WO2022138732A1 - 絶縁性回路基板およびそれを用いた半導体装置 - Google Patents

絶縁性回路基板およびそれを用いた半導体装置 Download PDF

Info

Publication number
WO2022138732A1
WO2022138732A1 PCT/JP2021/047606 JP2021047606W WO2022138732A1 WO 2022138732 A1 WO2022138732 A1 WO 2022138732A1 JP 2021047606 W JP2021047606 W JP 2021047606W WO 2022138732 A1 WO2022138732 A1 WO 2022138732A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit board
amount
copper
less
insulating
Prior art date
Application number
PCT/JP2021/047606
Other languages
English (en)
French (fr)
Inventor
一光 森本
英明 平林
Original Assignee
株式会社 東芝
東芝マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝, 東芝マテリアル株式会社 filed Critical 株式会社 東芝
Priority to CN202180086659.1A priority Critical patent/CN116686081A/zh
Priority to JP2022571559A priority patent/JPWO2022138732A1/ja
Priority to EP21910872.7A priority patent/EP4270467A1/en
Publication of WO2022138732A1 publication Critical patent/WO2022138732A1/ja
Priority to US18/339,515 priority patent/US20230345630A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/026Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of metals or metal salts
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/26Cleaning or polishing of the conductive pattern
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/122Metallic interlayers based on refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/366Aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/368Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/407Copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/02Details related to mechanical or acoustic processing, e.g. drilling, punching, cutting, using ultrasound
    • H05K2203/025Abrading, e.g. grinding or sand blasting
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/07Treatments involving liquids, e.g. plating, rinsing
    • H05K2203/0779Treatments involving liquids, e.g. plating, rinsing characterised by the specific liquids involved
    • H05K2203/0786Using an aqueous solution, e.g. for cleaning or during drilling of holes
    • H05K2203/0793Aqueous alkaline solution, e.g. for cleaning or etching

Definitions

  • the embodiments described later generally relate to an insulating circuit board and a semiconductor device using the same.
  • Patent Document 1 There is an insulating circuit board in which an insulating substrate and a conductor portion are joined.
  • a ceramic copper circuit board which is a kind of insulating circuit board, is used as a circuit board on which a semiconductor element or the like is mounted.
  • International Publication No. 2017/506360 Patent Document 1 describes a bonded body in which a ceramic substrate and a copper plate are bonded via a bonding layer, and a ceramic copper circuit board in which the bonded body is improved. ..
  • a protruding portion is provided so that the bonding layer protrudes from the end portion of the copper plate. By controlling the size of the protruding portion of the bonding layer in this way, the temperature cycle test (TCT) characteristics are improved.
  • a semiconductor device can be obtained by mounting a semiconductor element on a ceramic copper circuit board.
  • a solder layer or a silver paste is used for mounting the semiconductor element.
  • the solder layer or silver paste strengthens the bonding between the ceramic copper circuit board and the semiconductor element.
  • an insulating circuit board for example, a ceramic circuit board
  • An etching step or a chemical polishing step is used as a step for imparting a circuit shape to the joined body.
  • Patent Document 2 International Publication No. 2019/054294 discloses a method in which a chemical polishing step and an etching step are combined.
  • chemical solutions such as hydrogen peroxide solution, hydrochloric acid, and sulfuric acid are used.
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2007-81217
  • the surface of the copper plate is chemically polished and then subjected to rust prevention treatment.
  • Patent Document 3 a chemical solution such as benzotriazole is used for the rust preventive treatment of the copper plate.
  • International Publication No. 2019/054921 discloses ammonium peroxodisulfate as a chemical solution used for etching an active metal brazing material containing silver, copper, and titanium.
  • Patent Document 5 a chemical solution such as benzotriazole is used for the rust preventive treatment of aluminum.
  • Various chemicals are used in chemical polishing, etching processes, rust prevention treatment processes, and the like. When the process using the chemical solution is performed, a nitrogen residue is generated on the surface of the copper plate which is the conductor portion.
  • An object of the present invention is to deal with such a problem, and an object of the present invention is to provide an insulating circuit board in which the amount of nitrogen on the surface of a conductor portion is reduced.
  • the insulating circuit board according to the embodiment includes an insulating substrate and a conductor portion bonded to at least one surface of the insulating substrate, and is arbitrary when the amount of nitrogen on the surface of the conductor portion is analyzed by XPS.
  • the average value of the amount of nitrogen at the three locations is within the range of 0 at% or more and 50 at% or less.
  • the schematic diagram which shows an example of the insulating circuit board which concerns on embodiment.
  • the schematic diagram which shows an example of the semiconductor device which concerns on embodiment.
  • the insulating circuit board according to the embodiment includes an insulating substrate and a conductor portion bonded to at least one surface of the insulating substrate, and any amount of nitrogen on the surface of the conductor portion is arbitrary when analyzed by XPS. The average value of the amount of nitrogen at the three locations is in the range of 0 at% or more and 50 at% or less.
  • the conductor portion is, for example, a copper member made of copper or a copper alloy.
  • FIG. 1 is a schematic diagram showing an example of an insulating circuit board according to an embodiment.
  • 1 is an insulating circuit board
  • 2 is an insulating substrate
  • 3 is a conductor portion (front conductor portion)
  • 4 is a conductor portion (back conductor portion)
  • 5 is a bonding layer.
  • the conductor portion 3 and the conductor portion 4 are arranged on both sides of the insulating substrate 2 via the bonding layer 5.
  • a circuit shape is given to the conductor portion 3, and the conductor portion 4 is used as a heat sink.
  • the conductor portion 3 is referred to as a front conductor portion
  • the conductor portion 4 is referred to as a back conductor portion.
  • two front conductor portions 3 are arranged.
  • the insulating circuit board according to the embodiment is not limited to such a form, and one or more surface conductor portions may be provided.
  • the back conductor portion 4 may be provided with a circuit shape.
  • the insulating circuit board may not include the back conductor portion 4 but may include only the front conductor portion 3.
  • the insulating circuit board according to the embodiment is preferably a ceramic copper circuit board.
  • the insulating substrate is preferably a resin substrate or a ceramic substrate.
  • the resin substrate has a lower cost than the ceramic substrate, and is preferable when the cost is taken into consideration.
  • the resin substrate include a paper phenol substrate, a paper epoxy substrate, a glass epoxy substrate, a composite substrate epoxy substrate, a glass composite substrate, a glass polyimide substrate, a bismaleimide-triazine (BT) substrate, a fluororesin substrate, and a polyphenylene oxide (PPO).
  • BT bismaleimide-triazine
  • PPO polyphenylene oxide
  • the ceramic substrate has excellent heat dissipation and three-point bending strength as compared with the resin substrate.
  • the ceramic substrate preferably contains one or two selected from silicon nitride, aluminum nitride, sialon, alumina, and zirconia as a main component.
  • the main component refers to a component contained in an amount of 50% by mass or more.
  • the ceramic substrate is more preferably any one of a silicon nitride substrate, an aluminum nitride substrate, and an argyl substrate.
  • Argyle is a material containing 50% by mass or more in total of two kinds of alumina and zirconia.
  • the thickness of the insulating substrate is preferably 0.1 mm or more and 1 mm or less. If the substrate thickness is less than 0.1 mm, the strength may decrease.
  • the insulating substrate itself becomes a thermal resistor, which may reduce the heat dissipation of the insulating circuit board.
  • the three-point bending strength of the silicon nitride substrate is preferably 600 MPa or more.
  • the thermal conductivity of the silicon nitride substrate is preferably 80 W / m ⁇ K or more.
  • the three-point bending strength of the silicon nitride substrate is preferably 600 MPa or more, more preferably 700 MPa or more.
  • the thickness of the silicon nitride substrate can be reduced to 0.40 mm or less, and further to 0.30 mm or less.
  • the three-point bending strength of the aluminum nitride substrate is about 300 to 450 MPa.
  • the thermal conductivity of the aluminum nitride substrate is 160 W / m ⁇ K or more. Since the strength of the aluminum nitride substrate is low, the substrate thickness is preferably 0.60 mm or more.
  • the three-point bending strength of the aluminum oxide substrate is about 300 to 450 MPa, but the aluminum oxide substrate is inexpensive among the ceramic substrates.
  • the three-point bending strength of the Argyle substrate is as high as about 550 MPa, but its thermal conductivity is about 30 to 50 W / m ⁇ K.
  • the argyl substrate is a substrate made of a sintered body in which aluminum oxide and zirconium oxide are mixed.
  • a ceramic substrate is preferable.
  • the ceramic substrates either a silicon nitride substrate or an aluminum nitride substrate is more preferable.
  • the silicon nitride substrate and the aluminum nitride substrate are nitride-based ceramic substrates.
  • Nitride-based ceramics react with an active metal brazing material containing Ti to form titanium nitride.
  • the oxide-based ceramics react with the active metal brazing material containing Ti to form titanium oxide.
  • the alumina substrate, zirconia substrate, and argyl substrate are oxide-based ceramic substrates. Nitride-based ceramics and oxide-based ceramics can improve the bonding strength with the conductor portion by using the active metal bonding method.
  • the reaction layer that forms titanium nitride or titanium oxide is called a titanium reaction layer.
  • the conductor portion is preferably a copper member or an aluminum member.
  • the copper member is a copper plate, a copper alloy plate, a member manufactured by giving a circuit shape to a copper plate, or a member manufactured by giving a circuit shape to a copper alloy plate, and is made of copper or a copper alloy.
  • the aluminum member is an aluminum plate, an aluminum alloy plate, a member manufactured by giving a circuit shape to an aluminum plate, or a member manufactured by giving a circuit shape to an aluminum alloy plate, and is made of aluminum or an aluminum alloy.
  • a member manufactured by giving a circuit shape to a copper plate will be referred to as a copper circuit.
  • a member manufactured by giving a circuit shape to an aluminum plate is called an aluminum circuit.
  • the conductor portion may be a metallized layer or a conductive thin film other than the copper member or the aluminum member.
  • the metallized layer is formed by firing a metal paste.
  • the aluminum member is cheaper than the copper member.
  • the copper member is preferable because it has excellent thermal conductivity as compared with the aluminum member.
  • the copper plate or the copper circuit include a copper plate or a copper circuit made of oxygen-free copper. Generally, the thermal conductivity of copper is as high as about 400 W / m ⁇ K.
  • the copper member is more preferably a copper plate made of oxygen-free copper or a copper circuit.
  • the thickness of the conductor portion 3 and the conductor portion 4 may be 0.3 mm or more, and further may be 0.6 mm or more. By making the conductor portion thicker, the heat dissipation of the bonded body can be improved.
  • the thickness of the front conductor portion 3 may be the same as the thickness of the back conductor portion 4, or may be different from the thickness of the back conductor portion 4.
  • a copper plate or a copper circuit is particularly preferable. Oxygen-free copper is preferably used for the copper plate or the copper circuit. Oxygen-free copper has a copper purity of 99.96% by mass or more, as shown in JIS-H-3100.
  • the insulating circuit board according to the embodiment is characterized in that, when the amount of nitrogen on the surface of the conductor portion is analyzed by XPS, the average value of any three places is in the range of 0 at% or more and 50 at% or less.
  • the insulating circuit board according to the embodiment may include only one conductor portion or may include a plurality of conductor portions. That is, the number of conductor portions provided is not particularly limited.
  • the average value of the nitrogen content at any three locations on the surface of any of the conductor portions may be within the range of 0 at% or more and 50 at% or less.
  • the average value of the nitrogen content at any three places is in the range of 0 at% or more and 50 at% or less.
  • the surface of the conductor portion refers to the surface of at least one of the front conductor portion 3 and the back conductor portion 4.
  • the amount of nitrogen on the surface of the conductor is analyzed by XPS.
  • XPS analysis refers to analysis using X-ray Photoelectron Spectroscopy (XPS).
  • XPS analysis is a method of irradiating a sample surface with X-rays and measuring the kinetic energy of photoelectrons emitted from the sample surface.
  • XPS analysis is used for qualitative analysis and quantitative analysis of the sample surface because the penetration depth of X-rays is several ⁇ m.
  • the XPS analyzer an SSI X probe or an equivalent or higher device is used.
  • the XPS analysis in addition to nitrogen and oxygen, the amount of each metal element used for the conductor portion and the amount of carbon are also measured. When a copper member is used as the conductor, nitrogen, oxygen, copper and carbon are extracted from the measured components. The amount of nitrogen is measured with the total of these as 100 at%.
  • the copper member contains a copper alloy
  • nitrogen, oxygen, copper, metals of other alloys, and carbon are extracted from the measured components, and the total of these is 100 at%.
  • an aluminum member is used as the conductor portion
  • nitrogen, oxygen, aluminum, and carbon are extracted from the measured components.
  • the amount of nitrogen is measured with the total of these as 100 at%.
  • the aluminum member contains an aluminum alloy, nitrogen, oxygen, aluminum, metals of other alloys, and carbon are extracted from the measured components, and the total of these is 100 at%.
  • the amount of nitrogen on the surface of the copper member is measured by XPS analysis. As the amount of nitrogen, the average value of any three places on the surface is used.
  • the "surface” analyzed does not include the sides of the copper member.
  • the arbitrary three places are three places selected from the surface of one copper member. At the time of measurement, three places where the farthest parts of the spot diameter are separated from each other by 500 ⁇ m or more are selected. It is preferable that the measurement points do not overlap with each other. Further, the measurement point is preferably a place where the semiconductor element is mounted.
  • the amount of nitrogen on the surface of the copper member is within the range of 0 at% or more and 50 at% or less, the wettability between the surface of the copper member and the bonding layer can be improved.
  • As the bonding layer a solder layer or a layer containing silver as a main component (Ag nanoparticle layer) is used.
  • the solder layer is, for example, lead-free solder defined in JIS-Z-3282.
  • JIS-Z-3282 corresponds to "ISO DIS 9453 2005".
  • Alloys containing Sn (tin) are mainly used for lead-free solder.
  • Cu and Sn are components that easily react with each other. This makes it possible to strengthen the bonding between the copper member and the semiconductor element.
  • nitrogen is a component that inhibits the reaction between Sn and Cu. Therefore, it is important that the amount of nitrogen on the surface of the copper member, which is the conductor portion, is 0 at% or more and 50 at% or less.
  • the amount of nitrogen is in the range of 0 at% or more and 50 at% or less no matter where on the surface of the conductor portion is measured.
  • the characteristics can be further improved by setting the nitrogen content within the range of 0 at% or more and 50 at% or less.
  • the amount of nitrogen When the amount of nitrogen is 0 at% (atomic%), it means that it is below the detection limit by XPS analysis. Further, when the amount of nitrogen exceeds 50 at%, the wettability between the surface of the copper member and the bonding layer is lowered. In conventional insulating circuit boards, particularly ceramic copper circuit boards, there are places where the amount of nitrogen is 60 at% or more on the surface of the conductor portion at the place where the semiconductor element is joined via the bonding layer. By setting the average value of the amount of nitrogen at any three locations to 50 at% or less, the wettability between the conductor portion and the bonding layer can be improved. Therefore, the amount of nitrogen on the surface of the copper member is 0 at% or more and 50 at% or less.
  • the amount of nitrogen is preferably 0 at% or more and 30 at% or less.
  • the amount of nitrogen on the surface of the copper member may be 10 at% or more and 50 at% or less.
  • a more preferable range of the amount of nitrogen when a rust inhibitor is used is 10 at% or more and 30 at% or less.
  • the amount of nitrogen can be controlled by using the cleaning step described later. Therefore, it is preferable to control the amount of nitrogen depending on the presence or absence of the rust preventive treatment. The smaller the amount of nitrogen on the surface of the copper member, the more preferable.
  • by controlling the amount of oxygen on the surface of the copper member it is possible to reduce the possibility that a problem will occur even if the amount of nitrogen is 10 at% or more.
  • the average value of the three locations is within the range of 3 at% or more and 50 at% or less.
  • the method of XPS analysis is the same as the method of analyzing the amount of nitrogen.
  • the three points when measuring the amount of oxygen are the same as the three points when measuring the amount of nitrogen. That is, both the amount of nitrogen and the amount of oxygen are measured in one XPS analysis. In other words, the amount of nitrogen and oxygen present in the same measurement area is measured at the same time.
  • the amount of nitrogen is small.
  • oxygen present on the surface of the copper member, it is possible to make it difficult for nitrogen to adhere to the surface of the copper member. Oxygen present on the surface of the copper member suppresses the adhesion of nitrogen, so that nitrogen can be suppressed from inhibiting the bonding between the copper member and the bonding layer. Therefore, it is preferable that oxygen is present on the surface of the copper member.
  • the chemical solution containing a nitrogen atom is a compound having an amino group or the like.
  • the amount of oxygen is preferably within the above range.
  • the amount of oxygen on the surface of the copper member is 3 at% or more, it is possible to suppress problems caused by nitrogen. If the amount of oxygen is less than 3 at%, the amount of oxygen becomes insufficient. When the amount of oxygen on the surface of the copper member exceeds 50 at%, the oxygen itself reacts with the copper member to form copper oxide. Therefore, the thermal conductivity of the copper member may decrease. Therefore, the amount of oxygen on the surface of the copper member is preferably in the range of 3 at% or more and 50 at% or less. Further, when the amount of oxygen on the surface of the copper member is within the range of 3 at% or more and 30 at% or less, oxygen itself does not hinder the bonding between the copper member and the bonding layer.
  • the amount of oxygen on the surface of the copper member is more preferably in the range of 3 at% or more and 30 at% or less.
  • the ratio ( AN / AOX ) of the amount of nitrogen (AN) to the amount of oxygen ( AOX ) is preferably 0 or more and 5 or less.
  • the amount of nitrogen and the amount of oxygen used to calculate the ratio are the average values of the above-mentioned three places.
  • the ratio (AN / AOX ) is 0 when the amount of nitrogen is 0 at%.
  • a ratio (AN / AOX ) of 5 or less indicates that the amount of nitrogen is 5 times or less the amount of oxygen. If the ratio (AN / AOX ) is larger than 5, the effect of suppressing the influence of nitrogen may be insufficient. Further, no matter where on the surface of the copper member is measured, the ratio ( AN / AOX ) is preferably 0 or more and 5 or less. When the rust preventive treatment is not performed, the ratio ( AN / AOX ) on the surface of the copper member is more preferably 0 or more and 4 or less. On the other hand, when the rust preventive treatment is performed, the ratio ( AN / AOX ) on the surface of the copper member is more preferably 0.5 or more and 4 or less.
  • the ratio (AN / AOX ) is preferably 0.5 or more and 4 or less. Setting the amount of nitrogen on the surface of the copper member to 0 at% (below the detection limit) when the rust preventive treatment is performed may increase the load on the manufacturing process. Even if nitrogen remains, it is effective to be able to reduce the effect.
  • the amount of chlorine ions present on the surface of the insulating circuit board is preferably 0 ⁇ g or more and 15 ⁇ g or less per 40 cm 2 surface area of the insulating circuit board.
  • the amount of chlorine ions is more preferably 0 ⁇ g or more and 3 ⁇ g or less per 40 cm 2 surface area of the insulating circuit board.
  • the amount of sulfate ion (SO 4 ) present on the surface of the insulating circuit board is preferably 0 ⁇ g or more and 5 ⁇ g or less per 40 cm 2 of the surface area of the insulating circuit board. Further, the amount of sulfate ion (SO 4 ) is more preferably 0 ⁇ g or more and 0.5 ⁇ g or less per 40 cm 2 surface area of the insulating circuit board.
  • the amount of fluorine ions present on the surface of the insulating circuit board is preferably 0 ⁇ g or more and 2 ⁇ g or less per 40 cm 2 surface area of the insulating circuit board. Further, it is more preferable that the amount of fluorine ions is 0 ⁇ g or more and 1 ⁇ g or less per 40 cm 2 surface area of the insulating circuit board.
  • the amount of ammonium (NH4) ions present on the surface of the insulating circuit board is preferably 0 ⁇ g or more and 3 ⁇ g or less per 40 cm 2 of the surface area of the insulating circuit board.
  • the amount of ammonium ions is 0 ⁇ g or more and 1 ⁇ g or less per 40 cm 2 surface area of the insulating circuit board.
  • the plurality of ions tend to adhere to the surface of the metal rather than the surface of the insulating substrate.
  • they may volatilize at the time of joining the copper member and the semiconductor element and induce contamination of the surface of the copper member. If the surface of the copper member is contaminated, it may induce poor bonding between the copper member and the semiconductor element. Therefore, it is preferable to control the amount of the ions present on the entire surface of the insulating circuit board including the portion where the copper member is not bonded.
  • the size of the surface area per insulating circuit board is smaller than 40 cm 2 , it is preferable to use a plurality of boards and set the total surface area of the insulating circuit boards to 40 cm 2 or more. If the total surface area is less than 40 cm 2 , that is, if the area of the insulating circuit board surface is extremely small, the influence of outliers or noise may become excessive when converted using the proportional relationship. Because there is.
  • the surface area measured here is the area of a flat surface that does not include the thickness component of the side surface.
  • the flat surface refers to a surface substantially parallel to the joint surface of the insulating circuit board with the conductor portion when viewed from above.
  • the upward direction is defined as a direction perpendicular to this straight line when considering a straight line connecting the end portions of the insulating substrate.
  • the area of the flat surface is defined as the sum of the area seen from above and the area seen from below. Therefore, the surface area of the insulating circuit board is obtained by doubling the area when viewed from above. If there is only a small amount of insulating circuit board and the total surface area of the insulating circuit board is less than 40 cm 2 , the amount of impurities obtained is divided by the surface area (cm 2 ) and then multiplied by 40. Then, the size of the surface area may be converted.
  • the impurities refer to the above-mentioned chloride ion, sulfate ion, fluorine ion, and ammonium ion.
  • the surface area per insulating circuit board is not 40 cm 2 , there is a proportional relationship between the surface area of the insulating circuit board and the amount of impurities, and this relationship may be used for conversion by the following equation.
  • “Amount of impurities per 40 cm 2 of copper member” "Amount of impurities obtained by measurement” x 40 ⁇ "Total surface area of insulating circuit board (cm 2 )"
  • the amounts of chlorine ion, sulfate ion, fluorine ion, and ammonium ion are measured by an ion chromatograph.
  • Chloride ions are likely to adhere when the copper plate is etched using a chemical solution such as iron chloride or copper chloride. It also tends to adhere when hydrochloric acid is used for cleaning. Sulfate ions are likely to adhere when a chemical solution such as sodium thiosulfate or sulfuric acid or ammonium peroxodisulfate is used to perform an etching step or a chemical polishing step on a layer containing Ag or Cu as a main component. Fluorine ions tend to adhere when the etching process of the Ti reaction layer using a chemical solution such as ammonium fluoride is performed.
  • Ammonium ions adhere when a chemical solution such as ammonium fluoride or ammonium peroxodisulfate is used to perform an etching step of a Ti reaction layer, an etching step of a layer containing Ag or Cu as a main component, or a chemical polishing step. easy. If ions such as chlorine ion, sulfate ion, fluorine ion, and ammonium ion remain on the surface of the insulating circuit board (particularly the surface of the copper member), the reliability of the bond between the copper member and the semiconductor element is lowered. Further, sulfate ion is a divalent anion, and chlorine ion and fluorine ion are monovalent anions. Ammonium ion is a monovalent cation. The component described here as an ion may be detected as an ion at the time of measurement, and may be present as a compound on the surface of the insulating circuit board.
  • copper members are bonded to both sides of an insulating substrate such as a ceramic substrate or a resin substrate, and the amount of nitrogen on the surfaces of the copper members on both sides is in the range of 0 at% or more and 50 at% or less.
  • controlling the amount of nitrogen improves the bondability with the bond layer. Therefore, it is important to control the amount of nitrogen on the surface of the copper member on which the bonding layer is provided.
  • the bonding layer is a solder layer or a layer containing silver as a main component.
  • a semiconductor element is mounted on the copper plate or the copper circuit on the front side.
  • the bonding layer is used when mounting a semiconductor device.
  • the heat radiating plate is used as a surface mounted on a heat sink or the like. Since grease or the like is used for mounting on the heat sink, the bonding layer may not be used.
  • both the front side and the back side copper members can be used as the mounting surface of the semiconductor element. In other words, it is possible to provide an easily usable insulating circuit board.
  • the ceramic substrate and the copper member are preferably bonded via a bonding layer containing at least one selected from Ag, Cu, and Ti.
  • a joining method using a joining brazing material containing Ti is called an active metal joining method.
  • the active metal joining method can firmly join the ceramic substrate and the copper member.
  • the brazing material used in the active metal joining method is called an active metal brazing material.
  • Ag (silver) is 0% by mass or more and 70% by mass or less
  • Cu (copper) is 15% by mass or more and 85% by mass or less
  • Ti (titanium) or TiH 2 (titanium hydride) is 1% by mass. It is preferably contained in an amount of 15% by mass or more and 15% by mass or less.
  • the active metal brazing material may be used instead of Ti, or Nb or Zr may be added to Ti.
  • the active metal brazing material preferably contains Ti (titanium) or TiH 2 (titanium hydride) in an amount of 1% by mass or more and 15% by mass or less.
  • Ti and TiH 2 titanium hydride
  • the total of them shall be within the range of 1% by mass or more and 15% by mass or less.
  • the Ag content is preferably 20% by mass or more and 70% by mass or less
  • the Cu content is preferably 15% by mass or more and 65% by mass or less.
  • the brazing filler metal may contain 1 or 2 types of Sn (tin) or In (indium) in an amount of 1% by mass or more and 50% by mass or less.
  • the content of Ti or TiH 2 is preferably 1% by mass or more and 15% by mass or less.
  • the brazing material may contain C (carbon) in an amount of 0.1% by mass or more and 2% by mass or less, if necessary.
  • Ag or Cu is a component that becomes the base material of the brazing material.
  • Sn or In has the effect of lowering the melting point of the brazing filler metal.
  • C (carbon) has the effect of controlling the fluidity of the brazing filler metal and controlling the structure of the bonding layer by reacting with other components. Therefore, as the components of the brazing material, Ag-Cu-Ti, Ag-Cu-Sn-Ti, Ag-Cu-Ti-C, Ag-Cu-Sn-Ti-C, Ag-Ti, Cu-Ti, etc. Examples thereof include Ag-Sn-Ti, Cu-Sn-Ti, Ag-Ti-C, Cu-Ti-C, Ag-Sn-Ti-C, and Cu-Sn-Ti-C. Further, In may be used instead of Sn. Both Sn and In may be used.
  • the side surface of the copper member described above has an inclined shape. That is, it is preferable that the side surface of the copper member is inclined with respect to the in-plane direction and the thickness direction.
  • the in-plane direction is a direction parallel to the joint surface of the ceramic substrate with the copper member.
  • the thickness direction is the direction connecting the ceramic substrate and the copper member, and is perpendicular to the in-plane direction.
  • the thickness of the bonding layer 5 is preferably in the range of 10 ⁇ m or more and 60 ⁇ m or less.
  • the insulating circuit board preferably has a shape in which the bonding layer protrudes from the side surface of the copper member. A part of the protruding joint layer is called a protruding portion of the joint layer.
  • the ratio (L / T) of the length L to the thickness T of the protruding portion of the joint layer is in the range of 0.5 or more and 3.0 or less.
  • the thickness of the protruding portion of the joint layer is the thickness of the thickest portion of the protruding portion of the joint layer.
  • the length of the protruding portion of the joint layer is the length of the longest portion protruding from the side surface of the copper member.
  • the thickness and length of the protruding portion of the bonding layer are measured from an arbitrary cross section of the ceramic copper circuit board.
  • the TCT characteristics of the ceramic copper circuit board can be improved by providing the copper member with an inclined shape and providing a protruding portion of the bonding layer.
  • the maximum height Rz of the surface of the copper member is preferably 20 ⁇ m or less. Further, the arithmetic mean roughness Ra of the surface of the copper member is preferably 5 ⁇ m or less. The arithmetic mean roughness Ra is more preferably 2 ⁇ m or less. The arithmetic mean roughness Ra is more preferably 1 ⁇ m or less.
  • Ra and Rz are described in JIS B 0601: 2013. JIS B 0601: 2013 corresponds to ISO 4287: 1997 / AMENDMENT 1: 2009 (IDT).
  • the ceramic substrate is a silicon nitride substrate having a thickness of 0.4 mm or less, and the copper member preferably has a thickness of 0.6 mm or more.
  • a thin silicon nitride substrate having a thickness of 0.4 mm or less has the effect of lowering the thermal resistance of the ceramic substrate. Further, when a thick copper member having a thickness of 0.6 mm or more is used, heat dissipation is improved. Further, if the silicon nitride substrate has a three-point bending strength of 600 MPa or more, the effect can be easily obtained.
  • FIG. 2 is a schematic diagram showing an example of a semiconductor device according to an embodiment.
  • 1 is an insulating circuit board
  • 6 is a semiconductor element
  • 7 is a solder layer
  • 10 is a semiconductor device.
  • FIG. 2 shows an example in which one semiconductor element 6 is mounted. Two semiconductor elements 6 may be mounted. A lead frame, wire bonding, or the like may be provided.
  • solder layer 7 a layer containing silver as a main component (Ag nanoparticle layer) may be used.
  • the bonding between the conductor portion 3, the solder layer 7, and the semiconductor element 6 can be strengthened.
  • the performance of semiconductor devices has been improved.
  • the junction temperature of the semiconductor element is 150 ° C. or higher, and further becomes 170 ° C. or higher. According to the semiconductor device 10 according to the embodiment, even when a semiconductor element having a high junction temperature is mounted, it is possible to suppress peeling or cracking of the solder layer 7, and it is possible to improve the joining reliability.
  • a method for manufacturing a ceramic copper circuit board according to an embodiment will be described. As long as the ceramic copper circuit board according to the embodiment has the above configuration, the manufacturing method thereof is not particularly limited. Here, a method for obtaining a ceramic copper circuit board with good yield will be exemplified. First, a bonded body of a ceramic substrate and a copper plate is manufactured. The specific configurations of the ceramic substrate and the copper plate are as described above.
  • the joined body is joined using an active metal joining method.
  • the active metal joining method is a joining method using an active metal brazing material containing an active metal such as Ti.
  • the components of the active metal brazing filler metal are as described above.
  • An active metal brazing paste is prepared and applied to the surface of a ceramic substrate.
  • the coating thickness of the active metal brazing paste is preferably in the range of 10 ⁇ m or more and 60 ⁇ m or less.
  • a copper plate is placed on the active metal brazing paste layer.
  • the active metal brazing paste may be applied onto the copper plate and the ceramic substrate may be placed on the copper plate.
  • the vertical and horizontal size of the ceramic substrate may be the same as the vertical and horizontal size of the copper plate, or may be different from the vertical and horizontal size of the copper plate.
  • the thickness of the copper plate is 0.6 mm or more, it is preferable that the vertical and horizontal sizes of the ceramic substrate and the vertical and horizontal sizes of the copper plate are the same. Further, it is preferable to arrange copper plates on both sides of the ceramic substrate. With such an arrangement, it becomes easy to reduce the warp of the joined body.
  • An arbitrary circuit shape can be formed on the copper plate by an etching process described later. It is also possible to join a copper member processed into a circuit shape in advance to a ceramic substrate. However, in order to prepare a copper member processed into a circuit shape in advance, a dedicated mold is required. Preparing a mold according to the circuit shape may lead to an increase in cost.
  • the heating temperature is preferably 600 ° C. or higher and 930 ° C. or lower.
  • Examples of the heating atmosphere include in a vacuum and in an inert atmosphere. Vacuum refers to a state where the pressure is 10 -3 Pa or less.
  • the inert atmosphere is a nitrogen atmosphere, an argon atmosphere, a helium atmosphere, a neon atmosphere, a xenon atmosphere, or the like. In particular, considering the cost, a nitrogen atmosphere and an argon atmosphere are more preferable. More preferably, it is a nitrogen atmosphere.
  • the bonded body is subjected to a chemical polishing step and an etching step.
  • These steps are steps of imparting a circuit shape to the copper plate.
  • the side surface of the copper plate may be provided with an inclined shape, or the joint layer may protrude from the side surface of the copper plate to form a protruding portion.
  • an active metal brazing material containing Ag or Cu as a main component and containing Ti is used.
  • a Ti reaction layer is formed in the bonded layer.
  • the Ti reaction layer is a titanium nitride (TiN) layer.
  • the Ti reaction layer becomes a titanium oxide (TiO 2 ) layer.
  • a layer containing Ag or Cu as a main component and a Ti reaction layer are formed.
  • the nitride-based ceramic substrate is a substrate made of sialon, silicon nitride, aluminum nitride, or the like.
  • the oxide-based ceramic substrate is a substrate made of alumina, zirconia, or argyl (ceramics composed of alumina and zirconia).
  • an etching step of a copper plate In order to impart a circuit shape in the etching step, an etching step of a copper plate, an etching step of a layer containing Ag or Cu as a main component, and an etching step of a Ti reaction layer are required. Considering the etching efficiency, different chemical solutions are required in each of the three etching steps. In addition, it is necessary to apply a resist to the parts that are not desired to be etched. Whenever the part to be etched changes, a resist removing step and a resist applying step are required. It is necessary to perform different etching steps of the chemical solution multiple times. For example, in the etching process of a copper plate, a chemical solution containing iron chloride or copper chloride is used.
  • a chemical solution containing hydrogen peroxide solution or ammonium belloxodimsulfide is used in the etching step of the layer containing Ag or Cu as a main component.
  • a chemical solution containing hydrogen peroxide solution or ammonium fluoride is used in the etching step of the Ti reaction layer.
  • various chemicals are used in addition to these. It is effective to use a chemical polishing process in order to increase the efficiency of the etching process.
  • the chemical solution in the etching step may oxidize the layer containing Ag or Cu as a main component.
  • a chemical polishing step is effective for removing the oxide layer.
  • a chemical solution containing one or more selected from sulfuric acid, hydrochloric acid, and sodium thiosulfate is used.
  • various chemicals are also used in the etching process.
  • rust preventive treatment is applied to the copper plate.
  • the rust preventive treatment is carried out after the brazing filler metal etching.
  • the rust preventive treatment is a treatment for preventing the occurrence of rust (that is, oxidation) on the copper plate. Generally, it is plated to prevent oxidation. On the other hand, if plating treatment is not required, rust prevention treatment may be applied.
  • a chemical solution such as a benzotriazole-based compound containing benzotriazole is used.
  • benzotriazole-based compound examples include carboxybenzotriazole and the like. These benzotriazole-based compounds contain about 3 to 8 nitrogen atoms per molecule. If this benzotriazole-based compound remains on the surface of the copper member, it is detected as a nitrogen atom in XPS analysis.
  • the copper plate on the front side is processed by the chemical polishing step, etching step, and the like described above.
  • a circuit shape is given to a copper plate to form a copper circuit.
  • one copper plate is divided to form a plurality of copper plates.
  • a ceramic copper circuit board to which a copper member (copper circuit or copper plate) is bonded can be obtained.
  • various chemical solutions are used in the chemical polishing step, the etching step, the rust preventive treatment step and the like. When the process using the chemical solution is performed, nitrogen adheres to the surface of the copper member. In order to control the amount of nitrogen on the surface of the copper member, it is effective to perform a cleaning step.
  • the washing step one or two types selected from water washing, alkaline washing, and alcohol washing are carried out. Further, when only water washing is performed, it is preferable that the following water washing step, which is a step other than immersion, is carried out at least once. More preferably, it is preferable that the number of cleaning steps described below is larger than the number of cleaning steps when only water cleaning is used. Further, a plurality of cleaning methods may be combined in one cleaning step. For these cleanings, it is preferable that not only the conductor portion but the entire ceramic copper circuit board is cleaned. In water washing, the flow rate is preferably 1.3 L (liter) / min or more.
  • the flow rate is 1.3 L / min or more, the effect of washing away the nitrogen adhering to the surface of the copper member can be sufficiently obtained. If the flow rate is less than 1.3 L / min, the effect of washing away may be insufficient. For example, in the method of immersing the bonded body in a washing tank in which water is accumulated and leaving it to stand, the effect of reducing the amount of nitrogen cannot be sufficiently obtained because the flow rate is insufficient.
  • the upper limit of the flow rate is not particularly limited, but is preferably 10 L / min or less. If the flow rate is larger than 10 L / min, the water pressure is too high and the surface of the copper member may be deformed.
  • the flow rate for washing with water is preferably 1.3 L / min or more and 10 L / min or less. More preferably, the flow rate for washing with water is 1.5 L / min or more and 6 L / min or less.
  • Examples of the flow rate adjusting method include a method of circulating water stored in the washing tank and a method of controlling using a nozzle. The method of controlling the flow rate by using a nozzle is preferable. It is easier to control the flow rate using a nozzle. In the method of circulating the water stored in the washing tank, it may be difficult to control the flow rate when the amount of water is large. When using a nozzle, set the flow rate of water ejected from the nozzle to 1.3 L / min or more.
  • the distance between the nozzle and the ceramic copper circuit board is preferably in the range of 5 cm or more and 40 cm or less. It is more preferably within the range of 5 cm or more and 20 cm or less. Within this range, it becomes easy to adjust the amount of water that hits the ceramic copper circuit board.
  • the landing shape of the water ejected from the nozzle has various shapes such as a point shape, a circular shape, an elliptical shape, a flat shape, and a quadrangular shape. Various forms such as a cone type and a fan type can be applied to the nozzle type.
  • a plurality of nozzles may be used per ceramic copper circuit board, or the front conductor portion and the back conductor portion may be cleaned at the same time.
  • the amount of water landing on the ceramic copper circuit board is preferably in the range of 0.01 L / min / cm 2 or more and 0.1 L / min / cm 2 or less per nozzle.
  • the amount of water that lands on a ceramic copper circuit board is called the amount of water that lands.
  • the amount of landing water indicates the amount of water landing per 1 cm 2 when the ceramic copper circuit board is viewed from above.
  • the amount of water landed on the ceramic copper circuit board can be adjusted by adjusting the amount of water from the nozzle, the nozzle type, the distance from the nozzle, and the like.
  • the substrate may be slanted in order to improve the cleaning efficiency (liquid recovery efficiency) and the installation area efficiency.
  • Oblique means that the orientation of at least one side of the substrate is not parallel to the horizontal plane perpendicular to the direction of gravity. The angle between the horizontal plane and the at least one side is more preferably 10 degrees or more and less than 90 degrees.
  • the flow rate from the nozzle is 1.3 L / min or more, and the amount of water landing on the ceramic copper circuit board is 0.01 L / min / cm 2 or more and 0.1 L / min / min while transporting the ceramic copper circuit board.
  • the method of keeping it within the range of cm 2 or less is efficient.
  • JIS-K-0557 shows the quality of A1 to A4.
  • ISO3696 is referred to.
  • Alkaline cleaning refers to a step of cleaning with an alkaline aqueous solution having a pH of 10 or higher.
  • the alkaline aqueous solution having a pH of 10 or higher include an aqueous solution of an organic alkali, a metal hydroxide, a metal hydroxide and a salt of a weak acid.
  • examples of the metal include lithium, potassium, sodium, barium, and calcium. If Kb (base dissociation constant) is too small, the required dissolved mass increases. Therefore, the metal type of the metal hydroxide and its salt to be used is preferably selected from potassium, sodium, and lithium.
  • aqueous solution containing one or more selected from the sodium compounds is preferable, and an aqueous solution containing one or more selected from the sodium compounds is preferable.
  • An aqueous solution containing 0.5% by mass or more and 5% by mass or less of these components is more preferable.
  • Alkaline cleaning has the effect of removing impurities on the surface of the copper member and cleaning it.
  • the purity of these alkaline aqueous solutions is preferably high.
  • the purity is more preferably 96% by mass or more. If the purity is less than 96% by mass, impurities contained therein may adhere to the ceramic copper circuit board.
  • benzotriazole compounds which are often used for rust prevention treatment, have a lower polarity than water and have the property of being soluble in organic solvents. Therefore, alcohol cleaning may be used in the cleaning process after the rust prevention treatment.
  • alcohols include isopropanol, methanol, butanol, hexanol, ethanol and the like.
  • the purity of the benzotriazole-based compound excluding water and solvent components is preferably 99% by mass or more. If the purity of alcohols used for alcohol cleaning, excluding water and solvent components, is less than 99% by mass, impurities contained therein may adhere to the ceramic copper circuit board. Further, in alcohol washing, two or more kinds of alcohols may be mixed and used.
  • alcohols may be mixed with water.
  • the quality of the water used preferably meets JIS-K-0557 (1998).
  • Benzene may be added to the alcohols as a solvent. That is, the amount of impurities excluding water or solvent is preferably 1% by mass or less for alcohols.
  • ethanol or isopropanol is preferable in consideration of the solubility and volatility of benzotriazole.
  • Isopropanol is CAS Registry Number 67-63-0 and is 2-propanol in the IUPAC name.
  • Isopropanol is also sometimes referred to as IPA or isopropyl alcohol.
  • alkaline cleaning or water cleaning is preferable to alcohol cleaning as the cleaning method. Further, a plurality of cleaning methods may be combined, such as performing alkaline cleaning followed by water cleaning.
  • the cleaning step is performed after each of the chemical polishing step, the etching step, and the rust preventive treatment step.
  • the cleaning of the last step in the chemical polishing step, the etching step, and the rust prevention treatment step may be performed by the above-mentioned cleaning method, and the cleaning after the other steps may be normal water cleaning.
  • the time of the washing step after the last step is longer than that of other washings.
  • the individual cleaning steps may be either batch type or continuous type.
  • the batch method is a method in which a plurality of joints are stored in a cleaning basket and a cleaning process is performed.
  • the continuous method is a method in which a cleaning process is performed while transporting a plurality of joints by a belt conveyor.
  • a cleaning method there is also a method using a chlorine-based cleaning agent.
  • Chlorine-based cleaning agents may increase the amount of chlorine on the surface of the copper plate. Therefore, the chlorine-based cleaning agent is not preferable as compared with the cleaning method described above.
  • the cleaning process using steam or ozone water is not preferable because it may oxidize the copper plate. For this reason, one or more cleaning steps selected from water cleaning, alkaline cleaning, and alcohol cleaning are preferred. By the above steps, it is possible to manufacture a ceramic copper circuit board according to an embodiment in which the amount of nitrogen on the surface of the copper member is reduced.
  • drying step examples include treatment with a solution that easily volatilizes, centrifugal force treatment, and ventilation treatment.
  • a plurality of drying steps may be combined.
  • the remaining water may be washed away from the washed ceramic copper circuit board with a volatile solvent such as alcohols such as methanol, ethanol and isopropanol, or ketones such as acetone.
  • a volatile solvent such as alcohols such as methanol, ethanol and isopropanol, or ketones such as acetone.
  • the purity of these solvents is preferably 99% by mass or more. If the purity is less than 99% by mass, impurities contained therein may adhere to the ceramic copper circuit board. At this time, it is preferable to use isopropanol in consideration of safety aspects such as flammability.
  • the ceramic copper circuit board after cleaning may be rotated and centrifugal force may be used to remove the remaining water droplets.
  • the ceramic copper circuit board may be slanted.
  • This diagonal is a state in which the orientation of any one or more sides of the substrate is not parallel to this horizontal direction when the horizontal direction is any direction existing on a plane perpendicular to the direction of gravity. Point to.
  • the angle consisting of the horizontal direction and the gravity direction is 90 degrees
  • the angle consisting of the direction of one or more sides of the horizontal direction and the substrate is 10 degrees or more and less than 90 degrees.
  • the diagonal line of the substrate is slanted.
  • the diagonal line of the substrate may be slanted.
  • Dry air or nitrogen gas may be blown to the ceramic copper circuit board dried to some extent in this way to blow off the remaining water droplets.
  • the method of blowing air, dry air, or nitrogen gas is sometimes referred to as an air knife.
  • This air knife is a kind of air blow. In order to further reliably dry the ceramic copper circuit board thus obtained, a wind having a temperature of 10 ° C.
  • the drying process in which the ceramic copper circuit board is exposed to the wind in this way is called air blow.
  • the preferred wind temperature in this air blow step is 10 ° C. or higher and 150 ° C. or lower, more preferably 15 ° C. or higher and lower than 100 ° C. If this temperature is exceeded, the surface of the conductor may be oxidized by heat.
  • the preferable humidity in the air blow step is 5% or more and 70% or less. If the humidity is greater than 70%, the drying process may take longer. Lowering the humidity below 5% can increase costs.
  • the wind speed is preferably 20 m / s or more and 150 m / s or less.
  • the wind speed is more preferably 20 m / s or more and 100 m / s or less. If the wind speed is too low, it will take time to dry. In addition, if the wind speed is too high, the transport of the copper plate may be adversely affected.
  • the drying time to which warm air is applied when the drying process with warm air is used is shortened, and the surface of the copper plate, which is the conductor part, is oxidized by the heat of the warm air. Can be suppressed. Therefore, a plurality of drying steps may be combined.
  • Example 2 (Examples 1 to 12, Comparative Examples 1 to 2)
  • a ceramic substrate (silicon nitride substrate and aluminum nitride substrate) was prepared.
  • the size of the prepared silicon nitride substrate is 50 mm in length ⁇ 40 mm in width ⁇ 0.32 mm in thickness.
  • the thermal conductivity is 90 W / m ⁇ K, and the three-point bending strength is 650 MPa.
  • the size of the prepared aluminum nitride substrate is 50 mm in length ⁇ 40 mm in width ⁇ 0.635 mm in thickness.
  • the thermal conductivity is 170 W / m ⁇ K, and the three-point bending strength is 400 MPa.
  • a copper plate (oxygen-free copper plate) was prepared as an example of the conductor portion.
  • the size of the copper plate is 50 mm in length ⁇ 40 mm in width.
  • the ceramic substrate and the copper plate were joined by an active metal joining method using an active metal brazing material containing Ti. Copper plates were bonded to both sides of the ceramic substrate.
  • Table 1 shows the thickness of the copper plate and the thickness of the bonding layer.
  • a ceramic copper circuit board which is an example of an insulating circuit board, was manufactured.
  • the manufactured ceramic copper circuit board is provided with a copper plate (copper circuit) having a circuit shape on the front side and a copper plate as a heat sink on the back side.
  • the copper circuit on the front side and the copper plate on the back side are examples of conductors.
  • An inclined shape was given to the side surface of the copper circuit and the copper plate.
  • a protruding portion of the bonding layer is provided so that the bonding layer protrudes from the side surface of the copper plate.
  • the ratio of the length to the thickness of the protruding portion of the joint layer was set within the range of 0.5 or more and 3.0 or less.
  • the surface roughness Ra of the copper circuit surface after etching was 1 ⁇ m or less.
  • the process of etching the titanium nitride layer ⁇ the process of rust prevention treatment was performed in this order.
  • the cleaning step after each step was performed under the conditions shown in Table 2.
  • the amount of water discharged from the nozzle was set within the range of 1.5 L / min or more and 6 L / min or less.
  • the cleaning process was performed while transporting the ceramic copper circuit board.
  • the amount of water landing on the ceramic copper circuit board per nozzle was set to the amount of water shown in Table 2.
  • the cleaning step of immersing the bonded body in the water cleaning tank is described as "immersion”.
  • alkaline cleaning it was described as "alkaline”.
  • the drying process is as follows.
  • a drying step by air blow was performed after the drying step by an air knife.
  • the temperature of the air knife and air blow was room temperature (near 25 ° C). Regarding other conditions in the drying step, the humidity was about 50% and the wind speed was about 20 to 60 m / s.
  • Comparative Example 2 washing was performed under the same conditions as in Comparative Example 1, and then natural drying was performed. For the example in which the rust preventive treatment was not performed, "-(hyphen)" was described in the column of cleaning after the rust preventive treatment step. Further, in Comparative Example 2, the time required for drying was longer than that in Comparative Example 1. In this way, it is considered that the oxidation proceeded because it took a long time to dry.
  • the amount of nitrogen and the amount of oxygen on the surface of the copper member in the ceramic copper circuit board were measured.
  • XPS analysis was used to measure the amount of nitrogen and oxygen.
  • An SSI X probe was used as the XPS analyzer.
  • the amounts of nitrogen, oxygen, copper and carbon were analyzed. The amount of each component was calculated with the sum of nitrogen, oxygen, copper, and carbon as 100 at%.
  • the measurement results of the amount of nitrogen and the amount of oxygen are shown in Table 3.
  • the amounts of chlorine ions, ammonium ions, sulfate ions, and fluorine ions present on the surface of the ceramic copper circuit board were measured. Ion chromatographic analysis was used to measure the amounts of chlorine ion, ammonium ion, sulfate ion, and fluorine ion. As an ion chromatograph analyzer, DX500 manufactured by Nippon Dionex Co., Ltd. was used. For ion extraction, put two samples and 40 ml of ultrapure water in a washed fluororesin container ( ⁇ 100 mm), close the lid of the fluororesin container, and hold it in a constant temperature bath at 80 ° C. for 18 hours to ionize.
  • Thermo SCIENTIFIC's Dionex Cation-II Standard (product number: 046070) was used as a calibration curve standard sample diluted 100-fold.
  • IonPac CS 12A was used as a separation column
  • IonPac CG 12A was used as a guard column.
  • eluent 20 ml of methanesulphonic acid was used.
  • the ion chromatograph analysis measurements were made using two ceramic copper circuit boards. Therefore, the obtained amount of ions was divided by 2 to obtain the amount of ion impurities per ceramic copper circuit board. At this time, what was described as 0 was below the detection limit.
  • the surface area per ceramic copper circuit board was 40 cm 2 . Table 4 shows the measurement results of each ion amount in Examples and Comparative Examples.
  • the amount of nitrogen and the amount of oxygen on the surface of the copper circuit of the ceramic copper circuit board were within the desirable ranges.
  • the amount of nitrogen and the amount of oxygen on the surface of the back copper plate were also the same values.
  • the amount of nitrogen was as high as 62 at% only in the washing step of immersing in a water washing tank.
  • a solder layer which is an example of a bonding layer, was formed on the ceramic copper circuit board according to the examples and comparative examples, and a semiconductor element was mounted on the solder layer. As a result, a semiconductor device was manufactured.
  • the solder layer was lead-free solder.
  • the reliability of bonding of semiconductor elements was evaluated for semiconductor devices. TCT tests of semiconductor devices were performed to investigate the reliability of the junction. In the TCT test, 500 cycles were tested with ⁇ 40 ° C. ⁇ 30 minutes ⁇ normal temperature ⁇ 10 minutes ⁇ 170 ° C. ⁇ 30 minutes ⁇ normal temperature ⁇ 10 minutes as one cycle. The bonding strength of the semiconductor element before the test and the bonding strength of the semiconductor element after the test were measured.
  • the joint strength was measured by a peel test.
  • the best product ( ⁇ ) was defined as having a reduction rate of 10% or less in the joint strength after the test with respect to the joint strength before the test.
  • a semiconductor device having a reduction rate of more than 10% and 15% or less was designated as non-defective product 1 ( ⁇ ).
  • a semiconductor device having a reduction rate of more than 15% and 20% or less was designated as non-defective product 2 ( ⁇ ).
  • a semiconductor device having a reduction rate of more than 20% and 25% or less was designated as defective product 1 (x).
  • a semiconductor device having a reduction rate of more than 25% was designated as defective product 2 (XX).
  • two semiconductor elements were bonded on the copper plate via a solder layer. One was subjected to a peel test before the test, and the other was subjected to a peel test after the test. From these results, the rate of decrease was measured. The results are shown in Table 5.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

実施形態は、接合層との接合の信頼性を改善したセラミックス銅回路基板を提供する。実施形態に係る絶縁性回路基板は、絶縁性基板と、前記絶縁性基板の少なくとも一方の面に接合された導体部と、を備え、前記導体部の表面の窒素量をXPS分析したとき、任意の3か所での前記窒素量の平均値が0at%以上50at%以下の範囲内であることを特徴とする。前記導体部表面の酸素量をXPS分析したとき、前記3か所での前記酸素量の平均値が3at%以上30at%以下の範囲内であることが好ましい。前記酸素量に対する前記窒素量の比は、0以上5以下であることが好ましい。

Description

絶縁性回路基板およびそれを用いた半導体装置
 後述する実施形態は、おおむね、絶縁性回路基板およびそれを用いた半導体装置に関する。
 絶縁性基板と導体部とを接合した絶縁性回路基板がある。絶縁性回路基板の一種であるセラミックス銅回路基板は、半導体素子などを実装する回路基板に用いられている。国際公開第2017/056360号公報(特許文献1)には、セラミックス基板および銅板を接合層を介して接合した接合体と、その接合体が改良されたセラミックス銅回路基板と、が記載されている。特許文献1では、銅板端部から接合層をはみ出させたはみ出し部が設けられている。このような、接合層のはみ出し部のサイズを制御することにより、温度サイクル試験(TCT)特性を向上させている。
 セラミックス銅回路基板に半導体素子を実装すると、半導体装置が得られる。半導体素子の実装には、半田層又は銀ペーストが用いられている。半田層又は銀ペーストがセラミックス銅回路基板と半導体素子の接合を強固にしている。特許文献1のセラミックス銅回路基板に半田層を介して半導体素子を実装したとき、半田層の接合の信頼性が不足する現象がおきていた。この原因を追究したところ、銅板表面の窒素量に原因があることが判明した。
国際公開第2017/056360号公報 国際公開第2019/054294号公報 特開2007-81217号公報 国際公開第2019/054291号公報 特開2020-59228号公報
 接合体に回路形状を付与することで、絶縁性回路基板(例えばセラミックス回路基板)が得られる。接合体に回路形状を付与するための工程として、エッチング工程または化学研磨工程が用いられている。例えば、国際公開第2019/054294号公報(特許文献2)には、化学研磨工程とエッチング工程を組み合わせた方法が開示されている。特許文献2の化学研磨工程では、過酸化水素水、塩酸、硫酸などの薬液が使われている。また、特開2007-81217号公報(特許文献3)では、銅板表面を化学研磨した後、防錆処理を行っている。特許文献3では、銅板の防錆処理にベンゾトリアゾールなどの薬液が用いられている。国際公開第2019/054291号公報(特許文献4)には、銀、銅、およびチタンを含む活性金属ろう材のエッチングに用いる薬液として、ペルオキソ二硫酸アンモニウムなどが示されている。特開2020-59228号公報(特許文献5)において、アルミニウムの防錆処理にベンゾトリアゾールなどの薬液が用いられている。化学研磨、エッチング工程、防錆処理工程などでは様々な薬液が使われている。薬液を用いた工程を行ったときに、導体部である銅板表面に、窒素の残渣が発生する。この窒素が半田層の接合信頼性を低下する原因となることが判明した。
 本発明は、このような問題に対処するためのものであり、導体部表面の窒素量を低減した絶縁性回路基板を提供することを目的とする。
 実施形態に係る絶縁性回路基板は、絶縁性基板と、前記絶縁性基板の少なくとも一方の面に接合された導体部と、を備え、前記導体部の表面の窒素量をXPS分析したとき、任意の3か所での前記窒素量の平均値が0at%以上50at%以下の範囲内であることを特徴とする。
実施形態に係る絶縁性回路基板の一例を示す模式図。 実施形態に係る半導体装置の一例を示す模式図。
 実施形態に係る絶縁性回路基板は、絶縁性基板と、前記絶縁性基板の少なくとも一方の面に接合された導体部と、を備え、導体部の表面の窒素量をXPS分析したとき、任意の3か所での前記窒素量の平均値が0at%以上50at%以下の範囲内であることを特徴とする。導体部は、例えば、銅又は銅合金からなる銅部材である。
 図1は、実施形態に係る絶縁性回路基板の一例を示す模式図である。図1において、1は絶縁性回路基板、2は絶縁性基板、3は導体部(表導体部)、4は導体部(裏導体部)、5は接合層である。図1に例示する絶縁性回路基板1では、絶縁性基板2の両面に接合層5を介して導体部3と導体部4が配置されている。図1に示す構造では、導体部3に回路形状が付与され、導体部4が放熱板として用いられる。便宜上、導体部3を表導体部、導体部4を裏導体部と呼ぶ。また、2つの表導体部3が配置されている。実施形態に係る絶縁性回路基板は、このような形態に限定されず、1つまたは3つ以上の表導体部が設けられても良い。裏導体部4に、回路形状が付与されてもよい。絶縁性回路基板は、裏導体部4を備えず、表導体部3のみを備えてもよい。実施形態に係る絶縁性回路基板は、セラミックス銅回路基板であることが好ましい。
 絶縁性基板は、樹脂基板またはセラミックス基板であることが好ましい。樹脂基板は、セラミックス基板に比べると低コストであり、コストが考慮される際に好ましい。樹脂基板として、例えば、紙フェノール基板、紙エポキシ基板、ガラスエポキシ基板、複合基材エポキシ基板、ガラスコンポジット基板、ガラスポリイミド基板、ビスマレイミド-トリアジン(BT)基板、フッ素樹脂基板、ポリフェニレンオキシド(PPO)基板などがある。
 セラミックス基板は、樹脂基板に比べると、優れた放熱性および3点曲げ強度を有する。セラミックス基板は、窒化珪素、窒化アルミニウム、サイアロン、アルミナ、およびジルコニアから選択される1種または2種を主成分として含むことが好ましい。主成分とは、50質量%以上含有される成分を指す。さらに、セラミックス基板は、窒化珪素基板、窒化アルミニウム基板、アルジル基板のいずれかであることがより好ましい。アルジルは、アルミナとジルコニアの2種を合計で50質量%以上含む材料である。
 絶縁性基板の厚さは、0.1mm以上1mm以下が好ましい。基板厚さが0.1mm未満では、強度の低下を招く可能性がある。基板厚さが1mmより厚いと、絶縁性基板自体が熱抵抗体となり、絶縁性回路基板の放熱性を低下させる可能性がある。
 窒化珪素基板の3点曲げ強度は、600MPa以上であることが好ましい。窒化珪素基板の熱伝導率は、80W/m・K以上であることが好ましい。窒化珪素基板の強度を上げることにより、基板厚さを薄くできる。このため、窒化珪素基板の3点曲げ強度は、600MPa以上、さらには700MPa以上が好ましい。窒化珪素基板の厚さを、0.40mm以下、さらには0.30mm以下と薄くできる。また、窒化アルミニウム基板の3点曲げ強度は、300~450MPa程度である。その一方、窒化アルミニウム基板の熱伝導率は、160W/m・K以上である。窒化アルミニウム基板の強度は低いため、基板厚さは0.60mm以上が好ましい。
 酸化アルミニウム基板の3点曲げ強度は300~450MPa程度であるが、酸化アルミニウム基板はセラミックス基板の中では安価である。アルジル基板の3点曲げ強度は550MPa程度と高いが、その熱伝導率は30~50W/m・K程度である。アルジル基板とは、酸化アルミニウムと酸化ジルコニウムを混合した焼結体からなる基板である。
 絶縁性基板2としては、セラミックス基板が好ましい。セラミックス基板の中では、窒化珪素基板、窒化アルミニウム基板のいずれか一方がさらに好ましい。窒化珪素基板と窒化アルミニウム基板は、窒化物系セラミックス基板である。窒化物系セラミックスは、Tiを含有する活性金属ろう材と反応して窒化チタンを形成する。また、酸化物系セラミックスはTiを含有する活性金属ろう材と反応して酸化チタンを形成する。アルミナ基板、ジルコニア基板、アルジル基板は、酸化物系セラミックス基板である。
 窒化物系セラミックスおよび酸化物系セラミックスは、活性金属接合法を用いることにより、導体部との接合強度を向上させることができる。これらの窒化チタン又は酸化チタンを形成する反応層を、チタン反応層と呼ぶ。
 導体部は、銅部材又はアルミニウム部材であることが好ましい。銅部材は、銅板、銅合金板、銅板に回路形状が付与されて作製された部材、又は銅合金板に回路形状が付与されて作製された部材であり、銅又は銅合金からなる。アルミニウム部材は、アルミニウム板、アルミニウム合金板、アルミニウム板に回路形状が付与されて作製された部材、又はアルミニウム合金板に回路形状が付与されて作製された部材であり、アルミニウム又はアルミニウム合金からなる。以降では、銅板に回路形状が付与されて作製された部材を、銅回路と呼ぶ。アルミニウム板に回路形状が付与されて作製された部材を、アルミニウム回路と呼ぶ。導体部は、銅部材又はアルミニウム部材以外の、メタライズ層又は導電性薄膜であっても良い。メタライズ層は、金属ペーストの焼成により形成される。アルミニウム部材は、銅部材と比較すると安価である。一方、銅部材は、アルミニウム部材と比較すると、優れた熱伝導性を有するため好ましい。
 銅板または銅回路として、無酸素銅からなる銅板または銅回路が挙げられる。一般的に、銅の熱伝導率は、約400W/m・Kと高い。放熱性の向上のために、銅部材は、無酸素銅からなる銅板又は銅回路であることがより好ましい。
 導体部3および導体部4の厚さは、0.3mm以上、さらには0.6mm以上であってもよい。導体部を厚くすることにより、接合体の放熱性を向上させることができる。表導体部3の厚さは、裏導体部4の厚さと同じでも良いし、裏導体部4の厚さとは異なっていてもよい。導体部としては、銅板又は銅回路が特に好ましい。銅板又は銅回路には、無酸素銅が用いられることが好ましい。無酸素銅は、JIS-H-3100に示されたように、99.96質量%以上の銅純度を有する。
 実施形態に係る絶縁性回路基板は、導体部の表面の窒素量をXPS分析したとき、任意の3か所の平均値が0at%以上50at%以下の範囲内であることを特徴とする。実施形態に係る絶縁性回路基板は、1つのみの導体部を備えてもよいし、複数の導体部を備えてもよい。つまり、設けられる導体部の数は特に限定されない。絶縁性回路基板が複数の導体部を備える場合、いずれかの導体部の表面において、任意の3か所の窒素量の平均値が0at%以上50at%以下の範囲内であればよい。より好ましくは、いずれの導体部の表面においても、任意の3か所の窒素量の平均値が0at%以上50at%以下の範囲内である。
 導体部の表面とは、表導体部3または裏導体部4の少なくともいずれかの導体部の表面を指す。導体部の表面の窒素量を、XPS分析する。XPS分析は、X線光電子分光法(X-ray Photoelectron Spectroscopy:XPS)を用いた分析を指す。XPS分析は、試料表面にX線を照射し、試料表面から放出される光電子の運動エネルギーを測定する方法である。XPS分析は、X線の侵入深さが数μmであるため、試料表面の定性分析および定量分析に用いられる。
 XPS分析装置として、SSI社Xプローブまたはそれと同等以上の装置を用いる。分析では、AlKα線(hν=1486.6eV)を用い、X線のスポット径は直径1mmに設定する。XPS分析では、窒素、酸素以外に、導体部に用いた各金属元素の量、炭素の量も併せて測定する。
 導体部として銅部材が用いられる場合は、測定された成分から、窒素、酸素、銅、及び炭素を抽出する。これらの合計を100at%として、窒素量を測定する。銅部材が銅合金を含有する場合、測定された成分から、窒素、酸素、銅、その他の合金の金属、及び炭素を抽出し、これらの合計を100at%とする。
 導体部としてアルミニウム部材が用いられる場合は、測定された成分から、窒素、酸素、アルミニウム、及び炭素を抽出する。これらの合計を100at%として、窒素量を測定する。アルミニウム部材がアルミニウム合金を含有する場合、測定された成分から、窒素、酸素、アルミニウム、その他の合金の金属、及び炭素を抽出し、これらの合計を100at%とする。
 以下に示す実施形態では、導体部に銅部材を用い、絶縁性基板にセラミックス基板を用いた例を説明する。以下の説明は、導体部に銅部材以外の部材が用いられる場合にも援用される。導体部としてアルミニウム部材が用いられる場合、以下の説明において、「銅部材」は「アルミニウム部材」に適宜置き換え可能である。同様に、絶縁性基板にセラミックス基板以外の樹脂基板が用いられる場合、以下の説明において、「セラミックス基板」は樹脂基板に適宜置き換え可能である。
 実施形態では、XPS分析によって、銅部材の表面の窒素量を測定する。窒素量として、表面の任意の3か所の平均値が用いられる。分析される「表面」は、銅部材の側面を含まない。任意の3か所とは、一つの銅部材の表面から選択される3か所である。測定時には、スポット径の最遠部同士が互いに500μm以上離れた3か所が選択される。測定箇所同士は、重複しないことが好ましい。また、測定箇所は、半導体素子が搭載される箇所であることが好ましい。銅部材表面の窒素量が、0at%以上50at%以下の範囲内であることにより、銅部材表面と接合層との濡れ性を改善できる。接合層として、半田層又は銀を主成分とする層(Agナノ粒子層)が用いられる。半田層は、例えば、JIS-Z-3282に定められた鉛フリー半田である。JIS-Z-3282は、「ISO DIS 9453 2005」に対応している。鉛フリー半田には、主にSn(錫)を含む合金が使われている。CuとSnは、互いに反応し易い成分である。これにより、銅部材と半導体素子との接合を強固にすることができる。それに対し、窒素は、SnとCuの反応を阻害する成分である。このため、導体部である銅部材の表面において、窒素量は0at%以上50at%以下であることが重要である。特に、導体部表面のどこを測定したとしても、窒素量が0at%以上50at%以下の範囲内であることがさらに好ましい。前述のように、任意の3か所の平均値を計算した場合、表面の一部に窒素量が50at%を超える個所が存在することもある。導体部表面のどこを測定したとしても、窒素量が0at%以上50at%以下の範囲内とすることにより、さらに特性を向上させることができる。
 窒素量が0at%(原子%)とは、XPS分析による検出限界以下であることを示す。また、窒素量が50at%を超えると、銅部材表面と接合層との濡れ性が低下する。従来の絶縁性回路基板、特にセラミックス銅回路基板では、接合層を介して半導体素子と接合される箇所における導体部の表面において、窒素量が60at%以上となる個所があった。任意の3箇所の窒素量の平均値を50at%以下とすることにより、導体部と接合層との濡れ性を改善できる。
 このため、銅部材表面の窒素量は、0at%以上50at%以下である。防錆剤を用いない場合には、窒素量は0at%以上30at%以下であることが好ましい。
 防錆剤を用いた場合には、銅部材表面の窒素量は10at%以上50at%以下であってもよい。防錆剤を用いた場合のより好ましい窒素量の範囲は、10at%以上30at%以下である。
 後述する洗浄工程を用いることで窒素量を制御可能である。このため、防錆処理の有無に応じて、窒素量を制御することが好ましい。
 銅部材表面の窒素量は、少ないほど好ましい。一方、後述するように、銅部材表面の酸素量を制御することにより、窒素量は10at%以上であっても不具合が発生する可能性を低減できる。
 銅部材表面の酸素量をXPS分析したとき、3か所の平均値が3at%以上50at%以下の範囲内であることが好ましい。XPS分析の方法は、窒素量の分析方法と同じである。酸素量を測定するときの3か所は、窒素量を測定するときの3か所と同じである。つまり、一回のXPS分析で、窒素量と酸素量の両方を測定する。言い換えると、同じ測定エリアに存在する窒素と酸素の量を同時に測定する。
 銅部材表面に窒素が付着していると、銅部材と接合層との接合が阻害される。そのため、窒素量が少ないことが好ましい。一方、銅部材表面に酸素が存在する場合には、銅部材表面に窒素を付着させ難くできる。銅部材表面に存在する酸素が窒素の付着を抑制することにより、窒素が銅部材と接合層の接合を阻害することを抑制できる。そのため、銅部材表面に酸素が存在していることが好ましい。例えば、銅部材表面に対して化学研磨工程またはエッチング工程を行うと、銅部材の銅結晶粒子同士の粒界から、銅結晶粒子の一部が除去されていく。このため、銅部材の粒界部分に、微小な凹部が形成される。粒界部分の微小な凹部に、窒素が付着し易くなる。これは、窒素原子を含む薬液を用いることにより、銅部材表面の凹部に薬液の成分が残りやすくなり、銅部材表面に窒素が付着するためである。例えば、窒素原子を含む薬液とは、アミノ基を有する化合物などである。銅板表面に酸素があることにより、凹部に酸素が存在し、窒素の付着を抑制することができる。また、凹部に存在する窒素を酸素が被覆する効果もある。このため、酸素量は、前述の範囲内であることが好ましい。
 銅部材表面の酸素量が3at%以上であると、窒素による不具合を抑制できる。酸素量が3at%未満であると、酸素量不足となる。銅部材表面の酸素量が50at%を超えて多いと、酸素自体が銅部材と反応し、酸化銅が形成される。そのため、銅部材の熱伝導率が低下する可能性がある。よって、銅部材表面の酸素量は、3at%以上50at%以下の範囲内であることが好ましい。さらに、銅部材表面の酸素量が3at%以上30at%以下の範囲内であると、酸素自体が銅部材と接合層の接合を阻害しない。酸素量が30at%を超えて多いと、酸素自体が銅部材と接合層の接合を阻害する要因となる可能性がある。よって、銅部材表面の酸素量は、3at%以上30at%以下の範囲内であることがより好ましい。
 また、銅部材表面において、酸素量(AOX)に対する窒素量(A)の比(A/AOX)は、0以上5以下であることが好ましい。比の算出に用いられる窒素量および酸素量は、上述した3か所の平均値である。比(A/AOX)が0は、窒素量が0at%のときである。比(A/AOX)が5以下であるということは、窒素量が酸素量の5倍以下であることを示す。比(A/AOX)が5を超えて大きいと、窒素の影響を抑制する効果が不足する可能性がある。また、銅部材表面のどこを測定したとしても、比(A/AOX)は、0以上5以下であることが好ましい。
 防錆処理を行わなかった場合には、銅部材表面における比(A/AOX)が0以上4以下であることがより好ましい。一方、防錆処理を行った場合には、銅部材表面における比(A/AOX)が、0.5以上4以下であることがより好ましい。つまり、防錆処理によって銅部材表面の窒素量が0at%でなかったとき、比(A/AOX)は、0.5以上4以下が好ましい。防錆処理を行ったとき、銅部材表面の窒素量を0at%(検出限界以下)にするのは、製造工程の負荷が増える可能性がある。窒素が残存したとしても、影響を低減できるようにすることが有効である。
 また、絶縁性回路基板の表面に存在する塩素イオン量は、絶縁性回路基板の表面積40cmあたり、0μg以上15μg以下であることが好ましい。塩素イオン量は、絶縁性回路基板の表面積40cmあたり、0μg以上3μg以下であることがさらに好ましい。
 絶縁性回路基板の表面に存在する硫酸イオン(SO)量は、絶縁性回路基板の表面積40cmあたり、0μg以上5μg以下であることが好ましい。また、硫酸イオン(SO)量は、絶縁性回路基板の表面積40cmあたり、0μg以上0.5μg以下であることがさらに好ましい。
 絶縁性回路基板の表面に存在するフッ素イオンは、絶縁性回路基板の表面積40cmあたり0μg以上2μg以下であることが好ましい。また、フッ素イオンは、絶縁性回路基板の表面積40cmあたり、0μg以上1μg以下であることがさらに好ましい。
 絶縁性回路基板の表面に存在するアンモニウム(NH4)イオンは、絶縁性回路基板表面積40cmあたり0μg以上3μg以下であることが好ましい。また、アンモニウムイオンは、絶縁性回路基板の表面積40cmあたり、0μg以上1μg以下であることがさらに好ましい。
 上記複数のイオンは、絶縁性基板の表面よりも、金属の表面に付着しやすい傾向にある。上記複数のイオンは、絶縁性基板表面に存在していた場合、銅部材と半導体素子との接合時に揮発し、銅部材表面の汚染を誘発する可能性がある。銅部材表面が汚染されると、銅部材と半導体素子との接合不良を誘発する可能性がある。そのため、銅部材が接合されていない箇所も含む絶縁性回路基板の表面全体に存在する上記イオン量を制御することが好ましい。
 絶縁性回路基板1枚当たりの表面積の大きさが40cmより小さい場合には、複数枚の基板を用いてその絶縁性回路基板の表面積の合計値を40cm以上にすることが好ましい。表面積の合計値が40cm未満の場合、つまり絶縁性回路基板表面の面積が極端に小さい場合には、比例関係を用いて換算した際に、外れ値またはノイズの影響が過大になる可能性があるためである。ここで測定している表面積とは、側面の厚さ成分を含まない、平坦面の面積である。平坦面は、絶縁性回路基板を上から見たとき、絶縁性基板の導体部との接合面に略平行な面を指す。例えば、上から見たとき絶縁性基板端部からはみ出ないように導体部を設けた場合、絶縁性基板の表面(上面)及び裏面(下面)を平坦面とみなすことができる。絶縁性回路基板の表裏を表面積の計算対象とすることから、表面積=絶縁性基板の縦寸法×横寸法×2倍となる。また、上から見たとき絶縁性基板端部から導体部がはみ出ている場合は、はみ出た導体部の平坦面も表面積にカウントする。このように、表面積の計算には、絶縁性基板および導体部の厚さ成分は含めない。
 ここで、上方向とは、絶縁性基板の端部と端部の点を結んだ直線を考えたとき、この直線に対して垂直の方向で定義される。平坦面の面積とは、この上方向から見たときの面積と下方向から見た面積の和として定義される。したがって、上方向から見たときの面積を2倍した値が、絶縁性回路基板の表面積となる。
 また、絶縁性回路基板が少量しかなく、その絶縁性回路基板の表面積の合計値が40cmより小さい場合には、得られた不純物量をその表面積(cm)で割った後に40を掛けることで、表面積の大きさを換算してもよい。不純物とは、上述した、塩素イオン、硫酸イオン、フッ素イオン、アンモニウムイオンを指す。絶縁性回路基板1枚当たりの表面積が40cmでない場合には、絶縁性回路基板の表面積と不純物量に比例関係があるので、この関係を用いて以下の式で換算すれば良い。
 「銅部材の40cm当たりの不純物量」=「測定によって得られた不純物量」×40÷「絶縁性回路基板の表面積の合計値(cm)」
 塩素イオン、硫酸イオン、フッ素イオン、アンモニウムイオンの量はイオンクロマトグラフで測定する。
 塩素イオンは、塩化鉄または塩化銅などの薬液を用いて銅板のエッチング工程を行った際に付着し易い。また、洗浄の際に塩酸を用いた場合にも付着しやすい。
 硫酸イオンは、チオ硫酸ナトリウムまたは硫酸やペルオキソ二硫酸アンモニウムなどの薬液を用いて、AgまたはCuを主成分とする層へのエッチング工程または化学研磨工程を行った際に付着し易い。
 フッ素イオンは、フッ化アンモニウムなどの薬液を用いたTi反応層のエッチング工程を行った際に付着し易い。
 アンモニウムイオンは、フッ化アンモニウムまたはペルオキソ二硫酸アンモニウムなどの薬液を用いて、Ti反応層のエッチング工程、AgまたはCuを主成分とする層へのエッチング工程または化学研磨工程などを行った際に付着し易い。
 塩素イオン、硫酸イオン、フッ素イオン、アンモニウムイオンといったイオンが絶縁性回路基板の表面(特に銅部材表面)に残存すると、銅部材と半導体素子の接合の信頼性が低下する。また、硫酸イオンは2価の陰イオンであり、塩素イオンとフッ素イオンは1価の陰イオンである。アンモニウムイオンは1価の陽イオンである。
 ここでイオンと記載した成分は、測定時にイオンとして検出されていればよく、絶縁性回路基板の表面で化合物として存在していてもよい。
 セラミックス基板、樹脂基板などの絶縁性基板の両面に銅部材が接合されており、両面の銅部材表面の窒素量が0at%以上50at%以下の範囲内であることが好ましい。前述のように、窒素量の制御は、接合層との接合性を改善させる。そのため、接合層が設けられる銅部材表面の窒素量を制御することが重要である。接合層は、半田層または銀を主成分とする層などである。セラミックス基板の両面に銅部材を設ける場合、表側に銅板又は銅回路を設け、裏側に放熱板として銅板を設けることがある。表側の銅板又は銅回路には、半導体素子が実装される。接合層は、半導体素子を実装する際に用いられる。放熱板は、ヒートシンク等に実装される面として用いられる。ヒートシンクへの実装には、グリースなどが用いられるため、接合層が使用されない場合もある。しかし、両面の銅部材表面の窒素量を制御することにより、表側と裏側のどちらの銅部材も、半導体素子の実装面として用いることができる。言い換えると、使い勝手のよい絶縁性回路基板を提供することができる。
 セラミックス基板と銅部材は、Ag、Cu、Tiから選ばれる1種以上を含んだ接合層を介して接合されていることが好ましい。Tiを含有した接合ろう材を用いた接合方法は、活性金属接合法と呼ばれている。活性金属接合法は、セラミックス基板と銅部材を強固に接合できる。活性金属接合法に用いられるろう材は、活性金属ろう材と呼ばれている。活性金属ろう材は、Ag(銀)を0質量%以上70質量%以下、Cu(銅)を15質量%以上85質量%以下、Ti(チタン)またはTiH(水素化チタン)を1質量%以上15質量%以下、含有することが好ましい。また、活性金属ろう材には、Tiの代わりに、NbまたはZrを用いたり、TiにNb、Zrを添加してもよい。しかし、活性金属ろう材は、Ti(チタン)またはTiH(水素化チタン)を、1質量%以上15質量%以下含有することが好ましい。
 TiとTiHの両方を用いる場合は、それらの合計が1質量%以上15質量%以下の範囲内とする。AgとCuを両方用いる場合、Agの含有量は20質量%以上70質量%以下、Cuの含有量は15質量%以上65質量%以下であることが好ましい。
 ろう材には、必要に応じ、Sn(錫)またはIn(インジウム)の1種または2種を1質量%以上50質量%以下、含有させてもよい。TiまたはTiHの含有量は、1質量%以上15質量%以下であることが好ましい。また、ろう材には、必要に応じ、C(炭素)を0.1質量%以上2質量%以下、含有させても良い。
 活性金属ろう材組成の比率は、混合する固体原料の合計を100質量%で計算する。この固体原料は、粉末状であることが好ましい。例えば、Ag、Cu、Tiの3種で活性金属ろう材を構成する場合、Ag+Cu+Ti=100質量%とする。Ag、Cu、TiH、Inの4種で活性金属ろう材を構成する場合、Ag+Cu+TiH+In=100質量%とする。Ag、Cu、Ti、Sn、Cの5種で活性金属ろう材を構成する場合は、Ag+Cu+Ti+Sn+C=100質量%とする。
 上記の組成の粉末原料に対し、組成に応じた溶媒を混合することが好ましい。溶媒を混合することで、ろう材をペースト状にすることができる。
 AgまたはCuは、ろう材の母材となる成分である。SnまたはInは、ろう材の融点を下げる効果を有する。C(炭素)は、ろう材の流動性を制御したり、他の成分と反応して接合層の組織を制御する効果を有する。このため、ろう材の成分としては、Ag-Cu-Ti、Ag-Cu-Sn-Ti、Ag-Cu-Ti-C、Ag-Cu-Sn-Ti-C、Ag-Ti、Cu-Ti、Ag-Sn-Ti、Cu-Sn-Ti、Ag-Ti-C、Cu-Ti-C、Ag-Sn-Ti-C、Cu-Sn-Ti-C、が挙げられる。また、Snの代わりにInを用いてもよい。SnとInを両方用いてもよい。
 上述した銅部材の側面は、傾斜形状を具備していることが好ましい。すなわち、銅部材の側面は、面内方向及び厚み方向に対して、傾斜していることが好ましい。面内方向は、セラミックス基板の銅部材との接合面に平行な方向である。厚み方向は、セラミックス基板と銅部材とを結ぶ方向であり、面内方向に対して垂直である。
 接合層5の厚さは、10μm以上60μm以下の範囲内であることが好ましい。また、絶縁性回路基板は、銅部材の側面から接合層がはみ出した形状を有することが好ましい。はみ出した接合層の一部を、接合層はみだし部と呼ぶ。接合層はみだし部は、厚さTに対する長さLの比(L/T)が、0.5以上3.0以下の範囲内であることが好ましい。接合層はみだし部の厚さは、接合層はみだし部の中で最も厚い箇所の厚さである。接合層はみだし部の長さは、銅部材側面からはみ出た最も長い箇所の長さである。接合層はみだし部の厚さと長さは、セラミックス銅回路基板の任意の断面から測定する。銅部材に傾斜形状を設け、接合層はみだし部を設けることにより、セラミックス銅回路基板のTCT特性を向上させることができる。
 銅部材表面の最大高さRzは、20μm以下であることが好ましい。また、銅部材表面の算術平均粗さRaは、5μm以下であることが好ましい。算術平均粗さRaは、2μm以下であることがより好ましい。算術平均粗さRaは、1μm以下であることがさらに好ましい。銅部材表面をより平坦にすることによって、半田層や銀を主成分とする層との接合を強固にすることができる。RaおよびRzは、JIS B 0601:2013に記載されている。JIS B 0601:2013は、ISO 4287:1997/AMENDMENT 1:2009(IDT)に対応している。
 セラミックス基板は、厚さ0.4mm以下の窒化珪素基板であり、銅部材の厚さは、0.6mm以上であることが好ましい。厚さ0.4mm以下の薄い窒化珪素基板であると、セラミックス基板の熱抵抗を下げる効果がある。また、厚さ0.6mm以上の厚い銅部材であると、放熱性が向上する。さらに、3点曲げ強度600MPa以上の窒化珪素基板であれば、効果を得やすくなる。
 以上のようなセラミックス銅回路基板は、接合層を介して半導体素子を実装した半導体装置に好適である。図2は、実施形態に係る半導体装置の一例を示す模式図である。図2において、1は絶縁性回路基板、6は半導体素子、7は半田層、10は半導体装置である。図2では、1個の半導体素子6が実装された例を示した。2個の半導体素子6が実装されても良い。リードフレームやワイヤ・ボンディングなどを設けてもよい。半田層7の代わりに、銀を主成分とする層(Agナノ粒子層)が用いられてもよい。
 実施形態に係る半導体装置10では、導体部3表面の窒素量を制御しているため、導体部3と半田層7と半導体素子6の接合を強固にできる。近年、半導体素子の高性能化が進んでいる。これに伴い、半導体素子のジャンクション温度は150℃以上、さらには170℃以上になっている。実施形態に係る半導体装置10によれば、ジャンクション温度の高い半導体素子が実装された場合でも、半田層7の剥離またはクラックの発生などを抑制でき、接合信頼性を高めることができる。
 実施形態に係るセラミックス銅回路基板の製造方法について説明する。実施形態に係るセラミックス銅回路基板は、上記構成を有していれば、その製造方法は特に限定されない。ここでは、歩留まり良くセラミックス銅回路基板を得るための方法を例示する。
 まず、セラミックス基板と銅板の接合体を作製する。セラミックス基板、銅板の具体的な構成は、前述の通りである。
 接合体は、活性金属接合法を用いて接合される。活性金属接合法は、Tiなどの活性金属を含む活性金属ろう材を用いた接合方法である。活性金属ろう材の成分は、前述の通りである。活性金属ろう材ペーストを調製し、セラミックス基板の表面に塗布する。活性金属ろう材ペーストの塗布厚さは、10μm以上60μm以下の範囲内であることが好ましい。活性金属ろう材ペースト層の上に銅板を配置する。活性金属ろう材ペーストが銅板上に塗布され、セラミックス基板が銅板の上に配置されてもよい。
 セラミックス基板の縦横サイズは、銅板の縦横サイズと同じであってもよいし、銅板の縦横サイズとは異なってもよい。銅板の厚さが0.6mm以上の場合は、セラミックス基板の縦横サイズと銅板の縦横サイズは同じであることが好ましい。また、セラミックス基板の両面に銅板を配置することが好ましい。このような配置にすると、接合体の反りを低減し易くなる。銅板には、後述するエッチング工程で、任意の回路形状を形成することができる。予め回路形状に加工した銅部材をセラミックス基板に接合することもできる。しかしながら、予め回路形状に加工した銅部材を用意するには、専用の金型が必要である。回路形状に応じた金型を用意するのはコストアップを招く可能性がある。
 次に、加熱接合工程を行う。加熱温度は、600℃以上930℃以下が好ましい。加熱雰囲気として、真空中、不活性雰囲気中などが挙げられる。真空とは、圧力が10-3Pa以下の状態を指す。不活性雰囲気とは、窒素雰囲気、アルゴン雰囲気、ヘリウム雰囲気、ネオン雰囲気、キセノン雰囲気などである。特に、コストを考慮すると窒素雰囲気、アルゴン雰囲気がより好ましい。より好ましくは、窒素雰囲気である。加熱接合工程を行うことにより、セラミックス基板と銅板の接合体を製造することができる。必要に応じ、接合体に対して反り直し工程を行ってもよい。
 次に、接合体に対し、化学研磨工程およびエッチング工程を行う。これらの工程は、銅板に回路形状を付与する工程である。これらの工程において、銅板側面に傾斜形状を付与したり、銅板側面から接合層をはみ出させた接合層はみだし部を形成してもよい。
 活性金属接合法では、AgまたはCuを主成分とし、Tiを含有した活性金属ろう材が用いられる。活性金属接合法を用いた接合体は、接合層中にTi反応層が形成される。窒化物系セラミックス基板を用いた場合、Ti反応層は窒化チタン(TiN)層となる。酸化物系セラミックス基板を用いた場合、Ti反応層は酸化チタン(TiO)層となる。活性金属接合法で製造された接合体の接合層には、AgまたはCuを主成分とする層とTi反応層が形成されている。
 窒化物系セラミックス基板は、サイアロン、窒化ケイ素、または窒化アルミニウムなどからなる基板である。
 酸化物系セラミックス基板は、アルミナ、ジルコニア、またはアルジル(アルミナとジルコニアからなるセラミックス)などからなる基板である。
 エッチング工程で回路形状を付与するには、銅板のエッチング工程、AgまたはCuを主成分とする層のエッチング工程、およびTi反応層のエッチング工程が必要になる。エッチング効率を考慮すると、3種のエッチング工程においてそれぞれ異なる薬液が必要である。また、エッチングしたくない箇所には、レジストを塗布する必要がある。エッチングしたい個所が変わると、その都度、レジスト除去工程とレジスト塗布工程が必要になる。薬液の異なるエッチング工程を複数回行うことが必要である。例えば、銅板のエッチング工程では、塩化鉄または塩化銅を含む薬液が用いられている。AgまたはCuを主成分とする層のエッチング工程では、過酸化水素水またはベルオキソ二硫化アンモニウムを含む薬液が用いられている。Ti反応層のエッチング工程は、過酸化水素水またはフッ化アンモニウムを含む薬液が用いられている。これら以外にも、様々な薬液が用いられている。
 エッチング工程の効率を上げるために、化学研磨工程を用いることが有効である。エッチング工程の薬液により、AgまたはCuを主成分とする層が酸化されることがある。酸化物層を除去するために、化学研磨工程が有効である。化学研磨工程では、硫酸、塩酸、およびチオ硫酸ナトリウムから選ばれる1種または2種以上を含んだ薬液が使われている。また、エッチング工程でも、様々な薬液が用いられている。
 必要に応じ、銅板に防錆処理を施す。防錆処理は、ろう材エッチングの後に実施される。防錆処理は、銅板での錆の発生(つまりは酸化)を防ぐための処理である。一般的に、酸化防止のために、メッキ処理が施されている。一方でメッキ処理を必要としない場合には、防錆処理を施すこともある。防錆処理は、ベンゾトリアゾールを含むベンゾトリアゾール系化合物などの薬液が用いられている。ベンゾトリアゾール系化合物とは例えば、カルボキシベンゾトリアゾールなどがある。
 これらのベンゾトリアゾール系化合物は、1分子当たり3~8原子程度の窒素原子を含む。このベンゾトリアゾール系化合物が銅部材表面に残っていた場合、XPS分析において窒素原子として検出される。
 上述した化学研磨工程、エッチング工程などにより、表側の銅板が加工される。例えば、銅板に回路形状が付与され、銅回路が形成される。又は、1つの銅板が分割され、複数の銅板が形成される。これにより、銅部材(銅回路又は銅板)が接合されたセラミックス銅回路基板が得られる。また、上述したように、化学研磨工程、エッチング工程、防錆処理工程などでは、様々な薬液が用いられている。薬液を用いた工程を行うと、銅部材表面に窒素が付着する。銅部材表面の窒素量を制御するには、洗浄工程を行うことが有効である。洗浄工程では、水洗浄、アルカリ洗浄、およびアルコール洗浄から選択される1種または2種が実施される。また、水洗浄のみを行う場合は、浸漬ではない工程である下記の水洗浄工程が少なくとも一回以上実施されることが好ましい。より好ましくは、水洗浄のみを用いる場合の洗浄工程が下記に記載の洗浄工程である回数が多いほど好ましい。また、一回の洗浄工程において複数の洗浄方法を組み合わせても良い。これらの洗浄は、導体部のみではなく、セラミックス銅回路基板全体が洗浄されることが好ましい。
 水洗浄では、流量が1.3L(リットル)/分以上であることが好ましい。流量が1.3L/分以上であれば、銅部材表面に付着した窒素を洗い流す効果が十分に得られる。流量が1.3L/分未満では洗い流す効果が不足する可能性がある。例えば、水の溜まった洗浄槽に接合体を浸漬して放置する方法では、流量が不足するため、窒素量を低減する効果が十分得られない。なお、流量の上限は特に限定されないが、10L/分以下であることが好ましい。流量が10L/分を超えて大きいと、水圧が高すぎて銅部材表面が変形する可能性がある。このため、水洗浄の流量は1.3L/分以上10L/分以下が好ましい。より好ましくは、水洗浄の流量は、1.5L/分以上6L/分以下である。
 流量の調整方法として、洗浄槽に溜めた水を循環させる制御やノズルを使って制御する方法などが挙げられる。流量の調整はノズルを使って制御する方法が好ましい。ノズルを使った方が流量を制御し易い。洗浄槽に溜めた水を循環させる方法では、水の量が多くなると、流量の制御が困難となる可能性がある。ノズルを使った場合、ノズルから噴射される水の流量が1.3L/分以上となるように設定する。また、この水には、超音波を印加してもよく、炭酸や酸素を溶かしてもよい。
 ノズルとセラミックス銅回路基板の距離は、5cm以上40cm以下の範囲内であることが好ましい。5cm以上20cm以下の範囲内であることがさらに好ましい。この範囲内であると、セラミックス銅回路基板に当たる水の量を調整し易くなる。ノズルから噴射された水の着弾形状は、点型、円型、楕円型形、扁平型、四角形型など様々な形状がある。ノズルの型には、コーン型や扇型など様々な形態を適用可能である。ノズルを利用する際は、セラミックス銅回路基板1枚当たり複数のノズルを用いてもよく、表導体部と裏導体部を同時に洗浄してもよい。
 セラミックス銅回路基板に着弾する水量は、ノズル1個あたり0.01L/分/cm以上0.1L/分/cm以下の範囲内であることが好ましい。セラミックス銅回路基板に着弾する水量のことを着弾水量と呼ぶ。着弾水量は、セラミックス銅回路基板を上から見たとき、1cmあたりに着弾する水量を示している。セラミックス銅回路基板への着弾水量の調整は、前述のノズルからの水量、ノズル型、ノズルとの距離、などで調整できる。また、ノズルから水を噴射する際に、空気噴射を合わせて行うこともできる。また、洗浄工程では、超音波が付与されてもよい。セラミックス銅回路基板を搬送しながら洗浄工程を行うことも有効である。この際に、洗浄効率(液体の回収効率)や、設置面積効率を上げるために、基板を斜めにしてもよい。斜めとは、基板の少なくとも1つの辺の向きが、重力方向に対して垂直な水平面と平行でないことである。水平面と前記少なくとも1つの辺との間の角度は、10度以上90度未満であることがさらに好ましい。ノズルからの流量を1.3L/分以上とし、セラミックス銅回路基板を搬送しながら、セラミックス銅回路基板への着弾水量をノズル1個あたり0.01L/分/cm以上0.1L/分/cm以下の範囲内にする方法が効率的である。
 水は、JIS-K-0557(1998)の品質を満たすことが好ましい。JIS-K-0557では、A1~A4の品質が示されている。JIS-K-0557については、ISO3696が参照される。
 アルカリ洗浄は、pH10以上のアルカリ性水溶液で洗浄する工程を指す。pH10以上のアルカリ性水溶液としては、有機アルカリ、金属水酸化物、金属水酸化物と弱酸の塩などの水溶液があげられる。特に金属水酸化物およびその塩を用いる場合には、その金属の種類としてリチウム、カリウム、ナトリウム、バリウム、カルシウムなどがあげられる。K(塩基解離定数)が小さすぎると、必要な溶質量が増加するため、用いる金属水酸化物およびその塩の金属の種類としては、カリウム、ナトリウム、リチウムから選ばれるものが好ましい。特に、コストを考慮すると、水酸化ナトリウム、メタケイ酸ナトリウム、炭酸ナトリウム、リン酸ナトリウム、ピロリン酸ナトリウムが好ましく、前記ナトリウム化合物から選ばれる1種または2種以上を含む水溶液が好ましい。これら成分を0.5質量%以上5質量%以下含有する水溶液がさらに好ましい。アルカリ洗浄は、銅部材表面の不純物を除去し、きれいにする効果がある。
 これらのアルカリ水溶液の純度は、高いことが好ましい。純度は96質量%以上であることがより好ましい。純度が96質量%より小さいと、その中に含まれる不純物が、セラミックス銅回路基板に付着する可能性がある。純度が高いほど、水溶液に含まれる不純物が少ないことをさす。したがって純度が高いほど、不純物の付着が少ないため好ましい。そのため、純度は98質量%以上であることがさらに好ましい。
 また、防錆処理に多用されるベンゾトリアゾール系化合物については、その極性が水よりも低く、有機溶媒に溶ける性質がある。そのため、防錆処理後の洗浄工程などにおいてもアルコール洗浄を用いてもよい。アルコール類としては、イソプロパノール、メタノール、ブタノール、ヘキサノール、エタノールなどが挙げられる。
 これらのアルコール類については、水や溶媒成分を除いたベンゾトリアゾール系化合物の純度が、99質量%以上であることが好ましい。アルコール洗浄に用いられるアルコール類について、水や溶媒成分を除いた純度が99質量%より小さいと、その中に含まれる不純物がセラミックス銅回路基板に付着する可能性がある。
 また、アルコール洗浄では、2種以上のアルコール類を混合して用いても良い。さらに、アルコール類は水と混合していてもよい。アルコール類を水と混合する場合に、用いられる水の品質はJIS-K-0557(1998)を満たすことが好ましい。アルコール類にベンゼンを溶媒として添加してもよい。つまり、アルコール類は、水または溶媒を除いた不純物量が1質量%以下であることが好ましい。ここで、ベンゾトリアゾールの溶解性や揮発性も考慮すると、エタノールまたはイソプロパノールが好ましい。イソプロパノールは、CAS登録番号67-63-0であり、IUPAC名では2-プロパノールである。イソプロパノールは、IPAまたはイソプロピルアルコールと呼ばれることもある。
 コストを考慮すると、洗浄方法としては、アルコール洗浄よりもアルカリ洗浄または水洗浄が好ましい。また、アルカリ洗浄ののちに水洗浄を行うなど、複数の洗浄方法を組み合わせてもよい。
 以上のような洗浄工程を行うことにより、銅部材表面の窒素量を50at%以下に低減できる。また、洗浄工程は、化学研磨工程、エッチング工程、防錆処理工程の後にそれぞれ行うことが好ましい。化学研磨工程、エッチング工程、防錆処理工程の中で最後の工程の洗浄を上記洗浄方法で実行し、その他の工程後の洗浄は通常の水洗浄であってもよい。この場合は、最後の工程後の洗浄工程の時間を、他の洗浄に比べて長めに行うことが好ましい。また、個々の洗浄工程は、バッチ式または連続式のどちらでもよい。バッチ式は、複数の接合体を洗浄かごに収納して洗浄工程を行う方法である。連続式は、複数の接合体をベルトコンベアで搬送しながら洗浄工程を行う方法である。
 洗浄方法としては、塩素系洗浄剤を用いる方法もある。塩素系洗浄剤では、銅板表面の塩素量が増加する可能性がある。そのため、塩素系洗浄剤は、上述した洗浄方法に比べると好ましくない。また、水蒸気やオゾン水を使った洗浄工程は、銅板を酸化させる可能性があるため好ましくない。このため、水洗浄、アルカリ洗浄、およびアルコール洗浄から選択される1種または2種以上の洗浄工程が好ましい。
 以上の工程により、銅部材表面の窒素量が低減された、実施形態に係るセラミックス銅回路基板を製造することができる。
 次に乾燥工程について説明する。乾燥工程として、揮発し易い溶液での処理、遠心力処理、送風処理などが挙げられる。複数の乾燥工程を組み合わせてもよい。洗浄後のセラミックス銅回路基板に対して、メタノール、エタノール、イソプロパノールなどのアルコール類、またはアセトンなどのケトン類など、揮発しやすい溶媒を用いて残った水を洗い流してもよい。これらの溶媒の純度は99質量%以上であることが好ましい。純度が99質量%より小さいと、その中に含まれる不純物がセラミックス銅回路基板に付着する可能性がある。この際、引火性などの安全面を考慮すると、イソプロパノールを用いることが好ましい。また洗浄後のセラミックス銅回路基板を回転させ遠心力を用いて、残った水滴を除去してもよい。
 また、セラミックス銅回路基板を斜めにしてもよい。この斜めとは、重力方向に対して垂直な平面上に存在する任意の向きを水平方向としたとき、基板のいずれか1つ以上の辺の向きが、この水平方向に対して平行ではない状態を指す。この際、水平方向と重力方向からなる角度を90度としたとき、水平方向と基板のいずれか1つ以上の辺の向きからなる角度が10度以上90度未満であることがさらに好ましい。この基板の向きについては、基板の対角線が、斜めであることがさらに好ましい。このように基板の向きを斜めにすることにより基板に付着した水滴が重力にしたがって落ちやすくなる。この斜めにする方法としては例えば、基板の対角線が斜めになるようにすることなどがあげられる。
 このようにしてある程度の乾燥されたセラミックス銅回路基板に対して、乾燥空気または窒素ガスを送風し、残った水滴を吹き飛ばしてもよい。空気、乾燥空気、または窒素ガスを送風する方法は、エアナイフと呼ばれることもある。このエアナイフは、エアブローの一種である。
 このようにして得られたセラミックス銅回路基板をさらに確実に乾燥させるため、10℃以上の温度、70%以下の湿度の風を、20m/s以上150m/s以下の風速でセラミックス銅回路基板に当ててもよい。このようにセラミックス銅回路基板に風にあてる乾燥工程をエアブローという。またこのエアブロー工程での好ましい風の温度は、10℃以上150℃以下であり、より好ましくは15℃以上100℃未満である。この温度を超えると、熱により導体部表面が酸化する可能性がある。また、エアブロー工程での好ましい湿度は、5%以上70%以下である。湿度が70%より大きいと、乾燥工程にかかる時間が長くなる可能性がある。湿度を5%より小さくするには、コストが増加する可能性がある。風速は20m/s以上150m/s以下が好ましい。風速は20m/s以上100m/s以下がさらに好ましい。風速が小さすぎると乾燥に時間がかかる。また、風速が大きすぎると銅板の搬送に悪影響を与える可能性がある。この乾燥工程を行う際には、その他の乾燥工程を組み合わせることで温風での乾燥工程を用いたとき温風を当てる乾燥時間を短くし、温風の熱による導体部である銅板表面の酸化を抑制することができる。このため、複数の乾燥工程を組み合わせてもよい。
(実施例)
(実施例1~12、比較例1~2)
 絶縁性基板の一例として、セラミックス基板(窒化珪素基板および窒化アルミニウム基板)を用意した。用意した窒化珪素基板のサイズは、縦50mm×横40mm×厚さ0.32mmである。熱伝導率は90W/m・Kであり、3点曲げ強度は650MPaである。また、用意した窒化アルミニウム基板のサイズは、縦50mm×横40mm×厚さ0.635mmである。熱伝導率は170W/m・Kであり、3点曲げ強度は400MPaである。
 導体部の一例として、銅板(無酸素銅板)を用意した。銅板のサイズは、縦50mm×横40mmである。次に、Tiを含む活性金属ろう材を用いた活性金属接合法で、セラミックス基板と銅板を接合した。セラミックス基板の両面にそれぞれ銅板を接合した。表1に銅板の厚さ、接合層の厚さを示した。この工程により、実施例1~12、比較例1、2に係る接合体を製造した。
Figure JPOXMLDOC01-appb-T000001
 次に、接合体に対し、エッチング工程と化学研磨工程を施し、さらに防錆処理工程を行った。これにより、絶縁性回路基板の一例であるセラミックス銅回路基板を作製した。作製されたセラミックス銅回路基板は、表側に回路形状が付与された銅板(銅回路)を備え、裏側に放熱板としての銅板を備える。表側の銅回路及び裏側の銅板は、それぞれ導体部の一例である。銅回路及び銅板の側面には、傾斜形状を付与した。また、銅板側面から接合層がはみ出た接合層はみだし部を設けた。接合層はみだし部について、厚さに対する長さの比を0.5以上3.0以下の範囲内に設定した。また、エッチング加工後の銅回路表面の表面粗さRaは、1μm以下であった。
 エッチング工程と化学研磨工程については、銅板エッチング工程→化学研磨工程(第一の化学研磨工程)→AgまたはCuを主成分とする接合層のエッチング工程→化学研磨工程(第二の化学研磨工程)→窒化チタン層のエッチング工程→防錆処理工程の順で行った。各工程後の洗浄工程を、表2に示した条件で行った。また、洗浄工程については、水洗浄の場合、ノズルから出る水量は1.5L/分以上6L/分以下の範囲内に設定した。セラミックス銅回路基板を搬送しながら洗浄工程を行った。これにより、ノズル1個当たりのセラミックス銅回路基板への着弾水量を表2に示した水量に設定した。また、水洗浄槽に接合体を浸漬させる洗浄工程は、「浸漬」と記載した。アルカリ洗浄を用いた場合には、「アルカリ」と記載した。
 乾燥工程については以下の通りである。
 セラミックス銅回路基板の乾燥工程について、実施例1~12および比較例1では、エアナイフによる乾燥工程の後にエアブローによる乾燥工程を行った。エアナイフ、エアブローの温度は室温(25℃近傍)であった。乾燥工程におけるその他の条件について、湿度は50%程度、風速は20~60m/s程度であった。比較例2においては、比較例1と同様の条件で洗浄まで行い、その後自然乾燥を行った。防錆処理を行わなかった例については、防錆処理工程後の洗浄の欄に“-(ハイフン)”を記載した。また、比較例2においては、比較例1と比較して乾燥にかかる時間も長かった。このように、乾燥までにかかる時間が長かったため、酸化が進んだと考えられる。
Figure JPOXMLDOC01-appb-T000002
 実施例および比較例について、セラミックス銅回路基板における銅部材表面の窒素量および酸素量を測定した。窒素量および酸素量の測定には、XPS分析を用いた。XPS分析装置として、SSI社Xプローブを用いた。XPS分析では、AlKα線(hν=1486.6eV)を用い、X線のスポット径は、直径1mmに設定した。XPS分析では、窒素、酸素、銅、炭素の量を分析した。各成分の量は、窒素、酸素、銅、および炭素の合計を100at%として計算した。窒素量および酸素量の測定結果を表3に示した。
Figure JPOXMLDOC01-appb-T000003
 実施例および比較例について、セラミックス銅回路基板の表面に存在する塩素イオン、アンモニウムイオン、硫酸イオン、フッ素イオンの量を測定した。塩素イオン、アンモニウムイオン、硫酸イオン、フッ素イオンの各量の測定には、イオンクロマトグラフ分析を用いた。イオンクロマトグラフ分析装置として、(株)日本ダイオネクス社製 DX500を用いた。また、イオン抽出には、洗浄済みフッ素樹脂容器(Φ100mm)に、サンプル2枚と超純水40mlを入れ、フッ素樹脂容器の蓋を閉めて、恒温槽にて80℃で18時間保持し、イオン成分を抽出した。
 その後、約1時間放冷して共洗いし、オートサンプリングチューブにサンプリングした。次に陰イオンと陽イオンについてそれぞれの測定方法を示す。
 陰イオン(フッ素イオン、塩素イオン、硫酸イオンなど)については、検量線標準サンプルとしてThermo SCIENTIFIC社製Dionex Anion Standard(製品番号:056933)を10倍希釈して用いた。また、カラムについて、分離カラムとしてIonPac AS 4A-SCを用い、ガードカラムとしてIonPac AG 4A-SCを用いた。溶離液には、30mlの水酸化カリウム(KOH)を用いた。
 陽イオン(アンモニウムイオンなど)については、検量線標準サンプルとしてThermo SCIENTIFIC社製Dionex Cation-II Standard(製品番号:046070)を100倍希釈して用いた。また、カラムについて、分離カラムとしてIonPac CS 12Aを用い、ガードカラムとしてIonPac CG 12Aを用いた。溶離液には、20mlのメタンスルフォン酸を用いた。
 イオンクロマトグラフ分析では、セラミックス銅回路基板2枚を用いて測定した。このため、得られたイオン量を2で割ってセラミックス銅回路基板1枚当たりのイオンの不純物量とした。この時、0と記載したものは検出限界以下であった。セラミックス銅回路基板1枚当たりの表面積は40cmであった。
 実施例および比較例における各イオン量の測定結果を表4に示した。
Figure JPOXMLDOC01-appb-T000004
 表4から分かる通り、実施例1~12では、セラミックス銅回路基板について、銅回路表面の窒素量および酸素量は望ましい範囲内であった。また、裏銅板表面の窒素量、酸素量も同等の値であった。
 比較例1のように、水洗浄槽に浸漬する洗浄工程だけでは、窒素量が62at%と多かった。比較例2のように、乾燥工程を工夫せずに自然乾燥を行うと、乾燥に時間がかかりその間に付着する酸素量が増加した。
 次に、実施例および比較例に係るセラミックス銅回路基板に、接合層の一例である半田層を形成し、その上に半導体素子を実装した。これにより、半導体装置を製造した。半田層は鉛フリー半田とした。半導体装置に対し、半導体素子の接合の信頼性を評価した。
 接合の信頼性を調べるために、半導体装置のTCT試験を行った。TCT試験では、-40℃×30分→常温×10分→170℃×30分→常温×10分を1サイクルとし、500サイクルを試験した。試験前の半導体素子の接合強度と試験後の半導体素子の接合強度を測定した。接合強度は、ピール試験により測定した。試験前の接合強度に対し、試験後の接合強度の低下率が10%以下のものを最良品(◎)とした。低下率が10%を超え15%以下の半導体装置を、良品1(〇)とした。低下率が15%を超え20%以下の半導体装置を、良品2(●)とした。低下率が20%を超え25%以下だった半導体装置を、不良品1(×)とした。低下率が25%を超えた半導体装置を、不良品2(××)とした。また、銅板上に半田層を介して半導体素子を2個接合した。1個に対して試験前にピール試験を行い、もう1個に対して試験後にピール試験を行った。これらの結果から、低下率を測定した。その結果を表5に示した。
Figure JPOXMLDOC01-appb-T000005
 表5から分かる通り、実施例に係るセラミックス銅回路基板では、半田層を介した接合の信頼性が改善した。それに対し、比較例1では、銅回路表面の窒素量が多いため、信頼性は低下した。このため、銅回路表面の窒素量や酸素量を制御することが、接合の信頼性改善に有効であることが分かった。特に、鉛フリー半田層を用いて半導体素子が実装される半導体装置に有効であることが分かる。
 以上、本発明のいくつかの実施形態を例示したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更などを行うことができる。これら実施形態はその変形例は、発明の範囲や要旨に含まれると共に、請求の範囲に記載された発明とその均等の範囲に含まれる。また、前述の各実施形態は、相互に組み合わせて実施することができる。
1…絶縁性回路基板
2…絶縁性基板
3…導体部(表導体部)
4…導体部(裏導体部)
5…接合層
6…半導体素子
7…半田層
10…半導体装置

Claims (18)

  1.  絶縁性基板と、
     前記絶縁性基板の少なくとも一方の面に接合された導体部と、を備えた絶縁性回路基板であって、
     前記導体部の表面の窒素量をXPS分析したとき、任意の3か所での前記窒素量の平均値が0at%以上50at%以下の範囲内であることを特徴とする絶縁性回路基板。
  2.  前記窒素量の前記平均値は0at%以上30at%以下の範囲内であることを特徴とする、請求項1記載の絶縁性回路基板。
  3.  前記導体部の表面の酸素量をXPS分析したとき、前記3か所での前記酸素量の平均値が3at%以上50at%以下の範囲内であることを特徴とする、請求項1ないし請求項2のいずれか1項に記載の絶縁性回路基板。
  4.  前記導体部の表面の酸素量をXPS分析したとき、前記3か所での前記酸素量の平均値が3at%以上30at%以下の範囲内であることを特徴とする請求項1ないし請求項3のいずれか1項に記載の絶縁性回路基板。
  5.  前記酸素量の前記平均値に対する前記窒素量の前記平均値の比が、0以上5以下であることを特徴とする請求項3ないし請求項4のいずれか1項に記載の絶縁性回路基板。
  6.  前記絶縁性基板がセラミックからなることを特徴とする、請求項1ないし請求項5のいずれか1項に記載の絶縁性回路基板。
  7.  前記絶縁性基板は、窒化珪素または窒化アルミのいずれか1種を主成分として含むことを特徴とする、請求項1ないし請求項6のいずれか1項に記載の絶縁性回路基板。
  8.  前記導体部は、銅または銅合金からなる銅部材であることを特徴とする、請求項1ないし請求項7のいずれか1項に記載の絶縁性回路基板。
  9.  複数の前記導体部が、前記絶縁性基板の両面にそれぞれ接合され、
     前記複数の導体部のそれぞれの表面の前記窒素量の前記平均値が、0at%以上50at%以下の範囲内であることを特徴とする、請求項1ないし請求項8のいずれか1項に記載の絶縁性回路基板。
  10.  前記絶縁性回路基板の表面に存在するアンモニウムイオンをイオンクロマトグラフによって測定したとき、前記アンモニウムイオンの量が40cmあたり0μg以上3μg以下であることを特徴とする請求項1ないし請求項9のいずれか1項に記載の絶縁性回路基板。
  11.  前記絶縁性回路基板の表面に存在する塩素イオンをイオンクロマトグラフによって測定したとき、前記塩素イオンの量が40cmあたり0μg以上15μg以下であることを特徴とする請求項1ないし請求項10のいずれか1項に記載の絶縁性回路基板。
  12.  前記絶縁性回路基板の表面に存在する硫酸イオンをイオンクロマトグラフによって測定したとき、前記硫酸イオンの量が40cmあたり0μg以上5μg以下であることを特徴とする請求項1ないし請求項11のいずれか1項に記載の絶縁性回路基板。
  13.  前記絶縁性回路基板の表面に存在するフッ素イオンをイオンクロマトグラフによって測定したとき、前記フッ素イオンの量が40cmあたり0μg以上2μg以下であることを特徴とする請求項1ないし請求項12のいずれか1項に記載の絶縁性回路基板。
  14.  前記絶縁性基板は、セラミックス基板であり、
     前記導体部は、銅部材であり、
     前記セラミックス基板と前記銅部材は、Ag、Cu、およびTiから選ばれる1種以上を含んだ接合層を介して接合されていることを特徴とする、請求項1ないし請求項13のいずれか1項に記載の絶縁性回路基板。
  15.  前記導体部は、銅部材であり、
     前記銅部材の最大高さRzは、20μm以下であることを特徴とする、請求項1ないし請求項14のいずれか1項に記載の絶縁性回路基板。
  16.  前記導体部は、銅部材であり、
     前記銅部材の表面粗さRaは、2μm以下であることを特徴とする、請求項1ないし請求項15のいずれか1項に記載の絶縁性回路基板。
  17.  前記絶縁性基板は、厚さ0.4mm以下の窒化珪素基板であり、
     前記導体部は、厚さ0.6mm以上の銅部材であることを特徴とする、請求項1ないし請求項16のいずれか1項に記載の絶縁性回路基板。
  18.  請求項1ないし請求項17のいずれか1項に記載の絶縁性回路基板と、
     前記導体部の上に半田層または銀を主成分とする層を介して実装された半導体素子と、を備えた半導体装置。
PCT/JP2021/047606 2020-12-24 2021-12-22 絶縁性回路基板およびそれを用いた半導体装置 WO2022138732A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180086659.1A CN116686081A (zh) 2020-12-24 2021-12-22 绝缘性电路基板及使用了其的半导体装置
JP2022571559A JPWO2022138732A1 (ja) 2020-12-24 2021-12-22
EP21910872.7A EP4270467A1 (en) 2020-12-24 2021-12-22 Insulated circuit board and semiconductor device in which same is used
US18/339,515 US20230345630A1 (en) 2020-12-24 2023-06-22 Insulating circuit board and semiconductor device in which same is used

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020214952 2020-12-24
JP2020-214952 2020-12-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/339,515 Continuation US20230345630A1 (en) 2020-12-24 2023-06-22 Insulating circuit board and semiconductor device in which same is used

Publications (1)

Publication Number Publication Date
WO2022138732A1 true WO2022138732A1 (ja) 2022-06-30

Family

ID=82159806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/047606 WO2022138732A1 (ja) 2020-12-24 2021-12-22 絶縁性回路基板およびそれを用いた半導体装置

Country Status (5)

Country Link
US (1) US20230345630A1 (ja)
EP (1) EP4270467A1 (ja)
JP (1) JPWO2022138732A1 (ja)
CN (1) CN116686081A (ja)
WO (1) WO2022138732A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007081217A (ja) 2005-09-15 2007-03-29 Hitachi Metals Ltd 回路基板の製造方法及び回路基板、半導体モジュール
JP2013055264A (ja) * 2011-09-05 2013-03-21 Toshiba Corp セラミックス銅回路基板の製造方法
WO2017056360A1 (ja) 2015-09-28 2017-04-06 株式会社 東芝 回路基板および半導体装置
WO2018180965A1 (ja) * 2017-03-30 2018-10-04 株式会社 東芝 セラミックス銅回路基板およびそれを用いた半導体装置
WO2019054291A1 (ja) 2017-09-12 2019-03-21 株式会社 東芝 活性金属ろう材用エッチング液およびそれを用いたセラミックス回路基板の製造方法
WO2019054294A1 (ja) 2017-09-12 2019-03-21 株式会社 東芝 セラミックス回路基板の製造方法
JP2020059228A (ja) 2018-10-11 2020-04-16 東洋鋼鈑株式会社 金属調化粧フィルム及び金属調化粧板

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007081217A (ja) 2005-09-15 2007-03-29 Hitachi Metals Ltd 回路基板の製造方法及び回路基板、半導体モジュール
JP2013055264A (ja) * 2011-09-05 2013-03-21 Toshiba Corp セラミックス銅回路基板の製造方法
WO2017056360A1 (ja) 2015-09-28 2017-04-06 株式会社 東芝 回路基板および半導体装置
WO2018180965A1 (ja) * 2017-03-30 2018-10-04 株式会社 東芝 セラミックス銅回路基板およびそれを用いた半導体装置
WO2019054291A1 (ja) 2017-09-12 2019-03-21 株式会社 東芝 活性金属ろう材用エッチング液およびそれを用いたセラミックス回路基板の製造方法
WO2019054294A1 (ja) 2017-09-12 2019-03-21 株式会社 東芝 セラミックス回路基板の製造方法
JP2020059228A (ja) 2018-10-11 2020-04-16 東洋鋼鈑株式会社 金属調化粧フィルム及び金属調化粧板

Also Published As

Publication number Publication date
JPWO2022138732A1 (ja) 2022-06-30
EP4270467A1 (en) 2023-11-01
CN116686081A (zh) 2023-09-01
US20230345630A1 (en) 2023-10-26

Similar Documents

Publication Publication Date Title
JP7080881B2 (ja) セラミックス回路基板及びそれを用いたモジュール
JP5720860B1 (ja) セラミックス回路基板の製造方法
JP6420015B2 (ja) 半導体装置用ボンディングワイヤ
US8503189B2 (en) Pb-free solder-connected structure and electronic device
JP4601670B2 (ja) 錫および錫合金の水系酸化防止剤
JP6799479B2 (ja) 金属−セラミックス回路基板の製造方法
JP6742073B2 (ja) セラミックス回路基板
JP2004332105A (ja) 導体基材、半導体装置及びそれらの製造方法
US11257735B2 (en) Heat sink-equipped power module substrate and manufacturing method for heat sink-equipped power module substrate
US20230335483A1 (en) Insulating circuit board and semiconductor device using same
JP6452661B2 (ja) 半導体装置用ボンディングワイヤ
WO2022138732A1 (ja) 絶縁性回路基板およびそれを用いた半導体装置
WO2022210507A1 (ja) セラミックス回路基板の製造方法
KR102479866B1 (ko) 세라믹스 회로 기판 및 그 제조 방법
TW201800607A (zh) 引線框結構,引線框,表面黏著型電子裝置及其製造方法
CN116018884A (zh) 接合体及采用其的陶瓷电路基板以及半导体装置
JP6509469B1 (ja) 接合構造体、半導体装置及びその製造方法
JP5545234B2 (ja) 半導体装置およびその製造方法
Li et al. Thermal and wetting properties of water-soluble fluxes and solder pastes
US20020009610A1 (en) Technical field
WO2023074470A1 (ja) セラミックス銅回路基板およびそれを用いた半導体装置
JP6162986B2 (ja) 金属−セラミックス回路基板の製造方法
JP2023091914A (ja) 金属-セラミックス接合基板の製造方法、および、金属-セラミックス接合基板
JP4853065B2 (ja) 電解めっき皮膜
JP4556312B2 (ja) セラミック積層電子部品およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21910872

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022571559

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180086659.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021910872

Country of ref document: EP

Effective date: 20230724