WO2022141733A1 - 一种氟碳涂布液及一种氟碳涂层、及一种太阳能背板 - Google Patents

一种氟碳涂布液及一种氟碳涂层、及一种太阳能背板 Download PDF

Info

Publication number
WO2022141733A1
WO2022141733A1 PCT/CN2021/074405 CN2021074405W WO2022141733A1 WO 2022141733 A1 WO2022141733 A1 WO 2022141733A1 CN 2021074405 W CN2021074405 W CN 2021074405W WO 2022141733 A1 WO2022141733 A1 WO 2022141733A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorocarbon
fluorocarbon coating
acid value
absorber
resin
Prior art date
Application number
PCT/CN2021/074405
Other languages
English (en)
French (fr)
Inventor
汪诚
简伟任
王超
邓文晖
袁南园
唐海江
李刚
张彦
Original Assignee
宁波激阳新能源有限公司
宁波激智科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波激阳新能源有限公司, 宁波激智科技股份有限公司 filed Critical 宁波激阳新能源有限公司
Publication of WO2022141733A1 publication Critical patent/WO2022141733A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/12Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C09D127/18Homopolymers or copolymers of tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/10Transparent films; Clear coatings; Transparent materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/204Applications use in electrical or conductive gadgets use in solar cells
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend

Definitions

  • the invention relates to the technical field of solar back sheets, in particular to a fluorocarbon coating solution, a fluorocarbon coating, and a solar back sheet.
  • the fluorocarbon coating has anti-PID properties.
  • PID test is an important indicator to test the long-term actual use performance of the module.
  • the most critical factor affecting PID is the treatment of the cell surface.
  • the backside treatment process of double-sided cells is different, some are one-layer evaporation of silicon nitride, and some are two-layer evaporation of silicon nitride and aluminum oxide.
  • the transparent backplane also plays a role in this performance.
  • the traditional PID failure principle includes ion migration, acid molecule migration or water vapor migration, so various small molecular substances in the inner material of the backplane have a profound impact on the PID performance.
  • the acidic small molecules and ionic small molecules used in transparent fluorocarbons are easy to corrode the back of the cell.
  • the present invention provides a fluorocarbon coating solution, a fluorocarbon coating, and a solar back sheet.
  • the fluorocarbon coating slows down the power decay of the photovoltaic cell during use, and has an anti-PID effect.
  • the fluorocarbon coating provided by the present invention is a clear coating without precipitation.
  • the invention provides a fluorocarbon coating solution, which comprises 50%-80% by weight of fluorocarbon resin, 1%-5% triazine UV absorber, 1%-5% by weight % of matting powder, 10% to 20% of low acid value adhesion promoter, 0.3% to 0.8% of additives, 5% to 20% of isocyanate.
  • the fluorocarbon coating solution further includes an organic solvent, and the solid content of the fluorocarbon coating solution is 50% to 70%.
  • the fluorocarbon coating liquid is also called fluorocarbon coating.
  • the ratio of the fluorocarbon coating liquid is limited to the above range, which has excellent adhesion on the transparent layer after curing, and meets the requirements of packaging strength. At the same time, because there are no small molecular acid components, the PID performance is tested under damp heat conditions. It will not damage the backside coating of the battery, which can improve the anti-PID performance of the whole assembly
  • the solid content of the fluorocarbon coating liquid is preferably 55% to 63%.
  • the solid content of the fluorocarbon coating solution is limited to this range, which is beneficial to the uniform coating of the fluorocarbon layer on the surface of the substrate.
  • the fluorocarbon resin may be one or more of polyvinylidene fluoride, polyvinyl fluoride, polytetrafluoroethylene, polychlorotrifluoroethylene, and polyhexafluoropropylene.
  • the fluorocarbon resin utilizes the characteristics of high bond energy of fluorocarbon bonds, and can achieve the characteristics of weather resistance.
  • the fluorocarbon resin is a thermosetting resin.
  • the fluorocarbon resin was provided by Daikin Fluorochemical.
  • the UV absorber is a triazine type absorber.
  • UV absorber is provided by BASF.
  • the matting powder is silica particles.
  • silica particles are provided by Grace.
  • the added auxiliary is used to modify the fluorocarbon resin, and the added type is polyacrylate type.
  • the polyacrylate type described is mainly used to adjust the adhesive force after the weather resistance of the fluorocarbon coating.
  • the polyacrylate was supplied by BYK.
  • the adhesion promoting resin is a thermoplastic polyurethane resin with a low acid value, and the acid value is ⁇ 5mgKOH/g.
  • thermoplastic polyurethane Characterized by acid value, a thermoplastic polyurethane with an acid value lower than 5 is selected.
  • General organic UV absorbers include triazine or triazole, triazine is a nitrogen-containing six-membered ring, and triazole is a nitrogen-containing five-membered ring.
  • triazine is a nitrogen-containing six-membered ring
  • triazole is a nitrogen-containing five-membered ring.
  • the N lone pair of electrons of the six-membered ring is in the conjugated system and is relatively stable.
  • the N of the five-membered ring has a lone pair of electrons that do not participate in the conjugation, and the relative performance will be unstable.
  • triazine molecules are used. Moreover, the triazine molecules are stable under long-term moist heat conditions and are not easy to be consumed.
  • thermoplastic polyurethane resin is provided by Croda Chemical, and the low acid value can ensure that the carboxyl groups are decomposed as little as possible to form acidic molecules in a humid and hot environment.
  • the type of curing agent is of isocyanate type.
  • the isocyanate can be a trimer or polymer of toluene diisocyanate, a trimer or polymer of hexamethylene diisocyanate, and a trimer or polymer of isophorone diisocyanate.
  • isocyanate is provided by Bayer.
  • the fluorocarbon resin is selected from one or more of polyvinylidene fluoride, polyvinyl fluoride, polytetrafluoroethylene, polychlorotrifluoroethylene, and polyhexafluoropropylene, and the UV absorber is triazine Absorber, the matting powder is silicon dioxide; the adhesion promoter with low acid value is a thermoplastic polyurethane resin with low acid value, and the acid value is lower than 5; the additive is a polyacrylate additive, so Said isocyanate is selected from trimers or polymers of toluene diisocyanate, trimers or polymers of hexamethylene diisocyanate, or trimers or polymers of isophorone diisocyanate.
  • the organic solvent is selected from one or a combination of at least two of ethyl acetate, butyl acetate, butanone, or cyclohexanone.
  • the fluorocarbon coating liquid contains 63%-70% of fluorocarbon resin, 2-3% of UV absorber, 2%-2.7% of matting powder, 11%-15% of thermoplastic polyurethane resin, 0.3% ⁇ 0.5% polyacrylate, 14.6% ⁇ 16% isocyanate, control solid content at 55% ⁇ 63%.
  • the above technical solutions include Examples 4-6.
  • Limiting the formulation of fluorocarbon coatings within the above-mentioned preferred parameters can ensure that the coating has high resistance to damp heat aging, and can still maintain high strength after damp heat aging, and basically no acidic small molecules are precipitated under PID test conditions. Battery back plating.
  • the invention provides a fluorocarbon coating.
  • the fluorocarbon coating comprises 50%-80% of fluorocarbon resin, 1%-5% of triazine UV absorber, 1%-5% of Matting powder, 10% ⁇ 20% low acid value adhesion promoter, 0.3% ⁇ 0.8% additive, 5% ⁇ 20% isocyanate.
  • the low acid value adhesion promoter is a low acid value thermoplastic polyurethane resin, and the acid value is lower than 5.
  • the fluorocarbon resin is selected from one or more of polyvinylidene fluoride, polyvinyl fluoride, polytetrafluoroethylene, polychlorotrifluoroethylene, and polyhexafluoropropylene, and the UV absorber is triazine Absorber, the matting powder is silicon dioxide; the adhesion promoter with low acid value is a thermoplastic polyurethane resin with low acid value, and the acid value is less than 5mgKOH/g; the additive is a polyacrylate additive, Said isocyanate is selected from trimer or multimer of toluene diisocyanate, trimer or multimer of hexamethylene diisocyanate, and trimer or multimer of isophorone diisocyanate.
  • the present invention also provides a solar back sheet, which comprises a transparent fluorocarbon coating, a base material, a bonding adhesive layer (also called an adhesive layer, and a fluorine film layer (referred to as a fluorine film for short).
  • the transparent fluorocarbon coatings include fluorocarbon resins, UV absorbers, matting powders, polyacrylates, low acid value thermoplastic polyurethane resins, and isocyanates.
  • the substrate is a transparent substrate, and the material of the substrate layer is selected from polyethylene terephthalate (PET).
  • PET polyethylene terephthalate
  • the bonding adhesive layer is formed by an adhesive, and the adhesive is a polyester adhesive.
  • the fluorine film is a transparent PVF film or PVDF film.
  • the fluorocarbon coating material is first configured into a fluorocarbon coating solution, and the fluorocarbon coating solution contains 50% to 80% of fluorocarbon resin by weight, 1% ⁇ 5% triazine UV absorber, 1% ⁇ 5% matting powder, 10% ⁇ 20% low acid value adhesion promoter, 0.3% ⁇ 0.8% polyacrylate, 5% ⁇ 20% Isocyanate, the solid content is controlled at 50% to 70%.
  • the solar back sheet sequentially includes a transparent fluorocarbon coating, a substrate layer, an adhesive layer and a fluorine film layer.
  • the thickness of the transparent fluorocarbon coating is 10-20 ⁇ m; the thickness of the substrate layer is 250-300 ⁇ m, preferably 275-300 ⁇ m; the thickness of the adhesive layer is 6-10 ⁇ m; the thickness of the fluorine film layer is The thickness is 20 to 25 ⁇ m.
  • the thickness of the fluorocarbon coating is preferably 15-17 ⁇ m.
  • the transparent solar back sheet provided by the present invention can be used for the outermost back sheet encapsulation material of photovoltaic modules.
  • the transparent solar back sheet provided by the present invention will not release acidic molecules during the PID test process after the components are heat-sealed, thereby improving the anti-PID effect of the components.
  • the preparation method of the solar back sheet provided by the present invention comprises the following steps:
  • the temperature for drying the transparent fluorocarbon coating in a circulating oven is 150° C. and the time is 2 minutes.
  • drying temperature of the adhesive layer is 90° C. and the drying time is 2 minutes.
  • the aging reaction temperature was 50°C, and the time was 48 hours.
  • the base material is the model KP20 base material provided by Ningbo Qinbang.
  • the substrate is also referred to as a PET substrate.
  • the above-mentioned coating process, thermal curing process, and laminating process can be set according to the prior art.
  • the above preparation method further includes the step of configuring the raw material of the fluorocarbon coating into the fluorocarbon coating solution.
  • the fluorocarbon resin in the fluorocarbon coating solution provided by the present invention has an important influence on the wet heat aging property, and the added low-acid value thermoplastic polyurethane resin is helpful for the adhesion of the coating on the PET.
  • the acid value is very low, free carboxyl groups are not easily decomposed, and there is little corrosion to the back of the cell, which can improve the anti-PID effect of the overall module.
  • the inner layer material of the solar back sheet that is resistant to aging and meets the encapsulation strength can be realized.
  • the above fluorocarbon coating solution is cured into a fluorocarbon coating. During the PID test, the coating will not be significantly decomposed and damaged due to humid and hot conditions, and no free small molecules will be generated to damage the back coating of the cell.
  • the fluorocarbon coating provided by the present invention has a low acid value and is not prone to the decomposition of free carboxyl groups, and has little corrosion to the back of the cell, thereby improving the anti-PID effect of the overall assembly.
  • FIG. 1 is a schematic structural diagram of a solar back panel provided by the present invention.
  • the present invention provides a solar back sheet
  • the solar back sheet includes a transparent fluorocarbon coating layer 40 , a substrate layer 30 , a bonding adhesive layer 20 and a fluorine film layer 10 in order from top to bottom.
  • the preparation method of the solar back sheet film provided by the present invention comprises the following steps:
  • the temperature of the circulating oven drying of the fluorocarbon coating treatment is 150 ° C, and the time is 2 minutes;
  • the circulating oven temperature of the process adhesive drying is 90 °C, and the time is 2 minutes;
  • the aging treatment temperature in the process (3) was 50° C. and the time was 48 hours.
  • lamination parameters of the process (4) are suggested as temperature 145°C, vacuuming for 6 minutes, degassing for 30 seconds, lamination pressure 0.1MPa, lamination for 12 minutes.
  • the laminated EVA of choice is F806 supplied by Foster.
  • the selected base material is the model KP20 base material provided by Ningbo Qinbang.
  • the substrate is also referred to as a PET substrate.
  • the above preparation method further includes the step of configuring the raw material of the fluorocarbon coating layer into the fluorocarbon coating solution.
  • the fluorocarbon coating provided by the present invention carries out the following tests:
  • Adhesion of fluorocarbon coating According to the standard of GB 1720-1979 "Determination of Paint Film Adhesion", the adhesion of fluorocarbon coating to the substrate is tested, of which 100/100 means no peeling, 90/100 means peeling off 10%.
  • Encapsulation strength test According to the standard of GB/T 31034-2014 "Insulating Backplane for Crystalline Silicon Solar Cell Modules", the bonding strength of the inner transparent fluorocarbon coating and EVA is tested, using the 180° peel force test method.
  • QUV aging treatment According to the standard of GB/T 31034-2014 "Insulation Backplane for Crystalline Silicon Solar Cell Modules", it is treated with an ultraviolet aging lamp, and the accumulated ultraviolet energy reaches 120kwh/m2, and the sample is taken out to observe the appearance.
  • Reflectivity test is carried out according to the standard of GB/T 31034-2014 "Insulation Back Sheet for Crystalline Silicon Solar Cell Modules”.
  • Damp heat aging treatment According to the standard of GB/T 31034-2014 "Insulation Backplane for Crystalline Silicon Solar Cell Modules", set the temperature in the high temperature and high humidity box to 85°C, the humidity to be 85%, the accumulation time to be 2000h, take out the sample for observation Appearance and test package strength.
  • the module PID test was carried out in 78 1500V modules on 182mm silicon wafers according to the IEC62804 standard (Test method for the detection of potential-induced decay of photovoltaic modules).
  • the test conditions were 85° C., 85% humidity, and the power decay (power change data) was tested for 96h and 192h, respectively. The lower the power decay value, the better the anti-PID performance.
  • the PTFE type fluorocarbon resin is provided by Daikin Fluorochemical
  • the triazine UV absorber is provided by BASF
  • the matting powder is provided by Grace Co., Ltd.
  • the polyacrylate is provided by BYK
  • the thermoplastic polyurethane is provided by Croda Chemical provided
  • isocyanate provided by Bayer
  • organic solvent was butyl acetate.
  • the coating was applied on transparent PET (275 ⁇ m thick) with a coating thickness of 14 ⁇ m.
  • the PTFE type fluorocarbon resin is provided by Daikin Fluorochemical
  • the triazine UV absorber is provided by BASF
  • the matting powder is provided by Grace Co., Ltd.
  • the polyacrylate is provided by BYK
  • the thermoplastic polyurethane is provided by Croda Chemical provided
  • isocyanate provided by Bayer
  • organic solvent was butyl acetate.
  • the coating was applied on transparent PET (250 ⁇ m thick) with a coating thickness of 13 ⁇ m.
  • polytetrafluoroethylene type fluorocarbon resin is provided by Daikin Fluorochemical
  • triazine UV absorber is provided by BASF
  • matting powder is provided by Grace Co., Ltd.
  • polyacrylate is provided by BYK
  • thermoplastic polyurethane is provided by Croda Chemical provided
  • isocyanate provided by Bayer
  • organic solvent was butyl acetate.
  • the coating was applied on transparent PET (250 ⁇ m thick) with a coating thickness of 10 ⁇ m.
  • the PTFE type fluorocarbon resin is provided by Daikin Fluorochemical
  • the triazine UV absorber is provided by BASF
  • the matting powder is provided by Grace Co., Ltd.
  • the polyacrylate is provided by BYK
  • the thermoplastic polyurethane is provided by Croda Chemical provided
  • isocyanate provided by Bayer
  • organic solvent was butyl acetate.
  • the coating was applied on transparent PET (275 ⁇ m thick) with a coating thickness of 15 ⁇ m.
  • the PTFE type fluorocarbon resin is provided by Daikin Fluorochemical
  • the triazine UV absorber is provided by BASF
  • the matting powder is provided by Grace Co., Ltd.
  • the polyacrylate is provided by BYK
  • the thermoplastic polyurethane is provided by Croda Chemical provided
  • isocyanate provided by Bayer
  • organic solvent was butyl acetate.
  • the coating was applied on transparent PET (275 ⁇ m thick) with a coating thickness of 16 ⁇ m.
  • polytetrafluoroethylene type fluorocarbon resin 63% polytetrafluoroethylene type fluorocarbon resin, 3% triazine type UV absorber, 2.7% matting powder, 0.3% polyacrylate additive, 15% low acid value thermoplastic polyurethane (acid value ⁇ 5mgKOH/ g), 16% isocyanate.
  • the host resin was dispersed in an organic solvent to form a fluorocarbon coating liquid with a solid content of 63%.
  • the PTFE type fluorocarbon resin is provided by Daikin Fluorochemical
  • the triazine UV absorber is provided by BASF
  • the matting powder is provided by Grace Co., Ltd.
  • the polyacrylate is provided by BYK
  • the thermoplastic polyurethane is provided by Croda Chemical provided
  • isocyanate provided by Bayer
  • organic solvent was butyl acetate.
  • the coating was applied on transparent PET (300 ⁇ m thick) with a coating thickness of 17 ⁇ m.
  • polytetrafluoroethylene type fluorocarbon resin 58% polytetrafluoroethylene type fluorocarbon resin, 2% triazine UV absorber, 5% matting powder, 0.6% polyacrylate additive, 16.4% low acid value thermoplastic polyurethane (acid value ⁇ 5mgKOH/ g), 18% isocyanate.
  • the host resin was dispersed in an organic solvent to form a fluorocarbon coating liquid with a solid content of 58%.
  • polytetrafluoroethylene type fluorocarbon resin is provided by Daikin Fluorochemical
  • triazine UV absorber is provided by BASF
  • matting powder is provided by Grace Co., Ltd.
  • polyacrylate is provided by BYK
  • thermoplastic polyurethane is provided by Croda Chemical provided
  • isocyanate provided by Bayer
  • organic solvent was butyl acetate.
  • the coating was applied on transparent PET (275 ⁇ m thick) with a coating thickness of 19 ⁇ m.
  • the PTFE type fluorocarbon resin is provided by Daikin Fluorochemical
  • the triazine UV absorber is provided by BASF
  • the matting powder is provided by Grace Co., Ltd.
  • the polyacrylate is provided by BYK
  • the thermoplastic polyurethane is provided by Croda Chemical provided
  • isocyanate provided by Bayer
  • organic solvent was butyl acetate.
  • the coating was applied on transparent PET (300 ⁇ m thick) with a coating thickness of 25 ⁇ m.
  • PTFE type fluorocarbon resin 55% PTFE type fluorocarbon resin, 4% triazine UV absorber, 4% matting powder, 0.8% polyacrylate additive, 18% low acid value thermoplastic polyurethane (acid value ⁇ 5mgKOH/ g), 18.2% isocyanate.
  • the host resin was dispersed in an organic solvent to form a fluorocarbon coating liquid with a solid content of 67%.
  • polytetrafluoroethylene type fluorocarbon resin is provided by Daikin Fluorochemical
  • triazine UV absorber is provided by BASF
  • matting powder is provided by Grace Co., Ltd.
  • polyacrylate is provided by BYK
  • thermoplastic polyurethane is provided by Croda Chemical provided
  • isocyanate provided by Bayer
  • organic solvent was butyl acetate.
  • the coating was applied on transparent PET (300 ⁇ m thick) with a coating thickness of 22 ⁇ m.
  • the preparation method of the fluorocarbon coating solution provided in this comparative example includes:
  • polytetrafluoroethylene type fluorocarbon resin 66% polytetrafluoroethylene type fluorocarbon resin, 2.5% triazine UV absorber, 2.5% matting powder, 0.5% polyacrylate additive, 13% high acid value thermoplastic polyurethane, the acid value is 20 ⁇ 30 mgKOH/g, 15.5% isocyanate.
  • the host resin is dispersed in an organic solvent to form a fluorocarbon coating liquid with a solid content of 60%.
  • the PTFE type fluorocarbon resin is provided by Daikin Fluorochemical
  • the triazine UV absorber is provided by BASF
  • the matting powder is provided by Grace Co., Ltd.
  • the polyacrylate is provided by BYK
  • the thermoplastic polyurethane is provided by Croda Chemical provided
  • isocyanate provided by Bayer
  • organic solvent was butyl acetate.
  • the coating was applied on transparent PET (275 ⁇ m thick) with a coating thickness of 16 ⁇ m.
  • the preparation method of the fluorocarbon coating solution provided in this comparative example includes:
  • polytetrafluoroethylene type fluorocarbon resin 66% of polytetrafluoroethylene type fluorocarbon resin, 2.5% of triazine type UV absorber, 2.5% of matting powder, 0.5% of polyacrylate additive, 13% of thermoplastic polyurethane with medium acid value, the acid value is 10 ⁇ 15 mgKOH/g, 15.5% isocyanate.
  • the host resin was dispersed in an organic solvent to form a fluorocarbon coating liquid with a solid content of 60%.
  • polytetrafluoroethylene type fluorocarbon resin is provided by Daikin Fluorochemical
  • triazine UV absorber is provided by BASF
  • matting powder is provided by Grace Co., Ltd.
  • polyacrylate is provided by BYK
  • thermoplastic polyurethane is provided by Croda Chemical provided
  • isocyanate provided by Bayer
  • organic solvent was butyl acetate.
  • the coating was applied on transparent PET (275 ⁇ m thick) with a coating thickness of 16 ⁇ m.
  • the preparation method of the fluorocarbon coating solution provided in this comparative example includes:
  • polytetrafluoroethylene type fluorocarbon resin 54% polytetrafluoroethylene type fluorocarbon resin, 2.5% triazine UV absorber, 2.5% matting powder, 0.5% polyacrylate additive, 30% low acid value thermoplastic polyurethane, acid value ⁇ 5mgKOH/ g, 10.5% isocyanate.
  • the host resin was dispersed in an organic solvent to form a fluorocarbon coating liquid with a solid content of 60%.
  • polytetrafluoroethylene type fluorocarbon resin is provided by Daikin Fluorochemical
  • triazine UV absorber is provided by BASF
  • matting powder is provided by Grace Co., Ltd.
  • polyacrylate is provided by BYK
  • thermoplastic polyurethane is provided by Croda Chemical provided
  • isocyanate provided by Bayer
  • organic solvent was butyl acetate.
  • the coating was applied on transparent PET (275 ⁇ m thick) with a coating thickness of 16 ⁇ m.
  • the low acid value thermoplastic polyurethane content in this comparative example is too high.
  • the fluorine film (fluorocarbon coating+substrate) in Examples 1 to 9 and Comparative Examples 1 to 3 is subjected to the following tests: According to the standard of GB 1720-1979 "Determination of Paint Film Adhesion", test the fluorine film ( The adhesion of the fluorocarbon coating to the substrate in the fluorocarbon coating + substrate), where 100/100 means no film release, and 90/100 means 10% peeling. According to the standard of JISK7105-1981 "Test method for optical properties of plastics", the total light transmittance of each fluorine film (fluorocarbon coating + substrate) was tested.
  • the encapsulation strength, damp-heat aging resistance and QUV change of the fluorocarbon coating were tested.
  • the module PID test is carried out in a 1500V module with 78 pieces of 182mm silicon wafers according to the IEC62804 standard. The test conditions are 85°C, 85% humidity, and the power attenuation data of 96h and 192h are tested respectively.
  • the transparent fluorocarbon coating of the solar back sheet provided by the present invention can ensure the encapsulation strength, damp-heat aging characteristics, UV resistance characteristics and component PID resistance characteristics at the same time.
  • the fluorocarbon coatings provided in Examples 4, 5, and 6 have the best performance, the fluorocarbon coatings do not fall off, the transmittance exceeds 88%, and the initial encapsulation strength is at least 90N/cm.
  • the QUV test of 120kwh/m2 There is no obvious change in appearance, and the packaging strength is at least 60N/cm after high humidity and heat aging test.
  • PID 96 hours the power attenuation of the test modules is lower than 1.1%, and after PID 192 hours, the power attenuation of the test modules is lower than 3.3%.

Abstract

一种氟碳涂布液及由该氟碳涂布液形成的氟碳涂层,按照重量百分比计包含50%~80%的氟碳树脂,1%~5%的三嗪类UV吸收剂,1%~5%的消光粉,10%~20%的低酸值附着力促进剂,0.3%~0.8%的添加剂,5%~20%的异氰酸酯。一种太阳能背板,包括透明氟碳涂层(40),聚对苯二甲基乙二醇酯基材层(30),贴合胶层(20)以及氟膜层(10)。

Description

一种氟碳涂布液及一种氟碳涂层、及一种太阳能背板 技术领域
本发明涉及太阳能背板技术领域,具体而言,涉及一种氟碳涂布液及一种氟碳涂层、及一种太阳能背板。该氟碳涂层具有抗PID的性能。
背景技术
在光伏组件中,PID测试是一项考验组件长期实际使用性能的重要指标。影响PID的最关键因素是电池片表面的处理。一般情况下,双面电池片的背面处理工艺不同,有的是氮化硅一层蒸镀,有的是氮化硅和氧化铝两层蒸镀。针对不同的电池片,会有不同的抗PID性能。作为配套关键的辅材透明背板,在这项性能上也起到了一定的作用。传统的PID失效原理包括离子迁移、酸分子迁移或者水汽迁移,所以背板内层材料的各种小分子物质是对PID性能具有深远影响的。
一般透明氟碳中使用的酸性小分子、离子型小分子,都是容易对电池片背面侵蚀的。
发明内容
为了改善潜在的光伏组件在使用过程中光电转换功率衰减的问题,本发明提供一种氟碳涂布液及一种氟碳涂层、及一种太阳能背板。该氟碳涂层使光伏电池在使用过程中的功率衰减变慢,具有抗PID的效果。
我们重点围绕低酸值的聚合物组分,来配置新型的组件抗PID涂层。以解决透明组件的PID效果,避免涂层对电池片的损坏。需
本发明提供的氟碳涂层是无析出类型的透明涂层。
本发明提供一种氟碳涂布液,所述氟碳涂布液按照重量百分比计包含50%~80%的氟碳树脂,1%~5%的三嗪类UV吸收剂,1%~5%的消光粉,10%~20%的低酸值附着力促进剂,0.3%~0.8%的添加剂,5%~20%的异氰酸酯。
进一步的,所述氟碳涂布液还包括有机溶剂,所述氟碳涂布液的固含量 为50%~70%。
所述氟碳涂布液又称为氟碳涂料。
将氟碳涂布液的配比限定在上述范围内,对熟化完成后在透明层上的附着力优异,并且满足封装强度要求,同时因为无小分子酸性组分,在湿热条件下测试PID性能不会破坏电池背面涂层,进而可以提升整体组件的抗PID性能
进一步的,所述氟碳涂布液的固含量优选为55%~63%。
将上述氟碳涂布液固含量限定在该范围,有利于氟碳层均匀的涂布在基材表面。
进一步的,所述氟碳树脂可以是聚偏氟乙烯、聚氟乙烯、聚四氟乙烯、聚三氟氯乙烯、聚六氟丙烯中的一种或多种。
所述氟碳树脂利用氟碳键高键能的特点,可以实现耐候性的特点。
进一步的,所述氟碳树脂是热固化型树脂。
所述氟碳树脂由大金氟化工提供。
进一步的,所述的UV吸收剂是三嗪类型的吸收剂。
进一步的,所述UV吸收剂是巴斯夫公司提供的。
进一步的,所述的消光粉是二氧化硅粒子。
进一步的,所述二氧化硅粒子是格雷斯提供的。
进一步的,添加的助剂是用于改性氟碳树脂的,添加类型是聚丙烯酸酯类型的。
所述的聚丙烯酸酯类型主要用于调控氟碳涂料的耐候性后的粘接力。
所述聚丙烯酸酯是毕克化学提供的。
进一步的,所述的附着力促进树脂是低酸值的热塑性聚氨酯树脂,酸值<5mgKOH/g。
PID测试导致光伏组件的光电转换功率下降是由于电池片的背面镀有氮化硅层,这种镀层特别怕酸性物质破坏,低酸值的分子反应后残留的羧基量 足够少,在湿热条件下不容易被破坏释放出酸性分子。热塑性聚氨酯有很多类型,羧基量波动是最大的,要选择低羧基含量的热塑性聚氨酯。以酸值表征,选择酸值低于5的热塑性聚氨酯。
一般有机UV吸收剂包括了三嗪类或者三唑类,三嗪类是含氮的六元环,三唑是含氮的五元环。在分子体系中,六元环的N孤对电子是在共轭体系中的,相对稳定。五元环的N是有一对孤对电子不参与共轭的,相对表现会不稳定。在本发明提供的氟碳涂布液体系中选有机的UV吸收剂就要用三嗪类的分子。且,长期湿热条件下三嗪类分子稳定,不易消耗。
所述的热塑性聚氨酯树脂是禾大化学提供的,低酸值可以确保在湿热环境下尽量少的羧基分解形成酸性分子。
进一步的,所述的固化剂种类是异氰酸酯类型的。
进一步的,所述的异氰酸酯可以是甲苯二异氰酸酯三聚体或多聚体,六亚甲基二异氰酸酯三聚体或多聚体,异氟尔酮二异氰酸酯三聚体或多聚体。
进一步的,所述的异氰酸酯是拜耳公司提供的。
进一步的,所述氟碳树脂选自聚偏氟乙烯、聚氟乙烯、聚四氟乙烯、聚三氟氯乙烯、聚六氟丙烯中的一种或多种,所述UV吸收剂为三嗪类吸收剂,所述消光粉为二氧化硅;所述低酸值附着力促进剂是低酸值的热塑性聚氨酯树脂,酸值低于5;所述的添加剂是聚丙烯酸酯类助剂,所述的异氰酸酯选自甲苯二异氰酸酯三聚体或多聚体,六亚甲基二异氰酸酯三聚体或多聚体,或异氟尔酮二异氰酸酯三聚体或多聚体。
所述有机溶剂选自乙酸乙酯,乙酸丁酯,丁酮,或环己酮中的一种或至少两种的组合。
进一步的,所述氟碳涂布液包含63%~70%的氟碳树脂,2~3%的UV吸收剂,2%~2.7%消光粉,11%~15%的热塑性聚氨酯树脂,0.3%~0.5%的聚丙烯酸酯,14.6%~16%的异氰酸酯,控制固含量在55%~63%。上述技术方案包括实施例4-6。
将氟碳涂料配方限定在上述优选参数范围内,可以保证该涂层具有高耐湿热老化性,并且在湿热老化后依旧可以保持高强度,而且在PID测试条件下基本无酸性小分子析出,破坏电池背面镀层。
本发明提供一种氟碳涂层,所述氟碳涂层按照重量百分比计包含50%~80%的氟碳树脂,1%~5%的三嗪类UV吸收剂,1%~5%的消光粉,10%~20%的低酸值附着力促进剂,0.3%~0.8%的添加剂,5%~20%的异氰酸酯。
进一步的,所述低酸值附着力促进剂是低酸值的热塑性聚氨酯树脂,酸值低于5。
进一步的,所述氟碳树脂选自聚偏氟乙烯、聚氟乙烯、聚四氟乙烯、聚三氟氯乙烯、聚六氟丙烯中的一种或多种,所述UV吸收剂为三嗪类吸收剂,所述消光粉为二氧化硅;所述低酸值附着力促进剂是低酸值的热塑性聚氨酯树脂,酸值<5mgKOH/g;所述的添加剂是聚丙烯酸酯类助剂,所述的异氰酸酯选自甲苯二异氰酸酯三聚体或多聚体,六亚甲基二异氰酸酯三聚体或多聚体,异氟尔酮二异氰酸酯三聚体或多聚体。
本发明还提供一种太阳能背板,所述太阳能背板包括透明氟碳涂层,基材,贴合胶层(也称为胶黏剂层,氟膜层(简称为氟膜)。所述的透明氟碳涂层包括氟碳树脂、UV吸收剂、消光粉、聚丙烯酸酯、低酸值热塑性聚氨酯树脂、和异氰酸酯。
进一步的,所述基材为透明的基材,所述基材层的材料选自聚对苯二甲基乙二醇酯(PET)。
进一步的,所述的贴合胶层由胶黏剂形成,所述胶黏剂是聚酯型胶黏剂。
进一步的,所述的氟膜是透明的PVF膜或PVDF膜。
进一步的,在制备过程中,所述的氟碳涂层材料先配置成氟碳涂布液,所述氟碳涂布液按照重量百分比计包含按照50%~80%的氟碳树脂,1%~5%的三嗪类UV吸收剂,1%~5%的消光粉,10%~20%的低酸值附着力促进剂,0.3%~0.8%的聚丙烯酸酯,5%~20%的异氰酸酯,控制固含量在50%~70%。
进一步的,所述太阳能背板依次包括透明氟碳涂层、基材层、胶黏剂层和氟膜层。
进一步的,透明氟碳涂层厚度为10~20μm;所述基材层厚度为250~300μm,优选为275-300μm;所述的胶黏剂层厚度为6~10μm;所述的氟膜层厚度为20~25μm。
进一步的,所述氟碳涂层的厚度优选为15~17μm。
本发明提供的透明太阳能背板可用于光伏组件的最外层背板封装材料。
本发明提供的透明太阳能背板在组件热封后进行PID测试过程中不会释放出酸性分子,进而提升组件的抗PID效果。
本发明提供的太阳能背板的制备方法包括以下步骤:
先将透明氟碳涂布液涂布在基材表面,放置在循环烘箱热固化处理,形成透明氟碳涂层;然后在基材另一面涂布胶黏剂层,放置在循环烘箱中干燥,贴合氟膜层;最后做一次熟化反应。
进一步的,透明氟碳涂层循环烘箱干燥的温度为150℃,时间为2分钟。
进一步的,贴合胶层的干燥温度为90℃,时间为2分钟。
进一步的,熟化反应温度为50℃,时间为48小时。
进一步的,基材为宁波勤邦提供的型号KP20基材。所述基材又称为PET基材。
上述涂布工艺、热熟化工艺、贴合工艺,可以根据现有技术进行设定。
在将氟碳涂布液涂布在基材表面之前,上述制备方法还包括将氟碳涂料的原料配置成氟碳涂布液的步骤。
本发明提供的氟碳涂布液中的氟碳树脂对湿热老化性有重要影响,添加的低酸值热塑性聚氨酯树脂对涂层在PET的附着力有帮助。在PID测试过程中,因为酸值很低,不易发生游离的羧基分解,对电池片背面腐蚀很少,进而可以提升整体组件的抗PID效果。
本发明提供的氟碳涂层实现了如下技术效果:
1.将上述氟碳涂布液固化成氟碳涂层后,可以实现耐老化、满足封装强度的太阳能背板内层材料。
2.将上述氟碳涂布液固化成氟碳涂层,在PID测试过程中,涂层不会因为湿热条件发生明显的分解和破坏,没有游离的小分子产生破坏电池片背面镀层。
本发明提供的氟碳涂层在PID测试过程中,因为酸值很低,不易发生游离的羧基分解,对电池片背面腐蚀很少,进而可以提升整体组件的抗PID效果。
附图说明
图1为本发明提供的太阳能背板的结构示意图。
具体实施方式
为了更易理解本发明的结构及所能达成的功能特征和优点,下文将本发明的较佳的实施例,并配合图式做详细说明如下:
如图1所述,本发明提供一种太阳能背板,所述太阳能背板自上而下依次包括透明氟碳涂层40,基材层30,贴合胶层20和氟膜层10。
本发明提供的太阳能背板膜的制备方法包括以下步骤:
(1)将透明氟碳涂布液涂布在基材表面,放置在循环烘箱固化处理,形成透明氟碳涂层;(2)将涂过氟碳涂层的半成品基材另一面涂布胶粘层,胶粘层放置在循环烘箱干燥处理,再复合氟膜层;(3)将太阳能背板成品熟化反应;(4)将太阳能背板的透明氟碳涂层与EVA层压制备模拟测试封装强度。
进一步的,(1)过程中氟碳涂层处理的循环烘箱干燥的温度为150℃,时间为2分钟;
进一步的,(2)过程胶黏剂干燥的循环烘箱温度为90℃,时间为2分钟;
进一步的,(3)过程的熟化处理温度为50℃,时间为48小时。
进一步的,(4)过程的层压参数建议为温度145℃,抽真空6分钟,放气 30秒,层压压力0.1MPa,层压12分钟。
进一步的,选择的层压EVA是福斯特提供的F806。
进一步的,选择的基材为宁波勤邦提供的型号KP20基材。所述基材又称为PET基材。
在将氟碳层涂布液涂布在基材表面之前,上述制备方法还包括将氟碳涂层的原料配置成氟碳涂布液的步骤。
本发明提供的氟碳涂层进行下述测试:
氟碳涂层的附着力:按照GB 1720-1979《漆膜附着力测定法》的标准,测试氟碳涂层对基材的附着力,其中100/100代表不脱膜,90/100代表脱落10%。
封装强度测试:按照GB/T 31034-2014《晶体硅太阳能电池组件用绝缘背板》的标准,测试内层透明氟碳涂层与EVA的粘接强度,采用180°剥离力测试方法进行。
QUV老化处理:按照GB/T 31034-2014《晶体硅太阳能电池组件用绝缘背板》的标准,用紫外老化灯处理,累积紫外能量达到120kwh/㎡,取出样品观察外观。
反射率:按照GB/T 31034-2014《晶体硅太阳能电池组件用绝缘背板》的标准进行反射率测试。
湿热老化处理:按照GB/T 31034-2014《晶体硅太阳能电池组件用绝缘背板》的标准,在高温高湿箱体设置温度为85℃,湿度为85%,累积时间为2000h,取出样品观察外观并测试封装强度。
组件PID测试根据IEC62804标准(光伏模块检测电位诱导衰减的试验方法),在182mm硅片78片1500V组件中进行。测试条件为85℃,85%湿度,分别测试96h和192h的功率衰减(功率变更数据)。功率衰减值越低,抗PID性能越好。
下面将结合实施例进一步说明本发明提供的氟碳涂布液和氟碳涂层。
实施例1
本实施例提供的氟碳涂布液制备方法包括:
将73%的聚四氟乙烯类型氟碳树脂,5%的三嗪类UV吸收剂,3%的消光粉,0.5%聚丙烯酸酯添加剂,10%的低酸值热塑性聚氨酯(酸值<5mgKOH/g),8.5%的异氰酸酯。将前述原料分散在有机溶剂中,形成固含量50%的氟碳涂布液。其中聚四氟乙烯类型氟碳树脂由大金氟化工提供,三嗪类UV吸收剂由巴斯夫公司提供,消光粉由格雷斯有限公司提供,聚丙烯酸酯由毕克化学提供,热塑性聚氨酯由禾大化学提供的,异氰酸酯由拜耳公司提供,有机溶剂为乙酸丁酯。
将涂层涂在透明PET(厚度为275μm)上,涂层厚度为14μm。
制得的氟碳涂层的性能测试结果见表1。
实施例2
本实施例提供的氟碳涂布液制备方法包括:
将75%的聚四氟乙烯类型氟碳树脂,2%的三嗪类UV吸收剂,1%的消光粉,0.3%聚丙烯酸酯添加剂,16.7%的低酸值热塑性聚氨酯(酸值<5mgKOH/g),5%的异氰酸酯。将主体树脂分散在有机溶剂中,形成固含量70%的氟碳涂布液。其中聚四氟乙烯类型氟碳树脂由大金氟化工提供,三嗪类UV吸收剂由巴斯夫公司提供,消光粉由格雷斯有限公司提供,聚丙烯酸酯由毕克化学提供,热塑性聚氨酯由禾大化学提供的,异氰酸酯由拜耳公司提供,有机溶剂为乙酸丁酯。
将涂层涂在透明PET(厚度为250μm)上,涂层厚度为13μm。
制得的氟碳涂层的性能测试结果见表1。
实施例3
本实施例提供的氟碳涂布液制备方法包括:
将80%的聚四氟乙烯类型氟碳树脂,1%的三嗪类UV吸收剂,2%的消光粉,0.4%聚丙烯酸酯添加剂,10%的低酸值热塑性聚氨酯(酸值<5 mgKOH/g),6.6%的异氰酸酯。将主体树脂分散在有机溶剂中,形成固含量65%的氟碳涂布液。其中聚四氟乙烯类型氟碳树脂由大金氟化工提供,三嗪类UV吸收剂由巴斯夫公司提供,消光粉由格雷斯有限公司提供,聚丙烯酸酯由毕克化学提供,热塑性聚氨酯由禾大化学提供的,异氰酸酯由拜耳公司提供,有机溶剂为乙酸丁酯。
将涂层涂在透明PET上(厚度为250μm),涂层厚度为10μm。
制得的氟碳涂层的性能测试结果见表1。
实施例4
本实施例提供的氟碳涂布液制备方法包括:
将70%的聚四氟乙烯类型氟碳树脂,2%的三嗪类UV吸收剂,2%的消光粉,0.4%聚丙烯酸酯添加剂,11%的低酸值热塑性聚氨酯(酸值<5mgKOH/g),14.6%的异氰酸酯。将主体树脂分散在有机溶剂中,形成固含量55%的氟碳涂布液。其中聚四氟乙烯类型氟碳树脂由大金氟化工提供,三嗪类UV吸收剂由巴斯夫公司提供,消光粉由格雷斯有限公司提供,聚丙烯酸酯由毕克化学提供,热塑性聚氨酯由禾大化学提供的,异氰酸酯由拜耳公司提供,有机溶剂为乙酸丁酯。
将涂层涂在透明PET上(厚度为275μm),涂层厚度为15μm。
制得的氟碳涂层的性能测试结果见表1。
实施例5
本实施例提供的氟碳涂布液制备方法包括:
将66%的聚四氟乙烯类型氟碳树脂,2.5%的三嗪类UV吸收剂,2.5%的消光粉,0.5%聚丙烯酸酯添加剂,13%的低酸值热塑性聚氨酯(酸值<5mgKOH/g),15.5%的异氰酸酯。将主体树脂分散在有机溶剂中,形成固含量60%的氟碳涂布液。其中聚四氟乙烯类型氟碳树脂由大金氟化工提供,三嗪类UV吸收剂由巴斯夫公司提供,消光粉由格雷斯有限公司提供,聚丙烯酸酯由毕克化学提供,热塑性聚氨酯由禾大化学提供的,异氰酸酯由拜耳公司提供, 有机溶剂为乙酸丁酯。
将涂层涂在透明PET(厚度为275μm)上,涂层厚度为16μm。
制得的氟碳涂层的性能测试结果见表1。
实施例6
本实施例提供的氟碳涂布液制备方法包括:
将63%的聚四氟乙烯类型氟碳树脂,3%的三嗪类UV吸收剂,2.7%的消光粉,0.3%聚丙烯酸酯添加剂,15%的低酸值热塑性聚氨酯(酸值<5mgKOH/g),16%的异氰酸酯。将主体树脂分散在有机溶剂中,形成固含量63%的氟碳涂布液。其中聚四氟乙烯类型氟碳树脂由大金氟化工提供,三嗪类UV吸收剂由巴斯夫公司提供,消光粉由格雷斯有限公司提供,聚丙烯酸酯由毕克化学提供,热塑性聚氨酯由禾大化学提供的,异氰酸酯由拜耳公司提供,有机溶剂为乙酸丁酯。
将涂层涂在透明PET(厚度为300μm)上,涂层厚度为17μm。
制得的氟碳涂层的性能测试结果见表1。
实施例7
本实施例提供的氟碳涂布液制备方法包括:
将58%的聚四氟乙烯类型氟碳树脂,2%的三嗪类UV吸收剂,5%的消光粉,0.6%聚丙烯酸酯添加剂,16.4%的低酸值热塑性聚氨酯(酸值<5mgKOH/g),18%的异氰酸酯。将主体树脂分散在有机溶剂中,形成固含量58%的氟碳涂布液。其中聚四氟乙烯类型氟碳树脂由大金氟化工提供,三嗪类UV吸收剂由巴斯夫公司提供,消光粉由格雷斯有限公司提供,聚丙烯酸酯由毕克化学提供,热塑性聚氨酯由禾大化学提供的,异氰酸酯由拜耳公司提供,有机溶剂为乙酸丁酯。
将涂层涂在透明PET(厚度为275μm)上,涂层厚度为19μm。
制得的氟碳涂层的性能测试结果见表1。
实施例8
本实施例提供的氟碳涂布液制备方法包括:
将50%的聚四氟乙烯类型氟碳树脂,4.3%的三嗪类UV吸收剂,5%的消光粉,0.7%聚丙烯酸酯添加剂,20%的低酸值热塑性聚氨酯(酸值<5mgKOH/g),20%的异氰酸酯。将主体树脂分散在有机溶剂中,形成固含量52%的氟碳涂布液。其中聚四氟乙烯类型氟碳树脂由大金氟化工提供,三嗪类UV吸收剂由巴斯夫公司提供,消光粉由格雷斯有限公司提供,聚丙烯酸酯由毕克化学提供,热塑性聚氨酯由禾大化学提供的,异氰酸酯由拜耳公司提供,有机溶剂为乙酸丁酯。
将涂层涂在透明PET(厚度为300μm)上,涂层厚度为25μm。
制得的氟碳涂层的性能测试结果见表1。
实施例9
本实施例提供的氟碳涂布液制备方法包括:
将55%的聚四氟乙烯类型氟碳树脂,4%的三嗪类UV吸收剂,4%的消光粉,0.8%聚丙烯酸酯添加剂,18%的低酸值热塑性聚氨酯(酸值<5mgKOH/g),18.2%的异氰酸酯。将主体树脂分散在有机溶剂中,形成固含量67%的氟碳涂布液。其中聚四氟乙烯类型氟碳树脂由大金氟化工提供,三嗪类UV吸收剂由巴斯夫公司提供,消光粉由格雷斯有限公司提供,聚丙烯酸酯由毕克化学提供,热塑性聚氨酯由禾大化学提供的,异氰酸酯由拜耳公司提供,有机溶剂为乙酸丁酯。
将涂层涂在透明PET(厚度为300μm)上,涂层厚度为22μm。
制得的氟碳涂层的性能测试结果见表1。
对比例1
本对比例提供的氟碳涂布液制备方法包括:
将66%的聚四氟乙烯类型氟碳树脂,2.5%的三嗪类UV吸收剂,2.5%的消光粉,0.5%聚丙烯酸酯添加剂,13%的高酸值热塑性聚氨酯,酸值在20~30mgKOH/g,15.5%的异氰酸酯。将主体树脂分散在有机溶剂中,形成固含量 60%的氟碳涂布液。其中聚四氟乙烯类型氟碳树脂由大金氟化工提供,三嗪类UV吸收剂由巴斯夫公司提供,消光粉由格雷斯有限公司提供,聚丙烯酸酯由毕克化学提供,热塑性聚氨酯由禾大化学提供的,异氰酸酯由拜耳公司提供,有机溶剂为乙酸丁酯。
将涂层涂在透明PET(厚度为275μm)上,涂层厚度为16μm。
制得的氟碳涂层的性能测试结果见表1。
对比例2
本对比例提供的氟碳涂布液制备方法包括:
将66%的聚四氟乙烯类型氟碳树脂,2.5%的三嗪类UV吸收剂,2.5%的消光粉,0.5%聚丙烯酸酯添加剂,13%的中酸值热塑性聚氨酯,酸值在10~15mgKOH/g,15.5%的异氰酸酯。将主体树脂分散在有机溶剂中,形成固含量60%的氟碳涂布液。其中聚四氟乙烯类型氟碳树脂由大金氟化工提供,三嗪类UV吸收剂由巴斯夫公司提供,消光粉由格雷斯有限公司提供,聚丙烯酸酯由毕克化学提供,热塑性聚氨酯由禾大化学提供的,异氰酸酯由拜耳公司提供,有机溶剂为乙酸丁酯。
将涂层涂在透明PET(厚度为275μm)上,涂层厚度为16μm。
制得的氟碳涂层的性能测试结果见表1。
对比例3
本对比例提供的氟碳涂布液制备方法包括:
将54%的聚四氟乙烯类型氟碳树脂,2.5%的三嗪类UV吸收剂,2.5%的消光粉,0.5%聚丙烯酸酯添加剂,30%的低酸值热塑性聚氨酯,酸值<5mgKOH/g,10.5%的异氰酸酯。将主体树脂分散在有机溶剂中,形成固含量60%的氟碳涂布液。其中聚四氟乙烯类型氟碳树脂由大金氟化工提供,三嗪类UV吸收剂由巴斯夫公司提供,消光粉由格雷斯有限公司提供,聚丙烯酸酯由毕克化学提供,热塑性聚氨酯由禾大化学提供的,异氰酸酯由拜耳公司提供,有机溶剂为乙酸丁酯。
将涂层涂在透明PET(厚度为275μm)上,涂层厚度为16μm。
本对比例中的低酸值热塑性聚氨酯含量过高。
制得的氟碳涂层的性能测试结果见表1。
将实施例1至9和对比例1至3中的氟膜(氟碳涂层+基材)进行下述测试:按照GB 1720-1979《漆膜附着力测定法》的标准,测试氟膜(氟碳涂层+基材)中氟碳涂层对基材的附着力,其中100/100代表不脱膜,90/100代表脱落10%。按照JISK7105-1981《塑料光学性能的测试方法》的标准,测试各氟膜(氟碳涂层+基材)的全光线透过率。按照GB/T 31034-2014《晶体硅太阳能电池组件用绝缘背板》的标准,测试氟碳涂层的封装强度、耐湿热老化特性以及QUV变化。组件PID测试根据IEC62804标准,在182mm硅片78片的1500V组件中进行。测试条件为85℃,85%湿度,分别测试96h和192h的功率衰减数据。
表1实施例1至9和对比例1至3中的氟膜(氟碳涂层+基材)测试结果
Figure PCTCN2021074405-appb-000001
Figure PCTCN2021074405-appb-000002
从表1中可以看到,当添加的聚氨酯树脂酸值较高的时候,会直接在PID测试过程中出现明显的组件功率衰减现象。这是因为酸值高的分子,在湿热条件下可能发生明显的羧基分解现象,这种游离的羧基会在电场作用下发生位移,移动到电池片背面,进而在水汽作用下破坏电池片或者金属焊带上的镀层,最终影响组件的整体功率输出。
本发明提供的太阳能背板的透明氟碳涂层,同时可以保证封装强度、湿热老化特性、耐UV特性和组件抗PID特性。其中,实施例4、5、6提供的氟碳涂层的性能最好,氟碳涂层不脱落,透过率超过88%,初始封装强度至少有90N/cm,在QUV测试120kwh/㎡后均无明显外观变化,经历高湿热老化测试封装强度至少有60N/cm。在PID96小时后测试组件功率衰减均低于1.1%,在PID192小时后测试组件功率衰减均低于3.3%。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡是根据本发明内容所做的均等变化与修饰,均涵盖在本发明的专利范围内。

Claims (10)

  1. 一种氟碳涂布液,其特征在于,所述氟碳涂布液按照重量百分比计包含50%~80%的氟碳树脂,1%~5%的三嗪类UV吸收剂,1%~5%的消光粉,10%~20%的低酸值附着力促进剂,0.3%~0.8%的添加剂,5%~20%的异氰酸酯。
  2. 根据权利要求1所述的硬化层涂布液,其特征在于,所述氟碳树脂选自聚偏氟乙烯、聚氟乙烯、聚四氟乙烯、聚三氟氯乙烯、聚六氟丙烯中的一种或多种,所述UV吸收剂为三嗪类吸收剂,所述消光粉为二氧化硅;所述低酸值附着力促进剂是低酸值的热塑性聚氨酯树脂,酸值<5mgKOH/g;所述的添加剂是聚丙烯酸酯类助剂,所述的异氰酸酯选自甲苯二异氰酸酯三聚体或多聚体,六亚甲基二异氰酸酯三聚体或多聚体,或异氟尔酮二异氰酸酯三聚体或多聚体。
  3. 根据权利要求1所述的氟碳涂布液,其特征在于,所述氟碳涂布液的固含量为50%~70%。
  4. 一种氟碳涂层,其特征在于,所述氟碳涂层按照重量百分比计包含50%~80%的氟碳树脂,1%~5%的三嗪类UV吸收剂,1%~5%的消光粉,10%~20%的低酸值附着力促进剂,0.3%~0.8%的添加剂,5%~20%的异氰酸酯。
  5. 根据权利要求4所述的氟碳涂层,其特征在于,所述低酸值附着力促进剂是低酸值的热塑性聚氨酯树脂,酸值低于5mgKOH/g。
  6. 根据权利要求4所述的氟碳涂层,其特征在于,所述氟碳树脂选自聚偏氟乙烯、聚氟乙烯、聚四氟乙烯、聚三氟氯乙烯、聚六氟丙烯中的一种或多种,所述UV吸收剂为三嗪类吸收剂,所述消光粉为二氧化硅;所述低酸值附着力促进剂是低酸值的热塑性聚氨酯树脂,酸值<5mgKOH/g;所述的添加剂是聚丙烯酸酯类助剂,所述的异氰酸酯选自甲苯二异氰酸酯三聚体或多聚体,六亚甲基二异氰酸酯三聚体或多聚体,异氟尔酮二异氰酸酯三聚体或多聚体。
  7. 一种太阳能背板,其特征在于,所述太阳能背板结构包括透明氟碳涂层,聚对苯二甲基乙二醇酯基材,贴合胶层以及氟膜层。
  8. 根据权利要求7所述的太阳能背板,其特征在于,所述透明氟碳涂层按 重量百分比记包括50%~80%的氟碳树脂,1%~5%的三嗪类UV吸收剂,1%~5%的消光粉,10%~20%的低酸值附着力促进剂,0.3%~0.8%的聚丙烯酸酯,5%~20%的异氰酸酯。
  9. 根据权利要求7所述的太阳能背板,其特征在于,所述透明氟碳涂层由氟碳涂布液形成,所氟碳涂布液按重量百分记包括50%~80%的氟碳树脂,1%~5%的三嗪类UV吸收剂,1%~5%的消光粉,10%~20%的低酸值附着力促进剂,0.3%~0.8%的聚丙烯酸酯,5%~20%的异氰酸酯,所氟碳涂布液的固含量为50%~70%。
  10. 根据权利要求9所述的太阳能背板,其特征在于,所述的透明氟碳涂层的厚度为10~20μm;所述基材的厚度为250~300μm;所述贴合胶层的厚度为6~10μm;所述氟膜层的厚度为20~25μm。
PCT/CN2021/074405 2020-12-28 2021-01-29 一种氟碳涂布液及一种氟碳涂层、及一种太阳能背板 WO2022141733A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011578740.5A CN114686056A (zh) 2020-12-28 2020-12-28 一种氟碳涂布液及一种氟碳涂层、及一种太阳能背板
CN202011578740.5 2020-12-28

Publications (1)

Publication Number Publication Date
WO2022141733A1 true WO2022141733A1 (zh) 2022-07-07

Family

ID=82130672

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/074405 WO2022141733A1 (zh) 2020-12-28 2021-01-29 一种氟碳涂布液及一种氟碳涂层、及一种太阳能背板

Country Status (2)

Country Link
CN (1) CN114686056A (zh)
WO (1) WO2022141733A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115678079A (zh) * 2022-11-29 2023-02-03 宁波东旭成新材料科技有限公司 一种带预涂层的太阳能背板基材

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104201224A (zh) * 2014-08-20 2014-12-10 杭州福斯特光伏材料股份有限公司 一种太阳能电池组件用透明背板
CN104409549A (zh) * 2014-11-18 2015-03-11 苏州福斯特新材料有限公司 一种高效黑色太阳能电池背板及其制备方法
CN110172282A (zh) * 2019-04-28 2019-08-27 宁波江北激智新材料有限公司 一种氟碳涂层涂布液及使用该涂层的太阳能背板
CN210805788U (zh) * 2019-09-11 2020-06-19 宁波激阳新能源有限公司 一种透明太阳能背板
CN111434734A (zh) * 2019-07-15 2020-07-21 宁波激智科技股份有限公司 一种氟碳涂布液、一种耐水解的透明氟碳涂层及使用该涂层的太阳能背板

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010150437A (ja) * 2008-12-26 2010-07-08 Toagosei Co Ltd 接着剤組成物並びにこれを用いたカバーレイフィルム及びフレキシブル銅張積層板
EP2773700B1 (en) * 2011-11-01 2017-06-21 E. I. du Pont de Nemours and Company Aqueous ink-jet inks containing branched polyurethanes as binders
CN103911766A (zh) * 2013-01-06 2014-07-09 青岛科技大学 反式橡胶纤维材料、其制备方法和用途
US20190118221A1 (en) * 2017-10-24 2019-04-25 The Boeing Company Conformal fluoropolymer coatings
CN108977065A (zh) * 2018-08-09 2018-12-11 蚌埠淮畔精密机械有限公司 一种超疏水自洁光伏玻璃镀膜液及其涂镀工艺
CN111634074B (zh) * 2020-06-09 2023-03-28 杭州福斯特应用材料股份有限公司 复合型光伏背板及抗pid光伏组件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104201224A (zh) * 2014-08-20 2014-12-10 杭州福斯特光伏材料股份有限公司 一种太阳能电池组件用透明背板
CN104409549A (zh) * 2014-11-18 2015-03-11 苏州福斯特新材料有限公司 一种高效黑色太阳能电池背板及其制备方法
CN110172282A (zh) * 2019-04-28 2019-08-27 宁波江北激智新材料有限公司 一种氟碳涂层涂布液及使用该涂层的太阳能背板
CN111434734A (zh) * 2019-07-15 2020-07-21 宁波激智科技股份有限公司 一种氟碳涂布液、一种耐水解的透明氟碳涂层及使用该涂层的太阳能背板
CN210805788U (zh) * 2019-09-11 2020-06-19 宁波激阳新能源有限公司 一种透明太阳能背板

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115678079A (zh) * 2022-11-29 2023-02-03 宁波东旭成新材料科技有限公司 一种带预涂层的太阳能背板基材

Also Published As

Publication number Publication date
CN114686056A (zh) 2022-07-01

Similar Documents

Publication Publication Date Title
JP5739949B2 (ja) 太陽電池モジュール用バックシート
TWI469869B (zh) 多層膜及包含其之光伏模組
CN110144149B (zh) 一种氟碳涂层涂布液及使用该涂层的太阳能背板
TWI499066B (zh) 太陽電池裏面封止材用薄膜、太陽電池裏面封止材及太陽電池模組
JP2015501344A (ja) 塗布ポリエステルフィルムを有する積層体
CN110885593A (zh) 一种光伏背板用透明涂料和光伏背板
JP2009200398A (ja) 太陽電池用裏面封止用シートおよびそれを用いた太陽電池モジュール
JP5540825B2 (ja) 遮光シート、並びにそれを使用した太陽電池モジュール用バックシート及び太陽電池モジュール
JP5531748B2 (ja) 太陽電池裏面保護シートならびに太陽電池モジュール
JP5531749B2 (ja) 太陽電池裏面保護シートならびに太陽電池モジュール
WO2010061738A1 (ja) 太陽電池用裏面封止シート用フィルム
WO2022141733A1 (zh) 一种氟碳涂布液及一种氟碳涂层、及一种太阳能背板
CN112226120A (zh) 一种氟碳涂布液,一种耐uv型透明氟碳涂层及包括该涂层的透明太阳能电池背板
KR101622994B1 (ko) 태양 전지용 보호 시트와 그 제조 방법, 태양 전지용 백 시트 부재, 태양 전지용 백 시트 및 태양 전지 모듈
WO2012063945A1 (ja) 太陽電池用バックシート及び太陽電池モジュール
TW201131792A (en) Film for solar cells backside sealing sheet
CN210805788U (zh) 一种透明太阳能背板
CN110172282A (zh) 一种氟碳涂层涂布液及使用该涂层的太阳能背板
JP2011077320A (ja) 太陽電池モジュール用裏面保護シート、及び太陽電池モジュール
CN112490314A (zh) 一种氟碳涂布液及一种透明太阳能背板
WO2022134270A1 (zh) 一种氟碳涂层及一种氟碳涂布液,及一种透明太阳能背板
CN111434734A (zh) 一种氟碳涂布液、一种耐水解的透明氟碳涂层及使用该涂层的太阳能背板
JP2012222227A (ja) 太陽電池用バックシート、太陽電池用積層体及び太陽電池モジュール並びにそれらの製造方法
CN112490313A (zh) 一种氟碳涂布液及一种透明太阳能背板
JP2012212805A (ja) 太陽電池用裏面保護シート

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21912512

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21912512

Country of ref document: EP

Kind code of ref document: A1