WO2022139272A1 - 이차전지 전극용 도전재 선분산 슬러리와 그 제조방법 및 도전재 선분산 슬러리를 적용하여 제조된 전극과 상기 전극을 구비한 이차전지 - Google Patents

이차전지 전극용 도전재 선분산 슬러리와 그 제조방법 및 도전재 선분산 슬러리를 적용하여 제조된 전극과 상기 전극을 구비한 이차전지 Download PDF

Info

Publication number
WO2022139272A1
WO2022139272A1 PCT/KR2021/018682 KR2021018682W WO2022139272A1 WO 2022139272 A1 WO2022139272 A1 WO 2022139272A1 KR 2021018682 W KR2021018682 W KR 2021018682W WO 2022139272 A1 WO2022139272 A1 WO 2022139272A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive material
secondary battery
dispersion slurry
cnt
compound
Prior art date
Application number
PCT/KR2021/018682
Other languages
English (en)
French (fr)
Inventor
김형철
허철
양휘찬
이주철
한주경
안우현
Original Assignee
주식회사 동진쎄미켐
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 동진쎄미켐 filed Critical 주식회사 동진쎄미켐
Priority to CN202180087307.8A priority Critical patent/CN116648427A/zh
Priority to JP2023538909A priority patent/JP2024502286A/ja
Priority to CA3203164A priority patent/CA3203164A1/en
Priority to EP21911339.6A priority patent/EP4266428A1/en
Publication of WO2022139272A1 publication Critical patent/WO2022139272A1/ko
Priority to US18/338,640 priority patent/US20230335747A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D101/00Coating compositions based on cellulose, modified cellulose, or cellulose derivatives
    • C09D101/08Cellulose derivatives
    • C09D101/26Cellulose ethers
    • C09D101/28Alkyl ethers
    • C09D101/286Alkyl ethers substituted with acid radicals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D129/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Coating compositions based on hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Coating compositions based on derivatives of such polymers
    • C09D129/02Homopolymers or copolymers of unsaturated alcohols
    • C09D129/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/24Homopolymers or copolymers of amides or imides
    • C09D133/26Homopolymers or copolymers of acrylamide or methacrylamide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D139/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Coating compositions based on derivatives of such polymers
    • C09D139/04Homopolymers or copolymers of monomers containing heterocyclic rings having nitrogen as ring member
    • C09D139/06Homopolymers or copolymers of N-vinyl-pyrrolidones
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/45Anti-settling agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/70Additives characterised by shape, e.g. fibres, flakes or microspheres
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/80Processes for incorporating ingredients
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a material for an electrode, a battery to which the same is applied, and a method for manufacturing the same, and more particularly, to a conductive material line-dispersed slurry for a secondary battery electrode, a method for manufacturing the same, and an electrode manufactured by applying the conductive material line-dispersed slurry; It relates to a secondary battery having the electrode.
  • the conductive material is included in both the positive electrode and the negative electrode, and is a material used to improve electron movement characteristics between the active material and the active material or the active material and the current collector. Conductive materials are being developed mainly based on carbon-based materials.
  • the conductive material pre-dispersion slurry is a solution in which a conductive material is dispersed in a solvent, and becomes a material constituting the electrode slurry together with an active material and a binder in a subsequent step.
  • CNT carbon nanotube
  • Such CNTs may exhibit excellent physical properties in various aspects such as excellent electrical properties, strength, stability, and thermal conductivity.
  • CNTs are expected to increase energy density and improve lifespan compared to conventional powdered carbon materials, and to reduce the size of batteries. In particular, these advantages may act more advantageously in an electric vehicle battery that requires high capacity, fast charging, and the like.
  • CNTs have low solubility and dispersibility, so it is difficult to apply them as an actual conductive material.
  • CNTs exist in the form of aggregates or bundles in solution due to the strong Van-der Waals attraction between CNTs.
  • a technology capable of effectively dispersing CNTs is required, and in particular, a method capable of appropriately or easily dispersing CNTs while minimizing damage to the CNTs is required.
  • defects may occur on the surface of CNTs, thereby deteriorating physical properties such as electrical conductivity.
  • An object of the present invention is to provide a technology and method capable of effectively dispersing CNTs while preventing or minimizing damage to CNTs in developing a conductive material to which CNTs are applied.
  • the technical problem to be achieved by the present invention is to provide a conductive material pre-dispersion slurry for secondary battery electrodes with improved dispersion characteristics of CNT (conductive material) and a method for manufacturing the same.
  • the technical problem to be achieved by the present invention is to provide a conductive material pre-dispersion slurry for secondary battery electrodes that has a relatively high CNT (conductive material) content and a relatively low viscosity and can be easily manufactured by a relatively simple process, and a method for manufacturing the same is to provide
  • the technical problem to be achieved by the present invention is to provide an electrode manufactured by applying the aforementioned conductive material linear dispersion slurry and a secondary battery to which the electrode is applied.
  • a conductive material linear dispersion slurry for a secondary battery electrode comprising: a conductive material; a dispersing agent for dispersing the conductive material; and a solvent mixed with the conductive material and the dispersing agent, wherein the dispersing agent includes a cellulosic compound and a vinyl or acrylic compound, and a weight ratio of the cellulosic compound and the vinyl or acrylic compound in the dispersant is 25:1 to 1:25, a conductive material pre-dispersion slurry for secondary battery electrodes is provided.
  • a weight-average molecular weight (Mw) of the cellulosic compound may be about 450,000 g/mol or less.
  • the degree of esterification (DE) of the cellulosic compound may be about 0.6 to about 1.0.
  • the cellulosic compound is methylcellulose, ethylcellulose, hydroxyethylcellulose, benzylcellulose, tritylcellulose, cyanoethylcellulose, carboxymethylcellulose, carboxyethylcellulose, aminoethylcellulose, nitrocellulose, cellulose ether and sodium carboxymethylcellulose. It may be at least one selected from the group consisting of salts.
  • the weight average molecular weight (Mw) of the vinyl-based compound may be about 6,000 to 80,000 g/mol, and the weight average molecular weight (Mw) of the acrylic compound may be about 8,000 to 150,000 g/mol.
  • the vinyl-based or acrylic compound may be provided to surround the periphery of the conductive material.
  • the vinyl-based compound may be at least one selected from the group consisting of polyvinylpyrrolidone, polyvinyl alcohol, polyvinyl chloride, polyvinyl fluoride, and polyvinyl acetate, or the acrylic compound is polyacrylic acid, polyacrylamide , and may be at least one selected from the group consisting of polyacrylonitrile.
  • the conductive material may be at least one selected from the group consisting of graphite, carbon black, graphene, and carbon nanotubes (CNT).
  • the carbon nanotube (CNT) may be a multi-walled carbon nanotube (MWCNT).
  • the multi-walled carbon nanotubes may have a diameter of about 4 to 12 nm.
  • a weight ratio of the carbon nanotubes (CNT) to the dispersant (CNT: dispersant) may be about 1:0.2 to 1:1.5.
  • the content of the carbon nanotubes (CNT) in the conductive material pre-dispersion slurry may be greater than about 0% by weight and less than or equal to 6% by weight.
  • the conductive material linear dispersion slurry may have a viscosity of about 3,000 cP or less at a temperature of 25° C. and a shear rate of 50 s ⁇ 1 .
  • the D50 particle size of the conductive material pre-dispersion slurry may be less than about 0.1 ⁇ m.
  • the solvent may include water.
  • an electrode for a secondary battery manufactured by applying the aforementioned conductive material pre-dispersion slurry.
  • a secondary battery having the above-described electrode is provided.
  • a method for manufacturing a conductive material linear dispersion slurry for secondary battery electrodes including a conductive material CNT, a dispersing agent, and a solvent, wherein the dispersing agent includes a cellulosic compound and a vinyl or acrylic compound, , preparing a mixed solution in which the weight ratio of the cellulosic compound and the vinyl or acrylic compound in the dispersant is 25:1 to 1:25; and high-pressure dispersion of the mixed solution using a high-pressure disperser having an operating pressure of 200 bar or more.
  • the step of preparing the mixed solution may include preparing a cellulose-based compound solution containing the cellulose-based compound and a vinyl-based or acrylic compound solution containing the vinyl-based or acrylic compound, respectively; preparing a first mixed solution containing the cellulose-based compound solution, the vinyl-based or acrylic compound solution, and the CNT; and stirring the first mixed solution.
  • the high-pressure dispersion may be performed about 3 to 10 times at an operating pressure of about 500 to 2,500 bar.
  • a conductive material pre-dispersion slurry for secondary battery electrodes with improved dispersion characteristics of CNTs (conductive material).
  • a conductive material pre-dispersion slurry for secondary battery electrodes that has a relatively high CNT (conductive material) content and a relatively low viscosity and can be easily manufactured by a relatively simple process.
  • An electrode having excellent performance can be manufactured by applying the aforementioned conductive material pre-dispersion slurry, and a secondary battery to which the aforementioned electrode is applied can be manufactured.
  • FIG. 1 is a view for explaining the configuration of a conductive material pre-dispersed slurry for a secondary battery electrode according to an embodiment of the present invention.
  • CMC carboxymethyl cellulose
  • PVP polyvinylpyrrolidone
  • FIG. 4 is a perspective view showing a carbon nanotube (CNT) that can be applied to a conductive material linear dispersion slurry for secondary battery electrodes according to an embodiment of the present invention.
  • CNT carbon nanotube
  • FIG. 5 is a flowchart illustrating a method of manufacturing a conductive material linear dispersion slurry for secondary battery electrodes according to an embodiment of the present invention.
  • FIG. 6 is a flowchart illustrating process steps applicable to the method of manufacturing the conductive material linear dispersion slurry of FIG. 5 .
  • FIG. 7 is a cross-sectional view illustrating a secondary battery having an electrode manufactured by applying a conductive material linear dispersion slurry for secondary battery electrodes according to an embodiment of the present invention.
  • connection not only means that certain members are directly connected, but also includes indirectly connected members with other members interposed therebetween.
  • FIG. 1 is a view for explaining the configuration of a conductive material pre-dispersed slurry for a secondary battery electrode according to an embodiment of the present invention.
  • the conductive material pre-dispersion slurry for secondary battery electrodes includes a conductive material 10 and a dispersant 20 for dispersing the conductive material 10, and the conductive material ( 10) and a solvent 30 that is mixed with the dispersant 20 to provide fluidity may be included.
  • the conductive material 10 may be at least one selected from the group consisting of graphite, carbon black, graphene, and carbon nanotube (CNT), and specifically CNT or may include CNT.
  • the conductive material 10 may be made of a plurality of CNTs.
  • the dispersant 20 may include a cellulose-based compound and a vinyl-based or acrylic-based compound.
  • the weight ratio of the cellulosic compound and the vinyl or acrylic compound may be about 25:1 to 1:25.
  • the weight ratio of the cellulosic compound to the vinyl compound may be 25:1 to 1:25
  • the cellulosic compound and the The weight ratio of the acrylic compound may be 25:1 to 1:25.
  • the solvent 30 may be, for example, water.
  • CNTs As the conductive material 10, by using a mixture of a cellulose compound and a vinyl or acrylic compound as the dispersing agent 20, and adjusting their weight ratio to about 25:1 to 1:25, the dispersion properties of CNTs can be improved It can be significantly improved, and the particle size of CNTs in the conductive material pre-dispersion slurry can be greatly reduced.
  • the weight-average molecular weight (Mw) of the cellulosic compound may be about 450,000 g/mol or less. Specifically, it may be 120,000 g/mol or less.
  • a cellulose-based compound having a weight average molecular weight (Mw) of about 50,000 to 120,000 g/mol or a cellulose-based compound having a weight average molecular weight (Mw) of about 120,000 to 450,000 g/mol can be used in the conventional slurry for secondary battery electrodes, the cellulosic compound may be used as a binder.
  • the molecular weight is approximately 1,500,000 g/mol, which is significantly different from the cellulosic compound used in the embodiment of the present invention.
  • a cellulosic compound having a weight average molecular weight (Mw) of about 450,000 g/mol or less when used, the viscosity of the conductive material linear dispersion slurry can be lowered, and the dispersibility of CNTs can be easily improved. have.
  • the weight average molecular weight (Mw) of the cellulosic compound is about 120,000 g/mol or less, the coating property of the electrode slurry including the conductive material pre-dispersion slurry may be further improved and electrode formation may be further improved.
  • the degree of esterification (DE) of the cellulosic compound used in the embodiment of the present invention may be about 0.6 to about 1.0.
  • CMC carboxymethyl cellulose
  • the degree of esterification (DE) of the cellulosic compound may range from 0 to 3 (ie, corresponding to the number of OR groups in FIG. 2 ).
  • the degree of esterification (DE) of carboxymethyl cellulose (CMC), which is one of the cellulosic compounds used in this embodiment, may be about 0.6 to 1.0 or about 0.7 to 0.9. As the degree of esterification (DE) of CMC increases, the hydrophilicity of CMC may increase. If the degree of esterification (DE) is less than 0.6, the degree of hydration may be too low to be miscible with water. When the degree of esterification (DE) exceeds 1.0, the dispersibility of CNTs may decrease.
  • the cellulosic compound is methylcellulose, ethylcellulose, hydroxyethylcellulose, benzylcellulose, tritylcellulose, cyanoethylcellulose, carboxymethylcellulose, carboxyethylcellulose, aminoethylcellulose, nitrocellulose, cellulose ether and sodium carboxymethylcellulose. It may be at least one selected from the group consisting of salts.
  • CMC of Figure 2 is sodium carboxymethyl cellulose (ie, Na CMC).
  • the glucose ring (glucose ring) portion of the CMC can be hydrophobically bonded to the surface of the CNT, and the carboxylate portion (carboxylate) portion is hydrophilic and binds to water to disperse the CNT in water.
  • CMC can form a structure aligned with CNTs in water (solvent), in which case the binding of hydrophobic moieties may play an important role.
  • the -OH group ie, the equatorial hydroxyl group
  • Such CMC can serve as a dispersion stabilizer of CNTs by using rigid properties.
  • the weight average molecular weight (Mw) of CMC may be about 450,000 g/mol or less.
  • the degree of esterification (DE) of CMC may be about 0.6 to about 1.0.
  • the degree of substitution of a hydroxyl group with an ester group based on the monomer of cellulose ie, degree of substitution
  • CMC can easily improve the dispersibility of CNTs while being well miscible with the solvent (water).
  • a vinyl-based or acrylic compound may be additionally used together with CMC as the dispersing agent 20 .
  • the vinyl-based or acrylic compound may be provided to surround the periphery of the conductive material.
  • the weight average molecular weight (Mw) of the vinyl-based compound used in an embodiment of the present invention may be 6,000 to 80,000 g/mol, and the weight average molecular weight (Mw) of the acrylic compound may be 8,000 to 150,000 g/mol. . More specifically, the weight average molecular weight (Mw) of PVP (polyvinylpyrrolidone, polyvinylpyrrolidone), which is one of the vinyl compounds, may be about 6,000 to 80,000 g/mol.
  • the weight average molecular weight (Mw) of the PVP may be about 6,000 to 15,000 g/mol.
  • the PVP may be provided to surround the periphery of the CNT.
  • the PVP may be provided so as to be adsorbed to the CNT and surround (ie, wrap) the CNT.
  • PVP is adsorbed to the CNTs and surrounds the CNTs, thereby dispersing the CNTs in a solvent (ex, water).
  • a solvent ex, water
  • the type (molecular weight) of PVP suitable therefor may vary depending on the type of CNT.
  • the weight average molecular weight (Mw) of the PVP is less than 6,000 g/mol, the wrapping itself may not work well, the viscosity of the conductive material pre-dispersion slurry may increase, and the dispersibility of the CNT may be deteriorated.
  • the weight average molecular weight (Mw) of PVP exceeds 80,000 g/mol, the viscosity of the conductive material pre-dispersed slurry may increase and the dispersibility of CNTs may decrease. Therefore, in the embodiment of the present invention, it may be preferable that the weight average molecular weight (Mw) of PVP is about 6,000 to 80,000 g/mol.
  • the vinyl-based compound may be at least one selected from the group consisting of polyvinylpyrrolidone, polyvinyl alcohol, polyvinyl chloride, polyvinyl fluoride, and polyvinyl acetate.
  • the acrylic compound may be at least one selected from the group consisting of polyacrylic acid, polyacrylamide, and polyacrylonitrile.
  • FIG. 3 is a view showing the chemical formula of PVP that can be applied to the conductive material linear dispersion slurry for secondary battery electrodes according to an embodiment of the present invention.
  • a pyrrolidone group of PVP may be hydrophilic, and an alkyl group below it may be hydrophobic.
  • the alkyl group may have a flexible linear structure, and may have a property of wrapping the CNTs.
  • Mw weight average molecular weight
  • the weight average molecular weight (Mw) of the PVP exceeds 80,000 g/mol, the molecular weight becomes excessively large, the viscosity of the conductive material pre-dispersed slurry may increase, and the dispersibility of the CNT may decrease. Therefore, as described above, it may be preferable that the weight average molecular weight (Mw) of PVP in the embodiment of the present invention is about 6,000 to 80,000 g/mol.
  • Specific types of PVP may include k12, k15, k30, k90, and the like, and among them, PVP corresponding to k15 and k30 may be applied to an embodiment of the present invention.
  • the CNT used as the conductive material 10 in the embodiment of the present invention is a material that complements the conductivity of the active material in the positive or negative electrode of the secondary battery and forms a path through which electrons can move.
  • can CNTs are linear carbon bodies that connect an active material-active material or an active material-current collector at a much longer distance than a powder, and may easily form a network structure.
  • the CNT used in the embodiment of the present invention may be a multi-walled carbon nanotube (MWCNT).
  • MWCNT multi-walled carbon nanotube
  • the electrical performance is better than that of MWCNT, but it is difficult to prepare a high content CNT dispersion and the manufacturing cost (price) is high.
  • MWCNTs the small diameter of CNTs ranges from several nm to tens of nm for large ones. If the diameter is more than about 12 nm, the BET specific surface area is low, so dispersion may be easy, but the electrical conductivity may be reduced, so that it may not perform well as a conductive material in the secondary battery. Since the CNT applied to the present invention is thin among MWCNTs and has a long length, it has the advantages of quality close to that of SWCNTs and the price advantages of MWCNTs at the same time.
  • FIG. 4 is a perspective view showing CNTs that can be applied to a conductive material pre-dispersion slurry for secondary battery electrodes according to an embodiment of the present invention.
  • CNTs that can be applied to the conductive material pre-dispersion slurry according to an embodiment of the present invention may be MWCNTs.
  • MWCNTs may have 3 to 10 walls, and may have a diameter of 4 to 12 nm.
  • the length of the MWCNTs may be about 50 to 200 ⁇ m.
  • Brunauer-Emmett-Teller (BET) specific surface area of MWCNTs may be about 300 m 2 /g or more.
  • the BET specific surface area of MWCNTs may be about 300 to 500 m 2 /g. Since the MWCNT used has a large BET specific surface area of about 300 m 2 /g or more, it may be advantageous for improving conductivity.
  • the bulk density of MWCNTs may be about 0.042 g/ml, and the purity may be about 96.96%.
  • CMC and PVP are used together as the dispersing agent 20, and the dispersion properties of MWCNTs can be greatly improved by appropriately selecting their use ratio and appropriately selecting their physical properties. While PVP properly wraps the MWCNT, CMC maintains the phase stability of the dispersion. Therefore, according to an embodiment of the present invention, it is possible to prepare a conductive material pre-dispersion slurry having a low viscosity and small particle size characteristics even if MWCNTs are used.
  • CMC and PVP are mixed and used as dispersants in the conductive material pre-dispersion slurry according to an embodiment of the present invention and their weight ratio (CMC:PVP) is adjusted to about 25:1 to 1:25, the dispersion properties of CNTs are significantly improved and can significantly lower the particle size of CNTs.
  • the content of the dispersant compared to CNT may also affect the dispersion and viscosity properties.
  • the weight ratio of the CNT and the dispersant is about 1:0.2 to 1:1.5, or about 1:0.5 to 1:1.
  • the dispersant ie, CMC + PVP
  • the dispersant may be included in an amount of about 20 to 150% or about 50 to 100% compared to the CNT.
  • the ratio of the dispersant (ie, CMC + PVP) to the CNT is less than 20%, the CNT dispersibility may deteriorate, and if it exceeds 150%, the viscosity of the slurry may increase to an undesirable level and the electrical conductivity may decrease. have.
  • the content of the CNT in the conductive material pre-dispersion slurry according to an embodiment of the present invention may be about 6% by weight or less. That is, the content of the CNT in the total weight of the conductive material pre-dispersion slurry may be greater than about 0% by weight and not more than 6% by weight. For example, the content of the CNT may be about 1 to 6% by weight. When the content of the CNTs exceeds 6% by weight, the viscosity of the slurry may increase to an undesirable level and electrical conductivity may decrease. An electrode having excellent performance can be manufactured by increasing the dispersibility of CNTs while using a small amount of CNTs. However, the content of CNTs is not limited to the above, and may vary depending on the case.
  • the conductive material linear dispersion slurry may have a viscosity of about 3,000 cP or less at a temperature of 25° C. and a shear rate of 50 s ⁇ 1 .
  • the viscosity of the conductive material pre-dispersion slurry may be about 2,000 cP or less or about 1,000 cP or less. Even when the CNT content is as high as 6 wt%, the conductive material linear dispersion slurry may be prepared to have a low viscosity of about 3,000 cP or less or about 1,000 cP or less.
  • the D50 particle size may be less than about 0.1 ⁇ m.
  • CNTs can be well dispersed evenly so that the D50 value is less than about 0.1 ⁇ m.
  • the performance of an electrode manufactured using the slurry may be excellent.
  • FIG. 5 is a flowchart illustrating a method of manufacturing a conductive material linear dispersion slurry for secondary battery electrodes according to an embodiment of the present invention.
  • the method for preparing a conductive material pre-dispersion slurry for secondary battery electrodes includes the steps of preparing a mixed solution including a conductive material, a dispersing agent and a solvent (S10) and applying the mixed solution at high pressure It may include high-pressure dispersion using a disperser (S20).
  • the conductive material may include CNT
  • the dispersant may include CMC and PVP.
  • the weight ratio of CMC to PVP (CMC:PVP) in the dispersant may be about 25:1 to 1:25.
  • the operating pressure of the high-pressure disperser may be about 200 bar or more.
  • the operating pressure of the high-pressure disperser may be about 200 to 3,000 bar.
  • High-pressure dispersion using the high-pressure disperser may be performed by about 3 to 10 times (pass) or about 4 to 8 times (pass) at an operating pressure of about 500 to 2,500 bar.
  • Step S10 that is, the step of preparing the mixed solution may be composed of detailed steps (S11 to S13) as shown in FIG.
  • a cellulose-based compound solution containing the cellulose-based compound and a vinyl-based or acrylic compound solution containing the vinyl-based or acrylic compound are prepared, respectively.
  • S11 preparing a first mixed solution containing the cellulosic compound solution, the vinyl or acrylic compound solution, and the CNT
  • step S12 preparing a first mixed solution containing the cellulosic compound solution, the vinyl or acrylic compound solution, and the CNT
  • step S13 the first liquid mixture may be prepared by mixing the cellulosic compound solution and the vinyl or acrylic compound solution with CNT and an additional solvent (ex, distilled water).
  • the first mixture may be stirred at a speed of about 3,000 to 10,000 rpm for about 10 minutes to 1 hour.
  • the specific process conditions disclosed herein are exemplary and may vary depending on the case.
  • the mixed solution may be referred to as a CNT dispersion solution.
  • the conductive material pre-dispersion slurry By dispersing the mixed solution at high pressure in step S20 of FIG. 5 , the conductive material pre-dispersion slurry according to the embodiment can be prepared.
  • the configuration and characteristics of the conductive material pre-dispersion slurry may be the same as described with reference to FIGS. 1 to 4 .
  • the weight average molecular weight (Mw) of the CMC may be about 450,000 g/mol or less, and the esterification degree (DE) of the CMC may be about 0.6 to about 1.0.
  • the weight average molecular weight (Mw) of the PVP in the conductive material pre-dispersion slurry may be about 6,000 to 80,000 g/mol.
  • the CNTs may be MWCNTs, and in this case, the MWCNTs may have a diameter of about 4 to 12 nm.
  • the length of the MWCNTs may be about 50 to 200 ⁇ m, and the BET specific surface area of the MWCNTs may be about 300 m 2 /g or more.
  • a weight ratio of the CNT to the dispersant (CNT: dispersant) may be about 1:0.2 to 1:1.5.
  • the content of the CNT in the conductive material pre-dispersion slurry may be about 6% by weight or less.
  • the conductive material linear dispersion slurry may have a viscosity of about 3,000 cP or less at a temperature of 25° C. and a shear rate of 50 s ⁇ 1 .
  • the D50 particle size of the conductive material pre-dispersion slurry may be less than about 0.1 ⁇ m.
  • specific configurations and characteristics of the conductive material pre-dispersion slurry may be the same as described with reference to FIGS. 1 to 4 .
  • the conductive material linear dispersion slurry according to an embodiment of the present invention was prepared by the following method and its characteristics were evaluated.
  • the CNT dispersion solution (mixed solution) was subjected to a high-pressure dispersion process 5 to 12 times (pass) at 1,300 bar using a high-pressure disperser (Micronox, MN400BF) to conduct a conductive material containing 3% by weight of CNTs A pre-dispersion slurry is prepared.
  • a high-pressure disperser Mocronox, MN400BF
  • the viscosity was measured using a HR-2 Viscometer (TA Instruments) at a temperature of 25° C., a shear rate of 50 s ⁇ 1 , and a plate condition of ⁇ 40 mm. .
  • the conductive material linear dispersion slurry prepared as described above was diluted to 0.0004 wt%, and then the D50 particle size was measured using a particle size analyzer (Malvern).
  • the conductive material pre-dispersion slurry prepared as described above was coated on a PET film with a thickness of 7 to 8 ⁇ m using a blader, and the sheet resistance was measured using a sheet resistance measuring instrument MCP-T610 (Mitsubishi Chemical).
  • the weight average molecular weight (Mw) of PVP used in Table 1 is 6,000 to 80,000 g/mol
  • the weight average molecular weight (Mw) of PVA is 6,000 to 40,000 g/mol
  • the weight average molecular weight (Mw) of PAA is 8,000 to 120,000 g/mol mol
  • the weight average molecular weight (Mw) of PAM is 10,000 to 150,000 g/mol.
  • Example 1 5 0.144 3.606 2.88 72.12 75 0.6 ⁇ 1.0
  • Example 2 5 0.1875 3.5625 3.75 71.25 75 0.6 ⁇ 1.0
  • Example 3 5 0.375 3.375 7.50 67.50 75 0.6 ⁇ 1.0
  • Example 4 5 0.750 3.000 15.00 60.00 75 0.6 ⁇ 1.0
  • Example 5 5 1.250 2.500 25.00 50.00 75 0.6 ⁇ 1.0
  • Example 6 5 1.875 1.875 37.50 37.50 75 0.6 ⁇ 1.0
  • Example 7 5 2.500 1.250 50.00 25.00 75 0.6 ⁇ 1.0
  • Example 8 5 3.000 0.750 60.00 15.00 75 0.6 ⁇ 1.0
  • Example 9 5 3.375 0.375 67.50 7.50 75 0.6 ⁇ 1.0
  • Example 10 5 3.563 0.188 71.25 3.75 75
  • Example 2 5 0.1875 3.5625 3.75 71.25 75 0.6 ⁇ 1.0
  • Example 18 5 0.125 2.375 2.5 47.5 50 0.6 ⁇ 1.0
  • Example 19 5 0.0625 1.1875 1.25 23.75 25 0.6 ⁇ 1.0
  • Example 20 5 0.05 0.95 One 19 20 0.6 ⁇ 1.0
  • Example 21 5 0.0375 0.7125 0.75 14.25 15 0.6 ⁇ 1.0
  • Example 22 5 0.25 4.75 5 95 100 0.6 ⁇ 1.0
  • Example 23 5 0.3125 5.9375 6.25 118.75 125 0.6 ⁇ 1.0
  • Example 24 5 0.375 7.125 7.5 142.5 150 0.6 ⁇ 1.0 Comparative Example 25 5 0.45 8.55 9 171 180 0.6 ⁇ 1.0
  • the dispersant ratio means the ratio (%) of the dispersant (ie, CMC + PVP) to CNT. Referring to Example 2 and Examples 18 to 25, it can be seen that when the ratio of the dispersant is about 20 to 150% or about 50 to 100% compared to CNT, a low viscosity value is shown. In addition, it was confirmed to have a low D50 particle size ( ⁇ m) of 0.1 or less. Preferred (or optimal) ratios of CNT, dispersant component A (CMC), dispersant component B (PVP) and solvent in the conductive material predispersion slurry may be present.
  • CMC dispersant component A
  • PVP dispersant component B
  • solvent in the conductive material predispersion slurry may be present.
  • CMC used in Tables 5 and 6 is CMC1
  • the weight average molecular weight (Mw) of CMC1 is 50,000 to 120,000 g/mol.
  • CMC used in Tables 7 and 8 was CMC different from CMC1 only in the degree of esterification.
  • CMC used in Tables 9 and 10 is CMC2 to CMC4, the weight average molecular weight (Mw) of CMC2 is 200,000 to 450,000 g/mol, and the weight average molecular weight (Mw) of CMC3 is 700,000 to 1,000,000 g/mol, the weight of CMC4 The average molecular weight (Mw) is 1,500,000 to 2,300,000 g/mol.
  • Dispersant A (% to CNT) Dispersant B (% to CNT) Dispersant ratio degree of esterification
  • Example 2 5 0.1875 3.5625 3.75 71.25 75 0.6 ⁇ 1.0
  • Example 26 6 0.225 4.275 3.75 71.25 75 0.6 ⁇ 1.0
  • Example 27 7 0.2625 4.9875 3.75 71.25 75 0.6 ⁇ 1.0
  • Dispersant A (% to CNT) Dispersant B (% to CNT) Dispersant ratio degree of esterification Example 2 5 0.1875 3.5625 3.75 71.25 75 0.6 ⁇ 1.0
  • Example 28 5 0.1875 3.5625 3.75 71.25 75 1.0 ⁇ 1.5
  • Example 2 5 0.1875 3.5625 3.75 71.25 75 0.6 ⁇ 1.0
  • Example 29 5 0.1875 3.5625 3.75 71.25 75 0.6 ⁇ 1.0
  • Example 30 5 0.1875 3.5625 3.75 71.25 75 0.6 ⁇ 1.0
  • Example 31 5 0.1875 3.5625 3.75 71.25 75 0.6 ⁇ 1.0
  • Example 2 5 0.1875 3.5625 3.75 71.25 75 0.6 ⁇ 1.0
  • Example 32 5 0.1875 3.5625 3.75 71.25 75 0.6 ⁇ 1.0
  • Example 33 5 0.1875 3.5625 3.75 71.25 75 0.6 ⁇ 1.0
  • Example 34 5 0.1875 3.5625 3.75 71.25 75 0.6 ⁇ 1.0
  • Example 28 of Tables 7 and 8 it can be seen that when CMC having an esterification degree of 1.0 to 1.5 was used, the viscosity and particle size were measured to be high.
  • Examples 29 to 31 of Table 9 and Table 10 the results of the CNT dispersion according to the molecular weight of CMC can be seen. If the weight average molecular weight (Mw) of the CMC used increases beyond a predetermined level, there may be a problem in that the D50 particle size value is excessively increased.
  • Mw weight average molecular weight
  • the results of the dispersion according to the CNT diameter can be confirmed.
  • the CNT diameter is smaller than 4 nm, the viscosity and particle size increase very significantly, making it difficult to prepare a high content CNT dispersion.
  • the CNT diameter is larger than 12 nm, it is easy to prepare a dispersion having a low viscosity, but it is confirmed that the sheet resistance component is greatly increased, so that it may not play a role as a conductive material of the secondary battery.
  • a slurry for an electrode can be prepared by mixing the conductive material pre-dispersion slurry according to the embodiment as described above with a predetermined active material and a binder, etc., and the electrode slurry is applied on a predetermined substrate, followed by a drying process Alternatively, an annealing process may be performed to form an electrode (electrode film) for a secondary battery. In addition, a secondary battery to which such an electrode is applied can be manufactured.
  • FIG. 7 is a cross-sectional view showing a secondary battery having an electrode manufactured by applying a conductive material linear dispersion slurry for secondary battery electrodes according to an embodiment of the present invention.
  • the secondary battery includes a cathode 100 and an anode 200 spaced apart from each other and an electrolyte 150 provided for ion movement therebetween. may include A separator 170 may be further provided between the positive electrode 100 and the negative electrode 200 to allow movement of the electrolyte 150 or movement of ions through the electrolyte 150 while physically separating them. . In some cases, the separator 170 may not be provided.
  • the positive electrode 100 may include a predetermined positive electrode material.
  • the positive electrode 100 may include a positive electrode active material, a first binder, and a first conductive material.
  • the positive electrode active material, the first binder, and the first conductive material may constitute one positive electrode active material layer.
  • the positive electrode 100 may include a positive electrode current collector bonded to the positive electrode active material layer. In this case, the positive electrode active material layer may be disposed between the positive electrode current collector and the electrolyte 150 .
  • the negative electrode 200 may include a predetermined negative electrode material.
  • the negative electrode 200 may include an anode active material, a second binder, and a second conductive material.
  • the negative active material, the second binder, and the second conductive material may constitute one negative electrode active material layer.
  • the negative electrode 200 may include an anode current collector bonded to the negative electrode active material layer. In this case, the anode active material layer may be disposed between the anode current collector and the electrolyte 150 .
  • At least one of the positive electrode 100 and the negative electrode 200 may be manufactured by applying the conductive material pre-dispersion slurry according to the embodiment of the present invention.
  • at least the negative electrode 200 among the positive electrode 100 and the negative electrode 200 may be manufactured by applying the conductive material pre-dispersion slurry according to the embodiment of the present invention.
  • the secondary battery according to the present embodiment may be, for example, a lithium secondary battery, but may be other batteries.
  • a technique/method capable of effectively dispersing CNTs while preventing/minimizing damage to CNTs it is possible to implement a conductive material pre-dispersion slurry for secondary battery electrodes with improved dispersion characteristics of CNTs (conductive material).
  • a conductive material pre-dispersion slurry for secondary battery electrodes that has a relatively high CNT (conductive material) content and has a relatively low viscosity and can be easily manufactured by a relatively simple process.
  • An electrode having excellent performance can be manufactured by applying the aforementioned conductive material pre-dispersion slurry, and a secondary battery to which the aforementioned electrode is applied can be manufactured.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

도전재의 분산성이 향상된 이차전지 전극용 도전재 선분산 슬러리와 그 제조방법 및 도전재 선분산 슬러리를 적용하여 제조된 전극과 상기 전극을 구비한 이차전지가 제공된다. 개시된 이차전지 전극용 도전재 선분산 슬러리는 도전재; 상기 도전재를 분산시키기 위한 분산제; 및 상기 도전재 및 분산제와 혼합되는 용매를 포함하고, 상기 분산제는 셀룰로오스계 화합물 및 비닐계 또는 아크릴계 화합물을 포함하며, 상기 분산제에서 상기 셀룰로오스계 화합물와 상기 비닐계 또는 아크릴계 화합물의 중량비는 25:1 내지 1:25 정도이다.

Description

이차전지 전극용 도전재 선분산 슬러리와 그 제조방법 및 도전재 선분산 슬러리를 적용하여 제조된 전극과 상기 전극을 구비한 이차전지
본 발명은 전극용 재료와 이를 적용한 전지 및 이들의 제조방법에 관한 것으로, 보다 상세하게는 이차전지 전극용 도전재 선분산 슬러리와 그 제조방법 및 상기 도전재 선분산 슬러리를 적용하여 제조된 전극과 상기 전극을 구비한 이차전지에 관한 것이다.
이차전지(secondary battery)는 1990년대 등장한 이후, 꾸준한 연구와 함께 발전을 거듭하고 있다. 이차전지의 주요 구성요소인 양극/음극 활물질, 전해질, 분리막뿐만 아니라 이들의 특성의 보완 및 향상시키는 역할을 하는 보조 요소들에 대한 연구 및 개발도 함께 이루어지고 있다.
도전재는 양극과 음극에 모두 포함되며, 활물질-활물질 혹은 활물질-집전체 사이의 전자의 이동 특성을 개선하기 위해 사용하는 물질이다. 도전재는 주로 탄소(carbon) 계열 물질들을 중심으로 개발되고 있다. 도전재 선분산 슬러리는 도전재를 용매에 분산시킨 용액으로, 후속 단계에서 활물질 및 바인더(binder)와 함께 전극용 슬러리를 구성하는 재료가 된다.
최근 이차전지의 적용 분야가 전기차나 ESS(energy storage system) 등의 중대형 전지 분야로 확대됨에 따라, 도전재의 중요성이 증가하고 있다. 이차전지의 이론용량을 높이기 위해서는 양극 혹은 음극의 활물질 양을 증가시킬 필요가 있다. 그런데 같은 전극에서 활물질의 양이 증가되면 도전재의 양은 감소하게 된다. 따라서, 적은 양으로도 우수한 성능을 나타낼 수 있는 도전재가 요구된다. 이와 관련해서, CNT(carbon nanotube)가 새로운 도전재 재료로 주목받고 있다. CNT는 나노 사이즈의 직경을 갖는 원통형 구조이며, 탄소 원자들이 나선 모양으로 배열되고 sp2 결합 구조를 갖는다. 이러한 CNT는 뛰어난 전기적 특성, 강도, 복원성, 열전도성 등 다양한 측면에서 우수한 물성을 나타낼 수 있다. 이차전지 전극용 도전재로서 CNT는 기존 분말 형태의 탄소 물질과 비교하여 에너지 밀도 증가와 수명 향상이 가능하고, 배터리의 사이즈도 줄일 수 있을 것으로 기대된다. 특히, 이러한 장점들은 고용량, 급속 충전 등이 요구되는 전기차용 배터리에서 더욱 유리하게 작용할 수 있다.
하지만, 앞서 설명한 바와 같은 여러 장점에도 불구하고, CNT는 용해성과 분산성이 낮기 때문에, 실제 도전재로 적용함에 어려움이 있다. 특히, CNT 간의 강한 반데르발스(Van-der Waals) 인력으로 인해 용액 내에서 CNT는 응집체(agglomerate) 또는 번들(bundle) 형태로 존재하게 된다. CNT를 적용한 도전재의 개발에 있어서, CNT를 효과적으로 분산시킬 수 있는 기술이 요구되며, 특히, CNT의 손상을 최소화하면서 적절히 또는 용이하게 분산시킬 수 있는 방법이 요구된다. CNT를 용매 내에서 분산시키기 위해 CNT의 표면을 산으로 처리할 경우, CNT의 표면에 결함(defect)이 발생하여 전기전도도 등 물성이 열화 될 수 있다. 한편, CNT를 분산시키기 위해 계면활성제를 이용할 경우, CNT의 함량이 증가함에 따라 사용하는 계면활성제의 양도 증가하므로, 계면활성제로 인해 용액의 점도가 증가하고 전기전도도 등 물성이 저하되는 문제가 있다.
본 발명이 이루고자 하는 기술적 과제는 CNT를 적용한 도전재 재료를 개발함에 있어서, CNT의 손상을 방지 또는 최소화하면서 CNT를 효과적으로 분산시킬 수 있는 기술 및 방법을 제공하는데 있다.
또한, 본 발명이 이루고자 하는 기술적 과제는 CNT(도전재)의 분산 특성이 향상된 이차전지 전극용 도전재 선분산 슬러리 및 그 제조방법을 제공하는데 있다.
또한, 본 발명이 이루고자 하는 기술적 과제는 CNT(도전재)의 함량이 비교적 높으면서도 비교적 낮은 점도를 갖고 비교적 간단한 공정으로 용이하게 제조될 수 있는 이차전지 전극용 도전재 선분산 슬러리 및 그 제조방법을 제공하는데 있다.
또한, 본 발명이 이루고자 하는 기술적 과제는 상기한 도전재 선분산 슬러리를 적용하여 제조된 전극 및 이러한 전극을 적용한 이차전지를 제공하는데 있다.
본 발명이 해결하고자 하는 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기한 과제를 달성하기 위한 본 발명의 실시예들에 따르면, 이차전지 전극용 도전재 선분산 슬러리로서, 도전재; 상기 도전재를 분산시키기 위한 분산제; 및 상기 도전재 및 분산제와 혼합되는 용매를 포함하고, 상기 분산제는 셀룰로오스계 화합물 및 비닐계 또는 아크릴계 화합물을 포함하며, 상기 분산제에서 상기 셀룰로오스계 화합물과 상기 비닐계 또는 아크릴계 화합물의 중량비는 25:1 내지 1:25 인, 이차전지 전극용 도전재 선분산 슬러리가 제공된다.
상기 셀룰로오스계 화합물의 중량평균분자량(weight-average molecular weight)(Mw)은 약 450,000 g/mol 이하일 수 있다.
상기 셀룰로오스계 화합물의 에스테르화도(degree of esterification; DE)는 약 0.6 내지 1.0 정도일 수 있다.
상기 셀룰로오스계 화합물은 메틸셀룰로오스, 에틸셀룰로오스, 히드록시에틸셀룰로오스, 벤질셀룰로오스, 트리틸셀룰로오스, 시아노에틸셀룰로오스, 카르복시메틸셀룰로오스, 카르복시에틸셀룰로오스, 아미노에틸셀룰로오스, 니트로셀룰로오스, 셀룰로오스에테르 및 카르복시메틸셀룰로오스 나트륨염으로 이루어진 군으로부터 선택되는 1종 이상일 수 있다.
상기 비닐계 화합물의 중량평균분자량(Mw)은 6,000 내지 80,000 g/mol 정도일 수 있고, 상기 아크릴계 화합물의 중량평균분자량(Mw)은 약 8,000 내지 150,000 g/mol 정도일 수 있다.
상기 비닐계 또는 아크릴계 화합물은 상기 도전재의 주위를 둘러싸도록 구비될 수 있다.
상기 비닐계 화합물은 폴리비닐피롤리돈, 폴리비닐알콜, 폴리비닐클로라이드, 폴리비닐플루오라이드, 및 폴리비닐아세테이트로 이루어진 군으로부터 선택되는 1종 이상일 수 있거나, 상기 아크릴계 화합물은 폴리아크릴산, 폴리아크릴아마이드, 및 폴리아크릴로니트릴로 이루어진 군으로부터 선택되는 1종 이상일 수 있다.
상기 도전재는 흑연, 카본블랙, 그래핀, 및 탄소나노튜브(CNT)로 이루어진 군에서 선택되는 1종 이상일 수 있다.
상기 탄소나노튜브(CNT)는 다중벽 탄소나노튜브(Multi-walled carbon nanotube; MWCNT)일 수 있다.
상기 다중벽 탄소나노튜브(MWCNT)는 약 4 내지 12 nm의 직경을 가질 수 있다.
상기 탄소나노튜브(CNT)와 상기 분산제의 중량비(CNT:분산제)는 약 1:0.2 내지 1:1.5 정도일 수 있다.
상기 도전재 선분산 슬러리에서 상기 탄소나노튜브(CNT)의 함량은 약 0 중량% 초과 6 중량% 이하일 수 있다.
상기 도전재 선분산 슬러리는, 25℃의 온도 및 50 s-1의 전단율(shear rate) 조건에서, 약 3,000 cP 이하의 점도를 가질 수 있다.
상기 도전재 선분산 슬러리의 D50 입도(particle size)는 약 0.1 ㎛ 보다 작을 수 있다.
상기 용매는 물을 포함할 수 있다.
본 발명의 다른 실시예들에 따르면, 전술한 도전재 선분산 슬러리를 적용하여 제조된 이차전지용 전극이 제공된다.
본 발명의 다른 실시예들에 따르면, 전술한 전극을 구비하는 이차전지가 제공된다.
본 발명의 다른 실시예들에 따르면, 이차전지 전극용 도전재 선분산 슬러리의 제조방법으로서, 도전재인 CNT, 분산제 및 용매를 포함하되, 상기 분산제는 셀룰로오스계 화합물 및 비닐계 또는 아크릴계 화합물을 포함하며, 상기 분산제에서 상기 셀룰로오스계 화합물과 상기 비닐계 또는 아크릴계 화합물의 중량비는 25:1 내지 1:25인 혼합용액을 마련하는 단계; 및 상기 혼합용액을 200 bar 이상의 작동 압력을 갖는 고압분산기를 이용해서 고압분산하는 단계를 포함하는 이차전지 전극용 도전재 선분산 슬러리의 제조방법이 제공된다.
상기 혼합용액을 마련하는 단계는, 상기 셀룰로오스계 화합물을 포함하는 셀룰로오스계 화합물 용액 및 상기 비닐계 또는 아크릴계 화합물을 포함하는 비닐계 또는 아크릴계 화합물 용액을 각각 마련하는 단계; 상기 셀룰로오스계 화합물 용액, 상기 비닐계 또는 아크릴계 화합물 용액 및 상기 CNT를 포함하는 1차 혼합액을 마련하는 단계; 및 상기 1차 혼합액을 교반하는 단계를 포함할 수 있다.
상기 고압분산은 약 500 내지 2,500 bar의 작동 압력으로 약 3 내지 10회 수행할 수 있다.
본 발명의 실시예들에 따르면, 탄소나노튜브(CNT)를 적용한 도전재 재료를 개발함에 있어서, CNT의 손상을 방지하거나 최소화하면서 CNT를 효과적으로 분산시킬 수 있는 기술 및 방법을 구현할 수 있다. 이러한 실시예에 따르면, CNT(도전재)의 분산 특성이 향상된 이차전지 전극용 도전재 선분산 슬러리를 구현할 수 있다. 특히, CNT(도전재)의 함량이 비교적 높으면서도 비교적 낮은 점도를 갖고 비교적 간단한 공정으로 용이하게 제조될 수 있는 이차전지 전극용 도전재 선분산 슬러리를 구현할 수 있다.
상기한 도전재 선분산 슬러리를 적용하여 우수한 성능을 갖는 전극을 제조할 수 있고, 상기한 전극을 적용한 이차전지를 제조할 수 있다.
도 1은 본 발명의 일 실시예에 따른 이차전지 전극용 도전재 선분산 슬러리(conductive material pre-dispersed slurry)의 구성을 설명하기 위한 도면이다.
도 2는 본 발명의 일 실시예에 따른 이차전지 전극용 도전재 선분산 슬러리에 적용될 수 있는 셀룰로오스계 화합물 중 CMC(carboxymethyl cellulose)의 화학식을 보여주는 도면이다.
도 3은 본 발명의 일 실시예에 따른 이차전지 전극용 도전재 선분산 슬러리에 적용될 수 있는 비닐계 화합물 중 PVP(polyvinylpyrrolidone)의 화학식을 보여주는 도면이다.
도 4는 본 발명의 일 실시예에 따른 이차전지 전극용 도전재 선분산 슬러리에 적용될 수 있는 CNT(carbon nanotube)를 보여주는 사시도이다.
도 5는 본 발명의 일 실시예에 따른 이차전지 전극용 도전재 선분산 슬러리의 제조방법을 설명하기 위한 순서도이다.
도 6은 도 5의 도전재 선분산 슬러리의 제조방법에 적용될 수 있는 공정 단계들을 설명하기 위한 순서도이다.
도 7은 본 발명의 일 실시예에 따른 것으로, 이차전지 전극용 도전재 선분산 슬러리를 적용하여 제조된 전극을 구비하는 이차전지를 보여주는 단면도이다.
이하, 첨부된 도면들을 참조하여 본 발명의 실시예들을 상세히 설명하기로 한다.
이하에서 설명할 본 발명의 실시예들은 당해 기술 분야에서 통상의 지식을 가진 자에게 본 발명을 더욱 명확하게 설명하기 위하여 제공되는 것이고, 본 발명의 범위가 하기 실시예에 의해 한정되는 것은 아니며, 하기 실시예는 여러 가지 다른 형태로 변형될 수 있다.
본 명세서에서 사용된 용어는 특정 실시예를 설명하기 위하여 사용되며, 본 발명을 제한하기 위한 것이 아니다. 본 명세서에서 사용되는 단수 형태의 용어는 문맥상 다른 경우를 분명히 지적하는 것이 아니라면, 복수의 형태를 포함할 수 있다. 또한, 본 명세서에서 사용되는 "포함한다(comprise)" 및/또는 "포함하는(comprising)"이라는 용어는 언급한 형상, 단계, 숫자, 동작, 부재, 요소 및/또는 이들 그룹의 존재를 특정하는 것이며, 하나 이상의 다른 형상, 단계, 숫자, 동작, 부재, 요소 및/또는 이들 그룹의 존재 또는 부가를 배제하는 것이 아니다. 또한, 본 명세서에서 사용된 "연결"이라는 용어는 어떤 부재들이 직접적으로 연결된 것을 의미할 뿐만 아니라, 부재들 사이에 다른 부재가 더 개재되어 간접적으로 연결된 것까지 포함하는 개념이다.
아울러, 본원 명세서에서 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다. 본 명세서에서 사용된 용어 "및/또는"은 해당 열거된 항목 중 어느 하나 및 하나 이상의 모든 조합을 포함한다. 또한, 본원 명세서에서 사용되는 "약", "실질적으로" 등의 정도의 용어는 고유한 제조 및 물질 허용 오차를 감안하여, 그 수치나 정도의 범주 또는 이에 근접한 의미로 사용되고, 본원의 이해를 돕기 위해 제공된 정확하거나 절대적인 수치가 언급된 개시 내용을 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다.
이하 첨부된 도면들을 참조하여 본 발명의 실시예들에 대해 상세히 설명한다. 첨부된 도면에 도시된 영역이나 파트들의 사이즈나 두께는 명세서의 명확성 및 설명의 편의성을 위해 다소 과장되어 있을 수 있다. 상세한 설명 전체에 걸쳐 동일한 참조번호는 동일한 구성요소를 나타낸다.
도 1은 본 발명의 일 실시예에 따른 이차전지 전극용 도전재 선분산 슬러리(conductive material pre-dispersed slurry)의 구성을 설명하기 위한 도면이다.
도 1을 참조하면, 본 발명의 실시예에 따른 이차전지 전극용 도전재 선분산 슬러리는 도전재(10)와 상기 도전재(10)를 분산시키기 위한 분산제(20), 그리고, 상기 도전재(10) 및 분산제(20)와 혼합되어 유동성을 제공하는 용매(30)를 포함할 수 있다. 도전재(10)는 흑연, 카본 블랙(Carbon Black), 그래핀, 탄소나노튜브(CNT, carbon nanotube)로 이루어진 군에서 선택되는 1종 이상일 수 있고, 구체적으로 CNT이거나 CNT를 포함할 수 있다. 도전재(10)는 다수의 CNT로 이루어질 수 있다. 분산제(20)는 셀룰로오스계 화합물 및 비닐계 또는 아크릴계 화합물을 포함할 수 있다. 분산제(20)에서 셀룰로오스계 화합물과 비닐계 또는 아크릴계 화합물의 중량비는 약 25:1 내지 1:25 정도일 수 있다. 구체적으로, 본 발명의 일 실시예에 따르면, 상기 셀룰로오스계 화합물과 상기 비닐계 화합물의 중량비는 25:1 내지 1:25일 수 있고, 본 발명의 다른 실시예에 따르면, 상기 셀룰로오스계 화합물과 상기 아크릴계 화합물의 중량비는 25:1 내지 1:25일 수 있다. 용매(30)는, 예컨대, 물(water)일 수 있다.
도전재(10)로서 CNT를 사용할 때, 분산제(20)로 셀룰로오스계 화합물과 비닐계 또는 아크릴계 화합물을 혼합하여 사용하고 이들의 중량비를 25:1 내지 1:25 정도로 조절함으로써, CNT의 분산 특성을 상당히 개선할 수 있고, 도전재 선분산 슬러리에서 CNT의 입도를 크게 낮출 수 있다.
이때, 상기 셀룰로오스계 화합물의 중량평균분자량(weight-average molecular weight; Mw)은 약 450,000 g/mol 이하일 수 있다. 구체적으로 120,000 g/mol 이하일 수 있다. 예를 들어, 본 발명의 실시예에서는 중량평균분자량(Mw)이 약 50,000 내지 120,000 g/mol 정도인 셀룰로오스계 화합물 또는 중량평균분자량(Mw)이 약 120,000 내지 450,000 g/mol 정도인 셀룰로오스계 화합물을 사용할 수 있다. 기존의 이차전지 전극용 슬러리에서 셀룰로오스계 화합물은 바인더(binder)로 사용될 수 있는데, 이 경우, 그 분자량은 1,500,000 g/mol 정도로 본 발명의 실시예에서 사용하는 셀룰로오스계 화합물과 상당한 차이가 있다. 본 발명의 실시예와 같이, 중량평균분자량(Mw)이 약 450,000 g/mol 이하인 셀룰로오스계 화합물을 사용하면, 도전재 선분산 슬러리의 점도를 낮출 수 있고, CNT의 분산성을 용이하게 향상시킬 수 있다. 특히, 셀룰로오스계 화합물의 중량평균분자량(Mw)이 약 120,000 g/mol 이하일 때, 도전재 선분산 슬러리를 포함하는 전극용 슬러리의 코팅성이 더욱 향상되고 전극 형성이 더욱 용이할 수 있다.
또한, 본 발명의 실시예에서 사용하는 상기 셀룰로오스계 화합물의 에스테르화도(degree of esterification; DE)는 약 0.6 내지 1.0 정도일 수 있다. 셀룰로오스계 화합물 중 하나인 CMC(carboxymethyl cellulose)에서는 하나의 모노머(monomer)에 3개의 OR기가 존재하는데(도 2의 화학식 참조), 셀룰로오스계 화합물의 에스테르화도(degree of esterification; DE)는 셀룰로오스(cellulose)의 모노머를 기준으로, 히드록시기(-OH)가 에스테르기(ester group)로 치환된 정도(즉, 치환도)를 나타낸다. 셀룰로오스계 화합물의 에스테르화도(DE)는 0 내지 3(즉, 도 2의 OR기의 수와 대응됨)의 범위를 가질 수 있다. 본 실시예에서 사용하는 셀룰로오스계 화합물 중 하나인 CMC(carboxymethyl cellulose)의 에스테르화도(DE)는 약 0.6 내지 1.0 정도 또는 약 0.7 내지 0.9 정도일 수 있다. CMC의 에스테르화도(DE)가 커질수록, CMC의 친수성이 증가할 수 있다. 에스테르화도(DE)가 0.6 미만인 경우, 수화도(degree of hydration)가 너무 낮아서 물과 잘 섞이지 않을 수 있다. 에스테르화도(DE)가 1.0을 초과하는 경우, CNT의 분산성이 저하될 수 있다.
상기 셀룰로오스계 화합물은 메틸셀룰로오스, 에틸셀룰로오스, 히드록시에틸셀룰로오스, 벤질셀룰로오스, 트리틸셀룰로오스, 시아노에틸셀룰로오스, 카르복시메틸셀룰로오스, 카르복시에틸셀룰로오스, 아미노에틸셀룰로오스, 니트로셀룰로오스, 셀룰로오스에테르 및 카르복시메틸셀룰로오스 나트륨염으로 이루어진 군으로부터 선택되는 1종 이상일 수 있다.
도 2는 본 발명의 일 실시예에 따른 이차전지 전극용 도전재 선분산 슬러리에 적용될 수 있는 셀룰로오스계 화합물 중 하나인 CMC의 화학식을 보여주는 도면이다. 도 2의 CMC는 sodium carboxymethyl cellulose (즉, Na CMC)이다.
도 2를 참조하면, CMC의 글루코스 링(glucose ring) 부분은 소수성으로 CNT의 표면과 결합할 수 있고, 카르복시산염(carboxylate) 부분은 친수성으로 물과 결합하여 CNT를 물에 분산시키는 역할을 할 수 있다. CMC는 CNT와 물(용매) 안에서 얼라인(align)되어 있는 구조를 형성할 수 있는데, 이때 소수성 부분의 결합이 중요한 역할을 할 수 있다. 또한, CMC의 equatorial 방향의 -OH기(즉, equatorial hydroxyl group)가 다른 CMC의 글루코스 링(glucose ring)과 수소 결합하면서 패킹(packing)되는 형태를 나타낼 수 있다. 이러한 CMC는 리지드(rigid)한 특성을 이용해서 CNT의 분산안정제로서 역할을 할 수 있다.
앞서 설명한 바와 같이, 본 발명의 실시예에서 CMC의 중량평균분자량(Mw)은 약 450,000 g/mol 이하일 수 있다. 중량평균분자량(Mw)이 약 450,000 g/mol 이하인 CMC를 사용하면, 도전재 선분산 슬러리의 점도를 낮출 수 있고, CNT의 분산성을 용이하게 향상시킬 수 있다. 또한, 본 발명의 실시예에서 CMC의 에스테르화도(DE)는 약 0.6 내지 1.0 정도일 수 있다. CMC에서 셀롤로오스의 모노머를 기준으로 히드록시기가 에스테르기(ester group)로 치환된 정도(즉, 치환도)는 약 0.6 내지 1.0 정도일 수 있다. 이 경우, CMC는 용매(물)와 잘 섞이면서도 CNT의 분산성을 용이하게 향상시킬 수 있다.
도 1에서 설명한 바와 같이, 본 발명의 실시예에서는 분산제(20)로서 CMC와 함께 비닐계 또는 아크릴계 화합물을 추가로 사용할 수 있다. 비닐계 또는 아크릴계 화합물은 도전재의 주위를 둘러싸도록 구비될 수 있다. 본 발명의 실시예에서 사용하는 상기 비닐계 화합물의 중량평균분자량(Mw)은 6,000 내지 80,000 g/mol일 수 있고, 상기 아크릴계 화합물의 중량평균분자량(Mw)은 8,000 내지 150,000 g/mol일 수 있다. 더욱 구체적으로는 비닐계 화합물 중 하나인 PVP(폴리비닐피롤리돈, polyvinylpyrrolidone)의 중량평균분자량(Mw)은 약 6,000 내지 80,000 g/mol 정도일 수 있다. 보다 구체적으로는, 상기 PVP의 중량평균분자량(Mw)은 약 6,000 내지 15,000 g/mol 정도일 수 있다. 상기 PVP는 CNT의 주위를 둘러싸도록 구비될 수 있다. 다시 말해, 상기 PVP는 CNT에 흡착되어 CNT를 둘러싸도록(즉, wrapping 하도록) 구비될 수 있다. PVP는 CNT에 흡착되어 CNT를 둘러쌈으로써, CNT를 용매(ex, 물)에 분산하는 역할을 할 수 있다. PVP로 CNT를 적절히 wrapping 하기 위해서는, 적당한 길이를 갖는 PVP를 사용할 필요가 있다. 또한, CNT의 종류에 따라 그에 적합한 PVP의 종류(분자량)가 달라질 수 있다. PVP의 중량평균분자량(Mw)이 6,000 g/mol 미만인 경우, wrapping 자체가 잘 되지 않을 수 있고, 도전재 선분산 슬러리의 점도가 높아지고, CNT의 분산성은 떨어질 수 있다. PVP의 중량평균분자량(Mw)이 80,000 g/mol을 초과하는 경우, 도전재 선분산 슬러리의 점도가 증가하고, CNT의 분산성은 저하될 수 있다. 따라서, 본 발명의 실시예에서 PVP의 중량평균분자량(Mw)은 약 6,000 내지 80,000 g/mol 정도인 것이 바람직할 수 있다. 이러한 PVP를 사용함으로써 CNT를 보다 잘 분산시킬 수 있고, 흐름성을 개선하여 낮은 점도의 도전재 선분산 슬러리를 제조할 수 있다.
상기 비닐계 화합물은 폴리비닐피롤리돈, 폴리비닐알콜, 폴리비닐클로라이드, 폴리비닐플루오라이드, 및 폴리비닐아세테이트로 이루어진 군으로부터 선택되는 1종 이상일 수 있다.
상기 아크릴계 화합물은 폴리아크릴산, 폴리아크릴아마이드, 및 폴리아크릴로니트릴로 이루어진 군으로부터 선택되는 1종 이상일 수 있다.
도 3은 본 발명의 일 실시예에 따른 이차전지 전극용 도전재 선분산 슬러리에 적용될 수 있는 PVP의 화학식을 보여주는 도면이다.
도 3을 참조하면, PVP의 피롤리돈기(pyrrolidone group)는 친수성일 수 있고, 그 아래의 알킬기(alkyl group)는 소수성일 수 있다. 상기 알킬기는 선형구조로 플렉서블할 수 있고, CNT를 둘러싸는(wrapping) 성질을 가질 수 있다. PVP의 중량평균분자량(Mw)이 6,000 g/mol 미만인 경우, 알킬기의 선형구조가 짧아지기 때문에, CNT wrapping 자체가 잘 되지 않을 수 있고, 그 결과, 도전재 선분산 슬러리의 점도가 높아지고, CNT의 분산성은 떨어질 수 있다. PVP의 중량평균분자량(Mw)이 80,000 g/mol을 초과하는 경우, 분자량이 과도하게 커져서, 도전재 선분산 슬러리의 점도가 증가하고, CNT의 분산성은 저하될 수 있다. 따라서, 앞서 설명한 바와 같이, 본 발명의 실시예에서 PVP의 중량평균분자량(Mw)은 약 6,000 내지 80,000 g/mol 정도인 것이 바람직할 수 있다. PVP의 구체적인 종류로서 k12, k15, k30, k90 등이 있을 수 있고, 이 중에서 k15, k30에 해당하는 PVP를 본 발명의 실시예에 적용할 수 있다.
다시 도 1을 참조하면, 본 발명의 실시예에서 도전재(10)로 사용되는 CNT는 이차전지의 양극 혹은 음극에서 활물질의 도전성을 보완하며 전자가 이동할 수 있는 경로(path)를 형성하는 물질일 수 있다. CNT는 선형의 탄소체로서 분말보다 훨씬 긴 거리로 활물질-활물질 또는 활물질-집전체를 연결시켜주며, 네트워크(network) 구조를 형성하기도 용이할 수 있다.
본 발명의 실시예에서 사용하는 CNT는 다중벽 탄소나노튜브(Multi-walled carbon nanotube; MWCNT)일 수 있다. 단일벽 탄소나노튜브(single-walled carbon nanotube; SWCNT)의 경우, MWCNT 보다 전기적 성능은 좋지만, 고함량 CNT 분산액 제조가 어렵고 제조비용(가격)도 높은 단점이 있다. MWCNT의 경우, CNT의 직경이 작은 것은 수 nm 부터 큰 것은 수십 nm에 이르게 된다. 직경이 약 12 nm 초과이면 BET 비표면적이 낮아 분산에는 용이할 수 있지만, 전기 전도도가 감소하여 이차전지 내에서 도전재의 역할을 잘 수행하지 못할 수 있다. 본 발명에 적용된 CNT는 MWCNT 중에서도 얇고 길이가 길기 때문에 SWCNT에 근접한 품질과 MWCNT의 가격적 장점을 동시에 갖는다.
도 4는 본 발명의 일 실시예에 따른 이차전지 전극용 도전재 선분산 슬러리에 적용될 수 있는 CNT를 보여주는 사시도이다.
도 4를 참조하면, 본 발명의 실시예에 따른 도전재 선분산 슬러리에 적용될 수 있는 CNT는 MWCNT일 수 있다. MWCNT는 3 내지 10개의 벽(wall)을 가질 수 있고, 4 내지 12 nm의 직경을 가질 수 있다. MWCNT의 길이는 약 50 내지 200 ㎛ 정도일 수 있다. MWCNT의 BET(Brunauer-Emmett-Teller) 비표면적은 약 300 m2/g 이상일 수 있다. MWCNT의 BET 비표면적은 약 300 내지 500 m2/g 정도일 수 있다. 사용되는 MWCNT는 약 300 m2/g 이상의 큰 BET 비표면적을 갖기 때문에, 전도성 향상에 유리할 수 있다. 한편, MWCNT의 벌크 밀도(bulk density)는 약 0.042 g/ml 정도일 수 있고, 순도(purity)는 약 96.96% 정도일 수 있다.
12 nm 이하의 MWCNT의 경우, 비교적 큰 비표면적 등 물리적 특성으로 인해 용매(30) 내에서 분산하기가 용이하지 않을 수 있다. 이에 본 발명의 실시예에서는 분산제(20)로서 CMC와 PVP를 함께 사용하고, 이들의 사용 비율을 적절히 선택하며 아울러 이들의 물리적 특성을 적절히 선택함으로써, MWCNT의 분산 특성을 크게 개선할 수 있다. PVP가 MWCNT를 적절하게 wrapping하면서 CMC가 분산액의 상안정성을 유지시켜 준다. 따라서, 본 발명의 실시예에 따르면, MWCNT를 사용하더라도 낮은 점도를 갖고 작은 입도 특성을 갖는 도전재 선분산 슬러리를 제조할 수 있다.
본 발명의 실시예에 따른 도전재 선분산 슬러리에서 분산제로 CMC와 PVP를 혼합하여 사용하고 이들의 중량비(CMC:PVP)를 25:1 내지 1:25 정도로 조절할 경우, CNT의 분산 특성을 상당히 개선할 수 있고, CNT의 입도를 크게 낮출 수 있다.
CNT 대비 분산재의 함량도 분산 및 점도 특성에 영향을 줄 수 있다. 이와 관련해서, 본 발명의 실시예에 따른 도전재 선분산 슬러리에서 상기 CNT와 상기 분산제의 중량비(CNT:분산제)는 약 1:0.2 내지 1:1.5 정도이거나, 약 1:0.5 내지 1:1 정도일 수 있다. 다시 말해, 상기 CNT 대비 상기 분산제(즉, CMC + PVP)는 약 20 내지 150% 정도 포함되거나, 약 50 내지 100% 정도 포함될 수 있다. 이러한 조건을 만족할 때, CNT의 분산 특성을 개선하고 슬러리의 점도를 조절하는데 유리할 수 있다. 상기 CNT 대비 상기 분산제(즉, CMC + PVP)의 비율이 20% 미만인 경우 CNT 분산성이 나빠질 수 있고, 150%를 초과할 경우 슬러리의 점도가 원치 않는 수준으로 높아질 수 있고 전기전도성이 감소할 수 있다.
또한, 본 발명의 실시예에 따른 도전재 선분산 슬러리에서 상기 CNT의 함량은 약 6 중량% 이하일 수 있다. 즉, 상기 도전재 선분산 슬러리의 총 중량에서 상기 CNT의 함량은 약 0 중량% 초과 6 중량% 이하일 수 있다. 예를 들어, 상기 CNT의 함량은 약 1 내지 6 중량% 정도일 수 있다. 상기 CNT의 함량이 6 중량%를 초과할 경우 슬러리의 점도가 원치 않는 수준으로 높아질 수 있고 전기전도성이 감소할 수 있다. 적은 양의 CNT를 사용하면서도 CNT의 분산성을 높여서 우수한 성능을 갖는 전극을 제조할 수 있다. 그러나 CNT의 함량은 전술한 바에 한정되지 않고, 경우에 따라, 달라질 수 있다.
상기 도전재 선분산 슬러리는, 25℃의 온도 및 50 s-1의 전단율(shear rate) 조건에서, 약 3,000 cP 이하의 점도를 가질 수 있다. 상기 도전재 선분산 슬러리의 점도는 약 2,000 cP 이하 또는 약 1,000 cP 이하일 수 있다. CNT의 함량이 6 중량% 정도로 고함량인 경우라도, 도전재 선분산 슬러리는 약 3,000 cP 이하 또는 약 1,000 cP 이하의 저점도를 갖도록 제조될 수 있다.
또한, 상기 도전재 선분산 슬러리의 입도(particle size)를 측정하면, D50 입도는 약 0.1 ㎛ 보다 작을 수 있다. D50 값이 약 0.1 ㎛ 보다 작을 정도로 CNT들이 고르게 잘 분산될 수 있다. 이와 같이 CNT의 분산성이 좋고 슬러리의 입도가 작은 경우, 슬러리를 이용해서 제조되는 전극의 성능이 우수할 수 있다. 또한 적은 양의 CNT로도 우수한 전극 특성을 구현하는 것이 가능할 수 있다.
도 5는 본 발명의 일 실시예에 따른 이차전지 전극용 도전재 선분산 슬러리의 제조방법을 설명하기 위한 순서도이다.
도 5를 참조하면, 본 발명의 실시예에 따른 이차전지 전극용 도전재 선분산 슬러리의 제조방법은 도전재, 분산제 및 용매를 구비하는 혼합용액을 마련하는 단계(S10) 및 상기 혼합용액을 고압분산기를 이용해서 고압분산하는 단계(S20)를 포함할 수 있다. S10 단계에서 상기 도전재는 CNT를 구비할 수 있고, 상기 분산제는 CMC 및 PVP를 구비할 수 있다. 또한, 상기 분산제에서 CMC와 PVP의 중량비(CMC:PVP)는 약 25:1 내지 1:25 정도일 수 있다. S20 단계에서 상기 고압분산기의 작동 압력은 약 200 bar 이상일 수 있다. 예를 들어, 상기 고압분산기의 작동 압력은 약 200 내지 3,000 bar 정도일 수 있다. 상기 고압분산기를 이용한 고압분산은, 예를 들어, 약 500 내지 2,500 bar의 작동 압력으로 약 3 내지 10회(pass) 또는 약 4 내지 8회(pass) 만큼 수행할 수 있다. 본 발명의 실시예에 따르면, 상기 고압분산의 횟수를 약 5번 이내로 수행하는 것이 가능할 수 있다. 따라서, 고함량의 CNT를 포함하면서도 저점도를 갖는 도전재 선분산 슬러리를 비교적 간단하고 짧은 공정으로 용이하게 제조할 수 있다.
S10 단계, 즉, 상기 혼합용액을 마련하는 단계는 도 6에 도시된 바와 같은 세부 단계들(S11 내지 S13)로 구성될 수 있다.
도 6을 참조하면, 상기 혼합용액을 마련하는 단계(도 5의 S10)는 상기 셀룰로오스계 화합물을 포함하는 셀룰로오스계 화합물 용액 및 상기 비닐계 또는 아크릴계 화합물을 포함하는 비닐계 또는 아크릴계 화합물 용액을 각각 마련하는 단계(S11), 상기 셀룰로오스계 화합물 용액, 상기 비닐계 또는 아크릴계 화합물 용액 및 상기 CNT를 포함하는 1차 혼합액을 마련하는 단계(S12) 및 상기 1차 혼합액을 교반하는 단계(S13)를 포함할 수 있다. S12 단계에서 상기 셀룰로오스계 화합물 용액 및 상기 비닐계 또는 아크릴계 화합물 용액과 CNT 및 추가적인 용매(ex, 증류수)를 혼합하여 상기 1차 혼합액을 제조할 수 있다. S13 단계에서 상기 1차 혼합액을 약 3,000 내지 10,000 rpm 정도의 속도로 약 10분 내지 1시간 정도 교반할 수 있다. 그러나 여기서 개시한 구체적인 공정 조건들은 예시적인 것이고, 경우에 따라, 달라질 수 있다. 상기 1차 혼합액을 교반함으로써, 도 5의 S10 단계의 혼합용액을 제조할 수 있다. 상기 혼합용액은 CNT 분산용액이라고 할 수 있다.
도 5의 S20 단계에서 상기 혼합용액을 고압분산함으로써, 실시예에 따른 도전재 선분산 슬러리를 제조할 수 있다. 상기 도전재 선분산 슬러리의 구성, 특성 등은 도 1 내지 도 4를 참조하여 설명한 바와 동일할 수 있다. 상기 도전재 선분산 슬러리에서 상기 CMC의 중량평균분자량(Mw)은 약 450,000 g/mol 이하일 수 있고, 상기 CMC의 에스테르화도(DE)는 약 0.6 내지 1.0 정도일 수 있다. 상기 도전재 선분산 슬러리에서 상기 PVP의 중량평균분자량(Mw)은 약 6,000 내지 80,000 g/mol 정도일 수 있다. 상기 도전재 선분산 슬러리에서 상기 CNT는 MWCNT일 수 있고, 이때, 상기 MWCNT는 약 4 내지 12 nm 정도의 직경을 가질 수 있다. 상기 MWCNT의 길이는 약 50 내지 200 ㎛ 정도일 수 있고, 상기 MWCNT의 BET 비표면적은 약 300 m2/g 이상일 수 있다. 상기 도전재 선분산 슬러리에서 상기 CNT와 상기 분산제의 중량비(CNT:분산제)는 약 1:0.2 내지 1:1.5 정도일 수 있다. 상기 도전재 선분산 슬러리에서 상기 CNT의 함량은 약 6 중량% 이하일 수 있다. 상기 도전재 선분산 슬러리는, 25℃의 온도 및 50 s-1의 전단율 조건에서, 약 3,000 cP 이하의 점도를 가질 수 있다. 또한, 상기 도전재 선분산 슬러리의 D50 입도는 약 0.1 ㎛ 보다 작을 수 있다. 그 밖에도 상기 도전재 선분산 슬러리의 구체적인 구성 및 특성은 도 1 내지 도 4를 참조하여 설명한 바와 동일할 수 있다.
< 실험 방법 >
본 발명의 실시예에 따른 도전재 선분산 슬러리를 아래와 같은 방법으로 제조하여 그 특성을 평가하였다.
(1) 플라스크에 용매(증류수) 950 g을 넣고 PVP 50 g을 첨가한 후, 상온에서 2시간 동안 교반하여 5 중량%의 PVP 용액(수용액)을 제조한다.
(2) 플라스크에 용매(증류수) 950 g을 넣고 CMC 50 g을 첨가한 후, 상온에서 2시간 동안 교반하여 5 중량%의 CMC 용액(수용액)을 제조한다.
(3) 비이커에 상기 PVP 용액, 상기 CMC 용액, CNT 및 추가 용매(증류수)를 넣고 호모믹서(homomixer)를 이용해서 6,000 rpm으로 30분 동안 교반하여 400 g의 CNT 분산용액(즉, 혼합용액)을 제조한다. 상기 CNT 분산용액(혼합용액)에서 CNT는 5 중량%, CMC는 0.12 내지 3.63 중량%, PVP는 0.12 내지 3.63 중량%, 용매(증류수)는 86.0 내지 94.25 중량%로 하였다.
(4) 상기 CNT 분산용액(혼합용액)을 고압분산기(마이크로녹스 社, MN400BF)를 이용해서 1,300 bar로 5 내지 12회(pass) 고압분산 공정을 수행하여 3 중량%의 CNT를 함유하는 도전재 선분산 슬러리를 제조한다.
상기와 같이 제조된 도전재 선분산 슬러리에 대해서 HR-2 Viscometer (TA Instruments 社)를 이용해서 25℃의 온도, 50 s-1의 전단율, Φ40 mm의 플레이트(plate) 조건으로 점도를 측정하였다. 또한, 상기와 같이 제조된 도전재 선분산 슬러리를 0.0004 중량%까지 희석한 후, 입도분석기(Malvern 社)를 이용해서 D50 입도를 측정하였다.
상기와 같이 제조된 도전재 선분산 슬러리에 대해서 Blader를 이용하여 PET film에 7~8 μm로 코팅하였고, 면저항 측정기 MCP-T610 (Mitsubishi chemical 社)를 이용하여 면저항을 측정하였다.
상기한 바와 같은 방법을 적용하여 제조된 실시예 및 비교예에 따른 샘플들의 구체적인 배합 조건 및 평가 결과는 아래의 표 1 및 표 2와 같다. 또한, 표 2의 비고란에서 A는 CMC를 나타내고, B는 PVP, PVA, PAA, PAM을 나타낸다. 아래의 표 1에서 사용한 CMC는 CMC1이고, 상기 CMC1의 중량평균분자량(Mw)은 50,000 내지 120,000 g/mol이다. 표 1에서 사용한 PVP의 중량평균분자량(Mw)은 6,000 내지 80,000 g/mol, PVA의 중량평균분자량(Mw)은 6,000~40,000 g/mol, PAA의 중량평균분자량(Mw)은 8,000 내지 120,000 g/mol, 그리고 PAM의 중량평균분자량(Mw)은 10,000 내지 150,000 g/mol이다.
구분 CNT
(wt%)
CMC1(A) (wt%) PVP(B) (wt%) PVA(B) (wt%) PAA(B) (wt%) PAM(B) (wt%) 분산제A(CNT 대비%) 분산제B(CNT 대비%) 분산제 비율 에스테르화도
실시예1 5 0.144 3.606 2.88 72.12 75 0.6~1.0
실시예2 5 0.1875 3.5625 3.75 71.25 75 0.6~1.0
실시예3 5 0.375 3.375 7.50 67.50 75 0.6~1.0
실시예4 5 0.750 3.000 15.00 60.00 75 0.6~1.0
실시예5 5 1.250 2.500 25.00 50.00 75 0.6~1.0
실시예6 5 1.875 1.875 37.50 37.50 75 0.6~1.0
실시예7 5 2.500 1.250 50.00 25.00 75 0.6~1.0
실시예8 5 3.000 0.750 60.00 15.00 75 0.6~1.0
실시예9 5 3.375 0.375 67.50 7.50 75 0.6~1.0
실시예10 5 3.563 0.188 71.25 3.75 75 0.6~1.0
실시예11 5 3.606 0.144 72.12 2.88 75 0.6~1.0
실시예12 5 0.375 3.375 7.50 67.50 75 0.6~1.0
실시예13 5 0.1875 3.5625 3.75 71.25 75 0.6~1.0
실시예14 5 0.375 3.375 7.50 67.50 75 0.6~1.0
실시예15 5 0.1875 3.5625 3.75 71.25 75 0.6~1.0
실시예16 5 0.375 3.375 7.50 67.50 75 0.6~1.0
실시예17 5 0.1875 3.5625 3.75 71.25 75 0.6~1.0
비교예1 5 0.121 3.629 2.42 72.58 75 0.6~1.0
비교예2 5 3.629 0.121 72.58 2.42 75 0.6~1.0
비교예3 5 0.121 3.629 2.42 72.58 75 0.6~1.0
비교예4 5 0.121 3.629 2.42 72.58 75 0.6~1.0
비교예5 5 0.121 3.629 2.42 72.58 75 0.6~1.0
구분 고압 분산 Pass 수 점도 (40 mm, 50 s-1, cP) 입도 D50(㎛) 비고
실시예1 6 1,313 0.0652 A:B = 1:25
실시예2 5 864 0.0223 A:B = 1:19
실시예3 5 732 0.0289 A:B = 1:9
실시예4 5 1,220 0.0596 A:B = 1:4
실시예5 5 1,510 0.0620 A:B = 1:2
실시예6 7 2,329 0.0707 A:B = 1:1
실시예7 5 1,688 0.0320 A:B = 2:1
실시예8 5 1,650 0.0300 A:B = 4:1
실시예9 5 1,350 0.0263 A:B = 9:1
실시예10 5 1,270 0.0263 A:B = 19:1
실시예11 6 1,828 0.0844 A:B = 25:1
실시예12 5 1,245 0.0357 A:B = 1:9
실시예13 5 9,84 0.0242 A:B = 1:19
실시예14 5 1,522 0.0645 A:B = 1:9
실시예15 5 1,020 0.0243 A:B = 1:19
실시예16 5 1,417 0.0924 A:B = 1:9
실시예17 5 1,110 0.0352 A:B = 1:19
비교예1 9 3,410 10.5 A:B = 1:30
비교예2 10 3,820 12.1 A:B = 30:1
비교예3 11 3,722 5.7 A:B = 1:30
비교예4 11 4,510 15.2 A:B = 1:30
비교예5 11 4,250 10.4 A:B = 1:30
표 1 및 표 2에서 실시예1 ~ 실시예11, 비교예1, 2를 참조하면, 분산제 성분 A(CMC)와 분산제 성분 B(PVP)의 비율에 따른 점도 결과로부터 분산제 성분 A(CMC) 대비 분산제 성분 B(PVP)의 비율이 약 25:1 내지 1:25 정도가 되었을 때, 다른 비율에 비해서 점도가 월등히 낮은 것을 확인할 수 있다. 그 중에서도 19:1 내지 1:19 안에 있을 때 가장 낮은 것을 볼 수 있다. 실시예12 내지 실시예17 및 비교예3 내지 비교예 5를 참조하면, PVP(B)를 PVA(B), PAA(B), PAM(B)로 대체하였을 때도 19:1 내지 1:19 내에서 점도가 낮은 결과를 보이며, 범위를 벗어났을 때는 점도와 입도가 상승하였다. 상기 PAA, PVA 및 PAM를 CMC와 함께 사용하였을 때도 우수한 결과를 확인할 수 있으나, 동일한 고압 분산 Pass수일 때 점도 및 입도 D50에서 PVP가 보다 우수함을 확인할 수 있다.
구분 CNT
(wt%)
CMC1(A) (wt%) PVP(B) (wt%) PVA(B) (wt%) PAA(B) (wt%) PAM(B) (wt%) 분산제A(CNT 대비%) 분산제B(CNT 대비%) 분산제 비율 에스테르화도
실시예2 5 0.1875 3.5625 3.75 71.25 75 0.6~1.0
실시예18 5 0.125 2.375 2.5 47.5 50 0.6~1.0
실시예19 5 0.0625 1.1875 1.25 23.75 25 0.6~1.0
실시예20 5 0.05 0.95 1 19 20 0.6~1.0
실시예21 5 0.0375 0.7125 0.75 14.25 15 0.6~1.0
실시예22 5 0.25 4.75 5 95 100 0.6~1.0
실시예23 5 0.3125 5.9375 6.25 118.75 125 0.6~1.0
실시예24 5 0.375 7.125 7.5 142.5 150 0.6~1.0
비교예25 5 0.45 8.55 9 171 180 0.6~1.0
구분 고압 분산 Pass 수 점도 (40 mm, 50 s-1, cP) 입도 D50(㎛) 비고
실시예2 5 864 0.0223 A:B = 1:19
실시예18 5 1,025 0.0352 A:B = 1:19
실시예19 6 1,822 0.0341 A:B = 1:19
실시예20 7 2,510 0.075 A:B = 1:19
실시예21 10 4,220 0.135 A:B = 1:19
실시예22 5 1,135 0.0452 A:B = 1:19
실시예23 5 1,520 0.0377 A:B = 1:19
실시예24 5 2,311 0.0521 A:B = 1:19
실시예25 8 3,460 0.092 A:B = 1:19
표 3 및 표 4에서 분산제 비율은 CNT 대비 분산제(즉, CMC + PVP)의 비율(%)을 의미한다. 실시예 2와 실시예 18 내지 실시예 25를 참조하면, 분산제의 비율이 CNT 대비 약 20 내지 150% 또는 약 50 내지 100%일 때, 낮은 점도 수치를 나타내는 것을 알 수 있다. 또한, 0.1 이하의 낮은 D50 입도(㎛)를 갖는 것을 확인하였다. 도전재 선분산 슬러리에서 CNT, 분산제 성분 A(CMC), 분산제 성분 B(PVP) 및 용매의 바람직한 비율(또는 최적의 비율)이 존재할 수 있다.
추가적인 실시예 및 비교예에 따른 샘플들의 배합 조건 및 평가 결과는 아래의 표 5 내지 표 12와 같다. 표 5 및 표 6에서 사용한 CMC는 CMC1이고, 상기 CMC1의 중량평균분자량(Mw)은 50,000 내지 120,000 g/mol이다. 표 7 및 표 8에서 사용한 CMC는 CMC1과 에스테르화도만 다른 CMC를 사용하였다. 표 9 및 표 10에서 사용한 CMC는 CMC2 내지 CMC4이고, 상기 CMC2의 중량평균분자량(Mw)은 200,000 내지 450,000 g/mol이고 CMC3의 중량평균분자량(Mw)은 700,000 내지 1,000,000 g/mol, CMC4의 중량평균분자량(Mw)은 1,500,000 내지 2,300,000 g/mol이다.
구분 CNT
(wt%)
CMC1(A) (wt%) PVP(B) (wt%) PVA(B) (wt%) PAA(B) (wt%) PAM(B) (wt%) 분산제A(CNT 대비%) 분산제B(CNT 대비%) 분산제 비율 에스테르화도
실시예2 5 0.1875 3.5625 3.75 71.25 75 0.6~1.0
실시예26 6 0.225 4.275 3.75 71.25 75 0.6~1.0
실시예27 7 0.2625 4.9875 3.75 71.25 75 0.6~1.0
구분 고압 분산 Pass 수 점도 (40 mm, 50 s-1, cP) 입도 D50(㎛) 비고
실시예2 5 864 0.0223 A:B = 1:19
실시예26 8 2,980 0.099 A:B = 1:19
실시예27 12 6,645 0.52 A:B = 1:19
구분 CNT
(wt%)
CMC1(A) (wt%) PVP(B) (wt%) PVA(B) (wt%) PAA(B) (wt%) PAM(B) (wt%) 분산제A(CNT 대비%) 분산제B(CNT 대비%) 분산제 비율 에스테르화도
실시예2 5 0.1875 3.5625 3.75 71.25 75 0.6~1.0
실시예28 5 0.1875 3.5625 3.75 71.25 75 1.0~1.5
구분 고압 분산 Pass 수 점도 (40 mm, 50 s-1, cP) 입도 D50(㎛) 비고
실시예2 5 864 0.0223 A:B = 1:19
실시예28 8 4,255 0.154 A:B = 1:19
구분 CNT
(wt%)
CMC1(A) (wt%) CMC2(A) (wt%) CMC3(A) (wt%) CMC4(A) (wt%) PVP(B) (wt%) CMC
(CNT 대비%)
PVP
(CNT 대비%)
분산제 비율 에스테르화도
실시예2 5 0.1875 3.5625 3.75 71.25 75 0.6~1.0
실시예29 5 0.1875 3.5625 3.75 71.25 75 0.6~1.0
실시예30 5 0.1875 3.5625 3.75 71.25 75 0.6~1.0
실시예31 5 0.1875 3.5625 3.75 71.25 75 0.6~1.0
구분 고압 분산 Pass 수 점도 (40 mm, 50 s-1, cP) 입도 D50(㎛) 비고
실시예2 5 864 0.0223 A:B = 1:19
실시예29 8 2,248 0.0442 A:B = 1:19
실시예30 10 3,462 5.44 A:B = 1:19
실시예31 10 5,270 10.2 A:B = 1:19
구분 CNT
(wt%)
(2nm)
CNT
(wt%)
(4~12nm)
CNT
(wt%)
(15~25nm)
CNT
(wt%)
(30~45nm)
CMC1(A) (wt%) PVP(B) (wt%) 분산제A
(CNT 대비%)
분산제B
(CNT 대비%)
분산제 비율 에스테르화도
실시예2 5 0.1875 3.5625 3.75 71.25 75 0.6~1.0
실시예32 5 0.1875 3.5625 3.75 71.25 75 0.6~1.0
실시예33 5 0.1875 3.5625 3.75 71.25 75 0.6~1.0
실시예34 5 0.1875 3.5625 3.75 71.25 75 0.6~1.0
구분 고압 분산 Pass 수 점도 (40 mm, 50 s-1, cP) 입도 D50(㎛) 면저항
(Ohm/sq.)
비고
실시예2 5 864 0.0223 12 A:B = 1:19
실시예32 10 13,000 25.1 5 A:B = 1:19
실시예33 5 625 0.0852 48 A:B = 1:19
실시예34 5 433 0.154 151 A:B = 1:19
표 5 및 표 6의 실시예 26 및 실시예 27을 참조하면, CNT의 함량이 6wt%일 경우 점도 3,000 cP와 입도 D50 0.1 ㎛을 만족하지만, CNT의 함량이 7wt%일 경우 점도와 입도가 크게 상승하는 것을 볼 수 있다.
표 7 및 표 8의 실시예 28을 참조하면, 에스테르화도가 1.0 내지 1.5인 CMC를 사용하였을 때, 점도와 입도가 높게 측정된 것을 볼 수 있다. 표 9 및 표 10의 실시예 29 내지 실시예 31을 참조하면, CMC의 분자량에 따른 CNT 분산액의 결과를 볼 수 있다. 사용하는 CMC의 중량평균분자량(Mw)이 소정 수준을 넘어서 증가할 경우, D50 입도 값이 과도하게 증가하는 문제가 발생할 수 있다.
표 11 및 표 12의 실시예 32 내지 실시예 34를 참조하면, CNT 직경에 따른 분산액의 결과를 확인할 수 있다. CNT 직경이 4 nm 보다 작을 경우, 점도와 입도가 매우 크게 상승하여 고함량 CNT 분산액 제조가 어렵다. 반면, CNT 직경이 12 nm 보다 클 경우 점도가 낮은 분산액을 제조하기에는 용이하지만, 면저항 성분이 크게 올라서 이차전지의 도전재로서 역할을 못할 수도 있을 것으로 확인된다.
이상에서 설명한 바와 같은 실시예에 따른 도전재 선분산 슬러리를 소정의 활물질 및 바인더(binder) 등과 혼합하여 전극용 슬러리를 제조할 수 있고, 상기 전극용 슬러리를 소정 기판 상에 도포하고 이에 대한 건조 공정이나 어닐링 공정 등을 수행하여 이차전지용 전극(전극 필름)을 형성할 수 있다. 또한, 이러한 전극을 적용한 이차전지를 제조할 수 있다.
도 7은 본 발명의 일 실시예에 따른 것으로, 이차전지 전극용 도전재 선분산 슬러리를 적용하여 제조된 전극을 구비하는 이차전지를 보여주는 단면도이다.
도 7을 참조하면, 본 실시예에 따른 이차전지는 상호 이격된 양극(cathode)(100)과 음극(anode)(200) 및 이들 사이에 이온 이동을 위해 구비된 전해질(electrolyte)(150)을 포함할 수 있다. 양극(100)과 음극(200) 사이에는 이들을 물리적으로 분리시키면서 전해질(150)의 이동, 혹은, 전해질(150)을 통한 이온의 이동은 허용하는 분리막(separator)(170)이 더 구비될 수 있다. 경우에 따라, 분리막(170)은 구비되지 않을 수도 있다.
양극(100)은 소정의 양극용 전극재를 포함할 수 있다. 양극(100)은 양극 활물질(cathode active material)과 제1 바인더(binder) 및 제1 도전재를 포함할 수 있다. 상기 양극 활물질과 제1 바인더 및 제1 도전재는 하나의 양극 활물질층을 구성할 수 있다. 양극(100)은 상기 양극 활물질층에 접합된 양극 집전체(cathode current collector)를 구비할 수 있다. 이 경우, 상기 양극 활물질층은 상기 양극 집전체와 전해질(150) 사이에 배치될 수 있다.
음극(200)은 소정의 음극용 전극재를 포함할 수 있다. 음극(200)은 음극 활물질(anode active material)과 제2 바인더 및 제2 도전재를 포함할 수 있다. 상기 음극 활물질과 제2 바인더 및 제2 도전재는 하나의 음극 활물질층을 구성할 수 있다. 음극(200)은 상기 음극 활물질층에 접합된 음극 집전체(anode current collector)를 구비할 수 있다. 이 경우, 상기 음극 활물질층은 상기 음극 집전체와 전해질(150) 사이에 배치될 수 있다.
양극(100) 및 음극(200) 중 적어도 하나는 본 발명의 실시예에 따른 도전재 선분산 슬러리를 적용하여 제조될 수 있다. 예를 들어, 양극(100) 및 음극(200) 중 적어도 음극(200)은 본 발명의 실시예에 따른 도전재 선분산 슬러리를 적용하여 제조될 수 있다. 본 실시예에 따른 이차전지는, 예컨대, 리튬이차전지일 수 있지만, 그 밖에 다른 전지일 수도 있다.
이상에서 설명한 바와 같이, 본 발명의 실시예들에 따르면, CNT를 적용한 도전재 재료를 개발함에 있어서, CNT의 손상을 방지/최소화하면서 CNT를 효과적으로 분산시킬 수 있는 기술/방법을 구현할 수 있다. 이러한 실시예에 따르면, CNT(도전재)의 분산 특성이 향상된 이차전지 전극용 도전재 선분산 슬러리를 구현할 수 있다. 특히, CNT(도전재)의 함량이 비교적 높으면서도 비교적 낮은 점도를 갖고 비교적 간단한 공정으로 용이하게 제조될 수 있는 이차전지 전극용 도전재 선분산 슬러리를 구현할 수 있다. 상기한 도전재 선분산 슬러리를 적용하여 우수한 성능을 갖는 전극을 제조할 수 있고, 상기한 전극을 적용한 이차전지를 제조할 수 있다.
본 명세서에서는 본 발명의 바람직한 실시예에 대하여 개시하였으며, 비록 특정 용어들이 사용되었으나, 이는 단지 본 발명의 기술 내용을 쉽게 설명하고 발명의 이해를 돕기 위한 일반적인 의미에서 사용된 것이지, 본 발명의 범위를 한정하고자 하는 것은 아니다. 여기에 개시된 실시예 외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형예들이 실시 가능하다는 것은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 자명한 것이다. 예들 들어, 해당 기술 분야에서 통상의 지식을 가진 자라면, 도 1 내지 도 7을 참조하여 설명한 실시예에 따른 이차전지 전극용 도전재 선분산 슬러리와 그 제조방법 및 도전재 선분산 슬러리를 적용하여 제조된 전극과 상기 전극을 구비한 이차전지는 다양하게 변형될 수 있음을 알 수 있을 것이다. 때문에 발명의 범위는 설명된 실시예에 의하여 정하여 질 것이 아니고 특허 청구범위에 기재된 기술적 사상에 의해 정하여져야 한다.

Claims (20)

  1. 이차전지 전극용 도전재 선분산 슬러리로서,
    도전재; 상기 도전재를 분산시키기 위한 분산제; 및 상기 도전재 및 분산제와 혼합되는 용매를 포함하고,
    상기 분산제는 셀룰로오스계 화합물 및 비닐계 또는 아크릴계 화합물를 포함하며, 상기 분산제에서 상기 셀룰로오스계 화합물과 상기 비닐계 또는 아크릴계 화합물의 중량비는 25:1 내지 1:25인,
    이차전지 전극용 도전재 선분산 슬러리.
  2. 제 1 항에 있어서,
    상기 셀룰로오스계 화합물의 중량평균분자량(weight-average molecular weight; Mw)은 450,000 g/mol 이하인 이차전지 전극용 도전재 선분산 슬러리.
  3. 제 1 항에 있어서,
    상기 셀룰로오스계 화합물의 에스테르화도(degree of esterification; DE)는 0.6 내지 1.0 인 이차전지 전극용 도전재 선분산 슬러리.
  4. 제 1 항에 있어서,
    상기 셀룰로오스계 화합물은 메틸셀룰로오스, 에틸셀룰로오스, 히드록시에틸셀룰로오스, 벤질셀룰로오스, 트리틸셀룰로오스, 시아노에틸셀룰로오스, 카르복시메틸셀룰로오스, 카르복시에틸셀룰로오스, 아미노에틸셀룰로오스, 니트로셀룰로오스, 셀룰로오스에테르 및 카르복시메틸셀룰로오스 나트륨염으로 이루어진 군으로부터 선택되는 1종 이상인 이차전지 전극용 도전재 선분산 슬러리.
  5. 제 1 항에 있어서,
    상기 비닐계 화합물의 중량평균분자량(Mw)은 6,000~80,000 g/mol이고, 상기 아크릴계 화합물의 중량평균분자량(Mw)은 8,000~150,000 g/mol인 이차전지 전극용 도전재 선분산 슬러리.
  6. 제 1 항에 있어서,
    상기 비닐계 또는 아크릴계 화합물은 상기 도전재의 주위를 둘러싸도록 구비되는 이차전지 전극용 도전재 선분산 슬러리.
  7. 제 1 항에 있어서,
    상기 비닐계 화합물은 폴리비닐피롤리돈, 폴리비닐알콜, 폴리비닐클로라이드, 폴리비닐플루오라이드, 및 폴리비닐아세테이트로 이루어진 군으로부터 선택되는 1종 이상이고, 상기 아크릴계 화합물은 폴리아크릴산, 폴리아크릴아마이드, 및 폴리아크릴로니트릴로 이루어진 군으로부터 선택되는 1종 이상인 이차전지 전극용 도전재 선분산 슬러리.
  8. 제 1 항에 있어서,
    상기 도전재는 흑연, 카본블랙, 그래핀, 및 탄소나노튜브(CNT)로 이루어진 군에서 선택되는 1종 이상인 이차전지 전극용 도전재 선분산 슬러리.
  9. 제 8 항에 있어서,
    상기 탄소나노튜브(CNT)는 다중벽 탄소나노튜브(Multi-walled carbon nanotube; MWCNT)인 이차전지 전극용 도전재 선분산 슬러리.
  10. 제 9 항에 있어서,
    상기 다중벽 탄소나노튜브(MWCNT)는 4 내지 12 nm의 직경을 갖는 이차전지 전극용 도전재 선분산 슬러리.
  11. 제 8 항에 있어서,
    상기 탄소나노튜브(CNT)와 상기 분산제의 중량비(CNT:분산제)는 1:0.2 내지 1:1.5인 이차전지 전극용 도전재 선분산 슬러리.
  12. 제 8 항에 있어서,
    상기 도전재 선분산 슬러리에서 상기 탄소나노튜브(CNT)의 함량은 0 중량% 초과 6 중량% 이하인 이차전지 전극용 도전재 선분산 슬러리.
  13. 제 1 항에 있어서,
    상기 도전재 선분산 슬러리는, 25℃의 온도 및 50 s-1의 전단율(shear rate) 조건에서, 3,000 cP 이하의 점도를 갖는 이차전지 전극용 도전재 선분산 슬러리.
  14. 제 1 항에 있어서,
    상기 도전재 선분산 슬러리의 D50 입도(particle size)는 0.1 ㎛ 보다 작은 이차전지 전극용 도전재 선분산 슬러리.
  15. 제 1 항에 있어서,
    상기 용매는 물을 포함하는 이차전지 전극용 도전재 선분산 슬러리.
  16. 청구항 1 내지 15 중 어느 한 항에 기재된 도전재 선분산 슬러리를 적용하여 제조된 이차전지용 전극.
  17. 청구항 16에 기재된 전극을 구비하는 이차전지.
  18. 이차전지 전극용 도전재 선분산 슬러리의 제조방법으로서,
    도전재인 CNT, 분산제 및 용매를 포함하되, 상기 분산제는 셀룰로오스계 화합물 및 비닐계 또는 아크릴계 화합물을 포함하며, 상기 분산제에서 상기 셀룰로오스계 화합물과 상기 비닐계 또는 아크릴계 화합물의 중량비는 25:1 내지 1:25인 혼합용액을 마련하는 단계; 및
    상기 혼합용액을 200 bar 이상의 작동 압력을 갖는 고압분산기를 이용해서 고압분산하는 단계를 포함하는,
    이차전지 전극용 도전재 선분산 슬러리의 제조방법.
  19. 제 18 항에 있어서,
    상기 혼합용액을 마련하는 단계는,
    상기 셀룰로오스계 화합물을 포함하는 셀룰로오스계 화합물 용액 및 상기 비닐계 또는 아크릴계 화합물을 포함하는 비닐계 또는 아크릴계 화합물 용액을 각각 마련하는 단계;
    상기 셀룰로오스계 화합물 용액, 상기 비닐계 또는 아크릴계 화합물 용액 및 상기 CNT를 포함하는 1차 혼합액을 마련하는 단계; 및
    상기 1차 혼합액을 교반하는 단계를 포함하는 이차전지 전극용 도전재 선분산 슬러리의 제조방법.
  20. 제 18 항에 있어서,
    상기 고압분산은 500 내지 2,500 bar의 작동 압력으로 3 내지 10회 수행하는 이차전지 전극용 도전재 선분산 슬러리의 제조방법.
PCT/KR2021/018682 2020-12-22 2021-12-09 이차전지 전극용 도전재 선분산 슬러리와 그 제조방법 및 도전재 선분산 슬러리를 적용하여 제조된 전극과 상기 전극을 구비한 이차전지 WO2022139272A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202180087307.8A CN116648427A (zh) 2020-12-22 2021-12-09 用于二次电池电极的导电材料预分散浆料及其制备方法,适用导电材料预分散浆料制备的电极和具备该电极的二次电池
JP2023538909A JP2024502286A (ja) 2020-12-22 2021-12-09 二次電池電極用導電材プレ分散スラリーとその製造方法、及び導電材プレ分散スラリーを適用して製造された電極と前記電極を備えた二次電池
CA3203164A CA3203164A1 (en) 2020-12-22 2021-12-09 Conductor pre-dispersion slurry for secondary battery electrode, preparation method therefor, electrode manufactured by applying conductor pre-dispersion slurry, and secondary battery comprising same electrod
EP21911339.6A EP4266428A1 (en) 2020-12-22 2021-12-09 Conductor pre-dispersion slurry for secondary battery electrode, preparation method therefor, electrode manufactured by applying conductor pre-dispersion slurry, and secondary battery comprising same electrode
US18/338,640 US20230335747A1 (en) 2020-12-22 2023-06-21 Conductor pre-dispersion slurry for secondary battery electrode, preparation method therefor, electrode manufactured by applying conductor pre-dispersion slurry, and secondary battery comprising same electrode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200181127A KR20220090179A (ko) 2020-12-22 2020-12-22 이차전지 전극용 도전재 선분산 슬러리와 그 제조방법 및 도전재 선분산 슬러리를 적용하여 제조된 전극과 상기 전극을 구비한 이차전지
KR10-2020-0181127 2020-12-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/338,640 Continuation US20230335747A1 (en) 2020-12-22 2023-06-21 Conductor pre-dispersion slurry for secondary battery electrode, preparation method therefor, electrode manufactured by applying conductor pre-dispersion slurry, and secondary battery comprising same electrode

Publications (1)

Publication Number Publication Date
WO2022139272A1 true WO2022139272A1 (ko) 2022-06-30

Family

ID=82159574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/018682 WO2022139272A1 (ko) 2020-12-22 2021-12-09 이차전지 전극용 도전재 선분산 슬러리와 그 제조방법 및 도전재 선분산 슬러리를 적용하여 제조된 전극과 상기 전극을 구비한 이차전지

Country Status (7)

Country Link
US (1) US20230335747A1 (ko)
EP (1) EP4266428A1 (ko)
JP (1) JP2024502286A (ko)
KR (1) KR20220090179A (ko)
CN (1) CN116648427A (ko)
CA (1) CA3203164A1 (ko)
WO (1) WO2022139272A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024117594A1 (ko) * 2022-11-29 2024-06-06 주식회사 동진쎄미켐 이차전지 전극용 도전재 슬러리, 이차전지 전극 및 이를 포함하는 이차전지

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130029977A (ko) * 2011-09-16 2013-03-26 한국과학기술원 탄소나노튜브-고분자 나노복합체 및 이의 제조방법
KR20140140980A (ko) * 2013-05-30 2014-12-10 주식회사 엘지화학 리튬 이차전지용 전극 및 이를 포함하는 리튬 이차전지
KR20150122653A (ko) * 2013-02-22 2015-11-02 바이엘 머티리얼사이언스 아게 탄소 나노튜브-함유 분산액 및 전극의 제조에서의 그의 용도
KR20190093174A (ko) * 2018-01-31 2019-08-08 주식회사 엘지화학 도전재 분산액 및 음극 슬러리 제조 방법
WO2020197670A1 (en) * 2019-03-22 2020-10-01 Cabot Corporation Anode electrode compositions for battery applications

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130029977A (ko) * 2011-09-16 2013-03-26 한국과학기술원 탄소나노튜브-고분자 나노복합체 및 이의 제조방법
KR20150122653A (ko) * 2013-02-22 2015-11-02 바이엘 머티리얼사이언스 아게 탄소 나노튜브-함유 분산액 및 전극의 제조에서의 그의 용도
KR20140140980A (ko) * 2013-05-30 2014-12-10 주식회사 엘지화학 리튬 이차전지용 전극 및 이를 포함하는 리튬 이차전지
KR20190093174A (ko) * 2018-01-31 2019-08-08 주식회사 엘지화학 도전재 분산액 및 음극 슬러리 제조 방법
WO2020197670A1 (en) * 2019-03-22 2020-10-01 Cabot Corporation Anode electrode compositions for battery applications

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024117594A1 (ko) * 2022-11-29 2024-06-06 주식회사 동진쎄미켐 이차전지 전극용 도전재 슬러리, 이차전지 전극 및 이를 포함하는 이차전지

Also Published As

Publication number Publication date
JP2024502286A (ja) 2024-01-18
KR20220090179A (ko) 2022-06-29
CN116648427A (zh) 2023-08-25
US20230335747A1 (en) 2023-10-19
CA3203164A1 (en) 2022-06-30
EP4266428A1 (en) 2023-10-25

Similar Documents

Publication Publication Date Title
WO2017052064A1 (ko) 탄소 나노튜브 분산액 및 이의 제조방법
Cheng et al. Flexible asymmetric supercapacitors with high energy and high power density in aqueous electrolytes
EP2865031B1 (en) Binders, electrolytes and separator films for energy storage and collection devices using discrete carbon nanotubes
WO2017043818A1 (ko) 탄소 나노튜브 분산액 및 이의 제조방법
WO2017052087A1 (ko) 탄소 나노튜브 분산액 및 이의 제조방법
WO2010147254A1 (ko) 고밀도 슈퍼 커패시터의 전극 및 그의 제조방법
JP2012501515A (ja) 複合電極材料と、この材料を含む電池の電極と、この電極を有するリチウム電池
WO2022139272A1 (ko) 이차전지 전극용 도전재 선분산 슬러리와 그 제조방법 및 도전재 선분산 슬러리를 적용하여 제조된 전극과 상기 전극을 구비한 이차전지
WO2020091345A1 (ko) 음극 활물질 및 이를 포함하는 리튬 이차전지
WO2019164343A1 (ko) 이차 전지
WO2012115340A1 (ko) 이차 전지용 음극재 및 이의 제조방법
CN115275101A (zh) 一种石墨烯碳纳米管正极片及其制备方法
WO2018186559A1 (ko) 이차 전지용 음극 및 이의 제조 방법
KR20210119720A (ko) 리튬-황 전지용 플렉시블 전극 및 이의 제조 방법
WO2024096397A1 (ko) 실리콘-그래핀 복합 음극재 및 그 제조방법
WO2019160391A1 (ko) 양극 및 상기 양극을 포함하는 이차 전지
WO2019212161A1 (ko) 리튬-황 전지용 양극 활물질 및 그 제조방법
WO2022005242A1 (ko) 이차전지 전극용 슬러리 조성물 및 이를 이용한 이차전지 전극
WO2023120953A1 (ko) 이차전지 전극용 도전재 슬러리, 이를 포함하는 이차전지 전극 및 이차전지
WO2022119197A1 (ko) 탄소-실리콘 복합체 및 이의 제조방법
CN115995563A (zh) 硅基负极片及其制备方法、锂离子电池
CN116137327A (zh) 一种导电浆料及制备、含硅负极浆料及制备、含硅负极电极
KR20220049776A (ko) 탄소나노튜브 분산액, 그 제조방법 및 용도
WO2023128579A1 (ko) 리튬 이온 이차전지용 음극 슬러리 및 그 제조 방법
WO2024143831A1 (ko) 탄소나노튜브 분산액, 전극 제조용 슬러리, 및 이차 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21911339

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023538909

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 3203164

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 202180087307.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021911339

Country of ref document: EP

Effective date: 20230720