WO2022141935A1 - 一种海工混凝土用钢筋耐腐蚀涂层及其制备方法 - Google Patents

一种海工混凝土用钢筋耐腐蚀涂层及其制备方法 Download PDF

Info

Publication number
WO2022141935A1
WO2022141935A1 PCT/CN2021/086894 CN2021086894W WO2022141935A1 WO 2022141935 A1 WO2022141935 A1 WO 2022141935A1 CN 2021086894 W CN2021086894 W CN 2021086894W WO 2022141935 A1 WO2022141935 A1 WO 2022141935A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
corrosion
preparation
add
electrophoresis
Prior art date
Application number
PCT/CN2021/086894
Other languages
English (en)
French (fr)
Inventor
陈平
明阳
李玲
胡成
李青
陈宣东
刘荣进
李顺凯
赵艳荣
韦家崭
Original Assignee
桂林理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 桂林理工大学 filed Critical 桂林理工大学
Publication of WO2022141935A1 publication Critical patent/WO2022141935A1/zh
Priority to US18/139,356 priority Critical patent/US20230257597A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/44Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications
    • C09D5/448Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications characterised by the additives used
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/44Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications
    • C09D5/4473Mixture of polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • B01J13/16Interfacial polymerisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • C04B20/1018Coating or impregnating with organic materials
    • C04B20/1029Macromolecular compounds
    • C04B20/1037Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/2805Compounds having only one group containing active hydrogen
    • C08G18/2815Monohydroxy compounds
    • C08G18/282Alkanols, cycloalkanols or arylalkanols including terpenealcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/62Polymers of compounds having carbon-to-carbon double bonds
    • C08G18/6216Polymers of alpha-beta ethylenically unsaturated carboxylic acids or of derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/64Macromolecular compounds not provided for by groups C08G18/42 - C08G18/63
    • C08G18/6415Macromolecular compounds not provided for by groups C08G18/42 - C08G18/63 having nitrogen
    • C08G18/643Reaction products of epoxy resins with at least equivalent amounts of amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7614Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring
    • C08G18/7621Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring being toluene diisocyanate including isomer mixtures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/80Masked polyisocyanates
    • C08G18/8061Masked polyisocyanates masked with compounds having only one group containing active hydrogen
    • C08G18/8064Masked polyisocyanates masked with compounds having only one group containing active hydrogen with monohydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • C09D5/10Anti-corrosive paints containing metal dust
    • C09D5/106Anti-corrosive paints containing metal dust containing Zn
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/44Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/44Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications
    • C09D5/4419Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications with polymers obtained otherwise than by polymerisation reactions only involving carbon-to-carbon unsaturated bonds
    • C09D5/443Polyepoxides
    • C09D5/4457Polyepoxides containing special additives, e.g. pigments, polymeric particles
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/44Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications
    • C09D5/4419Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications with polymers obtained otherwise than by polymerisation reactions only involving carbon-to-carbon unsaturated bonds
    • C09D5/4465Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/12Electrophoretic coating characterised by the process characterised by the article coated
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/20Pretreatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/74Underwater applications
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2150/00Compositions for coatings
    • C08G2150/90Compositions for anticorrosive coatings

Definitions

  • the invention relates to the field of steel bar protection, in particular to a corrosion-resistant coating for steel bars for marine concrete and a preparation method thereof.
  • Chinese patent CN 111378350 A discloses a steel rod with a prestressed anti-corrosion coating.
  • the coating includes 5%-30% filler and 70%-95% modified water-based epoxy resin, which is characterized in that , according to the mass ratio, the modified water-based epoxy resin is prepared from the following raw materials: 10%-50% high-elasticity water-soluble polymer, 10%-60% water-based epoxy resin and 10%-40% % hardener.
  • Chinese patent CN106380111A discloses a slow-release microcapsule containing a rust inhibitor and a preparation method thereof, although the method utilizes the microcapsule to provide lasting protection to the steel bars in concrete. But after all, it is dispersed in the entire concrete structure, and the surface of the steel bar is still exposed to the corrosive medium. To a certain extent, chloride ions and other corrosive media still corrode the surface of steel bars.
  • Chinese Patent CN 105177679 A A low-cost and simple method for electrophoretically depositing a graphene coating on a carbon steel substrate, the graphene coating deposited by this method can improve the corrosion resistance and surface wear resistance of the carbon steel substrate the electrical and thermal conductivity of the substrate.
  • the purpose of the present invention is to provide a corrosion-resistant coating for steel bars for marine concrete and a preparation method thereof.
  • the corrosion-resistant coating has excellent adhesion and corrosion resistance, and can effectively protect the steel structure For protection, the service life of steel bars for marine concrete is greatly extended.
  • the present invention provides a preparation method of a corrosion-resistant coating for steel bars for marine concrete, comprising the following steps:
  • the steel bar is ready for use after degreasing, pickling, water washing and sandblasting;
  • step (c1) adding the urea-formaldehyde resin prepolymer obtained in the step (a1) to the oil emulsion in the step (b1), adjusting the pH to 3-4 with hydrochloric acid, and performing a reflux reaction at 70-90° C. for 2-3 hours, and the obtained product was Vacuum filtration, wash with deionized water and acetone, and put it in a drying oven to dry, that is, it is obtained from the repaired corrosion microcapsules;
  • Cathodic electrophoresis place the steel bar in the cathodic electrophoresis tank, and set the electrophoresis process parameters as follows: the solid content of the cathodic electrophoresis tank is 10% to 15%, the pH value is 5.5 to 6.5, the conductivity is 200 to 500us/cm, and the temperature of the bath is 30 ⁇ 50°C, electrophoresis voltage 50 ⁇ 100V, electrophoresis time 3 ⁇ 10min;
  • the pH adjusting agent is sodium hydroxide or triethanolamine.
  • the degreasing step is to put the steel bars into a solution of water containing 20-30 g/L of sodium carbonate, 30-50 g/L of sodium phosphate, and 10-20 g/L of sodium silicate for ultrasonic cleaning for 10-20 min;
  • the oil temperature is 30 to 50°C.
  • the steel bars are soaked in a 0.5-1 mol/L dilute hydrochloric acid solution for 5-10 minutes.
  • the particle size of the metal powder is 50-80 ⁇ m; the particle size of the graphene oxide powder is 10-30 ⁇ m.
  • the metal powder is zinc powder or magnesium powder.
  • the present invention also provides a corrosion-resistant coating for steel bars for marine concrete, which is prepared by the above method.
  • Semi-blocked isocyanate curing agent provides good film-forming effect of electrophoretic coatings, ensures sufficient cross-linking density of the paint film, and enables electrophoretic coatings to have good physical and chemical properties.
  • self-healing microcapsules are prepared and added to the electrophoretic coating, the microcapsules encapsulated in the coating are ruptured under the action of external force, the repairing agent in the microcapsules flows out, and the repairing agent is filled with cracks under the action of capillaries and a polymerization reaction occurs
  • the self-healing process is completed to ensure the compactness of the coating by inhibiting the generation of cracks, and effectively improve the corrosion resistance of the coating.
  • 2-phenylbenzimidazole a substance with corrosion inhibitory effect, is added to the self-healing microcapsules, which can also adsorb on the surface of the steel bar to inhibit the occurrence of corrosion when the microcapsules are broken.
  • the invention improves the corrosion resistance by preparing a dense protective coating on the surface of the steel bar by electrophoresis, and on the other hand, it is combined with the principle of cathodic protection.
  • the coating is easy to form a cathodic protection circuit in the marine environment, which further improves the corrosion resistance of the coating.
  • Graphene oxide has high hardness and has a lubricating effect between layers, which can improve the mechanical properties of electrophoretic coatings such as mechanical strength, impact resistance, and flexibility. Moreover, graphene oxide itself has a certain corrosion resistance, which can further improve the corrosion resistance of the electrophoretic coating.
  • the present invention has the following beneficial effects:
  • the invention firstly combines the two to realize the preparation of the corrosion-resistant coating for the steel bar for marine concrete.
  • the applicant has searched and found that there is little research on adding self-healing corrosion microcapsules to electrophoretic paints in the prior art.
  • the present application adds self-healing corrosion microcapsules to electrophoretic paints and prepares corresponding electrophoretic paints to cooperate with them. , realizing the electrophoresis method to form a protective coating with excellent bonding force and high corrosion resistance on the surface of steel bar.
  • the corrosion-resistant coating of the present application can be widely used in the protection of steel bars for marine concrete, and can also be applied in the protection of metal structures in general environments.
  • FIG. 1 is the Tafel polarization curve of the corrosion-resistant coatings prepared in Examples 1-3.
  • a method for preparing a corrosion-resistant coating for steel bars for marine concrete comprising the following steps:
  • the steel bar is used after degreasing, pickling, water washing and sandblasting;
  • the degreasing step is to put the steel bar into 20g/L of sodium carbonate, 30g/L of sodium phosphate, silicic acid Ultrasonic cleaning was carried out in a solution of sodium 10g/L water for 10min; the degreasing temperature was 30°C; the pickling step was to soak the steel bars in a 0.5mol/L dilute hydrochloric acid solution for 5min;
  • step (c1) adding the urea-formaldehyde resin prepolymer obtained in the step (a1) to the oil emulsion in the step (b1), adjusting the pH to 3 with hydrochloric acid, and performing a reflux reaction at 70° C. for 2 h. Wash with ionized water and acetone, put it in a drying oven to dry, that is, get it from repairing corrosion microcapsules;
  • Cathodic electrophoresis place the steel bars in the cathodic electrophoresis tank, and set the electrophoresis process parameters as follows: the solid content of the cathodic electrophoresis tank is 10%, the pH value is 5.5, the conductivity is 200us/cm, the bath temperature is 30°C, the electrophoresis voltage is 50V, and the electrophoresis time 3min;
  • a method for preparing a corrosion-resistant coating for steel bars for marine concrete comprising the following steps:
  • the steel bar is used after degreasing, pickling, water washing, and sandblasting;
  • the degreasing step is to put the steel bar into 25g/L of sodium carbonate, 40g/L of sodium phosphate, silicic acid Ultrasonic cleaning in a solution of sodium 15g/L water for 15min; degreasing temperature of 40°C; in the pickling step, the steel bars are soaked in a 0.8mol/L dilute hydrochloric acid solution for 7min;
  • step (c1) adding the urea-formaldehyde resin prepolymer obtained in the step (a1) into the oil emulsion in the step (b1), adjusting the pH to 3.5 with hydrochloric acid, and performing a reflux reaction at 80° C. for 2.5 h, the obtained product was vacuum filtered, and the Washing with deionized water and acetone, and drying in a drying oven, namely obtained from repairing corrosion microcapsules;
  • Cathodic electrophoresis place the steel bar in the cathodic electrophoresis tank, and set the electrophoresis process parameters as follows: the solid content of the cathodic electrophoresis tank is 12%, the pH value is 6, the conductivity is 300us/cm, the bath temperature is 40°C, the electrophoresis voltage is 70V, and the electrophoresis time 5min;
  • a method for preparing a corrosion-resistant coating for steel bars for marine concrete comprising the following steps:
  • the steel bar is used after degreasing, pickling, water washing and sandblasting;
  • the degreasing step is to put the steel bar into 30g/L of sodium carbonate, 50g/L of sodium phosphate, silicic acid Ultrasonic cleaning was carried out in a solution of sodium 20g/L water for 20min; the degreasing temperature was 50°C; the pickling step was to soak the steel bars in a 1mol/L dilute hydrochloric acid solution for 10min;
  • step (c1) adding the urea-formaldehyde resin prepolymer obtained in the step (a1) to the oil emulsion in the step (b1), adjusting the pH to 4 with hydrochloric acid, and performing a reflux reaction at 90° C. for 3 hours, and the obtained product was vacuum filtered and used Wash with ionized water and acetone, put it in a drying oven to dry, that is, get it from repairing corrosion microcapsules;
  • Cathodic electrophoresis place the steel bar in the cathodic electrophoresis tank, and set the electrophoresis process parameters as follows: the solid content of the cathodic electrophoresis tank is 15%, the pH value is 6.5, the conductivity is 500us/cm, the bath temperature is 50°C, the electrophoresis voltage is 100V, and the electrophoresis time 10min;
  • the corrosion-resistant coating prepared by the present invention has high bond strength, which can ensure that the coating is not easy to fall off under the external force of the environment.
  • the corrosion-resistant coatings and bare steel bars of Examples 1-3 were tested for corrosion performance.
  • the PARSTAT electrochemical workstation was used for the test.
  • the reference electrode was a saturated calomel electrode
  • the auxiliary electrode was a high-purity graphite rod
  • the working electrode was a waiting electrode.
  • the corrosion-resistant coating prepared by the present invention has a more positive corrosion potential, which is lower than -0.51V of the bare steel bar, and the corrosion current density is as low as 10-9 order of magnitude, which shows that, The coating has excellent corrosion resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Dispersion Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Paints Or Removers (AREA)

Abstract

海工混凝土用钢筋耐腐蚀涂层的制备方法,包括以下步骤:(1)对钢筋表面进行预处理;(2)制备自修复腐蚀微胶囊;(3)制备阴极电泳涂料;(4)阴极电泳;(5)固化。电泳涂料中包含自修复腐蚀微胶囊、金属粉末以及氧化石墨烯粉末,通过自修复微胶囊的自修复性以及阴极保护的共同作用提高涂层的耐腐蚀性能。

Description

一种海工混凝土用钢筋耐腐蚀涂层及其制备方法 技术领域
本发明涉及钢筋防护领域,具体涉及一种海工混凝土用钢筋耐腐蚀涂层及其制备方法。
背景技术
混凝土结构广泛应用于建筑、基建领域,通常使用钢筋骨架来改善混凝土的强度,成为钢筋混凝土,是海工基础设施的主要材料。然而其面临着海水介质的侵蚀容易引起混凝土结构破坏,造成了巨大的经济损失,而且再进行修复就非常困难。海水中氯离子侵蚀是引起钢筋锈蚀的重要原因,通过局部酸化和阳极去极化作用不断使钢筋表面的钝化膜溶解破坏;形成腐蚀电池对钢筋表面钝化膜的破坏发生在局部,使这些部位露出了钢筋基体,与尚完好的钝化膜区域之间构成电位差,钢筋作为阳极而易于发生腐蚀。现有技术对钢筋防腐蚀做了大量的研究,且也取得了不错的效果。
中国专利CN 111378350 A公开了一种预应力防腐蚀涂层钢棒,按照质量比,所述涂层包括5%-30%填料,和70%-95%改性水性环氧树脂,其特征在于,按照质量比,所述改性水性环氧树脂由以下比例的原料制备而成:10%-50%的高弹性水溶性聚合物、10%-60%的水性环氧树脂和10%-40%的固化剂。
中国专利CN106380111A公开了一种内含阻锈剂的缓释微胶囊及其制备方法,虽然该方法利用了微胶囊能够对混凝土中的钢筋产生持久的保护。但是其毕竟是分散于整个混凝土结构中,钢筋表面仍然属于暴露于腐蚀介质中。在一定程度上还是存在氯离子以及其他腐蚀介质对钢筋表面的腐蚀。
中国专利CN 105177679 A一种成本低和操作简单的在碳钢基体上电泳沉积石墨烯涂层的方法,用该方法沉积的石墨烯涂层能提高碳钢基体的耐蚀性、表面的耐磨性和基体的导电导热性。
鉴于海工混凝土用钢筋的广泛应用,如何提高其使用寿命仍然是现有技术研究的方向和重点。
发明内容
针对现有技术的需求,本发目的在于提供一种海工混凝土用钢筋耐腐蚀涂层及其制备方法,该耐腐蚀涂层具有优异的粘结性和防腐蚀性,能够有效的对钢筋 结构进行防护,大大延长了海工混凝土用钢筋的使用寿命。
为了实现上述技术目的,本发明提供了一种海工混凝土用钢筋耐腐蚀涂层的制备方法,包括以下步骤:
(1)对钢筋表面进行预处理:钢筋经除油、酸洗、水洗、喷砂后备用;
(2)制备自修复腐蚀微胶囊:
(a1)将10~12份尿素、18~20份甲醛、1~3份氯化铵倒入反应器中,加入pH调节剂调节pH至为8~10,搅拌均匀后升温至60~80℃下进行回流反应2~3h形成脲醛树脂预聚体;
(b1)将5~10份间苯二酚、3~7份聚乙烯醇、10~20份亚麻籽油、1~3份2-苯基苯并咪唑,在50~60℃下搅拌10~15min,加入1~5份去离子水和0.1~0.5份十二烷基苯磺酸钠,乳化20~30min形成油乳状液;
(c1)将步骤(a1)得到的脲醛树脂预聚体加入至步骤(b1)油乳状液中,用盐酸调节pH为3~4,在70~90℃下回流反应2~3h,将所得产物真空抽滤,用去离子水和丙酮洗涤,放至烘干箱中干燥,即得自修复腐蚀微胶囊;
(3)制备阴极电泳涂料:
(a2)在反应釜中加入5~10份2,4-甲苯二异氰酸酯和20~30份丙二醇甲醚,在保护气氛下搅拌升温至50~60℃后,在2~3h内滴加完3~5份甲基异丁基酮,完成后再次升温至110~120℃反应2~3h,测量NCO基含量,即得到半封闭异氰酸酯;
(b2)在装有温度计、搅拌器和回流冷凝管的反应瓶中,依次加入50~60份水性羟基丙烯酸树脂、10~30份半封闭异氰酸酯,搅拌并升温至40~60℃,加入2~5份乙酸、1~5份金属粉末、1~5份氧化石墨烯粉末、5~10份异丙醇和10~30份去离子水,然后继续搅拌10~20min,制得色浆;
(c2)将30~50份有机胺改性环氧树脂、2~10份二乙二醇丁醚、5~15份双酚A聚氧乙烯醚、1~5份甲基异丁基酮、10~20份半封闭异氰酸酯以及20~30份去离子搅拌混合均匀,即得乳液,固含量为30~50%;
(d2)按色浆∶乳液=(1∶2)~(1∶4)的比例混合,再加入1~5份去离子水搅拌均匀熟化24-48h;然后加入5~10份自修复腐蚀微胶囊并继续搅拌10~30min,即得阴极电泳涂料,然后将阴极电泳涂料放入阴极电泳槽中;
(4)阴极电泳:将钢筋置于阴极电泳槽,设置电泳工艺参数为:阴极电泳槽液 固含量10%~15%、pH值5.5~6.5、电导率200~500us/cm、槽液温度30~50℃、电泳电压50~100V、电泳时间3~10min;
(5)固化:将电泳后的钢筋放入烘干箱中,设置温度为150~200℃,时间为20~40min,自然冷却即可。
进一步地,所述pH调节剂为氢氧化钠或三乙醇胺。
进一步地,所述除油步骤为将钢筋放入含碳酸钠20~30g/L、磷酸钠30~50g/L、硅酸钠10~20g/L的水的溶液中超声清洗10~20min;除油温度为30~50℃。
进一步地,所述酸洗步骤为将钢筋放入0.5~1mol/L的稀盐酸溶液中浸泡5~10min。
进一步地,所述金属粉末粒径为50~80μm;氧化石墨烯粉末粒径为10~30μm。
更进一步地,所述金属粉末为锌粉或镁粉。
本发明提还供了一种海工混凝土用钢筋耐腐蚀涂层,所述耐腐蚀涂层由上述方法制备。
半封闭型异氰酸酯固化剂提供电泳涂料良好的成膜效果,保证漆膜足够的交联密度,使电泳涂层具备良好物理及化学性能。
本发明通过制备自修复微胶囊添加至电泳涂层中,包覆在涂层里面的微胶囊在外力作用下破裂,微胶囊内的修复剂流出,修复剂在毛细管作用下充满裂纹并发生聚合反应完成自修复过程,通过抑制裂纹的产生从而确保涂层的致密性,有效的提高了涂层的耐腐蚀性能。而且自修复微胶囊中添加了具有缓蚀作用的物质2-苯基苯并咪唑,在微胶囊破裂的情况下该物质也以在钢筋表面吸附抑制腐蚀的发生。
本发明一方面通过在钢筋表面电泳制备致密的防护性涂层来提高耐腐蚀性能,另一方面则是与阴极保护原理相结合,在电泳涂层中添加锌或镁等低电位金属粉末,涂层在海洋环境中容易形成阴极保护电路,进一步提高涂层的耐腐蚀性能。
氧化石墨烯硬度高,层间具有润滑作用,可以提高电泳涂层的机械强度、耐冲击性、柔韧性等机械性能。而且氧化石墨烯本身就具有一定的耐腐蚀性,可进 一步提高电泳涂层的耐腐蚀性能。
与现有技术相比,本发明具有如下有益效果:
1、虽然现有技术中也有不少利用自修复腐蚀微胶囊来提高涂层耐腐蚀性的研究,但是很少利用阴极保护和自修复腐蚀微胶囊相结合的技术方案。本发明首先将两者相结合实现了对海工混凝土用钢筋耐腐蚀涂层的制备。
2、申请人经过检索,现有技术很少对电泳涂料中添加自修复腐蚀微胶囊的研究,本申请通过在电泳涂料中添加自修复腐蚀微胶囊、并相应的制备了对应的电泳涂料与其配合,实现了电泳法在钢筋表面制备形成了结合力优异、耐腐蚀性高的防护涂层。
3、本申请耐腐蚀涂层可以广泛应用于海工混凝土用钢筋的防护,也可以应用一般环境下的金属结构的保护。
附图说明
图1为实施例1-3制备的耐腐蚀涂层的Tafel极化曲线。
具体实施方式
下面结合具体实施例,对本发明的具体实施方式作进一步详细描述。
实施例1
一种海工混凝土用钢筋耐腐蚀涂层的制备方法,包括以下步骤:
(1)对钢筋表面进行预处理:钢筋经除油、酸洗、水洗、喷砂后备用;所述除油步骤为将钢筋放入含碳酸钠20g/L、磷酸钠30g/L、硅酸钠10g/L的水的溶液中超声清洗10min;除油温度为30℃;所述酸洗步骤为将钢筋放入0.5mol/L的稀盐酸溶液中浸泡5min;
(2)制备自修复腐蚀微胶囊:
(a1)将10份尿素、18份甲醛、1份氯化铵倒入反应器中,加入氢氧化钠pH调节剂调节pH至为8,搅拌均匀后升温至60℃下进行回流反应2h形成脲醛树脂预聚体;
(b1)将5份间苯二酚、3份聚乙烯醇、10份亚麻籽油、1份2-苯基苯并咪唑,在50℃下搅拌10min,加入1份去离子水和0.1份十二烷基苯磺酸钠,乳化20min形成油乳状液;
(c1)将步骤(a1)得到的脲醛树脂预聚体加入至步骤(b1)油乳状液中,用盐酸调节pH为3,在70℃下回流反应2h,将所得产物真空抽滤,用去离子水和丙酮 洗涤,放至烘干箱中干燥,即得自修复腐蚀微胶囊;
(3)制备阴极电泳涂料:
(a2)在反应釜中加入5份2,4-甲苯二异氰酸酯和20份丙二醇甲醚,在保护气氛下搅拌升温至50℃后,在3h内滴加完3份甲基异丁基酮,完成后再次升温至110℃反应2h,测量NCO基含量,即得到半封闭异氰酸酯;
(b2)在装有温度计、搅拌器和回流冷凝管的反应瓶中,依次加入50份水性羟基丙烯酸树脂、10份半封闭异氰酸酯,搅拌并升温至40℃,加入2份乙酸、1份金属粉末、1份氧化石墨烯粉末、5份异丙醇和10份去离子水,然后继续搅拌10min,制得色浆;
(c2)将30份有机胺改性环氧树脂、2份二乙二醇丁醚、5份双酚A聚氧乙烯醚、1份甲基异丁基酮、10份半封闭异氰酸酯以及20份去离子搅拌混合均匀,即得乳液,固含量为30%;所述金属粉末粒径为50μm;氧化石墨烯粉末粒径为10μm、所述金属粉末为锌粉;
(d2)按色浆∶乳液=1∶2的比例混合,再加入1份去离子水搅拌均匀熟化24h;然后加入5份自修复腐蚀微胶囊并继续搅拌10min,即得阴极电泳涂料,然后将阴极电泳涂料放入阴极电泳槽中;
(4)阴极电泳:将钢筋置于阴极电泳槽,设置电泳工艺参数为:阴极电泳槽液固含量10%、pH值5.5、电导率200us/cm、槽液温度30℃、电泳电压50V、电泳时间3min;
(5)固化:将电泳后的钢筋放入烘干箱中,设置温度为150℃,时间为20min,自然冷却即可。
实施例2
一种海工混凝土用钢筋耐腐蚀涂层的制备方法,包括以下步骤:
(1)对钢筋表面进行预处理:钢筋经除油、酸洗、水洗、喷砂后备用;所述除油步骤为将钢筋放入含碳酸钠25g/L、磷酸钠40g/L、硅酸钠15g/L的水的溶液中超声清洗15min;除油温度为40℃;所述酸洗步骤为将钢筋放入0.8mol/L的稀盐酸溶液中浸泡7min;
(2)制备自修复腐蚀微胶囊:
(a1)将11份尿素、19份甲醛、2份氯化铵倒入反应器中,加入氢氧化钠pH调节 剂调节pH至为9,搅拌均匀后升温至70℃下进行回流反应2.5h形成脲醛树脂预聚体;
(b1)将7份间苯二酚、5份聚乙烯醇、15份亚麻籽油、2份2-苯基苯并咪唑,在55℃下搅拌12min,加入3份去离子水和03份十二烷基苯磺酸钠,乳化25min形成油乳状液;
(c1)将步骤(a1)得到的脲醛树脂预聚体加入至步骤(b1)油乳状液中,用盐酸调节pH为3.5,在80℃下回流反应2.5h,将所得产物真空抽滤,用去离子水和丙酮洗涤,放至烘干箱中干燥,即得自修复腐蚀微胶囊;
(3)制备阴极电泳涂料:
(a2)在反应釜中加入7份2,4-甲苯二异氰酸酯和25份丙二醇甲醚,在保护气氛下搅拌升温至55℃后,在2.5h内滴加完4份甲基异丁基酮,完成后再次升温至115℃反应2.5h,测量NCO基含量,即得到半封闭异氰酸酯;
(b2)在装有温度计、搅拌器和回流冷凝管的反应瓶中,依次加入55份水性羟基丙烯酸树脂、20份半封闭异氰酸酯,搅拌并升温至50℃,加入4份乙酸、3份金属粉末、3份氧化石墨烯粉末、8份异丙醇和20份去离子水,然后继续搅拌15min,制得色浆;
(c2)将40份有机胺改性环氧树脂、5份二乙二醇丁醚、10份双酚A聚氧乙烯醚、3份甲基异丁基酮、15份半封闭异氰酸酯以及25份去离子搅拌混合均匀,即得乳液,固含量为40%;所述金属粉末粒径为60μm;氧化石墨烯粉末粒径为20μm、所述金属粉末为锌粉;
(d2)按色浆∶乳液=1∶3的比例混合,再加入3份去离子水搅拌均匀熟化36h;然后加入7份自修复腐蚀微胶囊并继续搅拌20min,即得阴极电泳涂料,然后将阴极电泳涂料放入阴极电泳槽中;
(4)阴极电泳:将钢筋置于阴极电泳槽,设置电泳工艺参数为:阴极电泳槽液固含量12%、pH值6、电导率300us/cm、槽液温度40℃、电泳电压70V、电泳时间5min;
(5)固化:将电泳后的钢筋放入烘干箱中,设置温度为180℃,时间为30min,自然冷却即可。
实施例3
一种海工混凝土用钢筋耐腐蚀涂层的制备方法,包括以下步骤:
(1)对钢筋表面进行预处理:钢筋经除油、酸洗、水洗、喷砂后备用;所述除油步骤为将钢筋放入含碳酸钠30g/L、磷酸钠50g/L、硅酸钠20g/L的水的溶液中超声清洗20min;除油温度为50℃;所述酸洗步骤为将钢筋放入1mol/L的稀盐酸溶液中浸泡10min;
(2)制备自修复腐蚀微胶囊:
(a1)将12份尿素、20份甲醛、3份氯化铵倒入反应器中,加入三乙醇胺pH调节剂调节pH至为10,搅拌均匀后升温至80℃下进行回流反应3h形成脲醛树脂预聚体;
(b1)将10份间苯二酚、7份聚乙烯醇、20份亚麻籽油、3份2-苯基苯并咪唑,在60℃下搅拌15min,加入5份去离子水和0.5份十二烷基苯磺酸钠,乳化30min形成油乳状液;
(c1)将步骤(a1)得到的脲醛树脂预聚体加入至步骤(b1)油乳状液中,用盐酸调节pH为4,在90℃下回流反应3h,将所得产物真空抽滤,用去离子水和丙酮洗涤,放至烘干箱中干燥,即得自修复腐蚀微胶囊;
(3)制备阴极电泳涂料:
(a2)在反应釜中加入10份2,4-甲苯二异氰酸酯和30份丙二醇甲醚,在保护气氛下搅拌升温至60℃后,在3h内滴加完5份甲基异丁基酮,完成后再次升温至120℃反应3h,测量NCO基含量,即得到半封闭异氰酸酯;
(b2)在装有温度计、搅拌器和回流冷凝管的反应瓶中,依次加入60份水性羟基丙烯酸树脂、30份半封闭异氰酸酯,搅拌并升温至60℃,加入6份乙酸、5份金属粉末、5份氧化石墨烯粉末、10份异丙醇和30份去离子水,然后继续搅拌20min,制得色浆;
(c2)将50份有机胺改性环氧树脂、10份二乙二醇丁醚、15份双酚A聚氧乙烯醚、5份甲基异丁基酮、20份半封闭异氰酸酯以及30份去离子搅拌混合均匀,即得乳液,固含量为50%;所述金属粉末粒径为80μm;氧化石墨烯粉末粒径为30μm、所述金属粉末为锌粉;
(d2)按色浆∶乳液=1∶4的比例混合,再加入5份去离子水搅拌均匀熟化48h;然后加入10份自修复腐蚀微胶囊并继续搅拌30min,即得阴极电泳涂料,然后将 阴极电泳涂料放入阴极电泳槽中;
(4)阴极电泳:将钢筋置于阴极电泳槽,设置电泳工艺参数为:阴极电泳槽液固含量15%、pH值6.5、电导率500us/cm、槽液温度50℃、电泳电压100V、电泳时间10min;
(5)固化:将电泳后的钢筋放入烘干箱中,设置温度为150℃,时间为20min,自然冷却即可。
1、对上述制备的混凝土结构涂层进行粘结性测试,根据《色漆和清漆拉开法附着力试验》规范要求,测试耐腐蚀涂层附着力效果,通过拉脱试验得出涂层与混凝土的附着力。结果如表1。
表1
Figure PCTCN2021086894-appb-000001
从粘结强度数据可知,本发明制备的耐腐蚀涂层具有高粘结强度,可以保证涂层不容易在环境外力下导致脱落。
2、对实施例1-3的耐腐蚀涂层以及裸钢筋进行腐蚀性能测试,测试采用PARSTAT电化学工作站,以参比电极为饱和甘汞电极、辅助电极为高纯石墨棒、工作电极为待测试样构成的标准三电极系统,腐蚀电解质为质量分数3.5wt%的NaCl溶液,测试样品的极化曲线,其中曲线a-d分别对应裸钢筋、实施例1-3的极化曲线。通过Tafel曲线外推法得到腐蚀电位、腐蚀电流密度,记录于表2。
表2
  裸露钢筋 实施例1 实施例2 实施例3
腐蚀电位(V) -0.51 -0.32 -0.31 -0.28
腐蚀电流密度(A) 5.2×10 -7 4.1×10 -7 2.5×10 -8 1.3×10 -9
从Tafle极化曲线及其拟合数据可知,本发明制备的耐腐蚀涂层具有更正的腐蚀电位,低于裸露钢筋的-0.51V、且腐蚀电流密度低至10 -9数量级,由此说明,涂层具有优异的耐腐蚀性能。
以上实施方式仅用于说明本发明,而并非对本发明的限制,有关技术领域的普通技术人员,在不脱离本发明的精神和范围的情况下,还可以做出各种变化和 变型,因此所有等同的技术方案也属于本发明的范畴,本发明的专利保护范围应由权利要求限定。

Claims (7)

  1. 一种海工混凝土用钢筋耐腐蚀涂层的制备方法,其特征在于,包括以下步骤:
    (1)对钢筋表面进行预处理:钢筋经除油、酸洗、水洗、喷砂后备用;
    (2)制备自修复腐蚀微胶囊:
    (a1)将10~12份尿素、18~20份甲醛、1~3份氯化铵倒入反应器中,加入pH调节剂调节pH至为8~10,搅拌均匀后升温至60~80℃下进行回流反应2~3h形成脲醛树脂预聚体;
    (b1)将5~10份间苯二酚、3~7份聚乙烯醇、10~20份亚麻籽油、1~3份2-苯基苯并咪唑,在50~60℃下搅拌10~15min,加入1~5份去离子水和0.1~0.5份十二烷基苯磺酸钠,乳化20~30min形成油乳状液;
    (c1)将步骤(a1)得到的脲醛树脂预聚体加入至步骤(b1)油乳状液中,用盐酸调节pH为3~4,在70~90℃下回流反应2~3h,将所得产物真空抽滤,用去离子水和丙酮洗涤,放至烘干箱中干燥,即得自修复腐蚀微胶囊;
    (3)制备阴极电泳涂料:
    (a2)在反应釜中加入5~10份2,4-甲苯二异氰酸酯和20~30份丙二醇甲醚,在保护气氛下搅拌升温至50~60℃后,在2~3h内滴加完3~5份甲基异丁基酮,完成后再次升温至110~120℃反应2~3h,测量NCO基含量,即得到半封闭异氰酸酯;
    (b2)在装有温度计、搅拌器和回流冷凝管的反应瓶中,依次加入50~60份水性羟基丙烯酸树脂、10~30份半封闭异氰酸酯,搅拌并升温至40~60℃,加入2~5份乙酸、1~5份金属粉末、1~5份氧化石墨烯粉末、5~10份异丙醇和10~30份去离子水,然后继续搅拌10~20min,制得色浆;
    (c2)将30~50份有机胺改性环氧树脂、2~10份二乙二醇丁醚、5~15份双酚A聚氧乙烯醚、1~5份甲基异丁基酮、10~20份半封闭异氰酸酯以及20~30份去离子搅拌混合均匀,即得乳液,固含量为30~50%;
    (d2)按色浆∶乳液=(1∶2)~(1∶4)的比例混合,再加入1~5份去离子水搅拌均匀熟化24-48h;然后加入5~10份自修复腐蚀微胶囊并继续搅拌10~30min,即得阴极电泳涂料,然后将阴极电泳涂料放入阴极电泳槽中;
    (4)阴极电泳:将钢筋置于阴极电泳槽,设置电泳工艺参数为:阴极电泳槽液固含量10%~15%、pH值5.5~6.5、电导率200~500us/cm、槽液温度30~50℃、电泳电压50~100V、电泳时间3~10min;
    (5)固化:将电泳后的钢筋放入烘干箱中,设置温度为150~200℃,时间为20~40min,自然冷却即可。
  2. 根据权利要求1所述的制备方法,其特征在于,所述pH调节剂为氢氧化钠或三乙醇胺。
  3. 根据权利要求1所述的制备方法,其特征在于,所述除油步骤为将钢筋放入含碳酸钠20~30g/L、磷酸钠30~50g/L、硅酸钠10~20g/L的水的溶液中超声清洗10~20min;除油温度为30~50℃。
  4. 根据权利要求1所述的制备方法,其特征在于,所述酸洗步骤为将钢筋放入0.5~1mol/L的稀盐酸溶液中浸泡5~10min。
  5. 根据权利要求1所述的制备方法,其特征在于,所述金属粉末粒径为50~80μm;氧化石墨烯粉末粒径为10~30μm。
  6. 根据权利要求1所述的制备方法,其特征在于,所述金属粉末为锌粉或镁粉。
  7. 一种海工混凝土用钢筋耐腐蚀涂层,其特征在于,所述耐腐蚀涂层由权利要求1-6任一项所述制备方法制备。
PCT/CN2021/086894 2020-12-31 2021-04-13 一种海工混凝土用钢筋耐腐蚀涂层及其制备方法 WO2022141935A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/139,356 US20230257597A1 (en) 2020-12-31 2023-04-26 Corrosion-resistant coating of reinforcing stell for marine concrete and preparation method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011638599.3 2020-12-31
CN202011638599.3A CN112778817B (zh) 2020-12-31 2020-12-31 一种海工混凝土用钢筋耐腐蚀涂层及其制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/139,356 Continuation US20230257597A1 (en) 2020-12-31 2023-04-26 Corrosion-resistant coating of reinforcing stell for marine concrete and preparation method therefor

Publications (1)

Publication Number Publication Date
WO2022141935A1 true WO2022141935A1 (zh) 2022-07-07

Family

ID=75755034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/086894 WO2022141935A1 (zh) 2020-12-31 2021-04-13 一种海工混凝土用钢筋耐腐蚀涂层及其制备方法

Country Status (3)

Country Link
US (1) US20230257597A1 (zh)
CN (1) CN112778817B (zh)
WO (1) WO2022141935A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115304993A (zh) * 2022-08-05 2022-11-08 中广核高新核材科技(苏州)有限公司 一种增韧耐候eb固化涂料的制备方法
CN115489889A (zh) * 2022-10-13 2022-12-20 宁波澎湃容器制造有限责任公司 一种耐压耐腐蚀的电解液吨桶

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4363509A1 (en) * 2021-07-01 2024-05-08 PPG Industries Ohio Inc. Electrodepositable coating compositions
CN117820942B (zh) * 2024-03-04 2024-05-10 成都虹润制漆有限公司 用于铁路桥梁钢结构的底、中、面复合涂料及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4031050A (en) * 1970-06-19 1977-06-21 Ppg Industries, Inc. Cationic electrodepositable compositions of blocked NCO and acid salt of adduct of amine and polyepoxide
CN102942835A (zh) * 2012-11-21 2013-02-27 广东科德化工实业有限公司 一种高泳透力阴极电泳涂料及其制备方法和使用方法
CN105820742A (zh) * 2015-12-31 2016-08-03 广东科德环保科技股份有限公司 高固体份低粘度阴极电泳涂料及其制备方法和使用方法
CN106832183A (zh) * 2016-12-14 2017-06-13 武汉科利尔新材料有限公司 一种石墨烯改性阴极聚氨酯电泳树脂及其电泳漆组合物
CN110922803A (zh) * 2019-12-16 2020-03-27 水利部交通运输部国家能源局南京水利科学研究院 用于混凝土中钢筋表面的掺石墨烯材料水性导电防腐蚀涂料组合物及其制备方法
CN111808468A (zh) * 2020-06-05 2020-10-23 中国科学院金属研究所 一种小尺寸脲醛微胶囊及制备和在自修复型涂层中的应用
CN111978818A (zh) * 2020-08-17 2020-11-24 上海金力泰化工股份有限公司 一种氧化石墨烯改性阴极电泳底漆及其涂装方法
CN111995929A (zh) * 2020-09-02 2020-11-27 山东科技大学 基于带锈基体的自修复转化渗透型防锈涂料及制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103911058B (zh) * 2014-04-28 2016-03-09 安徽海程铁路器材科技有限公司 一种铁路紧固件防腐抗菌阴极电泳涂料及其涂装方法
CN105820713A (zh) * 2016-05-03 2016-08-03 沈阳建筑大学 一种用于海洋船舶的自修复涂料及其制备方法
CN109627951B (zh) * 2018-12-18 2020-10-30 广东科德环保科技股份有限公司 一种改性环氧树脂及其制备方法和高泳透力阴极电泳涂料
CN110028824A (zh) * 2019-03-28 2019-07-19 华能国际电力股份有限公司海门电厂 一种新型自修复含锌防腐涂料及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4031050A (en) * 1970-06-19 1977-06-21 Ppg Industries, Inc. Cationic electrodepositable compositions of blocked NCO and acid salt of adduct of amine and polyepoxide
CN102942835A (zh) * 2012-11-21 2013-02-27 广东科德化工实业有限公司 一种高泳透力阴极电泳涂料及其制备方法和使用方法
CN105820742A (zh) * 2015-12-31 2016-08-03 广东科德环保科技股份有限公司 高固体份低粘度阴极电泳涂料及其制备方法和使用方法
CN106832183A (zh) * 2016-12-14 2017-06-13 武汉科利尔新材料有限公司 一种石墨烯改性阴极聚氨酯电泳树脂及其电泳漆组合物
CN110922803A (zh) * 2019-12-16 2020-03-27 水利部交通运输部国家能源局南京水利科学研究院 用于混凝土中钢筋表面的掺石墨烯材料水性导电防腐蚀涂料组合物及其制备方法
CN111808468A (zh) * 2020-06-05 2020-10-23 中国科学院金属研究所 一种小尺寸脲醛微胶囊及制备和在自修复型涂层中的应用
CN111978818A (zh) * 2020-08-17 2020-11-24 上海金力泰化工股份有限公司 一种氧化石墨烯改性阴极电泳底漆及其涂装方法
CN111995929A (zh) * 2020-09-02 2020-11-27 山东科技大学 基于带锈基体的自修复转化渗透型防锈涂料及制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115304993A (zh) * 2022-08-05 2022-11-08 中广核高新核材科技(苏州)有限公司 一种增韧耐候eb固化涂料的制备方法
CN115304993B (zh) * 2022-08-05 2023-07-14 中广核高新核材科技(苏州)有限公司 一种增韧耐候eb固化涂料的制备方法
CN115489889A (zh) * 2022-10-13 2022-12-20 宁波澎湃容器制造有限责任公司 一种耐压耐腐蚀的电解液吨桶

Also Published As

Publication number Publication date
CN112778817A (zh) 2021-05-11
CN112778817B (zh) 2021-10-29
US20230257597A1 (en) 2023-08-17

Similar Documents

Publication Publication Date Title
WO2022141935A1 (zh) 一种海工混凝土用钢筋耐腐蚀涂层及其制备方法
CN107474615B (zh) 一种防腐自修复涂料
US9371589B2 (en) Surface modified nano-scaled titanium dioxide, preparation process thereof, coating containing the same, and photoelectrochemical method for metal preservation using the coating
WO2022141931A1 (zh) 一种海洋工程混凝土耐腐蚀涂层及其制备方法
CN106810993A (zh) 基于微米级介孔容器的自愈合型环氧涂料及其制备和应用
CN104984889A (zh) 一种微纳尺寸颗粒增强型锌铝涂层及其生产方法
CN108102539A (zh) 石墨烯防腐涂料及其制备方法以及涂覆风电主轴的方法
CN110028824A (zh) 一种新型自修复含锌防腐涂料及其制备方法
CN110922857A (zh) 一种铁路钢桥用水性环氧富锌防锈底漆及其制备方法
CN110042381A (zh) 一种铝合金表面膜的制备方法
CN109880484A (zh) 一种水性环氧厚浆防腐漆及其制备方法和应用
WO2024056109A1 (zh) 一种"砖-泥"层状结构耐腐蚀磷酸盐复合涂层及其制备方法与应用
CN110467832A (zh) 一种环保型单组份水性锂基无机富锌底漆及其制备方法
CN108641543A (zh) 一种基于液态金属的海洋防腐涂料及其制备方法
CN112029314A (zh) 一种纳米填料及其制备方法与应用
CN104249876A (zh) 一种阻隔防爆材料及其制备方法
CN115738938A (zh) 镁合金自修复防腐蚀涂层用微胶囊及其制备方法和自修复防腐蚀涂层
CN101591493B (zh) 一种表面涂层组合物及其制备方法
CN112592652A (zh) 一种聚苯胺/硝酸铈/环氧聚合涂层的制备方法
CN106380998A (zh) 一种聚苯胺‑短切玻纤‑酚醛树脂涂料及其制备方法
CN112898863A (zh) 一种防腐涂料及其制备方法
CN102492319B (zh) 一种耐腐蚀涂料、其制备方法及使用方法
CN111768948A (zh) 一种用于沿海地区的耐腐蚀变压器
CN117248253A (zh) 一种高使用寿命的换热器端板及其制备工艺
CN110317478A (zh) 一种聚噻吩改性冷涂锌涂料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21912700

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21912700

Country of ref document: EP

Kind code of ref document: A1