WO2022138709A1 - 表示装置および電子機器 - Google Patents
表示装置および電子機器 Download PDFInfo
- Publication number
- WO2022138709A1 WO2022138709A1 PCT/JP2021/047535 JP2021047535W WO2022138709A1 WO 2022138709 A1 WO2022138709 A1 WO 2022138709A1 JP 2021047535 W JP2021047535 W JP 2021047535W WO 2022138709 A1 WO2022138709 A1 WO 2022138709A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- hole transport
- bulk
- transport layer
- electrode
- Prior art date
Links
- 230000005525 hole transport Effects 0.000 claims abstract description 144
- 238000005401 electroluminescence Methods 0.000 claims abstract description 30
- 238000002347 injection Methods 0.000 claims description 59
- 239000007924 injection Substances 0.000 claims description 59
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 10
- 229910052757 nitrogen Inorganic materials 0.000 claims description 5
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 4
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 4
- JADVFSIIWAIWDS-UHFFFAOYSA-N C1=CC=CC2=C3C(C#N)=NN=NC3=C(N=NN=C3)C3=C21 Chemical compound C1=CC=CC2=C3C(C#N)=NN=NC3=C(N=NN=C3)C3=C21 JADVFSIIWAIWDS-UHFFFAOYSA-N 0.000 claims description 3
- 239000010410 layer Substances 0.000 description 514
- 238000000034 method Methods 0.000 description 30
- 239000000758 substrate Substances 0.000 description 30
- 238000010586 diagram Methods 0.000 description 28
- 238000004770 highest occupied molecular orbital Methods 0.000 description 23
- 229910052751 metal Inorganic materials 0.000 description 23
- 229920005989 resin Polymers 0.000 description 23
- 239000011347 resin Substances 0.000 description 23
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 21
- 239000002184 metal Substances 0.000 description 21
- 239000000463 material Substances 0.000 description 18
- 229910044991 metal oxide Inorganic materials 0.000 description 14
- 150000004706 metal oxides Chemical class 0.000 description 14
- 239000011241 protective layer Substances 0.000 description 14
- 238000004544 sputter deposition Methods 0.000 description 13
- 230000004048 modification Effects 0.000 description 11
- 238000012986 modification Methods 0.000 description 11
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 10
- 238000005530 etching Methods 0.000 description 10
- 239000007789 gas Substances 0.000 description 10
- 150000002500 ions Chemical class 0.000 description 10
- 238000005259 measurement Methods 0.000 description 9
- 229910045601 alloy Inorganic materials 0.000 description 8
- 239000000956 alloy Substances 0.000 description 8
- 238000005452 bending Methods 0.000 description 8
- 238000000691 measurement method Methods 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 239000011521 glass Substances 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- 230000001965 increasing effect Effects 0.000 description 6
- 238000000926 separation method Methods 0.000 description 6
- 239000002356 single layer Substances 0.000 description 6
- 229910052738 indium Inorganic materials 0.000 description 5
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 5
- 238000004768 lowest unoccupied molecular orbital Methods 0.000 description 5
- 238000000206 photolithography Methods 0.000 description 5
- 238000004088 simulation Methods 0.000 description 5
- 239000011787 zinc oxide Substances 0.000 description 5
- 238000000026 X-ray photoelectron spectrum Methods 0.000 description 4
- 230000009471 action Effects 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 4
- 239000011777 magnesium Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- IBHBKWKFFTZAHE-UHFFFAOYSA-N n-[4-[4-(n-naphthalen-1-ylanilino)phenyl]phenyl]-n-phenylnaphthalen-1-amine Chemical compound C1=CC=CC=C1N(C=1C2=CC=CC=C2C=CC=1)C1=CC=C(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C3=CC=CC=C3C=CC=2)C=C1 IBHBKWKFFTZAHE-UHFFFAOYSA-N 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- -1 polyethylene terephthalate Polymers 0.000 description 4
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 4
- 238000007740 vapor deposition Methods 0.000 description 4
- UHXOHPVVEHBKKT-UHFFFAOYSA-N 1-(2,2-diphenylethenyl)-4-[4-(2,2-diphenylethenyl)phenyl]benzene Chemical compound C=1C=C(C=2C=CC(C=C(C=3C=CC=CC=3)C=3C=CC=CC=3)=CC=2)C=CC=1C=C(C=1C=CC=CC=1)C1=CC=CC=C1 UHXOHPVVEHBKKT-UHFFFAOYSA-N 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 239000003574 free electron Substances 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 229910052814 silicon oxide Inorganic materials 0.000 description 3
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 3
- 229910001887 tin oxide Inorganic materials 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- 238000001312 dry etching Methods 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 239000002952 polymeric resin Substances 0.000 description 2
- 230000011514 reflex Effects 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- STTGYIUESPWXOW-UHFFFAOYSA-N 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline Chemical compound C=12C=CC3=C(C=4C=CC=CC=4)C=C(C)N=C3C2=NC(C)=CC=1C1=CC=CC=C1 STTGYIUESPWXOW-UHFFFAOYSA-N 0.000 description 1
- 229910001316 Ag alloy Inorganic materials 0.000 description 1
- 229910016570 AlCu Inorganic materials 0.000 description 1
- 229910017073 AlLi Inorganic materials 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 229910020068 MgAl Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229920001665 Poly-4-vinylphenol Polymers 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- VBVAVBCYMYWNOU-UHFFFAOYSA-N coumarin 6 Chemical compound C1=CC=C2SC(C3=CC4=CC=C(C=C4OC3=O)N(CC)CC)=NC2=C1 VBVAVBCYMYWNOU-UHFFFAOYSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 229910052839 forsterite Inorganic materials 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910001195 gallium oxide Inorganic materials 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000005355 lead glass Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- YPJRZWDWVBNDIW-MBALSZOMSA-N n,n-diphenyl-4-[(e)-2-[4-[4-[(e)-2-[4-(n-phenylanilino)phenyl]ethenyl]phenyl]phenyl]ethenyl]aniline Chemical group C=1C=C(N(C=2C=CC=CC=2)C=2C=CC=CC=2)C=CC=1/C=C/C(C=C1)=CC=C1C(C=C1)=CC=C1\C=C\C(C=C1)=CC=C1N(C=1C=CC=CC=1)C1=CC=CC=C1 YPJRZWDWVBNDIW-MBALSZOMSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229920003986 novolac Polymers 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000012044 organic layer Substances 0.000 description 1
- AHLBNYSZXLDEJQ-FWEHEUNISA-N orlistat Chemical compound CCCCCCCCCCC[C@H](OC(=O)[C@H](CC(C)C)NC=O)C[C@@H]1OC(=O)[C@H]1CCCCCC AHLBNYSZXLDEJQ-FWEHEUNISA-N 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 125000005504 styryl group Chemical group 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- TVIVIEFSHFOWTE-UHFFFAOYSA-K tri(quinolin-8-yloxy)alumane Chemical compound [Al+3].C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1 TVIVIEFSHFOWTE-UHFFFAOYSA-K 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/12—Active-matrix OLED [AMOLED] displays
- H10K59/122—Pixel-defining structures or layers, e.g. banks
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09F—DISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
- G09F9/00—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
- G09F9/30—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/12—Light sources with substantially two-dimensional radiating surfaces
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/12—Light sources with substantially two-dimensional radiating surfaces
- H05B33/22—Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/14—Carrier transporting layers
- H10K50/15—Hole transporting layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/805—Electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2101/00—Properties of the organic materials covered by group H10K85/00
- H10K2101/30—Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/87—Passivation; Containers; Encapsulations
- H10K59/871—Self-supporting sealing arrangements
Definitions
- This disclosure relates to a display device and an electronic device equipped with the display device.
- An object of the present disclosure is to provide a display device capable of suppressing a leakage of a drive current generated between adjacent sub-pixels and an electronic device including the display device.
- the first disclosure is A first electrode layer having a plurality of electrodes arranged two-dimensionally, A second electrode layer provided so as to face the first electrode layer, and An electroluminescence layer provided between the first electrode layer and the second electrode layer, With an insulating layer provided between adjacent electrodes, The electroluminescence layer comprises a hole transport layer in which the hole transport layer is adjacent to the insulating layer.
- the energy level E interface (1) at the interface between the insulating layer and the hole transport layer and the energy level E bulk (1) at the bulk of the hole transport layer are display devices satisfying the following equation (1). .. 0 ⁇ E bulk (1) -E interface (1) ⁇ 0.3eV ... (1)
- the second disclosure is A first electrode layer having a plurality of electrodes arranged two-dimensionally, A second electrode layer provided so as to face the first electrode layer, and An electroluminescence layer provided between the first electrode layer and the second electrode layer, With an insulating layer provided between adjacent electrodes,
- the electroluminescence layer comprises a hole transport layer and
- the hole transport layer includes at least a first hole transport layer and a second hole transport layer, and the first hole transport layer is adjacent to the insulating layer.
- the bulk energy level E bulk (2a) of the first hole transport layer and the bulk energy level E bulk (2b) of the second hole transport layer are display devices satisfying the following equation (2). Is. 0 ⁇ E bulk (2b) -E bulk (2a) ⁇ 0.3eV ... (2)
- the third disclosure is A first electrode layer having a plurality of electrodes arranged two-dimensionally, A second electrode layer provided so as to face the first electrode layer, and An electroluminescence layer provided between the first electrode layer and the second electrode layer, With an insulating layer provided between adjacent electrodes, The electroluminescence layer includes a hole transport layer and a hole injection layer, and the hole injection layer is adjacent to the insulating layer.
- the fourth disclosure is A first electrode layer having a plurality of electrodes arranged two-dimensionally, A second electrode layer provided so as to face the first electrode layer, and An electroluminescence layer provided between the first electrode layer and the second electrode layer, With an insulating layer provided between adjacent electrodes,
- the electroluminescence layer includes a hole transport layer and a hole injection layer, and the hole injection layer is adjacent to the insulating layer.
- the hole transport layer includes at least a first hole transport layer and a second hole transport layer, and the first hole transport layer is adjacent to the hole injection layer.
- the bulk energy level E bulk (4a) of the first hole transport layer and the bulk energy level E bulk (4b) of the second hole transport layer are display devices satisfying the following equation (4). Is. 0 ⁇ E bulk (4b) -E bulk (4a) ⁇ 0.3eV ... (4)
- FIG. 1 is a schematic view showing an example of the overall configuration of the display device according to the first embodiment of the present disclosure.
- FIG. 2 is a cross-sectional view showing an example of the configuration of the display device according to the first embodiment of the present disclosure.
- FIG. 3 is a cross-sectional view showing an example of the configuration of the organic EL layer.
- FIG. 4A is a diagram showing an example of an energy diagram when the relationship of E bulk (1) -E interface (1) ⁇ 0.3 eV is satisfied.
- FIG. 4B is a diagram showing an example of an energy diagram when the relationship of E bulk (1) -E interface (1) ⁇ 0.3 eV is not satisfied.
- FIG. 5 is a cross-sectional view showing an example of the configuration of the display device according to the second embodiment of the present disclosure.
- FIG. 6A is a diagram showing an example of an energy diagram when the relationship of E bulk (2b) -E bulk (2a) ⁇ 0.3eV is satisfied.
- FIG. 6B is a diagram showing an example of an energy diagram when the relationship of E bulk (2b) -E bulk (2a) ⁇ 0.3eV is not satisfied.
- FIG. 7 is a cross-sectional view showing an example of the configuration of the display device according to the third embodiment of the present disclosure.
- FIG. 8A is a diagram showing an example of an energy diagram when the relationship of E bulk (3) -E interface (3) ⁇ 0.3 eV is satisfied.
- FIG. 8B is a diagram showing an example of an energy diagram when the relationship of E bulk (3) -E interface (3) ⁇ 0.3 eV is not satisfied.
- FIG. 9 is a cross-sectional view showing an example of the configuration of the display device according to the fourth embodiment of the present disclosure.
- FIG. 10A is a diagram showing an example of an energy diagram when the relationship of E bulk (4b) -E bulk (4a) ⁇ 0.3eV is satisfied.
- FIG. 10B is a diagram showing an example of an energy diagram when the relationship of E bulk (4b) -E bulk (4a) ⁇ 0.3eV is not satisfied.
- FIG. 11 is a plan view showing an example of the schematic configuration of the module.
- FIG. 12A is a front view showing an example of the appearance of the digital still camera.
- FIG. 12B is a rear view showing an example of the appearance of the digital still camera.
- FIG. 13 is a perspective view showing an example of the appearance of the head-mounted display.
- FIG. 14 is a perspective view showing an example of the appearance of the television device.
- FIG. 15 is a graph showing the relationship between the binding energy E HILN of N1s in the hole injection layer and the binding energy E ILN of N1s in the insulating layer (E HILN ⁇ E ILN ) and the leakage current between the sub-pixels. ..
- FIG. 16 is a graph showing the relationship between the HOMO of the hole injection layer and the HOMO of the insulating layer, and the hole concentration.
- FIG. 17A is a diagram showing an example of an energy diagram when leakage can be suppressed.
- FIG. 17B is a diagram showing an example of an energy diagram when leakage cannot be suppressed.
- FIG. 1 is a schematic view showing an example of the overall configuration of the display device 10 according to the first embodiment of the present disclosure.
- the display device 10 has a display area 110A and a peripheral area 110B provided on the peripheral edge of the display area 110A.
- a plurality of sub-pixels 100R, 100G, and 100B are two-dimensionally arranged in a predetermined arrangement pattern such as a matrix.
- the sub-pixel 100R displays red
- the sub-pixel 100G displays green
- the sub-pixel 100B displays blue.
- the sub-pixels 100R, 100G, and 100B are generically referred to without particular distinction, they are referred to as sub-pixel 100.
- a combination of adjacent sub-pixels 100R, 100G, and 100B constitutes one pixel.
- FIG. 1 shows an example in which a combination of three sub-pixels 100R, 100G, and 100B arranged in the row direction (horizontal direction) constitutes one pixel, but the arrangement of the sub-pixels 100R, 100G, and 100B is shown. It is not limited to this.
- the peripheral region 110B is provided with a signal line drive circuit 111 and a scanning line drive circuit 112, which are drivers for displaying images.
- the signal line drive circuit 111 supplies the signal voltage of the video signal corresponding to the luminance information supplied from the signal supply source (not shown) to the sub-pixel 100 selected via the signal line 111A.
- the scanning line drive circuit 112 is configured by a shift register or the like that sequentially shifts (transfers) the start pulse in synchronization with the input clock pulse.
- the scanning line drive circuit 112 scans the video signals in line units when writing the video signals to the sub-pixels 100, and sequentially supplies the scanning signals to the scanning lines 112A.
- the display device 10 may be a micro display.
- the display device 10 may be provided in a VR (Virtual Reality) device, an MR (Mixed Reality) device, an AR (Augmented Reality) device, an electronic viewfinder (EVF), a small projector, or the like.
- VR Virtual Reality
- MR Magnetic Reality
- AR Augmented Reality
- EVF electronic viewfinder
- FIG. 2 is a cross-sectional view showing an example of the configuration of the display device 10 according to the first embodiment of the present disclosure.
- the display device 10 includes a drive substrate 11, a first electrode layer 12, an insulating layer 13, an organic EL layer 14, a second electrode layer 15, a protective layer 16, a color filter 17, and a filled resin layer. 18 and a facing substrate 19 are provided.
- the display device 10 is an example of a light emitting device.
- the display device 10 is a top emission type display device.
- the opposite board 19 side of the display device 10 is the top side, and the drive board 11 side of the display device 10 is the bottom side.
- the surface on the top side of the display device 10 is referred to as a first surface, and the surface on the bottom side of the display device 10 is referred to as a second surface.
- the display device 10 includes a plurality of light emitting elements 20.
- the plurality of light emitting elements 20 are composed of a first electrode layer 12, an organic EL layer 14, and a second electrode layer 15.
- the light emitting element 20 is, for example, a white light emitting element such as a white OLED or a white Micro-OLED (MODEL).
- a colorization method in the display device 10 a method using a white light emitting element and a color filter 17 is used.
- the drive board 11 is a so-called backplane and drives a plurality of light emitting elements 20.
- the drive board 11 is provided with a drive circuit for driving the plurality of light emitting elements 20, a power supply circuit for supplying electric power to the plurality of light emitting elements 20, and the like (none of which are shown).
- the substrate body of the drive substrate 11 may be made of, for example, a semiconductor such as a transistor that can be easily formed, or may be made of glass or resin having low water and oxygen permeability.
- the substrate body may be a semiconductor substrate, a glass substrate, a resin substrate, or the like.
- the semiconductor substrate includes, for example, amorphous silicon, polycrystalline silicon, single crystal silicon, and the like.
- the glass substrate includes, for example, high strain point glass, soda glass, borosilicate glass, forsterite, lead glass, quartz glass and the like.
- the resin substrate contains, for example, at least one selected from the group consisting of polymethylmethacrylate, polyvinyl alcohol, polyvinylphenol, polyethersulfone, polyimide, polycarbonate, polyethylene terephthalate, polyethylene naphthalate and the like.
- the first electrode layer 12 is provided on the first surface of the drive substrate 11.
- the first electrode layer 12 is an anode.
- the first electrode layer 12 also functions as a reflective layer, and it is preferable that the first electrode layer 12 is made of a material having as high a reflectance as possible and a large work function in order to increase the luminous efficiency.
- the first electrode layer 12 has a plurality of electrodes 12A.
- the plurality of electrodes 12A are electrically separated from each other between the adjacent light emitting elements 20.
- the plurality of electrodes 12A share the organic EL layer 14.
- the plurality of electrodes 12A are two-dimensionally arranged in a predetermined arrangement pattern such as a matrix.
- the electrode 12A is composed of at least one of a metal layer and a metal oxide layer. More specifically, the electrode 12A is composed of a single-layer film of a metal layer or a metal oxide layer, or a laminated film of a metal layer and a metal oxide layer. When the electrode 12A is composed of a laminated film, the metal oxide layer may be provided on the organic EL layer 14 side, or the metal layer may be provided on the organic EL layer 14 side, but the work is high. From the viewpoint of making the layer having a function adjacent to the organic EL layer 14, it is preferable that the metal oxide layer is provided on the organic EL layer 14 side.
- the metal layer is, for example, chromium (Cr), gold (Au), platinum (Pt), nickel (Ni), copper (Cu), molybdenum (Mo), titanium (Ti), tantalum (Ta), aluminum (Al). , Magnesium (Mg), Iron (Fe), Tungsten (W) and Silver (Ag).
- the metal layer may contain at least one of the above metal elements as a constituent element of the alloy.
- alloys include aluminum alloys and silver alloys.
- Specific examples of the aluminum alloy include, for example, AlNd or AlCu.
- the metal oxide layer contains, for example, a transparent conductive oxide (TCO: Transparent Conductive Oxide).
- TCO Transparent Conductive Oxide
- the transparent conductive oxide is, for example, a transparent conductive oxide containing indium (hereinafter referred to as "indium-based transparent conductive oxide”) and a transparent conductive oxide containing tin (hereinafter referred to as “tin-based transparent conductive oxide”). ”) And a transparent conductive oxide containing zinc (hereinafter referred to as“ zinc-based transparent conductive oxide ”).
- the indium-based transparent conductive oxide includes, for example, indium tin oxide (ITO), indium tin oxide (IZO), indium gallium oxide (IGO) or indium gallium zinc oxide (IGZO) fluorine-doped indium oxide (IFO).
- ITO indium tin oxide
- ITO indium tin oxide
- Tin-based transparent conductive oxides include, for example, tin oxide, antimony-doped tin oxide (ATO) or fluorine-doped tin oxide (FTO).
- Zinc-based transparent conductive oxides include, for example, zinc oxide, aluminum-doped zinc oxide (AZO), boron-doped zinc oxide or gallium-doped zinc oxide (GZO).
- the second electrode layer 15 is provided so as to face the first electrode layer 12.
- the second electrode layer 15 is provided as an electrode common to all sub-pixels 100 in the display area 110A.
- the second electrode layer 15 is a cathode.
- the second electrode layer 15 is a transparent electrode having transparency to the light generated by the organic EL layer 14.
- the transparent electrode also includes a translucent reflective layer.
- the second electrode layer 15 is made of a material having as high a transparency as possible and a small work function in order to increase the luminous efficiency.
- the second electrode layer 15 is composed of, for example, at least one of a metal layer and a metal oxide layer. More specifically, the second electrode layer 15 is composed of a single layer film of a metal layer or a metal oxide layer, or a laminated film of a metal layer and a metal oxide layer. When the second electrode layer 15 is composed of a laminated film, the metal layer may be provided on the organic EL layer 14 side, or the metal oxide layer may be provided on the organic EL layer 14 side. From the viewpoint of making the layer having a low work function adjacent to the organic EL layer 14, it is preferable that the metal layer is provided on the organic EL layer 14 side.
- the metal layer contains, for example, at least one metal element selected from the group consisting of magnesium (Mg), aluminum (Al), silver (Ag), calcium (Ca) and sodium (Na).
- the metal layer may contain at least one of the above metal elements as a constituent element of the alloy. Specific examples of the alloy include MgAg alloy, MgAl alloy, AlLi alloy and the like.
- the metal oxide layer contains a transparent conductive oxide. As the transparent conductive oxide, the same material as the transparent conductive oxide of the above-mentioned electrode 12A can be exemplified.
- the organic EL layer 14 is provided between the first electrode layer 12 and the second electrode layer 15.
- the organic EL layer 14 is continuously provided in the display area 110A over all the sub-pixels 100 (that is, a plurality of electrodes 12A), and is provided as a layer common to all the sub-pixels 100 in the display area 110A. There is.
- the organic EL layer 14 is configured to be capable of emitting white light.
- FIG. 3 is a cross-sectional view showing an example of the configuration of the organic EL layer 14.
- the organic EL layer 14 is, for example, from the first electrode layer 12 toward the second electrode layer 15, the hole transport layer 14A, the red light emitting layer 14B, the light emitting separation layer 14C, the blue light emitting layer 14D, and the green light emitting layer 14E.
- the electron transport layer 14F and the electron injection layer 14G are laminated in this order.
- the hole transport layer 14A is adjacent to the first electrode layer 12 and the insulating layer 13.
- the hole transport layer 14A is for increasing the hole transport efficiency to the light emitting layers 14B, 14D, and 14E.
- the hole transport layer 14A contains, for example, ⁇ -NPD (N, N'-di (1-naphthyl) -N, N'-diphenyl- [1,1'-biphenyl] -4,4'-diamine). ..
- the electron transport layer 14F is for increasing the electron transport efficiency to the light emitting layers 14B, 14D, and 14E.
- the electron transport layer 14F is at least selected from the group consisting of, for example, BCP (2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline), Alq3 (aluminum quinolinol complex), Bphenyl (basofenantroline) and the like. Includes one.
- the electron injection layer 17H is for enhancing electron injection from the cathode.
- the electron injection layer 17H contains, for example, a simple substance of an alkali metal or an alkaline earth metal or a compound containing them, specifically, for example, lithium (Li) or lithium fluoride (LiF).
- the light emitting separation layer 14C is a layer for adjusting the injection of carriers into the light emitting layers 14B, 14D, 14E, and electrons and holes are injected into the light emitting layers 14B, 14D, 14E via the light emitting separation layer 14C. By doing so, the emission balance of each color is adjusted.
- the luminescence separation layer 14C contains, for example, a 4,4'-bis [N- (1-naphthyl) -N-phenyl-amino] biphenyl derivative and the like.
- the holes injected from the electrode 12A and the electrons injected from the second electrode layer 15 are recombined. It produces red, blue, and green.
- the red light emitting layer 14B contains, for example, a red light emitting material.
- the red light emitting material may be fluorescent or phosphorescent.
- the red light emitting layer 14B is composed of, for example, 4,4-bis (2,2-diphenylbinine) biphenyl (DPVBi) and 2,6-bis [(4'-methoxydiphenylamino) styryl] -1, Includes a mixture of 5-dicyanonaphthalene (BSN).
- the blue light emitting layer 14D contains, for example, a blue light emitting material.
- the blue light emitting material may be fluorescent or phosphorescent.
- the blue light emitting layer 14D contains, for example, a mixture of DPVBi with 4,4'-bis [2- ⁇ 4- (N, N-diphenylamino) phenyl ⁇ vinyl] biphenyl (DPAVBi).
- the green light emitting layer 14E contains, for example, a green light emitting material.
- the green light emitting material may be fluorescent or phosphorescent.
- the green light emitting layer 14E includes, for example, a mixture of DPVBi and coumarin 6.
- the insulating layer 13 is provided on the first surface of the drive substrate 11 and between the adjacent electrodes 12A.
- the insulating layer 13 insulates between the separated electrodes 12A.
- the insulating layer 13 has a plurality of openings 13A. Each of the plurality of openings 13A is provided corresponding to each sub-pixel 100. More specifically, the plurality of openings 13A are each provided on the first surface (the surface facing the second electrode layer 15) of each of the separated electrodes 12A.
- the electrode 12A and the organic EL layer 14 come into contact with each other through the opening 13A.
- the insulating layer 13 may be an organic insulating layer, an inorganic insulating layer, or a laminate thereof.
- the organic insulating layer contains, for example, at least one selected from the group consisting of polyimide-based resin, acrylic-based resin, novolak-based resin and the like.
- the inorganic insulating layer contains, for example, at least one selected from the group consisting of silicon oxide (SiO x ), silicon nitride (SiN x ), silicon oxynitride (SiO x N y ) and the like.
- the protective layer 16 is provided on the first surface of the second electrode layer 15 and covers a plurality of light emitting elements 20.
- the protective layer 16 blocks the light emitting element 20 from the outside air and suppresses the infiltration of moisture from the external environment into the light emitting element 20.
- the protective layer 16 may have a function of suppressing oxidation of the metal layer.
- the protective layer 16 contains, for example, an inorganic material or a polymer resin having low hygroscopicity.
- the protective layer 16 may have a single-layer structure or a multi-layer structure. When increasing the thickness of the protective layer 16, it is preferable to have a multi-layer structure. This is to relieve the internal stress in the protective layer 16.
- the inorganic material is selected from the group consisting of, for example, silicon oxide (SiO x ), silicon nitride (SiN x ), silicon oxide nitride (SiO x Ny ), titanium oxide (TiO x ), aluminum oxide (AlO x ) and the like. Includes at least one species.
- the polymer resin contains, for example, at least one selected from the group consisting of thermosetting resins, ultraviolet curable resins and the like.
- the color filter 17 is provided on the first surface of the protective layer 16.
- the color filter 17 is, for example, an on-chip color filter (OCCF).
- the color filter 17 includes, for example, a red filter 17R, a green filter 17G, and a blue filter 17B.
- the red filter 17R, the green filter 17G, and the blue filter 17B are each provided facing the light emitting element 20.
- the red filter 17R and the light emitting element 20 form a sub pixel 100R
- the green filter 17G and the light emitting element 20 form a sub pixel 100G
- the blue filter 17B and the light emitting element 20 form a sub pixel 100B.
- each light emitting element 20 in the subpixels 100R, 100G, and 100B passes through the red filter 17R, the green filter 17G, and the blue filter 17B, respectively, so that the red light, the green light, and the blue light are emitted.
- a light-shielding layer 17BM may be provided between the color filters 17R, 17G, and 17B, that is, between the sub-pixels 100.
- the color filter 17 is not limited to the on-chip color filter, and may be provided on the second surface of the facing substrate 19 (the surface facing the organic EL layer 14).
- the filling resin layer 18 is provided between the color filter 17 and the facing substrate 19.
- the filled resin layer 18 has a function as an adhesive layer for adhering the color filter 17 and the facing substrate 19.
- the packed resin layer 18 contains at least one selected from the group consisting of, for example, a thermosetting resin and an ultraviolet curable resin.
- the facing board 19 is provided so as to face the drive board 11. More specifically, the opposed substrate 19 is provided so that the second surface of the opposed substrate 19 and the first surface of the drive substrate 11 face each other.
- the facing substrate 19 and the filled resin layer 18 seal the light emitting element 20, the color filter 17, and the like.
- the facing substrate 19 contains a material such as glass that is transparent to each color light emitted from the color filter 17.
- FIG. 4A is a diagram showing an example of an energy diagram of the insulating layer 13 and the hole transport layer 14A.
- the energy level E interface (1) at the interface between the hole transport layer 14A and the insulating layer 13 and the energy level E bulk (1) in the bulk of the hole transport layer 14A satisfy the following formula (1). 0 ⁇ E bulk (1) -E interface (1) ⁇ 0.3eV ... (1)
- the positional relationship between the insulating layer 13 and the hole transport layer 14A at the fermi level may be controlled.
- the energy level E interface (1) is measured as follows. Each layer formed on the first surface of the organic EL layer 14 is removed. After removal, the organic EL layer 14 is etched from the interface between the insulating layer 13 and the hole transport layer 14A to the hole transport layer 14A side to a position of 2 nm by ion sputtering. Subsequently, the energy level (HOMO (Highest Occupied Molecular Orbital)) of the surface exposed by etching is measured by XPS (X-ray Photoelectron Spectroscopy), and this measured value is defined as the energy level E interface (1) .
- the measurement conditions of XPS are as follows. ⁇ XPS device: ULVAC-PHI Quantum2000 -Radioactive source: Al K ⁇ ray 1486.6 eV ⁇ Beam diameter: 100 ⁇ m ⁇ Emission angle: 90 degrees
- the energy level E bulk (1) is measured as follows. Each layer formed on the first surface of the organic EL layer 14 is removed. After removal, the organic EL layer 14 is etched from the interface between the insulating layer 13 and the hole transport layer 14A to the hole transport layer 14A side to a position of 10 nm by ion sputtering. Subsequently, the energy level (HOMO) of the surface exposed by etching is measured by XPS, and this measured value is defined as the energy level E bulk (1) . The measurement conditions of XPS are the same as the measurement method of the energy level E interface (1) .
- a metal layer and a metal oxide layer are sequentially formed on the first surface of the drive substrate 11 by, for example, a sputtering method, and then the metal layer and the metal oxide layer are patterned by using, for example, photolithography and etching techniques. .. As a result, the first electrode layer 12 having the plurality of electrodes 12A is formed.
- an insulating layer 13 is formed on the first surface of the drive substrate 11 so as to cover the plurality of electrodes 12A.
- a CVD (Chemical Vapor Deposition) method an insulating layer 13 is formed on the first surface of the drive substrate 11 so as to cover the plurality of electrodes 12A.
- two types of gas, SiH 4 and NH 3 are used as the process gas, and the flow rate ratio of these two types of process gas is adjusted to adjust the energy level E interface (1) and the energy level E. It is possible to set bulk (1) so as to satisfy the above equation (1).
- an opening 13A is formed in a portion of the insulating layer 13 located on the first surface of each electrode 12A by a photolithography technique and a dry etching technique.
- the hole transport layer 14A, the red light emitting layer 14B, the light emitting separation layer 14C, the blue light emitting layer 14D, the green light emitting layer 14E, the electron transport layer 14F, and the electron injection layer 14G are attached to the plurality of electrodes 12A.
- the organic EL layer 14 is formed by laminating in this order on the surface 1 and the first surface of the insulating layer 13.
- the second electrode layer 15 is formed on the first surface of the organic EL layer 14 by, for example, a vapor deposition method or a sputtering method. As a result, a plurality of light emitting elements 20 are formed on the first surface of the drive substrate 11.
- the color filter 17 is formed on the first surface of the protective layer 16 by, for example, photolithography. Form.
- the flattening layer may be formed on both the upper, lower or upper and lower sides of the color filter 17.
- ODF One Drop Fill
- the drive substrate 11 and the facing substrate 19 are formed via the filled resin layer 18. Are pasted together. As a result, the display device 10 is sealed. As a result, the display device 10 shown in FIG. 2 is obtained.
- FIG. 5 is a cross-sectional view showing an example of the configuration of the display device 30 according to the second embodiment of the present disclosure.
- the display device 30 is different from the display device 10 according to the first embodiment in that the organic EL layer 34 is provided in place of the organic EL layer 14 (see FIG. 2).
- the same reference numerals are given to the same parts as those in the first embodiment, and the description thereof will be omitted.
- the organic EL layer 34 is different from the organic EL layer 14 in the first embodiment in that the hole transport layer 34A having a two-layer structure is provided instead of the hole transport layer 14A having a single layer structure.
- the hole transport layer 34A includes a first hole transport layer 34A1 and a second hole transport layer 34A2.
- the first hole transport layer 34A1 is adjacent to the first electrode layer 12 and the insulating layer 13 (see FIG. 2).
- the second hole transport layer 34A2 is adjacent to the red light emitting layer 14B.
- FIG. 6A is a diagram showing an example of an energy diagram of the insulating layer 13, the first hole transport layer 34A1 and the second hole transport layer 34A2.
- the bulk energy level E bulk (2a) of the first hole transport layer 34A1 and the bulk energy level E bulk (2b) of the second hole transport layer 34A2 satisfy the following equation (2). .. 0 ⁇ E bulk (2b) -E bulk (2a) ⁇ 0.3eV ... (2)
- the energy level E bulk (2a) is measured as follows. Each layer formed on the first surface of the organic EL layer 34 is removed. After removal, the organic EL layer 34 is etched from the interface between the insulating layer 13 and the first hole transport layer 34A1 to the position of 10 nm on the first hole transport layer 34A1 side by ion sputtering. Subsequently, the energy level (HOMO) of the surface exposed by etching is measured by XPS, and this measured value is defined as the energy level E bulk (2a) .
- the measurement conditions of XPS are the same as the measurement method of the energy level E interface (1) in the first embodiment.
- the energy level E bulk (2b) is measured as follows. Each layer formed on the first surface of the organic EL layer 34 is removed. After removal, the organic EL layer 34 is etched by ion sputtering from the interface between the first hole transport layer 34A1 and the second hole transport layer 34A2 to the position of 10 nm on the second hole transport layer 34A2 side. Subsequently, the energy level (HOMO) of the surface exposed by etching is measured by XPS, and this measured value is defined as the energy level E bulk (2b) .
- the measurement conditions of XPS are the same as the measurement method of the energy level E interface (1) in the first embodiment.
- FIG. 7 is a cross-sectional view showing an example of the configuration of the display device 40 according to the third embodiment of the present disclosure.
- the display device 40 is different from the display device 10 according to the first embodiment in that the organic EL layer 44 is provided in place of the organic EL layer 14 (see FIG. 2).
- the same reference numerals are given to the same parts as those in the first embodiment, and the description thereof will be omitted.
- the organic EL layer 44 is different from the organic EL layer 14 in the first embodiment in that the hole injection layer 44A is further provided.
- the hole injection layer 44A is provided between the first electrode layer 12 (see FIG. 2) and the hole transport layer 14A, and is adjacent to the first electrode layer 12 and the insulating layer 13.
- the hole injection layer 31A is for increasing the hole injection efficiency into each light emitting layer 14B, 14D, 14E and suppressing leakage.
- the hole injection layer 44A contains, for example, hexaazatriphenylene carbonitrile (HATCN) and the like.
- FIG. 8A is a diagram showing an example of an energy diagram of the insulating layer 13, the hole injection layer 44A, and the hole transport layer 14A.
- the energy level E interface (3) at the interface between the hole injection layer 44A and the hole transport layer 14A and the energy level E bulk (3) in the bulk of the hole transport layer 14A satisfy the following equation (3). .. 0 ⁇ E bulk (3) -E interface (3) ⁇ 0.3eV ... (3)
- the energy level E interface (3) is measured as follows. Each layer formed on the first surface of the organic EL layer 44 is removed. After removal, the organic EL layer 44 is etched from the interface between the hole injection layer 44A and the hole transport layer 14A to the hole transport layer 14A side by ion sputtering to a position of 2 nm. Subsequently, the energy level (HOMO) of the surface exposed by etching is measured by XPS, and this measured value is referred to as the energy level E interface (3) .
- the measurement conditions of XPS are the same as the measurement method of the energy level E interface (1) in the first embodiment.
- the energy level E bulk (3) is measured as follows. Each layer formed on the first surface of the organic EL layer 44 is removed. After removal, the organic EL layer 44 is etched from the interface between the hole injection layer 44A and the hole transport layer 14A to the hole transport layer 14A side to a position of 10 nm by ion sputtering. Subsequently, the energy level (HOMO) of the surface exposed by etching is measured by XPS, and this measured value is defined as the energy level E bulk (3) . The measurement conditions of XPS are the same as the measurement method of the energy level E interface (1) .
- the binding energy E HILN of N1s in the hole injection layer 44A and the binding energy E ILN of N1s in the insulating layer 13 satisfy the following formula (3a). Is preferable. 2.7eV ⁇ E HILN- E ILN ... (3a)
- the binding energy E HILN is measured as follows. Each layer formed on the first surface of the organic EL layer 44 is removed. After removal, the organic EL layer 44 is etched by ion sputtering to expose the surface (first surface) of the hole injection layer 44A. Subsequently, the XPS measurement of the surface of the exposed hole injection layer 44A is performed, and the XPS spectrum is acquired. From this XPS spectrum, the binding energy value of the peak of the peak derived from the N1s orbital of the hole injection layer 44A is obtained and used as the binding energy E HILN .
- the binding energy E ILN is measured as follows. Each layer formed on the first surface of the organic EL layer 44 is removed. After removal, the organic EL layer 44 is then etched by ion sputtering to expose the surface (first surface) of the insulating layer 13. Next, the XPS measurement of the surface of the exposed insulating layer 13 is performed, and the XPS spectrum is acquired. From this XPS spectrum, the binding energy value of the peak of the peak derived from the N1s orbital of the insulating layer 13 is obtained and used as the binding energy E ILN .
- the measurement conditions for XPS are the same as the measurement method for the energy level E interface (1) .
- FIG. 9 is a cross-sectional view showing an example of the configuration of the display device 50 according to the fourth embodiment of the present disclosure.
- the display device 50 is different from the display device 40 according to the third embodiment in that the organic EL layer 54 is provided instead of the organic EL layer 14 (see FIG. 7).
- the same reference numerals are given to the same parts as those in the third embodiment, and the description thereof will be omitted.
- the organic EL layer 54 is different from the organic EL layer 44 in the third embodiment in that the hole transport layer 54A having a two-layer structure is provided instead of the hole transport layer 14A having a single layer structure.
- the hole transport layer 54A includes a first hole transport layer 54A1 and a second hole transport layer 54A2.
- the first hole transport layer 54A1 is adjacent to the hole injection layer 44A.
- the second hole transport layer 54A2 is adjacent to the red light emitting layer 14B.
- FIG. 10A is a diagram showing an example of an energy diagram of the insulating layer 13, the hole injection layer 44A, the first hole transport layer 54A1 and the second hole transport layer 54A2.
- the bulk energy level E bulk (4a) of the first hole transport layer 54A1 and the bulk energy level E bulk (4b) of the second hole transport layer 54A2 satisfy the following equation (4). .. 0 ⁇ E bulk (4b) -E bulk (4a) ⁇ 0.3eV ... (4)
- the energy level E bulk (4a) is measured as follows. Each layer formed on the first surface of the organic EL layer 44 is removed. After removal, the organic EL layer 54 is etched from the interface between the hole injection layer 44A and the first hole transport layer 54A1 to the position of 10 nm on the first hole transport layer 34A1 side by ion sputtering. Subsequently, the energy level (HOMO) of the surface exposed by etching is measured by XPS, and this measured value is defined as the energy level E bulk (4a) . The measurement conditions of XPS are the same as the measurement method of the energy level E interface (1) .
- the energy level E bulk (4b) is measured as follows. Each layer formed on the first surface of the organic EL layer 44 is removed. After removal, the organic EL layer 54 is etched by ion sputtering from the interface between the first hole transport layer 54A1 and the second hole transport layer 54A2 to the position of 10 nm on the second hole transport layer 54A2 side. Subsequently, the energy level (HOMO) of the surface exposed by etching is measured by XPS, and this measured value is defined as the energy level E bulk (4b) .
- the measurement conditions of XPS are the same as the measurement method of the energy level E interface (1) in the first embodiment.
- Band bending may be controlled by adjusting the film forming conditions of the insulating layer 13 other than the process gas flow rate ratio. Specifically, for example, the hydrogen content in the insulating layer 13 may be controlled. Alternatively, the insulating layer 13 may be subjected to p-type doping or n-type doping to change the donor level or acceptor level in the insulating layer 13.
- the constituent materials of the hole transport layers 14A, 34A, and 54A may be selected to control band bending.
- a hole transport material having a fermi level HOMO, LUMO (Lowest Unoccupied Molecular Orbital)
- the hole transport material of the first hole transport layer 34A1 and the second hole transport layer 34A2 is the first hole transport layer.
- Those having a fermi level (HOMO, LUMO) such that the energy difference of HOMO is 0.3 eV or less in a state where 34A1 and the second hole transport layer 34A2 are joined may be used.
- the hole transport material of each layer may be selected in the same manner as in the case of the hole transport layer 34A having the above laminated structure.
- the display devices 10, 30, 40, 50 (hereinafter referred to as “display device 10 and the like”) according to the first to fourth embodiments described above and modifications thereof can be used in various electronic devices. ..
- the display device 10 and the like are incorporated into various electronic devices, for example, as a module as shown in FIG. In particular, it is suitable for those that require high resolution such as electronic viewfinders or head-mounted displays of video cameras and single-lens reflex cameras, and are used by enlarging them near the eyes.
- This module has a region 210 exposed on one short side of the drive board 11 without being covered by the facing board 19 or the like, and the wiring of the signal line drive circuit 111 and the scanning line drive circuit 112 is connected to this region 210.
- An external connection terminal (not shown) is formed by extending it.
- a flexible printed circuit board (FPC) 220 for signal input / output may be connected to the external connection terminal.
- This digital still camera 310 is a single-lens reflex type with interchangeable lenses, and has an interchangeable shooting lens unit (interchangeable lens) 312 in the center of the front of the camera body (camera body) 311 and on the left side of the front. It has a grip portion 313 for the photographer to grip.
- interchangeable shooting lens unit interchangeable lens
- a monitor 314 is provided at a position shifted to the left from the center of the back of the camera body 311.
- An electronic viewfinder (eyepiece window) 315 is provided on the upper part of the monitor 314. By looking into the electronic viewfinder 315, the photographer can visually recognize the optical image of the subject guided from the photographing lens unit 312 and determine the composition.
- the electronic viewfinder 315 any of the display devices 10 and the like can be used.
- FIG. 13 shows an example of the appearance of the head-mounted display 320.
- the head-mounted display 320 has, for example, ear hooks 322 for being worn on the user's head on both sides of the eyeglass-shaped display unit 321.
- the display unit 321 any of the display devices 10 and the like can be used.
- FIG. 14 shows an example of the appearance of the television device 330.
- the television device 330 has, for example, a video display screen unit 331 including a front panel 332 and a filter glass 333, and the video display screen unit 331 is composed of any one of the display devices 10 and the like.
- Examples 1 and 2 Comparative Examples 1 and 2
- a metal layer (Al alloy layer) and a metal oxide layer (ITO layer) are sequentially formed on the first surface of the drive substrate by a sputtering method, and then the metal layer and the metal are formed by using photolithography technology and etching technology. The oxide layer was patterned. As a result, a first electrode layer having a plurality of electrodes was formed.
- an insulating layer (SiN layer) having an average thickness of 40 nm was formed on the first surface of the drive substrate by the CVD method.
- SiH 4 gas and NH 3 gas were used as the process gas.
- the flow rate ratio of SiH4 gas and NH3 gas was adjusted so that E HILN -E ILN had the values shown in Table 1.
- a layer having a fixed charge was simultaneously formed on the first surface of the insulating layer. The amount of fixed charge decreased as E HILN -E ILN increased.
- an organic EL layer was formed by laminating a hole injection layer (HATCN), a hole transport layer ( ⁇ -NPD), a light emitting layer, and an electron transport layer on an electrode and an insulating layer by a vapor deposition method.
- a second electrode layer MgAg alloy layer was formed on the first surface of the organic EL layer. As a result, the target display device was obtained.
- E HILN- E ILN The E HILN and E ILN of the display devices of Examples 1 and 2 and Comparative Examples 1 and 2 obtained as described above were measured in the same manner as in the third embodiment, and E HILN -E ILN was obtained. .. The results are shown in Table 1.
- FIG. 15 shows the relationship between E HILN and E ILN and the leakage current between sub-pixels.
- Table 1 shows the evaluation results of the display devices of Examples 1 and 2 and Comparative Examples 1 and 2.
- the device simulation conditions were set as follows. In the device simulation, the state in which the display device is driven was simulated.
- E 1 and E 2 are expressed as follows.
- E 1 -E 2 0.3eV
- the band bending amount in the state where the leak current is suppressed to 104 times the leak current is 0.3 eV.
- the configurations, methods, processes, shapes, materials, numerical values, etc. given in the above-mentioned first to fourth embodiments and modifications thereof are merely examples, and different configurations, methods, and the like are required.
- the process, shape, material, numerical value, etc. may be used.
- the present disclosure may also adopt the following configuration.
- a first electrode layer having a plurality of electrodes arranged two-dimensionally, A second electrode layer provided so as to face the first electrode layer, and An electroluminescence layer provided between the first electrode layer and the second electrode layer, It is provided with an insulating layer provided between the adjacent electrodes.
- the electroluminescence layer includes a hole transport layer, and the hole transport layer is adjacent to the insulating layer.
- the energy level E interface (1) at the interface between the insulating layer and the hole transport layer and the energy level E bulk (1) in the bulk of the hole transport layer satisfy the following equation (1).
- the electroluminescence layer includes a hole transport layer and has a hole transport layer.
- the hole transport layer includes at least a first hole transport layer and a second hole transport layer, and the first hole transport layer is adjacent to the insulating layer.
- the bulk energy level E bulk (2a) of the first hole transport layer and the bulk energy level E bulk (2b) of the second hole transport layer satisfy the following equation (2). Display device. 0 ⁇ E bulk (2b) -E bulk (2a) ⁇ 0.3eV ...
- the electroluminescence layer includes a hole transport layer and a hole injection layer, and the hole injection layer is adjacent to the insulating layer.
- the energy level E interface (3) at the interface between the hole injection layer and the hole transport layer and the energy level E bulk (3) in the bulk of the hole transport layer satisfy the following equation (3). Display device. 0 ⁇ E bulk (3) -E interface (3) ⁇ 0.3eV ...
- the electroluminescence layer includes a hole transport layer and a hole injection layer, and the hole injection layer is adjacent to the insulating layer.
- the hole transport layer includes at least a first hole transport layer and a second hole transport layer, and the first hole transport layer is adjacent to the hole injection layer.
- the bulk energy level E bulk (4a) of the first hole transport layer and the bulk energy level E bulk (4b) of the second hole transport layer satisfy the following equation (4). Display device.
- the hole injection layer and the insulating layer contain nitrogen, and the hole injection layer and the insulating layer contain nitrogen.
- the hole injection layer contains hexaazatriphenylene carbonitrile and contains.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Electroluminescent Light Sources (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
Abstract
Description
2次元配置された複数の電極を有する第1の電極層と、
第1の電極層に対向して設けられた第2の電極層と、
第1の電極層と第2の電極層の間に設けられたエレクトロルミネッセンス層と、
隣接する電極の間に設けられた絶縁層と
を備え、
エレクトロルミネッセンス層は、正孔輸送層を備え、正孔輸送層が絶縁層に隣接し、
絶縁層と正孔輸送層との界面におけるエネルギー準位Einterface(1)と、正孔輸送層のバルクにおけるエネルギー準位Ebulk(1)は、下記の式(1)を満たす表示装置である。
0≦Ebulk(1)-Einterface(1)≦0.3eV ・・・(1)
2次元配置された複数の電極を有する第1の電極層と、
第1の電極層に対向して設けられた第2の電極層と、
第1の電極層と第2の電極層の間に設けられたエレクトロルミネッセンス層と、
隣接する電極の間に設けられた絶縁層と
を備え、
エレクトロルミネッセンス層は、正孔輸送層を備え、
正孔輸送層は、少なくとも第1の正孔輸送層と第2の正孔輸送層とを備え、第1の正孔輸送層が、絶縁層に隣接し、
第1の正孔輸送層のバルクのエネルギー準位Ebulk(2a)と、第2の正孔輸送層のバルクのエネルギー準位Ebulk(2b)は、下記の式(2)を満たす表示装置である。
0≦Ebulk(2b)-Ebulk(2a)≦0.3eV ・・・(2)
2次元配置された複数の電極を有する第1の電極層と、
第1の電極層に対向して設けられた第2の電極層と、
第1の電極層と第2の電極層の間に設けられたエレクトロルミネッセンス層と、
隣接する電極の間に設けられた絶縁層と
を備え、
エレクトロルミネッセンス層は、正孔輸送層と正孔注入層とを備え、正孔注入層が絶縁層に隣接し、
正孔注入層と正孔輸送層との界面におけるエネルギー準位Einterface(3)と正孔輸送層のバルクにおけるエネルギー準位Ebulk(3)が、下記の式(3)を満たす表示装置である。
0≦Ebulk(3)-Einterface(3)≦0.3eV ・・・(3)
2次元配置された複数の電極を有する第1の電極層と、
第1の電極層に対向して設けられた第2の電極層と、
第1の電極層と第2の電極層の間に設けられたエレクトロルミネッセンス層と、
隣接する電極の間に設けられた絶縁層と
を備え、
エレクトロルミネッセンス層は、正孔輸送層と正孔注入層とを備え、正孔注入層が絶縁層に隣接し、
正孔輸送層は、少なくとも第1の正孔輸送層と第2の正孔輸送層とを備え、第1の正孔輸送層が、正孔注入層に隣接し、
第1の正孔輸送層のバルクのエネルギー準位Ebulk(4a)と、第2の正孔輸送層のバルクのエネルギー準位Ebulk(4b)は、下記の式(4)を満たす表示装置である。
0≦Ebulk(4b)-Ebulk(4a)≦0.3eV ・・・(4)
1 第1の実施形態(表示装置の例)
2 第2の実施形態(表示装置の例)
3 第3の実施形態(表示装置の例)
4 第4の実施形態(表示装置の例)
5 変形例(表示装置の変形例)
6 応用例(電子機器の例)
[表示装置の構成]
図1は、本開示の第1の実施形態に係る表示装置10の全体構成の一例を示す概略図である。表示装置10は、表示領域110Aと、表示領域110Aの周縁に設けられた周辺領域110Bとを有している。表示領域110A内には、複数のサブ画素100R、100G、100Bがマトリクス状等の規定の配置パターンで2次元配置されている。
駆動基板11は、いわゆるバックプレーンであり、複数の発光素子20を駆動する。駆動基板11には、複数の発光素子20を駆動する駆動回路、および複数の発光素子20に電力を供給する電源回路等(いずれも図示せず)が設けられている。
第1の電極層12は、駆動基板11の第1の面上に設けられている。第1の電極層12は、アノードである。第1の電極層12と第2の電極層15の間に電圧が加えられると、第1の電極層12から有機EL層14に正孔が注入される。第1の電極層12は、反射層としての機能も兼ねており、できるだけ反射率が高く、かつ仕事関数が大きい材料によって構成されることが、発光効率を高める上で好ましい。第1の電極層12は、複数の電極12Aを有する。複数の電極12Aは、隣接する発光素子20間で電気的に分離されている。複数の電極12Aは、有機EL層14を共有している。複数の電極12Aは、マトリクス状等の規定の配置パターンで2次元配置されている。
第2の電極層15は、第1の電極層12と対向して設けられている。第2の電極層15は、表示領域110A内においてすべてのサブ画素100に共通の電極として設けられている。第2の電極層15は、カソードである。第1の電極層12と第2の電極層15の間に電圧が加えられると、第2の電極層15から有機EL層14に電子が注入される。第2の電極層15は、有機EL層14で発生した光に対して透過性を有する透明電極である。ここで、透明電極には、半透過性反射層も含まれるものとする。第2の電極層15は、できるだけ透過性が高く、かつ仕事関数が小さい材料によって構成されることが、発光効率を高める上で好ましい。
有機EL層14は、第1の電極層12と第2の電極層15の間に設けられている。有機EL層14は、表示領域110A内においてすべてのサブ画素100(すなわち複数の電極12A)に亘って連続して設けられ、表示領域110A内においてすべてのサブ画素100に共通の層として設けられている。有機EL層14は、白色光を発光可能に構成されている。
絶縁層13は、駆動基板11の第1の面上、かつ、隣接する電極12Aの間に設けられている。絶縁層13は、分離された各電極12Aの間を絶縁する。絶縁層13は、複数の開口13Aを有する。複数の開口13Aはそれぞれ、各サブ画素100に対応して設けられている。より具体的には、複数の開口13Aはそれぞれ、分離された各電極12Aの第1の面(第2の電極層15との対向面)上に設けられている。開口13Aを介して、電極12Aと有機EL層14とが接触する。
保護層16は、第2の電極層15の第1の面上に設けられ、複数の発光素子20を覆う。保護層16は、発光素子20を外気と遮断し、外部環境から発光素子20内部への水分浸入を抑制する。また、第2の電極層15が金属層により構成されている場合には、保護層16は、この金属層の酸化を抑制する機能を有していてもよい。
カラーフィルタ17は、保護層16の第1の面上に設けられている。カラーフィルタ17は、例えば、オンチップカラーフィルタ(On Chip Color Filter:OCCF)である。カラーフィルタ17は、例えば、赤色フィルタ17Rと緑色フィルタ17Gと青色フィルタ17Bとを備える。赤色フィルタ17R、緑色フィルタ17G、青色フィルタ17Bはそれぞれ、発光素子20に対向して設けられている。赤色フィルタ17Rと発光素子20とによりサブ画素100Rが構成され、緑色フィルタ17Gと発光素子20とによりサブ画素100Gが構成され、青色フィルタ17Bと発光素子20とによりサブ画素100Bが構成されている。
充填樹脂層18は、カラーフィルタ17と対向基板19の間に設けられている。充填樹脂層18は、カラーフィルタ17と対向基板19とを接着する接着層としての機能を有している。充填樹脂層18は、例えば、熱硬化型樹脂および紫外線硬化型樹脂等からなる群より選ばれた少なくとも1種を含む。
対向基板19は、駆動基板11に対向して設けられている。より具体的には、対向基板19は、対向基板19の第2の面と駆動基板11の第1の面とが対向するように設けられている。対向基板19および充填樹脂層18は、発光素子20およびカラーフィルタ17等を封止する。対向基板19は、カラーフィルタ17から出射される各色光に対して透明なガラス等の材料を含む。
図4Aは、絶縁層13および正孔輸送層14Aのエネルギーダイアグラムの一例を示す図である。正孔輸送層14Aと絶縁層13の界面におけるエネルギー準位Einterface(1)と、正孔輸送層14Aのバルクにおけるエネルギー準位Ebulk(1)は、下記の式(1)を満たす。
0≦Ebulk(1)-Einterface(1)≦0.3eV ・・・(1)
上記の式(1)を満たすように正孔輸送層14Aのバンドベンディングをコントロールするためには、絶縁層13と正孔輸送層14Aのフェルミレベルの位置関係をコントロールすればよい。
・XPS装置:ULVAC-PHI社製 Quantum2000
・線源:Al Kα線 1486.6eV
・ビーム径:100μm
・出射角度:90度
以下、本開示の第1の実施形態に係る表示装置10の製造方法の一例について説明する。
上述したように、第1の実施形態に係る表示装置10では、図4Aに示すように、エネルギー準位Einterface(1)およびエネルギー準位Ebulk(1)が上記式(1)を満たすので、隣接するサブ画素100間での駆動電流のリークを抑制することができる。一方、図4Bに示すように、エネルギー準位Einterface(1)およびエネルギー準位Ebulk(1)が上記式(1)を満たさない場合には、隣接するサブ画素100間での駆動電流のリークを抑制することができない。リーク挙動は、正孔輸送を担う正孔輸送層14Aと絶縁層13との界面におけるバンドベンディングにより正孔たまりができることが原因であると考えられる。
[表示装置の構成]
図5は、本開示の第2の実施形態に係る表示装置30の構成の一例を示す断面図である。表示装置30は、有機EL層14(図2参照)に代えて、有機EL層34を備える点において、第1の実施形態に係る表示装置10とは異なっている。なお、第2の実施形態において、第1の実施形態と同様の箇所には同一の符号を付して説明を省略する。
0≦Ebulk(2b)-Ebulk(2a)≦0.3eV ・・・(2)
上述したように、第2の実施形態に係る表示装置30では、図6Aに示すように、エネルギー準位Ebulk(2a)およびエネルギー準位Ebulk(2b)が上記式(2)を満たすので、隣接するサブ画素100間での駆動電流のリークを抑制することができる。一方、図6Bに示すように、エネルギー準位Ebulk(2a)およびエネルギー準位Ebulk(2b)が上記式(2)を満たさない場合には、隣接するサブ画素100間での駆動電流のリークを抑制することができない。
図7は、本開示の第3の実施形態に係る表示装置40の構成の一例を示す断面図である。表示装置40は、有機EL層14(図2参照)に代えて、有機EL層44を備える点において、第1の実施形態に係る表示装置10とは異なっている。なお、第3の実施形態において、第1の実施形態と同様の箇所には同一の符号を付して説明を省略する。
0≦Ebulk(3)-Einterface(3)≦0.3eV ・・・(3)
2.7eV<EHILN-EILN ・・・(3a)
上述したように、第3の実施形態に係る表示装置40では、図8Aに示すように、エネルギー準位Einterface(3)およびエネルギー準位Ebulk(3)が上記式(3)を満たすので、隣接するサブ画素100間での駆動電流のリークを抑制することができる。一方、図8Bに示すように、エネルギー準位Einterface(3)およびエネルギー準位Ebulk(3)が上記式(3)を満たさない場合には、隣接するサブ画素100間での駆動電流のリークを抑制することができない。
図9は、本開示の第4の実施形態に係る表示装置50の構成の一例を示す断面図である。表示装置50は、有機EL層14(図7参照)に代えて、有機EL層54を備える点において、第3の実施形態に係る表示装置40とは異なっている。なお、第4の実施形態において、第3の実施形態と同様の箇所には同一の符号を付して説明を省略する。
0≦Ebulk(4b)-Ebulk(4a)≦0.3eV ・・・(4)
上述したように、第4の実施形態に係る表示装置50では、図10Aに示すように、エネルギー準位Ebulk(4a)およびエネルギー準位Ebulk(4b)が上記式(4)を満たすので、隣接するサブ画素100間での駆動電流のリークを抑制することができる。一方、図10Bに示すように、エネルギー準位Ebulk(4a)およびエネルギー準位Ebulk(4b)が上記式(4)を満たさない場合には、隣接するサブ画素100間での駆動電流のリークを抑制することができない。
[変形例1]
第1~第4の実施形態では、有機EL層14、34、44、54が、単層の発光ユニットを備える例について説明したが、積層された複数の発光ユニットを備えるスタック構造を有していてもよい。この場合、隣接する発光ユニットの間に電荷発生層が挟まれる。
第2、第4の実施形態では、正孔輸送層34A、54Aが、2層からなる積層構造を有する例について説明したが、3層以上からなる積層構造を有していてもよい。
第1~第4の実施形態では、絶縁層13の形成時のプロセスガス流量比を調整することにより、正孔輸送層14A、34A、54Aのバンドベンディングを調整する例について説明したが、バンドベンディングを調整する方法はこれに限定されるものではない。
第1~第4の実施形態では、表示装置10におけるカラー化の方式としては、白色発光素子とカラーフィルタ17とを用いる方式が用いられる例について説明したが、カラー化の方式はこれに限定されるものではない。例えば、共振器構造により3色光(赤色光、緑色光、青色光)を取り出す方式が用いられてもよいし、カラーフィルタ17と共振器構造とを併用することにより、色純度を高める方式が用いられてもよい。
(電子機器)
上述の第1~第4の実施形態およびそれらの変形例に係る表示装置10、30、40、50(以下「表示装置10等」という。)は、各種の電子機器に用いることが可能である。表示装置10等は、例えば、図11に示したようなモジュールとして、種々の電子機器に組み込まれる。特にビデオカメラや一眼レフカメラの電子ビューファインダまたはヘッドマウント型ディスプレイ等の高解像度が要求され、目の近くで拡大して使用されるものに適する。このモジュールは、駆動基板11の一方の短辺側に、対向基板19等により覆われず露出した領域210を有し、この領域210に、信号線駆動回路111および走査線駆動回路112の配線を延長して外部接続端子(図示せず)が形成されている。この外部接続端子には、信号の入出力のためのフレキシブルプリント配線基板(Flexible Printed Circuit:FPC)220が接続されていてもよい。
図12A、図12Bは、デジタルスチルカメラ310の外観の一例を示す。このデジタルスチルカメラ310は、レンズ交換式一眼レフレックスタイプのものであり、カメラ本体部(カメラボディ)311の正面略中央に交換式の撮影レンズユニット(交換レンズ)312を有し、正面左側に撮影者が把持するためのグリップ部313を有している。
図13は、ヘッドマウントディスプレイ320の外観の一例を示す。ヘッドマウントディスプレイ320は、例えば、眼鏡形の表示部321の両側に、使用者の頭部に装着するための耳掛け部322を有している。表示部321としては、表示装置10等のいずれかを用いることができる。
図14は、テレビジョン装置330の外観の一例を示す。このテレビジョン装置330は、例えば、フロントパネル332およびフィルターガラス333を含む映像表示画面部331を有しており、この映像表示画面部331は、表示装置10等のいずれかにより構成されている。
まず、スパッタリング法により、金属層(Al合金層)、金属酸化物層(ITO層)を駆動基板の第1の面上に順次形成したのち、フォトリソグラフィ技術およびエッチング技術を用いて金属層および金属酸化物層をパターニングした。これにより、複数の電極を有する第1の電極層が形成された。
上述のようにして得られた実施例1、2、比較例1、2の表示装置のEHILN、EILNを、第3の実施形態と同様にして測定し、EHILN-EILNを求めた。その結果を表1に示した。
上述のようにして得られた実施例1、2、比較例1、2の表示装置のサブ画素間リーク電流を測定した。その結果を表1に示した。また、EHILN-EILNとサブ画素間リーク電流との関係を図15に示した。
サブ画素間のリーク電流がEHILN-EILNの値に依存している。具体的には、比較例1のリーク量(=1.0)を基準値としてリークを判断すると、2.7eV<EHILN-EILNである場合、サブ画素間に流れるリーク電流を抑制することができる。一方、EHILN-EILN≦2.7eVである場合、サブ画素間に流れるリーク電流を抑制することが困難である。
デバイスシミュレーションにより、正孔注入層のHOMOと絶縁層のHOMOの差、およびサブ画素間における正孔濃度(リーク量)との関係を求めた。その結果を図16に示した。なお、正孔濃度と正孔リーク電流値は比例関係にある。
・デバイスシミュレータ:Silvaco社製 Atlas
・正孔輸送層(HTL):膜厚50nm、LUMO=1.5、HOMO=5.5[eV]
・正孔注入層(HIL):膜厚2nm、LUMO=5.2、HOMO=9.8[eV]
・絶縁層(SiN):膜厚30nm、EA(電子親和力)=2.6[eV]、Bg=4.7[eV]
・電極
上部電極(カソード):ITO WF(仕事関数)=5.0[eV]
下部電極(アノード):ITO WF=5.0[eV]
・電圧
上部電極=0.0[V]、下部電極=0.0~5.0[V]
I=envS
(I:電流、e:自由電子1個がもつ電荷、n:自由電子の数密度、vS:自由電子が移動する分の体積)
I∝n∝exp(-ΔE/kT)
(ΔE:エネルギー差、k:ボルツマン定数、T:絶対温度)
図17中で定義したエネルギー値E0、E1、E2を用いると、リーク電流が抑制されているときの電流I1とリーク電流が抑制されていないときの電流I2は、以下のように表される。
I1∝exp(-(E0-E1)/kT)
I2∝exp(-(E0-E2)/kT)
電流I1と電流I2に104倍の差があるため、以下のように表される。
I1/I2=104=exp(-((E0-E1)+(E0-E2))/kT)
=exp((E1-E2)/kT)
E1-E2=0.3eV
リーク電流が抑制されている場合、Ebulk-Einterface=0(E0-E1=0)と仮定すると、E1-E2は以下のように表される。
E1-E2=E0-E2=0.3eV
(1)
2次元配置された複数の電極を有する第1の電極層と、
前記第1の電極層に対向して設けられた第2の電極層と、
前記第1の電極層と前記第2の電極層の間に設けられたエレクトロルミネッセンス層と、
隣接する前記電極の間に設けられた絶縁層と
を備え、
前記エレクトロルミネッセンス層は、正孔輸送層を備え、前記正孔輸送層が前記絶縁層に隣接し、
前記絶縁層と前記正孔輸送層との界面におけるエネルギー準位Einterface(1)と、前記正孔輸送層のバルクにおけるエネルギー準位Ebulk(1)は、下記の式(1)を満たす表示装置。
0≦Ebulk(1)-Einterface(1)≦0.3eV ・・・(1)
(2)
2次元配置された複数の電極を有する第1の電極層と、
前記第1の電極層に対向して設けられた第2の電極層と、
前記第1の電極層と前記第2の電極層の間に設けられたエレクトロルミネッセンス層と、
隣接する前記電極の間に設けられた絶縁層と
を備え、
前記エレクトロルミネッセンス層は、正孔輸送層を備え、
前記正孔輸送層は、少なくとも第1の正孔輸送層と第2の正孔輸送層とを備え、前記第1の正孔輸送層が、前記絶縁層に隣接し、
前記第1の正孔輸送層のバルクのエネルギー準位Ebulk(2a)と、前記第2の正孔輸送層のバルクのエネルギー準位Ebulk(2b)は、下記の式(2)を満たす表示装置。
0≦Ebulk(2b)-Ebulk(2a)≦0.3eV ・・・(2)
(3)
2次元配置された複数の電極を有する第1の電極層と、
前記第1の電極層に対向して設けられた第2の電極層と、
前記第1の電極層と前記第2の電極層の間に設けられたエレクトロルミネッセンス層と、
隣接する前記電極の間に設けられた絶縁層と
を備え、
前記エレクトロルミネッセンス層は、正孔輸送層と正孔注入層とを備え、前記正孔注入層が前記絶縁層に隣接し、
前記正孔注入層と前記正孔輸送層との界面におけるエネルギー準位Einterface(3)と前記正孔輸送層のバルクにおけるエネルギー準位Ebulk(3)が、下記の式(3)を満たす表示装置。
0≦Ebulk(3)-Einterface(3)≦0.3eV ・・・(3)
(4)
2次元配置された複数の電極を有する第1の電極層と、
前記第1の電極層に対向して設けられた第2の電極層と、
前記第1の電極層と前記第2の電極層の間に設けられたエレクトロルミネッセンス層と、
隣接する前記電極の間に設けられた絶縁層と
を備え、
前記エレクトロルミネッセンス層は、正孔輸送層と正孔注入層とを備え、前記正孔注入層が前記絶縁層に隣接し、
前記正孔輸送層は、少なくとも第1の正孔輸送層と第2の正孔輸送層とを備え、前記第1の正孔輸送層が、前記正孔注入層に隣接し、
前記第1の正孔輸送層のバルクのエネルギー準位Ebulk(4a)と、前記第2の正孔輸送層のバルクのエネルギー準位Ebulk(4b)は、下記の式(4)を満たす表示装置。
0≦Ebulk(4b)-Ebulk(4a)≦0.3eV ・・・(4)
(5)
前記正孔注入層および前記絶縁層は、窒素を含み、
前記正孔注入層におけるN1sの結合エネルギーEHILNと、前記絶縁層におけるN1sの結合エネルギーEILNが、下記の式(3a)を満たす(3)または(4)に記載の表示装置。
2.7eV<EHILN-EILN ・・・(3a)
(6)
前記正孔注入層は、ヘキサアザトリフェニレンカルボニトリルを含み、
前記絶縁層は、窒化シリコンを含む(5)に記載の表示装置。
(7)
前記エレクトロルミネッセンス層は、前記複数の電極に亘って設けられている(1)から(6)のいずれかに記載の表示装置。
(8)
(1)から(7)のいずれかに記載の表示装置を備える電子機器。
11 駆動基板
12 第1の電極層
12A 電極
13 絶縁層
13A 開口
14、34、44、54 有機エレクトロルミネッセンス層
14A、34A、54A 正孔輸送層
14B 赤色発光層
14C 発光分離層
14D 青色発光層
14E 緑色発光層
14F 電子輸送層
14G 電子注入層
15 第2の電極層
16 保護層
17 カラーフィルタ
17R 赤色フィルタ
17G 緑色フィルタ
17B 青色フィルタ
17BM 遮光層
18 充填樹脂層
19 対向基板
20 発光素子
34A1、54A1 第1の正孔輸送層
34A2、54A2 第2の正孔輸送層
44A 正孔注入層
100R、100G、100B サブ画素
110A 表示領域
110B 周辺領域
111 信号線駆動回路
111A 信号線
112 走査線駆動回路
112A 走査線
310 デジタルスチルカメラ(電子機器)
320 ヘッドマウントディスプレイ(電子機器)
330 テレビジョン装置(電子機器)
Claims (8)
- 2次元配置された複数の電極を有する第1の電極層と、
前記第1の電極層に対向して設けられた第2の電極層と、
前記第1の電極層と前記第2の電極層の間に設けられたエレクトロルミネッセンス層と、
隣接する前記電極の間に設けられた絶縁層と
を備え、
前記エレクトロルミネッセンス層は、正孔輸送層を備え、前記正孔輸送層が前記絶縁層に隣接し、
前記絶縁層と前記正孔輸送層との界面におけるエネルギー準位Einterface(1)と、前記正孔輸送層のバルクにおけるエネルギー準位Ebulk(1)は、下記の式(1)を満たす表示装置。
0≦Ebulk(1)-Einterface(1)≦0.3eV ・・・(1) - 2次元配置された複数の電極を有する第1の電極層と、
前記第1の電極層に対向して設けられた第2の電極層と、
前記第1の電極層と前記第2の電極層の間に設けられたエレクトロルミネッセンス層と、
隣接する前記電極の間に設けられた絶縁層と
を備え、
前記エレクトロルミネッセンス層は、正孔輸送層を備え、
前記正孔輸送層は、少なくとも第1の正孔輸送層と第2の正孔輸送層とを備え、前記第1の正孔輸送層が、前記絶縁層に隣接し、
前記第1の正孔輸送層のバルクのエネルギー準位Ebulk(2a)と、前記第2の正孔輸送層のバルクのエネルギー準位Ebulk(2b)は、下記の式(2)を満たす表示装置。
0≦Ebulk(2b)-Ebulk(2a)≦0.3eV ・・・(2) - 2次元配置された複数の電極を有する第1の電極層と、
前記第1の電極層に対向して設けられた第2の電極層と、
前記第1の電極層と前記第2の電極層の間に設けられたエレクトロルミネッセンス層と、
隣接する前記電極の間に設けられた絶縁層と
を備え、
前記エレクトロルミネッセンス層は、正孔輸送層と正孔注入層とを備え、前記正孔注入層が前記絶縁層に隣接し、
前記正孔注入層と前記正孔輸送層との界面におけるエネルギー準位Einterface(3)と、前記正孔輸送層のバルクにおけるエネルギー準位Ebulk(3)が、下記の式(3)を満たす表示装置。
0≦Ebulk(3)-Einterface(3)≦0.3eV ・・・(3) - 2次元配置された複数の電極を有する第1の電極層と、
前記第1の電極層に対向して設けられた第2の電極層と、
前記第1の電極層と前記第2の電極層の間に設けられたエレクトロルミネッセンス層と、
隣接する前記電極の間に設けられた絶縁層と
を備え、
前記エレクトロルミネッセンス層は、正孔輸送層と正孔注入層とを備え、前記正孔注入層が前記絶縁層に隣接し、
前記正孔輸送層は、少なくとも第1の正孔輸送層と第2の正孔輸送層とを備え、前記第1の正孔輸送層が、前記正孔注入層に隣接し、
前記第1の正孔輸送層のバルクのエネルギー準位Ebulk(4a)と、前記第2の正孔輸送層のバルクのエネルギー準位Ebulk(4b)は、下記の式(4)を満たす表示装置。
0≦Ebulk(4b)-Ebulk(4a)≦0.3eV ・・・(4) - 前記正孔注入層および前記絶縁層は、窒素を含み、
前記正孔注入層におけるN1sの結合エネルギーEHILNと、前記絶縁層におけるN1sの結合エネルギーEILNが、下記の式(3a)を満たす請求項3に記載の表示装置。
2.7eV<EHILN-EILN ・・・(3a) - 前記正孔注入層は、ヘキサアザトリフェニレンカルボニトリルを含み、
前記絶縁層は、窒化シリコンを含む請求項5に記載の表示装置。 - 前記エレクトロルミネッセンス層は、前記複数の電極に亘って設けられている請求項1に記載の表示装置。
- 請求項1に記載の表示装置を備える電子機器。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/256,616 US20240040844A1 (en) | 2020-12-22 | 2021-12-22 | Display device and electronic device |
CN202180084878.6A CN116670745A (zh) | 2020-12-22 | 2021-12-22 | 显示装置及电子设备 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020212887 | 2020-12-22 | ||
JP2020-212887 | 2020-12-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022138709A1 true WO2022138709A1 (ja) | 2022-06-30 |
Family
ID=82159756
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/047535 WO2022138709A1 (ja) | 2020-12-22 | 2021-12-22 | 表示装置および電子機器 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20240040844A1 (ja) |
CN (1) | CN116670745A (ja) |
WO (1) | WO2022138709A1 (ja) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014049405A (ja) * | 2012-09-04 | 2014-03-17 | Sony Corp | 表示装置およびその製造方法、並びに電子機器 |
JP2017199669A (ja) * | 2016-04-22 | 2017-11-02 | 株式会社半導体エネルギー研究所 | 発光素子、表示装置、電子機器、及び照明装置 |
JP2017220528A (ja) * | 2016-06-06 | 2017-12-14 | 株式会社Joled | 有機el表示パネル |
WO2018147050A1 (ja) * | 2017-02-13 | 2018-08-16 | ソニー株式会社 | 表示装置、および電子機器 |
US20200161577A1 (en) * | 2018-11-21 | 2020-05-21 | Lg Display Co., Ltd. | Quantum dot light emitting diode and quantum dot light emitting display device including the same |
WO2020111202A1 (ja) * | 2018-11-28 | 2020-06-04 | ソニー株式会社 | 表示装置および電子機器 |
US20200212336A1 (en) * | 2018-12-27 | 2020-07-02 | Lg Display Co., Ltd. | Display device |
-
2021
- 2021-12-22 CN CN202180084878.6A patent/CN116670745A/zh active Pending
- 2021-12-22 US US18/256,616 patent/US20240040844A1/en active Pending
- 2021-12-22 WO PCT/JP2021/047535 patent/WO2022138709A1/ja active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014049405A (ja) * | 2012-09-04 | 2014-03-17 | Sony Corp | 表示装置およびその製造方法、並びに電子機器 |
JP2017199669A (ja) * | 2016-04-22 | 2017-11-02 | 株式会社半導体エネルギー研究所 | 発光素子、表示装置、電子機器、及び照明装置 |
JP2017220528A (ja) * | 2016-06-06 | 2017-12-14 | 株式会社Joled | 有機el表示パネル |
WO2018147050A1 (ja) * | 2017-02-13 | 2018-08-16 | ソニー株式会社 | 表示装置、および電子機器 |
US20200161577A1 (en) * | 2018-11-21 | 2020-05-21 | Lg Display Co., Ltd. | Quantum dot light emitting diode and quantum dot light emitting display device including the same |
WO2020111202A1 (ja) * | 2018-11-28 | 2020-06-04 | ソニー株式会社 | 表示装置および電子機器 |
US20200212336A1 (en) * | 2018-12-27 | 2020-07-02 | Lg Display Co., Ltd. | Display device |
Also Published As
Publication number | Publication date |
---|---|
CN116670745A (zh) | 2023-08-29 |
US20240040844A1 (en) | 2024-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104009186B (zh) | 有机发光显示装置及其制造方法 | |
US8164253B2 (en) | Optically-functional film and method of manufacturing the same, display and method of manufacturing the same | |
US11621405B2 (en) | Display device and electronic apparatus | |
US8957579B2 (en) | Low image sticking OLED display | |
KR101895616B1 (ko) | 유기 발광 표시 장치 및 그 제조 방법 | |
CN109817695B (zh) | 一种oled显示面板及制备方法、显示装置 | |
KR102323630B1 (ko) | 표시 장치 및 그 제조 방법, 및 전자 기기의 제조 방법 | |
JP2015069844A (ja) | 表示装置および電子機器 | |
JP2024092028A (ja) | 表示装置、表示装置の製造方法、及び、電子機器 | |
TWI414203B (zh) | A manufacturing method and a display device of a display device | |
TW202044636A (zh) | 顯示裝置 | |
JP7456548B2 (ja) | 表示装置 | |
KR102604263B1 (ko) | 표시장치 | |
WO2022138709A1 (ja) | 表示装置および電子機器 | |
WO2022054761A1 (ja) | 表示装置、発光装置および電子機器 | |
WO2022009803A1 (ja) | 表示装置、発光装置および電子機器 | |
KR20230163374A (ko) | 표시 장치, 전자 기기, 그리고 표시 장치의 제조 방법 | |
JP2012156136A (ja) | 有機発光表示装置 | |
JP2012212622A (ja) | 表示装置およびその製造方法 | |
WO2020110944A1 (ja) | 発光素子、表示装置及び電子機器 | |
WO2022107679A1 (ja) | 表示装置および電子機器 | |
WO2023002699A1 (ja) | 表示装置および電子機器 | |
WO2022054843A1 (ja) | 表示装置、発光装置および電子機器 | |
WO2023095662A1 (ja) | 表示装置およびその製造方法、ならびに電子機器 | |
US20240357858A1 (en) | Organic electroluminescent devices |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21910849 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18256616 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202180084878.6 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21910849 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |