WO2022142401A1 - 一种适用于增材制造的稀土铝合金粉末及其制备方法 - Google Patents

一种适用于增材制造的稀土铝合金粉末及其制备方法 Download PDF

Info

Publication number
WO2022142401A1
WO2022142401A1 PCT/CN2021/114279 CN2021114279W WO2022142401A1 WO 2022142401 A1 WO2022142401 A1 WO 2022142401A1 CN 2021114279 W CN2021114279 W CN 2021114279W WO 2022142401 A1 WO2022142401 A1 WO 2022142401A1
Authority
WO
WIPO (PCT)
Prior art keywords
rare earth
alloy powder
additive manufacturing
aluminum alloy
earth aluminum
Prior art date
Application number
PCT/CN2021/114279
Other languages
English (en)
French (fr)
Inventor
高海燕
吕海洋
王朦朦
彭朋
吴贇
张驰
李敏
王宇飞
王俊
孙宝德
Original Assignee
上海交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海交通大学 filed Critical 上海交通大学
Publication of WO2022142401A1 publication Critical patent/WO2022142401A1/zh
Priority to US18/163,859 priority Critical patent/US20230175102A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/052Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/065Spherical particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/026Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0408Light metal alloys
    • C22C1/0416Aluminium-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0824Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0848Melting process before atomisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0892Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid casting nozzle; controlling metal stream in or after the casting nozzle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0896Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid particle transport, separation: process and apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/05Light metals
    • B22F2301/052Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/10Micron size particles, i.e. above 1 micrometer up to 500 micrometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the invention relates to the technical field of additive manufacturing, in particular, to a rare earth aluminum alloy powder suitable for additive manufacturing and a preparation method thereof.
  • additive Manufacturing also known as 3D printing
  • 3D printing is a combination of computer-aided design, material processing and molding technology, based on digital model files, through software and numerical control systems to use layer-by-layer manufacturing methods for special materials.
  • a manufacturing method that directly produces the same three-dimensional solid part as the corresponding digital model. It has the characteristics of simple process flow, short processing cycle and high material utilization rate. This makes it possible to manufacture complex structural parts that were constrained by traditional manufacturing methods in the past, and can perform topology optimization on the model structure as needed.
  • the Chinese patent with the application number of 201811093773.3 discloses an aluminum alloy powder for 3D printing and a preparation method thereof.
  • the powder in the preparation method is only for the powder bed selective laser sintering process, and the applicable manufacturing process is single; its The powder composition contains Mn element, which will reduce the electrical conductivity of the alloy; the room temperature tensile strength of the alloy disclosed in this patent is 450MP, but its high temperature performance is not disclosed.
  • Rare earth elements are added to the aluminum alloy as an effective refining and strength element.
  • the Chinese patent application number 202010356881.6 provides an Al-RE-Y-Mg alloy and a preparation method thereof.
  • the disclosed one is suitable for pressure /High strength, toughness and heat resistance die-casting by gravity casting/Al-RE-Y-Mg alloy with high thermal conductivity and corrosion resistance, its room temperature strength is lower than 260MPa, and its high temperature strength at 250°C is lower than 150MPa, which is not conducive to long-term high-temperature service; pressure/gravity casting is adopted
  • the method has a slow solidification rate, is prone to defects such as segregation and shrinkage, and has poor quality stability, which affects its performance.
  • the metal powder used in the field of additive manufacturing is a high-quality powder with a high net value, and its application scope and demand have gradually expanded in recent years.
  • metal powder production methods for additive manufacturing mainly include water atomization, plasma atomization and rotating electrode method.
  • the aluminum alloy powder currently used is mainly Al-Si series, such as: AlSi10Mg, AlSi7Mg0.6, AlSi9Cu3, etc. Its composition is simple, but the heat resistance is poor, which is not conducive to high temperature service, or the density is large, which is not conducive to lightweight development, application More limited.
  • intermetallic compounds such as Al1 Ce 3 , Al 3 Zr, Al 3 Y, Al 3 Sc have the ability to hinder dislocation movement and grain boundary slip, and can improve the thermal stability and high temperature strength of materials.
  • metal powders are highly homogenized, with few types of selectivity, single function, and application. Small in scope.
  • heat-resistant aluminum alloy powders suitable for additive manufacturing especially heat-resistant rare-earth aluminum alloy powders with excellent properties and preparation methods thereof, have not yet been reported.
  • the purpose of the present invention is to provide a rare earth aluminum alloy powder suitable for additive manufacturing and a preparation method thereof.
  • a first aspect of the present invention provides a method for preparing rare earth aluminum alloy powder suitable for additive manufacturing, comprising:
  • the aluminum ingot is heated and melted into molten aluminum, and the temperature is 730°C-780°C;
  • the alloy liquid is led out by a guide tube, and at the same time, the alloy liquid is impinged with a high-pressure argon gas flow at the outlet of the guide tube, so that the alloy liquid is atomized and formed into fine liquid under the action of surface tension drops, and solidifies into spherical alloy powder;
  • the alloy elements reach the following preset compositions by weight percentage: Ce is 6.00%-8.00%, Mg is 0.40%-1.00%, Y is 0.10%-0.25%, Zr is 0.10% %-0.25%, the content of other impurities is less than 0.1%, and the rest is aluminum.
  • the alloy liquid is led out by means of a guide tube; wherein, the export temperature of the alloy liquid is controlled, and the temperature is 630°C-680°C.
  • the alloy liquid is led out by means of a guide tube; wherein, the lead-out speed of the alloy liquid is 5kg/min-10kg/min.
  • a guide tube is used to lead out the alloy liquid; wherein, the guide tube is made of zirconium oxide, silicon nitride or titanium nitride; the diameter of the guide tube is 2mm-6mm.
  • the alloy liquid is led out by a guide tube, and at the same time, the alloy liquid is impacted by high-pressure airflow at the outlet of the guide tube, wherein the high-pressure airflow is used to impact the alloy liquid with an air pressure of 6MPa-8MPa. alloy liquid.
  • the spherical alloy powder has an average particle size of 40 ⁇ m-50 ⁇ m, and a particle size distribution of 10 ⁇ m-75 ⁇ m.
  • a second aspect of the present invention provides a rare earth aluminum alloy powder suitable for additive manufacturing, which is prepared by the method for preparing rare earth aluminum alloy powder suitable for additive manufacturing.
  • the sphericity of the rare earth aluminum alloy powder is greater than 95%, and the satellite powder and the hollow powder are less than 0.1%.
  • the rare earth aluminum alloy powder has high sphericity and less satellite powder and hollow powder; it can meet the requirements of different printing conditions of additive manufacturing.
  • the true density of the rare earth aluminum alloy powder is 2.70 g/cm 3 -2.82 g/cm 3 ; the bulk density of the rare earth aluminum alloy powder is greater than 1.5 g/cm 3 .
  • the rare earth aluminum alloy powder has high bulk density.
  • the oxygen and nitrogen content of the rare earth aluminum alloy powder is lower than 200 ppm.
  • the Hall flow rate of the rare earth aluminum alloy powder is 46s/50g-50s/50g.
  • the rare earth aluminum alloy powder has good fluidity and good printing performance.
  • the present invention has at least one of the following beneficial effects:
  • the above-mentioned preparation method of the present invention adopts gas atomization to make powder, uses low gas to form the powder, and the process is simple.
  • the powder can be changed by adjusting parameters such as the superheating temperature of the molten metal, the ratio of gas to molten liquid, the speed of the gas flow, the gas pressure, etc.
  • the particle size distribution and powder quality of the prepared powder are suitable for various additive manufacturing processes such as laser sintering, selective laser melting, and electron beam melting.
  • the above-mentioned preparation method of the present invention integrates the steps of gold smelting, composition control and powder making, and the alloy does not need to undergo secondary heating and remelting, thereby reducing element burning loss; high-purity argon can be recycled and reused, with low energy consumption and no Environmental pollution;
  • the rare earth aluminum alloy powder prepared by the present invention the rare earth aluminum alloy powder suitable for additive manufacturing has the characteristics of high sphericity, less satellite powder and hollow powder, low oxygen content, and high bulk density, which can meet the requirements of additive manufacturing. The use requirements of different printing conditions of material manufacturing.
  • the rare earth aluminum alloy powder composition of the present invention contains Ce, Y, Zr elements, and the rapid solidification technology of additive manufacturing can form Al 11 Ce 3 phase and Al 3 (Y, Zr) phase uniformly distributed in nanometer scale in the aluminum matrix , These nano-phases have high melting point, are not easy to melt and coarsen at high temperature, can significantly improve the thermal stability and high temperature performance of the alloy, and solve the problems of the existing aluminum alloy powder with single composition, poor heat resistance and small selection range of types.
  • the rare earth aluminum alloy powder prepared by the invention has excellent fluidity and printing performance, is suitable for additive manufacturing, can be effectively used for parts with large volume, light weight and complex structure, and can be used in weight-sensitive application fields and aerospace.
  • the field has great application prospects; the processing cycle is greatly shortened, the production efficiency is improved, and the process flow is simplified.
  • 1 is a microscopic topography diagram of rare earth aluminum alloy powder suitable for additive manufacturing according to a preferred embodiment of the present invention
  • FIG. 2 is a particle size distribution diagram of rare earth aluminum alloy powder suitable for additive manufacturing according to a preferred embodiment of the present invention.
  • This embodiment provides a rare earth aluminum alloy powder suitable for additive manufacturing, which is composed of the following elements by weight: Ce is 10.00%, Mg is 0.60%, Y is 0.10%, Zr is 0.25%, and other impurities Less than 0.1%, the rest is aluminum.
  • the above-mentioned rare earth aluminum alloy powder suitable for additive manufacturing can adopt the following preparation methods, including:
  • the aluminum ingot is heated and melted into molten aluminum in an induction furnace at a temperature of 750°C.
  • the spherical particles are collected by a vacuum collector, screened, dried, and then packaged to obtain a powder product.
  • the microstructure of the alloy powder is shown in Figure 1, and the particle size distribution is shown in Figure 2.
  • This embodiment provides a rare earth aluminum alloy powder suitable for additive manufacturing, which is composed of the following elements by weight: 8.00% Ce, 0.40% Mg, 0.10% Y, 2.50% Zr, and other impurities. Less than 0.1%, the rest is aluminum.
  • the above-mentioned rare earth aluminum alloy powder suitable for additive manufacturing can adopt the following preparation methods, including:
  • the aluminum ingot is heated and melted into molten aluminum in an induction furnace at a temperature of 730°C.
  • the above alloy powder is collected in a vacuum collector, screened, dried, and then packaged to obtain a powder product.
  • This embodiment provides a rare earth aluminum alloy powder suitable for additive manufacturing, which is composed of the following elements by weight: Ce is 10.00%, Mg is 0.60%, Y is 0.10%, Zr is 0.20%, and other impurities Less than 0.1%, the rest is aluminum.
  • the above-mentioned rare earth aluminum alloy powder suitable for additive manufacturing can adopt the following preparation methods, including:
  • the aluminum ingot is heated and melted into molten aluminum in an induction furnace at a temperature of 780°C.
  • the above alloy powder is collected in a vacuum collector, screened, dried, and then packaged to obtain a powder product.
  • This embodiment proposes a rare earth aluminum alloy powder suitable for additive manufacturing, which is composed of the following elements by weight: 8.00% of Ce, 0.60% of Mg, 0.20% of Y, 0.50% of Zr, and other impurities. Less than 0.1%, the rest is aluminum.
  • the above-mentioned rare earth aluminum alloy powder suitable for additive manufacturing can adopt the following preparation methods, including:
  • the aluminum ingot is heated and melted into molten aluminum in an induction furnace at a temperature of 750°C.
  • the above alloy powder is collected in a vacuum collector, screened, dried, and then packaged to obtain a powder product.
  • the flow rate was 46.3s/50g.
  • This embodiment proposes a rare earth aluminum alloy powder suitable for additive manufacturing, which is composed of the following elements by weight: Ce 10.00%, Mg 0.50%, Y 0.20%, Zr 2.50%, and other impurity contents. Less than 0.1%, the rest is aluminum.
  • the above-mentioned rare earth aluminum alloy powder suitable for additive manufacturing can adopt the following preparation methods, including:
  • the aluminum ingot is heated and melted in an induction furnace into molten aluminum at a temperature of 760°C.
  • the above-mentioned alloy liquid is led out from the bottom of the induction furnace with a zirconia guide tube with a diameter of 6 mm, and the heating of the guide tube is controlled so that the lead-out temperature is 670°C, and the lead-out speed of the alloy solution is 7kg/min.
  • the alloy liquid is impacted by high-pressure argon gas flow, the argon gas pressure is 8MPa, and the purity is greater than 99.99%.
  • the alloy liquid is atomized to form fine droplets and solidified into spherical particles to form alloy powder.
  • the above alloy powder is collected in a vacuum collector, screened, dried, and then packaged to obtain a powder product.
  • This embodiment proposes a rare earth aluminum alloy powder suitable for additive manufacturing, which is composed of the following elements by weight: 1.00% of Ce, 0.05% of Mg, 7.50% of Y, 0.10% of Zr, and other impurities. Less than 0.1%, the rest is aluminum.
  • the above-mentioned rare earth aluminum alloy powder suitable for additive manufacturing can adopt the following preparation methods, including:
  • the aluminum ingot is heated and melted into molten aluminum in an induction furnace at a temperature of 780°C.
  • the above-mentioned alloy liquid is led out from the bottom of the induction furnace with a zirconia guide tube with a diameter of 4 mm, and the heating of the guide tube is controlled so that the lead-out temperature is 660° C., and the lead-out speed of the alloy solution is 5kg/min.
  • the alloy liquid is impacted by high-pressure argon gas flow, the argon gas pressure is 8MPa, and the purity is greater than 99.99%.
  • the alloy liquid is atomized to form fine droplets and solidified into spherical particles to form alloy powder.
  • the above alloy powder is collected in a vacuum collector, screened, dried, and then packaged to obtain a powder product.
  • This embodiment proposes a rare earth aluminum alloy powder suitable for additive manufacturing, which is composed of the following elements by weight: 6.00% of Ce, 8.00% of Mg, 7.50% of Y, 0.10% of Zr, and other impurities. Less than 0.1%, the rest is aluminum.
  • the above-mentioned rare earth aluminum alloy powder suitable for additive manufacturing can adopt the following preparation methods, including:
  • the aluminum ingot is heated and melted in an induction furnace into molten aluminum at a temperature of 760°C.
  • the above-mentioned alloy liquid is led out from the bottom of the induction furnace with a zirconia guide tube with a diameter of 6 mm, and the heating of the guide tube is controlled so that the lead-out temperature is 670° C. and the lead-out speed of the alloy solution is 5kg/min.
  • the alloy liquid is impacted by high-pressure argon gas flow, the argon gas pressure is 8MPa, and the purity is greater than 99.99%.
  • the alloy liquid is atomized to form fine droplets and solidified into spherical particles to form alloy powder.
  • the above alloy powder is collected in a vacuum collector, screened, dried, and then packaged to obtain a powder product.
  • the rare earth aluminum alloy powder suitable for additive manufacturing has the characteristics of high sphericity, less satellite powder, high bulk density, and low nitrogen and oxygen content; the powder material has excellent fluidity and printing performance, and is suitable for Additive manufacturing can be effectively used for parts with large volume, light weight and complex structure.

Abstract

本发明提供一种适用于增材制造的稀土铝合金粉末及其制备方法,包括:将铝锭加热熔化成铝液;向铝液中添加所需合金元素形成合金液:使合金元素达到以下重量百分含量的预设成分:Ce为1.00%-10.00%、Mg为0.05%-8.00%、Y为0.10%-7.50%、Zr为0.10%-2.50%、杂质小于0.1%,其余为铝;利用导流管将合金液导出,用高压气流冲击合金液,合金液雾化并在表面张力作用下形成细小的液滴,凝固成球形合金粉末;球形合金粉末收集于真空收集器,进行筛选、干燥,得到稀土铝合金粉末。本发明具有球形度高、卫星粉和空心粉较少、含氧量低、松装密度高等特点,能满足增材制造的不同打印工况的使用要求。

Description

一种适用于增材制造的稀土铝合金粉末及其制备方法 技术领域
本发明涉及增材制造技术领域,具体地,涉及一种适用于增材制造的稀土铝合金粉末及其制备方法。
背景技术
增材制造(Additive Manufacturing,AM)又称3D打印,它是融合了计算机辅助设计、材料加工与成型技术,以数字模型文件为基础,通过软件与数控系统将专用的材料采用逐层制造方式,直接制造与相应数字模型相同的三维实体零件的制造方法。其具有工艺流程简单,加工周期短,材料利用率高等特点。这使得过去受到传统制造方式的约束,而无法实现的复杂结构件制造变为可能,并可根据需要对模型结构进行拓扑优化。
经检索发现申请号为201811093773.3的中国专利,公开了一种用于3D打印的铝合金粉及其制备方法,该制备方法中粉末仅针对于粉末床选区激光烧结工艺,适用的制造工艺单一;其粉末成分含有Mn元素,会降低合金电导率;该专利公布的合金室温抗拉强度为450MP,但未公布其高温性能。稀土元素作为一种有效的细化和强度元素被加入铝合金中,申请号为202010356881.6的中国专利中,提供一种Al-RE-Y-Mg合金及其制备方法,公开的一种适于压力/重力铸造的高强韧耐热压铸/高导热耐腐蚀的Al-RE-Y-Mg合金,其室温强度低于260MPa,250℃高温强度低于150MPa,不利于长期高温服役;采用压力/重力铸造方法凝固速度慢,易产生偏析、缩松等缺陷,质量稳定性差,影响其使用性能。
增材制造领域应用的金属粉末,是净值很高的高质粉末,近年来其应用范围和需求逐步扩大。对于增材制造铝合金而言,增材制造用金属粉末生产方式主要有水雾化、等离子雾化化和旋转电极法。目前使用的铝合金粉末主要是Al-Si系,如:AlSi10Mg、AlSi7Mg0.6、AlSi9Cu3等,其成分简单,但耐热性差,不利于高温服役,或密度较大,不利于轻量化发展,应用局限性较大。研究发现,A l1Ce 3、Al 3Zr、Al 3Y、Al 3Sc等金属间化合物,具有阻碍位错运动和晶界滑移能力,可提高材料热稳定性和高温强度。其熔点越高、尺寸越细小、成分和结构越复杂,强化效果越好。因此,若能使这些金属间化合 物在基体中均匀分布,对提高合金耐热性能十分关键。随着海洋工程、汽车、轨道交通、航空航天等领域的快速发展,适用于增材制造的金属粉末的需求也在急剧增长,当前金属粉末同质化严重,种类选择性少,功能单一,应用范围小。而适用于增材制造的耐热铝合金粉末,尤其是性能优良的耐热稀土铝合金粉末及其制备方法尚未见报道。
发明内容
针对现有技术中的缺陷,本发明的目的是提供一种适用于增材制造的稀土铝合金粉末及其制备方法。
本发明第一个方面提供一种适用于增材制造的稀土铝合金粉末的制备方法,包括:
S1,在气氛保护下,将铝锭加热熔化成铝液,温度为730℃-780℃;
S2,向所述铝液中添加所需合金元素形成合金液:使用中间合金调整各元素比例,除气除渣,使合金元素达到以下重量百分含量的预设成分:Ce为1.00%-10.00%、Mg为0.05%-8.00%、Y为0.10%-7.50%、Zr为0.10%-2.50%、其他杂质含量小于0.1%,其余为铝;成分误差小于0.02%。
S3,利用导流管将所述合金液导出,同时在所述导流管的出口用高压氩气气流冲击所述合金液,使所述合金液雾化并在表面张力作用下形成细小的液滴,并凝固成球形合金粉末;
S4,将所述球形合金粉末收集于真空收集器,进行筛选、干燥,得到适用于增材制造的稀土铝合金粉末。
优选地,所述S2,其中,使合金元素达到以下重量百分含量的预设成分:Ce为6.00%-8.00%、Mg为0.40%-1.00%、Y为0.10%-0.25%、Zr为0.10%-0.25%、其他杂质含量小于0.1%,其余为铝。
优选地,所述S3,利用导流管将所述合金液导出;其中,控制所述合金液的导出温度,温度为630℃-680℃。
优选地,所述S3,利用导流管将所述合金液导出;其中,所述合金液的导出速度为5kg/min-10kg/min。
优选地,所述S3,利用导流管将所述合金液导出;其中,所述导流管材质为氧化锆、氮化硅或氮化钛;所述导流管的直径为2mm-6mm。
优选地,所述S3,利用导流管将所述合金液导出,同时在所述导流管的出口用高压气流冲击所述合金液,其中,用气压为6MPa-8MPa是高压气流冲击所述合金液。
优选地,所述球形合金粉末的平均粒度为40μm-50μm,粒径分布为10μm-75μm。
本发明第二个方面提供一种适用于增材制造的稀土铝合金粉末,由所述的适用于增材制造的稀土铝合金粉末的制备方法制备得到。
优选地,所述稀土铝合金粉末的球形度大于95%,且卫星粉和空心粉低于0.1%。稀土铝合金粉末的球形度高,且卫星粉和空心粉少;能满足增材制造的不同打印工况的使用要求。
优选地,所述稀土铝合金粉末的真密度为2.70g/cm 3-2.82g/cm 3;所述稀土铝合金粉末的松装密度大于1.5g/cm 3。所述稀土铝合金粉末松装密度高。
优选地,所述稀土铝合金粉末的氧氮含量低于200ppm。
优选地,所述稀土铝合金粉末的霍尔流速为46s/50g-50s/50g。稀土铝合金粉末的流动性良好,打印性能好。
与现有技术相比,本发明具有如下至少一种的有益效果:
本发明上述制备方法,选用气雾化制粉,用气成体低,工艺过程简单,可通过调控金属熔液的过热温度、气体与熔液的比例、气流的速度、气体压力等参数来改变粉末的粒度分布和粉末质量,所制备的粉末适用于激光烧结、选区激光熔化、电子束熔化等多种增材制造工艺。
本发明上述制备方法,集合金熔炼,成分调控和制粉等步骤于一体,合金无需经过二次加热重熔,减小了元素烧损;高纯氩气可循环重复利用,能耗低,无环境污染;本发明制备的上述稀土铝合金粉末,适用于增材制造的稀土铝合金粉末具有球形度高、卫星粉和空心粉较少、含氧量低、松装密度高等特点,能满足增材制造的不同打印工况的使用要求。
本发明稀土铝合金粉末成分,含有Ce,Y,Zr元素,利用增材制造的快速凝固技术,可在铝基体中形成纳米尺度均匀分布的Al 11Ce 3相和Al 3(Y,Zr)相,这些纳米相熔点高,高温不易熔化和粗化,能显著提高合金热稳定性和高温性能,解决了现有铝合金粉末成分单一,耐热性差,种类选择区间小的问题。
本发明制备的上述稀土铝合金粉末,该粉末材料流动性和打印性能优良,适用于增材制造,能有效用于大体积、轻量化、结构复杂的零部件,在重量敏感应用领域和航空航天领域具有很大应用前景;大大缩短了加工周期,提高了生产效率,简化了工艺流程。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1是本发明一优选实施例的适用于增材制造的稀土铝合金粉末显微形貌图;
图2是本发明一优选实施例的适用于增材制造的稀土铝合金粉末粒径分布图。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
实施例1
本实施例提供一种适用于增材制造的稀土铝合金粉末,由以下重量百分含量的元素组成:Ce为10.00%、Mg为0.60%、Y为0.10%、Zr为0.25%、其他杂质含量小于0.1%,其余为铝。
上述适用于增材制造的稀土铝合金粉末可以采用以下制备方法,包括:
S1,在高纯氩气保护下,将铝锭在感应电炉中加热熔化成铝液,温度为750℃。
S2,向上述铝液中添加所需合金元素,使用中间合金调整各元素比例,除气除渣,使其成分达到Ce为10.00%、Mg为0.60%、Y为0.10%、Zr为0.25%、其余为铝,成分误差小于0.02%,形成合金液。
S3,将上述合金液从感应电炉底部用直径为2mm的氧化锆导流管导出,控制导流管加热,使导出温度保持为650℃,合金液导出速度为5kg/min;同时用高压氩气气流冲击合金液,氩气气压为6MPa,纯度大于99.99%;使合金液雾化形成细小的液滴并凝固成球形颗粒,形成合金粉末。
S4,利用真空收集器收集上述球形颗粒,进行筛选、干燥,然后封装,得到粉末产品。
经测试,得到合金粉末的平均粒度为43μm,粒径分布为20μm-60μm,其中d(10)=27.17μm,d(50)=40.06μm,d(90)=58.04μm,霍尔流速为46.7s/50g。合金粉末的显微形貌如图1所示,粒径分布如图2所示。
实施例2
本实施例提供一种适用于增材制造的稀土铝合金粉末,由以下重量百分含量的元素组成:Ce为8.00%、Mg为0.40%、Y为0.10%、Zr为2.50%、其他杂质含量小于0.1%,其余为铝。
上述适用于增材制造的稀土铝合金粉末可以采用以下制备方法,包括:
S1,在高纯氩气保护下,将铝锭在感应电炉中加热熔化成铝液,温度为730℃。
S2,向上述铝液中添加所需合金元素,使用中间合金调整各元素比例,除气除渣,使其成分达到Ce为8.00%、Mg为0.40%、Y为0.10%、Zr为2.50%、其余为铝,成分误差小于0.02%,形成合金液。
S3,将上述合金液从感应电炉底部用直径为4mm的氮化钛导流管导出,控制导流管加热,使导出温度保持为650℃,合金液导出速度为5kg/min;同时用高压氩气气流冲击合金液,氩气气压为8MPa,纯度大于99.99%;使合金液雾化形成细小的液滴并凝固成球形颗粒,形成合金粉末。
S4,将上述合金粉末在真空收集器收集,进行筛选、干燥,然后封装,得到粉末产品。
经测试,合金粉末平均粒度为43.4μm,粒径分布为20μm-75μm,其中d(10)=23.11μm,d(50)=42.66μm,d(90)=75.42μm,霍尔流速为46s/50g。
实施例3
本实施例提供一种适用于增材制造的稀土铝合金粉末,由以下重量百分含量的元素组成:Ce为10.00%、Mg为0.60%、Y为0.10%、Zr为0.20%、其他杂质含量小于0.1%,其余为铝。
上述适用于增材制造的稀土铝合金粉末可以采用以下制备方法,包括:
S1,在高纯氮气保护下,将铝锭在感应电炉中加热熔化成铝液,温度为780℃。
S2,向上述铝液中添加所需合金元素,使用中间合金调整各元素比例,除气除渣,使其成分达到Ce为10.00%、Mg为0.60%、Y为0.10%、Zr为0.20%、其余为铝,成分误差小于0.02%,形成合金液。
S3,将上述合金液从感应电炉底部用直径为6mm的氧化锆导流管导出,控制导流管加热,使导出温度为660℃,合金液导出速度为6kg/min;同时用高压氮气气流冲击合金液,氩气气压为7MPa,纯度大于99.99%。使合金液雾化形成细小的液滴并凝固成球形颗粒,形成合金粉末。
S4,将上述合金粉末在真空收集器收集,进行筛选、干燥,然后封装,得到粉末产 品。
经测试,合金粉末平均粒度为42.6μm,粒径分布为22μm-73μm,其中d(10)=28.13μm,d(50)=42.11μm,d(90)=73.18μm,霍尔流速为47s/50g。
实施例4
本实施例提出一种适用于增材制造的稀土铝合金粉末,由以下重量百分含量的元素组成:Ce为8.00%、Mg为0.60%、Y为0.20%、Zr为0.50%、其他杂质含量小于0.1%、其余为铝。
上述适用于增材制造的稀土铝合金粉末可以采用以下制备方法,包括:
S1,在高纯氩气保护下,将铝锭在感应电炉中加热熔化成铝液,温度为750℃。
S2,向上述铝液中添加所需合金元素,使用中间合金调整各元素比例,除气除渣,使其成分达到Ce为10.00%、Mg为0.60%、Y为0.10%、Zr为0.50%、其余为铝,成分误差小于0.02%,形成合金液。
S3,将上述合金液从感应电炉底部用直径为4mm的氮化钛导流管导出,控制导流管加热,使导出温度为660℃,合金液导出速度为7kg/min;同时用高压氩气气流冲击合金液,氩气气压为7MPa,纯度大于99.99%。使合金液雾化形成细小的液滴并凝固成球形颗粒,形成合金粉末。
S4,将上述合金粉末在真空收集器收集,进行筛选、干燥,然后封装,得到粉末产品。
经测试,合金粉末的平均粒度为46.8μm,合金粉末的粒径分布为20μm-70μm,其中d(10)=17.87μm,d(50)=46.09μm,d(90)=68.02μm,霍尔流速为46.3s/50g。
实施例5
本实施例提出一种适用于增材制造的稀土铝合金粉末,由以下重量百分含量的元素组成:Ce为10.00%、Mg为0.50%、Y为0.20%,Zr为2.50%,其他杂质含量小于0.1%,其余为铝。
上述适用于增材制造的稀土铝合金粉末可以采用以下制备方法,包括:
S1,在高纯氩气保护下,将铝锭在感应电炉中加热熔化成铝液,温度为760℃。
S2,向上述铝液中添加所需合金元素,使用中间合金调整各元素比例,除气除渣,使其成分达到Ce为10.00%、Mg为0.50%、Y为0.20%、Zr为2.50%、其余为铝,成分误差小于0.02%,形成合金液。
S3,将上述合金液从感应电炉底部用直径为6mm的氧化锆导流管导出,控制导流管 加热,使导出温度为670℃,合金液导出速度为7kg/min。同时用高压氩气气流冲击合金液,氩气气压为8MPa,纯度大于99.99%。使合金液雾化形成细小的液滴并凝固成球形颗粒,形成合金粉末。
S4,将上述合金粉末在真空收集器收集,进行筛选、干燥,然后封装,得到粉末产品。
经测试,粉末平均粒度为47μm,粒径分布为20μm-75μm,其中d(10)=20.18μm,d(50)=46.06μm,d(90)=70.04μm,霍尔流速为47s/50g。
实施例6
本实施例提出一种适用于增材制造的稀土铝合金粉末,由以下重量百分含量的元素组成:Ce为1.00%、Mg为0.05%、Y为7.50%,Zr为0.10%,其他杂质含量小于0.1%,其余为铝。
上述适用于增材制造的稀土铝合金粉末可以采用以下制备方法,包括:
S1,在高纯氩气保护下,将铝锭在感应电炉中加热熔化成铝液,温度为780℃。
S2,向上述铝液中添加所需合金元素,使用中间合金调整各元素比例,除气除渣,使其成分达到Ce为1.00%、Mg为0.05%、Y为7.50%、Zr为0.10%、其余为铝,成分误差小于0.02%,形成合金液。
S3,将上述合金液从感应电炉底部用直径为4mm的氧化锆导流管导出,控制导流管加热,使导出温度为660℃,合金液导出速度为5kg/min。同时用高压氩气气流冲击合金液,氩气气压为8MPa,纯度大于99.99%。使合金液雾化形成细小的液滴并凝固成球形颗粒,形成合金粉末。
S4,将上述合金粉末在真空收集器收集,进行筛选、干燥,然后封装,得到粉末产品。
经测试,粉末平均粒度为40.6μm,粒径分布为15μm-55μm,其中d(10)=15.18μm,d(50)=40.61μm,d(90)=56.77μm,霍尔流速为47.1s/50g。
实施例7
本实施例提出一种适用于增材制造的稀土铝合金粉末,由以下重量百分含量的元素组成:Ce为6.00%、Mg为8.00%、Y为7.50%,Zr为0.10%,其他杂质含量小于0.1%,其余为铝。
上述适用于增材制造的稀土铝合金粉末可以采用以下制备方法,包括:
S1,在高纯氩气保护下,将铝锭在感应电炉中加热熔化成铝液,温度为760℃。
S2,向上述铝液中添加所需合金元素,使用中间合金调整各元素比例,除气除渣,使其成分达到Ce为6.00%、Mg为8.00%、Y为7.50%、Zr为0.10%、其余为铝,成分误差小于0.02%,形成合金液。
S3,将上述合金液从感应电炉底部用直径为6mm的氧化锆导流管导出,控制导流管加热,使导出温度为670℃,合金液导出速度为5kg/min。同时用高压氩气气流冲击合金液,氩气气压为8MPa,纯度大于99.99%。使合金液雾化形成细小的液滴并凝固成球形颗粒,形成合金粉末。
S4,将上述合金粉末在真空收集器收集,进行筛选、干燥,然后封装,得到粉末产品。
经测试,粉末平均粒度为45μm,粒径分布为20μm-55μm,其中d(10)=20.18μm,d(50)=45.06μm,d(90)=60.04μm,霍尔流速为47s/50g。
上述实施例提供的适用于增材制造的稀土铝合金粉末,具有球形度高、卫星粉少,松装密度高,氮氧等含量低的特点;该粉末材料流动性和打印性能优良,适用于增材制造,能有效用于大体积、轻量化、结构复杂的零部件。解决现有适用于增材制造的铝合金粉末成分单一,耐热性差,密度大,应用局限等问题,以推动耐热稀土铝合金粉末的开发,弥补现有铝合金粉末的应用局限性等缺点。促进稀土铝合金粉末在重量敏感应用领域和航空航天领域的应用。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改,这并不影响本发明的实质。

Claims (10)

  1. 一种适用于增材制造的稀土铝合金粉末的制备方法,其特征在于,包括:
    S1,在气氛保护下,将铝锭加热熔化成铝液,温度为730℃-780℃;
    S2,向所述铝液中添加所需合金元素形成合金液:使用中间合金调整各元素比例,除气除渣,使合金元素达到以下重量百分含量的预设成分:Ce为1.00%-10.00%、Mg为0.05%-8.00%、Y为0.10%-7.50%、Zr为0.10%-2.50%、其他杂质含量小于0.1%,其余为铝;
    S3,利用导流管将所述合金液导出,同时在所述导流管的出口用高压气流冲击所述合金液,使所述合金液雾化并在表面张力作用下形成细小的液滴,并凝固成球形合金粉末;
    S4,将所述球形合金粉末收集于真空收集器,进行筛选、干燥,得到适用于增材制造的稀土铝合金粉末。
  2. 根据权利要求1所述的适用于增材制造的稀土铝合金粉末的制备方法,其特征在于,所述S2,使合金元素达到以下重量百分含量的预设成分:Ce为6.00%-8.00%、Mg为0.40%-1.00%、Y为0.10%-0.25%、Zr为0.10%-0.25%、其他杂质含量小于0.1%,其余为铝。
  3. 根据权利要求1所述的适用于增材制造的稀土铝合金粉末的制备方法,其特征在于,所述S3,利用导流管将所述合金液导出;其中,
    -控制所述合金液的导出温度,温度为630℃-680℃;
    -所述合金液的导出速度为5kg/min-10kg/min;
    -所述导流管材质为氧化锆、氮化硅或氮化钛;所述导流管的直径为2mm-6mm。
  4. 根据权利要求1所述适用于增材制造的稀土铝合金粉末的制备方法,其特征在于,所述S3,利用导流管将所述合金液导出,同时在所述导流管的出口用高压气流冲击所述合金液,其中,用气压为6MPa-8MPa的高压氩气或高压氮气气流冲击所述合金液。
  5. 根据权利要求1所述的适用于增材制造的稀土铝合金粉末的制备方法,其特征在于,所述球形合金粉末的平均粒度为40μm-50μm,粒径分布为10μm-75μm。
  6. 一种适用于增材制造的稀土铝合金粉末,其特征在于,由权利要求1-5任一项所述的适用于增材制造的稀土铝合金粉末的制备方法制备得到。
  7. 根据权利要求6所述的适用于增材制造的稀土铝合金粉末,其特征在于,所述 稀土铝合金粉末的球形度大于95%,且卫星粉和空心粉低于0.1%。
  8. 根据权利要求6所述的适用于增材制造的稀土铝合金粉末,其特征在于,所述稀土铝合金粉末的真密度为2.70g/cm 3-2.82g/cm 3;所述稀土铝合金粉末的松装密度大于1.5g/cm 3
  9. 根据权利要求6所述适用于增材制造的稀土铝合金粉末,其特征在于,所述稀土铝合金粉末的氧氮含量低于200ppm。
  10. 根据权利要求6所述适用于增材制造的稀土铝合金粉末,其特征在于,所述稀土铝合金粉末的霍尔流速为46s/50g-50s/50g。
PCT/CN2021/114279 2020-12-30 2021-08-24 一种适用于增材制造的稀土铝合金粉末及其制备方法 WO2022142401A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/163,859 US20230175102A1 (en) 2020-12-30 2023-02-02 Rare earth aluminum alloy powder applicable for additive manufacturing and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011605054.2 2020-12-30
CN202011605054.2A CN112831694B (zh) 2020-12-30 2020-12-30 一种适用于增材制造的稀土铝合金粉末及其制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/163,859 Continuation US20230175102A1 (en) 2020-12-30 2023-02-02 Rare earth aluminum alloy powder applicable for additive manufacturing and preparation method thereof

Publications (1)

Publication Number Publication Date
WO2022142401A1 true WO2022142401A1 (zh) 2022-07-07

Family

ID=75925309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/114279 WO2022142401A1 (zh) 2020-12-30 2021-08-24 一种适用于增材制造的稀土铝合金粉末及其制备方法

Country Status (3)

Country Link
US (1) US20230175102A1 (zh)
CN (1) CN112831694B (zh)
WO (1) WO2022142401A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115990669A (zh) * 2023-03-24 2023-04-21 湖南东方钪业股份有限公司 一种用于增材制造的钪铝合金粉末及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112831694B (zh) * 2020-12-30 2022-12-20 上海交通大学 一种适用于增材制造的稀土铝合金粉末及其制备方法
CN114959379B (zh) * 2022-03-31 2023-04-25 华南理工大学 一种适用于激光选区熔化的耐热高强铝合金及其制备方法
CN115055695A (zh) * 2022-06-24 2022-09-16 上海交通大学 一种增材制造用循环使用粉末可用性的判定方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01275732A (ja) * 1988-04-28 1989-11-06 Takeshi Masumoto 高力、耐熱性アルミニウム基合金
CN1254028A (zh) * 1998-10-30 2000-05-24 卡西欧计算机株式会社 装饰用的铝合金构件及其生产方法
CN108220693A (zh) * 2017-12-28 2018-06-29 上海交通大学 一种大稀土含量的高强高导耐热铝合金导线及其制备方法
CN109338182A (zh) * 2018-11-14 2019-02-15 江苏科技大学 一种Al-Mg-Er-Zr系列铝合金及制备方法
CN111321326A (zh) * 2020-04-29 2020-06-23 上海交通大学 Al-RE-Y-Mg合金及其制备方法
CN111378875A (zh) * 2020-04-29 2020-07-07 上海交通大学 一种适于重力铸造的高导热耐腐蚀Al-RE-Y-Zr合金及其制备方法
CN111411268A (zh) * 2020-04-29 2020-07-14 上海交通大学 一种适于压力铸造的高强韧耐热Al-RE-Y-Zr合金及其制备方法
CN112795818A (zh) * 2020-12-30 2021-05-14 上海交通大学 一种激光增材制造高强耐热稀土铝合金及其制备方法
CN112831694A (zh) * 2020-12-30 2021-05-25 上海交通大学 一种适用于增材制造的稀土铝合金粉末及其制备方法
CN113136505A (zh) * 2021-03-15 2021-07-20 上海交通大学 一种高强韧耐热铝合金电枢材料及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108796320B (zh) * 2018-09-19 2020-03-17 湖南东方钪业股份有限公司 一种用于3d打印的铝合金粉及其制备方法
CN109175350B (zh) * 2018-10-30 2021-03-02 长沙新材料产业研究院有限公司 一种用于增材制造的Al-Mg-Mn-Sc-Zr铝合金粉末及其制备方法
CN110373574B (zh) * 2019-07-18 2020-09-25 上海交通大学 一种近共晶型高强耐热Al-Ce系铝合金及制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01275732A (ja) * 1988-04-28 1989-11-06 Takeshi Masumoto 高力、耐熱性アルミニウム基合金
CN1254028A (zh) * 1998-10-30 2000-05-24 卡西欧计算机株式会社 装饰用的铝合金构件及其生产方法
CN108220693A (zh) * 2017-12-28 2018-06-29 上海交通大学 一种大稀土含量的高强高导耐热铝合金导线及其制备方法
CN109338182A (zh) * 2018-11-14 2019-02-15 江苏科技大学 一种Al-Mg-Er-Zr系列铝合金及制备方法
CN111321326A (zh) * 2020-04-29 2020-06-23 上海交通大学 Al-RE-Y-Mg合金及其制备方法
CN111378875A (zh) * 2020-04-29 2020-07-07 上海交通大学 一种适于重力铸造的高导热耐腐蚀Al-RE-Y-Zr合金及其制备方法
CN111411268A (zh) * 2020-04-29 2020-07-14 上海交通大学 一种适于压力铸造的高强韧耐热Al-RE-Y-Zr合金及其制备方法
CN112795818A (zh) * 2020-12-30 2021-05-14 上海交通大学 一种激光增材制造高强耐热稀土铝合金及其制备方法
CN112831694A (zh) * 2020-12-30 2021-05-25 上海交通大学 一种适用于增材制造的稀土铝合金粉末及其制备方法
CN113136505A (zh) * 2021-03-15 2021-07-20 上海交通大学 一种高强韧耐热铝合金电枢材料及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115990669A (zh) * 2023-03-24 2023-04-21 湖南东方钪业股份有限公司 一种用于增材制造的钪铝合金粉末及其制备方法

Also Published As

Publication number Publication date
CN112831694B (zh) 2022-12-20
CN112831694A (zh) 2021-05-25
US20230175102A1 (en) 2023-06-08

Similar Documents

Publication Publication Date Title
WO2022142401A1 (zh) 一种适用于增材制造的稀土铝合金粉末及其制备方法
CN111593234B (zh) 一种激光增材制造用铝合金材料
CN105950947B (zh) 用于3d打印的富铁高熵合金粉体材料及其制备方法
CN107695338B (zh) 一种AlSi7Mg粉末材料及其制备方法和其应用
CN106623959A (zh) 一种增材制造用Waspalloy球形粉末的制备方法
CN106956008A (zh) 一种3D打印用Hastelloy X合金粉末的制备方法
CN106392089A (zh) 一种增材制造用铝合金粉末的制备方法
CN109112346A (zh) 一种增材制造用铜合金粉末的制备方法
CN112795818A (zh) 一种激光增材制造高强耐热稀土铝合金及其制备方法
CN109338182A (zh) 一种Al-Mg-Er-Zr系列铝合金及制备方法
WO2022193487A1 (zh) 一种高强韧耐热铝合金电枢材料及其制备方法
CN109909492A (zh) 一种高强高韧铝合金粉体材料及其制备方法
CN113684403A (zh) 一种用于3d打印的高强铝合金粉及其制备方法
CN111940730A (zh) 一种通过激光增材原位制备金属基复合材料的方法
CN109794602A (zh) 一种用于增材制造的铜合金粉末及其制备方法和应用
CN109014182A (zh) 增材制造用7000系铝合金粉末及其制备方法
CN108396203A (zh) 稀土铒元素增强SLM专用AlSi10Mg铝合金粉末及其应用
CN111659882A (zh) 一种用于3d打印的铝镁合金粉末及其制备方法
CN113059172A (zh) 一种纳米多相增强钛基复合材料增材制造专用球形粉末的制造方法
CN112317755A (zh) 一种提高Cu-Cr-Nb合金强度和电导率的方法
CN111872404A (zh) 一种用于3d打印的铝铜合金粉末及其制备方法
CN1219898C (zh) 一种用于制备CuCr合金触头材料的合金粉末的制备方法
CN109332717A (zh) 一种球形钼钛锆合金粉末的制备方法
CN111842915A (zh) 一种用于3d打印的铝锰合金粉末及其制备方法
CN107620004A (zh) 一种Fe‑Mn‑Al系列合金的粉末冶金制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21913148

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21913148

Country of ref document: EP

Kind code of ref document: A1