only move linearly along the axis of the guide rail 503 due to the restriction of the limit slot in the direction of rotation around the axis of the guide rail 503; the drive motor 2011
  • the rotating unit assembly 30 is driven to rotate, and the rotating unit assembly 30 can make the guide block assembly 40 rise along the axis direction of the guide rail 503 .
  • the second limiting structure 502 restricts the guide block assembly 40 to continue to perform linear upward movement, so that the guide block assembly 40 can only perform a rotational movement.
  • the second limiting structure 502 may be a blocking portion disposed above the limiting groove and corresponding to the limiting groove.
  • the blocking portion may be an annular blocking portion provided on the guide rail 503 , and the annular blocking portion is extended in the horizontal direction around the central axis of the guide rail 503 ; the annular blocking portion has a second follower member to rotate below the annular blocking portion space 504; the top end of the limiting groove has a second follower part entrance 505, and the second follower part entrance 505 is communicated with the second follower part rotation space 504; wherein, the annular blocking part can be a blocking plate, a blocking strip, a blocking Rings or blocking blocks, etc.
  • the second follower member 403 escapes from the second follower member entrance 505 from the limiting groove and enters the second follower member rotation space 504 .
  • the driving assembly 20 continues to rotate, the first follower member 302 continues to exert force on the first helical groove 402 on the outer wall of the second cylinder 401, and the first follower member 302 is applied to the upward direction of the first helical groove 402
  • the component of the force is counteracted by the reaction force exerted by the annular blocking portion, and the component force in the horizontal direction exerted by the first follower member 302 on the first helical groove 402 pushes the second cylinder 401 (ie, the guide block assembly 40) to do horizontal rotation.
  • the driving assembly 20 rotates in the opposite direction, and the first follower member 302 exerts a force in the opposite direction on the first helical groove 402 on the outer wall of the second cylinder 401 to push
  • the second cylinder 401 reversely rotates to a predetermined position, it enters the limiting groove from the second follower part inlet 505; the driving assembly 20 continues to rotate in the reverse direction, and the first follower part 302 is applied to the first spiral groove 402 horizontally.
  • the component force in the direction is offset by the reaction force exerted by the side of the limiting groove, and the component force exerted by the first follower member 302 in the downward direction of the first helical groove 402 pushes the second cylinder 401 downward along the limiting groove. Linear motion to low position.
  • the top of the guide block assembly 40 When the guide block assembly 40 is in a high position, the top of the guide block assembly 40 usually supports goods, that is, in a loaded state, and the first follower component 302 will bear a relatively large pressure.
  • an annular supporting surface 506 is provided below the annular blocking portion.
  • a second follower member rotation space 504 is formed between the bottom surface of the ring and the annular support surface 506 ;
  • the annular support surface 506 can provide a certain support for the second follower part 403 , thereby reducing the pressure exerted by the guide block assembly 40 on the first follower part 302 , so as to protect the first follower component 302 .
  • the top end of the first helical groove 402 has a first end 4021;
  • the follower member 403 comes out of the limiting groove, the first follower member 302 abuts against the first end 4021 of the top of the first helical groove 402, so that the first cylinder 301 and the second cylinder 401 are integrated into one , to smoothly push the guide block assembly 40 to rotate.
  • the first follower member 302 can contact the first end 4021 of the first helical groove 402, and cannot continue to move in the first helical groove 402. In this way, it is ensured that the guide block assembly 40 and the rotating unit assembly 30 are integrally formed.
  • the guide block assembly 40 When rotating counterclockwise, the guide block assembly 40 starts to descend, and during this process, the first follower part 302 is disengaged from the first end 4021 of the first helical groove 402 .
  • FIGS. 6 and 7 are schematic structural diagrams of the first cylinder and the second cylinder in another embodiment of the present application, respectively.
  • the inner wall of the first cylinder 301 may be A second helical groove 303 is set on the upper part, and a helical protrusion 404 is set on the outer wall of the second cylinder body 401;
  • the third end 405 of the helical protrusion 404 abuts against each other, so that the first cylinder 301 and the second cylinder 401 are combined into one, so that the second cylinder can be smoothly pushed through the cooperation of the second helical groove 303 and the helical protrusion 404 401 spins.
  • the rotation of the rotating unit assembly 30 makes the guide block assembly 40 complete the lifting action under the restriction of the guide rail assembly 50.
  • the first The helical protrusions 404 on the second cylinder 401 will gradually cooperate with the second helical grooves 303 on the first cylinder 301.
  • the guide block assembly 40 and the rotating unit assembly 30 form a whole.
  • the rotational motion power of the component 30 will be directly transmitted to the guide block assembly 40, so as to ensure that the guide block assembly 40 can complete the clockwise or counterclockwise rotation.
  • the helical protrusion 404 will gradually disengage from the second helical groove 303 .
  • the number of the upper limit slots of the guide rail 503 may be multiple. In the embodiment shown in FIG. 5 , the number of the upper limit slots of the guide rail 503 is four. Correspondingly, the number of the second follower component entrances 505 is four. Referring to FIG. 5 , the number of the upper limit slots of the guide rail 503 is four. Correspondingly, the number of the second follower component entrances 505 is four. Referring to FIG.
  • a slot L is provided on one side of the inlet and outlet 505 of the second follower component, and a bridge arm 507 is vertically arranged at the slot L, and the first end of the bridge arm 507 is hinged in the slot L through a hinge shaft.
  • a reset torsion spring 508 is provided on the hinge shaft; the bridge arm 507 can also be called a pawl.
  • the second end of the bridge arm 507 overlaps the entrance and exit of the second follower component
  • the other side of 505 is convenient to provide support for the second follower part 403 .
  • the bridge arm 507 bounces up under the action of the return torsion spring 508 .
  • the upper surface of the bridging arm 507 is flush with the annular supporting surface 506 .
  • the side wall of the slot L can also limit the rotation direction of the bridge arm 507, so that the bridge arm 507 can be rotated in a single direction (eg clockwise) from the initial position.
  • the advantage of making the bridging arm 507 rotate in only one direction from the initial position is that when the second cylinder 401 needs to be dropped from a high position to a low position, the driving assembly 20 rotates in the opposite direction, and the first follower on the first cylinder 301 is passed through.
  • the moving member 302 pushes the second cylinder 401 to rotate in the reverse direction
  • the second follower member 403 provided on the second cylinder 401 rotates in the reverse direction with the second cylinder 401 to the entrance 505 of the second follower member.
  • the vertically arranged bridging arm 507 is blocked to enter the limiting groove.
  • the guide block 509 can be connected to the second end of the bridge arm 507 .
  • the guide block 509 When the bridge arm 507 is in a vertical position, the guide block 509 is in a lateral position and is located above the entrance 505 of the second follower component. That is to say, the guide block 509 is in a lateral position, corresponding to the second follower part entrance 505, and has a predetermined distance from the second follower part entrance 505, so that the guide block can be integrated with the guide block. Movement into 40's to limit and guide.
  • the continuous lifting of the guide block assembly 40 can be restricted by the guide block 509, and the guide block assembly 40 can be guided to rotate.
  • the bottom of the guide block 509 may have a guide slope.
  • the second follower member 403 on the second cylinder body 401 rotates in the reverse direction with the second cylinder body 401 to the second follower member inlet 505, it can also smoothly enter the limit groove through the guidance of the guide block 509 middle.
  • the guide block assembly 40 is in a low position, and the four second follower parts 403 can only perform a straight line along the axis direction of the guide rail 503 due to the restriction of the guide block assembly 50 on the rotation direction around the axis of the guide rail 503 .
  • Movement; the driving motor 2011 drives the rotating unit assembly 30 to rotate, and the rotating unit assembly 30 can make the guide block assembly 40 rise along the axis of the guide rail 503 .
  • FIG. 8 the guide block assembly 40 is in a low position, and the four second follower parts 403 can only perform a straight line along the axis direction of the guide rail 503 due to the restriction of the guide block assembly 50 on the rotation direction around the axis of the guide rail 503 .
  • Movement; the driving motor 2011 drives the rotating unit assembly 30 to rotate, and the rotating unit assembly 30 can make the guide block assembly 40 rise along the axis of the guide rail 503 .
  • the four second follower parts 403 can only rotate around the axis of the guide rail 503 due to the restriction of the guide rail assembly 50 on the linear movement along the axis of the guide rail 503 .
  • the four second follower parts 403 will come into contact with the four bridge arms 507 .
  • the four bridge arms 507 will rotate 90 degrees and contact the guide rail 503
  • the four second follower parts 403 ie, the supporting guide block assembly 40
  • the reset torsion spring 508 makes the four bridge arms 507 bounce up, so that the Can cycle to the position shown in Figure 9. As described above, the entire rotation of the guide block assembly 40 in the clockwise direction can be completed.
  • the guide blocks 509 connected to the bridging arms 507 can move into the grooves reserved on the guide rails 503 .
  • FIG. 12 is a schematic structural diagram of a lifting device 100 according to another embodiment of the present application.
  • the structure of this embodiment is basically the same as that of the embodiment shown in FIG. 1 .
  • the rotating unit The assembly 30 , the guide block assembly 40 and the guide rail assembly 50 form a three-layer structure from the outside to the inside in turn; in this embodiment, the rotating unit assembly 300 , the guide block assembly 400 and the guide rail assembly 500 can be formed in sequence Three-layer structure from inside to outside.
  • the drive assembly in this embodiment is similar in structure to the drive assembly shown in FIG. 1 . 13, in the drive assembly 200 in this embodiment, the drive mounting plate 601 is fixed on the bottom plate 60, the drive motor 2011 can drive the synchronous pulley 2105 to rotate, the synchronous pulley 2105 drives the reducer 2012 to rotate, and the reducer 2012 drives The driving gear 2013 rotates, and the driving gear 2013 and the outer ring of the slewing bearing 202 form a gear pair, which drives the outer ring of the slewing bearing 202 to rotate.
  • the rotating unit assembly 300 in this embodiment may include a cylinder 310 connected to the driving assembly 200 , and the outer circumference of the cylinder 310 has a spiral slope 320 ; the spiral slope 320 spirals along the height direction of the column 310 rise.
  • the bottom of the cylinder 310 is on the first end of the outer ring of the slewing ring 202 and will rotate as the outer ring of the slewing ring 202 rotates.
  • the bottom of the column 310 is fixed on the first end of the outer ring of the slewing bearing 202 through the mounting seat 330 .
  • the guide block assembly 400 in this embodiment includes a third cylinder 410 , the third cylinder 410 is sleeved on the outer periphery of the cylinder 310 ; the inner wall of the third cylinder 410 is provided with a third follower member 420 , The third follower part 420 is in contact with the helical inclined surface 320 of the outer circumference of the cylinder 310 to form a helical pair.
  • the helical pair has two degrees of freedom, one is a linear motion pair that moves along the axis of the guide rail assembly 500, and the other is a pair of linear motions that move around the guide rail. Rotational kinematic pair for the axis movement of the assembly 500 .
  • the third follower member 420 may be a roller, a ball, a roller or a roller, and the like.
  • the number of the third follower parts 420 shown in FIG. 15 is two, and each third follower part 420 includes a roller group consisting of three rollers side by side.
  • the positions of the helical slope on the side of the cylinder 310 and the position of the third follower component on the inner wall of the third cylinder 410 can be interchanged, that is, the side of the cylinder 310 is provided with There is a third follow-up member, a helical slope is provided on the inner wall of the third cylinder 410, and the third follow-up member is in contact with the spiral slope to form a spiral motion pair.
  • a fourth follower member 430 is provided on the outer periphery of the third cylindrical body 410 .
  • the fourth follower member 430 may include a guide block 4031 and a steel ball 4032 , and the steel ball 4032 is embedded in the guide block 4031 .
  • a grease groove is formed in the guide block 4031, so that the lubrication between the steel ball and the groove bottom of the limiting groove can be ensured during the lifting and rotating process.
  • it may also be ensured that when there is a load offset on the guide block assembly 400, the guide block assembly 400 will not be shaken and overturned, thereby ensuring the stability during the lifting process.
  • the top of the third cylinder 410 may be mounted with a table 70 (see FIG. 12 ) for supporting goods.
  • the guide rail assembly 500 in this embodiment may include a fourth cylindrical body 530 , the fourth cylindrical body 530 is sleeved on the outer periphery of the third cylindrical body 410 ; the bottom end of the fourth cylindrical body 530 is fixedly disposed on the bottom plate 60 on.
  • the bottom end of the fourth cylinder 530 can be fixed on the bottom plate 60 through the guide rail mounting plate 80 .
  • the first limiting structure 501 on the guide rail assembly 500 may be a limiting groove provided on the inner wall of the fourth cylinder 530, the limiting groove extending along the height direction of the fourth cylinder 530; the third cylinder 410 is located at a low position
  • the fourth follower member 430 is located in the limit groove on the inner wall of the fourth cylinder 530 , the first end of the fourth follower member 430 and the first end of the limit groove on the inner wall of the fourth cylinder 530 (that is, the bottom of the groove)
  • the side surface of the fourth follower member 430 is in contact with the side surface of the limiting groove on the inner wall of the fourth cylinder 530, which will limit the rotational movement of the helical motion pair around the axis of the guide rail assembly 500. vice.
  • the second limiting structure 502 on the guide rail assembly 500 may be a blocking portion (not shown in FIGS. 16 and 17 ) provided on the fourth cylinder 530 out), the blocking portion is located above the limiting groove and corresponds to the limiting groove.
  • the blocking portion may be an annular blocking portion provided on the fourth cylinder 530, the annular blocking portion extending in the horizontal direction around the central axis of the fourth cylinder 530; the annular blocking portion has a fourth The rotation space of the follower part; the top end of the limiting groove on the inner wall of the fourth cylinder 530 has the entrance and exit of the fourth follower part; the entrance and exit of the fourth follower part is communicated with the rotation space of the fourth follower part; the third cylinder 410 is automatically When the low position rises to the predetermined height position, the fourth follower member 430 escapes from the limiting groove on the inner wall of the fourth cylinder 530 and enters the rotation space of the fourth follower member, so that the guide block assembly 400 can be moved horizontally. rotation.
  • the second limiting structure 502 is mainly used to restrict the guide block assembly 400 from continuing to rise and guide the guide block assembly 400 after the guide block assembly 400 rises from a low position to a predetermined height. Take a rotating motion as an example to illustrate. In some other embodiments, the second limiting structure 502 may also restrict the guide block assembly 400 from continuing to descend after the guide block assembly 400 descends from a high position to a predetermined height, and guide the guide block assembly 400 to do a rotating motion.
  • the upper part of the guide rail assembly 500 can be arranged only after the guide block assembly 400 rises from a low position to a predetermined height, so that the guide block assembly 400 can be restricted from continuing to rise, and the guide block assembly 400 can be guided to rotate.
  • the second limiting structure it can also be arranged only at the lower part of the guide rail assembly 500, after the guide block assembly 400 drops from a high position to a predetermined height, to restrict the guide block assembly 400 from continuing to descend and guide the guide block assembly 400.
  • the second limit structure for the guide block assembly 400 to perform the rotational movement can also be provided on the upper and lower parts of the guide rail assembly 500 at the same time, so that the guide block assembly 400 can be After rising to a predetermined height, the guide block assembly 400 is restricted from continuing to rise, and the guide block assembly 400 is guided to perform a rotational movement, and the guide block assembly 400 can also be restricted after the guide block assembly 400 descends to a predetermined height. The block assembly 400 continues to descend, and guides the guide block assembly 400 to make a rotational movement.
  • the embodiment of the present application further provides an automatic guided transport vehicle, which includes a vehicle body, and the lifting device described in any of the foregoing embodiments is provided on the vehicle body.
  • Embodiments of the present application also provide a compact lift mechanism and an automatic guided vehicle including the lift mechanism.
  • the compact lifting mechanism is suitable for some special application scenarios, such as a latent AGV.
  • the automatic guided vehicle 1 of this embodiment includes a lifting mechanism 11, a front frame 14, a rear frame 17, a battery 18, wheels (front casters 13, rear casters 19, drive wheels 15) and Raise table top 12.
  • This automatic guided vehicle can carry the rack 2 and the load 3 to realize its lifting, lowering, loading, rotating and other functions.
  • the above-mentioned lifting mechanism 11 includes a lifting device and a slewing device.
  • the function realized by the lifting device is the lifting and lowering of the rack and the load
  • the function realized by the slewing device is the clockwise and counterclockwise rotation of the rack and the load.
  • the above-mentioned lifting device includes a lifting power source 118 and a lifting link mechanism.
  • the lifting power source 118 includes a drive motor 118-1, a belt drive 118-2, a planetary reducer 118-3, a power single swing arm 118-4, and the drive motor 118-1 is connected to the planetary reducer through the belt drive 118-2
  • the actuator 118-3 outputs a large torque to the power single swing arm 118-4
  • the power single swing arm 118-4 outputs the power to one end of the middle cross bar of the lifting link mechanism, and realizes the load through the lifting link mechanism
  • the lifting and lowering of this load includes any form with racks, and the total load can reach up to 700kg.
  • the lifting device is directly installed with the upper end of the lifting link mechanism.
  • the above-mentioned lifting link mechanism includes three sets of upper, middle and lower parallelogram link mechanisms and a set of tie rods.
  • the lifting link mechanism includes a front lower rod 119, a front middle rod 112, a front upper rod 111, and a rear lower rod 123.
  • the rear middle bar 117, the rear upper bar 116, the lower cross bar 121, the middle cross bar 115, the upper cross bar 114, the cross bar here can also be a frame or a plate, and each connecting rod is connected by a rotating shaft or a pin shaft 16-type installation and connection, the front lower rod 119, the lower cross rod 121, the rear lower rod 123 are combined with the frame to form the lowermost parallelogram link, the front middle rod 112, the middle cross rod 115, the rear middle rod 117 and the lower cross rod 121 forms the middle layer parallelogram connecting rod, and the front upper rod 111, the upper layer cross rod 114, the rear upper rod 116 and the middle layer cross rod 115 form the uppermost parallelogram connecting rod.
  • a section of the upper crossbar 114 and one end of the frame are restrained by a set of tie rods 122, which controls the degree of freedom of the entire mechanism, so that the slewing device 113 above the entire lifting link mechanism can be lifted with a fixed arc path.
  • the starting position and the ending position of the pull rod 122 are controlled to ensure that there is no lateral displacement difference between the lifting position and the lower lifting position.
  • the whole mechanism is in the highest position, since the upper and lower rods basically maintain a small angle with the vertical direction, most of the force brought by the load is directly transmitted to the frame, and the force transmitted to the lifting power source 118 is correspondingly large. Small, increasing the life of the lift power source 118 components.
  • the above-mentioned lifting device is respectively installed on the front and rear frames 17 through the hinge points on the front lower rod 119 and the rear lower rod 123 , and the lifting power source 118 is fastened to the mounting holes of the front frame 14 by screws.
  • the above-mentioned front and rear frames 17 are hinged through the pin shafts 16, and can be folded within a certain angle.
  • the combination of the connecting rod assembly and the floating frame can effectively improve the road adaptability of the entire vehicle, and when the undulating road surface and the uneven road surface are connected, the undulating degree of the table can be effectively attenuated by the interconnection of several hinge points to ensure relative stability of the load.
  • the above-mentioned slewing device 113 includes an inner-tooth slewing support bearing 113-2, a pinion gear 113-1, a slewing drive motor 120 and a reducer, which drives the rotation of the inner-tooth slewing support bearing 113-2 through the pinion gear 113-1, thereby
  • the lifting table surface 12 installed above the inner tooth slewing support bearing produces a slewing motion.
  • the inner gear slewing support bearing is directly mounted on the upper horizontal plate of the above-mentioned lifting assembly with screws, while the slewing drive motor and the reducer occupy the space in the lifting mechanism 11 and will not affect the vision of the scanning lens, improving the Space utilization makes the structure of the whole assembly more compact.
  • the overall height of the entire lifting device is very short, and there are three parallelogram linkages in the upper, middle and lower layers.
  • the motor output torque is very small.
  • the slewing device is an internal tooth type slewing support bearing, which is directly embedded in the upper end of the lifting device, and the total height after being assembled with the lifting device is low. Both the rotary motor and the reducer are arranged in the existing space of the lifting device, and will not affect the field of view of the lens, and the layout is more compact.
  • the lifting device cooperates with the floating chassis and has good road adaptability.
  • the lifting table 12 can reduce the inclination by half, which is more conducive to the stability of the shelves and goods above the table.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mechanical Engineering (AREA)
  • Transmission Devices (AREA)

Abstract

一种举升装置及自动导引运输车,举升装置包括:驱动总成(20)、旋转单元总成(30)、导块总成(40)和导轨总成(50);驱动总成(20)与旋转单元总成(30)相连,旋转单元总成(30)和导块总成(40)相连,驱动总成(20)带动旋转单元总成(30)转动,旋转单元总成(30)通过螺旋运动副带动导块总成(40)相对导轨总成(50)运动;其中,导轨总成(50)上设有引导导块总成(40)做上升或下降运动,并限制导块总成(40)做旋转运动的第一限位结构(501);导轨总成(50)的上还设有在导块总成(40)上升或下降到预定高度后,限制导块总成(40)继续做上升或下降运动,并引导导块总成(40)做旋转运动的第二限位结构(502)。

Description

举升装置及自动导引运输车 技术领域
本申请涉及自动导引运输技术领域,尤其涉及一种举升装置及自动导引运输车。
背景技术
在搬运机器人领域内,AGV(Automated Guided Vehicle,自动导引运输车)台面的举升和旋转机构是比较成熟的产品模块,台面举升机构的结构形式有类似于丝杆滑块举升,连杆举升,液压驱动剪刀差举升机构等,台面旋转机构一般采用一组齿轮副驱动。举升机构和旋转机构往往是由两个独立的驱动进行驱动,成本较高。
发明内容
有鉴于此,本申请实施例提供一种成本较低的举升装置及自动导引运输车。
第一方面,本申请实施例提供一种举升装置,包括:驱动总成、旋转单元总成、导块总成和导轨总成;所述驱动总成与所述旋转单元总成相连,所述旋转单元总成和所述导块总成相连;所述驱动总成带动所述旋转单元总成转动,所述旋转单元总成通过螺旋运动副带动所述导块总成相对所述导轨总成运动;其中,所述导轨总成上设有引导所述导块总成做上升或下降运动,并限制所述导块总成做旋转运动的第一限位结构;所述导轨总成的上还设有在所述导块总成上升或下降到预定高度后,限制所述导块总成继续做上升或下降运动,并引导所述导块总成做旋转运动的第二限位结构。
根据本申请实施例的一种具体实现方式,所述驱动总成包括驱动机构和回转支承;所述回转支承包括内圈和外圈,所述内圈固定设置,所述外圈套设在所述内圈外部并能相对所述内圈转动,所述外圈与所述驱动机构相连;所述旋转单元总成固定在所述外圈上。
根据本申请实施例的一种具体实现方式,所述驱动机构包括驱动电机和与所述驱动电机相连的减速器,所述减速器的输出轴连接有主动齿轮;所述回转支承的外圈的周缘具有外齿,所述外圈的外齿与所述主动齿轮相啮合。
根据本申请实施例的一种具体实现方式,所述旋转单元总成包括与所述驱动总成相连的第一筒体;所述导块总成包括第二筒体,所述第二筒体套设在所述第一筒体内;所述第一筒体的内壁上设有第一随动部件,所述第二筒体的外侧壁上设有第一螺旋槽,或者,所述第一筒体的内壁上设有第一螺旋槽,所述第二筒体的外侧壁上设有第一随动部件;所述第一随动部件与所述第一螺旋槽相接触。
根据本申请实施例的一种具体实现方式,所述导轨总成包括导轨,所述导轨底部固定,且竖向设置于所述第二筒体内;所述第一限位结构包括沿所述导轨高度方向上下竖直设置的限位槽;所述第二筒体的内壁上设有第二随动部件,所述第二随动部件可在所述限位槽中上下移动。
根据本申请实施例的一种具体实现方式,所述限位槽的顶端和/或底端具有第二随动部件出入口;所述第二限位结构包括设在所述限位槽上方和/或下方,并与所述限位槽相对应的阻挡部。
根据本申请实施例的一种具体实现方式,所述阻挡部为设在所述导轨上的环形阻挡部,所述环形阻挡部绕所述导轨的中心轴线在水平方向上延伸设置;在所述环形阻挡部靠近所述限位槽的一侧具有第二随动部件转动空间,所述第二随动部件出入口与所述第二随动部件转动空间相连通。
根据本申请实施例的一种具体实现方式,在所述导轨上,于设在所述限位槽上方的环形阻挡部的下方,设有环形支撑面,所述环形阻挡部的底面与所述环形支撑面之间形成所述第二随动部件转动空间;所述第二随动部件出入口,开口于所述环形支撑面上。
根据本申请实施例的一种具体实现方式,在所述第二随动部件出入口的一侧设有槽口,在所述槽口处竖向设置有桥接臂,所述桥接臂的第一端通过铰接轴铰接在所述槽口内,在所述铰接轴上设有复位扭簧;所述桥接臂沿预定方向转动至水平位置时,所述桥接臂的第二端搭接在所述第二随动部件出入口的另一侧。
根据本申请实施例的一种具体实现方式,所述桥接臂的第二端连接有导引块,所述桥接臂处于竖向位置时,所述导引块处于横向位置,与所述第二随动部件出入口相对应,且与所述第二随动部件出入口之间具有预定距离。
根据本申请实施例的一种具体实现方式,所述第一螺旋槽的顶端具有第一端部;在所述第二随动部件自所述限位槽中脱出时,所述第一随动部件与所述第一螺旋槽的顶部的第一端部相抵接;和/或,
所述第一筒体的内壁上具有第二螺旋槽,所述第二筒体的外壁上设有螺旋凸起;在所述第二随动部件自所述限位槽中脱出时,所述第二螺旋槽的第二端部与所述螺旋凸起的第三端部相抵接。
根据本申请实施例的一种具体实现方式,所述旋转单元总成包括与所述驱动总成相连的柱体;
所述导块总成包括第三筒体,所述第三筒体套设在所述柱体外周;所述柱体的侧部具有螺旋斜面,所述第三筒体的内壁设有第三随动部件,或者,所述柱体的侧部设有第三随动部件,所述第三筒体的内壁设有螺旋斜面;所述第三随动部件与所述螺旋斜面相接触。
根据本申请实施例的一种具体实现方式,所述导轨总成包括第四筒体,所述第四筒体套设在所述第三筒体外周,所述第四筒体底端固定设置;所述第一限位结构为设在所述第四筒体内壁上的限位槽,该限位槽沿所述第四筒体高度方向延伸设置;所述第三筒体的外周设有第四随动部件,所述第四随动部件可在所述第四筒体内壁上的所述限位槽中上下移动。
根据本申请实施例的一种具体实现方式,所述第四筒体内壁上的限位槽的顶端和/或底端具有第四随动部件出入口;所述第二限位结构包括设在所述第四筒体内壁上的限位槽上方和/或下方,且与该限位槽相对应的阻挡部。
第二方面,本申请实施例提供一种自动导引运输车,包括车体,在所述车体上设有前述任一实 现方式所述的举升装置。
本申请实施例提供的举升装置及自动导引运输车,驱动总成做第一方向转动,带动旋转单元总成转动;旋转单元总成的转动,带动导块总成沿导轨总成做直线上升(举升)运动;导块总成直线上升到预定高度后,驱动总成继续做第一方向转动,并带动旋转单元总成继续转动;旋转单元总成的继续转动,带动导块总成做旋转运动,或者,驱动总成做与第一方向相反方向的转动,带动旋转单元总成转动;旋转单元总成的转动,带动导块总成沿导轨总成做直线下降运动;导块总成直线下降到预定高度后,驱动总成继续做反方向的转动,并带动旋转单元总成继续转动;旋转单元总成的继续转动,带动导块总成做旋转运动,这样通过一个驱动总成即可实现导块总成的直线上升驱动,以及在高位的水平旋转驱动,或者实现导块总成的直线下降驱动,以及在低位的水平旋转驱动,成本较低。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为本申请实施例一种举升装置的结构示意图。
图2至图5分别为图1中驱动总成、旋转单元总成、导块总成和导轨总成的结构示意图。
图6及图7分别为本申请另一实施例中第一筒体和第二筒体的结构示意图。
图8至图11用来描述导轨总成在不同的位置限制螺旋运动副。
图12为本申请另一实施例举升装置的结构示意图。
图13至图15分别为图12中驱动总成、旋转单元总成和导块总成的结构示意图。
图16为本申请另一实施例举升装置的局部结构示意图。
图17为图16示出的举升装置的剖视图。
图18为本申请另一实施例带有负载的自动导引运输车结构示意图。
图19为本申请另一实施例带有自动导引运输车结构示意图。
图20为图19中举升装置位于举升高位示意图。
图21为图19中举升装置俯视图。
具体实施方式
下面结合附图对本申请实施例进行详细描述。应当明确,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳 动前提下所获得的所有其它实施例,都属于本申请保护的范围。
本申请实施例旨在提供一种举升装置,包括驱动总成、旋转单元总成、导块总成和导轨总成;其中,驱动总成与旋转单元总成相连,旋转单元总成和导块总成相连。驱动总成驱动旋转单元总成转动,旋转单元总成带动导块总成沿导轨总成做直线上升或下降运动到预定高度后,带动导块总成做旋转运动。通过一个驱动总成即可实现导块总成的直线上升或下降驱动,以及在上升或下降到预定高度后的水平旋转驱动,成本较低。
图1为本申请实施例一种举升装置的结构示意图,可应用于AGV中,参看图1,本实施例的举升装置10可包括:驱动总成20、旋转单元总成30、导块总成40和导轨总成50;驱动总成20与旋转单元总成30相连,旋转单元总成30和导块总成40相连;旋转单元总成30可通过螺旋运动副带动导块总成40相对导轨总成50运动;导轨总成50上设有引导导块总成40做上升或下降运动,并限制导块总成40做旋转运动的第一限位结构501(在图5中示出);导轨总成50上还设有在导块总成40上升到预定高度后,限制导块总成40继续做上升运动,并引导导块总成40做旋转运动的第二限位结构502(在图5中示出)。
导块总成40可用来举升货物。在导块总成40处于低位时,驱动总成20做第一方向(如正向)转动,带动旋转单元总成30转动;旋转单元总成30的转动,带动导块总成40沿导轨总成50做直线上升(举升)运动;导块总成40直线上升到预定高度后,驱动总成20继续做第一方向转动,并带动旋转单元总成30继续转动;旋转单元总成30的继续转动,带动导块总成40做旋转运动。
驱动总成20做反向转动,并带动旋转单元总成30反向转动;旋转单元总成30的反向转动,带动导块总成40做反向旋转运动,导块总成40反向旋转运动到预定位置后,沿导轨总成50做直线下降运动至低位。
本实施例中,通过一个驱动总成20即可实现导块总成40在低位的直线上升驱动,以及在高位的水平旋转驱动,成本较低。
图2为图1中驱动总成的结构示意图。驱动总成20,也可称为驱动组件或驱动模块等,用以驱动旋转单元总成30转动。参看图2,在一实施例中,驱动总成20可包括驱动机构201和回转支承202;回转支承202包括内圈2021和外圈2022,内圈2021固定设置,外圈2022套设在内圈2021外部并能相对内圈2021转动,外圈2022与驱动机构201相连;旋转单元总成30固定在外圈2022上。
在一个例子中,内圈2021和外圈2022之间可设有滚珠,内圈2021可固定在一底板60上,旋转单元总成30可固定在外圈2022的第一端部上。
驱动机构201带动外圈2022转动,从而可带动与外圈2022固定在一起的旋转单元总成30转动。
参看图2,驱动机构201可包括驱动电机2011和与驱动电机2011相连的减速器2012,减速器2012的输出轴与回转支承202的外圈2022之间通过传动机构相连。该传动机构可以是链传动机构、带传动机构或齿轮传动机构等。在一实施例中,该传动机构为齿轮传动机构,具体地,减速器2012 的输出轴连接有主动齿轮2013;回转支承202的外圈2022的周缘具有外齿,回转支承202的外圈2022周缘的外齿与主动齿轮2013相啮合。
参看图2,在一个例子中,底板60上安装有驱动安装板601,驱动电机2011与减速器2012安装在一起,减速器2012安装在驱动安装板601上,减速器2012的输出轴上安装主动齿轮2013,主动齿轮2013与回转支承202的外圈2022周缘的外齿配合形成一对齿轮副,这样,就可以将驱动电机2011的动力传递到回转支承202,带动回转支承202的外圈2022转动。
图3为图1中旋转单元总成的结构示意图,图4为图1中导块总成的结构示意图。图3中所示的旋转单元总成和图4中所示的导块总成之间通过螺旋运动副连接。旋转单元总成30,也可称为旋转单元组件或旋转单元模块等,也可称为旋转单元,用以直接驱动导块总成40在低位做直线上升运动,或在高位做旋转运动。
参看图3,在一实施例中,旋转单元总成30可包括与所述驱动总成20相连的第一筒体301,第一筒体301的内壁上设有第一随动部件302,当驱动电机2011驱动回转支承202的外圈2022转动时,第一筒体301也随之一起转动。第一随动部件302可为滚轮或滚柱等。第一随动部件302的数量可为多个,在图3所示的实施例中,第一随动部件302的数量为6个。在一个例子中,第一筒体301的底部固定在回转支承202的外圈2022上。
参看图4,导块总成40可包括第二筒体401,第二筒体401套设在第一筒体301内,在第二筒体401的外侧壁上设有第一螺旋槽402,第一螺旋槽402沿第二筒体401的高度方向呈螺旋上升设置。
第二筒体401的内壁上设有第二随动部件403。在一个例子中,第二随动部件403在第二筒体401上的相对位置上下可调,以便使导块总成40可具有不同的举升高度。第二随动部件403可为滚轮或滚柱等。第二随动部件403的数量可为多个,在图4所示的实施例中,第二随动部件403的数量为4个。
第一筒体301的内壁上的第一随动部件302与第一螺旋槽402相接触,形成螺旋运动副。螺旋运动副的自由度为2,可以分解为绕导轨总成50轴线旋转的旋转运动副和沿导轨总成50轴线运动的直线运动副。可通过限制旋转运动副使得螺旋运动副变为自由度为1的直线运动副,或者通过限制直线运动副使得螺旋运动副变为自由度为1的旋转运动副。通过导轨总成50,对螺旋运动副在不同位置的限制即可完成上述切换,以达到通过一个驱动即可完成举升和旋转的动作。
在其它一些实施例中,所述第一筒体的内壁上的第一随动部件,和所述第二筒体的外侧壁上的第一螺旋槽的位置可以互换,即可在所述第一筒体的内壁上设有第一螺旋槽,在所述第二筒体的外侧壁上设有第一随动部件;所述第一随动部件与所述第一螺旋槽相接触,形成螺旋运动副。
图5为图1中导轨总成的结构示意图。导轨总成50,也可称为导轨组件、导轨模块,导向组件或导向模块等。导轨总成50上具有第一限位结构501和第二限位结构502。驱动电机2011带动旋转单元总成30进行旋转,旋转单元总成30通过螺旋运动副带动导块总成40运动,导轨总成50通 过第一限位结构501和第二限位结构502在不同位置对螺旋运动副的限制不同,即可实现导块总成40不同形式的运动。
参看图5,在一实施例中,导轨总成50可包括导轨503,导轨503底部固定,竖向设置于第二筒体401内。导轨503可为柱状或筒状,其底部可固定在底板60上。
第一限位结构501可包括在导轨503上竖直设置的限位槽,第二筒体401位于低位时,第二筒体401的内壁上的第二随动部件403位于该限位槽中。该限位槽既可为第二随动部件403的上下直线运动提供导向,也可通过其侧部对第二随动部件403的限制,以实现对导块总成40的转动限制。
本实施例中,导块总成40处于低位,第二随动部件403由于受所述限位槽在绕导轨503轴线旋转方向的限制,仅能沿导轨503轴线方向进行直线运动;驱动电机2011带动旋转单元总成30旋转,旋转单元总成30即可使得导块总成40沿导轨503轴线方向上升。
当导块总成40直线上升到预定高度后,第二限位结构502限制导块总成40继续做直线上升运动,使得导块总成40仅能做旋转运动。
参看图3,在一实施例中,第二限位结构502可为设在所述限位槽上方、并与所述限位槽相对应的阻挡部。在一个例子中,所述阻挡部可为设在所述导轨503上的环形阻挡部,环形阻挡部绕导轨503的中心轴线在水平方向上延伸设置;环形阻挡部下方具有第二随动部件转动空间504;限位槽的顶端具有第二随动部件出入口505,第二随动部件出入口505与第二随动部件转动空间504相连通;其中,环形阻挡部可为阻挡板、阻挡条、阻挡环或阻挡块等。
第二筒体401自低位上升至预定高度位置时,第二随动部件403从第二随动部件出入口505自限位槽中脱出,并进入第二随动部件转动空间504。此时,驱动总成20继续转动,第一随动部件302继续施力于第二筒体401外壁上的第一螺旋槽402中,第一随动部件302施加于第一螺旋槽402向上方向的分力,被环形阻挡部施加的反作用力所抵消,第一随动部件302施加于第一螺旋槽402水平方向的分力,推动第二筒体401(亦即导块总成40)做水平方向的转动。
当需要将导块总成40自高位下落至低位时,驱动总成20反向转动,第一随动部件302反方向施力于第二筒体401外壁上的第一螺旋槽402中,推动第二筒体401反向转动到预定位置后,从第二随动部件出入口505进入限位槽中;驱动总成20继续反向转动,第一随动部件302施加于第一螺旋槽402水平方向的分力,被限位槽侧部施加的反作用力所抵消,第一随动部件302施加于第一螺旋槽402向下方向的分力,推动第二筒体401沿限位槽向下直线运动至低位。
导块总成40处于高位时,导块总成40的顶部通常托举有货物,即处于负载状态,第一随动部件302会承受较大的压力。为防止第一随动部件302因承受较大的压力而变形或损坏,参看图5,在一实施例中,在导轨503上,于环形阻挡部的下方设有环形支撑面506,环形阻挡部的底面与环形支撑面506之间形成第二随动部件转动空间504;第二随动部件出入口505,开口于环形支撑面506上。
当导块总成40处于高位做水平转动时,环形支撑面506可为第二随动部件403提供一定的支撑 作用,从而可减轻导块总成40施加在第一随动部件302上的压力,从而对第一随动部件302起到保护作用。
导块总成40处于高位时,为对导块总成40提供稳定的旋转推动力,参看图4,在一实施例中,第一螺旋槽402的顶端具有第一端部4021;在第二随动部件403自限位槽中脱出时,第一随动部件302与第一螺旋槽402的顶部的第一端部4021相抵接,使得第一筒体301和第二筒体401结合为一体,以顺利推动导块总成40转动。
本实施例中,当举升动作即将完成,即将开始旋转动作时,第一随动部件302可与第一螺旋槽402的第一端部4021接触,无法继续在第一螺旋槽402内运动,以此保证导块总成40与旋转单元总成30形成一个整体。
在逆时针旋转时,导块总成40开始下降的动作,在这个过程中,第一随动部件302与第一螺旋槽402的第一端部4021脱开。
图6及图7分别为本申请另一实施例中第一筒体和第二筒体的结构示意图,参看图6及图7,在另一实施例中,可在第一筒体301的内壁上设置第二螺旋槽303,在第二筒体401的外壁上设置螺旋凸起404;在第二随动部件403自限位槽中脱出时,第二螺旋槽303的第二端部304与螺旋凸起404的第三端部405相抵接,使得第一筒体301和第二筒体401结合为一体,以便通过第二螺旋槽303与螺旋凸起404的配合,顺利推动第二筒体401旋转。
在导块总成40处于低位时,旋转单元总成30的旋转使得导块总成40在导轨总成50的限制下完成举升动作,当举升动作即将完成,即将开始旋转动作时,第二筒体401上的螺旋凸起404会逐渐与第一筒体301上的第二螺旋槽303配合,配合完成时,导块总成40与旋转单元总成30形成一个整体,这样旋转单元总成30的旋转运动动力会直接传递到导块总成40上,以此保证导块总成40可以完成顺时针或逆时针方向的旋转。在导块总成40下降的过程中,螺旋凸起404会和第二螺旋槽303逐步脱开。
导轨503上限位槽的数量可为多个,图5所示实施例中,导轨503上限位槽的数量为四个。相应地,第二随动部件出入口505的数量为4个。参看图5,为实现可在360度的圆周上均可为第二随动部件403提供支撑,便于第二随动部件403顺利“跨过”各第二随动部件出入口505,在一实施例中,在第二随动部件出入口505的一侧设有槽口L,在槽口L处竖向设置有桥接臂507,桥接臂507的第一端通过铰接轴铰接在槽口L内,在铰接轴上设有复位扭簧508;桥接臂507也可称为棘爪,桥接臂507沿预定方向转动90度至水平位置时,桥接臂507的第二端搭接在第二随动部件出入口505的另一侧,便于对第二随动部件403提供支撑。当第二随动部件403通过桥接臂507之后,桥接臂507在复位扭簧508的作用下弹起。在一些实施例中,桥接臂507的第二端搭接在第二随动部件出入口505的另一侧时,桥接臂507的上表面与环形支撑面506相平齐。
在第二随动部件出入口505的一侧设置的槽口L,除了可使桥接臂507的第二端搭接在第二随动部件出入口505的另一侧时,桥接臂507的上表面与环形支撑面506相平齐外,该槽口L的侧壁 也可对桥接臂507的转动方向进行限位,即可使桥接臂507自初始位置沿单一方向(如顺时针方向)转动。使桥接臂507自初始位置仅沿单一方向转动的好处在于:当需要将第二筒体401自高位下落至低位时,驱动总成20反向转动,通过第一筒体301上的第一随动部件302推动第二筒体401反向转动,设在第二筒体401上的第二随动部件403随第二筒体401反向转动到第二随动部件出入口505时,可借助于竖向设置的桥接臂507的阻挡而进入限位槽中。
在一实施例中,可在桥接臂507的第二端连接导引块509,桥接臂507处于竖向位置时,导引块509处于横向位置,且位于第二随动部件出入口505的上方。也就是说,所述导引块509处于横向位置,与所述第二随动部件出入口505相对应,且与所述第二随动部件出入口505之间具有预定距离,以便能够对导块总成40的运动进行限制和导向。
在导块总成40自低位举升到高位时,可通过导引块509对导块总成40的继续举升进行限制,并可引导导块总成40做旋转运动。为更好地起到导引作用,导引块509的底部可具有导引斜面。此外,在第二筒体401上的第二随动部件403随第二筒体401反向转动到第二随动部件出入口505时,也可通过导引块509的导引顺利进入限位槽中。
图8至图11用来描述导轨总成50在不同的位置限制螺旋运动副。在图8中,导块总成40处于低位,4个第二随动部件403由于导轨总成50对绕导轨503轴线旋转方向的限制,导块总成40仅能沿导轨503轴线方向进行直线运动;驱动电机2011带动旋转单元总成30旋转,旋转单元总成30即可使得导块总成40沿导轨503轴线方向上升。在图9中,即为上升结束后,4个第二随动部件403由于导轨总成50对沿导轨503轴线方向直线运动的限制,仅能绕导轨503轴线进行旋转运动。在经过图9所示的位置后,继续旋转,4个第二随动部件403便会与4个桥接臂507接触,如图10所示,4个桥接臂507旋转90度,与导轨503接触以在如图11的位置,支撑4个第二随动部件403(亦即支撑导块总成40),经过如图11的位置后,复位扭簧508使得4个桥接臂507弹起,便可循环到如图9所示的位置。如上述描述,即可完成导块总成40顺时针方向的整周旋转运动。
在4个桥接臂507旋转90度与导轨503接触时,连接在桥接臂507上的导引块509可运动到导轨503上预留的沟槽中。
图12为本申请另一实施例举升装置100的结构示意图,本实施例的结构与图1所示实施例的结构基本相同,不同之处在于,图1所示的实施例中,旋转单元总成30、导块总成40和导轨总成50依次组成由外到内的三层结构;而本实施例中,旋转单元总成300、导块总成400和导轨总成500可依次组成由内到外的三层结构。
本实施例中驱动总成与图1所示驱动总成的结构类似。参看图13,本实施例中的驱动总成200中,驱动安装板601固定在底板60上,驱动电机2011可带动同步带轮2105旋转,同步带轮2105带动减速器2012旋转,减速器2012带动主动齿轮2013旋转,主动齿轮2013和回转支承202的外圈形成齿轮副,带动回转支承202的外圈旋转。
参看图14,本实施例中的旋转单元总成300可包括与所述驱动总成200相连的柱体310,柱体 310的外周具有螺旋斜面320;螺旋斜面320沿柱体310的高度方向螺旋上升。在一个例子中,柱体310的底部在回转支承202的外圈的第一端部上,会随着回转支承202的外圈旋转而旋转。图14所示实施例中,柱体310的底部通过安装座330固定在回转支承202的外圈的第一端部上。
参看图15,本实施例中的导块总成400包括第三筒体410,第三筒体410套设在柱体310外周;第三筒体410的内壁设有第三随动部件420,第三随动部件420与柱体310的外周的螺旋斜面320相接触,形成螺旋副,螺旋副有两个自由度,一个是沿导轨总成500的轴线运动的直线运动副,一个是绕导轨总成500的轴线运动的旋转运动副。第三随动部件420可以是滚轮、滚珠、滚柱或滚筒等。图15中所示第三随动部件420的数量为两个,每个第三随动部件420包括由三个滚轮并排组成的滚轮组。
在其它一些实施例中,所述柱体310侧部的螺旋斜面和所述第三筒体410内壁的第三随动部件的位置可以互换,即可在所述柱体310的侧部设有第三随动部件,在所述第三筒体410的内壁设有螺旋斜面,所述第三随动部件与所述螺旋斜面相接触,形成螺旋运动副。
第三筒体410的外周设有第四随动部件430。参看图15及图17,第四随动部件430可包括导向块4031和钢球4032,钢球4032嵌入在导向块4031内。在一个例子中,在导向块4031内形成有一个润滑脂槽,这样在举升和旋转的过程中即可保证钢球与限位槽的槽底之间的润滑。此外,也可能保证导块总成400上有负载偏移时,保证导块总成400不会晃动和倾覆,保证举升过程中的稳定性。第三筒体410的顶部可安装有台面70(参看图12),以便支撑货物。
参看图16及图17,本实施例中的导轨总成500可包括第四筒体530,第四筒体530套设在第三筒体410外周;第四筒体530底端固定设置在底板60上。参看图13,在一个例子中,第四筒体530底端可通过导轨安装板80固定在底板60上。
导轨总成500上的第一限位结构501可为设在第四筒体530内壁上的限位槽,该限位槽沿第四筒体530高度方向延伸设置;第三筒体410位于低位时,第四随动部件430位于第四筒体530内壁上的限位槽中,第四随动部件430的第一端部与第四筒体530内壁上的限位槽的第一端部(即槽底)接触,第四随动部件430的侧面与第四筒体530内壁上的限位槽的侧面接触,这样就会限制螺旋运动副中绕导轨总成500的轴线运动的旋转运动副。
与图1所示的实施例类似,在一实施例中,导轨总成500上的第二限位结构502可为设在第四筒体530上的阻挡部(图16及图17中未示出),该阻挡部位于限位槽上方,并与限位槽相对应。在一个例子中,阻挡部可为设在第四筒体530上的环形阻挡部,该环形阻挡部绕第四筒体530的中心轴线在水平方向上延伸设置;该环形阻挡部下方具有第四随动部件转动空间;第四筒体530内壁上的限位槽的顶端具有第四随动部件出入口;第四随动部件出入口与第四随动部件转动空间相连通;第三筒体410自低位上升至预定高度位置时,第四随动部件430自第四筒体530内壁上的限位槽中脱出并进入第四随动部件转动空间,以使导块总成400可做水平方向上的转动。
上述各实施例中,主要以第二限位结构502在所述导块总成400自低位上升到预定高度后,限 制所述导块总成400继续上升,并引导所述导块总成400做旋转运动为例进行举例说明。在其它一些实施例中,第二限位结构502也可在所述导块总成400自高位下降到预定高度后,限制所述导块总成400继续下降,并引导所述导块总成400做旋转运动。
可仅在导轨总成500的上部,设置在所述导块总成400自低位上升到预定高度后,限制所述导块总成400继续上升,并引导所述导块总成400做旋转运动的第二限位结构;也可仅在导轨总成500的下部,设置在所述导块总成400自高位下降到预定高度后,限制所述导块总成400继续下降,并引导所述导块总成400做旋转运动的第二限位结构;也可同时在所述导轨总成500的上部和下部分别设置所述第二限位结构,这样既能在所述导块总成400上升到预定高度后,限制所述导块总成400继续上升,并引导所述导块总成400做旋转运动,又能在所述导块总成400下降到预定高度后,限制所述导块总成400继续下降,并引导所述导块总成400做旋转运动。
本申请实施例还提供一种自动导引运输车,包括车体,在所述车体上设有前述任一实施例所述的举升装置。
本申请实施例还提供一种紧凑型的举升机构及包括该举升机构的自动导引车。该紧凑型的举升机构适用于一些有特殊应用场景,比如适用于一种潜伏式的AGV。
参看图18及图19,本实施例的自动导引车1包括举升机构11、前车架14、后车架17、电池18、车轮(前脚轮13、后脚轮19、驱动轮15)和举升台面12。此自动导引车可背负货架2和负载3实现其举升、下放、移载、旋转等功能。
上述的举升机构11包括举升装置和回转装置。举升装置实现的功能是货架和负载的举升和下放,回转装置实现的功能为货架和负载的顺时针与逆时针旋转。
上述的举升装置包括,举升动力源118和举升连杆机构。其中举升动力源118包括驱动电机118-1,皮带传动装置118-2,行星减速器118-3,动力单摆臂118-4,驱动电机118-1通过皮带传动装置118-2连接行星减速器118-3,输出较大的扭矩至动力单摆臂118-4,动力单摆臂118-4将动力输出至举升连杆机构的中间横杆的一端,通过举升连杆机构实现负载的举升和下放,此负载包括带有货架的任何形式,总负载最高可以达到700kg。举升装置直接安装与举升连杆机构上端。
上述的举升连杆机构包括上中下三组平行四边形连杆机构和一组拉杆,例如,举升连杆机构包括前下杆119、前中杆112、前上杆111、后下杆123、后中杆117、后上杆116、下层横杆121、中层横杆115、上层横杆114,此处的横杆也可以为框体或者板件,各个连杆之间以转轴或者销轴16形式安装连接,前下杆119、下层横杆121、后下杆123与车架组合安装组成最下层平行四边形连杆,前中杆112、中层横杆115、后中杆117与下层横杆121组成中间层平行四边形连杆,前上杆111、上层横杆114、后上杆116与中层横杆115组成最上层平行四边形连杆。通过一组拉杆122约束住上层横杆114的一段与车架上的一端,控制了整个机构的自由度,使整个举升连杆机构上方的回转装置113以固定弧线的路径来实现举升动作和下放动作,通过控制拉杆122所在的起始位置和终点位置来保证举升高位和举升低位不存在横向的位移差。并且整个机构在最高位状态下,由于上下杆 与竖直方向基本保持很小的角度,负载带来的大部分力都直接传递到车架上,传递到举升动力源118的力就相应很小,提高了举升动力源118组件的寿命。
上述的举升装置通过前下杆119和后下杆123上面的铰点分别安装于前后车架17上,并且举升动力源118通过螺钉紧固至前车架14的安装孔位上。
上述的前后车架17通过销轴16铰接,可以实现一定角度内的折叠。这种通过连杆组件和浮动车架的组合,可以有效提高整车的路面适应性能,并且在过起伏路面和凹凸路面时,通过若干铰点的相互连接,可以有效衰减台面的起伏程度,保证负载的相对稳定性。
上述的回转装置113包括,内齿回转支撑轴承113-2、小齿轮113-1、回转驱动电机120和减速器,其通过小齿轮113-1带动内齿回转支撑轴承113-2的旋转,从而使安装于内齿回转支撑轴承上方的举升台面12产生回转运动。内齿回转支撑轴承直接用螺钉安装于上述举升组件中的上横板,而回转驱动电机和减速器占用的是举升机构11中的空间,并且不会影响扫码镜头的视野,提高了空间利用率,使整个组件的结构更加紧凑。
本实施例中,整个举升装置总高很矮,并且共有上中下三层平行四边形连杆机构,举升行程比常规两组平行四边形连杆举升提升了三分之一,举升最高位时电机输出力矩很小。
回转装置为内齿型回转支撑轴承,直接内嵌于举升装置上端,与举升装置组装后总高度较低。回转电机与减速器均布置在举升装置现有空间内,且不会对镜头视野产生影响,布局更加紧凑。
举升装置与浮动底盘配合,有较好的路面适应性能,在经过起伏路面和凹凸路面时,举升台面12可减小一半的倾斜度,更有利于台面上方货架和货物的稳定性。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。本说明书中的各个实施例均采用相关的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (15)

  1. 一种举升装置,包括:驱动总成、旋转单元总成、导块总成和导轨总成;所述驱动总成与所述旋转单元总成相连,所述旋转单元总成和所述导块总成相连;所述驱动总成带动所述旋转单元总成转动,所述旋转单元总成通过螺旋运动副带动所述导块总成相对所述导轨总成运动;
    其中,所述导轨总成上设有引导所述导块总成做上升或下降运动,并限制所述导块总成做旋转运动的第一限位结构;所述导轨总成上还设有在所述导块总成上升或下降到预定高度后,限制所述导块总成继续做上升或下降运动,并引导所述导块总成做旋转运动的第二限位结构。
  2. 根据权利要求1所述的举升装置,其特征在于,所述驱动总成包括驱动机构和回转支承;
    所述回转支承包括内圈和外圈,所述内圈固定设置,所述外圈套设在所述内圈外部并能相对所述内圈转动,所述外圈与所述驱动机构相连;所述旋转单元总成固定在所述外圈上。
  3. 根据权利要求2所述的举升装置,其特征在于,所述驱动机构包括驱动电机和与所述驱动电机相连的减速器,所述减速器的输出轴连接有主动齿轮;
    所述回转支承的外圈的周缘具有外齿,所述外圈的外齿与所述主动齿轮相啮合。
  4. 根据权利要求1所述的举升装置,其特征在于,所述旋转单元总成包括与所述驱动总成相连的第一筒体;
    所述导块总成包括第二筒体,所述第二筒体套设在所述第一筒体内;
    所述第一筒体的内壁上设有第一随动部件,所述第二筒体的外侧壁上设有第一螺旋槽,或者,所述第一筒体的内壁上设有第一螺旋槽,所述第二筒体的外侧壁上设有第一随动部件;所述第一随动部件与所述第一螺旋槽相接触。
  5. 根据权利要求4所述的举升装置,其特征在于,所述导轨总成包括导轨,所述导轨底部固定,且竖向设置于所述第二筒体内;所述第一限位结构包括沿所述导轨高度方向上下竖直设置的限位槽;
    所述第二筒体的内壁上设有第二随动部件,所述第二随动部件可在所述限位槽中上下移动。
  6. 根据权利要求5所述的举升装置,其特征在于,所述限位槽的顶端和/或底端具有第二随动部件出入口;所述第二限位结构包括设在所述限位槽上方和/或下方,并与所述限位槽相对应的阻挡部。
  7. 根据权利要求6所述的举升装置,其特征在于,所述阻挡部为设在所述导轨上的环形阻挡部,所述环形阻挡部绕所述导轨的中心轴线在水平方向上延伸设置;在所述环形阻挡部靠近所述限位槽的一侧具有第二随动部件转动空间,所述第二随动部件出入口与所述第二随动部件转动空间相连通。
  8. 根据权利要求7所述的举升装置,其特征在于,在所述导轨上,于设在所述限位槽上方的环形阻挡部的下方,设有环形支撑面,所述环形阻挡部的底面与所述环形支撑面之间形成所述第二随动部件转动空间;所述第二随动部件出入口,开口于所述环形支撑面上。
  9. 根据权利要求6所述的举升装置,其特征在于,在所述第二随动部件出入口的一侧设有槽口,在所述槽口处竖向设置有桥接臂,所述桥接臂的第一端通过铰接轴铰接在所述槽口内,在所述铰接轴上设有复位扭簧;所述桥接臂沿预定方向转动至水平位置时,所述桥接臂的第二端搭接在所述第二随动部件出入口的另一侧。
  10. 根据权利要求9所述的举升装置,其特征在于,所述桥接臂的第二端连接有导引块,所述 桥接臂处于竖向位置时,所述导引块处于横向位置,与所述第二随动部件出入口相对应,且与所述第二随动部件出入口之间具有预定距离。
  11. 根据权利要求5所述的举升装置,其特征在于,所述第一螺旋槽的顶端具有第一端部;在所述第二随动部件自所述限位槽中脱出时,所述第一随动部件与所述第一螺旋槽的顶部的第一端部相抵接;和/或,
    所述第一筒体的内壁上具有第二螺旋槽,所述第二筒体的外壁上设有螺旋凸起;在所述第二随动部件自所述限位槽中脱出时,所述第二螺旋槽的第二端部与所述螺旋凸起的第三端部相抵接。
  12. 根据权利要求1所述的举升装置,其特征在于,所述旋转单元总成包括与所述驱动总成相连的柱体;
    所述导块总成包括第三筒体,所述第三筒体套设在所述柱体外周;
    所述柱体的侧部具有螺旋斜面,所述第三筒体的内壁设有第三随动部件,或者,所述柱体的侧部设有第三随动部件,所述第三筒体的内壁设有螺旋斜面;所述第三随动部件与所述螺旋斜面相接触。
  13. 根据权利要求12所述的举升装置,其特征在于,所述导轨总成包括第四筒体,所述第四筒体套设在所述第三筒体外周,所述第四筒体底端固定设置;
    所述第一限位结构为设在所述第四筒体内壁上的限位槽,该限位槽沿所述第四筒体高度方向延伸设置;
    所述第三筒体的外周设有第四随动部件,所述第四随动部件可在所述第四筒体内壁上的所述限位槽中上下移动。
  14. 根据权利要求13所述的举升装置,其特征在于,所述第四筒体内壁上的限位槽的顶端和/或底端具有第四随动部件出入口;
    所述第二限位结构包括设在所述第四筒体内壁上的限位槽上方和/或下方,且与该限位槽相对应的阻挡部。
  15. 一种自动导引运输车,包括车体,在所述车体上设有前述权利要求1-14任一项所述的举升装置。
PCT/CN2021/117162 2020-12-29 2021-09-08 举升装置及自动导引运输车 WO2022142454A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011612122.8 2020-12-29
CN202011612122.8A CN112850566B (zh) 2020-12-29 2020-12-29 一种举升装置及自动导引运输车

Publications (1)

Publication Number Publication Date
WO2022142454A1 true WO2022142454A1 (zh) 2022-07-07

Family

ID=75998592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/117162 WO2022142454A1 (zh) 2020-12-29 2021-09-08 举升装置及自动导引运输车

Country Status (2)

Country Link
CN (1) CN112850566B (zh)
WO (1) WO2022142454A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112850566B (zh) * 2020-12-29 2023-06-16 杭州海康机器人股份有限公司 一种举升装置及自动导引运输车

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012224449A (ja) * 2011-04-20 2012-11-15 Aktio Corp 安全柵構築装置及び該装置を用いた昇降装置
CN107176558A (zh) * 2017-07-10 2017-09-19 水岩科技(北京)有限公司 举升装置、旋转装置、举升旋转系统和智能仓储机器人
CN206553152U (zh) * 2017-03-13 2017-10-13 武汉喧越智能装备有限公司 一种用于自动导航小车的自旋转举升机构
DE102017111943A1 (de) * 2017-05-31 2018-12-06 Jungheinrich Aktiengesellschaft Schnittstellensystem für ein Flurförderzeug
CN111453645A (zh) * 2019-01-18 2020-07-28 北京京东尚科信息技术有限公司 举升装置及具有该装置的agv小车
CN111706659A (zh) * 2020-06-30 2020-09-25 惠州市金力智能科技有限公司 一种蜗杆蜗轮加行星轮复合式驱动旋转升降结构
CN112850566A (zh) * 2020-12-29 2021-05-28 杭州海康机器人技术有限公司 一种举升装置及自动导引运输车

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR0017428A (pt) * 2000-12-01 2004-12-14 Roselio Francisco Fernand Lobo Trileve para auxiliar na remoção e colocação de câmbio e tanques de combustìveis de veìculos automotores
CN107055389B (zh) * 2017-05-31 2023-07-18 广东嘉腾机器人自动化有限公司 一种旋转举升装置及应用其的搬运机器人
CN110155906A (zh) * 2018-02-11 2019-08-23 北京京东尚科信息技术有限公司 Agv运输车的举升机构和agv运输车
CN109879203A (zh) * 2019-04-23 2019-06-14 北京旷视机器人技术有限公司 举升机构及具有其的搬运机器人
CN211764900U (zh) * 2020-03-19 2020-10-27 浙江亿控自动化设备有限公司 一种用于自动引导运输车的带限位角度的电机驱动轮总成
CN112062045B (zh) * 2020-09-17 2021-10-29 杭州海康机器人技术有限公司 旋转举升装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012224449A (ja) * 2011-04-20 2012-11-15 Aktio Corp 安全柵構築装置及び該装置を用いた昇降装置
CN206553152U (zh) * 2017-03-13 2017-10-13 武汉喧越智能装备有限公司 一种用于自动导航小车的自旋转举升机构
DE102017111943A1 (de) * 2017-05-31 2018-12-06 Jungheinrich Aktiengesellschaft Schnittstellensystem für ein Flurförderzeug
CN107176558A (zh) * 2017-07-10 2017-09-19 水岩科技(北京)有限公司 举升装置、旋转装置、举升旋转系统和智能仓储机器人
CN111453645A (zh) * 2019-01-18 2020-07-28 北京京东尚科信息技术有限公司 举升装置及具有该装置的agv小车
CN111706659A (zh) * 2020-06-30 2020-09-25 惠州市金力智能科技有限公司 一种蜗杆蜗轮加行星轮复合式驱动旋转升降结构
CN112850566A (zh) * 2020-12-29 2021-05-28 杭州海康机器人技术有限公司 一种举升装置及自动导引运输车

Also Published As

Publication number Publication date
CN112850566B (zh) 2023-06-16
CN112850566A (zh) 2021-05-28

Similar Documents

Publication Publication Date Title
CN105904433B (zh) 一种可移动可静止的六轴机器人
AU769677B2 (en) Transportation device
CN104619612B (zh) 堆装起重机
WO2022142454A1 (zh) 举升装置及自动导引运输车
EP0256015B1 (en) Tray loader apparatus
CN106002978B (zh) 一种底部设有升降滚轮的六轴机器人
CN105692410A (zh) 折叠式小型电梯
CN112141961A (zh) 一种提升调整机构
JP5094339B2 (ja) 噛合チェーン式電動昇降装置
CN107939105B (zh) 纵移车库
CN115448207A (zh) 一种城市交通施工用机电模块吊装设备
CN111217289A (zh) 升降机和玻璃基板的传输系统
CN108499889A (zh) 一种安全的快递分拣系统
JP7161224B2 (ja) 移動装置及び移動装置を備えた昇降台車
CN212669069U (zh) 升降对接平台
JP3383481B2 (ja) エレベータの敷居隙間縮小装置
CN209793781U (zh) 机械手升降回转连接结构
CN212650636U (zh) 一种折叠床
CN212650637U (zh) 一种床板升降机构及折叠床
CN117142404B (zh) 一种用于升降机的多级变速传动结构
JP6013697B1 (ja) 昇降装置
CN212280679U (zh) 一种移动小车及折叠床
CN215245035U (zh) 一种旋压机用放料装置
JP3164195U (ja) 昇降装置
CN219278464U (zh) 一种四向穿梭车顶升换向装置及四向穿梭车

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21913201

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21913201

Country of ref document: EP

Kind code of ref document: A1