WO2022139533A1 - 전해액 및 이를 포함하는 이차전지 - Google Patents

전해액 및 이를 포함하는 이차전지 Download PDF

Info

Publication number
WO2022139533A1
WO2022139533A1 PCT/KR2021/019784 KR2021019784W WO2022139533A1 WO 2022139533 A1 WO2022139533 A1 WO 2022139533A1 KR 2021019784 W KR2021019784 W KR 2021019784W WO 2022139533 A1 WO2022139533 A1 WO 2022139533A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
bond
independently
carbon
Prior art date
Application number
PCT/KR2021/019784
Other languages
English (en)
French (fr)
Inventor
최지영
김민구
이상호
강완철
윤종철
한지성
장민정
Original Assignee
솔브레인 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210185800A external-priority patent/KR20220092420A/ko
Application filed by 솔브레인 주식회사 filed Critical 솔브레인 주식회사
Priority to EP21911598.7A priority Critical patent/EP4270581A1/en
Publication of WO2022139533A1 publication Critical patent/WO2022139533A1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrolyte for a battery and a secondary battery including the same, and more particularly, to an electrolyte capable of improving battery charging efficiency and output, enabling long-term storage, and increasing capacity retention at high temperatures, and the same It relates to a secondary battery comprising.
  • Lithium secondary batteries enable smooth movement of lithium ions by putting an electrolyte between the positive and negative electrodes, and the use of electrical energy by the method in which electricity is generated or consumed by redox reactions according to insertion and desorption from the positive and negative electrodes. make it easy
  • an object of the present invention is to provide an electrolyte including a novel electrolyte additive.
  • Another object of the present invention is to provide a secondary battery having reduced charging resistance, improved output of the battery, improved recovery capacity at high temperature, so that long-term storage is possible, and excellent life retention rate at high temperature.
  • the present invention provides an electrolyte solution comprising an organic solvent, a lithium salt, and at least one compound selected from compounds represented by Chemical Formulas 1 to 6 below.
  • n and k are independently integers from 0 to 5; wherein m and l are independently 0 or 1; At least one of n and m and at least one of k and l is non-zero.
  • X 1 and X 2 are independently F, Cl, Br, or I
  • R 18 and R 19 are independently an alkylene group having 1 to 5 carbon atoms, and E 7 is a bond, an alkylene group having 1 to 3 carbon atoms, or a cyclic carbonyl group having 2 to 5 carbon atoms, an ether group or an ester group, wherein R 20 is a substituted or unsubstituted linear or cyclic carbonate group having 2 to 5 carbon atoms, a carbonyl group, an ether group, a phosphate group, a sulfonate or a sulfate group, and the substitution is F, Cl, Br And at least one selected from the group consisting of I or substituted with an alkenyl group having 1 to 3 carbon atoms, wherein E 8 is a bond or a saturated or unsaturated alkylene group having 1 to 3 carbon atoms, or an ether group, wherein n is 0 or 1.
  • P and O are each phosphorus and oxygen; A is a bond or oxygen; Q is oxygen or an unshared pair of electrons; R 21 , R 22 , R 23 and R 24 are independently hydrogen and 1 to 10 carbon atoms. of a linear or branched alkyl group, alkenyl group, alkynyl group, alkoxy group, alkoxycarbonyl group, alkoxyalkyl group, fluoroalkyl group, or is; Optionally, R 21 or R 22 may be independently linked to R 23 or R 24 to form a double bond or a ring; wherein n is an integer from 0 to 3; The * is a bonding position.
  • the electrolyte may contain 0.1 to 10 wt% of one or more compounds selected from compounds represented by Formulas 1 to 6, preferably, in an amount of 0.1 to 10% by weight based on the total weight of the electrolyte.
  • the at least one compound selected from the compounds represented by Chemical Formulas 1 to 6 may be preferably a compound represented by the following Chemical Formula 5-52.
  • the compound represented by Formula 1 may be at least one selected from the group consisting of compounds represented by Formulas 1-1 to 1-24.
  • a 1 and A 2 are each independently phosphorus or sulfur, and R 1 ', R 2 ', R 3 ', and R 4 ' are each independently hydrogen, or a substituted or unsubstituted carbon number.
  • An alkyl group of 1 to 10, m and n are each independently an integer of 1 to 5,
  • a line is a bond, a point where a bond and a bond not describing a separate element meet is carbon, and the number of hydrogens satisfying the valence of the carbon is omitted.
  • the compound represented by Formula 2 may be at least one selected from the group consisting of compounds represented by Formulas 2-1 to 2-4.
  • the compound represented by Formula 3 may be at least one selected from the group consisting of compounds represented by Formulas 3-1 to 3-2 below.
  • a line is a bond, and if a separate element is not described, the point where the bond and the bond meet is carbon, and the number of hydrogens satisfying the valence of the carbon is omitted.
  • the compound represented by Formula 4 may be a compound represented by Formula 4a below.
  • the compound represented by Formula 5 may be at least one selected from the group consisting of compounds represented by Formulas 5-1 to 5-52.
  • a line is a bond, and when a separate element is not described, the point where the bond and the bond meet is carbon, and the number of hydrogens satisfying the valence of the carbon is omitted.
  • the compound represented by Formula 6 may be at least one selected from the group consisting of compounds represented by Formulas 6-1 to 6-31 below.
  • the electrolyte may further include 0.1 to 10% by weight of a carbonate-based compound, preferably based on 100% by weight of the total electrolyte.
  • the carbonate-based compound may include at least one selected from the group consisting of compounds represented by the following Chemical Formulas 7-1 to 7-3.
  • a line is a bond, a point where a bond and a bond not describing a separate element meet is carbon, and the number of hydrogens satisfying the valence of the carbon is omitted.
  • the organic solvent is preferably ethylene carbonate (EC), diethyl carbonate (DEC), ethylmethyl carbonate (EMC), dimethyl carbonate (DMC), propylene carbonate (PC), dipropyl carbonate (DPC), butylene carbonate, It may include at least one selected from the group consisting of methylpropyl carbonate, ethylpropyl carbonate, methyl propionate (MP), ethyl propionate (EP), and propyl propionate (PP).
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • EMC ethylmethyl carbonate
  • DMC dimethyl carbonate
  • PC propylene carbonate
  • DPC dipropyl carbonate
  • butylene carbonate butylene carbonate
  • the lithium salt is preferably LiPF 6 , LiBF 4 , LiCl, LiBr, LiI, LiClO 4 , LiB 10 Cl 10 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2 )(C 2 F 5 SO 2 )NLi, (SO 2 F) 2 NLi, and (CF 3 SO 2 ) 2 NLi at least one selected from the group consisting of can do.
  • the electrolyte may preferably contain 0.6 to 2 mol% of the lithium salt based on 100 mol% of the total.
  • the present invention provides a secondary battery comprising a negative electrode, a positive electrode, a separator interposed between the negative electrode and the positive electrode, and an electrolyte, wherein the electrolyte is the above-described electrolyte.
  • the secondary battery may be a battery for a vehicle.
  • the electrolyte according to the present invention When the electrolyte according to the present invention is applied as an electrolyte of a secondary battery, charging efficiency and output can be improved due to low charging resistance, and there is an effect of providing a secondary battery having excellent long-term life and high-temperature capacity retention.
  • the present inventors have been researching a secondary battery having improved output and excellent high temperature recovery capacity and lifespan characteristics in order to manufacture a battery that can be used as an automobile battery. It was confirmed that all of the objects of the present invention can be achieved, and based on this, the present invention was completed.
  • the present invention provides an electrolyte comprising an organic solvent, a lithium salt, and at least one compound selected from compounds represented by the following Chemical Formulas 1 to 6, and in this case, the charging resistance is reduced to improve the output of the battery, and to recover at a high temperature Long-term storage is possible due to improved capacity, and there is an excellent effect of maintaining lifespan at high temperatures.
  • n and k are independently integers from 0 to 5; wherein m and l are independently 0 or 1; At least one of n and m and at least one of k and l is non-zero.
  • X 1 and X 2 are independently F, Cl, Br, or I
  • R 18 and R 19 are independently an alkylene group having 1 to 5 carbon atoms, and E 7 is a bond, an alkylene group having 1 to 3 carbon atoms, or a cyclic carbonyl group having 2 to 5 carbon atoms, an ether group or an ester group, wherein R 20 is a substituted or unsubstituted linear or cyclic carbonate group having 2 to 5 carbon atoms, a carbonyl group, an ether group, a phosphate group, a sulfonate or a sulfate group, and the substitution is F, Cl, Br And at least one selected from the group consisting of I or substituted with an alkenyl group having 1 to 3 carbon atoms, wherein E 8 is a bond or a saturated or unsaturated alkylene group having 1 to 3 carbon atoms, or an ether group, wherein n is 0 or 1.
  • P and O are each phosphorus and oxygen; A is a bond or oxygen; Q is oxygen or an unshared electron pair; R 21 , R 22 , R 23 and R 24 are independently hydrogen, carbon atoms 1 to 10 linear or branched alkyl group, alkenyl group, alkynyl group, alkoxy group, alkoxycarbonyl group, alkoxyalkyl group, fluoroalkyl or is; Optionally, R 21 or R 22 may be independently linked to R 23 or R 24 to form a double bond or a ring; wherein n is an integer from 0 to 3; The * is a bonding position.
  • the electrolyte is preferably 0.1 to 10% by weight, preferably 0.2 to 5% by weight, more preferably 0.4 to 2.0% by weight of one or more compounds selected from compounds represented by Formulas 1 to 6, based on the total weight of the electrolyte %, and most preferably 0.5 to 1.5 wt%, in this case, the compatibility with the electrolyte is excellent, so that manufacturing efficiency can be further improved, and there is an advantage in that the battery output improvement effect is more excellent.
  • the at least one compound selected from the compounds represented by Formulas 1 to 6 is preferably a compound represented by the following Formula 5-52, but is not limited thereto.
  • the compound represented by Formula 1 is preferably at least one selected from the group consisting of compounds represented by Formulas 1-1 to 1-24, but is not limited thereto.
  • a 1 and A 2 are each independently phosphorus or sulfur, and R 1 ', R 2 ', R 3 ', and R 4 ' are each independently hydrogen, or a substituted or unsubstituted carbon number.
  • An alkyl group of 1 to 10, m and n are each independently an integer of 1 to 5,
  • a line is a bond, a point where a bond and a bond not describing a separate element meet is carbon, and the number of hydrogens satisfying the valence of the carbon is omitted.
  • the compound represented by Formula 2 is preferably at least one selected from the group consisting of compounds represented by Formulas 2-1 to 2-4, but is not limited thereto.
  • the compound represented by Chemical Formula 3 is preferably at least one selected from the group consisting of compounds represented by the following Chemical Formulas 3-1 to 3-2, but is not limited thereto.
  • a line is a bond, and if a separate element is not described, the point where the bond and the bond meet is carbon, and the number of hydrogens satisfying the valence of the carbon is omitted.
  • the compound represented by the formula (4) is preferably a compound represented by the following formula (4a), but is not limited thereto.
  • the compound represented by Formula 5 is preferably at least one selected from the group consisting of compounds represented by Formulas 5-1 to 5-52, but is not limited thereto.
  • a line is a bond, and when a separate element is not described, the point where the bond and the bond meet is carbon, and the number of hydrogens satisfying the valence of the carbon is omitted.
  • the compound represented by Chemical Formula 6 is preferably at least one selected from the group consisting of compounds represented by the following Chemical Formulas 6-1 to 6-31, but is not limited thereto.
  • the alkylene group refers to a divalent hydrocarbon group
  • the propylene group refers to -CH 2 CH 2 CH 2 - or -CH 2 CH(CH 3 )-.
  • the alkenyl group refers to a monovalent hydrocarbon group including a carbon-carbon double bond
  • the alkynyl group refers to a monovalent hydrocarbon group including a carbon-carbon triple bond
  • the 1-butynyl group refers to CHCCH 2 CH 2 —.
  • the R a , R c , Re , R f and R i are preferably independently a linear or branched alkylene group having 1 to 3 carbon atoms, and in this case, the charging efficiency and output are improved due to the low charging resistance of the secondary battery. and long-term lifespan and high-temperature capacity retention rate are excellent.
  • the R b , R d , R g and R h are preferably independently hydrogen or a linear alkyl group having 1 to 3 carbon atoms, and in this case, the charging resistance of the secondary battery is low, so that the charging efficiency and output can be improved, and long-term It has an excellent effect of lifespan and high temperature capacity retention rate.
  • the Q 1 and Q 2 are preferably phosphorus (P) independently, and in this case, the charging resistance of the secondary battery is low, so that the charging efficiency and output can be improved, and the long-term lifespan and high-temperature capacity retention rate are excellent.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are preferably independently hydrogen, a linear or branched alkyl group having 1 to 5 carbon atoms, an alkenyl group, an alkynyl group, An alkoxy group, an alkoxycarbonyl group, or an alkoxyalkyl group, more preferably independently hydrogen, a linear or branched alkyl group having 1 to 3 carbon atoms, an alkenyl group, an alkynyl group, an alkoxy group, an alkoxycarbonyl group or an alkoxyalkyl group, in this case the secondary battery Charging efficiency and output can be improved because the charging resistance of
  • the R 3 and R 4 or R 7 and R 8 are preferably combined to form an aromatic ring, more preferably a benzene ring, and in this case, the charging resistance of the secondary battery is low, so that the charging efficiency and output are reduced. can be improved, and long life and high temperature capacity retention are excellent.
  • the benzene ring means that it is formed as shown in Chemical Formula 5 below.
  • n and k are preferably independently integers of 0 to 3, more preferably independently integers of 1 to 3, and still more preferably 2 or 3, in which case the charging efficiency of the secondary battery is low due to the low charging resistance. and output can be improved, and long-term lifespan and high-temperature capacity retention rate are excellent.
  • the m and l are preferably independently 1, and in this case, the charging resistance of the secondary battery is low, so that the charging efficiency and output can be improved, and the long-term lifespan and high temperature capacity retention rate are excellent.
  • the compound represented by Formula 1 is preferably symmetrical with respect to G, and in this case, as a symmetrical cyclic structure, electron flow in the molecule is stabilized, and through this, molecular rigidity is increased to improve battery performance. There is a big advantage.
  • the compound represented by Formula 1 is preferably at least one selected from the group consisting of compounds represented by Formulas 1-1 to 1-24, and more preferably represented by Formulas 1-15 to 1-24 It is at least one selected from the group consisting of compounds that become
  • a 1 and A 2 are each independently phosphorus or sulfur, and R 1 ', R 2 ', R 3 ', and R 4 ' are each independently hydrogen, or a substituted or unsubstituted carbon number.
  • An alkyl group of 1 to 10, m and n are each independently an integer of 1 to 5,
  • a line is a bond, and when a separate element is not described, the point where the bond and the bond meet is carbon, and the number of hydrogens satisfying the valence of the carbon is omitted.
  • A1 and A2 are each independently phosphorus or sulfur, and R1', R2', R3' and R4' are each independently hydrogen or a substituted or unsubstituted C1-C10 alkyl group. , and m and n are each independently an integer of 1 to 5.
  • the electrolyte additive represented by Formula 1-1 When the electrolyte additive represented by Formula 1-1 is added to the electrolyte of a secondary battery, electrons are localized toward the O element due to the electronegativity difference between the P or S element and the O element directly connected thereto. Accordingly, the P or S element becomes an electron-poor ( ⁇ +) state and an oxidation reaction is induced in an electrolyte containing lithium ions, thereby forming a stable film on the electrode, specifically, the cathode. At this time, it is possible to prevent the decomposition of the electrolyte due to the stability of the film, and thereby cycle characteristics can be improved. There is an excellent effect of greatly improving.
  • the capacity retention rate is improved by preventing the structural collapse of the electrode active material of the positive electrode and the negative electrode at a high temperature, thereby extending the lifespan.
  • A1 and A2 are each independently phosphorus or sulfur, and in view of the above-described effect, phosphorus having a larger electronegativity difference with element O is more preferable.
  • R1', R2', R3' and R4' may each independently represent hydrogen or a substituted or unsubstituted C1-C10 alkyl group, preferably hydrogen or a methyl group, more preferably hydrogen.
  • the m and d are each independently an integer of 1 to 5, preferably 1 to 3, and more preferably 1 or 2.
  • R1', R2', R3' and R4' are hydrogen, respectively, and m and n are 1 or 2, it is most preferable in terms of the effect of improving stability due to the simplification of the molecular structure.
  • the structure is symmetrical, the electron flow in the molecule is stabilized as a symmetrical cyclic structure, and through this, molecular rigidity is increased and the battery performance improvement effect is further improved, but it is not limited thereto, Even in the asymmetric structure, the above-described effects of the present invention can be exhibited.
  • the compound represented by Formula 1-1 may be preferably a compound represented by Formula 1a below.
  • the electrolyte when the electrolyte is a pyrophosphate having a symmetrical cyclic structure like the compound represented by Formula 1a, it is preferable because the stability of electron flow due to the symmetrical cyclic structure and the stabilization effect according to the simplification of the molecular structure are maximized. Therefore, when it is added as an electrolyte for a secondary battery, the battery output is improved by lowering the charging resistance of the battery, the charge recovery capacity is increased at high temperature, and the life efficiency is excellent, so it is preferable as an electrolyte additive for a battery.
  • the alkylene group refers to a divalent hydrocarbon group
  • the propylene group refers to -CH 2 CH 2 CH 2 - or -CH 2 CH(CH 3 )-.
  • a 1 and A 2 are preferably independently phosphorus (P), and in this case, the charging resistance of the secondary battery is low, so that the charging efficiency and output can be improved, and the long-term lifespan and high-temperature capacity retention rate are excellent.
  • G 1 and G 2 are preferably —CH 2 —, and when D 7 and D 8 are a lone pair of electrons, G 1 and G 2 are preferably is -O-, and in this case, the charging resistance of the secondary battery is low, so that the charging efficiency and output can be improved, and long-term lifespan and high-temperature capacity retention rate are excellent.
  • R 9 and R 10 are preferably independently a linear or branched alkyl group having 1 to 18 carbon atoms, more preferably independently a linear alkyl group having 1 to 18 carbon atoms, in this case, the charging efficiency of the secondary battery is low due to the low charging resistance and output can be improved, and long-term life and high-temperature capacity retention rates are excellent.
  • the R 11 , R 12 , R 13 and R 14 are preferably independently a bond or —CH 2 —, and in this case, the charging resistance of the secondary battery is low, so that the charging efficiency and output can be improved, and a long lifespan and excellent high temperature capacity retention rate.
  • the compound represented by Formula 2 is preferably a symmetrical structure, and in this case, as a structure including a symmetrical ring, the electron flow in the molecule is stabilized. There is a big advantage.
  • the compound represented by Formula 2 is preferably at least one selected from the group consisting of compounds represented by Formulas 2-1 to 2-4, and in this case, charging efficiency and output are improved due to low charging resistance of the secondary battery. It has the advantages of excellent long-term lifespan and high-temperature capacity retention rate.
  • the electrolyte solution additive represented by Formula 2 When the electrolyte solution additive represented by Formula 2 is added to the electrolyte solution of the battery, Electrons are localized towards the O element due to the electronegativity difference between the P or S element and the directly connected O element. Accordingly, the P or S element becomes an electron-poor ( ⁇ +) state and an oxidation reaction is induced in an electrolyte containing lithium ions, thereby forming a stable film on the electrode, in a specific example, the cathode. At this time, it is possible to prevent the decomposition of the electrolyte due to the stability of the film, and thereby cycle characteristics can be improved. There is an excellent effect of greatly improving.
  • the capacity retention is improved by preventing the structural collapse of the electrode active material of the positive electrode and the negative electrode at a high temperature, thereby extending the lifespan.
  • a 1 and A 2 are each independently phosphorus or sulfur, and in view of the above-described effect, phosphorus having a greater electronegativity difference from element O is more preferable.
  • X 1 and X 2 are independently F, Cl, Br, or I
  • the X 1 , X 2 , X' and X" are preferably independently F or Cl, and more preferably F, in this case, the charging resistance of the secondary battery is low, so that charging efficiency and output can be improved, and long-term It has an excellent effect of lifespan and high temperature capacity retention rate.
  • the bond between the carbons of E 5 and E 6 may include a double bond, and in this case, the bond stability of the compound is improved This has the effect of further improving the battery life.
  • the compound represented by Chemical Formula 3 may preferably have a symmetrical structure with respect to the central P element, and in this case, electron flow in the molecule is stabilized, and thus molecular rigidity is increased to increase battery performance. There is an advantage.
  • the compound represented by Formula 3 is an anion, and preferably includes one selected from the group consisting of compounds represented by Formulas 3-1 to 3-2, and in this case, charging efficiency and output power due to low charging resistance of the secondary battery This can be improved, and there is an advantage that a long lifespan and a high temperature capacity retention rate are excellent.
  • a line is a bond, and if a separate element is not described, the point where the bond and the bond meet is carbon, and the number of hydrogens satisfying the valence of the carbon is omitted.
  • the electrolyte solution additive represented by Formula 3 When the electrolyte solution additive represented by Formula 3 is added to the electrolyte solution of the battery, The electronegativity difference between the P element and the directly connected O element causes the electrons to be localized towards the O element. Accordingly, the P element becomes in an e-poor ( ⁇ +) state and an oxidation reaction is induced in an electrolyte containing lithium ions, thereby forming a stable film on the electrode, in a specific example, the cathode.
  • the capacity retention rate is improved by preventing the structural collapse of the electrode active material of the positive electrode and the negative electrode at a high temperature, thereby extending the lifespan.
  • A is preferably phosphorus (P), and in this case, the charging resistance of the secondary battery is low, so that the charging efficiency and output can be improved, and the long-term lifespan and high-temperature capacity retention rate are excellent.
  • R 15 , R 16 and R 17 are preferably independently a linear alkyl group having 1 to 3 carbon atoms including a substituent, and in this case, the charging resistance of the secondary battery is low, so that charging efficiency and output can be improved, long life and There is an excellent effect of high temperature capacity retention rate.
  • R 15 , R 16 and R 17 are preferably the same as each other. In this case, the electron flow in the molecule is stabilized, and through this, molecular rigidity is increased, thereby improving battery performance. There is a greater advantage.
  • the compound represented by Formula 4 may preferably include a compound represented by Formula 4a below, and in this case, charging efficiency and output may be improved due to low charging resistance of the secondary battery, and long-term lifespan and high-temperature capacity retention rate may be improved. There are excellent advantages.
  • the electrolyte solution additive represented by Chemical Formula 4 When the electrolyte solution additive represented by Chemical Formula 4 is added to the electrolyte solution of a battery, electrons are localized toward the O element due to the electronegativity difference between the P, S, or N element and the directly connected O element. Accordingly, the P, S, or N element becomes an electron-poor ( ⁇ +) state, and an oxidation reaction is induced in an electrolyte containing lithium ions, forming a stable film on the electrode, in a specific example, the cathode. do. At this time, it is possible to prevent the decomposition of the electrolyte due to the stability of the film, and thereby cycle characteristics can be improved. There is an excellent effect of greatly improving.
  • the capacity retention rate is improved by preventing the structural collapse of the electrode active material of the positive electrode and the negative electrode at a high temperature, thereby extending the lifespan.
  • R 18 and R 19 are independently an alkylene group having 1 to 5 carbon atoms, and E 7 is a bond, an alkylene group having 1 to 3 carbon atoms, or a cyclic carbonyl group having 2 to 5 carbon atoms, an ether group or an ester group, wherein R 20 is a substituted or unsubstituted linear or cyclic carbonate group having 2 to 5 carbon atoms, a carbonyl group, an ether group, a phosphate group, a sulfonate or a sulfate group, and the substitution is F, Cl, Br And at least one selected from the group consisting of I or substituted with an alkenyl group having 1 to 3 carbon atoms, wherein E 8 is a bond or a saturated or unsaturated alkylene group having 1 to 3 carbon atoms, or an ether group, wherein n is 0 or 1.
  • the alkylene group refers to a divalent hydrocarbon group
  • the propylene group refers to -CH 2 CH 2 CH 2 - or -CH 2 CH(CH 3 )-.
  • the alkenyl group refers to a monovalent hydrocarbon group including a carbon-carbon double bond
  • R 18 and R 19 are preferably independently an alkylene group having 1 or 2 carbon atoms, and in this case, the charging resistance of the secondary battery is low, so that the charging efficiency and output can be improved, and the long-term life and high-temperature capacity retention rate are excellent. have.
  • E 7 is preferably a bond, or a cyclic carbonyl group having 2 to 3 carbon atoms, an ether group, or an ester group. and excellent high temperature capacity retention rate.
  • R 20 is preferably a substituted or unsubstituted linear or cyclic carbonate group having 2 to 3 carbon atoms, a carbonyl group, an ether group, a phosphate group or a sulfate group, and the substitution is preferably F or a vinyl group (vinyl).
  • the charging resistance of the secondary battery is low, charging efficiency and output can be improved, and long-term lifespan and high-temperature capacity retention rate are excellent.
  • E 8 is preferably a bond or a saturated or unsaturated (if unsaturated, carbon number is 2) alkylene group having 1 to 2 carbon atoms, or an ether group, in this case, the charging efficiency of the secondary battery is low due to the low charging resistance and output can be improved, and long-term life and high-temperature capacity retention rates are excellent.
  • the phosphorus (P) atom When n is 0, the phosphorus (P) atom has a lone pair of electrons instead of oxygen.
  • the compound represented by Formula 5 is preferably at least one selected from the group consisting of compounds represented by Formulas 5-1 to 5-52, and in this case, charging efficiency and output are improved due to low charging resistance of the secondary battery. It has the advantages of excellent long-term lifespan and high-temperature capacity retention rate.
  • a line is a bond, and when a separate element is not described, the point where the bond and the bond meet is carbon, and the number of hydrogens satisfying the valence of the carbon is omitted.
  • the compound in which n is 1 is preferably at least one selected from the group consisting of compounds represented by Formulas 5-1 to 5-51, and in this case, the secondary battery has a low charging resistance to charge Efficiency and output can be improved, and long lifespan and high temperature capacity retention rate are excellent.
  • the electrolyte solution additive represented by Formula 5 When the electrolyte solution additive represented by Formula 5 is added to the electrolyte solution of the battery, The electronegativity difference between the P element and the directly connected O element causes the electrons to be localized towards the O element. Accordingly, the P element becomes in an e-poor ( ⁇ +) state and an oxidation reaction is induced in an electrolyte containing lithium ions, thereby forming a stable film on the electrode, in a specific example, the cathode. At this time, it is possible to prevent the decomposition of the electrolyte due to the stability of the film, and thereby cycle characteristics can be improved. There is an excellent effect of greatly improving.
  • the capacity retention is improved by preventing the structural collapse of the electrode active material of the positive electrode and the negative electrode at a high temperature, thereby extending the lifespan.
  • P and O are each phosphorus and oxygen; A is a bond or oxygen; Q is oxygen or an unshared pair of electrons; R 21 , R 22 , R 23 and R 24 are independently hydrogen and 1 to 10 carbon atoms. of a linear or branched alkyl group, alkenyl group, alkynyl group, alkoxy group, alkoxycarbonyl group, alkoxyalkyl group, fluoroalkyl group, or is; Optionally, R 21 or R 22 may be independently linked to R 23 or R 24 to form a double bond or a ring; wherein n is an integer from 0 to 3; The * is a bonding position.
  • Said ring may preferably be an aromatic or aliphatic ring, said n may preferably be 1 or 2, said fluoroalkyl is preferably substituted with 2 to 8 fluoro groups may be an alkyl group.
  • various groups may be bonded to the * position of the group represented by Formula 1 as needed, for example, a linear or branched alkyl group having 1 to 10 carbon atoms, an alkenyl group , alkynyl group, alkoxy group, hydroxyl group, alkoxycarbonyl group, alkoxyalkyl group, fluoroalkyl, cyano group, alkylcyano group, alkylsilyl, amide, imidazole, thiophene, ether, thioether, alkylsulfonyl, sulfonyl phonylalkyl, cycloalkylsulfonyl, cyclosulfonylalkyl, alkylsulfoxide or phosphorus fluoride; and the like.
  • the group named as the completed compound means that hydrogen or some atomic groups of the group are substituted at the * position with the group represented by Formula 6 above.
  • the compound in which the group represented by Formula 6 is substituted is preferably at least one selected from the group consisting of compounds represented by Formulas 6-1 to 6-31, and more preferably Formula 6-15 or Formula 6 It is a compound represented by -31, and in this case, the charging resistance of the secondary battery is low, so that the charging efficiency and output can be improved, and there is an advantage in that a long lifespan and a high temperature capacity retention rate are excellent.
  • the electrolyte solution additive represented by Chemical Formulas 6-1 to 6-31 When the electrolyte solution additive represented by Chemical Formulas 6-1 to 6-31 is added to the electrolyte solution of a secondary battery, electrons are localized toward the O element due to the electronegativity difference between the P or S element and the O element directly connected thereto. Accordingly, the P or S element becomes an electron-poor ( ⁇ +) state and an oxidation reaction is induced in an electrolyte containing lithium ions, thereby forming a stable film on the electrode, specifically, the cathode. At this time, it is possible to prevent the decomposition of the electrolyte due to the stability of the film, and thereby cycle characteristics can be improved. There is an excellent effect of greatly improving.
  • the capacity retention rate is improved by preventing the structural collapse of the electrode active material of the positive electrode and the negative electrode at a high temperature, thereby extending the lifespan.
  • One or more compounds selected from the compounds represented by Formulas 1 to 6 may be included in an amount of 0.1 to 10% by weight, preferably 0.2 to 5% by weight, more preferably 0.4 to 10% by weight based on 100% by weight of the total electrolyte. 2.0% by weight, most preferably 0.5 to 1.5% by weight. Within the above range, the effect of improving the charging efficiency and high temperature life of the battery may be the most excellent.
  • the carbonate-based compound may be preferably at least one selected from the group consisting of compounds represented by the following Chemical Formulas 7-1 to 7-3, but is not limited thereto.
  • the electrolyte may be added to the electrolyte of the battery to form a stable film on the electrode.
  • the decomposition of the electrolyte can be prevented due to the stability of the film, and thus cycle characteristics can be improved.
  • the increase in resistance is prevented, charging efficiency and output are improved, and gas generation due to a chemical reaction inside the battery is also suppressed, so that the safety of the battery can be improved.
  • the capacity retention is improved by preventing the structural collapse of the electrode active material of the positive electrode and the negative electrode at a high temperature, thereby extending the lifespan.
  • the present invention is an electrolyte solution comprising an organic solvent and/or lithium salt in 0.1 to 10% by weight of at least one selected from the compounds represented by Formulas 1 to 6 and 0.1 to 10% by weight of the compound represented by Formula 7 to provide.
  • the organic solvent is preferably ethylene carbonate (EC), diethyl carbonate (DEC), ethylmethyl carbonate (EMC), dimethyl carbonate (DMC), propylene carbonate (PC), dipropyl carbonate (DPC), butylene carbonate, It may include one or more selected from the group consisting of methylpropyl carbonate, ethylpropyl carbonate, methyl propionate (MP), ethyl propionate (EP) and propyl propionate (PP), preferably two types.
  • the above may be included, and in this case, it is easy to control the ionic conductivity, viscosity, etc. of the electrolyte, so that the effect of improving battery performance is more excellent.
  • the organic solvent is a specific example by mixing an organic solvent of high dielectric constant having high ionic conductivity and a low-viscosity organic solvent that can be adjusted so that the viscosity of the solvent has an appropriate viscosity to be applied to the battery so as to increase the charging and discharging performance of the battery. It can be used as a mixed solvent, and more specifically, EC and/or PC can be used as an example of the organic solvent of high dielectric constant, and as an example of the low-viscosity organic solvent, from the group consisting of EMC, DMC and DEC One or more selected types may be used.
  • the high dielectric constant and low viscosity organic solvent is preferably mixed in a volume ratio of 2:8 to 8:2. More specifically, it may be a ternary mixed solvent of EC and/or PC and EMC and DEC, and a ratio of EC and/or PC:EMC:DEC may be 1:3 to 5:2 to 4.
  • the organic solvent contains water
  • lithium ions in the electrolyte may be hydrolyzed, so the water content in the organic solvent is preferably controlled to be 150 ppm or less, preferably 100 ppm or less.
  • the electrolyte may include at least one selected from the group consisting of LiPF 6 and LiFSI, for example, as a lithium salt, and may preferably include LiPF 6 , in which case lithium ions are smoothly supplied to the battery, resulting in battery performance. This has excellent advantages.
  • the electrolyte is, for example, a lithium salt LiF 4 , LiCl, LiBr, LiI, LiClO 4 , LiB 10 Cl 10 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, (SO 2 F) 2 NLi and (CF 3 SO 2 ) 2 NLi may further include one or more selected from the group consisting of, in this case, lithium ions may be more smoothly supplied.
  • a lithium salt LiF 4 , LiCl, LiBr, LiI, LiClO 4 , LiB 10 Cl 10 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, (SO 2 F) 2 NLi and (CF 3 SO 2 ) 2 NLi may further include one or more selected
  • the lithium salt When the lithium salt is dissolved in the electrolyte, the lithium salt functions as a source of lithium ions in the lithium secondary battery, and may promote movement of lithium ions between the positive electrode and the negative electrode. Accordingly, the lithium salt is preferably contained in a concentration of approximately 0.6 mol% to 2 mol% in the electrolyte. If the concentration of the lithium salt is less than 0.6 mol%, the conductivity of the electrolyte may be lowered, and thus the performance of the electrolyte may be deteriorated. Considering the conductivity of the electrolyte and the mobility of lithium ions, the lithium salt may be included in the electrolyte in an amount of preferably 0.7 mol% to 1.6 mol%, more preferably 0.8 mol% to 1.5 mol%.
  • the electrolyte solution of the present invention for example, in addition to the electrolyte solution containing the compound represented by the above-mentioned formula, to improve the lifespan characteristics of the battery, suppress the decrease in battery capacity, improve the discharge capacity of the battery, etc. for the purpose of general additives that can be used in the electrolyte more may include
  • the commercial additive is preferably vinylene carbonate (VC), fluoroethylene carbonate (FEC), vinylethylene carbonate (VEC), ethyl propionate (Ethyl propionate), propyl propionate ( Propyl propionate), bisdifluorophosphanyloxyethane (1,2-bis((difluorophosphaneyl)oxy)ethane), fluoromethyldioxaphospholane (2-fluoro-4methyl-[1,3,2]-dioxaphospholane) ), difluoro pentyloxy phosphane (Difluoro (pentyloxy) phosphane), hexane tricarbonitrile (1,3,6-hexanetricarbonitrile, HTCN), succinonitrile (succinonitrile, SN), adiponitrile (adiponitrile, AN), 4-tolunitrile, Lithium bis(oxalato)borate (LiBOB), Lith
  • the commercially available additives may be used alone or in combination of two or more of them.
  • the commercial additive may be fluoroethylene carbonate, 1,3-propanesultone, 1,3-propensultone or ethyl sulfuric acid alone, or fluoroethylene carbonate and 1,3-propanesultone It may be desirable to use a combination, but is not limited thereto.
  • the commercial additive may be included in an amount of 0.01 to 20 wt%, preferably 0.1 to 10 wt%, based on the total weight of the electrolyte.
  • the present invention provides a secondary battery comprising a negative electrode, a positive electrode, a separator interposed between the negative electrode and the positive electrode, and the electrolyte.
  • the positive electrode may be prepared by, for example, preparing a composition for forming a positive electrode active material layer by mixing a positive electrode active material, a binder, and optionally a conductive material, and then applying it to a positive electrode current collector such as aluminum foil.
  • the positive active material may be, for example, a conventional high nickel positive active material used in a lithium secondary battery, a lithium nickel manganese cobalt oxide (NCM) positive active material, or a lithium iron phosphorus oxide (LFP) positive active material, and preferably a chemical formula Li [ NixCo 1-xy Mn y ]O 2 (here, 0 ⁇ x ⁇ 0.5, 0 ⁇ y ⁇ 0.5) may be a lithium composite metal oxide in the form, a specific example may be LiNiMnCoO 2 , but is not limited thereto.
  • NCM lithium nickel manganese cobalt oxide
  • LFP lithium iron phosphorus oxide
  • Variables x and y of the formula Li[NixCo 1-xy Mn y ]O 2 of the lithium composite metal oxide are, for example, 0.0001 ⁇ x ⁇ 0.5, 0.0001 ⁇ y ⁇ 0.5, or 0.001 ⁇ x ⁇ 0.3, 0.001 ⁇ y ⁇ 0.3 can be
  • a compound capable of reversible intercalation and de-intercalation of lithium (a lithiated intercalation compound) may be used.
  • the negative electrode may be prepared by, for example, mixing a negative electrode active material, a binder, and optionally a conductive agent to prepare a composition for forming the negative electrode active material layer, and then applying it to a negative electrode current collector such as copper foil.
  • anode active material for example, a compound capable of reversible intercalation and deintercalation of lithium may be used.
  • the negative active material may be a carbonaceous material such as a Si-based negative active material, artificial graphite, natural graphite, graphitized carbon fiber, or amorphous carbon.
  • a metal compound capable of alloying with lithium, or a composite including a metal compound and a carbonaceous material may be used as the negative electrode active material, and may be graphite, for example.
  • metal alloyable with lithium for example, at least one of Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si alloy, Sn alloy, or Al alloy may be used.
  • a metal lithium thin film may be used as the negative electrode active material.
  • any one or more selected from the group consisting of crystalline carbon, amorphous carbon, carbon composite material, lithium metal, and an alloy containing lithium may be used.
  • the secondary battery of the present invention by adding an electrolyte containing the compound represented by the above formula, the battery charging resistance measured by the hybrid pulse power characterization (HPPC) method, output characteristics, and capacity recovery at a high temperature of 60° C. or higher compared to the prior art There is an effect that the effect of improving battery characteristics such as characteristics and lifespan characteristics is further improved.
  • HPPC hybrid pulse power characterization
  • the HPPC charging resistance value measured at 60° C. may be 500 m ⁇ or less, preferably 200 m ⁇ or less, more preferably 60 m ⁇ or less, and most preferably 50 m ⁇ or less.
  • the secondary battery may have a recovery capacity of 580 mAh or more at 60°C, preferably 600 mAh or more, more preferably 770 mAh or more, and most preferably 800 mAh or more.
  • the lifetime maintenance efficiency at 45° C. of the secondary battery may be 80% or more, preferably 82% or more, and more preferably 84% or more.
  • the HPPC charging resistance value can be measured by a method specified in the document “Battery test manual for plug-in hybrid electric vehicles,” (2010, Idaho National Laboratory for the U.S. Department of Energy.) It is an important index indicating the output characteristics of the battery.
  • the charging resistance is a resistance value measured during charging of the battery, and as the charging resistance is lower, energy loss is small, the charging speed may be increased, and the output of the battery may be improved.
  • the secondary battery of the present invention has a low HPPC charging resistance value as described above, and thus has excellent charging speed and output, and is suitable for use as, for example, an automobile battery.
  • the recovery capacity represents the capacity preservation characteristics of a battery left for a long time, and the discharged electric capacity when the battery left for a long time is discharged to the end-of-discharge voltage, and the discharged battery is recharged and discharged again to the end-of-discharge voltage By measuring the discharged electric capacity when will be.
  • the higher the recovery capacity the smaller the amount of natural discharge due to battery preservation (storage), which means that the battery can be stored for a long time. This is a very important characteristic in a battery.
  • the recovery capacity is improved by 5 to 15% compared to when the conventional additive is used, so that it can be stored for a longer period of time with a single charge.
  • the battery of the present invention when used as a vehicle battery, the improvement of output, which becomes important depending on the size of the vehicle, and climate change, at low and high temperatures, which is a problem due to the characteristics of automobiles exposed to sunlight while driving or parking, performance is improved, and excellent performance as an automobile battery can be exhibited.
  • the filtrate was subjected to vacuum distillation to obtain the desired product, 1,3,2-dioxaphosphoran-2-yl diethyl phosphite, in 2,1 g, yield of 55%.
  • the obtained product was confirmed to correspond to the structure of Formula 1-24 by 1H NMR as follows.
  • a battery electrolyte was prepared by adding 0.5 wt% of the compound represented by -14.
  • Example 2 the electrolyte solution additive represented by Formula 1-14 was changed to 0.3 wt% of the electrolyte solution additive represented by Formula 2-2, and the type of additional additive was changed from the compound represented by Formula 7-1 to Formula 7-2 It was carried out in the same manner as in Example 2, except that it was changed to a compound represented by .
  • Example 2 the electrolyte solution additive represented by Formula 1-14 was changed to 0.8 wt% of the electrolyte solution additive represented by Formula 3-1, and the type of additional additive was changed from the compound represented by Formula 7-1 to Formula 7-3 It was carried out in the same manner as in Example 2, except that it was changed to a compound represented by .
  • Example 2 was carried out in the same manner as in Example 2, except that the electrolyte solution additive represented by Formula 1-14 was changed to 1.0 wt% of the electrolyte solution additive represented by Formula 4a below.
  • Example 2 was carried out in the same manner as in Example 2, except that the electrolyte solution additive represented by Formula 1-14 was changed to 2.0 wt% of the electrolyte solution additive represented by Formula 5-52 below.
  • Example 1 The electrolyte solution additive in Example 1 was replaced with the electrolyte solution additive represented by Chemical Formula 1-24 prepared in Synthesis Example 1, and the same as in Example 1 was performed except that 0.5 wt% and 1 wt% thereof were used, respectively. .
  • Example 2 The same as in Example 1, except that the compound represented by Formula 1-24 prepared in Synthesis Example 1 was added instead of the compound added in Example 1, and the content thereof was 0.5 wt% and 1 wt%, respectively was carried out.
  • the compound represented by Formula 6-31 prepared in Synthesis Example 2 was added instead of the compound added in Example 1, and the same as in Example 1, except that 0.5 wt% and 1 wt% of the compound were used, respectively. was carried out.
  • Example 2 was carried out in the same manner as in Example 2, except that the electrolyte solution represented by Formula 1-14 was not used.
  • Example 1 As an electrolyte additive in Example 1, cyclic ethylene phosphate (Cas No. 6711-47-3), which is a phosphate having an asymmetric structure, was added in an amount of 0.5 wt% instead of an electrolyte additive represented by Chemical Formula 1-14. Except that and carried out in the same manner as in Example 1.
  • the positive electrode mixture slurry was coated on an aluminum (Al) thin film as a positive electrode current collector having a thickness of about 20 ⁇ m, dried to prepare a positive electrode, and then a positive electrode was manufactured by performing a roll press.
  • the negative electrode mixture slurry was applied to a 10 ⁇ m-thick copper (Cu) thin film as a negative electrode current collector, dried to prepare a negative electrode, and then roll press was performed to prepare a negative electrode.
  • Examples 1 to 12 After preparing a pouch-type battery in a conventional manner with a separator consisting of a polypropylene/polyethylene/polypropylene (PP/PE/PP) three-layered positive electrode and a negative electrode prepared as described above, Examples 1 to 12, and comparison The electrolyte solution prepared in Examples 1 and 2 was injected to complete the manufacture of a lithium secondary battery.
  • a separator consisting of a polypropylene/polyethylene/polypropylene (PP/PE/PP) three-layered positive electrode and a negative electrode prepared as described above, Examples 1 to 12, and comparison
  • the electrolyte solution prepared in Examples 1 and 2 was injected to complete the manufacture of a lithium secondary battery.
  • the measured voltage value, the charge/discharge current value corresponding to the C-rate, the current change amount ( ⁇ I), the discharge voltage change amount ( ⁇ V), the charge voltage change amount ( ⁇ V), the discharge resistance, the charge resistance was measured, and the charge/discharge current for each C-rate was briefly flowed for a certain period of time, and the resistance value was calculated using the slope value obtained from the amount of change in current and voltage.
  • the charging conditions were a constant current of 1.0C and a voltage of 4.2V until the charging current became 1/10C.
  • Discharge conditions were measured after charging and discharging by discharging to 3.0V with a constant current of 1.0C, and then the discharge capacity was measured.
  • the secondary battery was charged with a constant current at 45° C. at a current of 1C rate until the voltage reached 4.20V (vs. Li), and then cut-off at a current of 0.05C rate while maintaining 4.20V in the constant voltage mode. did Then, it was discharged at a constant current of 1C rate until the voltage reached 3.0V (vs. Li) during discharge (1st cycle). The above cycle was repeated 300 times to calculate the average value thereof.
  • Example 1 1-14 0.5 - - 37.2 820.1 84.8
  • Example 2 1-14 0.5 7-1 1.0 42.8 818.0 86.1
  • Example 3 2-2 0.3 7-2 1.0 43.5 823.0 84.6
  • Example 4 3-1 0.8 7-3 1.0 42.5 816.6 85.3
  • Example 5 4a 1.0 7-1 1.0 45.9 813.7 84.4
  • Example 6 5-52 0.5 7-1 1.0 36.0 840.8 86.0
  • Example 7 5-52 1.0 7-1 1.0 36.6 838.2 85.0
  • Example 8 5-52 2.0 7-1 1.0 37.2 835.1 84.6
  • Example 9 1-24 0.5 - - 37.2 841.2 85.5
  • Example 10 1-24 1.0 - - 39.2 838.9 86.5
  • Example 11 6-31 0.5 - - 37.8 848.5 86.5
  • Example 12 6-31 1.0 - - 38
  • Comparative Example 1 using VC alone without using VC had a high charging resistance value of 89.0 m ⁇ , indicating poor battery performance
  • Comparative Example 2 using asymmetric cyclic ethylene phosphate alone without including the electrolyte according to the present invention had a charging resistance The value was as high as 83.2 m ⁇ , indicating that the battery performance was also poor, and it was confirmed that the charge resistance value at a high temperature of 60° C.
  • the electrolyte of the present invention is suitable for use as a secondary battery for automobiles by improving the charging efficiency and output, recovery capacity, and high temperature life efficiency of the secondary battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 전지용 전해액 및 이차전지에 관한 것으로, 충전 저항이 낮아 충전 효율 및 출력이 향상될 수 있고, 장기 수명 및 고온 용량 유지율이 우수한 이차전지를 제공하는 효과가 있다.

Description

전해액 및 이를 포함하는 이차전지
본 발명은 전지용 전해액 및 이를 포함하는 이차전지에 관한 것으로, 보다 상세하게는 전지의 충전 효율 및 출력을 향상시킬 수 있고, 장기 보관이 가능하며, 고온에서의 용량 유지율을 증가시킬 수 있는 전해액 및 이를 포함하는 이차전지에 관한 것이다.
리튬 이차 전지는 양극 및 음극 사이에 전해액을 넣어 리튬이온의 원활한 이동을 가능하게 하며, 양극 및 음극에서 삽입 및 탈리에 따른 산화 환원반응에 의해 전기가 생성 또는 소비되는 방식에 의하여 전기 에너지의 이용을 용이하게 한다.
한편, 최근 전 세계적으로 환경 규제가 강화되는 등 환경에 대한 관심이 커지면서 대기 오염의 주 원인 중 하나인 화석 연료 차량을 대체할 수 있는 친환경 자동차에 대한 관심 역시 증가되고 있다. 이에 따라 국내/외 전지 업계에서는 자동차용 전지 개발이 활발히 진행되고 있다.
전지를 자동차에 사용하기 위해서는, 전지의 출력 및 용량이 대폭 증가되어야 할 뿐만 아니라 날씨 변화 등의 사용 환경에 맞춰 고온 및 저온에서의 출력 개선 및 저항 증가 문제를 해결해야 하며, 자동차가 계절을 가리지 않고 야외에서 사용되는 것을 감안하여, 다양한 환경에서 장기간 충전 및 용량 유지율이 개선된 전지를 개발할 필요가 있다.
[선행기술문헌]
[특허문헌]
일본 공개특허 2008-300126 A
한국 등록특허 10-1586199 B1
상기와 같은 종래기술의 문제점을 해결하고자, 본 발명은 신규한 전해액 첨가제를 포함하는 전해액을 제공하는 것을 목적으로 한다.
또한 본 발명은 충전 저항이 감소되어 전지의 출력이 향상되고, 고온에서의 회복 용량이 향상되어 장기 보관이 가능하며, 고온에서의 수명 유지율이 우수한 이차전지를 제공하는 것을 목적으로 한다.
본 발명의 상기 목적 및 기타 목적들은 하기 설명된 본 발명에 의하여 모두 달성될 수 있다.
상기의 목적을 달성하기 위하여, 본 발명은 유기용매, 리튬염 및 하기 화학식 1 내지 화학식 6으로 표시되는 화합물 중에서 선택된 1종 이상의 화합물을 포함하는 것을 특징으로 하는 전해액을 제공한다.
[화학식 1]
Figure PCTKR2021019784-appb-I000001
(상기 화학식 1에서, G는 -O-, -ORa-, -N(Rb)- 또는 -Rc-N(Rd)-Re-, -Rf(NRgRh)- 또는 -Ri-이고; 상기 Ra, Rc, Re, Rf 및 Ri는 독립적으로 탄소수 1 내지 10의 선형 또는 분지형 알킬렌기이며; Rb, Rd, Rg 및 Rh는 독립적으로 수소, 또는 탄소수 1 내지 10의 선형 또는 분지형 알킬기이고; 상기 Q1 및 Q2는 독립적으로 인(P), 황(S) 또는 비소(As)이며; 상기 D1, D2, D3, D4, D5 및 D6은 독립적으로 산소(=O) 또는, 하나 또는 두개의 비공유 전자쌍이고; 상기 E1, E2, E3 또는 E4는 산소 또는 탄소이며, 상기 D2, D3, D5 또는 D6이 산소인 경우 이에 결합된 E1, E2, E3 또는 E4는 탄소이고; R1, R2, R3, R4, R5, R6, R7 및 R8은 독립적으로 수소, 탄소수 1 내지 10의 선형 또는 분지형의 알킬기, 알케닐기, 알카이닐기, 알콕시기, 알콕시카르보닐기 또는 알콕시알킬기이며; 선택적으로 상기 R3과 R4 또는 R7과 R8은 결합되어 고리를 만들 수 있고;
상기 n 및 k는 독립적으로 0 내지 5의 정수이며; 상기 m 및 l은 독립적으로 0 또는 1이고; 상기 n과 m 중에와 상기 k와 l 중에서 최소한 하나는 0이 아니다.)
[화학식 2]
Figure PCTKR2021019784-appb-I000002
(상기 화학식 2에서, 상기 A1 및 A2는 독립적으로 인(P) 또는 황(S)이며, 상기 D7 및 D8는 독립적으로 산소(=O) 또는 비공유 전자쌍이고, 상기 G1 및 G2는 독립적으로 -O- 또는 -CH2-이고, 상기 R9 및 R10은 독립적으로 탄소수 1 내지 20의 선형 또는 분지형 알킬기이고, 상기 R11, R12, R13 및 R14는 독립적으로 결합(bond) 또는 탄소수 1 내지 3의 알킬렌기이다.)
[화학식 3]
Figure PCTKR2021019784-appb-I000003
(상기 화학식 3에서, 상기 X1 및 X2는 독립적으로 F, Cl, Br 또는 I이고, 상기 E5 및 E6은 독립적으로 탄소수 1 내지 3의 치환 또는 비치환 탄화수소기로 상기 치환은 =O, -CX'3 및 -CH2CX"3로 이루어진 군에서 선택된 1종 이상으로 치환된 것이고 상기 X' 및 X"는 독립적으로 F, Cl, Br 또는 I이며, 상기 E5 및 E6에 포함되는 탄소 사이의 결합은 단일결합 또는 이중결합이다.)
[화학식 4]
Figure PCTKR2021019784-appb-I000004
(상기 화학식 4에서, 상기 A는 인(P), 황(S), 또는 질소(N)이며, 상기 R15, R16 및 R17은 독립적으로 치환기를 포함하는 탄소수 1 내지 5의 선형 또는 분지형 알킬기이고, 상기 치환기는 F, Cl, Br 및 I를 포함하는 할로겐 원소 및 산소(=O)로 이루어진 군에서 선택된 1종 이상이다.)
[화학식 5]
Figure PCTKR2021019784-appb-I000005
(상기 화학식 5에서, 상기 R18 및 R19는 독립적으로 탄소수 1 내지 5의 알킬렌기이고, 상기 E7은 결합(bond), 탄소수 1 내지 3의 알킬렌기 또는, 탄소수 2 내지 5의 환형 카르보닐기, 에터기 또는 에스터기이고, 상기 R20은 치환 또는 비치환된 탄소수 2 내지 5의 선형 또는 환형 카보네이트기, 카르보닐기, 에터기, 포스페이트기, 설포네이트 또는 설페이트기이고, 상기 치환은 F, Cl, Br 및 I로 이루어진 군에서 선택된 1종 이상 또는 탄소수 1 내지 3의 알케닐기로 치환된 것을 가리키며, 상기 E8은 결합(bond) 또는, 탄소수 1 내지 3의 포화 또는 불포화 알킬렌기, 또는 에터기이며, 상기 n은 0 또는 1이다.)
[화학식 6]
Figure PCTKR2021019784-appb-I000006
(상기 화학식 6에서 P와 O는 각각 인과 산소이고; A는 결합 또는 산소이며; 상기 Q는 산소 또는 비공유전자쌍이고; R21, R22, R23 및 R24는 독립적으로 수소, 탄소수 1 내지 10의 선형 또는 분지형의 알킬기, 알케닐기, 알카이닐기, 알콕시기, 알콕시카르보닐기, 알콕시알킬기, 플루오로알킬 또는
Figure PCTKR2021019784-appb-I000007
이며; 선택적으로 상기 R21 또는 R22는, 독립적으로 R23 또는 R24와 연결되어 이중결합 또는 고리를 만들 수 있고; 상기 n은 0 내지 3의 정수이며; 상기 *은 결합위치이다.)
상기 전해액은, 전해액 총 중량에 대하여 바람직하게는 화학식 1 내지 6으로 표시되는 화합물 중에서 선택된 1종 이상의 화합물을 0.1 내지 10 중량%로 포함할 수 있다.
상기 화학식 1 내지 6으로 표시되는 화합물 중에서 선택된 1종 이상의 화합물은 바람직하게는 하기 화학식 5-52로 표시되는 화합물일 수 있다.
[화학식 5-52]
Figure PCTKR2021019784-appb-I000008
상기 화학식 1로 표시되는 화합물은 하기 화학식 1-1 내지 1-24로 표시되는 화합물로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
[화학식 1-1 내지 1-24]
Figure PCTKR2021019784-appb-I000009
(상기 화학식 1-1에서, A 및 A는 각각 독립적으로 인 또는 황이고, R1', R2', R3' 및 R4'는 각각 독립적으로 수소, 또는 치환 또는 비치환된 탄소수 1 내지 10의 알킬기이고, m 및 n은 각각 독립적으로 1 내지 5의 정수이고,
상기 화학식 1-2 내지 1-24에서 선은 결합이고, 별도의 원소를 기재하지 않은 결합과 결합이 만나는 지점은 탄소이며, 상기 탄소의 원자가를 만족하는 수의 수소는 생략되었다.)
상기 화학식 2로 표시되는 화합물은 하기 화학식 2-1 내지 2-4로 표시되는 화합물로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
[화학식 2-1 내지 2-4]
Figure PCTKR2021019784-appb-I000010
(상기 화학식 2-1 내지 2-4에서 선은 결합이고, 별도의 원소를 기재하지 않은 경우 결합과 결합이 만나는 지점은 탄소이며, 상기 탄소의 원자가를 만족하는 수의 수소가 생략되었다.)
상기 화학식 3으로 표시되는 화합물은 하기 화학식 3-1 내지 3-2로 표시되는 화합물로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
[화학식 3-1 내지 3-2]
Figure PCTKR2021019784-appb-I000011
(상기 화학식 3-1 내지 3-2에서 선은 결합이고, 별도의 원소를 기재하지 않은 경우 결합과 결합이 만나는 지점은 탄소이며, 상기 탄소의 원자가를 만족하는 수의 수소가 생략되었다.)
상기 화학식 4로 표시되는 화합물은 하기 화학식 4a로 표시되는 화합물일 수 있다.
[화학식 4a]
Figure PCTKR2021019784-appb-I000012
(상기 화학식 4a에서 선은 결합이고, 별도의 원소를 기재하지 않은 경우 결합과 결합이 만나는 지점은 탄소이며, 상기 탄소의 원자가를 만족하는 수의 수소가 생략되었다.)
상기 화학식 5로 표시되는 화합물은 하기 화학식 5-1 내지 5-52로 표시되는 화합물로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
[화학식 5-1 내지 5-52]
Figure PCTKR2021019784-appb-I000013
(상기 화학식 5-1 내지 5-52에서 선은 결합이고, 별도의 원소를 기재하지 않은 경우 결합과 결합이 만나는 지점은 탄소이며, 상기 탄소의 원자가를 만족하는 수의 수소가 생략되었다.)
상기 화학식 6으로 표시되는 화합물은 하기 화학식 6-1 내지 6-31로 표시되는 화합물로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
[화학식 6-1 내지 6-31]
Figure PCTKR2021019784-appb-I000014
(상기 화학식 6-1 내지 6-31에서 선은 결합이고, 별도의 원소를 기재하지 않은 경우 결합과 결합이 만나는 지점은 탄소이며, 상기 탄소의 원자가를 만족하는 수의 수소가 생략되었다.)
상기 전해액은, 바람직하게는 상기 전해액 총 100 중량%를 기준으로 카보네이트계 화합물 0.1 내지 10 중량%를 더 포함할 수 있다.
상기 카보네이트계 화합물은 하기 화학식 7-1 내지 7-3으로 표시되는 화합물로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것일 수 있다.
[화학식 7-1 내지 7-3]
Figure PCTKR2021019784-appb-I000015
(상기 화학식 7-1 내지 7-3에서 선은 결합이고, 별도의 원소를 기재하지 않은 결합과 결합이 만나는 지점은 탄소이며, 상기 탄소의 원자가를 만족하는 수의 수소는 생략되었다.)
상기 유기용매는 바람직하게는 에틸렌 카보네이트(EC), 디에틸 카보네이트(DEC), 에틸메틸 카보네이트(EMC), 디메틸 카보네이트(DMC), 프로필렌 카보네이트(PC), 디프로필 카보네이트(DPC), 부틸렌 카보네이트, 메틸프로필 카보네이트, 에틸프로필 카보네이트, 메틸 프로피오네이트(MP), 에틸 프로피오네이트(EP) 및 프로필 프로피오네이트(PP)로 이루어진 군에서 선택된 1종 이상을 포함할 수 있다.
상기 리튬염은 바람직하게는 LiPF6, LiBF4, LiCl, LiBr, LiI, LiClO4, LiB10Cl10, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)(C2F5SO2)NLi, (SO2F)2NLi 및 (CF3SO2)2NLi로 이루어진 군에서 선택된 1종 이상을 포함할 수 있다.
상기 전해액은 바람직하게는 이의 총 100 몰%에 대하여 상기 리튬염을 0.6 내지 2 mol%로 포함할 수 있다.
또한, 본 발명은 음극, 양극, 상기 음극과 양극 사이에 개재된 분리막 및 전해액을 포함하는 이차전지로서, 상기 전해액은 전술한 전해액인 것을 특징으로 하는 이차전지를 제공한다.
상기 이차전지는 자동차용 전지인 것일 수 있다.
본 발명에 따른 전해액은 이차전지의 전해액으로 적용하는 경우, 충전 저항이 낮아 충전 효율 및 출력이 향상될 수 있고, 장기 수명 및 고온 용량 유지율이 우수한 이차전지를 제공하는 효과가 있다.
이하 본 발명에 대하여 상세하게 설명하지만, 본 발명은 이에 한정되는 것은 아니다.
본 발명자들은 자동차 전지로 사용 가능한 전지를 제조하기 위하여, 출력이 향상되고, 고온 회복 용량 및 수명 특성이 우수한 이차전지에 대해 연구하던 중, 이차전지의 전해액에 특정 구조의 첨가제를 첨가하는 경우, 상기의 목적을 모두 달성할 수 있는 것을 확인하고, 이를 토대로 본 발명을 완성하게 되었다.
전해액
본 발명은 유기용매, 리튬염 및 하기 화학식 1 내지 화학식 6으로 표시되는 화합물 중에서 선택된 1종 이상의 화합물을 포함하는 전해액을 제공하며 이 경우 충전 저항이 감소되어 전지의 출력이 향상되고, 고온에서의 회복 용량이 향상되어 장기 보관이 가능하며, 또한 고온에서의 수명 유지율이 우수한 효과가 있다.
[화학식 1]
Figure PCTKR2021019784-appb-I000016
(상기 화학식 1에서, G는 -O-, -ORa-, -N(Rb)- 또는 -Rc-N(Rd)-Re-, -Rf(NRgRh)- 또는 -Ri-이고; 상기 Ra, Rc, Re, Rf 및 Ri는 독립적으로 탄소수 1 내지 10의 선형 또는 분지형 알킬렌기이며; Rb, Rd, Rg 및 Rh는 독립적으로 수소, 또는 탄소수 1 내지 10의 선형 또는 분지형 알킬기이고; 상기 Q1 및 Q2는 독립적으로 인(P), 황(S) 또는 비소(As)이며; 상기 D1, D2, D3, D4, D5 및 D6은 독립적으로 산소(=O) 또는, 하나 또는 두개의 비공유 전자쌍이고; 상기 E1, E2, E3 또는 E4는 산소 또는 탄소이며, 상기 D2, D3, D5 또는 D6이 산소인 경우 이에 결합된 E1, E2, E3 또는 E4는 탄소이고; R1, R2, R3, R4, R5, R6, R7 및 R8은 독립적으로 수소, 탄소수 1 내지 10의 선형 또는 분지형의 알킬기, 알케닐기, 알카이닐기, 알콕시기, 알콕시카르보닐기 또는 알콕시알킬기이며; 선택적으로 상기 R3과 R4 또는 R7과 R8은 결합되어 고리를 만들 수 있고;
상기 n 및 k는 독립적으로 0 내지 5의 정수이며; 상기 m 및 l은 독립적으로 0 또는 1이고; 상기 n과 m 중에와 상기 k와 l 중에서 최소한 하나는 0이 아니다.)
[화학식 2]
Figure PCTKR2021019784-appb-I000017
(상기 화학식 2에서, 상기 A1 및 A2는 독립적으로 인(P) 또는 황(S)이며, 상기 D7 및 D8는 독립적으로 산소(=O) 또는 비공유 전자쌍이고, 상기 G1 및 G2는 독립적으로 -O- 또는 -CH2-이고, 상기 R9 및 R10은 독립적으로 탄소수 1 내지 20의 선형 또는 분지형 알킬기이고, 상기 R11, R12, R13 및 R14는 독립적으로 결합(bond) 또는 탄소수 1 내지 3의 알킬렌기이다.)
[화학식 3]
Figure PCTKR2021019784-appb-I000018
(상기 화학식 3에서, 상기 X1 및 X2는 독립적으로 F, Cl, Br 또는 I이고, 상기 E5 및 E6은 독립적으로 탄소수 1 내지 3의 치환 또는 비치환 탄화수소기로 상기 치환은 =O, -CX'3 및 -CH2CX"3로 이루어진 군에서 선택된 1종 이상으로 치환된 것이고 상기 X' 및 X"는 독립적으로 F, Cl, Br 또는 I이며, 상기 E5 및 E6에 포함되는 탄소 사이의 결합은 단일결합 또는 이중결합이다.)
[화학식 4]
Figure PCTKR2021019784-appb-I000019
(상기 화학식 4에서, 상기 A는 인(P), 황(S), 또는 질소(N)이며, 상기 R15, R16 및 R17은 독립적으로 치환기를 포함하는 탄소수 1 내지 5의 선형 또는 분지형 알킬기이고, 상기 치환기는 F, Cl, Br 및 I를 포함하는 할로겐 원소 및 산소(=O)로 이루어진 군에서 선택된 1종 이상이다.)
[화학식 5]
Figure PCTKR2021019784-appb-I000020
(상기 화학식 5에서, 상기 R18 및 R19는 독립적으로 탄소수 1 내지 5의 알킬렌기이고, 상기 E7은 결합(bond), 탄소수 1 내지 3의 알킬렌기 또는, 탄소수 2 내지 5의 환형 카르보닐기, 에터기 또는 에스터기이고, 상기 R20은 치환 또는 비치환된 탄소수 2 내지 5의 선형 또는 환형 카보네이트기, 카르보닐기, 에터기, 포스페이트기, 설포네이트 또는 설페이트기이고, 상기 치환은 F, Cl, Br 및 I로 이루어진 군에서 선택된 1종 이상 또는 탄소수 1 내지 3의 알케닐기로 치환된 것을 가리키며, 상기 E8은 결합(bond) 또는, 탄소수 1 내지 3의 포화 또는 불포화 알킬렌기, 또는 에터기이며, 상기 n은 0 또는 1이다.)
[화학식 6]
Figure PCTKR2021019784-appb-I000021
(상기 화학식 6에서, P와 O는 각각 인과 산소이고; A는 결합 또는 산소이며; 상기 Q는 산소 또는 비공유전자쌍이고; R21, R22, R23 및 R24는 독립적으로 수소, 탄소수 1 내지 10의 선형 또는 분지형의 알킬기, 알케닐기, 알카이닐기, 알콕시기, 알콕시카르보닐기, 알콕시알킬기, 플루오로알킬 또는
Figure PCTKR2021019784-appb-I000022
이며; 선택적으로 상기 R21 또는 R22는, 독립적으로 R23 또는 R24와 연결되어 이중결합 또는 고리를 만들 수 있고; 상기 n은 0 내지 3의 정수이며; 상기 *은 결합위치이다.)
상기 전해액은, 전해액 총 중량에 대하여 바람직하게는 화학식 1 내지 6으로 표시되는 화합물 중에서 선택된 1종 이상의 화합물을 0.1 내지 10 중량%, 바람직하게는 0.2 내지 5 중량%, 보다 바람직하게는 0.4 내지 2.0 중량%, 가장 바람직하게는 0.5 내지 1.5 중량%를 포함할 수 있고, 이 경우 전해액에 대한 상용성이 우수하여 제조 효율이 보다 향상될 수 있고, 전지 출력 향상 효과가 보다 우수한 이점이 있다.
상기 화학식 1 내지 6으로 표시되는 화합물 중에서 선택된 1종 이상의 화합물은 바람직하게는 하기 화학식 5-52로 표시되는 화합물이나, 이에 한정되는 것은 아니다.
[화학식 5-52]
Figure PCTKR2021019784-appb-I000023
상기 화학식 1로 표시되는 화합물은 바람직하게는 하기 화학식 1-1 내지 1-24로 표시되는 화합물로 이루어진 군으로부터 선택된 1종 이상이나, 이에 한정되는 것은 아니다.
[화학식 1-1 내지 1-24]
Figure PCTKR2021019784-appb-I000024
(상기 화학식 1-1에서, A 및 A는 각각 독립적으로 인 또는 황이고, R1', R2', R3' 및 R4'는 각각 독립적으로 수소, 또는 치환 또는 비치환된 탄소수 1 내지 10의 알킬기이고, m 및 n은 각각 독립적으로 1 내지 5의 정수이고,
상기 화학식 1-2 내지 1-24에서 선은 결합이고, 별도의 원소를 기재하지 않은 결합과 결합이 만나는 지점은 탄소이며, 상기 탄소의 원자가를 만족하는 수의 수소는 생략되었다.)
상기 화학식 2로 표시되는 화합물은 바람직하게는 하기 화학식 2-1 내지 2-4로 표시되는 화합물로 이루어진 군으로부터 선택된 1종 이상이나, 이에 한정되는 것은 아니다.
[화학식 2-1 내지 2-4]
Figure PCTKR2021019784-appb-I000025
(상기 화학식 2-1 내지 2-4에서 선은 결합이고, 별도의 원소를 기재하지 않은 경우 결합과 결합이 만나는 지점은 탄소이며, 상기 탄소의 원자가를 만족하는 수의 수소가 생략되었다.)
상기 화학식 3으로 표시되는 화합물은 바람직하게는 하기 화학식 3-1 내지 3-2로 표시되는 화합물로 이루어진 군으로부터 선택된 1종 이상이나, 이에 한정되는 것은 아니다.
[화학식 3-1 내지 3-2]
Figure PCTKR2021019784-appb-I000026
(상기 화학식 3-1 및 3-2에서 선은 결합이고, 별도의 원소를 기재하지 않은 경우 결합과 결합이 만나는 지점은 탄소이며, 상기 탄소의 원자가를 만족하는 수의 수소가 생략되었다.)
상기 화학식 4로 표시되는 화합물은 바람직하게는 하기 화학식 4a로 표시되는 화합물이나, 이에 한정되는 것은 아니다.
[화학식 4a]
Figure PCTKR2021019784-appb-I000027
(상기 화학식 4a에서 선은 결합이고, 별도의 원소를 기재하지 않은 경우 결합과 결합이 만나는 지점은 탄소이며, 상기 탄소의 원자가를 만족하는 수의 수소가 생략되었다.)
상기 화학식 5로 표시되는 화합물은 바람직하게는 하기 화학식 5-1 내지 5-52로 표시되는 화합물로 이루어진 군으로부터 선택된 1종 이상이나, 이에 한정되는 것은 아니다.
[화학식 5-1 내지 5-52]
Figure PCTKR2021019784-appb-I000028
(상기 화학식 5-1 내지 5-52에서 선은 결합이고, 별도의 원소를 기재하지 않은 경우 결합과 결합이 만나는 지점은 탄소이며, 상기 탄소의 원자가를 만족하는 수의 수소가 생략되었다.)
상기 화학식 6으로 표시되는 화합물은 바람직하게는 하기 화학식 6-1 내지 6-31로 표시되는 화합물로 이루어진 군으로부터 선택된 1종 이상이나, 이에 한정되는 것은 아니다.
[화학식 6-1 내지 6-31]
Figure PCTKR2021019784-appb-I000029
(상기 화학식 6-1 내지 6-31에서 선은 결합이고, 별도의 원소를 기재하지 않은 경우 결합과 결합이 만나는 지점은 탄소이며, 상기 탄소의 원자가를 만족하는 수의 수소가 생략되었다.)
상기 화학식 1에서, 상기 n, k, m 또는 l이 0일 때는 해당 단위, 즉 괄호 안의 그룹은 없어지고 결합을 의미하게 된다. 예로 해당 단위의 개수인 n이 0이고 해당 단위의 개수인 m이 1인 경우 E1은 R3가 치환되어 있는 이중결합 탄소에 직접 결합된 화합물이 된다.
본 기재에서 알킬렌기는 2가의 탄화수소기를 의미하고, 구체적인 예로 프로필렌기는 -CH2CH2CH2- 또는 -CH2CH(CH3)-를 지칭한다.
본 기재에서 알케닐기는 탄소-탄소 이중결합을 포함하는 1가의 탄화수소기를 의미하고, 구체적인 예로 n-부테닐기는 CH2=CHCH2CH2-를 지칭한다.
본 기재에서 알카이닐기는 탄소-탄소 삼중결합을 포함하는 1가의 탄화수소기를 의미하고, 구체적인 예로 1-부타이닐기는 CHCCH2CH2-를 지칭한다.
상기 Ra, Rc, Re, Rf 및 Ri는 바람직하게는 독립적으로 탄소수 1 내지 3의 선형 또는 분지형 알킬렌기이고, 이러한 경우 이차전지의 충전 저항이 낮아 충전 효율 및 출력이 향상될 수 있고, 장기 수명 및 고온 용량 유지율이 우수한 효과가 있다.
상기 Rb, Rd, Rg 및 Rh는 바람직하게는 독립적으로 수소, 또는 탄소수 1 내지 3의 선형 알킬기이고, 이러한 경우 이차전지의 충전 저항이 낮아 충전 효율 및 출력이 향상될 수 있고, 장기 수명 및 고온 용량 유지율이 우수한 효과가 있다.
상기 Q1 및 Q2는 바람직하게는 독립적으로 인(P)이고, 이러한 경우 이차전지의 충전 저항이 낮아 충전 효율 및 출력이 향상될 수 있고, 장기 수명 및 고온 용량 유지율이 우수한 효과가 있다.
상기 R1, R2, R3, R4, R5, R6, R7 및 R8은 바람직하게는 독립적으로 수소, 탄소수 1 내지 5의 선형 또는 분지형의 알킬기, 알케닐기, 알카이닐기, 알콕시기, 알콕시카르보닐기 또는 알콕시알킬기이고, 보다 바람직하게는 독립적으로 수소, 탄소수 1 내지 3의 선형 또는 분지형의 알킬기, 알케닐기, 알카이닐기, 알콕시기, 알콕시카르보닐기 또는 알콕시알킬기이고, 이러한 경우 이차전지의 충전 저항이 낮아 충전 효율 및 출력이 향상될 수 있고, 장기 수명 및 고온 용량 유지율이 우수한 효과가 있다.
상기 R3과 R4 또는 R7과 R8은 바람직하게는 결합되어 방향족 고리를 만들 수 있고, 보다 바람직하게는 벤젠 고리를 만들 수 있으며, 이러한 경우 이차전지의 충전 저항이 낮아 충전 효율 및 출력이 향상될 수 있고, 장기 수명 및 고온 용량 유지율이 우수한 효과가 있다. 여기에서 벤젠 고리는 하기 화학식 5와 같이 형성되는 것을 의미한다.
상기 n 및 k는 바람직하게는 독립적으로 0 내지 3의 정수이고, 보다 바람직하게는 독립적으로 1 내지 3의 정수이고, 더욱 바람직하게는 2 또는 3이고, 이러한 경우 이차전지의 충전 저항이 낮아 충전 효율 및 출력이 향상될 수 있고, 장기 수명 및 고온 용량 유지율이 우수한 효과가 있다.
상기 m 및 l은 바람직하게는 독립적으로 1이고, 이러한 경우 이차전지의 충전 저항이 낮아 충전 효율 및 출력이 향상될 수 있고, 장기 수명 및 고온 용량 유지율이 우수한 효과가 있다.
상기 화학식 1로 표시되는 화합물은 바람직하게는 상기 G를 중심으로 대칭이고, 이 경우 대칭의 고리형 구조로서 분자 내의 전자 흐름이 안정을 이루게 되며, 이를 통해 분자 강직도(rigidity)가 높아져 전지 성능 향상 이 큰 이점이 있다.
상기 화학식 1로 표시되는 화합물은 바람직하게는 하기 화학식 1-1 내지 1-24로 표시되는 화합물로 이루어진 군으로부터 선택된 1종 이상이고, 보다 바람직하게는 하기 화학식 1-15 내지 화학식 1-24로 표시되는 화합물로 이루어진 군으로부터 선택된 1종 이상이며, 이 경우 이차전지의 충전 저항이 낮아 충전 효율 및 출력이 향상될 수 있고, 장기 수명 및 고온 용량 유지율이 우수한 이점이 있다.
[화학식 1-1 내지 1-24]
Figure PCTKR2021019784-appb-I000030
(상기 화학식 1-1에서, A 및 A는 각각 독립적으로 인 또는 황이고, R1', R2', R3' 및 R4'는 각각 독립적으로 수소, 또는 치환 또는 비치환된 탄소수 1 내지 10의 알킬기이고, m 및 n은 각각 독립적으로 1 내지 5의 정수이고,
상기 화학식 1-2 내지 1-24에서 선은 결합이고, 별도의 원소를 기재하지 않은 경우 결합과 결합이 만나는 지점은 탄소이며, 상기 탄소의 원자가를 만족하는 수의 수소가 생략되었다.)
상기 화학식 1-1에서, A및 A는 각각 독립적으로 인 또는 황이고, R1’, R2’, R3’ 및 R4’는 각각 독립적으로 수소, 또는 치환 또는 비치환된 탄소수 1 내지 10의 알킬기이고, m 및 n은 각각 독립적으로 1 내지 5의 정수이다.
상기 화학식 1-1로 표시되는 전해액 첨가제는, 이차전지의 전해액에 첨가되는 경우, P 또는 S 원소와 직접 연결된 O 원소 사이의 전기 음성도 차로 인해 전자가 O 원소 쪽으로 편재된다. 이에 따라 P 또는 S 원소는 전자 부족(e- poor, δ+) 상태가 되어 리튬 이온을 포함하는 전해액 중에서 산화 반응이 유도되어, 전극, 구체적으로는 양극(Cathode)에 안정한 피막을 형성한다. 이때, 상기 피막의 안정성으로 인해 전해액의 분해를 방지할 수 있으며, 이로 인하여 사이클 특성이 개선될 수 있고, 특히 고온에서 분해되지 않아 종래 전극 피막이 고온에서 분해됨에 따라 고온 저장성이 떨어지는 것에 비하여 고온 저장성이 크게 개선되는 우수한 효과가 있다. 또한, 저항 증가가 방지되어 충전 효율 및 출력이 개선되는 효과가 있고, 전지 내부의 화학 반응으로 인한 가스 발생 역시 억제되므로 전지의 안전성이 향상될 수 있다. 또한, 고온에서 양극 및 음극의 전극 활물질 구조 붕괴를 방지하여 용량 유지율이 개선되고, 이를 통해 수명이 연장되는 효과가 있다.
상기 화학식 1-1에서, A 및 A는 각각 독립적으로 인 또는 황이고, 상술한 효과 측면에서 O 원소와의 전기 음성도 차이가 더 큰 인이 더욱 바람직하다.
상기 R1’, R2’, R3’ 및 R4’는 각각 독립적으로 수소, 또는 치환 또는 비치환된 탄소수 1 내지 10의 알킬기이고, 바람직하게는 수소 또는 메틸기, 더욱 바람직하게는 수소일 수 있다.
상기 m 및 n은 각각 독립적으로 1 내지 5의 정수이고, 바람직하게는 1 내지 3일 수 있으며, 더욱 바람직하게는 1 또는 2일 수 있다. 상기 R1’, R2’, R3’ 및 R4’가 각각 수소이고, m 및 n이 1 또는 2인 경우, 분자구조 간소화에 따른 안정성 향상 효과 측면에서 가장 바람직하다.
상기 화학식 1-1에서, A 및 A, m 및 n은 각각 독립적으로 서로 같거나 다를 수 있으며, A 및 A가 서로 동일한 원소이고, m=n을 만족하여 상기 전해액 첨가제 화합물의 화학 구조가 대칭을 이룰 경우, 대칭의 고리형 구조로서 분자 내의 전자 흐름이 안정을 이루게 되며, 이를 통해 분자 강직도(rigidity)가 높아져 전지 성능 향상 효과가 더욱 우수해지는 이점이 있으나, 이에 제한되는 것은 아니며, 비대칭 구조에서도 상술한 본원발명의 효과를 나타낼 수 있다.
상기 화학식 1-1로 표시되는 화합물은 바람직하게는 하기 화학식 1a로 표시되는 화합물일 수 있다.
[화학식 1a]
Figure PCTKR2021019784-appb-I000031
본 발명에서 전해액이 상기 화학식 1a로 표시되는 화합물과 같이 대칭의 고리형 구조를 갖는 피로인산염일 경우, 대칭의 고리형 구조로 인한 전자 흐름 안정성 및 분자 구조 간소화에 따른 안정화 효과가 극대화되어 바람직하다. 따라서, 이를 이차전지 전해액으로 첨가하는 경우, 전지의 충전 저항이 낮아져 전지 출력이 향상되고, 고온에서 충전 회복 용량이 상승되며, 수명 효율은 높아지는 효과가 우수하여 전지용 전해액 첨가제로서 바람직하다.
[화학식 2]
Figure PCTKR2021019784-appb-I000032
(상기 화학식 2에서, 상기 A1 및 A2는 독립적으로 인(P) 또는 황(S)이며, 상기 D7 및 D8는 독립적으로 산소(=O) 또는 비공유 전자쌍이고, 상기 G1 및 G2는 독립적으로 -O- 또는 -CH2-이고, 상기 R9 및 R10은 독립적으로 탄소수 1 내지 20의 선형 또는 분지형 알킬기이고, 상기 R11, R12, R13 및 R14는 독립적으로 결합(bond) 또는 탄소수 1 내지 3의 알킬렌기이다.)
본 기재에서 알킬렌기는 2가의 탄화수소기를 의미하고, 구체적인 예로 프로필렌기는 -CH2CH2CH2- 또는 -CH2CH(CH3)-를 지칭한다.
상기 A1 및 A2는 바람직하게는 독립적으로 인(P)이고, 이러한 경우 이차전지의 충전 저항이 낮아 충전 효율 및 출력이 향상될 수 있고, 장기 수명 및 고온 용량 유지율이 우수한 효과가 있다.
상기 D7 및 D8이 산소(=O)인 경우 상기 G1 및 G2는 바람직하게는 -CH2- 이고, 상기 D7 및 D8이 비공유 전자쌍인 경우 상기 G1 및 G2는 바람직하게는 -O- 이며, 이러한 경우 이차전지의 충전 저항이 낮아 충전 효율 및 출력이 향상될 수 있고, 장기 수명 및 고온 용량 유지율이 우수한 효과가 있다.
상기 R9 및 R10은 바람직하게는 독립적으로 탄소수 1 내지 18의 선형 또는 분지형 알킬기이고, 보다 바람직하게는 독립적으로 탄소수 1 내지 18의 선형 알킬기이며, 이러한 경우 이차전지의 충전 저항이 낮아 충전 효율 및 출력이 향상될 수 있고, 장기 수명 및 고온 용량 유지율이 우수한 효과가 있다.
상기 R11, R12, R13 및 R14는 바람직하게는 독립적으로 결합(bond) 또는 -CH2-이고, 이러한 경우 이차전지의 충전 저항이 낮아 충전 효율 및 출력이 향상될 수 있고, 장기 수명 및 고온 용량 유지율이 우수한 효과가 있다.
상기 화학식 2로 표시되는 화합물은 바람직하게는 대칭 구조이고, 이 경우 대칭의 고리를 포함하는 구조로서 분자 내의 전자 흐름이 안정을 이루게 되며, 이를 통해 분자 강직도(rigidity)가 높아져 전지 성능 향상 효과가 보다 큰 이점이 있다.
상기 화학식 2로 표시되는 화합물은 바람직하게는 하기 화학식 2-1 내지 2-4로 표시되는 화합물로 이루어진 군으로부터 선택된 1종 이상이고, 이 경우 이차전지의 충전 저항이 낮아 충전 효율 및 출력이 향상될 수 있고, 장기 수명 및 고온 용량 유지율이 우수한 이점이 있다.
[화학식 2-1 내지 2-4]
Figure PCTKR2021019784-appb-I000033
(상기 화학식 2-1 내지 2-4에서 선은 결합이고, 별도의 원소를 기재하지 않은 경우 결합과 결합이 만나는 지점은 탄소이며, 상기 탄소의 원자가를 만족하는 수의 수소가 생략되었다.)
상기 화학식 2로 표시되는 전해액 첨가제는, 전지의 전해액에 첨가되는 경우, P 또는 S 원소와 직접 연결된 O 원소 사이의 전기 음성도 차로 인해 전자가 O 원소 쪽으로 편재된다. 이에 따라 P 또는 S 원소는 전자 부족(e- poor, δ+) 상태가 되어 리튬 이온을 포함하는 전해액 중에서 산화 반응이 유도되어, 전극, 구체적인 일례로 양극(Cathode)에 안정한 피막을 형성한다. 이때, 상기 피막의 안정성으로 인해 전해액의 분해를 방지할 수 있으며, 이로 인하여 사이클 특성이 개선될 수 있고, 특히 고온에서 분해되지 않아 종래 전극 피막이 고온에서 분해됨에 따라 고온 저장성이 떨어지는 것에 비하여 고온 저장성이 크게 개선되는 우수한 효과가 있다. 또한, 저항 증가가 방지되어 충전 효율 및 출력이 개선되는 효과가 있고, 전지 내부의 화학 반응으로 인한 가스 발생 역시 억제되므로 전지의 안전성이 향상될 수 있다. 또한, 고온에서 양극 및 음극의 전극 활물질 구조 붕괴를 방지하여 용량 유지율이 개선되고, 이를 통해 수명이 연장되는 효과가 있다.
상기 화학식 2에서, A 및 A는 각각 독립적으로 인 또는 황이고, 상술한 효과 측면에서 O 원소와의 전기 음성도 차이가 더 큰 인이 더욱 바람직하다.
상기 화학식 2로 표시되는 화합물의 화학 구조가 대칭을 이룰 경우, 대칭의 고리형 구조로서 분자 내의 전자 흐름이 안정을 이루게 되며, 이를 통해 분자 강직도(rigidity)가 높아져 전지 성능 향상 효과가 더욱 우수해지는 이점이 있으나, 이에 제한되는 것은 아니며, 비대칭 구조에서도 상술한 본 발명의 효과를 나타낼 수 있다.
[화학식 3]
Figure PCTKR2021019784-appb-I000034
(상기 화학식 3에서, 상기 X1 및 X2는 독립적으로 F, Cl, Br 또는 I이고, 상기 E5 및 E6은 독립적으로 탄소수 1 내지 3의 치환 또는 비치환 탄화수소기로 상기 치환은 =O, -CX'3 및 -CH2CX"3로 이루어진 군에서 선택된 1종 이상으로 치환된 것이고 상기 X' 및 X"는 독립적으로 F, Cl, Br 또는 I이며, 상기 E5 및 E6에 포함되는 탄소 사이의 결합은 단일결합 또는 이중결합이다.)
상기 X1, X2, X' 및 X"는 바람직하게는 독립적으로 F 또는 Cl이고, 보다 바람직하게는 F이며, 이러한 경우 이차전지의 충전 저항이 낮아 충전 효율 및 출력이 향상될 수 있고, 장기 수명 및 고온 용량 유지율이 우수한 효과가 있다.
상기 E5 및 E6은 바람직하게는 독립적으로 치환 또는 비치환된 탄소수 2 또는 3의 탄화수소기로, 상기 치환은 바람직하게는 1개의 =O 및 1 내지 3개의 -CX'3로 이루어진 군에서 선택된 1종 이상으로 치환된 것이고, 이러한 경우 이차전지의 충전 저항이 낮아 충전 효율 및 출력이 향상될 수 있고, 장기 수명 및 고온 용량 유지율이 우수한 효과가 있다.
또한, 상기 E5 및 E6이 =O(산소) 치환기를 포함하지 않는 경우, 상기 E5 및 E6의 탄소 사이의 결합은 이중결합을 포함할 수 있으며, 이 경우 상기 화합물의 결합 안정성이 향상되어 전지 수명이 보다 개선되는 효과가 있다.
상기 화학식 3으로 표시되는 화합물은 바람직하게는 상기 중심 P 원소를 기준으로 대칭 구조일 수 있고, 이 경우 분자 내의 전자 흐름이 안정을 이루게 되며, 이를 통해 분자 강직도(rigidity)가 높아져 전지 성능 향상이 큰 이점이 있다.
상기 화학식 3으로 표시되는 화합물은 음이온으로 바람직하게는 하기 화학식 3-1 내지 3-2로 표시되는 화합물로 이루어진 군으로부터 선택된 1종을 포함하고, 이 경우 이차전지의 충전 저항이 낮아 충전 효율 및 출력이 향상될 수 있고, 장기 수명 및 고온 용량 유지율이 우수한 이점이 있다.
[화학식 3-1 내지 3-2]
Figure PCTKR2021019784-appb-I000035
(상기 화학식 3-1 내지 3-2에서 선은 결합이고, 별도의 원소를 기재하지 않은 경우 결합과 결합이 만나는 지점은 탄소이며, 상기 탄소의 원자가를 만족하는 수의 수소가 생략되었다.)
상기 화학식 3으로 표시되는 전해액 첨가제는, 전지의 전해액에 첨가되는 경우, P 원소와 직접 연결된 O 원소 사이의 전기 음성도 차로 인해 전자가 O 원소 쪽으로 편재된다. 이에 따라 P 원소는 전자 부족(e- poor, δ+) 상태가 되어 리튬 이온을 포함하는 전해액 중에서 산화 반응이 유도되어, 전극, 구체적인 일례로 양극(Cathode)에 안정한 피막을 형성한다.
이때, 상기 피막의 안정성으로 인해 전해액의 분해를 방지할 수 있으며, 이로 인하여 사이클 특성이 개선될 수 있고, 특히 고온에서 분해되지 않아 종래 전극 피막이 고온에서 분해됨에 따라 고온 저장성이 떨어지는 것에 비하여 고온 저장성이 크게 개선되는 우수한 효과가 있다.
또한, 저항 증가가 방지되어 충전 효율 및 출력이 개선되는 효과가 있고, 전지 내부의 화학 반응으로 인한 가스 발생 역시 억제되므로 전지의 안전성이 향상될 수 있다. 또한, 고온에서 양극 및 음극의 전극 활물질 구조 붕괴를 방지하여 용량 유지율이 개선되고, 이를 통해 수명이 연장되는 효과가 있다.
상기 화학식 3으로 표시되는 화합물의 화학 구조가 대칭을 이룰 경우, 대칭의 고리형 구조로서 분자 내의 전자 흐름이 안정을 이루게 되며, 이를 통해 분자 강직도(rigidity)가 높아져 전지 성능 향상 효과가 더욱 우수해지는 이점이 있으나, 이에 제한되는 것은 아니며, 비대칭 구조에서도 상술한 본 발명의 효과를 나타낼 수 있다.
[화학식 4]
Figure PCTKR2021019784-appb-I000036
(상기 화학식 4에서, 상기 A는 인(P), 황(S), 또는 질소(N)이며, 상기 R15, R16 및 R17은 독립적으로 치환기를 포함하는 탄소수 1 내지 5의 선형 또는 분지형 알킬기이고, 상기 치환기는 F, Cl, Br 및 I를 포함하는 할로겐 원소 및 산소(=O)로 이루어진 군에서 선택된 1종 이상이다.)
상기 A는 바람직하게는 인(P)이고, 이러한 경우 이차전지의 충전 저항이 낮아 충전 효율 및 출력이 향상될 수 있고, 장기 수명 및 고온 용량 유지율이 우수한 효과가 있다.
상기 R15, R16 및 R17은 바람직하게는 독립적으로 치환기를 포함하는 탄소수 1 내지 3의 선형 알킬기이고, 이러한 경우 이차전지의 충전 저항이 낮아 충전 효율 및 출력이 향상될 수 있고, 장기 수명 및 고온 용량 유지율이 우수한 효과가 있다. 또한, 상기 치환기는 바람직하게는 F 및 산소(=O)로 이루어진 군에서 선택된 1종 이상이며, 이러한 경우 이차전지의 충전 효율 및 출력 향상 효과, 장기 수명 및 고온 용량 유지율 개선 효과가 보다 우수한 이점이 있다.
상기 화학식 4로 표시되는 화합물은 바람직하게는 R15, R16 및 R17이 서로 동일한 것으로, 이 경우 분자 내의 전자 흐름이 안정을 이루게 되며, 이를 통해 분자 강직도(rigidity)가 높아져 전지 성능 향상 효과가 보다 큰 이점이 있다.
상기 화학식 4로 표시되는 화합물은 바람직하게는 하기 화학식 4a로 표시되는 화합물을 포함할 수 있고, 이 경우 이차전지의 충전 저항이 낮아 충전 효율 및 출력이 향상될 수 있고, 장기 수명 및 고온 용량 유지율이 우수한 이점이 있다.
[화학식 4a]
Figure PCTKR2021019784-appb-I000037
(상기 화학식 4a에서 선은 결합이고, 별도의 원소를 기재하지 않은 경우 결합과 결합이 만나는 지점은 탄소이며, 상기 탄소의 원자가를 만족하는 수의 수소가 생략되었다.)
상기 화학식 4로 표시되는 전해액 첨가제는, 전지의 전해액에 첨가되는 경우, P, S, 또는 N 원소와 직접 연결된 O 원소 사이의 전기 음성도 차로 인해 전자가 O 원소 쪽으로 편재된다. 이에 따라 P, S, 또는 N 원소는 전자 부족(e- poor, δ+) 상태가 되어 리튬 이온을 포함하는 전해액 중에서 산화 반응이 유도되어, 전극, 구체적인 일례로 양극(Cathode)에 안정한 피막을 형성한다. 이때, 상기 피막의 안정성으로 인해 전해액의 분해를 방지할 수 있으며, 이로 인하여 사이클 특성이 개선될 수 있고, 특히 고온에서 분해되지 않아 종래 전극 피막이 고온에서 분해됨에 따라 고온 저장성이 떨어지는 것에 비하여 고온 저장성이 크게 개선되는 우수한 효과가 있다. 또한, 저항 증가가 방지되어 충전 효율 및 출력이 개선되는 효과가 있고, 전지 내부의 화학 반응으로 인한 가스 발생 역시 억제되므로 전지의 안전성이 향상될 수 있다. 또한, 고온에서 양극 및 음극의 전극 활물질 구조 붕괴를 방지하여 용량 유지율이 개선되고, 이를 통해 수명이 연장되는 효과가 있다.
[화학식 5]
Figure PCTKR2021019784-appb-I000038
(상기 화학식 5에서, 상기 R18 및 R19는 독립적으로 탄소수 1 내지 5의 알킬렌기이고, 상기 E7은 결합(bond), 탄소수 1 내지 3의 알킬렌기 또는, 탄소수 2 내지 5의 환형 카르보닐기, 에터기 또는 에스터기이고, 상기 R20은 치환 또는 비치환된 탄소수 2 내지 5의 선형 또는 환형 카보네이트기, 카르보닐기, 에터기, 포스페이트기, 설포네이트 또는 설페이트기이고, 상기 치환은 F, Cl, Br 및 I로 이루어진 군에서 선택된 1종 이상 또는 탄소수 1 내지 3의 알케닐기로 치환된 것을 가리키며, 상기 E8은 결합(bond) 또는, 탄소수 1 내지 3의 포화 또는 불포화 알킬렌기, 또는 에터기이며, 상기 n은 0 또는 1이다.)
본 기재에서 알킬렌기는 2가의 탄화수소기를 의미하고, 구체적인 예로 프로필렌기는 -CH2CH2CH2- 또는 -CH2CH(CH3)-를 지칭한다.
본 기재에서 알케닐기는 탄소-탄소 이중결합을 포함하는 1가의 탄화수소기를 의미하고, 구체적인 예로 n-부테닐기는 CH2=CHCH2CH2-를 지칭한다.
상기 R18 및 R19는 바람직하게는 독립적으로 탄소수 1 또는 2의 알킬렌기이고, 이러한 경우 이차전지의 충전 저항이 낮아 충전 효율 및 출력이 향상될 수 있고, 장기 수명 및 고온 용량 유지율이 우수한 효과가 있다.
상기 E7은 바람직하게는 결합(bond)이거나, 또는 탄소수 2 내지 3의 환형 카르보닐기, 에터기 또는 에스터기이고, 이러한 경우 이차전지의 충전 저항이 낮아 충전 효율 및 출력이 향상될 수 있고, 장기 수명 및 고온 용량 유지율이 우수한 효과가 있다.
상기 R20은 바람직하게는 치환 또는 비치환된 탄소수 2 내지 3의 선형 또는 환형 카보네이트기, 카르보닐기, 에터기, 포스페이트기 또는 설페이트기이고, 상기 치환은 바람직하게는 F 또는 바이닐기(vinyl)일 수 있으며, 이러한 경우 이차전지의 충전 저항이 낮아 충전 효율 및 출력이 향상될 수 있고, 장기 수명 및 고온 용량 유지율이 우수한 효과가 있다.
상기 E8은 바람직하게는 결합(bond) 또는, 탄소수 1 내지 2의 포화 또는 불포화(불포화인 경우, 탄소수는 2임) 알킬렌기, 또는 에터기이고, 이러한 경우 이차전지의 충전 저항이 낮아 충전 효율 및 출력이 향상될 수 있고, 장기 수명 및 고온 용량 유지율이 우수한 효과가 있다.
상기 n이 0인 경우 인(P) 원자는 산소 대신 비공유 전자쌍을 가진다.
상기 화학식 5로 표시되는 화합물은 바람직하게는 하기 화학식 5-1 내지 5-52로 표시되는 화합물로 이루어진 군으로부터 선택된 1종 이상이고, 이 경우 이차전지의 충전 저항이 낮아 충전 효율 및 출력이 향상될 수 있고, 장기 수명 및 고온 용량 유지율이 우수한 이점이 있다.
[화학식 5-1 내지 5-52]
Figure PCTKR2021019784-appb-I000039
(상기 화학식 5-1 내지 5-52에서 선은 결합이고, 별도의 원소를 기재하지 않은 경우 결합과 결합이 만나는 지점은 탄소이며, 상기 탄소의 원자가를 만족하는 수의 수소가 생략되었다.)
상기 화학식 5로 표시되는 화합물 중 n이 1인 화합물은 바람직하게는 상기 화학식 5-1 내지 5-51로 표시되는 화합물로 이루어진 군으로부터 선택된 1종 이상이고, 이 경우 이차전지의 충전 저항이 낮아 충전 효율 및 출력이 향상될 수 있고, 장기 수명 및 고온 용량 유지율이 우수한 이점이 있다.
상기 화학식 5로 표시되는 전해액 첨가제는, 전지의 전해액에 첨가되는 경우, P 원소와 직접 연결된 O 원소 사이의 전기 음성도 차로 인해 전자가 O 원소 쪽으로 편재된다. 이에 따라 P 원소는 전자 부족(e- poor, δ+) 상태가 되어 리튬 이온을 포함하는 전해액 중에서 산화 반응이 유도되어, 전극, 구체적인 일례로 양극(Cathode)에 안정한 피막을 형성한다. 이때, 상기 피막의 안정성으로 인해 전해액의 분해를 방지할 수 있으며, 이로 인하여 사이클 특성이 개선될 수 있고, 특히 고온에서 분해되지 않아 종래 전극 피막이 고온에서 분해됨에 따라 고온 저장성이 떨어지는 것에 비하여 고온 저장성이 크게 개선되는 우수한 효과가 있다. 또한, 저항 증가가 방지되어 충전 효율 및 출력이 개선되는 효과가 있고, 전지 내부의 화학 반응으로 인한 가스 발생 역시 억제되므로 전지의 안전성이 향상될 수 있다. 또한, 고온에서 양극 및 음극의 전극 활물질 구조 붕괴를 방지하여 용량 유지율이 개선되고, 이를 통해 수명이 연장되는 효과가 있다.
[화학식 6]
Figure PCTKR2021019784-appb-I000040
(상기 화학식 6에서 P와 O는 각각 인과 산소이고; A는 결합 또는 산소이며; 상기 Q는 산소 또는 비공유전자쌍이고; R21, R22, R23 및 R24는 독립적으로 수소, 탄소수 1 내지 10의 선형 또는 분지형의 알킬기, 알케닐기, 알카이닐기, 알콕시기, 알콕시카르보닐기, 알콕시알킬기, 플루오로알킬 또는
Figure PCTKR2021019784-appb-I000041
이며; 선택적으로 상기 R21 또는 R22는, 독립적으로 R23 또는 R24와 연결되어 이중결합 또는 고리를 만들 수 있고; 상기 n은 0 내지 3의 정수이며; 상기 *은 결합위치이다.)
상기 고리는 바람직하게는 방향족(aromatic) 또는 지방족(aliphatic) 고리일 수 있고, 상기 n은 바람직하게는 1 또는 2일 수 있으며, 상기 플루오로알킬은 바람직하게는 플루오로기가 2개 내지 8개 치환된 알킬일 수 있다.
상기 화학식 6으로 표시되는 그룹이 치환된 화합물은 상기 화학식 1로 표시되는 그룹의 * 위치에 다양한 그룹이 필요에 따라 결합될 수 있고, 일례로 탄소수 1 내지 10의 선형 또는 분지형의 알킬기, 알케닐기, 알카이닐기, 알콕시기, 하이드록시기, 알콕시카르보닐기, 알콕시알킬기, 플루오로알킬, 시아노기, 알킬시아노기, 알킬실릴, 아마이드, 이미다졸, 싸이오펜, 에터, 싸이오에터, 알킬설포닐, 설포닐알킬, 사이클로알킬설포닐, 사이클로설포닐알킬, 알킬술폭시드 또는 플루오로화 인 등일 수 있다. 여기에서 완성된 화합물로 명명된 그룹은 해당 그룹의 수소 또는 일부 원자단이 상기 화학식 6으로 표시되는 그룹으로 * 위치에서 치환되는 것을 의미한다.
상기 화학식 6으로 표시되는 그룹이 치환된 화합물은 바람직하게는 하기 화학식 6-1 내지 6-31로 표시되는 화합물로 이루어진 군으로부터 선택된 1종 이상이고, 보다 바람직하게는 하기 화학식 6-15 또는 화학식 6-31로 표시되는 화합물이며, 이 경우 이차전지의 충전 저항이 낮아 충전 효율 및 출력이 향상될 수 있고, 장기 수명 및 고온 용량 유지율이 우수한 이점이 있다.
[화학식 6-1 내지 6-31]
Figure PCTKR2021019784-appb-I000042
(상기 화학식 6-1 내지 6-31에서 선은 결합이고, 별도의 원소를 기재하지 않은 경우 결합과 결합이 만나는 지점은 탄소이며, 상기 탄소의 원자가를 만족하는 수의 수소가 생략되었다.)
상기 화학식 6-1 내지 6-31로 표시되는 전해액 첨가제는, 이차전지의 전해액에 첨가되는 경우, P 또는 S 원소와 직접 연결된 O 원소 사이의 전기 음성도 차로 인해 전자가 O 원소 쪽으로 편재된다. 이에 따라 P 또는 S 원소는 전자 부족(e- poor, δ+) 상태가 되어 리튬 이온을 포함하는 전해액 중에서 산화 반응이 유도되어, 전극, 구체적으로는 양극(Cathode)에 안정한 피막을 형성한다. 이때, 상기 피막의 안정성으로 인해 전해액의 분해를 방지할 수 있으며, 이로 인하여 사이클 특성이 개선될 수 있고, 특히 고온에서 분해되지 않아 종래 전극 피막이 고온에서 분해됨에 따라 고온 저장성이 떨어지는 것에 비하여 고온 저장성이 크게 개선되는 우수한 효과가 있다. 또한, 저항 증가가 방지되어 충전 효율 및 출력이 개선되는 효과가 있고, 전지 내부의 화학 반응으로 인한 가스 발생 역시 억제되므로 전지의 안전성이 향상될 수 있다. 또한, 고온에서 양극 및 음극의 전극 활물질 구조 붕괴를 방지하여 용량 유지율이 개선되고, 이를 통해 수명이 연장되는 효과가 있다.
상기 화학식 1 내지 화학식 6으로 표시되는 화합물 중에서 선택된 1종 이상의 화합물은 전해액 총 100 중량%를 기준으로 0.1 내지 10 중량%로 포함될 수 있고, 바람직하게는 0.2 내지 5 중량%, 더욱 바람직하게는 0.4 내지 2.0 중량%, 가장 바람직하게는 0.5 내지 1.5 중량%로 포함될 수 있다. 상기 범위 내에서 전지의 충전 효율 및 고온 수명 향상 효과가 가장 우수할 수 있다.
상기 카보네이트계 화합물은 바람직하게는 하기 화학식 7-1 내지 7-3으로 표시되는 화합물로 이루어진 군으로부터 선택된 1종 이상일 수 있으나, 이에 한정하는 것은 아니다.
[화학식 7-1 내지 7-3]
Figure PCTKR2021019784-appb-I000043
상기 전해액은 전지의 전해액에 첨가되어 전극에 안정한 피막을 형성할 수 있다. 이때, 상기 피막의 안정성으로 인해 전해액의 분해를 방지할 수 있으며, 이로 인하여 사이클 특성이 개선될 수 있고, 특히 종래 전극 피막이 고온에서 분해됨에 따라 고온 저장성이 떨어지는 것에 비하여 고온에서의 분해가 억제되어 고온 저장성이 크게 개선되는 우수한 효과가 있다. 또한, 저항 증가가 방지되어 충전 효율 및 출력이 개선되는 효과가 있고, 전지 내부의 화학 반응으로 인한 가스 발생 역시 억제되므로 전지의 안전성이 향상될 수 있다. 또한, 고온에서 양극 및 음극의 전극 활물질 구조 붕괴를 방지하여 용량 유지율이 개선되고, 이를 통해 수명이 연장되는 효과가 있다.
또한, 본 발명은 상기 화학식 1 내지 6으로 표시되는 화합물 중에서 선택된 1종 이상 0.1 내지 10 중량% 및 상기 화학식 7로 표시되는 화합물 0.1 내지 10 중량%에 유기용매 및/또는 리튬염을 포함하는 전해액을 제공한다.
상기 유기용매는 바람직하게는 에틸렌 카보네이트(EC), 디에틸 카보네이트(DEC), 에틸메틸 카보네이트(EMC), 디메틸 카보네이트(DMC), 프로필렌 카보네이트(PC), 디프로필 카보네이트(DPC), 부틸렌 카보네이트, 메틸프로필 카보네이트, 에틸프로필 카보네이트, 메틸 프로피오네이트(MP), 에틸 프로피오네이트(EP) 및 프로필 프로피오네이트(PP)로 이루어진 군에서 선택된 1종 이상을 포함할 수 있고, 바람직하게는 2종 이상을 포함할 수 있으며, 이 경우 전해액의 이온전도도, 점도 등을 제어하기 용이하여 전지 성능을 개선하는 효과가 보다 우수한 이점이 있다.
상기 유기용매는 구체적인 일례로 전지의 충방전 성능을 높일 수 있도록 높은 이온전도도를 갖는 고유전율의 유기용매 및 용매의 점도가 전지에 적용하기에 적절한 점도를 갖도록 조절할 수 있는 저점도 유기용매를 혼합하여 혼합 용매로 사용할 수 있으며, 보다 구체적으로는 상기 고유전율의 유기용매로는 일례로 EC 및/또는 PC 등을 사용할 수 있고, 상기 저점도 유기용매로는 일례로 EMC, DMC 및 DEC로 이루어진 군에서 선택된 1종 이상을 사용할 수 있다.
상기 고유전율 및 저점도 유기용매는 2:8 내지 8:2의 부피비로 혼합하여 사용하는 것이 바람직하다. 보다 구체적으로는, EC 및/또는 PC와, EMC 및 DEC의 3원 혼합 용매일 수 있으며, EC 및/또는 PC : EMC : DEC의 비율은 1 : 3 내지 5 : 2 내지 4일 수 있다.
상기 유기용매는 수분을 포함하는 경우, 전해액 중 리튬 이온이 가수분해될 수 있으므로, 유기용매 중 수분은 150 ppm 이하, 바람직하게는 100 ppm 이하로 통제되는 것이 바람직하다.
상기 전해액은 리튬염으로 일례로 LiPF6 및 LiFSI로 이루어진 군에서 선택된 1종 이상을 포함할 수 있고, 바람직하게는 LiPF6를 포함할 수 있으며, 이 경우 전지의 리튬 이온 공급이 원활이 이루어져 전지 성능이 우수한 이점이 있다.
상기 전해액은 일례로 리튬염으로 LiF4, LiCl, LiBr, LiI, LiClO4, LiB10Cl10, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (SO2F)2NLi 및 (CF3SO2)2NLi로 이루어진 군에서 선택된 1종 이상을 더 포함할 수 있으며, 이 경우 리튬 이온의 공급이 보다 원활할 수 있다.
상기 리튬염을 전해액에 용해시키면, 상기 리튬염은 리튬 이차 전지 내에서 리튬 이온의 공급원으로 기능하고, 양극과 음극 간의 리튬 이온의 이동을 촉진할 수 있다. 이에 따라, 상기 리튬염은 상기 전해액 중 대략 0.6 mol% 내지 2 mol%의 농도로 포함되는 것이 바람직하다. 상기 리튬염의 농도가 0.6 mol% 미만인 경우 전해액의 전도도가 낮아져 전해액 성능이 떨어질 수 있고, 2 mol%를 초과하는 경우 전해액의 점도가 증가하여 리튬 이온의 이동성이 낮아질 수 있다. 이와 같은 전해액의 전도도 및 리튬 이온의 이동성을 고려하면, 상기 리튬염은 상기 전해액 내에서 바람직하게는 0.7 mol% 내지 1.6 mol%, 더욱 바람직하게는 0.8 mol% 내지 1.5 mol%로 포함될 수 있다.
본 발명의 전해액은 일례로 전술한 화학식으로 표시되는 화합물을 포함하는 전해액 이외에 전지의 수명특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 일반적으로 전해액에 사용될 수 있는 상용 첨가제를 더 포함할 수 있다.
상기 상용 첨가제는 바람직하게는 비닐렌카보네이트(Vinylene Carbonate, VC), 플루오로에틸렌카보네이트(fluoroethylene carbonate, FEC), 비닐에틸렌카보네이트(vinylethylene carbonate, VEC), 프로피온산 에틸(Ethyl propionate), 프로필 프로피오네이트 (Propyl propionate), 비스디플루오로포스파닐옥시에탄(1,2-bis((difluorophosphaneyl)oxy)ethane), 플로오로메틸디옥사포스포란(2-fluoro-4methyl-[1,3,2]-dioxaphospholane), 디플로오로펜틸옥시포스판(Difluoro(pentyloxy)phosphane), 헥산트리카보나이트릴(1,3,6-hexanetricarbonitrile, HTCN), 숙시노나이트릴(succinonitrile, SN), 아디포나이트릴(adiponitrile, AN), 4-톨루나이트릴(4-tolunitrile), 리튬비스(옥살레이토)보레이트(Lithium bis(oxalato)borate, LiBOB), 리튬 디플루오로(옥살레이토) 보레이트(Lithium difluoro (oxalate) borate, LiDFOB), 리튬 테트라플루오로보레이트 (Lithium tetrafluoroborate, LiBF4), 트리스(트리메틸실릴)보레이트(tris(trimethylsilyl)borate), 트리이소프로필보레이트(Triisopropyl borate), 트리메톡시보록신(Trimethoxyboroxine), 리튬테트라플로오로옥살라토포스페이트(Lithium tetrafluro(oxalato) Phosphate), 리튬디플루오로비스옥살라토포스페이트(Lithium DiFluro(bisoxalato) Phosphate), 리튬디플루오로프스페이트(lithium difluorophosphate), 트리스트리메틸실리포스파이트(Tris(trimethylsilyl) Phosphite), 트리프로파질포스페이트(Tripropagyl phosphate), 트리페닐포스페이트(Triphenyl phosphate), 테트라옥사디티아스피로5,5-운데칸3,3,9,9-테트라옥사이드(2,4,8,10-Tetraoxa-3,9-dithiaspiro[5.5]undecane, 3,3,9,9-tetraoxide), 황산다이메틸(Dimethyl sulfate), 에틸렌디메탄설포네이트(Ethylene dimethanesulfonate), 리튬비스(플루오로설포닐)이미드(Lithium bis(fluorosulfonyl)imide, LiFSI), 에틸황산(ethylene sulfate), 1,3-프로펜설톤 (1-propene-1,3-sultone, 1,3-프로판설톤(1,3-propane sultone), 프로필렌설페이트(1,3-propylene sulfate), 부탄설톤(1,4-Butane sultone), 술폴렌(Sulfolene), 바이페닐(biphenayl), 시클로헥실벤젠(cyclohexyl benzene), 4-플루오로톨루엔(4-fluorotoluene), 플루오로벤젠(Fluoro benzene), 2-플루오로비페닐(2-fluoro-biphenyl) 및 3-플루오로비페닐(3-fluoro-biphenyl)로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
상기 상용 첨가제는 이들 중 1종 단독으로 또는 2종 이상을 혼합하여 사용할 수 있다. 이에 일례로, 상기 상용 첨가제는 플루오로에틸렌카보네이트, 1,3-프로판설톤, 1,3-프로펜설톤 또는 에틸황산을 단독으로 사용할 수 있고, 또는 플루오로에틸렌카보네이트와 1,3-프로판설톤의 조합을 사용하는 것이 바람직할 수 있으나, 이에 한정되는 것은 아니다.
상기 상용 첨가제는 전해액 총 중량에 대하여 0.01 내지 20 중량%로 포함될 수 있고, 바람직하게는 0.1 내지 10 중량%로 포함될 수 있다.
이차전지
본 발명의 음극, 양극, 상기 음극과 양극 사이에 개재된 분리막, 및 상기 전해액을 포함하는 이차전지를 제공한다.
상기 양극은 일례로 양극 활물질, 바인더 및 선택적으로 도전재를 혼합하여 양극 활물질층 형성용 조성물을 제조한 후, 이를 알루미늄 호일 등의 양극 전류 집전체에 도포하여 제조할 수 있다.
상기 양극 활물질은 일례로 리튬 이차전지에 사용되는 통상의 하이니켈 양극 활물질, NCM(리튬 니켈 망간 코발트 산화물) 양극 활물질 또는 LFP(리튬 철 인 산화물) 양극 활물질을 사용할 수 있고, 바람직하게는 화학식 Li[NixCo1-x-yMny]O2(여기서 0<x<0.5, 0<y<0.5) 형태의 리튬 복합금속 산화물일 수 있으며, 구체적인 예로 LiNiMnCoO2일 수 있으나 이에 제한되는 것은 아니다.
상기 리튬 복합금속 산화물의 화학식 Li[NixCo1-x-yMny]O2의 변수 x, y는 일례로 0.0001<x<0.5, 0.0001<y<0.5, 또는 0.001<x<0.3, 0.001<y<0.3일 수 있다.
상기 양극 활물질은 다른 예로 리튬의 가역적인 인터칼레이션(intercalation) 및 디인터칼레이션(de intercalation)이 가능한 화합물(리티에이티드 인터칼레이션 화합물)을 사용할 수 있다.
상기 화합물 중에서도 전지의 용량 특성 및 안정성을 높일 수 있다는 점에서 LiCoO2, LiMnO2, LiMn2O4, LiNiO2, LiNixMn(1-x)O2(단, 0<x<1), 및 LiM1xM2yO2(단, 0≤x≤1, 0≤y≤1, 0≤x+y≤1, M1 및 M2는 각각 독립적으로 Al, Sr, Mg 및 La로 이루어진 군에서 선택된 어느 하나이다)로 이루어진 군에서 선택되는 1종 이상이 바람직하다.
상기 음극은 일례로 음극 활물질, 바인더 및 선택적으로 도전제를 혼합하여 음극 활물질층 형성용 조성물을 제조한 후, 이를 구리 포일 등의 음극 전류 집전체에 도포하여 제조할 수 있다.
상기 음극 활물질로는 일례로 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물을 사용할 수 있다.
상기 음극 활물질의 구체적인 예로는 Si계 음극 활물질, 인조흑연, 천연흑연, 흑연화 탄소섬유, 비정질탄소 등의 탄소질 재료일 수 있다.
또한, 상기 탄소질 재료 이외에, 리튬과 합금화가 가능한 금속질 화합물, 또는 금속질 화합물과 탄소질 재료를 포함하는 복합물도 음극 활물질로 사용할 수 있고, 일례로 그라파이트(graphite)일 수 있다.
상기 리튬과 합금화가 가능한 금속으로는, 일례로 Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si합금, Sn합금 또는 Al합금 중 적어도 어느 하나가 사용될 수 있다.
또한, 상기 음극 활물질로서 금속 리튬 박막을 사용할 수도 있다.
상기 음극 활물질로는 안정성이 높다는 면에서 결정질 탄소, 비결정질 탄소, 탄소 복합체, 리튬 금속 및 리튬을 포함하는 합금으로 이루어진 군에서 선택된 어느 하나 이상을 사용할 수 있다.
본 발명의 이차전지는, 상기 화학식으로 표시되는 화합물을 포함하는 전해액을 첨가함으로써, 종래에 비하여 HPPC(Hybrid Pulse Power Characterization)법에 의해 측정되는 전지 충전 저항, 출력 특성, 60℃ 이상의 고온에서 용량 회복 특성 및 수명 특성 등 전지 특성 개선 효과가 더욱 향상되는 효과가 있다.
구체적인 일례로, 본 발명의 이차전지는, 60℃에서 측정된 HPPC 충전 저항 값이 500mΩ 이하일 수 있고, 바람직하게는 200mΩ 이하, 더욱 바람직하게는 60mΩ, 가장 바람직하게는 50mΩ 이하일 수 있다.
또한, 상기 이차전지는 60℃에서 회복 용량이 580 mAh 이상, 바람직하게는 600 mAh 이상, 더욱 바람직하게는 770 mAh 이상, 가장 바람직하게는 800 mAh 이상일 수 있다.
상기 이차전지의 45℃에서 수명 유지 효율은 80% 이상일 수 있고, 바람직하게는 82% 이상, 더욱 바람직하게는 84% 이상일 수 있다.
본 기재에서, HPPC 충전 저항 값은, “Battery test manual for plug-in hybrid electric vehicles,” (2010, Idaho National Laboratory for the U.S. Department of Energy.) 문헌에서 규정된 방식에 의해 측정될 수 있는 것으로, 전지의 출력 특성을 나타내는 중요한 지표이다. 또한 충전 저항이란, 전지의 충전 시 측정되는 저항 값으로, 충전 저항이 낮을수록 에너지 손실이 적어, 충전 속도가 빨라질 수 있고, 전지의 출력이 향상될 수 있다. 본 발명의 이차전지는 HPPC 충전 저항 값이 상기와 같이 낮게 나타나 충전 속도 및 출력이 우수하여, 예를 들어 자동차용 전지로 사용하기에 적합하다.
본 기재에서 회복 용량은 장시간 방치된 전지의 용량 보존 특성을 나타내는 것으로, 장시간 방치된 전지를 방전종지전압까지 방전시켰을 때의 방전된 전기 용량과, 상기 방전된 전지를 재충전시키고 다시 방전종지전압까지 방전시켰을 때의 방전된 전기 용량을 각각 측정하여, 상기 두 용량 값을 비교한 것이다. 회복 용량이 높을수록 전지 보존(저장)에 의한 자연 방전량이 적어, 전지의 장기간 보존이 가능함을 의미하며, 특히 전지의 보존 온도가 높을수록 자연 방전 속도가 빨라지므로, 고온에서의 회복 용량이 자동차용 전지에서 매우 중요한 특성이다. 본 발명의 전해액 첨가제를 전지용 전해액에 첨가하는 경우, 종래 첨가제를 사용했을 때 보다 회복 용량이 5 내지 15% 향상되어, 한 번의 충전으로 더욱 장기간 보관이 가능한 효과가 있다.
따라서, 본 발명의 전지가 자동차 전지로 사용되는 경우, 자동차의 크기에 따라 중요해지는 출력 개선과, 기후 변화, 운전 중 또는 주차 시에 대부분 일광에 그대로 노출되는 자동차의 특성 상 문제되는 저온 및 고온에서의 성능 개선이 이루어져, 자동차 전지로서 우수한 성능을 나타낼 수 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
[합성예]
합성예 1 : 1,3,2-Dioxaphospholan-2-yl diethyl phosphite의 제조
건조 준비된 3구 플라스크 50ml에 다이에틸 포스파이트 2.38g(17.2mmol)을 넣고, 벤젠 5ml를 적가하였다. 교반하면서 트리에틸아민 1.75g(17.2mmol)을 천천히 적가하였다. 반응온도는 0℃를 유지하면서 에틸렌 클로로포스파이트 2.18g(17.2mmol)을 30분간 천천히 적가하였다. 적가를 완료한 후, 0℃에서 30분간 교반하고, 생성된 트리에틸아민 염은 여과하였다. 여액은 진공 증류를 통해 원하는 생성물인 1,3,2-다이옥사포스포란-2-일 다이에틸 포스파이트를 2,1g, 수율 55%로 수득하였다. 수득한 생성물은 하기와 같이 1H NMR로 화학식 1-24의 구조에 해당하는 것을 확인하였다.
1H NMR (CDCl3, 400MHz) δ = 4.18 (m, 2H), 4.05 (m, 2H), 3.85 (m, 4H), 1.24 (m. 6H)
합성예 2 : 2-((Trimethylsilyl)oxy)-1,3,2-dioxaphospholane의 제조
건조 준비된 3구 플라스크 100ml에 트리메틸실란올 5g(55.4mmol)을 넣고 용매로 다이에틸 에테르 50ml와 트리에틸아민 6.1g(60.0mmol)을 적가하였다. 반응온도는 -10℃를 유지하면서 2-클로로-1,3,2-다이옥사포스포란 5.8g(46.1mmol)을 천천히 적가하였다. 반응 시간은 10시간 교반 진행하고, 실온에서 트리에틸아민염은 여과를 통해 제거하였다. 여액은 진공 증류를 통해 원하는 생성물인 2-((트리메틸실릴)옥시)-1,3,2-다이옥사포스포란를 4.9g, 수율 60%로 수득하였다. 수득한 생성물은 하기와 같이 1H NMR로 화학식 6-31의 구조에 해당하는 것을 확인하였다.
1H NMR (CDCl3, 400MHz) δ = 4.12 (m, 2H), 3.92 (m, 2H), 0.18 (s. 9H)
[실시예: 전지용 전해액의 제조]
실시예 1
유기용매로는 EC:EMC:CEC = 3:4:3의 부피비를 갖는 카보네이트계 혼합용매를 사용하고, 리튬염으로 LiPF6을 포함하는 1.15M의 농도로 포함하는 용액에 전해액 첨가제로 하기 화학식 1-14로 표시되는 화합물 0.5 중량%를 첨가하여 전지용 전해액을 제조하였다.
[화학식 1-14]
Figure PCTKR2021019784-appb-I000044
실시예 2
유기용매로는 EC:EMC:/CEC = 3:4:3의 부피비를 갖는 카보네이트계 혼합용매를 사용하고, 리튬염으로 LiPF6을 포함하는 1.15M의 농도로 포함하는 용액에 전해액 첨가제로 상기 화학식 1-14로 표시되는 화합물 0.5 중량% 및 하기 화학식 7-1로 표시되는 화합물 1 중량%를 첨가하여 전지용 전해액을 제조하였다.
[화학식 7-1]
Figure PCTKR2021019784-appb-I000045
실시예 3
실시예 2에서 상기 화학식 1-14로 표시되는 전해액 첨가제를 하기 화학식 2-2로 표시되는 전해액 첨가제 0.3 중량%로 변경하고 추가 첨가제 종류를 상기 화학식 7-1로 표시되는 화합물에서 하기 화학식 7-2로 표시되는 화합물로 변경한 것을 제외하고는 실시예 2와 동일하게 실시하였다.
[화학식 2-2]
Figure PCTKR2021019784-appb-I000046
[화학식 7-2]
Figure PCTKR2021019784-appb-I000047
실시예 4
실시예 2에서 상기 화학식 1-14로 표시되는 전해액 첨가제를 하기 화학식 3-1로 표시되는 전해액 첨가제 0.8 중량%로 변경하고 추가 첨가제 종류를 상기 화학식 7-1로 표시되는 화합물에서 하기 화학식 7-3으로 표시되는 화합물로 변경한 것을 제외하고는 실시예 2와 동일하게 실시하였다.
[화학식 3-1]
Figure PCTKR2021019784-appb-I000048
[화학식 7-3]
Figure PCTKR2021019784-appb-I000049
실시예 5
실시예 2에서 상기 화학식 1-14로 표시되는 전해액 첨가제를 하기 화학식 4a로 표시되는 전해액 첨가제 1.0 중량%로 변경한 것을 제외하고는 실시예 2와 동일하게 실시하였다.
[화학식 4a]
Figure PCTKR2021019784-appb-I000050
실시예 6
실시예 2에서 상기 화학식 1-14로 표시되는 전해액 첨가제를 하기 화학식 5-52로 표시되는 전해액 첨가제 2.0 중량%로 변경한 것을 제외하고는 실시예 2와 동일하게 실시하였다.
[화학식 5-52]
Figure PCTKR2021019784-appb-I000051
실시예 7 내지 8
실시예 1에서 전해액 첨가제를 합성예 1에서 제조한 화학식 1-24로 표시되는 전해액 첨가제로 대체하고, 이의 함량을 각각 0.5 중량%, 1 중량% 사용한 것을 제외하고는 실시예 1과 동일하게 실시하였다.
실시예 9 내지 10
실시예 1에서 투입한 화합물을 대신하여 상기 합성예 1에서 제조한 화학식 1-24로 표시되는 화합물을 투입하되, 이의 함량을 각각 0.5 중량%, 1 중량% 사용한 것을 제외하고는 실시예 1과 동일하게 실시하였다.
실시예 11 내지 12
실시예 1에서 투입한 화합물을 대신하여 상기 합성예 2에서 제조한 화학식 6-31로 표시되는 화합물을 투입하되, 이의 함량을 각각 0.5 중량%, 1 중량% 사용한 것을 제외하고는 실시예 1과 동일하게 실시하였다.
비교예 1
실시예 2에서 화학식 1-14로 표시되는 전해액 첨가제를 사용하지 않을 것을 제외하고는 실시예 2와 동일하게 실시하였다.
비교예 2
실시예 1에서 전해액 첨가제로, 화학식 1-14로 표시되는 전해액 첨가제 대신 비대칭 구조의 인산염인 시클릭 에틸렌 포스페이트(Cyclic ethylene phosphate, Cas No. 6711-47-3)을 0.5 중량%로 첨가한 것을 제외하고는 실시예 1과 동일하게 실시하였다.
참고로, 상기 실시예 1 내지 12 및 비교예 1 내지 2에서 사용한 전해액의 성분 및 함량은 이해를 돕기 위해 하기 표 1에 간단히 정리하여 기재하였다.
전지의 제조
양극 활물질로서 Li(Ni0.5Co0.2Mn0.3)O2 92 중량%, 도전제로 카본 블랙(carbon black) 4 중량%, 바인더로 폴리비닐리덴 플루오라이드(PVdF) 4 중량%를 용매인 N-메틸-2-피롤리돈(NMP)에 첨가하여 양극 혼합물 슬러리를 제조하였다. 상기 양극 혼합물 슬러리를 두께가 20㎛ 정도의 양극 집전체인 알루미늄(Al) 박막에 도포하고, 건조하여 양극을 제조한 후, 롤 프레스(roll press)를 실시하여 양극을 제조하였다.
음극 활물질로는 탄소 분말, 바인더로 PVdF, 도전제로 카본 블랙(carbon black)을 각각 96 중량%, 3 중량% 및 1 중량%로 하여 용매인 NMP에 첨가하여 음극 혼합물 슬러리를 제조하였다. 상기 음극 혼합물 슬러리를 두께가 10㎛의 음극 집전체인 구리(Cu) 박막에 도포하고, 건조하여 음극을 제조한 후, 롤 프레스(roll press)를 실시하여 음극을 제조하였다.
상기와 같이 제조된 양극과 음극을 폴리프로필렌/폴리에틸렌/폴리프로필렌 (PP/PE/PP) 3층으로 이루어진 분리막과 함께 통상적인 방법으로 파우치형 전지를 제작 후, 상기 실시예 1 내지 12, 및 비교예 1 내지 2에서 제조된 전해액을 주액하여 리튬 이차 전지의 제조를 완성하였다.
시험예
상기에서 제조된 각 이차전지의 성능을 평가하기 위해 하기의 방법으로 성능을 측정하였으며, 그 결과를 하기 표 1로 나타내었다.
[HPPC 충전 저항 평가]
“Battery test manual for plug-in hybrid electric vehicles," (2010, Idaho National Laboratory for the U.S. Department of Energy.) 문헌에서 규정된 방식에 의해 측정하였다.
고온(60℃)에서, 측정 전압값, C-rate에 해당하는 충방전 전류값, 전류 변화량(△I), 방전 전압 변화량(△V), 충전 전압 변화량(△V), 방전 저항, 충전 저항을 측정하여, C-rate별로 충방전 전류를 일정 시간동안 짧게 흘려주어 전류 및 전압 변화량으로 얻은 기울기값으로 저항값을 계산하였다.
[고온 회복 용량 평가]
충전 조건은 정전류 1.0C 및 전압 4.2V에서 충전전류가 1/10C 될 때까지 충전하였다. 방전 조건은 1.0C의 정전류로 3.0V까지 방전에 의해 충방전을 시행한 후, 방전용량을 측정하였다.
동일한 충방전 조건으로 충전 후 60℃의 항온조에서 4주간 보관 후, 60℃의 고온 조건에서 방전 전압 3V까지 방전시킨 후 잔존 용량을 측정하였다. 이후 동일한 충방전 조건으로 3회 실시 후 회복 용량을 측정하여 이의 평균 값을 계산하였다.
[고온 수명 평가]
상기 이차전지를 45℃에서 1C rate의 전류로 전압이 4.20V(vs. Li)에 이를 때까지 정전류 충전하고, 이어서 정전압 모드에서 4.20V를 유지하면서 0.05C rate의 전류에서 컷오프 (cut-off)하였다. 이어서, 방전시에 전압이 3.0V(vs. Li)에 이를 때까지 1C rate의 정전류로 방전하였다(1st 사이클). 상기와 같은 사이클을 300회 반복하여 이의 평균 값을 계산하였다.
구분 주 화합물의 화학식 주 화합물 함량
(중량%)
카보네이트계 화합물
화학식
카보네이트계 화합물 함량
(중량%)
HPPC
충전저항
(mΩ)
고온저장후 회복용량
(mAh)
고온
수명효율
(%)
실시예 1 1-14 0.5 - - 37.2 820.1 84.8
실시예 2 1-14 0.5 7-1 1.0 42.8 818.0 86.1
실시예 3 2-2 0.3 7-2 1.0 43.5 823.0 84.6
실시예 4 3-1 0.8 7-3 1.0 42.5 816.6 85.3
실시예 5 4a 1.0 7-1 1.0 45.9 813.7 84.4
실시예 6 5-52 0.5 7-1 1.0 36.0 840.8 86.0
실시예 7 5-52 1.0 7-1 1.0 36.6 838.2 85.0
실시예 8 5-52 2.0 7-1 1.0 37.2 835.1 84.6
실시예 9 1-24 0.5 - - 37.2 841.2 85.5
실시예 10 1-24 1.0 - - 39.2 838.9 86.5
실시예 11 6-31 0.5 - - 37.8 848.5 86.5
실시예 12 6-31 1.0 - - 38.8 851.7 87.5
비교예 1 - - 7-1 1.0 89 853.2 67.7
비교예 2 시클릭 에틸렌 포스페이트 0.5 - - 83.2 761.0 55.1
상기 표 1에 나타낸 바와 같이, 본 발명에 따른 실시예 1 내지 12의 전해액을 포함하는 이차전지의 경우, 충전 저항값이 36.0 내지 45.9mΩ으로 전지 성능이 뛰어난 반면, 본 발명에 따른 전해액을 포함하지 않고 VC를 단독 사용한 비교예 1은 충전 저항값이 89.0mΩ으로 높게 나타나 전지 성능이 열악한 것을 알 수 있고, 본 발명에 따른 전해액을 포함하지 않고 비대칭 시클릭 에틸렌 포스페이트를 단독 사용한 비교예 2는 충전 저항값이 83.2mΩ으로 높게 나타나 역시 전지 성능이 열악한 것을 알 수 있고, 본 발명에 따른 화합물을 사용함으로써 60℃ 고온에서의 충전 저항값이 최대 60%까지 낮아진 것을 확인할 수 있었다. 이는 본 발명에 따른 전해액에 의해 전지의 출력이 개선되는 효과가 있음을 나타낸다. 상기 표 1에 나타낸 바와 같이, 본 발명에 따른 실시예 1 내지 12의 전해액을 포함하는 이차전지의 경우, 고온 회복 용량이 813.7 내지 851.7 mAh인 반면, 본 발명에 따른 전해액의 범위를 벗어나는 비교예 1 및 2의 경우 각각 853.2 mAh 및 761.0 mAh로서 본 발명의 실시예에 비하여 최대 39.5 mAh 차이나는 것으로 나타났다. 이는 본 발명에 따른 전해액에 의해 60℃ 고온에서의 회복 용량이 향상되는 효과가 있음을 뜻하며, 이로써 본 발명의 전해액 첨가제에 의해 고온 환경에서 장기간 보관 시 전지의 회복 용량 효율이 개선되는 효과가 있음을 확인할 수 있다.
또한, 고온 수명 효율 평가 결과, 본 발명에 따른 실시예 1 내지 12의 전해액을 사용한 이차전지의 경우 84.4% 내지 87.5%인 반면, 본 발명에 따른 전해액의 벗위를 벗어나는 비교예 1 및 2의 경우 67.7% 및 55.1%로 본 발명의 실시예에 비하여 최대 37%p(%포인트) 낮은 것을 알 수 있다. 이는 본 발명의 전해액 첨가제를 사용함으로써 종래 전해액 첨가제만 사용했을 때 비하여 60℃의 고온에서 300 사이클을 반복하는 동안 전지의 용량 유지율이 향상되었음을 뜻하며, 이로써 본 발명의 전해액 첨가제를 사용하여 고온 환경에서 전지의 사이클 특성 및 수명 효율이 향상되는 것을 알 수 있다.
또한, 카보네이트계 화합물을 추가로 포함하는 본 발명에 따른 실시예 2 내지 8의 전해액을 사용한 이차전지의 경우 적정량 범위 내에서 개선된 사이클 특성 및 수명 효율 향상 특성을 보이는 동시에 카보네이트계 화합물과 배합시, 저항특성에서는 다소 증가가 되나, 고온 저장성 평가 및 수명성능 향상이 나타내는 것을 확인할 수 있다.
따라서, 본 발명의 전해액은 이차전지의 충전 효율 및 출력, 회복 용량 및 고온 수명 효율을 개선시켜 자동차용 이차전지로 사용하기에 적합한 것을 알 수 있다.

Claims (16)

  1. 유기용매, 리튬염, 및 하기 화학식 1 내지 화학식 6으로 표시되는 화합물 중에서 선택된 1종 이상의 화합물을 포함하는 것을 특징으로 하는 전해액.
    [화학식 1]
    Figure PCTKR2021019784-appb-I000052
    (상기 화학식 1에서, G는 -O-, -ORa-, -N(Rb)- 또는 -Rc-N(Rd)-Re-, -Rf(NRgRh)- 또는 -Ri-이고; 상기 Ra, Rc, Re, Rf 및 Ri는 독립적으로 탄소수 1 내지 10의 선형 또는 분지형 알킬렌기이며; Rb, Rd, Rg 및 Rh는 독립적으로 수소, 또는 탄소수 1 내지 10의 선형 또는 분지형 알킬기이고; 상기 Q1 및 Q2는 독립적으로 인(P), 황(S) 또는 비소(As)이며; 상기 D1, D2, D3, D4, D5 및 D6은 독립적으로 산소(=O) 또는, 하나 또는 두개의 비공유 전자쌍이고; 상기 E1, E2, E3 또는 E4는 산소 또는 탄소이며, 상기 D2, D3, D5 또는 D6이 산소인 경우 이에 결합된 E1, E2, E3 또는 E4는 탄소이고; R1, R2, R3, R4, R5, R6, R7 및 R8은 독립적으로 수소, 탄소수 1 내지 10의 선형 또는 분지형의 알킬기, 알케닐기, 알카이닐기, 알콕시기, 알콕시카르보닐기 또는 알콕시알킬기이며; 선택적으로 상기 R3과 R4 또는 R7과 R8은 결합되어 고리를 만들 수 있고; 상기 n 및 k는 독립적으로 0 내지 5의 정수이며; 상기 m 및 l은 독립적으로 0 또는 1이고; 상기 n과 m 중에와 상기 k와 l 중에서 최소한 하나는 0이 아니다.)
    [화학식 2]
    Figure PCTKR2021019784-appb-I000053
    (상기 화학식 2에서, 상기 A1 및 A2는 독립적으로 인(P) 또는 황(S)이며, 상기 D7 및 D8는 독립적으로 산소(=O) 또는 비공유 전자쌍이고, 상기 G1 및 G2는 독립적으로 -O- 또는 -CH2-이고, 상기 R9 및 R10은 독립적으로 탄소수 1 내지 20의 선형 또는 분지형 알킬기이고, 상기 R11, R12, R13 및 R14는 독립적으로 결합(bond) 또는 탄소수 1 내지 3의 알킬렌기이다.)
    [화학식 3]
    Figure PCTKR2021019784-appb-I000054
    (상기 화학식 3에서, 상기 X1 및 X2는 독립적으로 F, Cl, Br 또는 I이고, 상기 E5 및 E6은 독립적으로 탄소수 1 내지 3의 치환 또는 비치환 탄화수소기로 상기 치환은 =O, -CX'3 및 -CH2CX"3로 이루어진 군에서 선택된 1종 이상으로 치환된 것이고 상기 X' 및 X"는 독립적으로 F, Cl, Br 또는 I이며, 상기 E5 및 E6에 포함되는 탄소 사이의 결합은 단일결합 또는 이중결합이다.)
    [화학식 4]
    Figure PCTKR2021019784-appb-I000055
    (상기 화학식 4에서, 상기 A는 인(P), 황(S), 또는 질소(N)이며, 상기 R15, R16 및 R17은 독립적으로 치환기를 포함하는 탄소수 1 내지 5의 선형 또는 분지형 알킬기이고, 상기 치환기는 F, Cl, Br 및 I를 포함하는 할로겐 원소 및 산소(=O)로 이루어진 군에서 선택된 1종 이상이다.)
    [화학식 5]
    Figure PCTKR2021019784-appb-I000056
    (상기 화학식 5에서, 상기 R18 및 R19는 독립적으로 탄소수 1 내지 5의 알킬렌기이고, 상기 E7은 결합(bond), 탄소수 1 내지 3의 알킬렌기 또는, 탄소수 2 내지 5의 환형 카르보닐기, 에터기 또는 에스터기이고, 상기 R20은 치환 또는 비치환된 탄소수 2 내지 5의 선형 또는 환형 카보네이트기, 카르보닐기, 에터기, 포스페이트기, 설포네이트 또는 설페이트기이고, 상기 치환은 F, Cl, Br 및 I로 이루어진 군에서 선택된 1종 이상 또는 탄소수 1 내지 3의 알케닐기로 치환된 것을 가리키며, 상기 E8은 결합(bond) 또는, 탄소수 1 내지 3의 포화 또는 불포화 알킬렌기, 또는 에터기이며, 상기 n은 0 또는 1이다.)
    [화학식 6]
    Figure PCTKR2021019784-appb-I000057
    (상기 화학식 6에서 P와 O는 각각 인과 산소이고; A는 결합 또는 산소이며; 상기 Q는 산소 또는 비공유전자쌍이고; R21, R22, R23 및 R24는 독립적으로 수소, 탄소수 1 내지 10의 선형 또는 분지형의 알킬기, 알케닐기, 알카이닐기, 알콕시기, 알콕시카르보닐기, 알콕시알킬기, 플루오로알킬 또는
    Figure PCTKR2021019784-appb-I000058
    이며; 상기 R21 또는 R22는, 독립적으로 R23 또는 R24와 연결되어 이중결합 또는 고리를 만들 수 있고; 상기 n은 0 내지 3의 정수이며; 상기 *은 결합위치이다.)
  2. 제1항에 있어서,
    상기 전해액은, 상기 화학식 1 내지 6으로 표시되는 화합물 중에서 선택된 1종 이상의 화합물을 전해액 총 100 중량% 중에 0.1 내지 10 중량%로 포함하는 것을 특징으로 하는 전해액.
  3. 제1항에 있어서,
    상기 화학식 1 내지 6으로 표시되는 화합물 중에서 선택된 1종 이상의 화합물은 하기 화학식 5-52로 표시되는 화합물인 것을 특징으로 하는 전해액.
    [화학식 5-52]
    Figure PCTKR2021019784-appb-I000059
  4. 제1항에 있어서,
    상기 화학식 1로 표시되는 화합물은 하기 화학식 1-1 내지 1-24로 표시되는 화합물로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는 전해액.
    [화학식 1-1 내지 1-24]
    Figure PCTKR2021019784-appb-I000060
    (상기 화학식 1-1에서, A 및 A는 각각 독립적으로 인 또는 황이고, R1', R2', R3' 및 R4'는 각각 독립적으로 수소, 또는 치환 또는 비치환된 탄소수 1 내지 10의 알킬기이고, m 및 n은 각각 독립적으로 1 내지 5의 정수이고,
    상기 화학식 1-2 내지 1-24에서 선은 결합이고, 별도의 원소를 기재하지 않은 결합과 결합이 만나는 지점은 탄소이며, 상기 탄소의 원자가를 만족하는 수의 수소는 생략되었다.)
  5. 제1항에 있어서,
    상기 화학식 2로 표시되는 화합물은 하기 화학식 2-1 내지 2-4로 표시되는 화합물로 이루어진 군으로부터 선택된 1종 이상인 것인 전해액.
    [화학식 2-1 내지 2-4]
    Figure PCTKR2021019784-appb-I000061
    (상기 화학식 2-1 내지 2-4에서 선은 결합이고, 별도의 원소를 기재하지 않은 경우 결합과 결합이 만나는 지점은 탄소이며, 상기 탄소의 원자가를 만족하는 수의 수소가 생략되었다.)
  6. 제1항에 있어서,
    상기 화학식 3으로 표시되는 화합물은 하기 화학식 3-1 내지 3-2로 표시되는 화합물로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는 전해액.
    [화학식 3-1 내지 3-2]
    Figure PCTKR2021019784-appb-I000062
    (상기 화학식 3-1 내지 3-2에서 선은 결합이고, 별도의 원소를 기재하지 않은 경우 결합과 결합이 만나는 지점은 탄소이며, 상기 탄소의 원자가를 만족하는 수의 수소가 생략되었다.)
  7. 제1항에 있어서,
    상기 화학식 4로 표시되는 화합물은 하기 화학식 4a로 표시되는 화합물인 것을 특징으로 하는 전해액.
    [화학식 4a]
    Figure PCTKR2021019784-appb-I000063
    (상기 화학식 4a에서 선은 결합이고, 별도의 원소를 기재하지 않은 경우 결합과 결합이 만나는 지점은 탄소이며, 상기 탄소의 원자가를 만족하는 수의 수소가 생략되었다.)
  8. 제1항에 있어서,
    상기 화학식 5로 표시되는 화합물은 하기 화학식 5-1 내지 5-52로 표시되는 화합물로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는 전해액.
    [화학식 5-1 내지 5-52]
    Figure PCTKR2021019784-appb-I000064
    (상기 화학식 5-1 내지 5-52에서 선은 결합이고, 별도의 원소를 기재하지 않은 경우 결합과 결합이 만나는 지점은 탄소이며, 상기 탄소의 원자가를 만족하는 수의 수소가 생략되었다.)
  9. 제1항에 있어서,
    상기 화학식 6으로 표시되는 화합물은 하기 화학식 6-1 내지 6-31로 표시되는 화합물로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는 전해액.
    [화학식 6-1 내지 6-31]
    Figure PCTKR2021019784-appb-I000065
    (상기 화학식 6-1 내지 6-31에서 선은 결합이고, 별도의 원소를 기재하지 않은 경우 결합과 결합이 만나는 지점은 탄소이며, 상기 탄소의 원자가를 만족하는 수의 수소가 생략되었다.)
  10. 제1항에 있어서,
    상기 전해액은, 상기 전해액 총 100 중량%를 기준으로 카보네이트계 화합물 0.1 내지 10 중량%를 더 포함하는 것을 특징으로 하는 전해액.
  11. 제10항에 있어서,
    상기 카보네이트계 화합물은 하기 화학식 7-1 내지 7-3으로 표시되는 화합물로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것을 특징으로 하는 전해액.
    [화학식 7-1 내지 7-3]
    Figure PCTKR2021019784-appb-I000066
    (상기 화학식 7-1 내지 7-3에서 선은 결합이고, 별도의 원소를 기재하지 않은 결합과 결합이 만나는 지점은 탄소이며, 상기 탄소의 원자가를 만족하는 수의 수소는 생략되었다.)
  12. 제1항에 있어서,
    상기 유기용매는 에틸렌 카보네이트(EC), 디에틸 카보네이트(DEC), 에틸메틸 카보네이트(EMC), 디메틸 카보네이트(DMC), 프로필렌 카보네이트(PC), 디프로필 카보네이트(DPC), 부틸렌 카보네이트, 메틸프로필 카보네이트, 에틸프로필 카보네이트, 메틸 프로피오네이트(MP), 에틸 프로피오네이트(EP) 및 프로필 프로피오네이트(PP)로 이루어진 군에서 선택된 1종 이상을 포함하는 것을 특징으로 하는 전해액.
  13. 제1항에 있어서,
    상기 리튬염은 LiPF6, LiBF4, LiCl, LiBr, LiI, LiClO4, LiB10Cl10, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)(C2F5SO2)NLi, (SO2F)2NLi 및 (CF3SO2)2NLi(LiFSi)로 이루어진 군에서 선택된 1종 이상을 포함하는 것을 특징으로 하는 전해액.
  14. 제1항에 있어서,
    상기 전해액은 이의 총 100 몰%에 대하여 상기 리튬염을 0.6 내지 2 mol%로 포함하는 것을 특징으로 하는 전해액.
  15. 음극, 양극 및 전해액을 포함하는 이차전지로서, 상기 전해액은 제1항 내지 제14항 중 어느 한 항의 전해액인 것을 특징으로 하는 이차전지.
  16. 제 15항에 있어서,
    상기 이차전지는 자동차용 전지인 것을 특징으로 하는 리튬 이차전지.
PCT/KR2021/019784 2020-12-24 2021-12-24 전해액 및 이를 포함하는 이차전지 WO2022139533A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21911598.7A EP4270581A1 (en) 2020-12-24 2021-12-24 Electrolyte and secondary battery comprising same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2020-0183532 2020-12-24
KR20200183532 2020-12-24
KR1020210185800A KR20220092420A (ko) 2020-12-24 2021-12-23 전해액 및 이를 포함하는 이차전지
KR10-2021-0185800 2021-12-23

Publications (1)

Publication Number Publication Date
WO2022139533A1 true WO2022139533A1 (ko) 2022-06-30

Family

ID=82159975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/019784 WO2022139533A1 (ko) 2020-12-24 2021-12-24 전해액 및 이를 포함하는 이차전지

Country Status (2)

Country Link
EP (1) EP4270581A1 (ko)
WO (1) WO2022139533A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117497859A (zh) * 2023-12-27 2024-02-02 天鹏锂能技术(淮安)有限公司 一种锂离子电池及其电解液
WO2024106951A1 (en) * 2022-11-16 2024-05-23 Samsung Sdi Co., Ltd. Electrolyte for lithium secondary battery, and lithium secondary battery including the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130003649A (ko) * 2011-06-30 2013-01-09 삼성에스디아이 주식회사 리튬이차전지용 전해액 첨가제, 이를 포함하는 비수성 전해액 및 리튬이차전지
JP2016018708A (ja) * 2014-07-09 2016-02-01 日本電気株式会社 非水電解液及びリチウムイオン二次電池
JP2016154080A (ja) * 2015-02-20 2016-08-25 ソニー株式会社 電解質、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
CN111217856A (zh) * 2020-01-22 2020-06-02 恒大新能源技术(深圳)有限公司 五元环磷酸酯类化合物及其制备方法和应用
KR20200104772A (ko) * 2019-02-27 2020-09-04 동우 화인켐 주식회사 화합물, 이를 포함하는 리튬 이차전지용 전해액 및 리튬 이차전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130003649A (ko) * 2011-06-30 2013-01-09 삼성에스디아이 주식회사 리튬이차전지용 전해액 첨가제, 이를 포함하는 비수성 전해액 및 리튬이차전지
JP2016018708A (ja) * 2014-07-09 2016-02-01 日本電気株式会社 非水電解液及びリチウムイオン二次電池
JP2016154080A (ja) * 2015-02-20 2016-08-25 ソニー株式会社 電解質、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
KR20200104772A (ko) * 2019-02-27 2020-09-04 동우 화인켐 주식회사 화합물, 이를 포함하는 리튬 이차전지용 전해액 및 리튬 이차전지
CN111217856A (zh) * 2020-01-22 2020-06-02 恒大新能源技术(深圳)有限公司 五元环磷酸酯类化合物及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Battery test manual for plug-in hybrid electric vehicles", 2010, IDAHO NATIONAL LABORATORY FOR THE U.S. DEPARTMENT OF ENERGY

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024106951A1 (en) * 2022-11-16 2024-05-23 Samsung Sdi Co., Ltd. Electrolyte for lithium secondary battery, and lithium secondary battery including the same
CN117497859A (zh) * 2023-12-27 2024-02-02 天鹏锂能技术(淮安)有限公司 一种锂离子电池及其电解液
CN117497859B (zh) * 2023-12-27 2024-05-07 天鹏锂能技术(淮安)有限公司 一种锂离子电池及其电解液

Also Published As

Publication number Publication date
EP4270581A1 (en) 2023-11-01

Similar Documents

Publication Publication Date Title
WO2022139534A1 (ko) 전해액 및 이를 포함하는 이차전지
WO2021034141A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2022139533A1 (ko) 전해액 및 이를 포함하는 이차전지
WO2021261976A1 (ko) 전해액 첨가제, 이를 포함하는 전지용 전해액 및 이를 포함하는 이차전지
WO2019093853A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2019108032A1 (ko) 겔 폴리머 전해질 조성물 및 이를 포함하는 리튬 이차전지
WO2019164164A1 (ko) 리튬 이차전지 전해액 및 이를 포함하는 리튬 이차전지
WO2022010281A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2019039903A2 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2021015535A1 (ko) 리튬 이차전지
WO2020060293A1 (ko) 겔 폴리머 전해질용 조성물 및 이로부터 형성된 겔 폴리머 전해질을 포함하는 리튬 이차전지
WO2019088733A1 (ko) 리튬 이차전지용 전해질 및 이를 포함하는 리튬 이차전지
WO2022055307A1 (ko) 고분자 전해질용 전구체 조성물 및 이로부터 형성된 젤 고분자 전해질
WO2023286885A1 (ko) 신규한 화합물, 이를 포함하는 이차 전지용 전해액 및 이를 포함하는 이차 전지
WO2022158920A1 (ko) 전해액 및 이를 포함하는 이차전지
WO2020197035A1 (ko) 화합물, 이를 포함하는 리튬 이차전지용 전해질 및 리튬 이차전지
WO2020263045A2 (ko) 전해액 첨가제, 이를 포함하는 전지용 전해액 및 이를 포함하는 이차전지
WO2021261978A1 (ko) 전해액 첨가제, 이를 포함하는 전지용 전해액 및 이를 포함하는 이차전지
WO2019009595A1 (ko) 전해질 첨가제 및 이를 포함하는 리튬 이차전지용 비수전해액
WO2021256700A1 (ko) 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
WO2023075257A1 (ko) 환형 포스핀 화합물의 제조방법
WO2023158255A1 (ko) 전해액용 화합물, 전해액 첨가제용 화합물, 전해액 물질, 전해액 첨가제, 이차 전지용 전해액 및 이차 전지
WO2023224188A1 (ko) 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
WO2023003451A1 (ko) 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
WO2022164247A1 (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21911598

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021911598

Country of ref document: EP

Effective date: 20230724