WO2022134270A1 - 一种氟碳涂层及一种氟碳涂布液,及一种透明太阳能背板 - Google Patents

一种氟碳涂层及一种氟碳涂布液,及一种透明太阳能背板 Download PDF

Info

Publication number
WO2022134270A1
WO2022134270A1 PCT/CN2021/074402 CN2021074402W WO2022134270A1 WO 2022134270 A1 WO2022134270 A1 WO 2022134270A1 CN 2021074402 W CN2021074402 W CN 2021074402W WO 2022134270 A1 WO2022134270 A1 WO 2022134270A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorocarbon
fluorocarbon coating
transparent
thickness
titanium dioxide
Prior art date
Application number
PCT/CN2021/074402
Other languages
English (en)
French (fr)
Inventor
汪诚
简伟任
王超
邓文晖
袁南园
唐海江
李刚
张彦
Original Assignee
宁波激阳新能源有限公司
宁波激智科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波激阳新能源有限公司, 宁波激智科技股份有限公司 filed Critical 宁波激阳新能源有限公司
Publication of WO2022134270A1 publication Critical patent/WO2022134270A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/12Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C09D127/18Homopolymers or copolymers of tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/004Reflecting paints; Signal paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/204Applications use in electrical or conductive gadgets use in solar cells
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend

Definitions

  • the invention relates to the technical field of solar back sheets, in particular to a fluorocarbon coating, a fluorocarbon coating solution, and a transparent solar back sheet.
  • Bifacial power generation cells have been widely developed and applied in the photovoltaic field.
  • the backside of the double-sided cell also has the effect of generating electricity, the performance requirements for the water vapor transmission rate (referred to as water permeability) of the backside are gradually improved.
  • the general transparent backplane uses a transparent fluorocarbon coating for the inner layer. Although the weather resistance is guaranteed, due to the poor water resistance of the coating itself, it is still not as good as the component structure with glass on the back of some cells with high water permeability requirements.
  • the PO film structure is used as a reference for the inner layer, and the low water permeability of the PO film can be used to reduce the water resistance of the backsheet.
  • Synchronization In order to keep the total thickness of the backplane from changing greatly, PET is used as the intermediate layer to meet the stiffness requirements of the original backplane.
  • the white grid coating printed on the PO film is synchronously combined to block the gap between the cells. The function of gap reflection and light transmission on the back of the cell can further improve the power of the entire module.
  • This grid transparent backplane can take into account the requirements of low water permeability and high power components.
  • the present invention provides a transparent solar back sheet.
  • the inner layer of the solar back sheet adopts a transparent PO film, and the unique low water permeability (ie low water vapor transmission rate) of PO can effectively reduce the water permeability index of the overall back sheet.
  • printing a suitable white coating on the cell gap can effectively improve the light utilization rate of the front cell, thereby increasing the power of the front module.
  • the fluorocarbon coating provided by the present invention is printed on the surface of the transparent PO film, and the solar back sheet retains the main skeleton structure of PET, realizing the combination of physical and mechanical properties and low water permeability, And the formula of the fluorocarbon coating can effectively improve the adhesion of the fluorocarbon coating to the PO film and the power of the module.
  • the present invention provides the following technical solutions.
  • the invention provides a fluorocarbon coating, which comprises 20-40% of fluorocarbon resin, 20-40% of titanium dioxide, 2-5% of matting powder, 0.3-0.6% of additives, 30% of ⁇ 50% adhesion promoter, 5% ⁇ 8% isocyanate.
  • the fluorocarbon resin is selected from one of polytetrafluoroethylene.
  • the titanium dioxide is rutile type; the matting powder is silicon dioxide, the additive is polyacrylate, the adhesion promoter is thermoplastic polyurethane, and the isocyanate is selected from toluene diisocyanate three A polymer or polymer, a trimer or polymer of hexamethylene diisocyanate, a trimer or polymer of isophorone diisocyanate.
  • composition of the fluorocarbon coating comprises 20%-40% of fluorocarbon resin, 20-40% of titanium dioxide, 2%-5% of matting powder, 0.3%-0.6% of polyacrylate by weight percentage, 30%-50% thermoplastic polyurethane resin, 5%-8% isocyanate.
  • the raw materials of the fluorocarbon coating are first prepared into a fluorocarbon coating solution.
  • the invention provides a fluorocarbon coating solution, which comprises 20-40% of fluorocarbon resin, 20-40% of titanium dioxide, 2-5% of matting powder, 0.3% of fluorocarbon resin by weight percentage ⁇ 0.6% additive, 30% ⁇ 50% adhesion promoter, 5% ⁇ 8% isocyanate.
  • the fluorocarbon coating liquid also includes an organic solvent.
  • the total amount of fluorocarbon resin, titanium dioxide, matting powder, polyacrylate, thermoplastic polyurethane resin, and isocyanate is 100%.
  • the solid content of the fluorocarbon coating liquid is 50-70%.
  • the fluorocarbon resin is selected from one of polytetrafluoroethylene; the titanium dioxide is rutile type; the matting powder is silicon dioxide; the additive is Polyacrylate; the adhesion promoter is thermoplastic polyurethane; the isocyanate is selected from toluene diisocyanate trimer or multimer, hexamethylene diisocyanate trimer or multimer, isophorone Diisocyanate trimers or polymers
  • the fluorocarbon coating liquid is also called fluorocarbon coating.
  • the ratio of the fluorocarbon coating liquid is limited to the above range, the adhesion of the fluorocarbon layer on the transparent PO film after curing is excellent, and it meets the requirements of packaging strength, and also has a certain reflectivity, which improves the power of the module. has a good meaning.
  • the solid content of the fluorocarbon coating liquid is preferably 58% to 65%.
  • the solid content of the fluorocarbon coating solution is limited to this range, which is beneficial to the uniform coating of the fluorocarbon layer on the surface of the substrate.
  • the fluorocarbon resin may be one or more of polytetrafluoroethylene.
  • the fluorocarbon resin utilizes the characteristics of high bond energy of fluorocarbon bonds, and can achieve the characteristics of weather resistance.
  • the molecular bond of PTFE does not contain other atoms, which can block stronger ultraviolet light energy in terms of weather resistance, thereby ensuring the weather resistance of the product.
  • the fluorocarbon resin is a thermosetting resin.
  • the fluorocarbon resin was provided by Daikin Fluorochemical.
  • titanium dioxide is a rutile type, which has the effects of being hydrolysis-resistant and UV-blocking.
  • titanium dioxide is provided by DuPont.
  • the matting powder is silica particles.
  • silica particles are provided by Grace.
  • the added auxiliary is used to modify the fluorocarbon resin, and the added type is polyacrylate type.
  • the polyacrylate type described is mainly used to adjust the adhesive force after the weather resistance of the fluorocarbon coating.
  • the polyacrylate was supplied by BYK.
  • thermoplastic polyurethane is thermoplastic polyurethane.
  • Thermoplastic polyurethane can effectively improve the adhesion of fluorocarbon coating to PO film.
  • the accelerator was provided by Croda Chemical.
  • the type of curing agent is of isocyanate type.
  • the isocyanate can be toluene diisocyanate trimer or multimer, hexamethylene diisocyanate trimer or multimer, isophorone diisocyanate trimer or multimer.
  • isocyanate is provided by Bayer.
  • the organic solvent is selected from one or a combination of at least two of ethyl acetate, butyl acetate, butanone, or cyclohexanone.
  • the fluorocarbon coating solution contains 23%-27% of fluorocarbon resin, 22-28% of titanium dioxide, 35-45% of thermoplastic polyurethane, 2%-4% of matting powder, 0.3%-0.5% % of polyacrylate, 5.7% to 7.5% of isocyanate, and the solid content is controlled at 58% to 65%.
  • the thickness of the selected PO film is 120-180 ⁇ m
  • the thickness of the base PET is 125-188 ⁇ m
  • the thickness of the fluorocarbon coating is 14-15 ⁇ m.
  • the above technical solutions include Embodiments 2, 5, and 6.
  • Limiting the formulation of the fluorocarbon coating to the above-mentioned preferred parameters can ensure that the coating has high resistance to wet heat aging, and can still maintain high strength after wet heat aging.
  • the present invention also provides a solar back sheet, which comprises, from top to bottom, a white grid-like fluorocarbon coating, a transparent PO film, a first adhesive layer, a substrate, a second adhesive layer, a fluorine film layer.
  • the PO film refers to a polyolefin film.
  • the white grid-like fluorocarbon coating is the fluorocarbon coating provided by the present invention.
  • the white grid-like fluorocarbon coating is formed from the fluorocarbon coating solution provided by the present invention.
  • the base material is a transparent base material, and the material of the base material is selected from polyethylene terephthalate (PET).
  • PET polyethylene terephthalate
  • the adhesive layer is formed of adhesive.
  • the adhesive is a polyester adhesive.
  • the fluorine film layer is a transparent PVF film or PVDF film.
  • the thickness of the grid white fluorocarbon layer is 10-20 ⁇ m; the thickness of the transparent PO film is 50-300 ⁇ m; the thickness of the first adhesive layer is 6-10 ⁇ m; the base material layer is The thickness of the second adhesive layer is 50-300 ⁇ m; the thickness of the second adhesive layer is 6-10 ⁇ m; the thickness of the fluorine film layer is 20-25 ⁇ m.
  • the thickness of the fluorocarbon coating is preferably 14-15 ⁇ m
  • the thickness of the PO film is preferably 120-180 ⁇ m
  • the thickness of the PET substrate layer is preferably 125-188 ⁇ m.
  • the transparent grid solar back sheet provided by the present invention can be used for the outermost back sheet encapsulation material of photovoltaic modules.
  • the preparation method of the solar back sheet provided by the present invention comprises the following steps:
  • the white fluorocarbon coating is coated on the surface of the transparent PO film, and then placed in a circulating oven for thermal curing to form a white grid fluorocarbon layer; then a layer of adhesive is coated on the PET substrate and placed on the After thermal curing in a circulating oven, the printed transparent PO film is pasted; then an adhesive layer is coated on the other side of the substrate, placed in a circulating oven to dry, and the fluorine film layer is pasted; finally, a curing reaction is performed.
  • drying temperature of the white grid fluorocarbon circulating oven was 80° C. and the time was 2 minutes.
  • drying temperature of the adhesive layer was 90° C. and the time was 2 minutes.
  • the aging reaction temperature was 50°C, and the time was 48 hours.
  • the base material is the model KP20 base material provided by Ningbo Qinbang.
  • the substrate is also referred to as a PET substrate.
  • the above-mentioned coating process, thermal curing process, and laminating process can be set according to the prior art.
  • the above preparation method further includes the step of configuring the fluorocarbon coating solution into a fluorocarbon coating solution.
  • the fluorocarbon resin and titanium dioxide in the fluorocarbon layer coating solution provided by the present invention have an important influence on the wet heat aging property.
  • the inner layer material of the solar back sheet that is resistant to aging and meets the encapsulation strength can be realized. Because the perfluorocarbon bond energy used in the PTFE material is strong enough, the weather resistance of the PO material can be further improved, and the weather resistance test of the transparent back sheet can be realized.
  • the above-mentioned fluorocarbon coating liquid is cured into a white fluorocarbon layer, combined with a transparent PO film, the transparent backplane can achieve low water permeability and high power cost performance.
  • the fluorocarbon coating in the transparent solar back sheet provided by the present invention has high reflectivity and high adhesion with PO film, which effectively reduces water vapor transmission rate.
  • the transparent solar back sheet provided by the present invention can effectively reduce the water permeability index of the overall back sheet.
  • printing a suitable white coating on the cell gap can effectively improve the light utilization rate of the front cell, thereby increasing the power of the front module.
  • Fig. 1 is the top view of grid coating
  • FIG. 2 is a schematic structural diagram of a solar back panel provided by the present invention.
  • the transparent solar back sheet provided by the present invention sequentially includes a white grid-like fluorocarbon coating 60, a transparent PO layer 50, a first adhesive layer 40, a substrate layer 30, The second adhesive layer 20 and the fluorine film layer 10 .
  • the preparation method of the solar back sheet film provided by the present invention comprises the following steps:
  • the drying temperature of the circulating oven for the treatment of the white fluorocarbon layer is 80° C., and the time is 2 minutes, and the grid layer can be carried out by printing or roller coating;
  • the aging treatment temperature in the process (4) was 50° C. and the time was 48 hours.
  • lamination parameters of the process (5) are suggested as temperature 145°C, vacuuming for 6 minutes, degassing for 30 seconds, lamination pressure 0.1 MPa, lamination for 12 minutes.
  • the laminated EVA of choice is F806 supplied by Foster.
  • the selected base material is the model KP20 base material provided by Ningbo Qinbang.
  • the substrate is also referred to as a PET substrate.
  • the above preparation method further includes the step of configuring the fluorocarbon layer into the fluorocarbon layer coating solution.
  • the solar back sheet provided by the present invention carries out the following tests:
  • Adhesion of fluorocarbon coating According to the standard of GB 1720-1979 "Determination of Paint Film Adhesion", test the adhesion of the fluorocarbon layer in the transparent solar back sheet film to the transparent PO film, of which 100/100 means no peeling , 90/100 means shedding 10%.
  • Encapsulation strength test According to the standard of GB/T 31034-2014 "Insulating Backplane for Crystalline Silicon Solar Cell Module", the bonding strength of the inner fluorocarbon layer and EVA is tested, and the 180° peel force test method is used.
  • QUV aging treatment According to the standard of GB/T 31034-2014 "Insulation Backplane for Crystalline Silicon Solar Cell Modules", it is treated with an ultraviolet aging lamp, and the accumulated ultraviolet energy reaches 120kwh/m2, and the sample is taken out to observe the appearance.
  • Reflectivity test is carried out according to the standard of GB/T 31034-2014 "Insulation Backsheet for Crystalline Silicon Solar Cell Modules"
  • Damp heat aging treatment According to the standard of GB/T 31034-2014 "Insulation Backplane for Crystalline Silicon Solar Cell Modules", set the temperature in the high temperature and high humidity box to 85°C, the humidity to 85%, and the accumulation time to be 2000h, take out the sample for observation Appearance and test package strength.
  • PTFE type fluorocarbon resin 36% PTFE type fluorocarbon resin, 23.6% titanium dioxide, 2% matting powder, 33% thermoplastic polyurethane, 0.4% polyacrylate additive, 5% isocyanate.
  • the host resin was dispersed in an organic solvent to form a fluorocarbon coating liquid with a solid content of 50%.
  • PTFE type fluorocarbon resin is provided by Daikin Fluorochemical
  • titanium dioxide is provided by DuPont
  • thermoplastic polyurethane is provided by Croda Chemical
  • matting powder is provided by Grace Co., Ltd.
  • polyacrylate is provided by BYK
  • the isocyanate is provided by Bayer
  • the organic solvent is butyl acetate.
  • the coating was applied on the preform transparent PO with a thickness of 50 ⁇ m for PO and a thickness of 250 ⁇ m for PET on the back sheet.
  • the thickness of the white fluorocarbon layer formed was 17 ⁇ m.
  • PTFE type fluorocarbon resin 25% PTFE type fluorocarbon resin, 25% titanium dioxide, 3% matting powder, 40% thermoplastic polyurethane, 0.4% polyacrylate additive, 6.6% isocyanate.
  • the host resin was dispersed in an organic solvent to form a fluorocarbon coating liquid with a solid content of 60%.
  • PTFE type fluorocarbon resin is provided by Daikin Fluorochemical
  • titanium dioxide is provided by DuPont
  • thermoplastic polyurethane is provided by Croda Chemical
  • matting powder is provided by Grace Co., Ltd.
  • polyacrylate is provided by BYK
  • the isocyanate is provided by Bayer
  • the organic solvent is butyl acetate.
  • the coating was applied on the preform transparent PO with a thickness of 150 ⁇ m for PO and a thickness of 188 ⁇ m for PET on the backsheet.
  • the thickness of the white fluorocarbon layer formed was 14 ⁇ m.
  • PTFE type fluorocarbon resin 20% PTFE type fluorocarbon resin, 40% titanium dioxide, 3% matting powder, 31% thermoplastic polyurethane, 0.4% polyacrylate additive, 5.6% isocyanate.
  • the host resin was dispersed in an organic solvent to form a fluorocarbon coating liquid with a solid content of 55%.
  • PTFE type fluorocarbon resin is provided by Daikin Fluorochemical
  • titanium dioxide is provided by DuPont
  • thermoplastic polyurethane is provided by Croda Chemical
  • matting powder is provided by Grace Co., Ltd.
  • polyacrylate is provided by BYK
  • the isocyanate is provided by Bayer
  • the organic solvent is butyl acetate.
  • the coating was applied on the preform transparent PO with a thickness of 250 ⁇ m for PO and a thickness of 100 ⁇ m for PET on the backsheet.
  • the thickness of the white fluorocarbon layer formed was 20 ⁇ m.
  • PTFE type fluorocarbon resin 20% titanium dioxide, 4% matting powder, 30% thermoplastic polyurethane, 0.6% polyacrylate additive, 5.4% isocyanate.
  • the host resin was dispersed in an organic solvent to form a fluorocarbon coating liquid with a solid content of 70%.
  • PTFE type fluorocarbon resin is provided by Daikin Fluorochemical
  • titanium dioxide is provided by DuPont
  • thermoplastic polyurethane is provided by Croda Chemical
  • matting powder is provided by Grace Co., Ltd.
  • polyacrylate is provided by BYK
  • the isocyanate is provided by Bayer
  • the organic solvent is butyl acetate.
  • the coating was applied on the preform transparent PO with a thickness of 210 ⁇ m for PO and a thickness of 100 ⁇ m for PET on the backsheet.
  • the thickness of the white fluorocarbon layer formed was 10 ⁇ m.
  • PTFE type fluorocarbon resin 22% titanium dioxide, 2% matting powder, 45% thermoplastic polyurethane, 0.5% polyacrylate additive, 7.5% isocyanate.
  • the host resin was dispersed in an organic solvent to form a fluorocarbon coating liquid with a solid content of 58%.
  • PTFE type fluorocarbon resin is provided by Daikin Fluorochemical
  • titanium dioxide is provided by DuPont
  • thermoplastic polyurethane is provided by Croda Chemical
  • matting powder is provided by Grace Co., Ltd.
  • polyacrylate is provided by BYK
  • the isocyanate is provided by Bayer
  • the organic solvent is butyl acetate.
  • the coating was applied on the preform transparent PO with a thickness of 120 ⁇ m for PO and a thickness of 188 ⁇ m for PET on the backsheet.
  • the thickness of the white fluorocarbon layer formed was 15 ⁇ m.
  • PTFE type fluorocarbon resin 28% titanium dioxide, 4% matting powder, 35% thermoplastic polyurethane, 0.3% polyacrylate additive, 5.7% isocyanate.
  • the host resin was dispersed in an organic solvent to form a fluorocarbon coating liquid with a solid content of 65%.
  • PTFE type fluorocarbon resin is provided by Daikin Fluorochemical
  • titanium dioxide is provided by DuPont
  • thermoplastic polyurethane is provided by Croda Chemical
  • matting powder is provided by Grace Co., Ltd.
  • polyacrylate is provided by BYK
  • the isocyanate is provided by Bayer
  • the organic solvent is butyl acetate.
  • the coating was applied on the preform transparent PO with a thickness of 180 ⁇ m for PO and a thickness of 125 ⁇ m for PET on the backsheet.
  • the thickness of the white fluorocarbon layer formed was 15 ⁇ m.
  • PTFE type fluorocarbon resin 30% PTFE type fluorocarbon resin, 21% titanium dioxide, 5% matting powder, 36% thermoplastic polyurethane, 0.5% polyacrylate additive, 7.5% isocyanate.
  • the host resin was dispersed in an organic solvent to form a fluorocarbon coating liquid with a solid content of 67%.
  • PTFE type fluorocarbon resin is provided by Daikin Fluorochemical
  • titanium dioxide is provided by DuPont
  • thermoplastic polyurethane is provided by Croda Chemical
  • matting powder is provided by Grace Co., Ltd.
  • polyacrylate is provided by BYK
  • the isocyanate is provided by Bayer
  • the organic solvent is butyl acetate.
  • the coating was applied on the preform transparent PO with a thickness of 65 ⁇ m for PO and a thickness of 275 ⁇ m for PET on the backsheet.
  • the thickness of the white fluorocarbon layer formed was 16 ⁇ m.
  • PTFE type fluorocarbon resin 21% titanium dioxide, 2.5% matting powder, 50% thermoplastic polyurethane, 0.3% polyacrylate additive, 5.2% isocyanate.
  • the host resin was dispersed in an organic solvent to form a fluorocarbon coating liquid with a solid content of 52%.
  • the PTFE type fluorocarbon resin is provided by Daikin Fluorochemical
  • the titanium dioxide is provided by DuPont
  • the thermoplastic polyurethane is provided by Croda Chemical
  • the matting powder is provided by Grace Co., Ltd.
  • the polyacrylate is provided by BYK
  • the isocyanate is provided by Bayer
  • the organic solvent is butyl acetate.
  • the coating was applied on the preform transparent PO with a thickness of 80 ⁇ m for PO and a thickness of 250 ⁇ m for PET on the backsheet.
  • the thickness of the white fluorocarbon layer formed was 18 ⁇ m.
  • PTFE type fluorocarbon resin 23% titanium dioxide, 3% matting powder, 32.5% thermoplastic polyurethane, 0.5% polyacrylate additive, 8% isocyanate.
  • the host resin was dispersed in an organic solvent to form a fluorocarbon coating liquid with a solid content of 63%.
  • the PTFE type fluorocarbon resin is provided by Daikin Fluorochemical
  • the titanium dioxide is provided by DuPont
  • the thermoplastic polyurethane is provided by Croda Chemical
  • the matting powder is provided by Grace Co., Ltd.
  • the polyacrylate is provided by BYK
  • the isocyanate is provided by Bayer
  • the organic solvent is butyl acetate.
  • the coating was applied on the preform transparent PO with a thickness of 270 ⁇ m for PO and a thickness of 50 ⁇ m for PET on the backsheet.
  • the thickness of the white fluorocarbon layer formed was 15 ⁇ m.
  • PTFE type fluorocarbon resin 30.5% titanium dioxide, 3% matting powder, 32% thermoplastic polyurethane, 0.3% polyacrylate additive, 5.2% isocyanate.
  • the host resin was dispersed in an organic solvent to form a fluorocarbon coating liquid with a solid content of 53%.
  • the PTFE type fluorocarbon resin is provided by Daikin Fluorochemical
  • the titanium dioxide is provided by DuPont
  • the thermoplastic polyurethane is provided by Croda Chemical
  • the matting powder is provided by Grace Co., Ltd.
  • the polyacrylate is provided by BYK
  • the isocyanate is provided by Bayer
  • the organic solvent is butyl acetate.
  • the coating was applied on the preform transparent PO with a thickness of 300 ⁇ m for PO and a thickness of 50 ⁇ m for PET on the back sheet.
  • the thickness of the white fluorocarbon layer formed was 17 ⁇ m.
  • the preparation method of the fluorocarbon coating solution provided in this comparative example includes:
  • polytrifluoroethylene type fluorocarbon resin 25% polytrifluoroethylene type fluorocarbon resin, 25% titanium dioxide, 3% matting powder, 40% thermoplastic polyurethane, 0.4% polyacrylate additive, 6.6% isocyanate.
  • the host resin was dispersed in an organic solvent to form a fluorocarbon coating liquid with a solid content of 60%.
  • polytetrafluoroethylene type fluorocarbon resin is provided by Dongfeng Chemical
  • titanium dioxide is provided by DuPont
  • thermoplastic polyurethane is provided by Croda Chemical
  • matting powder is provided by Grace Co., Ltd.
  • polyacrylate is provided by BYK.
  • the isocyanate was provided by Bayer, and the organic solvent was butyl acetate.
  • the coating was applied on the preform transparent PO with a thickness of 150 ⁇ m for PO and a thickness of 188 ⁇ m for PET on the backsheet.
  • the thickness of the white fluorocarbon layer formed was 14 ⁇ m.
  • the preparation method of the fluorocarbon coating solution provided in this comparative example includes:
  • titanium dioxide 25% titanium dioxide, 3% matting powder, 65% thermoplastic polyurethane, 0.4% polyacrylate additive, 6.6% isocyanate.
  • the host resin was dispersed in an organic solvent to form a fluorocarbon coating liquid with a solid content of 60%.
  • the titanium dioxide was provided by DuPont
  • the thermoplastic polyurethane was provided by Croda Chemical
  • the matting powder was provided by Grace Co., Ltd.
  • the polyacrylate was provided by BYK
  • the isocyanate was provided by Bayer
  • the organic solvent was butyl acetate.
  • the coating was applied on the preform transparent PO with a thickness of 150 ⁇ m for PO and a thickness of 188 ⁇ m for PET on the backsheet.
  • the thickness of the white fluorocarbon layer formed was 14 ⁇ m.
  • the preparation method of the fluorocarbon coating solution provided in this comparative example includes:
  • the host resin was dispersed in an organic solvent to form a fluorocarbon coating liquid with a solid content of 60%.
  • the PTFE type fluorocarbon resin is provided by Daikin Fluorochemical
  • the titanium dioxide is provided by DuPont
  • the matting powder is provided by Grace Co., Ltd.
  • the polyacrylate is provided by BYK
  • the isocyanate is provided by Bayer
  • the organic solvent is Butyl acetate.
  • the coating was applied on the preform transparent PO with a thickness of 150 ⁇ m for PO and a thickness of 188 ⁇ m for PET on the backsheet.
  • the thickness of the white fluorocarbon layer formed was 14 ⁇ m.
  • the preparation method of the fluorocarbon coating solution provided in this comparative example includes:
  • PTFE type fluorocarbon resin 50% PTFE type fluorocarbon resin, 25% titanium dioxide, 3% matting powder, 15% thermoplastic polyurethane, 0.4% polyacrylate additive, 6.6% isocyanate.
  • the host resin was dispersed in an organic solvent to form a fluorocarbon coating liquid with a solid content of 60%.
  • the PTFE type fluorocarbon resin is provided by Daikin Fluorochemical
  • the titanium dioxide is provided by DuPont
  • the thermoplastic polyurethane is provided by Croda Chemical
  • the matting powder is provided by Grace Co., Ltd.
  • the polyacrylate is provided by BYK
  • the isocyanate is provided by Bayer
  • the organic solvent is butyl acetate.
  • the coating was applied on the preform transparent PO with a thickness of 150 ⁇ m for PO and a thickness of 188 ⁇ m for PET on the backsheet.
  • the thickness of the white fluorocarbon layer formed was 14 ⁇ m.
  • the fluorocarbon films in Examples 1 to 10 and Comparative Examples 1 to 4 were tested as follows: According to the standard of GB 1720-1979 "Determination of Paint Film Adhesion", test the effect of white grid fluorocarbon coating on transparent fluorocarbon The adhesion of the coating, where 100/100 means no release, 90/100 means 10% shedding. According to the standard of GB/T 31034-2014 "Insulating Backsheet for Crystalline Silicon Solar Cell Modules", the packaging strength, humidity and heat aging resistance and QUV change of the solar backsheet are tested.
  • Table 1 The main performance test results of the fluorocarbon coatings formed by the fluorocarbon coating solutions provided in Examples 1-10 and Comparative Examples 1-4 and the transparent solar backsheet
  • thermoplastic polyurethane when the thermoplastic polyurethane is not added or the addition ratio is low, the adhesion between the white fluorocarbon layer and the PO film is very poor.
  • the initial adhesion is also poor, and embrittlement occurs after both the UV aging test and the damp heat aging test.
  • the polytetrafluoroethylene type resin itself has a strong enough fluorocarbon bond, it can maintain the stability of the molecule itself during the aging process, thereby ensuring the aging characteristics of the entire backplane test.
  • the polytrifluoroethylene system molecule generally another molecular bond is the C-Cl bond energy. This bond energy is relatively weak and will break after aging.
  • the thermoplastic polyurethane resin is an indispensable component that promotes the adhesion between the coating and the PO surface.
  • the solar back sheet provided by the present invention can ensure packaging strength and weather resistance at the same time.
  • the fluorocarbon coatings provided in Examples 2, 5 and 6 have better performance, the fluorocarbon coatings have good adhesion and do not fall off, the initial encapsulation strength is at least 80N/cm, the reflectivity is at least 83%, and the water vapor (water vapor) )
  • the transmittance is lower than 0.68g/m2*d, there is no obvious change in appearance after the QUV test of 120kwh/m2, and the package strength after high humidity and heat aging test is at least 60N/cm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Laminated Bodies (AREA)

Abstract

本发明涉及太阳能背板技术领域,具体而言,涉及一种氟碳涂层及一种氟碳涂布液,及一种透明太阳能背板。为了解决现有透明太阳能背板的水蒸气透过率高的问题,本发明提供一种透明太阳能背板。所述氟碳涂层按照重量百分比计包含20%~40%的氟碳树脂,20~40%的二氧化钛,2%~5%消光粉,0.3%~0.6%的添加剂,30%~50%的附着力促进剂,5%~8%的异氰酸酯。所述透明太阳能背板自上而下依次包括白色网格氟碳涂层,透明PO膜,第一胶粘层,基材,第二胶粘层以及氟膜层。本发明提供的透明太阳能背板可以有效降低整体背板的水透指标。

Description

一种氟碳涂层及一种氟碳涂布液,及一种透明太阳能背板 技术领域
本发明涉及太阳能背板技术领域,具体而言,涉及一种氟碳涂层及一种氟碳涂布液,及一种透明太阳能背板。
背景技术
双面发电电池片已经在光伏领域得到了广泛的发展和应用。目前针双面电池片因为其背面也要发电的效果,所以对背面的水蒸气透过率(简称水透)性能要求逐渐提升。一般的透明背板,内层采用透明氟碳涂料,虽然在耐候性上有保证,但是由于涂层本身阻水性较差,在一些水透要求高的电池片上依旧不及背面用玻璃的组件结构。
为了解决目前传统透明背板的低水透问题,借鉴内层采用PO膜结构,可以利用PO膜低水透特性,降低背板的阻水性。同步为了保持背板总厚度不发生巨大变化,用PET作为中间层起到原来背板的挺性要求。而在透明的PO膜,同步再结合PO膜上印刷的白色网格涂层,遮挡电池片间隙,利用间隙反射和电池片背面透光的功能,进一步可以提高整个组件的功率。这种网格透明背板可以兼顾低水透、高功率的组件需求。
发明内容
为了解决现有透明太阳能背板的水蒸气透过率高的问题,本发明提供一种透明太阳能背板。该太阳能背板的内层采用透明的PO膜,利用PO独特的低水透(即水蒸气透过率低)特性,可以有效降低整体背板的水透指标。与此同时,根据不同电池片排布的图形,在电池片间隙印刷合适的白色涂层,可以有效提升正面电池片的光线利用率,进而提升正面组件功率。
与现有技术相比,本发明提供的氟碳涂层是在透明PO膜表面上印刷的,并且太阳能背板保留了PET的主体骨架结构,实现了物理机械性能与低水透性能的结合,并且在氟碳涂层的配方可以有效提升氟碳涂层对PO膜的附着力 及组件功率。
为了解决上述技术问题,本发明提供下述技术方案。
本发明提供一种氟碳涂层,按照重量百分比计包含20%~40%的氟碳树脂,20~40%的二氧化钛,2%~5%消光粉,0.3%~0.6%的添加剂,30%~50%的附着力促进剂,5%~8%的异氰酸酯。
进一步的,所述氟碳树脂选自聚四氟乙烯中的一种。
进一步的,所述钛白粉为金红石型;所述消光粉为二氧化硅,所述的添加剂是聚丙烯酸酯,所述的附着力促进剂是热塑性聚氨酯,所述的异氰酸酯选自甲苯二异氰酸酯三聚体或多聚体,六亚甲基二异氰酸酯三聚体或多聚体,异氟尔酮二异氰酸酯三聚体或多聚体。
进一步的,所述氟碳涂层组成按照重量百分比计包含20%~40%的氟碳树脂,20~40%的二氧化钛,2%~5%消光粉,0.3%~0.6%的聚丙烯酸酯,30%~50%的热塑性聚氨酯树脂,5%~8%的异氰酸酯。
在制备过程中,所述氟碳涂层的原料先配制成氟碳涂布液。
本发明提供一种氟碳涂布液,所述氟碳涂布液按照重量百分比计包含20%~40%的氟碳树脂,20~40%的二氧化钛,2%~5%消光粉,0.3%~0.6%的添加剂,30%~50%的附着力促进剂,5%~8%的异氰酸酯。
进一步的,所述氟碳涂布液还包括有机溶剂。
在所述氟碳涂布液中,氟碳树脂,二氧化钛,消光粉,聚丙烯酸酯,热塑性聚氨酯树脂,和异氰酸酯的总量为100%。
进一步的,所述氟碳涂布液的固含量为50~70%。
进一步的,所述氟碳涂布液中,所述氟碳树脂选自聚四氟乙烯中的一种;所述钛白粉为金红石型;所述消光粉为二氧化硅;所述的添加剂是聚丙烯酸酯;所述的附着力促进剂是热塑性聚氨酯;所述的异氰酸酯选自甲苯二异氰酸酯三聚体或多聚体,六亚甲基二异氰酸酯三聚体或多聚体,异氟尔酮二异氰酸酯三聚体或多聚体
所述氟碳涂布液又称为氟碳涂料。
将氟碳涂布液的配比限定在上述范围内,对熟化完成后氟碳层在透明PO膜上的附着力优异,并且满足封装强度要求,同时也具有一定的反射率,对组件功率提升具有很好的意义。
进一步的,所述氟碳涂布液的固含量优选为58%~65%。
将上述氟碳涂布液固含量限定在该范围,有利于氟碳层均匀的涂布在基材表面。
进一步的,所述氟碳树脂可以是聚四氟乙烯的一种或多种。
所述氟碳树脂利用氟碳键高键能的特点,可以实现耐候性的特点。而聚四氟乙烯的分子键不包含其他原子,在耐候性方面可以阻挡更强的紫外光能量,进而实现产品耐候性的保证。
进一步的,所述氟碳树脂是热固化型树脂。
所述氟碳树脂由大金氟化工提供。
进一步的,所述的二氧化钛为金红石型,具有耐水解、阻隔UV的效果。
进一步的,所述二氧化钛是杜邦公司提供的。
进一步的,所述的消光粉是二氧化硅粒子。
进一步的,所述二氧化硅粒子是格雷斯提供的。
进一步的,添加的助剂是用于改性氟碳树脂的,添加类型是聚丙烯酸酯类型的。
所述的聚丙烯酸酯类型主要用于调控氟碳涂料的耐候性后的粘接力。
所述聚丙烯酸酯是毕克化学提供的。
进一步的,添加的附着力促进剂是热塑性聚氨酯。热塑性聚氨酯能有效提高氟碳涂层对PO膜的附着力。
所述的促进剂是禾大化学提供的。
进一步的,所述的固化剂种类是异氰酸酯类型的。
进一步的,所述的异氰酸酯可以是甲苯二异氰酸酯三聚体或多聚体,六 亚甲基二异氰酸酯三聚体或多聚体,异氟尔酮二异氰酸酯三聚体或多聚体。
进一步的,所述的异氰酸酯是拜耳公司提供的。
所述有机溶剂选自乙酸乙酯,乙酸丁酯,丁酮,或环己酮中的一种或至少两种的组合。
进一步的,所述氟碳涂布液包含23%~27%的氟碳树脂,22~28%的钛白粉,35~45%的热塑性聚氨酯,2%~4%的消光粉,0.3%~0.5%的聚丙烯酸酯,5.7%~7.5%的异氰酸酯,控制固含量在58%~65%。选取的PO膜厚度为120~180μm,基材PET的厚度为125~188μm,氟碳涂层的厚度为14~15μm。上述技术方案包括实施例2、5、6。
将氟碳涂料配方限定在上述优选参数范围内,可以保证该涂层具有高耐湿热老化性,并且在湿热老化后依旧可以保持高强度。
本发明还提供一种太阳能背板,所述太阳能背板自上而下依次包括白色网格状氟碳涂层、透明PO膜,第一胶粘层,基材,第二胶粘层,氟膜层。所述的PO膜指聚烯烃类薄膜。
所白色网格状氟碳涂层为本发明提供的氟碳涂层。
所白色网格状氟碳涂层为本发明提供的氟碳涂布液形成。
进一步的,所述基材为透明的基材,所述基材的材料选自聚对苯二甲基乙二醇酯(PET)。
进一步的,所述的第一胶粘层和第二胶粘层统称为胶粘层。所述的胶粘层由胶黏剂形成。所述胶黏剂是聚酯型胶黏剂。
进一步的,所述的氟膜层是透明的PVF膜或PVDF膜。
进一步的,所述网格白色氟碳层的厚度为10~20μm;所述透明PO膜的厚度为50~300μm;所述的第一胶粘层的厚度为6~10μm;所述基材层的厚度为50~300μm;所述的第二胶粘层的厚度为6~10μm;所述的氟膜层的厚度为20~25μm。
进一步的,所述氟碳涂层的厚度优选为14~15μm,PO膜厚度优选为 120~180μm,PET基材层优选厚度为125~188μm。
本发明提供的透明网格太阳能背板可用于光伏组件的最外层背板封装材料。
本发明提供的太阳能背板的制备方法包括以下步骤:
先利用网格印刷方式,白色氟碳涂料涂布在透明PO膜表面,放置在循环烘箱热固化处理,形成白色网格氟碳层;再在PET基材上涂布一层黏合剂,放置在循环烘箱热固化处理,贴合印刷后的透明PO膜;然后在基材另一面涂布胶黏剂层,放置在循环烘箱中干燥,贴合氟膜层;最后做一次熟化反应。
进一步的,白色网格氟碳循环烘箱干燥的温度为80℃,时间为2分钟。
进一步的,胶粘层的干燥温度为90℃,时间为2分钟。
进一步的,熟化反应温度为50℃,时间为48小时。
进一步的,基材为宁波勤邦提供的型号KP20基材。所述基材又称为PET基材。
上述涂布工艺、热熟化工艺、贴合工艺,可以根据现有技术进行设定。
在将氟碳涂布液涂布在基材表面之前,上述制备方法还包括将氟碳涂料配置成氟碳涂布液的步骤。
本发明提供的氟碳层涂布液中的氟碳树脂与二氧化钛对湿热老化性有重要影响。
本发明提供的氟碳膜实现了如下技术效果:
1、将上述氟碳层涂布液固化成氟碳层后,可以实现耐老化、满足封装强度的太阳能背板内层材料。其中使用的聚四氟乙烯材料因为全氟碳键能足够强,可以对PO材料进一步提高耐候性能,实现透明背板的耐候性测试。
2、将上述氟碳涂布液固化成白色氟碳层,配合透明PO膜,可以实现透明背板低水透与高功率的性价比。
与现有透明太阳能背板相比,本发明提供的透明太阳能背板中的氟碳涂层的反射率高,与PO膜的附着力高,PO膜有效降低了水汽透过率。本发明 提供的透明太阳能背板可以有效降低整体背板的水透指标。与此同时,根据不同电池片排布的图形,在电池片间隙印刷合适的白色涂层,可以有效提升正面电池片的光线利用率,进而提升正面组件功率。
附图说明
图1是网格涂层的俯视图;
图2为本发明提供的太阳能背板的结构示意图。
具体实施方式
为了更易理解本发明的结构及所能达成的功能特征和优点,下文将本发明的较佳的实施例,并配合图式做详细说明如下:
如图1和图2所示,本发明提供的透明太阳能背板自上而下依次包括白色网格状氟碳涂层60,透明PO层50,第一胶粘层40,基材层30,第二胶粘层20,和氟膜层10。
本发明提供的太阳能背板膜的制备方法包括以下步骤:
(1)利用网格印刷方式,将白色涂布液涂布在透明PO表面,放置在循环烘箱固化处理,形成白色氟碳层;(2)在PET表面涂布粘合层,放置在循环烘箱热固化处理,贴合透明PO膜,得到半成品;(3)将半成品基材另一面涂布胶粘剂,形成胶粘层,胶粘层放置在循环烘箱干燥处理,再复合氟膜层;(4)将太阳能背板成品熟化反应;(5)将太阳能背板与EVA层压制备模拟测试封装强度。
进一步的,(1)过程中白色氟碳层处理的循环烘箱干燥的温度为80℃,时间为2分钟,网格层可以用印刷或者辊涂方案进行;
进一步的,(2)(3)过程胶黏剂干燥的循环烘箱温度为90℃,时间为2分钟;
进一步的,(4)过程的熟化处理温度为50℃,时间为48小时。
进一步的,(5)过程的层压参数建议为温度145℃,抽真空6分钟,放气30秒,层压压力0.1MPa,层压12分钟。
进一步的,选择的层压EVA是福斯特提供的F806。
进一步的,选择的基材为宁波勤邦提供的型号KP20基材。所述基材又称为PET基材。
在将氟碳层涂布液涂布在透明PO膜表面之前,上述制备方法还包括将氟碳层配置成氟碳层涂布液的步骤。
本发明提供的太阳能背板进行下述测试:
氟碳涂层的附着力:按照GB 1720-1979《漆膜附着力测定法》的标准,测试透明太阳能背板膜中氟碳层对透明PO膜的附着力,其中100/100代表不脱膜,90/100代表脱落10%。
封装强度测试:按照GB/T 31034-2014《晶体硅太阳能电池组件用绝缘背板》的标准,测试内氟碳层与EVA的粘接强度,采用180°剥离力测试方法进行。
QUV老化处理:按照GB/T 31034-2014《晶体硅太阳能电池组件用绝缘背板》的标准,用紫外老化灯处理,累积紫外能量达到120kwh/㎡,取出样品观察外观。
反射率:按照GB/T 31034-2014《晶体硅太阳能电池组件用绝缘背板》的标准进行反射率测试
湿热老化处理:按照GB/T 31034-2014《晶体硅太阳能电池组件用绝缘背板》的标准,在高温高湿箱体设置温度为85℃,湿度为85%,累积时间为2000h,取出样品观察外观并测试封装强度。
下面将结合实施例进一步说明本发明提供的氟碳涂布液和氟碳层。
实施例1
本实施例提供的氟碳涂布液制备方法包括:
将36%的聚四氟乙烯类型氟碳树脂,23.6%的钛白粉,2%的消光粉,33% 的热塑性聚氨酯,0.4%聚丙烯酸酯添加剂,5%的异氰酸酯。将主体树脂分散在有机溶剂中,形成固含量50%的氟碳涂布液。其中聚四氟乙烯类型氟碳树脂由大金氟化工提供,钛白粉由杜邦公司提供,热塑性聚氨酯是由禾大化学提供的,消光粉由格雷斯有限公司提供,聚丙烯酸酯由毕克化学提供,异氰酸酯由拜耳公司提供,有机溶剂为乙酸丁酯。
将涂层涂在预制品透明PO上,PO厚度为50μm,背板的PET厚度为250μm。
形成的白色氟碳层的厚度为17μm。
制得的氟碳涂层的性能测试结果见表1。
实施例2
本实施例提供的氟碳涂布液制备方法包括:
将25%的聚四氟乙烯类型氟碳树脂,25%的钛白粉,3%的消光粉,40%的热塑性聚氨酯,0.4%聚丙烯酸酯添加剂,6.6%的异氰酸酯。将主体树脂分散在有机溶剂中,形成固含量60%的氟碳涂布液。其中聚四氟乙烯类型氟碳树脂由大金氟化工提供,钛白粉由杜邦公司提供,热塑性聚氨酯是由禾大化学提供的,消光粉由格雷斯有限公司提供,聚丙烯酸酯由毕克化学提供,异氰酸酯由拜耳公司提供,有机溶剂为乙酸丁酯。
将涂层涂在预制品透明PO上,PO厚度为150μm,背板的PET厚度为188μm。
形成的白色氟碳层的厚度为14μm。
制得的氟碳涂层的性能测试结果见表1。
实施例3
本实施例提供的氟碳涂布液制备方法包括:
将20%的聚四氟乙烯类型氟碳树脂,40%的钛白粉,3%的消光粉,31%的热塑性聚氨酯,0.4%聚丙烯酸酯添加剂,5.6%的异氰酸酯。将主体树脂分散在有机溶剂中,形成固含量55%的氟碳涂布液。其中聚四氟乙烯类型氟碳 树脂由大金氟化工提供,钛白粉由杜邦公司提供,热塑性聚氨酯是由禾大化学提供的,消光粉由格雷斯有限公司提供,聚丙烯酸酯由毕克化学提供,异氰酸酯由拜耳公司提供,有机溶剂为乙酸丁酯。
将涂层涂在预制品透明PO上,PO厚度为250μm,背板的PET厚度为100μm。
形成的白色氟碳层的厚度为20μm。
制得的氟碳涂层的性能测试结果见表1。
实施例4
本实施例提供的氟碳涂布液制备方法包括:
将40%的聚四氟乙烯类型氟碳树脂,20%的钛白粉,4%的消光粉,30%的热塑性聚氨酯,0.6%聚丙烯酸酯添加剂,5.4%的异氰酸酯。将主体树脂分散在有机溶剂中,形成固含量70%的氟碳涂布液。其中聚四氟乙烯类型氟碳树脂由大金氟化工提供,钛白粉由杜邦公司提供,热塑性聚氨酯是由禾大化学提供的,消光粉由格雷斯有限公司提供,聚丙烯酸酯由毕克化学提供,异氰酸酯由拜耳公司提供,有机溶剂为乙酸丁酯。
将涂层涂在预制品透明PO上,PO厚度为210μm,背板的PET厚度为100μm。
形成的白色氟碳层的厚度为10μm。
制得的氟碳涂层的性能测试结果见表1。
实施例5
本实施例提供的氟碳涂布液制备方法包括:
将23%的聚四氟乙烯类型氟碳树脂,22%的钛白粉,2%的消光粉,45%的热塑性聚氨酯,0.5%聚丙烯酸酯添加剂,7.5%的异氰酸酯。将主体树脂分散在有机溶剂中,形成固含量58%的氟碳涂布液。其中聚四氟乙烯类型氟碳树脂由大金氟化工提供,钛白粉由杜邦公司提供,热塑性聚氨酯是由禾大化学提供的,消光粉由格雷斯有限公司提供,聚丙烯酸酯由毕克化学提供,异 氰酸酯由拜耳公司提供,有机溶剂为乙酸丁酯。
将涂层涂在预制品透明PO上,PO厚度为120μm,背板的PET厚度为188μm。
形成的白色氟碳层的厚度为15μm。
制得的氟碳涂层的性能测试结果见表1。
实施例6
本实施例提供的氟碳涂布液制备方法包括:
将27%的聚四氟乙烯类型氟碳树脂,28%的钛白粉,4%的消光粉,35%的热塑性聚氨酯,0.3%聚丙烯酸酯添加剂,5.7%的异氰酸酯。将主体树脂分散在有机溶剂中,形成固含量65%的氟碳涂布液。其中聚四氟乙烯类型氟碳树脂由大金氟化工提供,钛白粉由杜邦公司提供,热塑性聚氨酯是由禾大化学提供的,消光粉由格雷斯有限公司提供,聚丙烯酸酯由毕克化学提供,异氰酸酯由拜耳公司提供,有机溶剂为乙酸丁酯。
将涂层涂在预制品透明PO上,PO厚度为180μm,背板的PET厚度为125μm。
形成的白色氟碳层的厚度为15μm。
制得的氟碳涂层的性能测试结果见表1。
实施例7
本实施例提供的氟碳涂布液制备方法包括:
将30%的聚四氟乙烯类型氟碳树脂,21%的钛白粉,5%的消光粉,36%的热塑性聚氨酯,0.5%聚丙烯酸酯添加剂,7.5%的异氰酸酯。将主体树脂分散在有机溶剂中,形成固含量67%的氟碳涂布液。其中聚四氟乙烯类型氟碳树脂由大金氟化工提供,钛白粉由杜邦公司提供,热塑性聚氨酯是由禾大化学提供的,消光粉由格雷斯有限公司提供,聚丙烯酸酯由毕克化学提供,异氰酸酯由拜耳公司提供,有机溶剂为乙酸丁酯。
将涂层涂在预制品透明PO上,PO厚度为65μm,背板的PET厚度为 275μm。
形成的白色氟碳层的厚度为16μm。
制得的氟碳涂层的性能测试结果见表1。
实施例8
本实施例提供的氟碳涂布液制备方法包括:
将21%的聚四氟乙烯类型氟碳树脂,21%的钛白粉,2.5%的消光粉,50%的热塑性聚氨酯,0.3%聚丙烯酸酯添加剂,5.2%的异氰酸酯。将主体树脂分散在有机溶剂中,形成固含量52%的氟碳涂布液。其中聚四氟乙烯类型氟碳树脂由大金氟化工提供,钛白粉由杜邦公司提供,热塑性聚氨酯是由禾大化学提供的,消光粉由格雷斯有限公司提供,聚丙烯酸酯由毕克化学提供,异氰酸酯由拜耳公司提供,有机溶剂为乙酸丁酯。
将涂层涂在预制品透明PO上,PO厚度为80μm,背板的PET厚度为250μm。
形成的白色氟碳层的厚度为18μm。
制得的氟碳涂层的性能测试结果见表1.
实施例9
本实施例提供的氟碳涂布液制备方法包括:
将33%的聚四氟乙烯类型氟碳树脂,23%的钛白粉,3%的消光粉,32.5%的热塑性聚氨酯,0.5%聚丙烯酸酯添加剂,8%的异氰酸酯。将主体树脂分散在有机溶剂中,形成固含量63%的氟碳涂布液。其中聚四氟乙烯类型氟碳树脂由大金氟化工提供,钛白粉由杜邦公司提供,热塑性聚氨酯是由禾大化学提供的,消光粉由格雷斯有限公司提供,聚丙烯酸酯由毕克化学提供,异氰酸酯由拜耳公司提供,有机溶剂为乙酸丁酯。
将涂层涂在预制品透明PO上,PO厚度为270μm,背板的PET厚度为50μm。
形成的白色氟碳层的厚度为15μm。
制得的氟碳涂层的性能测试结果见表1。
实施例10
本实施例提供的氟碳涂布液制备方法包括:
将29%的聚四氟乙烯类型氟碳树脂,30.5%的钛白粉,3%的消光粉,32%的热塑性聚氨酯,0.3%聚丙烯酸酯添加剂,5.2%的异氰酸酯。将主体树脂分散在有机溶剂中,形成固含量53%的氟碳涂布液。其中聚四氟乙烯类型氟碳树脂由大金氟化工提供,钛白粉由杜邦公司提供,热塑性聚氨酯是由禾大化学提供的,消光粉由格雷斯有限公司提供,聚丙烯酸酯由毕克化学提供,异氰酸酯由拜耳公司提供,有机溶剂为乙酸丁酯。
将涂层涂在预制品透明PO上,PO厚度为300μm,背板的PET厚度为50μm。
形成的白色氟碳层的厚度为17μm。
对比例1
本对比例提供的氟碳涂布液制备方法包括:
将25%的聚三氟乙烯类型氟碳树脂,25%的钛白粉,3%的消光粉,40%的热塑性聚氨酯,0.4%聚丙烯酸酯添加剂,6.6%的异氰酸酯。将主体树脂分散在有机溶剂中,形成固含量60%的氟碳涂布液。其中聚四氟乙烯类型氟碳树脂由东氟化工提供,钛白粉由杜邦公司提供,热塑性聚氨酯是由禾大化学提供的,消光粉由格雷斯有限公司提供,聚丙烯酸酯由毕克化学提供,异氰酸酯由拜耳公司提供,有机溶剂为乙酸丁酯。
将涂层涂在预制品透明PO上,PO厚度为150μm,背板的PET厚度为188μm。
形成的白色氟碳层的厚度为14μm。
制得的氟碳涂层的性能测试结果见表1。
对比例2
本对比例提供的氟碳涂布液制备方法包括:
将25%的钛白粉,3%的消光粉,65%的热塑性聚氨酯,0.4%聚丙烯酸酯添加剂,6.6%的异氰酸酯。将主体树脂分散在有机溶剂中,形成固含量60%的氟碳涂布液。其中钛白粉由杜邦公司提供,热塑性聚氨酯是由禾大化学提供的,消光粉由格雷斯有限公司提供,聚丙烯酸酯由毕克化学提供,异氰酸酯由拜耳公司提供,有机溶剂为乙酸丁酯。
将涂层涂在预制品透明PO上,PO厚度为150μm,背板的PET厚度为188μm。
形成的白色氟碳层的厚度为14μm。
制得的氟碳涂层的性能测试结果见表1。
对比例3
本对比例提供的氟碳涂布液制备方法包括:
将65%的聚四氟乙烯类型氟碳树脂,25%的钛白粉,3%的消光粉,0.4%聚丙烯酸酯添加剂,6.6%的异氰酸酯。将主体树脂分散在有机溶剂中,形成固含量60%的氟碳涂布液。其中聚四氟乙烯类型氟碳树脂由大金氟化工提供,钛白粉由杜邦公司提供,消光粉由格雷斯有限公司提供,聚丙烯酸酯由毕克化学提供,异氰酸酯由拜耳公司提供,有机溶剂为乙酸丁酯。
将涂层涂在预制品透明PO上,PO厚度为150μm,背板的PET厚度为188μm。
形成的白色氟碳层的厚度为14μm。
制得的氟碳涂层的性能测试结果见表1。
对比例4
本对比例提供的氟碳涂布液制备方法包括:
将50%的聚四氟乙烯类型氟碳树脂,25%的钛白粉,3%的消光粉,15%的热塑性聚氨酯,0.4%聚丙烯酸酯添加剂,6.6%的异氰酸酯。将主体树脂分散在有机溶剂中,形成固含量60%的氟碳涂布液。其中聚四氟乙烯类型氟碳树脂由大金氟化工提供,钛白粉由杜邦公司提供,热塑性聚氨酯是由禾大化 学提供的,消光粉由格雷斯有限公司提供,聚丙烯酸酯由毕克化学提供,异氰酸酯由拜耳公司提供,有机溶剂为乙酸丁酯。
将涂层涂在预制品透明PO上,PO厚度为150μm,背板的PET厚度为188μm。
形成的白色氟碳层的厚度为14μm。
制得的氟碳涂层的性能测试结果见表1。
将实施例1至10和对比例1至4中的氟碳膜进行下述测试:按照GB 1720-1979《漆膜附着力测定法》的标准,测试白色网格氟碳涂层对透明氟碳涂层的附着力,其中100/100代表不脱膜,90/100代表脱落10%。按照GB/T 31034-2014《晶体硅太阳能电池组件用绝缘背板》的标准,测试太阳能背板的封装强度、耐湿热老化特性以及QUV变化。
表1实施例1-10及对比例1-4提供的氟碳涂布液形成的氟碳涂层及透明太阳能背板的主要性能测试结果
Figure PCTCN2021074402-appb-000001
Figure PCTCN2021074402-appb-000002
从上述表1中可以看到,当不添加热塑性聚氨酯或者添加比例较低的时候,白色氟碳层与PO膜的附着力表现很差。而采用聚三氟乙烯类型的氟碳树脂时,初始附着力也很差,而且在UV老化测试和湿热老化测试后都发生脆裂。因为聚四氟乙烯类型树脂,本身具有的氟碳键能足够强,可以在老化过程中保持分子本身的稳定,进而保证整个背板测试老化特性。而聚三氟乙烯体系分子,一般另一个分子键是C-Cl键能,这个键能相对薄弱,就会发生老化后断裂。而热塑性聚氨酯树脂,是对涂层与PO表面的附着力具有促进作用,是不可或缺的组分。
本发明提供的太阳能背板,同时可以保证封装强度和耐候性。其中实施例2、5、6提供的氟碳涂层性能更好,氟碳层涂附着力好、不脱落,初始封装强度至少有80N/cm,反射率至少在83%以上,水蒸气(水汽)透过率低于0.68g/㎡*d,在QUV测试120kwh/㎡后均无明显外观变化,经历高湿热老化测试封装强度至少有60N/cm。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡是根据本发明内容所做的均等变化与修饰,均涵盖在本发明的专利范围内。

Claims (10)

  1. 一种氟碳涂层,其特征在于,按照重量百分比计包含20%~40%的氟碳树脂,20~40%的二氧化钛,2%~5%消光粉,0.3%~0.6%的添加剂,30%~50%的附着力促进剂,5%~8%的异氰酸酯。
  2. 根据权利要求1所述的氟碳涂层,其特征在于,所述氟碳树脂选自聚四氟乙烯中的一种。
  3. 根据权利要求1所述的氟碳涂层,其特征在于,所述钛白粉为金红石型;所述消光粉为二氧化硅;所述的添加剂是聚丙烯酸酯;所述的附着力促进剂是热塑性聚氨酯;所述的异氰酸酯选自甲苯二异氰酸酯三聚体或多聚体,六亚甲基二异氰酸酯三聚体或多聚体,异氟尔酮二异氰酸酯三聚体或多聚体。
  4. 一种氟碳涂布液,其特征在于,所述氟碳涂布液按照重量百分比计包含20%~40%的氟碳树脂,20~40%的二氧化钛,2%~5%消光粉,0.3%~0.6%的添加剂,30%~50%的附着力促进剂,5%~8%的异氰酸酯。
  5. 根据权利要求4所述的氟碳涂布液,其特征在于,所述氟碳涂布液还包括有机溶剂,在所述氟碳涂布液中,氟碳树脂,二氧化钛,消光粉,添加剂,附着力促进剂,和异氰酸酯的总量为100%。
  6. 根据权利要求4所述的氟碳涂布液,其特征在于,所述氟碳涂布液的固含量为50~70%。
  7. 根据权利要求4所述的氟碳涂布液,其特征在于,所述氟碳树脂选自聚四氟乙烯中的一种;所述钛白粉为金红石型;所述消光粉为二氧化硅;所述的添加剂是聚丙烯酸酯;所述的附着力促进剂是热塑性聚氨酯;所述的异氰酸酯选自甲苯二异氰酸酯三聚体或多聚体,六亚甲基二异氰酸酯三聚体或多聚体,异氟尔酮二异氰酸酯三聚体或多聚体。
  8. 一种透明太阳能背板,其特征在于,所述透明太阳能背板自上而下依次包括白色网格氟碳涂层,透明PO膜,第一胶粘层,基材,第二胶粘层以及氟膜层。
  9. 根据权利要求8所述的太阳能背板,其特征在于,所述白色网格氟碳涂 层,按照重量百分比计包含20%~40%的氟碳树脂,20~40%的二氧化钛,2%~5%消光粉,0.3%~0.6%的聚丙烯酸酯,30%~50%的热塑性聚氨酯树脂,5%~8%的异氰酸酯。
  10. 根据权利要求9所述的太阳能背板,其特征在于,所述白色网格氟碳涂层的厚度为10~20μm;所述的透明PO膜的厚度为50~300μm;所述基材的厚度为250~300μm;所述第一胶粘层的厚度为6~10μm;所述氟膜层的厚度为20~25μm。
PCT/CN2021/074402 2020-12-24 2021-01-29 一种氟碳涂层及一种氟碳涂布液,及一种透明太阳能背板 WO2022134270A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011552823.7 2020-12-24
CN202011552823.7A CN114656844B (zh) 2020-12-24 2020-12-24 一种氟碳涂层及一种氟碳涂布液,及一种透明太阳能背板

Publications (1)

Publication Number Publication Date
WO2022134270A1 true WO2022134270A1 (zh) 2022-06-30

Family

ID=82025234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/074402 WO2022134270A1 (zh) 2020-12-24 2021-01-29 一种氟碳涂层及一种氟碳涂布液,及一种透明太阳能背板

Country Status (2)

Country Link
CN (1) CN114656844B (zh)
WO (1) WO2022134270A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115678079A (zh) * 2022-11-29 2023-02-03 宁波东旭成新材料科技有限公司 一种带预涂层的太阳能背板基材

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104403528A (zh) * 2014-11-14 2015-03-11 无锡中洁能源技术有限公司 一种抗氧化太阳能电池背板用涂料及其制备方法
CN104409549A (zh) * 2014-11-18 2015-03-11 苏州福斯特新材料有限公司 一种高效黑色太阳能电池背板及其制备方法
CN109321049A (zh) * 2018-09-26 2019-02-12 上海维凯光电新材料有限公司 用于太阳能背板的涂料组合物及其制备方法
CN110358375A (zh) * 2019-05-31 2019-10-22 宁波激智科技股份有限公司 一种耐刮擦的氟碳层涂布液及使用该涂布液的太阳能背板

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103746021A (zh) * 2013-12-25 2014-04-23 湖南共创光伏科技有限公司 一种含彩色艺术图案的透光薄膜太阳能组件及其制作方法
CN110144149B (zh) * 2019-04-28 2021-10-26 宁波激智科技股份有限公司 一种氟碳涂层涂布液及使用该涂层的太阳能背板

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104403528A (zh) * 2014-11-14 2015-03-11 无锡中洁能源技术有限公司 一种抗氧化太阳能电池背板用涂料及其制备方法
CN104409549A (zh) * 2014-11-18 2015-03-11 苏州福斯特新材料有限公司 一种高效黑色太阳能电池背板及其制备方法
CN109321049A (zh) * 2018-09-26 2019-02-12 上海维凯光电新材料有限公司 用于太阳能背板的涂料组合物及其制备方法
CN110358375A (zh) * 2019-05-31 2019-10-22 宁波激智科技股份有限公司 一种耐刮擦的氟碳层涂布液及使用该涂布液的太阳能背板

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115678079A (zh) * 2022-11-29 2023-02-03 宁波东旭成新材料科技有限公司 一种带预涂层的太阳能背板基材

Also Published As

Publication number Publication date
CN114656844A (zh) 2022-06-24
CN114656844B (zh) 2023-02-10

Similar Documents

Publication Publication Date Title
CN111718665B (zh) 一种多层结构光伏组件封装用胶膜及其制备方法
CN109054531B (zh) 一种耐候性透明涂料及其应用
JP5769037B2 (ja) 多層フィルム及びこれを含む光電池モジュール
CN207303123U (zh) 一种高阻隔太阳能电池背板
TW201208875A (en) Multi-layered sheet and method for preparing the same
JP5003849B1 (ja) 積層シート用接着剤組成物、及び太陽電池用裏面保護シート
CN115073983A (zh) 一种轻量化光伏组件前板用液体涂料及其制备方法和应用
CN113817365A (zh) 一种光伏背板用耐候涂料及其制备方法和应用
WO2022134270A1 (zh) 一种氟碳涂层及一种氟碳涂布液,及一种透明太阳能背板
CN112226120A (zh) 一种氟碳涂布液,一种耐uv型透明氟碳涂层及包括该涂层的透明太阳能电池背板
CN111205803A (zh) 一种聚酯粘合剂、包含其太阳能光伏背板及太阳能光伏电池组件
JP5493560B2 (ja) 太陽電池用裏面保護シート及びこれを用いた太陽電池モジュール
JP5599348B2 (ja) 太陽電池用保護シートとその製造方法、太陽電池用バックシート部材、太陽電池用バックシート及び太陽電池モジュール
CN210805788U (zh) 一种透明太阳能背板
CN102082192B (zh) 一种太阳能电池背膜及其制备方法及太阳能电池
JP2010272564A (ja) 太陽電池用バックシート
CN113583588A (zh) 一种光伏组件封装胶膜及光伏组件
CN112490314A (zh) 一种氟碳涂布液及一种透明太阳能背板
CN110828596B (zh) 一种透明聚酯太阳能背板及其制备方法
WO2022141733A1 (zh) 一种氟碳涂布液及一种氟碳涂层、及一种太阳能背板
JP2012222227A (ja) 太陽電池用バックシート、太陽電池用積層体及び太陽電池モジュール並びにそれらの製造方法
CN112490313A (zh) 一种氟碳涂布液及一种透明太阳能背板
CN113528046A (zh) 高粘接高耐候涂覆型太阳能电池背板及其制备方法
CN114369408A (zh) 涂料、彩色薄膜和光伏组件
JP2012212805A (ja) 太陽電池用裏面保護シート

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21908285

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21908285

Country of ref document: EP

Kind code of ref document: A1