WO2022141273A1 - 锂铝硅酸盐玻璃、强化玻璃及其制备方法和电子产品 - Google Patents

锂铝硅酸盐玻璃、强化玻璃及其制备方法和电子产品 Download PDF

Info

Publication number
WO2022141273A1
WO2022141273A1 PCT/CN2020/141723 CN2020141723W WO2022141273A1 WO 2022141273 A1 WO2022141273 A1 WO 2022141273A1 CN 2020141723 W CN2020141723 W CN 2020141723W WO 2022141273 A1 WO2022141273 A1 WO 2022141273A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
mass percentage
lithium aluminosilicate
mgo
aluminosilicate glass
Prior art date
Application number
PCT/CN2020/141723
Other languages
English (en)
French (fr)
Inventor
周翔磊
肖子凡
平文亮
王琰
刘红刚
王明忠
陈志鸿
何进
刘攀
Original Assignee
清远南玻节能新材料有限公司
中国南玻集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清远南玻节能新材料有限公司, 中国南玻集团股份有限公司 filed Critical 清远南玻节能新材料有限公司
Priority to PCT/CN2020/141723 priority Critical patent/WO2022141273A1/zh
Publication of WO2022141273A1 publication Critical patent/WO2022141273A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum

Definitions

  • the invention relates to the field of glass, in particular to a lithium aluminosilicate glass, a strengthened glass, a preparation method thereof, and an electronic product.
  • Sheet glass is a component used to protect a display panel of a display device such as a cellular phone, a handheld computer (PDA), a digital camera, a flat panel display (FPD), and the like without affecting its display effect.
  • a display panel of a display device such as a cellular phone, a handheld computer (PDA), a digital camera, a flat panel display (FPD), and the like.
  • PDA handheld computer
  • FPD flat panel display
  • the sheet glass is further chemically strengthened to obtain tempered glass.
  • Such tempered glass is chemically strengthened, for example, by ion exchange treatment.
  • the ion exchange treatment is usually a method of immersing glass in molten salt containing potassium and/or sodium at a temperature of about 350°C to 550°C, so that sodium ions, lithium ions and ion exchange salts on the surface of the glass are separated.
  • the exchange of potassium or sodium ions forms a compressive stress layer on the glass surface.
  • glass of various compositions has been developed as a glass material for producing tempered glass.
  • the current glass cover market is mainly dominated by (boron) aluminosilicate glass and lithium (boron) aluminosilicate glass, such as Corning's Gorilla glass, NEG's T2X-1, Asahi Glass' Longji glass and domestic Xuhong's panda glass and CSG's KK3 glass, etc.
  • the strength of traditional glass is still low.
  • the stability of performance and data results is mostly unsatisfactory, and it cannot be used to protect glass for mobile devices. effect.
  • the drop height of the rough ground is attenuated by more than 40%. Therefore, in recent years, there has been a method of improving the strength and drop resistance of glass through a two-step or multi-step ion exchange chemical strengthening process, but the two-step or multi-step method increases the tempering process and cost.
  • the mass percentage of the P 2 O 5 is 3.1% to 5%; and/or the mass percentage of the Al 2 O 3 is 22% to 28%; and/or the SiO The mass percentage of 2 is 53% to 58%.
  • the mass percentage of the Al 2 O 3 is 24% to 28%, preferably, the mass percentage of the Al 2 O 3 is 26.5% to 28%.
  • the mass percentage of the Li 2 O is 3% to 5%; and/or the mass percentage of the Na 2 O is 5% to 8%; and/or the K 2 O and/or, 12% ⁇ R 2 O ⁇ 14%.
  • the mass percentage of the Li 2 O is 3% to 4%; and/or the mass percentage of the Na 2 O is 7% to 8%; and/or the K 2 O The mass percentage is 2.1% to 3%.
  • the mass percentage of the MgO is 0-1%; and/or, RO ⁇ 1%.
  • the mass percentage of the B 2 O 3 is 0-3%; and/or the mass percentage of the ZrO 2 is 0-2%.
  • the lithium aluminosilicate glass includes: SiO 2 53%-58%, Al 2 O 3 22%-28%, Li 2 O 3%-5%, Na 2 O 5%-8%, P 2 O 5 3.1%-5%, B 2 O 3 0-3%, ZrO 2 0-2%, K 2 O 2.1%-4%, MgO 0-1% and ZnO 0-1%, preferably,
  • the lithium aluminosilicate glass includes: SiO 2 53%-58%, Al 2 O 3 26.5%-28%, Li 2 O 3%-5%, Na 2 O 5%-8%, P 2 O 5 3.1% to 5%, B 2 O 3 0 to 3%, ZrO 2 0 to 2%, K 2 O 2.1% to 4%, MgO 0 to 1%, and ZnO 0 to 1%.
  • a method for preparing tempered glass the glass is tempered in mixed molten salt at a temperature of 380°C to 440°C for 2 h to 8 hours to prepare tempered glass; wherein the mixed molten salt includes sodium nitrate and potassium nitrate, and the The glass is the above-mentioned lithium aluminosilicate glass.
  • the mixed molten salt includes 4%-15% of sodium nitrate and 85%-96% of potassium nitrate in terms of mass percentage.
  • the temperature of the mixed molten salt is 400°C to 420°C; and/or, the tempering treatment time is 2h to 4h; and/or, by mass percentage, the mixed molten salt includes nitric acid Sodium 6% to 12% and potassium nitrate 88% to 94%.
  • a tempered glass is prepared by the above-mentioned preparation method of tempered glass.
  • An electronic product includes protective glass, the protective glass is the above tempered glass.
  • the above-mentioned lithium aluminosilicate glass can be tempered by a mixed salt of potassium nitrate and sodium nitrate by adjusting its components and proportions, so that the depth of the surface stress layer (Na-K) of the strengthened glass is achieved.
  • Na-K surface stress layer
  • SiO 2 is an important glass-forming oxide, and is an essential component for forming a glass skeleton.
  • SiO 2 can improve the strength and chemical stability of the glass, and can make the glass obtain a higher strain point and a lower thermal expansion coefficient. If the mass percentage of SiO 2 is less than 50%, the main network structure of the glass is poor, the mechanical properties are not good, and the weather resistance is deteriorated ; The consumption increases, and it is easy to cause frequent defects such as bubbles and stones. At the same time, the proportion of the silicon-oxygen skeleton structure is high, and the network gap is small, which is not conducive to the ion exchange in the chemical strengthening process and affects the efficiency of chemical strengthening.
  • the mass percentage of SiO 2 is 50% to 64%. In one embodiment, the mass percentage of SiO 2 is 50%, 52%, 53%, 54%, 55%, 56%, 58%, 60%, 62% or 64%. Preferably, the mass percentage of SiO 2 is 53% to 58%. More preferably, the mass percentage of SiO 2 is 53%-54.5% or 55.5%-57.5%.
  • Al 2 O 3 can participate in the network and act as a network generator.
  • Al 2 O 3 can also reduce the crystallization tendency of the glass and improve the chemical stability, thermal stability, mechanical strength and hardness of the glass. It is a necessary component to improve the elastic modulus of tensile glass, but Al 2 O 3 will increase the viscosity of the glass. If the content is too large, it will be difficult to obtain glass with long material properties, making it difficult to shape the glass.
  • Al 3+ in glass tends to form an aluminum-oxygen tetrahedral network [AlO 4 ], which is much larger than a silicon-oxygen tetrahedral [SiO 4 ] network, leaving larger voids as channels for ion diffusion.
  • the high Al 2 O 3 content in the glass can promote the migration and replacement rate of alkali metal ions.
  • the higher the Al 2 O 3 content the larger the gap of the framework network, which is more conducive to ion exchange.
  • the thermal expansion coefficient does not depend on its content.
  • the Al 2 O 3 content is too high, the high temperature viscosity of the glass increases significantly, the melting temperature during the production process is too high, and the energy consumption increases, which is also not conducive to controlling defects such as bubbles and stones.
  • the Al 2 O 3 content is low, the voids in the network space become smaller, which is not conducive to ion migration and seriously affects the efficiency of chemical enhancement.
  • the mass percentage of Al 2 O 3 is 21% to 30%.
  • the mass percentage of Al 2 O 3 is 21%, 22%, 23%, 24%, 25%, 27%, 28% or 30%.
  • the mass percentage of Al 2 O 3 is 22% to 28%.
  • the mass percentage of Al 2 O 3 is 24% to 28%, and further preferably, the mass percentage of Al 2 O 3 is 25.5% to 28%. More preferably, the mass percentage of Al 2 O 3 is 26.5%-28%.
  • Li 2 O is an ideal flux and is the main component for ion exchange. Due to the polarization characteristics of Li + , it can effectively reduce the high temperature viscosity at high temperature, and the radius of Li + is small, which can be filled in the air of the glass body, and the balance Free oxygen and proper Li 2 O can significantly enhance the mechanical strength, surface hardness and chemical resistance of the glass body.
  • the mixed molten salt of NaNO 3 and KNO 3 is used, and through the ion exchange of Li + in the glass and Na + in the molten salt, the depth of the compressive stress layer can be increased in a short time, so that the glass has more excellent properties. mechanical shock resistance.
  • the mass percentage of Li 2 O is 1.1% to 6%.
  • the mass percentage of Li 2 O is 1.1%, 1.5%, 2%, 3%, 4%, 5% or 6%.
  • the mass percentage of Li 2 O is 3% to 5%. More preferably, the mass percentage of Li 2 O is 3% to 4%.
  • Na 2 O is the outer body oxide of boroaluminosilicate glass network, which can provide free oxygen to break Si-O bond, thereby reducing the viscosity and melting temperature of aluminosilicate glass. If the content of Na 2 O is too high, the thermal expansion coefficient will be increased, the chemical stability will be reduced, and the volatilization of Na 2 O will increase, resulting in non-uniform composition of aluminosilicate glass. The content of Na 2 O is too low, which is not conducive to the melting and forming of glass, and is not conducive to the chemical exchange of Na ions and K ions, and is not conducive to the formation of a compressive stress layer on the surface of the glass, which cannot enhance the mechanical strength of the glass.
  • Na 2 O assumes the role of exchanging K ions in the molten salt to form compressive stress on the glass surface during tempering, which directly affects the strength properties of the glass. Taking all factors into consideration, in this embodiment, the mass percentage of Na 2 O is 3% to 9%. In one embodiment, the mass percentage of Na 2 O is 3%, 4%, 5%, 6%, 7%, 8% or 9%. Preferably, the mass percentage of Na 2 O is 5% to 8%.
  • K 2 O and Na 2 O are both alkali metal oxides and have similar functions in glass structure. Substituting a small amount of K 2 O for Na 2 O can exert the "mixed alkali effect" and improve a series of properties of glass. Components for improving melting properties and for increasing ion exchange rates in chemical strengthening to achieve desired surface compressive stress and stress layer depth. When the content of K 2 O is too high, the weather resistance decreases.
  • the mass percentage of K 2 O is set to be 2.1% to 6% by analyzing the alkali metal content in the glass. In one embodiment, the mass percentage of K 2 O is 2.1%, 2.5%, 3%, 4%, 5% or 6%. Preferably, the mass percentage of K 2 O is 2.1% to 4%. Further, the mass percentage of K 2 O is 2.6% to 3.5%.
  • MgO is a kind of external network oxide. MgO helps to reduce the melting point of glass. At high temperature, it can reduce the viscosity of glass, promote the melting and clarification of glass, improve uniformity and increase hydrolysis resistance. MgO can also stabilize the glass, improve the durability of the glass, prevent the glass from crystallizing, inhibit the movement of alkali metal ions in the glass, and also improve the elastic modulus of the glass. However, in the process of chemical toughening, the ion exchange of Li-Na and Na-K is seriously hindered due to its ionic radius being close to that of alkali metal ions and having a larger charge.
  • MgO can enhance the stability of the glass network space at low temperature, and can reduce the thermal expansion coefficient of the glass to a certain extent, but it hinders the ion exchange. If the mass percentage of MgO is higher than 2%, Mg 2+ seriously hinders the glass ion exchange capacity, resulting in a significant reduction in the depth of the compressive stress layer. Therefore, in a comprehensive consideration, in this embodiment, the mass percentage of MgO is 0 to 2%. In one embodiment, the mass percentage of MgO is 0, 0.5%, 1%, 1.5% or 2%. Preferably, the mass percentage of MgO is 0-1%.
  • ZnO belongs to the ranks of divalent metal oxides, and also has the effect of alkaline earth metal oxides.
  • adding some ZnO materials can effectively reduce the melting temperature of the glass, reduce the transition temperature T g of the glass, and also The alkali resistance of the glass substrate can be improved.
  • ZnO is often in two ligands, [ZnO 6 ] and [ZnO 4 ].
  • [ZnO 4 ] increases with the increase of alkali content, which increases the crystallization tendency of the glass.
  • partial zinc oxide is used to replace magnesium oxide, which is beneficial to maintain the chemical stability of the glass and promote the rapid progress of ion exchange. Therefore, the mass percentage of ZnO is preferably 0-1%. In one embodiment, the mass percentage of ZnO is 0, 0.5%, 0.8% or 1%.
  • the increase in the amount of P 2 O 5 will greatly increase the melting temperature of the glass, which will cause production difficulties, energy consumption and cost will increase . Participate in the structure, increase the melting temperature, and at the same time weaken the promotion effect of Al 2 O 3 components on glass tempering properties, resulting in the blocking of space channels in the glass during the Na-Li and Na-K ion exchange process. As a result, the depth of Na-Li ion exchange and Na-K ion exchange depth decreased, which directly led to the decrease of glass strength.
  • the mass percentage of P 2 O 5 is 3.1% to 8%. In one embodiment, the mass percentage of P 2 O 5 is 3.1%, 3.5%, 4%, 5%, 6%, 7% or 8%. Further, the mass percentage of P 2 O 5 is 3.1% to 5%. More preferably, the mass percentage of P 2 O 5 is 4.1% to 5%.
  • B 2 O 3 is one of the important components of boro-aluminosilicate glass, which belongs to the forming body oxide, which can reduce the thermal expansion coefficient of aluminosilicate glass and improve the thermal stability and chemical stability of aluminosilicate glass. If the content of B 2 O 3 is too high, boron volatilization will be serious at high temperature due to its effect of reducing the viscosity. At the same time, if the content of B 2 O 3 is too high, the molding temperature will be narrowed, which will be difficult for boro-aluminosilicate glass in tube forming. The control of wall thickness and pipe diameter accuracy brings difficulties.
  • the mass percentage of B 2 O 3 is 0 to 5%.
  • the mass percentage of B 2 O 3 is 1%, 2%, 3%, 4% or 5%.
  • the mass percentage of B 2 O 3 is 0-3%.
  • ZrO 2 mainly exists in the form of cubic [ZrO 8 ] coordination in silicate glass. Due to the large ionic radius, it is a network exosome in the glass structure, and its solubility in glass is small, which will significantly increase glass Therefore, the addition amount should not exceed 3%, and a certain amount of ZrO 2 can improve the acid and alkali resistance and refractive index of the glass. Therefore, in this embodiment, the mass percentage of ZrO 2 is 0 to 3%. In one embodiment, the mass percentage of ZrO 2 is 0, 1%, 1.5%, 2%, 2.5% or 3%. Preferably, the mass percentage of ZrO 2 is 0-2%. More preferably, the mass percentage of 0 ⁇ ZrO 2 ⁇ 2 %.
  • R 2 O Li 2 O mass percentage+Na 2 O mass percentage+K 2 O mass percentage, and 10% ⁇ R 2 O ⁇ 15 %
  • the functions are: Li 2 O, Na 2
  • Both O and K 2 O are alkali metal oxides, which belong to the network outer body in the glass structure and play a role in reducing the melting temperature of the glass.
  • the effect of Li 2 O per unit mass in reducing the melting temperature is greater than that of K 2 O, and Na 2 O reduces the melting temperature
  • the ability of melting temperature is the weakest; in the present invention, the glass needs to be ion exchanged by means of a salt bath (KNO 3 and NaNO 3 mixed salt), and the principle is to use Li and Na ions in the glass and Na and K in the salt bath.
  • the ions undergo Li-Na, Na-K and a small amount of Li-K ion exchange. Due to Na with a larger ionic radius in the salt bath, K ions replace Li and Na with a smaller ionic radius in the glass body, and finally a compressive stress is formed on the glass surface. layer, thereby increasing the strength, hardness and drop resistance of the glass.
  • the Li 2 O and Na 2 O components in the glass body are very important.
  • the mass percentage of Li 2 O is 1.1% to 6%
  • the mass percentage of Na 2 O is 3% to 9%
  • the auxiliary amount is 2.1 to 6%.
  • the total content of K 2 O is more than 10% to integrate the meltability of the glass formulation, too low will cause the melting temperature to exceed 1670 °C, and it will be impossible or difficult to produce; at the same time, it should not be too high, more than 15% will cause the glass
  • the total alkali content in the glass is too high, which greatly reduces the chemical stability of the glass, and sharply increases the thermal expansion coefficient of the glass, which does not meet the ring test and processing requirements of electronic consumer products such as mobile phone protective glass.
  • the total R2O content in the glass was found to be between 10% and 15%, preferably between 10% and 14%.
  • RO is a general term for alkaline earth metal oxides.
  • it is mainly MgO and a small amount of ZnO.
  • alkaline earth metal oxides such as MgO in the glass exchange Na-Li and Na-K It has obvious hindering effect and reduces the ion exchange rate, which not only reduces the depth of Na-Li exchange layer Dol-Na, but also reduces the depth of Na-K exchange layer Dol-K, and also reduces the stress value in the direction of stress depth, Therefore, the final mechanical strength performance of the glass is reduced, so the inventors have conducted a large number of experimental studies and tests, and preferably the total content of RO is ⁇ 2%.
  • the main reason for the rapid strengthening of the one-step method lies in the special glass complex composition, among which Al 2 O 3 , Li 2 O, Na 2 O, MgO, and P 2 O 5 and K 2 O are very important, increasing the On the one hand, the content of Al 2 O 3 can significantly increase the rate of Li-Na, Na-K ion exchange, and can form larger compressive stress values CS-K, CS30 and CS50 in the depth direction of glass stress, and on the other hand, can In order to achieve a higher stress depth value, the glass structure space that is conducive to the rapid and deep exchange of ions is provided; however, too high Al 2 O 3 content will significantly increase the melting temperature of the glass complex, which is not conducive to production.
  • Li 2 O is the main component to realize Li-Na ion exchange. Adding Li 2 O can increase CS30, CS50 and Dol-Na, and can also reduce the melting temperature of glass, but too high content will lead to serious crystallization tendency of glass, and due to Li 2 O raw material is lighter, with finer particles, serious ash fly and volatilization, and serious kiln erosion; Na 2 O is particularly important in the tempering process, which directly affects the ion exchange of Li-Na and Na - K.
  • Inhibiting the exchange of Li-Na reduces the values of CS30, CS50 and Dol-Na, but can increase CS-K and Dol-K, so the content of Na 2 O can be adjusted according to actual needs; the increase of MgO content can inhibit Li-Na and Dol-Na Na-K ion exchange, especially significantly reduces Dol-Na and Dol-K, slightly reduces CS30, CS50 and increases CS-K; the addition of P 2 O 5 can significantly increase Dol-Na and Dol-K, which is beneficial to increase ions Exchange rate, but it will reduce the chemical resistance of glass, especially acid resistance and water resistance; increasing K 2 O content will inhibit the exchange of Na-K ions, reduce CS-K, and increase Dol-K, so it can be used to adjust glass tempering properties components.
  • the inventor selects appropriate contents of each component such as Al 2 O 3 , Li 2 O, Na 2 O, MgO, P 2 O 5 and K 2 O through a large number of experiments, and mixes the components. , to achieve the effect of high pressure stress value and large stress depth of lithium aluminum silicate glass after one step of potassium nitrate and sodium nitrate mixed salt strengthening.
  • each component such as Al 2 O 3 , Li 2 O, Na 2 O, MgO, P 2 O 5 and K 2 O
  • the lithium aluminosilicate glass comprises: SiO 2 53%-58%, Al 2 O 3 22%-28%, Li 2 O 3%-5%, Na 2 O 5% to 8%, P 2 O 5 3.1% to 5%, B 2 O 3 0 to 3%, ZrO 2 0 to 2%, K 2 O 2.1% to 4%, MgO 0 to 1% and ZnO 0 ⁇ 1%.
  • the mass percentage of Al 2 O 3 is 24% to 28%.
  • the mass percentage of Li 2 O is 3% to 4%.
  • the mass percentage of Na 2 O is 7% to 8%.
  • the mass percentage of K 2 O is 2.1% to 3%.
  • the mass percentage of P 2 O 5 is 4.1% to 5%.
  • the lithium aluminosilicate glass comprises: SiO 2 53%-54.5%, Al 2 O 3 21%-30%, Li 2 O 1.1%-6%, Na 2 O by mass percentage 3% ⁇ 9%, P2O5 3.1% ⁇ 8%, B2O3 0 ⁇ 5 %, ZrO2 0 ⁇ 3 %, K2O 2.1 % ⁇ 6%, MgO 0 ⁇ 2% and ZnO 0 ⁇ 1%.
  • the lithium aluminosilicate glass comprises: SiO 2 53%-54.5%, Al 2 O 3 22%-28%, Li 2 O 3%-5%, Na 2 O 5%-8% %, P 2 O 5 3.1% to 5%, B 2 O 3 0 to 3%, ZrO 2 0 to 2%, K 2 O 2.1% to 4%, MgO 0 to 1%, and ZnO 0 to 1%.
  • the lithium aluminosilicate glass comprises: SiO 2 53%-54.5%, Al 2 O 3 22%-28%, Li 2 O 3%-5%, Na 2 O 5%- 8%, P 2 O 5 3.1%-5%, B 2 O 3 0-3%, ZrO 2 0-2%, K 2 O 2.6%-3.5%, MgO 0-1% and ZnO 0-1%,
  • the lithium aluminosilicate glass includes: SiO 2 53%-54.5%, Al 2 O 3 22%-28%, Li 2 O 3%-5%, Na 2 O 5%-8%, P 2 O 5 4.1% to 5%, B 2 O 3 0 to 3%, ZrO 2 0 to 2%, K 2 O 2.1% to 4%, MgO 0 to 1%, and ZnO 0 to 1%.
  • the lithium aluminosilicate glass includes: SiO 2 53%-54.5%, Al 2 O 3 22%-28%, Li 2 O 3%-5%, Na 2 O 5%- 8%, P 2 O 5 4.1% to 5%, B 2 O 3 0 to 3%, ZrO 2 0 to 2%, K 2 O 2.6% to 3.5%, MgO 0 to 1%, and ZnO 0 to 1%.
  • the lithium aluminosilicate glass includes: SiO 2 53%-54.5%, Al 2 O 3 24%-28%, Li 2 O 3%-5%, Na 2 O 5%- 8%, P 2 O 5 4.1% to 5%, B 2 O 3 0 to 3%, ZrO 2 0 to 2%, K 2 O 2.6% to 3.5%, MgO 0 to 1% and ZnO 0 to 1% .
  • the lithium aluminosilicate glass comprises: SiO 2 55.5%-57.5%, Al 2 O 3 21%-30%, Li 2 O 1.1%-6%, Na 2 O by mass percentage 3% ⁇ 9%, P2O5 3.1% ⁇ 8%, B2O3 0 ⁇ 5 %, ZrO2 0 ⁇ 3 %, K2O 2.1 % ⁇ 6%, MgO 0 ⁇ 2% and ZnO 0 ⁇ 1%.
  • the lithium aluminosilicate glass comprises: SiO 2 55.5%-57.5%, Al 2 O 3 22%-28%, Li 2 O 3%-5%, Na 2 O 5%-8% %, P 2 O 5 3.1% to 5%, B 2 O 3 0 to 3%, ZrO 2 0 to 2%, K 2 O 2.1% to 4%, MgO 0 to 1%, and ZnO 0 to 1%.
  • the lithium aluminosilicate glass includes: SiO 2 55.5%-57.5%, Al 2 O 3 22%-28%, Li 2 O 3%-5%, Na 2 O 5%- 8%, P 2 O 5 3.1%-5%, B 2 O 3 0-3%, ZrO 2 0-2%, K 2 O 2.6%-3.5%, MgO 0-1% and ZnO 0-1%,
  • the lithium aluminosilicate glass includes: SiO 2 55.5%-57.5%, Al 2 O 3 22%-28%, Li 2 O 3%-5%, Na 2 O 5%-8%, P 2 O 5 4.1% to 5%, B 2 O 3 0 to 3%, ZrO 2 0 to 2%, K 2 O 2.1% to 4%, MgO 0 to 1%, and ZnO 0 to 1%.
  • the lithium aluminosilicate glass includes: SiO 2 55.5%-57.5%, Al 2 O 3 22%-28%, Li 2 O 3%-5%, Na 2 O 5%- 8%, P 2 O 5 4.1% to 5%, B 2 O 3 0 to 3%, ZrO 2 0 to 2%, K 2 O 2.6% to 3.5%, MgO 0 to 1%, and ZnO 0 to 1%.
  • the lithium aluminosilicate glass includes: SiO 2 55.5%-57.5%, Al 2 O 3 24%-28%, Li 2 O 3%-5%, Na 2 O 5%- 8%, P 2 O 5 4.1% to 5%, B 2 O 3 0 to 3%, ZrO 2 0 to 2%, K 2 O 2.6% to 3.5%, MgO 0 to 1% and ZnO 0 to 1% .
  • the lithium aluminosilicate glass comprises: SiO 2 50%-64%, Al 2 O 3 25.5%-28%, Li 2 O 1.1%-6%, Na 2 O by mass percentage 3% ⁇ 9%, P2O5 3.1% ⁇ 8%, B2O3 0 ⁇ 5 %, ZrO2 0 ⁇ 3 %, K2O 2.1 % ⁇ 6%, MgO 0 ⁇ 2% and ZnO 0 ⁇ 1%.
  • the lithium aluminosilicate glass comprises: SiO 2 50%-64%, Al 2 O 3 26.5%-28%, Li 2 O 1.1%-6%, Na 2 O 3%- 9%, P 2 O 5 3.1% to 8%, B 2 O 3 0 to 5%, ZrO 2 0 to 3%, K 2 O 2.1% to 6%, MgO 0 to 2%, and ZnO 0 to 1%.
  • the lithium aluminosilicate glass includes: SiO 2 53%-58%, Al 2 O 3 26.5%-28%, Li 2 O 3%-5%, Na 2 O 5% ⁇ 8%, P 2 O 5 3.1% ⁇ 5%, B 2 O 3 0 ⁇ 3%, ZrO 2 0 ⁇ 2%, K 2 O 2.1% ⁇ 4%, MgO 0 ⁇ 1% and ZnO 0 ⁇ 1% .
  • the lithium aluminosilicate glass includes: SiO 2 53%-58%, Al 2 O 3 26.5%-28%, Li 2 O 3%-5%, Na 2 O 5%-8% %, P 2 O 5 4.1%-5%, B 2 O 3 0-3%, ZrO 2 0-2%, K 2 O 2.1%-4%, MgO 0-1% and ZnO 0-1%, Or, by mass percentage, the lithium aluminosilicate glass includes: SiO 2 53%-58%, Al 2 O 3 26.5%-28%, Li 2 O 3%-5%, Na 2 O 5%-8% , P 2 O 5 3.1%-5%, B 2 O 3 0-3%, ZrO 2 0-2%, K 2 O 2.6%-3.5%, MgO 0-1% and ZnO 0-1%.
  • the lithium aluminosilicate glass includes: SiO 2 53%-58%, Al 2 O 3 26.5%-28%, Li 2 O 3%-5%, Na 2 O 5%- 8%, P 2 O 5 4.1% to 5%, B 2 O 3 0 to 3%, ZrO 2 0 to 2%, K 2 O 2.6% to 3.5%, MgO 0 to 1%, and ZnO 0 to 1%.
  • the lithium aluminosilicate glass comprises: SiO 2 50%-64%, Al 2 O 3 21%-30%, Li 2 O 1.1%-6%, Na 2 O 3% ⁇ 9%, P2O5 3.1% ⁇ 8%, B2O3 0 ⁇ 5 %, ZrO2 0 ⁇ 3 %, K2O 2.6% ⁇ 3.5%, MgO 0 ⁇ 2 % and ZnO 0 ⁇ 1%.
  • the lithium aluminosilicate glass includes: SiO 2 53%-58%, Al 2 O 3 22%-28%, Li 2 O 3%-5%, Na 2 O 5%-8%, P 2 O 5 3.1% to 5%, B 2 O 3 0 to 3%, ZrO 2 0 to 2%, 2.6% to 3.5%, MgO 0 to 1%, and ZnO 0 to 1%.
  • the lithium aluminosilicate glass comprises: SiO 2 50%-64%, Al 2 O 3 21%-30%, Li 2 O 1.1%-6%, Na 2 O 3% ⁇ 9%, P2O5 4.1% ⁇ 5 %, B2O3 0 ⁇ 5%, ZrO2 0 ⁇ 3 %, K2O 2.1 % ⁇ 6%, MgO 0 ⁇ 2% and ZnO 0 ⁇ 1%.
  • the lithium aluminosilicate glass includes: SiO 2 53%-58%, Al 2 O 3 22%-28%, Li 2 O 3%-5%, Na 2 O 5%-8%, P 2 O 5 4.1% to 5%, B 2 O 3 0 to 3%, ZrO 2 0 to 2%, K 2 O 2.1% to 4%, MgO 0 to 1%, and ZnO 0 to 1%.
  • the lithium aluminosilicate glass includes: SiO 2 53%-54.5%, Al 2 O 3 26.5%-28%, Li 2 O 1.1%-6%, Na 2 O 3%- 9%, P 2 O 5 3.1% to 8%, B 2 O 3 0 to 5%, ZrO 2 0 to 3%, K 2 O 2.1% to 6%, MgO 0 to 2%, and ZnO 0 to 1%.
  • the lithium aluminosilicate glass includes: SiO 2 53%-54.5%, Al 2 O 3 26.5%-28%, Li 2 O 3%-5%, Na 2 O 5%-8% , P 2 O 5 3.1%-5%, B 2 O 3 0-3%, ZrO 2 0-2%, K 2 O 2.1%-4%, MgO 0-1% and ZnO 0-1%.
  • the lithium aluminosilicate glass includes: SiO 2 53%-54.5%, Al 2 O 3 26.5%-28%, Li 2 O 3%-5%, Na 2 O 5%-8% %, P 2 O 5 4.1% to 5%, B 2 O 3 0 to 3%, ZrO 2 0 to 2%, K 2 O 2.6% to 3.5%, MgO 0 to 1%, and ZnO 0 to 1%.
  • the lithium aluminosilicate glass includes: SiO 2 55.5%-57.5%, Al 2 O 3 26.5%-28%, Li 2 O 1.1%-6%, Na 2 O 3%-9% , P 2 O 5 3.1%-8%, B 2 O 3 0-5%, ZrO 2 0-3%, K 2 O 2.1%-6%, MgO 0-2% and ZnO 0-1%.
  • the lithium aluminosilicate glass includes: SiO 2 55.5%-57.5%, Al 2 O 3 26.5%-28%, Li 2 O 3%-5%, Na 2 O 5%-8% %, P 2 O 5 3.1% to 5%, B 2 O 3 0 to 3%, ZrO 2 0 to 2%, K 2 O 2.1% to 4%, MgO 0 to 1%, and ZnO 0 to 1%.
  • the lithium aluminosilicate glass includes: SiO 2 55.5%-57.5%, Al 2 O 3 26.5%-28%, Li 2 O 3%-5%, Na 2 O 5%-8% %, P 2 O 5 4.1% to 5%, B 2 O 3 0 to 3%, ZrO 2 0 to 2%, K 2 O 2.6% to 3.5%, MgO 0 to 1%, and ZnO 0 to 1%.
  • the above lithium aluminosilicate glass is designed with a special glass composition, so that the lithium aluminosilicate glass can be tempered by a mixed salt of potassium nitrate and sodium nitrate in one step, so that the surface stress layer depth of the glass (Na-K)Dol -K is greater than or equal to 20 ⁇ m, deep stress depth (Li-Na) Dol-Na is greater than or equal to 110 ⁇ m, and has a surface stress value of more than 750MPa, which finally makes the strength of lithium aluminosilicate glass higher, and the drop height of 180-grit sandpaper exceeds 180cm , with good strength and anti-drop performance.
  • the above-mentioned lithium aluminosilicate glass is suitable for one-time strengthening, can reduce the tempering process and tempering cost, and is easy to industrialize production.
  • the preparation method of lithium aluminosilicate glass in one embodiment is a preparation method of the above lithium aluminosilicate glass.
  • the preparation method includes the float forming process, the overflow down-draw method, the lead-up method, the flat-draw method, the calendering method, etc. commonly used in the art.
  • the glass paste was then homogenized at 1500° C. for 1 h. Finally, the glass paste is formed by casting molding, and then annealed to obtain lithium aluminosilicate glass. In one embodiment, the homogenized glass paste is poured on an iron mold that has been preheated at 450° C. to solidify the glass paste.
  • the method for preparing tempered glass includes the following steps: tempering the lithium aluminosilicate glass in a mixed molten salt at a temperature of 380°C to 440°C for 2h to 8h, wherein the mixed molten salt includes sodium nitrate and Potassium nitrate.
  • the mixed molten salt includes 4% to 15% of sodium nitrate and 85% to 96% of potassium nitrate.
  • the mass percentage of sodium nitrate is 4%, 6%, 8%, 10%, 12% or 15%
  • the mass percentage of potassium nitrate is 96%, 94%, 92% , 90%, 88% or 85%.
  • the mixed molten salt includes 8% to 15% of sodium nitrate and 85% to 92% of potassium nitrate.
  • the temperature of the mixed molten salt is 380°C, 390°C, 400°C, 420°C or 440°C.
  • the tempering time is 2h, 4h, 5h, 6h or 8h. Further, the temperature at which the molten salt is mixed is 400°C to 420°C. The tempering time is 2h to 4h.
  • the above-mentioned preparation method of tempered glass is simple in process, and through one-time tempering treatment, the cost of tempering and the number of procedures are reduced.
  • the above strengthening method the surface stress layer depth (Na-K) Dol-K ⁇ 20 ⁇ m, the deep layer stress depth (Li-Na) Dol-Na ⁇ 110 ⁇ m, and the surface stress value exceeding 750 MPa can be achieved in the strengthened glass.
  • the strength of the lithium aluminosilicate glass is high, and the drop height of 180-mesh sandpaper exceeds 180cm, which has excellent strength and anti-drop performance.
  • the tempered glass of one embodiment is produced by the method for producing tempered glass of the above-described embodiment.
  • the strength of the 180-grit sandpaper is far higher than that of similar products.
  • the drop height of 180-grit sandpaper exceeds 180cm. It has excellent strength and anti-drop performance. It can be used as a protective glass in electronic products to avoid damage to electronic products due to accidental drops.
  • the electronic product of one embodiment includes a protective glass, and the protective glass is the tempered glass of the above-mentioned embodiment.
  • the electronic product may be a mobile phone, a tablet computer, a digital camera, a locomotive, a solar energy, a deep water detector, and the like.
  • the above tempered glass has high strengthening and good drop resistance, and can be used as a protective glass to prevent electronic products from being damaged by accidental dropping.
  • Example 1-Example 24 and Comparative Example 1-Comparative Example 12 were prepared according to the design components (mass percentage) in the following table, and after fully mixing, they were melted at 1650 °C for 8 hours with a platinum crucible, and a platinum stirring paddle was used at the same time. Stir, after the stirring paddle is pulled out, the temperature is lowered to 1500 ° C, the temperature is kept for 1 h to homogenize, and the glass block is cast on an iron mold to form a glass block of about 80 mm ⁇ 160 mm. The mold is preheated to 450 ° C before casting. Annealing in an annealing furnace (annealing temperature is 590° C.), holding for 2 hours, then cooling to 140° C. for 6 hours, naturally cooling, taking it out for later use, and obtaining the lithium aluminosilicates of Examples 1 to 24 and Comparative Examples 1 to 12 Salt glass.
  • annealing temperature is 590° C.
  • the strengthening process of the lithium aluminosilicate glass of Examples 1 to 24 and Comparative Examples 1 to 12 is as follows:
  • the lithium aluminosilicate glass obtained in the above Examples 1 to 24 and Comparative Examples 1 to 12 was processed into a double-sided polished glass sheet of 50 mm ⁇ 50 mm ⁇ 0.7 mm, and the glass sheet was immersed in a mass percentage of In the mixed tempered salt of 4% ⁇ 15% sodium nitrate and 85% ⁇ 96% potassium nitrate, in the range of 380 °C ⁇ 440 °C, after 2 hours ⁇ 8 hours, carry out chemical strengthening, obtain embodiment 1 ⁇ embodiment 24 and the tempered glass of Comparative Examples 1 to 12.
  • the process parameters in the chemical strengthening process of each embodiment and comparative example are shown in the following table.
  • the lithium aluminosilicate glasses prepared in the above Examples 1 to 24 and Comparative Examples 1 to 12 were processed into The thermal expansion curve of the glass sample was measured with a NETZSCH-DIL 402 PC at a heating rate of 4 °C/min. Through the built-in software, the strain point temperature T g of the glass sample and the temperature between 20 °C and 300 °C were measured. The coefficient of thermal expansion CTE in the range of °C is recorded in the table.
  • the tempered glass prepared in Examples 1 to 24 and Comparative Examples 1 to 12 was measured by the stress tester FSM6000UV and SLP1000 of Orihara, Japan, to measure the surface stress value CS-K, the compressive stress value CS30 at a depth of 30 ⁇ m, and a depth of 50 ⁇ m.
  • the compressive stress value CS50, the stress value of the maximum stress layer depth Dol-Na and the stress layer depth Dol-K of Na-K ion exchange, are recorded correspondingly in the table.
  • the tempered glass prepared from Examples 1 to 24 and Comparative Examples 1 to 12 was tested for four-point flexural strength by PT-307A universal testing machine and PT-706 falling ball tester to measure the falling ball bearing height of glass substrates. , using a 64g solid steel ball, the center point is not broken three times, then record the height; install the tempered glass sheet on a 180g counterweight machine mold fixture, and use the high-quality equipment drop equipment to record in the table below .
  • the double-sided polished glass sheets of 50 mm ⁇ 50 mm ⁇ 0.7 mm prepared in Examples 1 to 24 and Comparative Examples 1 to 12 were soaked in a hydrochloric acid solution with a concentration of 5% by mass, and heated in a water bath to 95° C. , after 24 hours, take it out for cleaning and drying, weigh the weight loss before and after acid erosion, calculate the weight loss per unit area, the unit is mg/cm 2 , and record it in the table. The smaller the weight loss per unit area, the better the chemical resistance and the better the acid resistance.
  • the conventional glass cleaning process has higher requirements on the acid resistance of the glass, generally less than 10mg/cm 2 is acceptable, and the glass surface will be easily corroded and fogged during the cleaning process, resulting in a decrease in transmittance.
  • the glass melt quality "OK" indicates that in the glass preparation process, there are no defects such as bubbles and insoluble matter, and the glass quality is good.
  • CS30 represents the compressive stress value at a depth of 30 ⁇ m
  • CS50 represents the compressive stress value at a depth of 50 ⁇ m
  • Dol-Na represents the stress depth of Na and Li exchange, that is, the maximum stress layer depth
  • CS-K represents the surface stress value.
  • Dol-K represents the exchange depth of K and Na, that is, the depth of high stress value in the surface layer.
  • the glass products with the above-mentioned component characteristics have thermal expansion coefficients of 70.4 ⁇ 10 -7 to 89.2 ⁇ 10 -7 at 20°C to 300°C; melting temperature T 2 is 1622°C to 1692°C; The glass transition point temperature T g is between 547°C and 677°C.
  • the glass products of Examples 1 to 8 are subjected to mixed tempering salts containing 4% to 15% by mass of sodium nitrate and 85% to 96% by mass of potassium nitrate.
  • the glass products with the above-mentioned component characteristics have thermal expansion coefficients of 74.3 ⁇ 10 -7 to 88.4 ⁇ 10 -7 at 20°C to 300°C; melting temperature T 2 is 1620°C to 1688°C; glass The transition point temperature T g is between 594°C and 652°C.
  • the glass products of Examples 9 to 16 contain a mixed tempered salt of sodium nitrate with a mass percentage of 4% to 15% and potassium nitrate with a mass percentage of 85% to 96%.
  • Comparative Example 1 on the basis of Example 7, the mass percentage of MgO was increased to 4%, and the mass percentage of RO exceeded 2%, and the increased amount was correspondingly reduced on the SiO 2 component. Since SiO2 is the main former of glass, a small amount of adjustment within the scope of the present invention has little effect on tempering properties and strength. In Comparative Example 1, due to the increase of MgO, it seriously attenuates the tempering performance of the glass within the scope of this glass system, mainly because the Mg ion is relatively small, and it is also an oxide outside the network. The glass is undergoing Na-Li and Na.
  • the Na-Li ion exchange depth of Dol-Na was reduced from 148 ⁇ m to 131 ⁇ m, and the Na-K ion exchange depth of Dol-K was reduced from 20 ⁇ m to 12.5 ⁇ m, which directly led to the reduction of its glass strength, and the four-point bending strength was reduced from 688 MPa to 624 MPa.
  • the height is reduced from 80cm to 60cm, and the drop height of 180-grit sandpaper is reduced from 190cm to 130cm.
  • Comparative Example 2 the mass percentage of Na 2 O is increased to 12% on the basis of Example 11, and the increased amount is correspondingly reduced on the SiO 2 component. Since SiO 2 is the main form of glass, it is within the scope of the present invention. A small amount of adjustment in the interior hardly affects the tempering properties and strength. Due to the increase of Na 2 O, the total R 2 O content is 19%, and the total alkali metal content is seriously exceeding the standard. Although the melting temperature is greatly reduced, the expansion coefficient increases from 87.1 to 98.9.
  • the glass is undergoing Na-Li and Na In the process of -K ion exchange, due to the increase of Na content in the glass, the solubility gradient of Na in the tempering solution and Na ions in the glass decreases, which reduces the kinetic conditions of Na-Li exchange, resulting in its Na-Li exchange.
  • the ion exchange depth of Dol-Na was reduced from 134 ⁇ m to 113 ⁇ m
  • the Na-K ion exchange depth of Dol-K was reduced from 30 ⁇ m to 14.8 ⁇ m
  • the CS30 was reduced from 244 MPa to 168 MPa, which directly led to the decrease of its glass strength, and the four-point bending strength decreased from 835 MPa. It is 649MPa, the drop height of the ball is reduced from 100cm to 70cm, and the drop height of 180-grit sandpaper is reduced from 190cm to 140cm.
  • Comparative Example 3 the mass percentage of P 2 O 5 was increased to 10% on the basis of Example 6, and the increased amount was correspondingly reduced on the SiO 2 component. Since SiO 2 is the main form of glass, it is within the scope of the present invention. A small amount of adjustment in the interior hardly affects the tempering properties and strength. As the mass percentage of P 2 O 5 increases, the melting temperature increases greatly, from 1629 ° C to 1673 ° C, resulting in production difficulties, energy consumption and cost increase.
  • the Na-Li ion exchange depth Dol-Na decreased from 167 ⁇ m to 149 ⁇ m
  • the Na-K ion exchange depth Dol-K decreased from 38 ⁇ m to 20.5 ⁇ m
  • CS30 decreased from 239 MPa to 205 MPa, directly
  • the glass strength is reduced
  • the four-point bending strength is reduced from 792 MPa to 545 MPa
  • the falling ball height is reduced from 90 cm by 50 cm
  • the falling height of 180-grit sandpaper is reduced from 180 cm to 120 cm.
  • the acid resistance is greatly reduced due to the increase of the P2O5 component.
  • Comparative Example 4 the mass percentage of P 2 O 5 is reduced to 1% on the basis of Example 8, and the amount of reduction is correspondingly increased on the SiO 2 component. Since SiO 2 is the main form of glass, it is within the scope of the present invention. A small amount of adjustment in the interior hardly affects the tempering properties and strength.
  • the decrease of the mass percentage of P 2 O 5 causes the melting temperature of the glass to increase from 1622 °C to 1601 ° C, and the reduction of the composition of P 2 O 5 reduces the promoting effect of P 2 O 5 on tempering ions, resulting in
  • the Na-K ion exchange depth Dol-K was reduced from 30 ⁇ m to 18 ⁇ m, which directly led to the reduction of its glass strength, the four-point bending strength was reduced from 751MPa to 686MPa, the drop height of the ball was reduced from 90cm to 70cm, and the drop height of 180-grit sandpaper was reduced from 190cm to 150cm .
  • Comparative Example 5 is based on Example 2, the mass percentage of ZnO is increased to 2%, and the total mass percentage of RO reaches 3%. When it exceeds 2%, the increased amount is correspondingly reduced on the SiO2 component, since SiO2 is The main form of glass, a small amount of adjustment within the scope of the present invention hardly affects the tempering performance and strength. Compared with MgO, ZnO has less hindering effect on the exchange of Na-Li and Na-K ions, but both are divalent ions.
  • the Na-Li ion exchange depth Dol-Na is reduced from 154 ⁇ m to 118 ⁇ m
  • the Na-K ion exchange depth Dol-K is reduced from 23 ⁇ m to 10.1 ⁇ m, which directly leads to the reduction of its glass strength.
  • the point bending strength is reduced from 689MPa to 554MPa
  • the drop height of the ball is reduced from 80cm to 50cm
  • the drop height of 180-grit sandpaper is reduced from 180cm to 120cm.
  • the interstitial ions in the glass structure are mainly Li 2 O and Na 2 O, and the ionic radii of the two are too small, and the ion channel formed by the cooling and forming of the glass and the subsequent Li-Na ion exchange is too small.
  • the depth of Dol-K decreases from 30 ⁇ m to 19.5 ⁇ m
  • the four-point bending strength of the glass decreases from 751 MPa to 632 MPa
  • the height of the falling ball decreases from 90 cm to 60 cm.
  • the drop height of 180-grit sandpaper is reduced from 190cm to 140cm.
  • the surface stress layer depth (Na-K) Dol-K of the prepared strengthened glass is greater than or equal to 20 ⁇ m
  • the deep stress depth ( Li-Na)Dol-Na is greater than or equal to 110 ⁇ m or more
  • the surface stress value exceeds 750MPa, which finally makes the strength of its lithium aluminosilicate glass far surpass that of similar products. and drop resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Glass Compositions (AREA)

Abstract

一种锂铝硅酸盐玻璃、强化玻璃及其制备方法和电子产品。按质量百分比计,上述锂铝硅酸盐玻璃包括:SiO250%~64%、Al2O321%~30%、Li2O 1.1%~6%、Na2O 3%~9%、P2O53.1%~8%、B2O30~5%、ZrO20~3%、K2O 2.1%~6%、MgO 0~2%及ZnO 0~1%,其中,10%≤R2O≤15%,且RO≤2%。上述锂铝硅酸盐玻璃通过调整组成及配比,使得锂铝硅酸盐玻璃可以通过一步硝酸钾和硝酸钠的混合盐钢化,使得强化后的玻璃兼具较好的强度和抗跌落性能。

Description

锂铝硅酸盐玻璃、强化玻璃及其制备方法和电子产品 技术领域
本发明涉及玻璃领域,特别是涉及一种锂铝硅酸盐玻璃、强化玻璃及其制备方法和电子产品。
背景技术
薄板玻璃为用来保护显示器件的显示面板且不影响其显示效果的部件,显示器件例如便携式电话、掌上电脑(PDA)、数码相机、平板显示器(FPD)等。近年来,随着显示器件向更加薄型、高功能化的趋势发展,对玻璃的机械强度提出了更高的要求。因此,一般地,会对薄板玻璃进一步进行化学强化,得到钢化玻璃。
这种钢化玻璃例如通过离子交换处理来进行化学强化。离子交换处理通常为下述方法:将玻璃浸渍到温度为350℃~550℃左右的含有钾和/或钠的熔融盐中,由此使玻璃表面的钠离子、锂离子与离子交换盐中的钾离子或钠离子交换,在玻璃表面形成压缩应力层。由此,作为制造钢化玻璃的玻璃材料,开发了各种组成的玻璃。
目前的玻璃盖板市场主要以(硼)铝硅玻璃和锂(硼)铝硅玻璃为主,如康宁的Gorilla玻璃、NEG的T2X-1、旭硝子的龙迹玻璃和国内旭虹的熊猫玻璃及南玻的KK3玻璃等。但传统的玻璃的强度仍较低,在进行粗糙(砂纸)地面整机跌落测试时,性能及数据结果的稳定性大部分都不够理想,用于移动设备保护玻璃时不能起到很好的保护作用。尤其是与光滑地面的跌落高度破碎高度相比较,粗糙地面的跌落破碎高度衰减40%以上。因此,近些年出现了经过两步或者多步离子交换的化学强化工艺提高玻璃的强度和抗摔落性能的方法,但两步法或多步法增加了钢化的工序和成本。
发明内容
基于此,有必要提供一种能够通过一次化学强化得到兼具较高的强度和较 好的抗跌落性能的锂铝硅酸盐玻璃。
此外,还有必要提供一种强化玻璃及其制备方法和电子产品。
一种锂铝硅酸盐玻璃,按质量百分比计,包括:SiO 250%~64%、Al 2O 321%~30%、Li 2O 1.1%~6%、Na 2O 3%~9%、P 2O 53.1%~8%、B 2O 30~5%、ZrO 20~3%、K 2O 2.1%~6%、MgO 0~2%及ZnO 0~1%,其中,10%≤R 2O≤15%,且RO≤2%,R 2O=Li 2O质量百分比+Na 2O质量百分比+K 2O质量百分比,RO=MgO质量百分比+ZnO质量百分比。
在其中一个实施例中,所述P 2O 5的质量百分比为3.1%~5%;及/或,所述Al 2O 3的质量百分比为22%~28%;及/或,所述SiO 2的质量百分比为53%~58%。
在其中一个实施例中,所述Al 2O 3的质量百分比为24%~28%,优选地,所述Al 2O 3的质量百分比为26.5%~28%。
在其中一个实施例中,所述Li 2O的质量百分比为3%~5%;及/或,所述Na 2O的质量百分比为5%~8%;及/或,所述K 2O的质量百分比为2.1%~4%;及/或,12%≤R 2O≤14%。
在其中一个实施例中,所述Li 2O的质量百分比为3%~4%;及/或,所述Na 2O的质量百分比为7%~8%;及/或,所述K 2O的质量百分比为2.1%~3%。
在其中一个实施例中,所述MgO的质量百分比为0~1%;及/或,RO≤1%。
在其中一个实施例中,所述B 2O 3的质量百分比为0~3%;及/或,所述ZrO 2的质量百分比为0~2%。
在其中一个实施例中,按质量百分比计,包括:SiO 253%~58%、Al 2O 322%~28%、Li 2O 3%~5%、Na 2O 5%~8%、P 2O 53.1%~5%、B 2O 30~3%、ZrO 20~2%、K 2O 2.1%~4%、MgO 0~1%及ZnO 0~1%,优选地,按质量百分比计,所述锂铝硅酸盐玻璃包括:SiO 253%~58%、Al 2O 326.5%~28%、Li 2O 3%~5%、Na 2O5%~8%、P 2O 53.1%~5%、B 2O 30~3%、ZrO 20~2%、K 2O 2.1%~4%、MgO 0~1%及ZnO 0~1%。
一种强化玻璃的制备方法,将玻璃在温度为380℃~440℃的混合熔融盐中进行钢化处理2h~8h,制备强化玻璃;其中,所述混合熔融盐包括硝酸钠和硝酸钾,所述玻璃为上述的锂铝硅酸盐玻璃。
在其中一个实施例中,按质量百分比计,所述混合熔融盐包括硝酸钠4%~15%和硝酸钾85%~96%。
在其中一个实施例中,所述混合熔融盐的温度为400℃~420℃;及/或,钢化处理的时间为2h~4h;及/或,按质量百分比计,所述混合熔融盐包括硝酸钠6%~12%和硝酸钾88%~94%。
一种强化玻璃,由上述的强化玻璃的制备方法制备得到。
一种电子产品,包括保护玻璃,所述保护玻璃为上述的强化玻璃。
上述锂铝硅酸盐玻璃通过调整其组分及配比,使得锂铝硅酸盐玻璃可以通过一步硝酸钾和硝酸钠的混合盐钢化,使得强化后玻璃的表面应力层深度(Na-K)Dol-K≥20μm,深层应力深度(Li-Na)Dol-Na≥110μm,且具有超过750MPa的表面应力值,最终使得强化后的锂铝硅酸盐玻璃的强度较高,180目砂纸跌落高度超过180cm,兼具较好的强度和抗跌落性能。
具体实施方式
为了便于理解本发明,下面将结合具体实施方式对本发明进行更全面的描述。具体实施方式中给出了本发明的较佳的实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体地实施例的目的,不是旨在于限制本发明。
一实施方式的锂铝硅酸盐玻璃,按质量百分比计,包括:SiO 250%~64%、Al 2O 321%~30%、Li 2O 1.1%~6%、Na 2O 3%~9%、P 2O 53.1%~8%、B 2O 30~5%、ZrO 20~3%、K 2O 2.1%~6%、MgO 0~2%及ZnO 0~1%,其中,10%≤R 2O≤15%,且RO≤2%,R 2O=Li 2O质量百分比+Na 2O质量百分比+K 2O质量百分比,RO=MgO质量百分比+ZnO质量百分比。
其中,SiO 2是重要的玻璃形成氧化物,是形成玻璃骨架所必需的成分。SiO 2能提高玻璃的强度、化学稳定性等,可以使玻璃获得更高的应变点和较低的热 膨胀系数。若SiO 2的质量百分比不足50%,玻璃主体网络结构较差,机械性能不佳,且耐候性变差;若SiO 2的质量百分比超过64%,玻璃在生产过程中熔制温度过高,能耗增加,且容易造成频繁的气泡、结石等缺陷,同时硅氧骨架结构比例偏高,网络间隙较小,不利于化学强化过程中的离子交换,影响化学强化的效率。因此,在本实施方式中,SiO 2的质量百分比为50%~64%。在其中一个实施例中,SiO 2的质量百分比为50%、52%、53%、54%、55%、56%、58%、60%、62%或64%。优选地,SiO 2的质量百分比为53%~58%。更优选地,SiO 2的质量百分比为53%~54.5%或55.5%~57.5%。
Al 2O 3能参与网络,起网络生成体的作用,另外,Al 2O 3还能降低玻璃的结晶倾向,提高玻璃的化学稳定性、热稳定性、机械强度和硬度,Al 2O 3还是提高拉伸玻璃弹性模量的必要成分,但是Al 2O 3会增加玻璃粘度,如果含量过多,就难以得到料性长的玻璃,使玻璃成型较为困难。此外,玻璃中的Al 3+倾向于形成铝氧四面体网络[AlO 4],这比硅氧四面体[SiO 4]网络要大得多,留下较大的空隙作为离子扩散的通道。因此玻璃中高的Al 2O 3含量能促进碱金属离子的迁移和置换速率,Al 2O 3含量越高,骨架网络的间隙越大,越有利于离子交换,然而热膨胀系数却不会因为其含量过高而进一步降低,相反,Al 2O 3含量过高,玻璃高温黏度明显增大,生产过程中熔制温度过高,能耗增加,同样不利于控制气泡、结石等缺陷。然而,Al 2O 3含量偏低时,网络空间的空隙变小,不利于离子迁移,严重影响化学增强的效率。因此,综合各种因素,在本实施方式中,Al 2O 3的质量百分比为21%~30%。在其中一个实施例中,Al 2O 3的质量百分比为21%、22%、23%、24%、25%、27%、28%或30%。优选地,Al 2O 3的质量百分比为22%~28%。进一步优选地,Al 2O 3的质量百分比为24%~28%,进一步优选地,Al 2O 3的质量百分比为25.5%~28%。更进一步优选地,Al 2O 3的质量百分比为26.5%~28%。
Li 2O是理想的助熔剂,是进行离子交换的主要成分,由于Li +的极化特性,在高温下能有效降低高温黏度,且Li +的半径较小,可以填充在玻璃体空气中,平衡游离氧,适当的Li 2O可以显著增强玻璃体的机械强度、表面硬度和抗化学侵蚀性等。在后续化学强化工艺中使用NaNO 3与KNO 3的混合熔盐,通过玻璃中Li +与熔盐中Na +进行离子交换,可以在较短的时间内提升压应力层深度,使 玻璃具有更加优异的抗力学冲击性能。若Li 2O的质量百分比低于1.1%,则玻璃基本难以获得更高的应力层深度;若Li 2O的质量百分比高于6%,增加了玻璃制造成本,玻璃膨胀系数显著增大,且玻璃析晶倾向过高,玻璃生成结石缺陷的概率明显增加。因此,在本实施方式中,Li 2O的质量百分比为1.1%~6%。在其中一个实施例中,Li 2O的质量百分比为1.1%、1.5%、2%、3%、4%、5%或6%。优选地,Li 2O的质量百分比为3%~5%。更优选地,Li 2O的质量百分比为3%~4%。
Na 2O是硼铝硅酸盐玻璃网络外体氧化物,能提供游离氧使Si-O键断开,从而降低铝硅酸盐玻璃的粘度和熔制温度。Na 2O的含量过高,会增大热膨胀系数,降低化学稳定性,且Na 2O挥发量增大,导致铝硅酸盐玻璃成分不均一。Na 2O的含量过低,不利于玻璃的熔制和成型,且不利于Na离子与K离子的化学交换而不利于在玻璃表面形成压应力层,无法起到增强玻璃机械强度的目的。因此,Na 2O在钢化时承担与熔融盐中的K离子交换来形成玻璃表面的压应力的作用,直接影响玻璃的强度性能。综合各因素,在本实施方式中,Na 2O的质量百分比为3%~9%。在其中一个实施例中,Na 2O的质量百分比为3%、4%、5%、6%、7%、8%或9%。优选地,Na 2O的质量百分比为5%~8%。
K 2O和Na 2O同属于碱金属氧化物,在玻璃结构中的作用类似,以少量K 2O取代Na 2O能发挥“混合碱效应”,使玻璃的一系列性能变好,是用于提高熔融性质和用于在化学强化中提高离子交换率以获得所需表面压缩应力和应力层深度的组分。若K 2O的含量过高,则耐候性会降低。在本实施方式中,通过对玻璃中碱金属含量的分析,K 2O的质量百分比设置为2.1%~6%。在其中一个实施例中,K 2O的质量百分比为2.1%、2.5%、3%、4%、5%或6%。优选地,K 2O的质量百分比为2.1%~4%。进一步地,K 2O的质量百分比为2.6%~3.5%。
MgO是一种网络外体氧化物,MgO有助于降低玻璃熔点,高温时能降低玻璃的黏度,促进玻璃的熔化和澄清,改善均匀性,增加抗水解性。MgO也能使玻璃趋于稳定,提高玻璃的耐久性,防止玻璃产生结晶,抑制玻璃中碱金属离子的移动,也同样具有提高玻璃弹性模量的性能。但在化学钢化过程中,由于其离子半径与碱金属离子半径接近,且具有更大的电荷,因此严重阻碍Li-Na 和Na-K的离子交换。MgO在低温下可以增强玻璃网络空间的稳定性,一定程度上可以降低玻璃的热膨胀系数,但其对离子交换存在阻碍的作用,若MgO的质量百分比高于2%,Mg 2+严重阻碍玻璃的离子交换能力,导致压应力层深度明显减小。因此,综合考虑,在本实施方式中,MgO的质量百分比为0~2%。在其中一个实施例中,MgO的质量百分比为0、0.5%、1%、1.5%或2%。优选地,MgO的质量百分比为0~1%。
ZnO属于二价金属氧化物行列,同样具有碱土金属氧化物的作用,在硅酸盐玻璃体系中,加入部分的ZnO物料,可有效降低玻璃的熔化温度,降低玻璃的转变温度T g,同时还可以提高玻璃基体的耐碱性。在铝硅酸盐玻璃体中,ZnO常处于[ZnO 6]和[ZnO 4]两种配位体中,[ZnO 4]随碱含量的增高而增大,增加玻璃的析晶倾向,在本实施方式中,采用部分氧化锌取代氧化镁,有利于维持玻璃化学稳定性的同时还能促进离子交换的快速进行,因此,ZnO的质量百分比优选为0~1%。在其中一个实施例中,ZnO的质量百分比为0、0.5%、0.8%或1%。
P 2O 5的用量增加,会使得玻璃的熔化温度大大增加,造成生产困难,能耗以及成本随之增加,由于大量增加的P 2O 5的组分,使得AlPO 4四面体的含量增加,参与到结构中,增加了熔化温度的同时,削弱了Al 2O 3组分对玻璃钢化性能的促进作用,导致玻璃在进行Na-Li和Na-K离子交换过程中,由于空间通道的堵塞,而导致其Na-Li离子交换深度和Na-K离子交换深度下降,直接导致玻璃强度的降低。由于适量的P 2O 5的具有促进离子交换的作用,P 2O 5的含量过低,熔化温度会降低,但同时降低了P 2O 5对钢化离子的促进作用,而导致其Na-K离子交换深度Dol-K下降,进而导致玻璃强度降低。因此,在本实施方式中,P 2O 5的质量百分比为3.1%~8%。在其中一个实施例中,P 2O 5的质量百分比为3.1%、3.5%、4%、5%、6%、7%或8%。进一步地,P 2O 5的质量百分比为3.1%~5%。更优地,P 2O 5的质量百分比为4.1%~5%。
B 2O 3是硼铝硅酸盐玻璃的重要组分之一,属于形成体氧化物,能降低铝硅酸盐玻璃的热膨胀系数,提高铝硅酸盐玻璃的热稳定性、化学稳定性。B 2O 3的含量太高,在高温下由于其降低粘度的作用导致硼挥发严重,同时B 2O 3的含量过高会缩窄成型温度,给硼铝硅酸盐玻璃拉管成型中对壁厚、管径精度的控制 带来困难。另外当B 2O 3引入量过高时,由于硼氧三角体[BO 3]增多,硼铝硅酸盐玻璃的膨胀系数等反而增大,发生反常现象,且B 2O 3含量过高时,玻璃的离子交换能力显著降低。因此在本实施方式中,B 2O 3的质量百分比为0~5%。在其中一个实施例中,B 2O 3的质量百分比为1%、2%、3%、4%或5%。优选地,B 2O 3的质量百分比为0~3%。
ZrO 2在硅酸盐玻璃中主要是以立方体[ZrO 8]配位形式存在,由于离子半径较大,在玻璃结构中属网络外体,且其在玻璃中溶度较小,会显著增加玻璃黏度,因此其添加量不宜超过3%,且一定量的ZrO 2可提高玻璃的耐酸碱性能和折射率。因此,在本实施方式中,ZrO 2的质量百分比为0~3%。在其中一个实施例中,ZrO 2的质量百分比为0、1%、1.5%、2%、2.5%或3%。优选地,ZrO 2的质量百分比为0~2%。更优选地,0<ZrO 2的质量百分比≤2%。
另外,在本实施方式中,R 2O=Li 2O质量百分比+Na 2O质量百分比+K 2O质量百分比,且10%≤R 2O≤15%的作用是:Li 2O、N a2O和K 2O均为碱金属氧化物,其在玻璃结构中属于网络外体,起到降低玻璃熔化温度的作用,单位质量Li 2O降低熔化温度的效果大于K 2O,Na 2O降低熔化温度的能力最弱;而本发明中玻璃需要通过盐浴的方式(KNO 3和NaNO 3混合盐)进行离子交换,其原理是利用玻璃中的Li和Na离子与盐浴中的Na和K离子进行Li-Na、Na-K以及少量的Li-K离子交换,由于盐浴中离子半径较大的Na,K离子取代玻璃体中离子半径较小的Li、Na,最终在玻璃表面形成压应力层,从而增加玻璃的强度,硬度和抗跌落性能。整个过程中玻璃体中的Li 2O和Na 2O成分至关重要,Li 2O的质量百分比为1.1%~6%,Na 2O的质量百分比为3%~9%,辅助以2.1~6%的K 2O,其总含量大于10%是为了综合玻璃配方的可熔化性,太低会导致熔化温度超过1670℃,而无法或很难生产;同时也不能太高,大于15%会导致玻璃中的总碱量过高,而大大降低玻璃的化学稳定性,并且急剧增加玻璃的热膨胀系数,而不符合电子消费类产品如手机保护玻璃的环测和加工要求,因此发明人通过研究测试,发现玻璃中总R 2O含量在10%~15%,优选10%~14%。
将RO设置为≤2%的作用是RO为碱土金属氧化物的总称,本实施方式中其主要为MgO以及少量的ZnO,由于玻璃中MgO等碱土金属氧化物对Na-Li、 Na-K交换有明显的阻碍作用,降低离子交换速率,既降低了Na-Li交换层的深度Dol-Na,也降低了Na-K交换层深度Dol-K,同时还会降低应力深度方向上的应力值,从而降低玻璃的最终力学强度性能,因此发明人通过大量实验研究和测试,优选RO的总含量≤2%。
本实施方式中通过对锂铝硅酸盐玻璃体系中的各组分进行研发发现,存在一些优化组分可以实现锂铝硅玻璃在经过一步硝酸钾和硝酸钠混合盐强化即可实现高压应力值和大应力深度的效果,从而大大增强玻璃力学和机械性能,也可以显著降低工艺难度和减少制成工艺,降低物料和成本,增加效率。具体地,能实现一步法快速强化的主要原因在于特殊的玻璃配合物组分,其中Al 2O 3、Li 2O、Na 2O、MgO以及P 2O 5和K 2O至关重要,增加Al 2O 3含量一方面可以显著增加Li-Na、Na-K离子交换的速率,可以在玻璃应力深度方向上形成更大的压应力值CS-K、CS30和CS50的值,另一方面可以为实现更高应力深度值提供有利于离子快速深入交换的玻璃结构空间;但是过高的Al 2O 3含量又会显著增加玻璃配合物的熔化温度,不利于生产。Li 2O是实现Li-Na离子交换的主要成分,增加Li 2O可以增加CS30、CS50和Dol-Na,也可以降低玻璃的熔化温度,但是含量过高会导致玻璃析晶倾向严重,而且由于Li 2O原料较轻,颗粒较细,灰飞及挥发严重,炉窑侵蚀严重;Na 2O在钢化过程中尤为重要,直接影响Li-Na和Na-K离子交换,增加Na 2O含量会抑制Li-Na的交换降低CS30、CS50和Dol-Na的值,但是可以增加CS-K和Dol-K,因此可以根据实际需要调节Na 2O的含量;MgO含量的增加可以抑制Li-Na和Na-K离子交换,尤其是显著减低Dol-Na和Dol-K,少量降低CS30、CS50并增加CS-K;P 2O 5的加入可以显著增加Dol-Na和Dol-K,有利于增加离子交换速率,但是会降低玻璃的耐化学性,尤其是耐酸和耐水性能;增加K 2O含量会抑制Na-K离子的交换,降低CS-K,增加Dol-K,因此可以作为调节玻璃钢化性能的组分。在本实施方式中,发明人通过大量实验,选择合适的Al 2O 3、Li 2O、Na 2O、MgO以及P 2O 5和K 2O等各组分的含量,使各组分配合,实现锂铝硅玻璃在经过一步硝酸钾和硝酸钠混合盐强化即可实现高压应力值和大应力深度的效果。
进一步地,在其中一些实施例中,按质量百分比计,锂铝硅酸盐玻璃包括: SiO 253%~58%、Al 2O 322%~28%、Li 2O 3%~5%、Na 2O 5%~8%、P 2O 53.1%~5%、B 2O 30~3%、ZrO 20~2%、K 2O 2.1%~4%、MgO 0~1%及ZnO 0~1%。更进一步地,锂铝硅酸盐玻璃中,Al 2O 3的质量百分比为24%~28%。Li 2O的质量百分比为3%~4%。Na 2O的质量百分比为7%~8%。K 2O的质量百分比为2.1%~3%。P 2O 5的质量百分比为4.1%~5%。
在另一些实施例中,按质量百分比计,锂铝硅酸盐玻璃包括:SiO 253%~54.5%、Al 2O 321%~30%、Li 2O 1.1%~6%、Na 2O 3%~9%、P 2O 53.1%~8%、B 2O 30~5%、ZrO 20~3%、K 2O 2.1%~6%、MgO 0~2%及ZnO 0~1%。更优地,按质量百分比计,锂铝硅酸盐玻璃包括:SiO 253%~54.5%、Al 2O 322%~28%、Li 2O3%~5%、Na 2O 5%~8%、P 2O 53.1%~5%、B 2O 30~3%、ZrO 20~2%、K 2O 2.1%~4%、MgO 0~1%及ZnO 0~1%。更优地,按质量百分比计,锂铝硅酸盐玻璃包括:SiO 253%~54.5%、Al 2O 322%~28%、Li 2O 3%~5%、Na 2O 5%~8%、P 2O 53.1%~5%、B 2O 30~3%、ZrO 20~2%、K 2O 2.6%~3.5%、MgO 0~1%及ZnO 0~1%,或者,按质量百分比计,锂铝硅酸盐玻璃包括:SiO 253%~54.5%、Al 2O 322%~28%、Li 2O3%~5%、Na 2O 5%~8%、P 2O 54.1%~5%、B 2O 30~3%、ZrO 20~2%、K 2O 2.1%~4%、MgO 0~1%及ZnO 0~1%。更进一步地,按质量百分比计,锂铝硅酸盐玻璃包括:SiO 253%~54.5%、Al 2O 322%~28%、Li 2O 3%~5%、Na 2O 5%~8%、P 2O 54.1%~5%、B 2O 30~3%、ZrO 20~2%、K 2O 2.6%~3.5%、MgO 0~1%及ZnO 0~1%。更进一步地,按质量百分比计,锂铝硅酸盐玻璃包括:SiO 253%~54.5%、Al 2O 324%~28%、Li 2O 3%~5%、Na 2O 5%~8%、P 2O 54.1%~5%、B 2O 30~3%、ZrO 20~2%、K 2O2.6%~3.5%、MgO 0~1%及ZnO 0~1%。
在另一些实施例中,按质量百分比计,锂铝硅酸盐玻璃包括:SiO 255.5%~57.5%、Al 2O 321%~30%、Li 2O 1.1%~6%、Na 2O 3%~9%、P 2O 53.1%~8%、B 2O 30~5%、ZrO 20~3%、K 2O 2.1%~6%、MgO 0~2%及ZnO 0~1%。更优地,按质量百分比计,锂铝硅酸盐玻璃包括:SiO 255.5%~57.5%、Al 2O 322%~28%、Li 2O3%~5%、Na 2O 5%~8%、P 2O 53.1%~5%、B 2O 30~3%、ZrO 20~2%、K 2O 2.1%~4%、MgO 0~1%及ZnO 0~1%。更优地,按质量百分比计,锂铝硅酸盐玻璃包括:SiO 255.5%~57.5%、Al 2O 322%~28%、Li 2O 3%~5%、Na 2O 5%~8%、P 2O 53.1%~5%、 B 2O 30~3%、ZrO 20~2%、K 2O 2.6%~3.5%、MgO 0~1%及ZnO 0~1%,或者,按质量百分比计,锂铝硅酸盐玻璃包括:SiO 255.5%~57.5%、Al 2O 322%~28%、Li 2O3%~5%、Na 2O 5%~8%、P 2O 54.1%~5%、B 2O 30~3%、ZrO 20~2%、K 2O 2.1%~4%、MgO 0~1%及ZnO 0~1%。更进一步地,按质量百分比计,锂铝硅酸盐玻璃包括:SiO 255.5%~57.5%、Al 2O 322%~28%、Li 2O 3%~5%、Na 2O 5%~8%、P 2O 54.1%~5%、B 2O 30~3%、ZrO 20~2%、K 2O 2.6%~3.5%、MgO 0~1%及ZnO 0~1%。更进一步地,按质量百分比计,锂铝硅酸盐玻璃包括:SiO 255.5%~57.5%、Al 2O 324%~28%、Li 2O 3%~5%、Na 2O 5%~8%、P 2O 54.1%~5%、B 2O 30~3%、ZrO 20~2%、K 2O2.6%~3.5%、MgO 0~1%及ZnO 0~1%。
在另一些实施例中,按质量百分比计,锂铝硅酸盐玻璃包括:SiO 250%~64%、Al 2O 325.5%~28%、Li 2O 1.1%~6%、Na 2O 3%~9%、P 2O 53.1%~8%、B 2O 30~5%、ZrO 20~3%、K 2O 2.1%~6%、MgO 0~2%及ZnO 0~1%。更优地,按质量百分比计,锂铝硅酸盐玻璃包括:SiO 250%~64%、Al 2O 326.5%~28%、Li 2O 1.1%~6%、Na 2O 3%~9%、P 2O 53.1%~8%、B 2O 30~5%、ZrO 20~3%、K 2O 2.1%~6%、MgO 0~2%及ZnO 0~1%。进一步更优地,按质量百分比计,锂铝硅酸盐玻璃包括:SiO 253%~58%、Al 2O 326.5%~28%、Li 2O 3%~5%、Na 2O 5%~8%、P 2O 53.1%~5%、B 2O 30~3%、ZrO 20~2%、K 2O 2.1%~4%、MgO 0~1%及ZnO 0~1%。进一步地,按质量百分比计,锂铝硅酸盐玻璃包括:SiO 253%~58%、Al 2O 326.5%~28%、Li 2O 3%~5%、Na 2O 5%~8%、P 2O 54.1%~5%、B 2O 30~3%、ZrO 20~2%、K 2O2.1%~4%、MgO 0~1%及ZnO 0~1%,或者,按质量百分比计,锂铝硅酸盐玻璃包括:SiO 253%~58%、Al 2O 326.5%~28%、Li 2O 3%~5%、Na 2O 5%~8%、P 2O 53.1%~5%、B 2O 30~3%、ZrO 20~2%、K 2O 2.6%~3.5%、MgO 0~1%及ZnO 0~1%。更进一步地,按质量百分比计,锂铝硅酸盐玻璃包括:SiO 253%~58%、Al 2O 326.5%~28%、Li 2O 3%~5%、Na 2O 5%~8%、P 2O 54.1%~5%、B 2O 30~3%、ZrO 20~2%、K 2O 2.6%~3.5%、MgO 0~1%及ZnO 0~1%。
在另一些实施例中,按质量百分比计,锂铝硅酸盐玻璃包括:SiO 250%~64%、Al 2O 321%~30%、Li 2O 1.1%~6%、Na 2O 3%~9%、P 2O 53.1%~8%、B 2O 30~5%、ZrO 20~3%、K 2O 2.6%~3.5%、MgO 0~2%及ZnO 0~1%。更进一步地,锂铝硅酸 盐玻璃包括:SiO 253%~58%、Al 2O 322%~28%、Li 2O 3%~5%、Na 2O 5%~8%、P 2O 53.1%~5%、B 2O 30~3%、ZrO 20~2%、2.6%~3.5%、MgO 0~1%及ZnO 0~1%。
在另一些实施例中,按质量百分比计,锂铝硅酸盐玻璃包括:SiO 250%~64%、Al 2O 321%~30%、Li 2O 1.1%~6%、Na 2O 3%~9%、P 2O 54.1%~5%、B 2O 30~5%、ZrO 20~3%、K 2O 2.1%~6%、MgO 0~2%及ZnO 0~1%。更进一步地,锂铝硅酸盐玻璃包括:SiO 253%~58%、Al 2O 322%~28%、Li 2O 3%~5%、Na 2O 5%~8%、P 2O 54.1%~5%、B 2O 30~3%、ZrO 20~2%、K 2O 2.1%~4%、MgO 0~1%及ZnO 0~1%。
更优地,按质量百分比计,锂铝硅酸盐玻璃包括:SiO 253%~54.5%、Al 2O 326.5%~28%、Li 2O 1.1%~6%、Na 2O 3%~9%、P 2O 53.1%~8%、B 2O 30~5%、ZrO 20~3%、K 2O 2.1%~6%、MgO 0~2%及ZnO 0~1%。进一步地,按质量百分比计,锂铝硅酸盐玻璃包括:SiO 253%~54.5%、Al 2O 326.5%~28%、Li 2O 3%~5%、Na 2O5%~8%、P 2O 53.1%~5%、B 2O 30~3%、ZrO 20~2%、K 2O 2.1%~4%、MgO 0~1%及ZnO 0~1%。进一步地,按质量百分比计,锂铝硅酸盐玻璃包括:SiO 253%~54.5%、Al 2O 326.5%~28%、Li 2O 3%~5%、Na 2O 5%~8%、P 2O 54.1%~5%、B 2O 30~3%、ZrO 20~2%、K 2O 2.6%~3.5%、MgO 0~1%及ZnO 0~1%。
或者,按质量百分比计,锂铝硅酸盐玻璃包括:SiO 255.5%~57.5%、Al 2O 326.5%~28%、Li 2O 1.1%~6%、Na 2O 3%~9%、P 2O 53.1%~8%、B 2O 30~5%、ZrO 20~3%、K 2O 2.1%~6%、MgO 0~2%及ZnO 0~1%。进一步地,按质量百分比计,锂铝硅酸盐玻璃包括:SiO 255.5%~57.5%、Al 2O 326.5%~28%、Li 2O 3%~5%、Na 2O 5%~8%、P 2O 53.1%~5%、B 2O 30~3%、ZrO 20~2%、K 2O 2.1%~4%、MgO 0~1%及ZnO 0~1%。进一步地,按质量百分比计,锂铝硅酸盐玻璃包括:SiO 255.5%~57.5%、Al 2O 326.5%~28%、Li 2O 3%~5%、Na 2O 5%~8%、P 2O 54.1%~5%、B 2O 30~3%、ZrO 20~2%、K 2O 2.6%~3.5%、MgO 0~1%及ZnO 0~1%。
上述锂铝硅酸盐玻璃至少具有以下优点:
(1)上述锂铝硅酸盐玻璃通过特殊的玻璃成分设计,使得锂铝硅酸盐玻璃可以通过一步硝酸钾和硝酸钠的混合盐钢化,使得玻璃的表面应力层深度(Na-K)Dol-K大于等于20μm,深层应力深度(Li-Na)Dol-Na大于等于110μm,且具有超过750MPa的表面应力值,最终使得锂铝硅酸盐玻璃的强度较高,180 目砂纸跌落高度超过180cm,兼具较好的强度和抗跌落性能。
(2)上述锂铝硅酸盐玻璃适合一次强化,能够减少钢化工序和钢化成本,易于工业化生产。
一实施方式的锂铝硅酸盐玻璃的制备方法,为上述锂铝硅酸盐玻璃的一种制备方法。具体地,制备方法包括本领域常用的浮法成形工艺、溢流下拉法、引上法、平拉法、压延法等。
在其中一个实施例中,锂铝硅酸盐玻璃的制备过程具体如下:按质量百分比计,称取上述原料:SiO 250%~64%、Al 2O 321%~30%、Li 2O 1.1%~6%、Na 2O3%~9%、P 2O 53.1%~8%、B 2O 30~5%、ZrO 20~3%、K 2O 2.1%~6%、MgO 0~2%及ZnO 0~1%,其中,10%≤R 2O≤15%,且RO≤2%,R 2O=Li 2O质量百分比+Na 2O质量百分比+K 2O质量百分比,RO=MgO质量百分比+ZnO质量百分比;然后将上述原料混合,并在1650℃下进行熔制8h,得到玻璃浆料。再将玻璃浆料在1500℃下进行均化处理1h。最后采用浇注成型的方式将玻璃浆料成型,再经退火处理,得到锂铝硅酸盐玻璃。在其中一个实施例中,将经过均化处理的玻璃浆料浇注在经过450℃预热后的铁质模具上,使玻璃浆料固化成型。
一实施方式的强化玻璃的制备方法,包括如下步骤:将锂铝硅酸盐玻璃在温度为380℃~440℃的混合熔融盐中进行钢化处理2h~8h,其中,混合熔融盐包括硝酸钠和硝酸钾。
其中,按质量百分比计,混合熔融盐包括硝酸钠4%~15%和硝酸钾85%~96%。在其中一个实施例中,混合熔融盐中,硝酸钠的质量百分比为4%、6%、8%、10%、12%或15%,硝酸钾的质量百分比为96%、94%、92%、90%、88%或85%。更进一步地,混合熔融盐包括硝酸钠8%~15%和硝酸钾85%~92%。
在其中一个实施例中,混合熔融盐的温度为380℃、390℃、400℃、420℃或440℃。钢化处理的时间为2h、4h、5h、6h或8h。进一步地,混合熔融盐的温度为400℃~420℃。钢化处理的时间为2h~4h。
上述强化玻璃的制备方法工艺简单,且通过一次钢化处理,降低了钢化成本、减少了工序。另外,通过上述强化方法,能够使强化后的玻璃的表面应力 层深度(Na-K)Dol-K≥20μm,深层应力深度(Li-Na)Dol-Na≥110μm,具有超过750MPa的表面应力值,最终使得其锂铝硅酸盐玻璃的强度较高,180目砂纸跌落高度超过180cm,具有优异的强度和抗摔落性能。
一实施方式的强化玻璃,由上述实施方式的强化玻璃的制备方法制备得到。该强化玻璃的表面应力层深度(Na-K)Dol-K≥20μrn,深层应力深度(Li-Na)Dol-Na≥110μm,具有超过750MPa的表面应力值,最终使得其锂铝硅酸盐玻璃的强度远超同类产品,180目砂纸跌落高度超过180cm,具有优异的强度和抗摔落性能,能够作为保护玻璃应用在电子产品中,避免电子产品因不小心跌落而损坏的情况。
一实施方式的电子产品,包括保护玻璃,保护玻璃为上述实施方式的强化玻璃。具体地,该电子产品可以为手机、平板电脑、数码相机、机车、太阳能、深水探测器等。上述强化玻璃的强化高,且耐摔落性能好,能够作为保护玻璃避免电子产品因不小心跌落而损坏的情况。
以下为具体实施例部分:
实施例1~实施例24和对比例1~对比例12的锂铝硅酸盐玻璃的制备过程具体如下:
将实施例1~实施例24和对比例1~对比例12按照下表中设计组分配料(质量百分比),经充分混合均匀后,用铂金坩埚在1650℃熔制8h,同时用铂金搅拌桨搅拌,待抽出搅拌桨后,降温至1500℃,保温1h均化,浇铸到铁质模具上形成80mm×160mm左右大小的玻璃块,模具浇铸前预热到450℃,玻璃块硬化后立即转移至退火炉中退火(退火温度为590℃),保温2h,然后6小时降温140℃,自然冷却,取出后备用,得到实施例1~实施例24和对比例1~对比例12的锂铝硅酸盐玻璃。
实施例1~实施例24和对比例1~对比例12的锂铝硅酸盐玻璃的强化过程具体如下:
将上述实施例1~实施例24和对比例1~对比例12得到的锂铝硅酸盐玻璃加 工成50mm×50mm×0.7mm的双面抛光的玻璃片,将玻璃片浸在含有质量百分比为4%~15%的硝酸钠和85%~96%的硝酸钾的混合钢化盐中,在380℃~440℃范围内,经过2小时~8小时后进行化学强化,得到实施例1~实施例24和对比例1~对比例12的强化玻璃。各实施例和对比例的化学强化过程中的工艺参数如下表所示。
测试部分:
将上述实施例1~实施例24和对比例1~对比例12制备的锂铝硅酸盐玻璃加工成
Figure PCTCN2020141723-appb-000001
的玻璃试样,用耐驰热膨胀仪NETZSCH-DIL 402 PC在4℃/min的升温速度下测得热膨胀曲线,通过自带软件,测得玻璃试样的应变点温度T g以及20℃~300℃范围内的热膨胀系数CTE,并记录于表中。
将实施例1~实施例24和对比例1~对比例12制备的锂铝硅酸盐玻璃选取250g通过ORTON的RSV-1600型号玻璃高温黏度计测试高温黏度,将黏度为10 2dPa·S的温度定义为玻璃熔化温度T 2,并将其数值记录于表格中。
将实施例1~实施例24和对比例1~对比例12制备的强化玻璃经日本折原的应力测试仪FSM6000UV和SLP1000测得其表面应力值CS-K、30μm深度的压应力值CS30、50μm深度的压应力值CS50、应力值的最大应力层深度Dol-Na和Na-K离子交换的应力层深度Dol-K,对应记录于表格中。
将实施例1~实施例24和对比例1~对比例12制备的强化玻璃通过普赛特的PT-307A万能试验机测试四点弯曲强度和PT-706落球测试仪测量玻璃基板的落球承受高度,采用64g实心钢球,中心点砸三次不破,则记录下高度;将钢化后的玻璃片装在180g配重的机模治具上,用高品仪器的整机跌落设备记录于下表中。
将实施例1~实施例24和对比例1~对比例12制备的50mm×50mm×0.7mm的双面抛光的玻璃片浸泡在质量百分浓度为5%的盐酸溶液中,水浴加热至95℃,经过24小时后取出清洗烘干后,称量耐酸侵蚀前后的重量损失,计算单位面积上的重量损失,单位为mg/cm 2,记入表中。单位面积上的重量损失越小,说明抗化学性能越好,耐酸性越好。目前常规的玻璃清洗工艺对玻璃的耐酸性 有较高的要求,一般小于10mg/cm 2是可以允许的,再大会使得玻璃表面在清洗过程中容易被侵蚀而发雾,导致透过率降低。
表1~表5中,玻璃熔体质量“OK”表示在玻璃制备过程中,无气泡,无不溶物等缺陷,玻璃质量好。
表1实施例1~实施例8的锂铝硅酸盐玻璃的组成、强化工艺及性能数据
Figure PCTCN2020141723-appb-000002
Figure PCTCN2020141723-appb-000003
需要说明的是,上述表格中:CS30表示30μm深度的压应力值;CS50表示50μm深度的压应力值;Dol-Na表示Na和Li交换的应力深度,即最大应力层深度;CS-K表示表面应力值。Dol-K表示K和Na的交换深度,即表层高应力值深度。
表2实施例9~实施例16的锂铝硅酸盐玻璃的组成、强化工艺及相关性能数据
Figure PCTCN2020141723-appb-000004
Figure PCTCN2020141723-appb-000005
Figure PCTCN2020141723-appb-000006
表3实施例17~实施例24的锂铝硅酸盐玻璃的组成、强化工艺及性能数据
Figure PCTCN2020141723-appb-000007
Figure PCTCN2020141723-appb-000008
表3对比例1~对比例6的玻璃制品的组成、强化工艺及相关性能数据
Figure PCTCN2020141723-appb-000009
Figure PCTCN2020141723-appb-000010
表4对比例7~对比例12的玻璃制品的组成、强化工艺及相关性能数据
Figure PCTCN2020141723-appb-000011
Figure PCTCN2020141723-appb-000012
从上述表1中可以看出,具有上述组分特征的玻璃制品在20℃~300℃具有70.4×10 -7~89.2×10 -7的热膨胀系数;熔化温度T 2在1622℃~1692℃;玻璃转变点温度T g在547℃~677℃。实施例1~实施例8的玻璃制品经过含有质量百分比为4%~15%的硝酸钠和质量百分比为85%~96%的硝酸钾的混合钢化盐,在380℃~440℃范围内进行2小时~8小时化学强化后,具有Na-K交换应力深度值Dol-K≥20μm,且具有大于750MPa表面压应力CS-K、大于135μm的Na-Li离子交换深度Dol-Na、大于165MPa的CS30和大于110MPa的CS50。且实施例1~实施例8的化学强化玻璃的四点弯曲强度大于680MPa,落球高度大于80cm,180目砂纸跌落高度大于180cm,兼具优异的强度和抗摔落性能。
从表2中可以看出,具有上述组分特征的玻璃制品在20℃~300℃具有74.3×10 -7~88.4×10 -7的热膨胀系数;熔化温度T 2在1620℃~1688℃;玻璃转变点温度T g在594℃~652℃。实施例9~实施例16的玻璃制品含有质量百分比为4%~15%的硝酸钠和质量百分比为85%~96%的硝酸钾的混合钢化盐,在380℃~440℃范围内进行2小时~8小时化学强化后,具有Na-K交换应力深度值Dol-K≥25μm、大于810MPa表面压应力CS-K、大于135μm的Na-Li离子交换深度Dol-Na、大于200MPa的CS30和大于130MPa的CS50。且实施例9~实施例16 的化学强化玻璃的四点弯曲强度大于810MPa,落球高度大于100cm,180目砂纸跌落高度大于190cm。
对比例1是在实施例7的基础上将MgO的质量百分比提升到4%,且RO的质量百分比超过2%,增加的量相应在SiO 2组分上减少。由于SiO 2是玻璃的主要形成体,在本发明的范围内少量调整几乎不影响钢化性能和强度。对比例1中由于MgO的增加,导致其在本玻璃体系范围内对玻璃的钢化性能造成严重衰减,主要是由于Mg离子比较小,也是属于网络外体氧化物,玻璃在进行Na-Li和Na-K离子交换过程中,离子半径接近,且电荷较大,严重阻碍Li、Na、K离子的交换效率。其Na-Li离子交换深度Dol-Na从148μm降低为131μm,Na-K离子交换深度Dol-K从20μm降低为12.5μm,直接导致其玻璃强度降低,四点弯曲强度由688MPa降低为624MPa,落球高度由80cm降低60cm,180目砂纸跌落高度由190cm降低为130cm。
对比例2是在实施例11的基础上将Na 2O的质量百分比提升到12%,增加的量相应在SiO 2组分上减少,由于SiO 2是玻璃的主要形成体,在本发明的范围内少量调整几乎不影响钢化性能和强度。由于Na 2O的增加,导致其R 2O总含量为19%,总碱金属量严重超标,虽然熔化温度大大降低,但膨胀系数则由87.1增大至98.9,玻璃在进行Na-Li和Na-K离子交换过程中,由于玻璃中Na含量的增加,从而导致钢化液中的Na和玻璃中的Na离子的溶度梯度降低,降低了Na-Li交换的动力学条件,导致其Na-Li离子交换深度Dol-Na从134μm降低为113μm,Na-K离子交换深度Dol-K从30μm降低为14.8μm,且CS30从244MPa降低至168MPa,直接导致其玻璃强度降低,四点弯曲强度由835MPa降低为649MPa,落球高度由100cm降低70cm,180目砂纸跌落高度由190cm降低为140cm。
对比例3是在实施例6的基础上将P 2O 5的质量百分比提升到10%,增加的量相应在SiO 2组分上减少,由于SiO 2是玻璃的主要形成体,在本发明范围内少量调整几乎不影响钢化性能和强度。由于P 2O 5的质量百分比增加,熔化温度大大增加,从1629℃增大至1673℃,造成生产困难,能耗以及成本随之增加,由于大量增加的P 2O 5的组分,使得AlPO 4四面体的含量增加,参与到结构中,增 加了熔化温度的同时,削弱了Al 2O 3组分对玻璃钢化性能的促进作用,导致玻璃在进行Na-Li和Na-K离子交换过程中,由于空间通道的堵塞,而导致其Na-Li离子交换深度Dol-Na从167μm降低为149μm,Na-K离子交换深度Dol-K从38μm降低为20.5μm,且CS30从239MPa降低至205MPa,直接导致其玻璃强度降低,四点弯曲强度由792MPa降低为545MPa,落球高度由90cm降低50cm,180目砂纸跌落高度由180cm降低为120cm。同时,由于P 2O 5组分的增加,导致耐酸性大大降低。
对比例4是在实施例8的基础上将P 2O 5的质量百分比降低到1%,减少的量相应在SiO 2组分上增加,由于SiO 2是玻璃的主要形成体,在本发明范围内少量调整几乎不影响钢化性能和强度。P 2O 5的质量百分比的降低,导致玻璃的熔化温度从1622℃增大至1601℃,且由于P 2O 5的组分降低,降低了P 2O 5对钢化离子的促进作用,而导致其Na-K离子交换深度Dol-K从30μm降低为18μm,直接导致其玻璃强度降低,四点弯曲强度由751MPa降低为686MPa,落球高度由90cm降低70cm,180目砂纸跌落高度由190cm降低为150cm。
对比例5是在实施例2的基础上将ZnO的质量百分比增加到2%,RO的总质量百分比达到3%,超过2%,增加的量相应在SiO 2组分上减少,由于SiO 2是玻璃的主要形成体,在本发明范围内少量调整几乎不影响钢化性能和强度、由于ZnO相比MgO来讲对Na-Li和Na-K离子交换的阻碍作用要小,但同为2价离子,依然削弱其二者的交换速率;其Na-Li离子交换深度Dol-Na从154μm降低为118μm,Na-K离子交换深度Dol-K从23μm降低为10.1μm,直接导致其玻璃强度降低,四点弯曲强度由689MPa降低为554MPa,落球高度由80cm降低50cm,180目砂纸跌落高度由180cm降低为120cm。
对比例6是在实施例8的基础上将K 2O的质量百分比降低为0,R 2O的总质量百分比为8%,低于10%,增加的量相应在SiO 2组分上减少,由于SiO 2是玻璃的主要形成体,在本发明范围内少量调整几乎不影响钢化性能和强度。由于K 2O相比是Na-Li和Na-K离子交换的直接参与离子,作用非常重要,其对Na-Li影响不大,但是直接决定了Na-K离子交换过程,由于玻璃体中缺少K 2O组分,玻璃结构中的间隙离子主要为Li 2O和Na 2O,二者离子半径偏小,玻璃冷 却成型以及后续Li-Na离子交换形成的离子通道过小,虽然Na-K交换的表面应力值较大,但由于钢化盐中的K离子进入困难,导致其深度Dol-K从30μm降低至19.5μm,其玻璃四点弯曲强度由751MPa降低为632MPa,落球高度由90cm降低60cm,180目砂纸跌落高度由190cm降低为140cm。
从以上实验中可以看出,在上述实施例组成的锂铝硅酸盐玻璃经过一步化学强化,所制备的强化玻璃表面应力层深度(Na-K)Dol-K大于等于20μm,深层应力深度(Li-Na)Dol-Na大于等于110μm以上,超过750MPa的表面应力值,最终使得其锂铝硅酸盐玻璃的强度远超同类产品,180目砂纸跌落高度超过180公分,兼具较好的强度和抗跌落性能。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (13)

  1. 一种锂铝硅酸盐玻璃,其特征在于,按质量百分比计,包括:SiO 2 50%~64%、Al 2O 3 21%~30%、Li 2O 1.1%~6%、Na 2O 3%~9%、P 2O 5 3.1%~8%、B 2O 3 0~5%、ZrO 2 0~3%、K 2O 2.1%~6%、MgO 0~2%及ZnO 0~1%,其中,10%≤R 2O≤15%,且RO≤2%,R 2O=Li 2O质量百分比+Na 2O质量百分比+K 2O质量百分比,RO=MgO质量百分比+ZnO质量百分比。
  2. 根据权利要求1所述的锂铝硅酸盐玻璃,其特征在于,所述P 2O 5的质量百分比为3.1%~5%;及/或,所述Al 2O 3的质量百分比为22%~28%;及/或,所述SiO 2的质量百分比为53%~58%。
  3. 根据权利要求2所述的锂铝硅酸盐玻璃,其特征在于,所述Al 2O 3的质量百分比为24%~28%,优选地,所述Al 2O 3的质量百分比为26.5%~28%。
  4. 根据权利要求1~3任一项所述的锂铝硅酸盐玻璃,其特征在于,所述Li 2O的质量百分比为3%~5%;及/或,所述Na 2O的质量百分比为5%~8%;及/或,所述K 2O的质量百分比为2.1%~4%;及/或,12%≤R 2O≤14%。
  5. 根据权利要求4所述的锂铝硅酸盐玻璃,其特征在于,所述Li 2O的质量百分比为3%~4%;及/或,所述Na 2O的质量百分比为7%~8%;及/或,所述K 2O的质量百分比为2.6%~3.5%。
  6. 根据权利要求1~3及5任一项所述的锂铝硅酸盐玻璃,其特征在于,所述MgO的质量百分比为0~1%;及/或,RO≤1%。
  7. 根据权利要求1~3及5任一项所述的锂铝硅酸盐玻璃,其特征在于,所述B 2O 3的质量百分比为0~3%;及/或,所述ZrO 2的质量百分比为0~2%。
  8. 根据权利要求1所述的锂铝硅酸盐玻璃,其特征在于,按质量百分比计,包括:SiO 2 53%~58%、Al 2O 3 22%~28%、Li 2O 3%~5%、Na 2O 5%~8%、P 2O 5 3.1%~5%、B 2O 3 0~3%、ZrO 2 0~2%、K 2O 2.1%~4%、MgO 0~1%及ZnO 0~1%,优选地,按质量百分比计,所述锂铝硅酸盐玻璃包括:SiO 2 53%~58%、Al 2O 3 26.5%~28%、Li 2O 3%~5%、Na 2O 5%~8%、P 2O 5 3.1%~5%、B 2O 3 0~3%、ZrO 2 0~2%、K 2O 2.1%~4%、MgO 0~1%及ZnO 0~1%。
  9. 一种强化玻璃的制备方法,其特征在于,将玻璃在温度为380℃~440℃的混合熔融盐中进行一次钢化处理2h~8h,制备强化玻璃;其中,所述混合熔融盐 包括硝酸钠和硝酸钾,所述玻璃为权利要求1~8任一项所述的锂铝硅酸盐玻璃。
  10. 根据权利要求9所述的强化玻璃的制备方法,其特征在于,按质量百分比计,所述混合熔融盐包括硝酸钠4%~15%和硝酸钾85%~96%。
  11. 根据权利要求9所述的强化玻璃的制备方法,其特征在于,所述混合熔融盐的温度为400℃~420℃;及/或,钢化处理的时间为2h~4h;及/或,按质量百分比计,所述混合熔融盐包括硝酸钠6%~12%和硝酸钾88%~94%。
  12. 一种强化玻璃,其特征在于,由权利要求9~11任一项所述的强化玻璃的制备方法制备得到。
  13. 一种电子产品,其特征在于,包括保护玻璃,所述保护玻璃为权利要求12所述的强化玻璃。
PCT/CN2020/141723 2020-12-30 2020-12-30 锂铝硅酸盐玻璃、强化玻璃及其制备方法和电子产品 WO2022141273A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/141723 WO2022141273A1 (zh) 2020-12-30 2020-12-30 锂铝硅酸盐玻璃、强化玻璃及其制备方法和电子产品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/141723 WO2022141273A1 (zh) 2020-12-30 2020-12-30 锂铝硅酸盐玻璃、强化玻璃及其制备方法和电子产品

Publications (1)

Publication Number Publication Date
WO2022141273A1 true WO2022141273A1 (zh) 2022-07-07

Family

ID=82260035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/141723 WO2022141273A1 (zh) 2020-12-30 2020-12-30 锂铝硅酸盐玻璃、强化玻璃及其制备方法和电子产品

Country Status (1)

Country Link
WO (1) WO2022141273A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2319812A1 (en) * 2003-10-24 2011-05-11 Schott Ag Lithia-alumina-silica containing glass compositions and glasses suitable for chemical tempering and articles made using the chemically tempered glass
CN108101362A (zh) * 2017-12-13 2018-06-01 彩虹显示器件股份有限公司 一种玻璃组合物及其强化方法
CN108314316A (zh) * 2018-02-12 2018-07-24 东旭科技集团有限公司 玻璃用组合物、化学强化玻璃及其制备方法和应用
CN108726876A (zh) * 2018-06-11 2018-11-02 中国南玻集团股份有限公司 可离子交换的铝乳浊玻璃及其制备方法
CN109020196A (zh) * 2018-10-15 2018-12-18 郑州大学 一种易于离子交换的化学强化玻璃
US20190263713A1 (en) * 2016-10-18 2019-08-29 AGC Inc. Glass for chemical strengthening, chemically strengthened glass and method for manufacturing chemically strengthened glass
CN110869328A (zh) * 2017-06-02 2020-03-06 肖特玻璃科技(苏州)有限公司 高抗接触性的柔性超薄玻璃
CN112110645A (zh) * 2020-09-23 2020-12-22 成都光明光电股份有限公司 一种玻璃、玻璃制品及其制造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2319812A1 (en) * 2003-10-24 2011-05-11 Schott Ag Lithia-alumina-silica containing glass compositions and glasses suitable for chemical tempering and articles made using the chemically tempered glass
US20190263713A1 (en) * 2016-10-18 2019-08-29 AGC Inc. Glass for chemical strengthening, chemically strengthened glass and method for manufacturing chemically strengthened glass
CN110869328A (zh) * 2017-06-02 2020-03-06 肖特玻璃科技(苏州)有限公司 高抗接触性的柔性超薄玻璃
CN108101362A (zh) * 2017-12-13 2018-06-01 彩虹显示器件股份有限公司 一种玻璃组合物及其强化方法
CN108314316A (zh) * 2018-02-12 2018-07-24 东旭科技集团有限公司 玻璃用组合物、化学强化玻璃及其制备方法和应用
CN108726876A (zh) * 2018-06-11 2018-11-02 中国南玻集团股份有限公司 可离子交换的铝乳浊玻璃及其制备方法
CN109020196A (zh) * 2018-10-15 2018-12-18 郑州大学 一种易于离子交换的化学强化玻璃
CN112110645A (zh) * 2020-09-23 2020-12-22 成都光明光电股份有限公司 一种玻璃、玻璃制品及其制造方法

Similar Documents

Publication Publication Date Title
CN110615610B (zh) 锂锆质铝硅酸盐玻璃、强化玻璃及其制备方法和显示器件
WO2021068423A1 (zh) 铝硅酸盐玻璃、强化玻璃及其制备方法和显示器件
CN114409260B (zh) 微晶玻璃、微晶玻璃制品及其制造方法
CN112707639A (zh) 锂铝硅酸盐玻璃、强化玻璃及其制备方法和电子产品
US10676390B2 (en) Glass-ceramic article and glass-ceramic for electronic device cover plate
CN108503213B (zh) 铝硅酸盐玻璃及强化玻璃
CN108863050A (zh) 锂铝硅酸盐玻璃及其制备方法
JP2012214356A (ja) カバーガラス及びその製造方法
CN110204195B (zh) 一种超薄玻璃及其制备方法
JP2009084076A (ja) 強化ガラス及び強化ガラス基板、並びにその製造方法
WO2021068424A1 (zh) 铝硅酸盐玻璃、强化玻璃及其制备方法、盖板、背板及装置
WO2022166029A1 (zh) 铝硅酸盐强化玻璃及其制备方法
CN112723736B (zh) 玻璃、强化玻璃及其制备方法和电子产品
WO2022166028A1 (zh) 铝硅酸盐强化玻璃及其制备方法
CN109694187B (zh) 一种低软化点含锂玻璃
WO2020011171A1 (zh) 一种适合3d成型且可改善离子交换性能的铝硅酸盐玻璃
CN114212996A (zh) 一种锂铝硅酸盐玻璃及其制备方法
CN113683303B (zh) 一种碱铝硅酸盐玻璃及应用
CN112919802B (zh) 一种高强度柔性耐辐射玻璃及其制备方法
WO2019100782A1 (zh) 一种玻璃纤维组合物及其玻璃纤维和复合材料
CN109809687A (zh) 一种用于高分辨率显示器的基板玻璃
CN111116040A (zh) 一种具有非单一表面压应力斜率的钢化玻璃制品及其制备方法
CN108395096A (zh) 玻璃及浮法玻璃
WO2022141274A1 (zh) 玻璃、强化玻璃及其制备方法和电子产品
WO2022141273A1 (zh) 锂铝硅酸盐玻璃、强化玻璃及其制备方法和电子产品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20967613

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20967613

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24/10/2023)