WO2022138582A1 - パッチアンテナ - Google Patents

パッチアンテナ Download PDF

Info

Publication number
WO2022138582A1
WO2022138582A1 PCT/JP2021/047073 JP2021047073W WO2022138582A1 WO 2022138582 A1 WO2022138582 A1 WO 2022138582A1 JP 2021047073 W JP2021047073 W JP 2021047073W WO 2022138582 A1 WO2022138582 A1 WO 2022138582A1
Authority
WO
WIPO (PCT)
Prior art keywords
patch antenna
radiating element
feeding
antenna according
elevation angle
Prior art date
Application number
PCT/JP2021/047073
Other languages
English (en)
French (fr)
Inventor
高志 野崎
浩年 水野
Original Assignee
株式会社ヨコオ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ヨコオ filed Critical 株式会社ヨコオ
Priority to US18/268,605 priority Critical patent/US20240047879A1/en
Priority to CN202180085134.6A priority patent/CN116783781A/zh
Priority to EP21910725.7A priority patent/EP4270649A1/en
Publication of WO2022138582A1 publication Critical patent/WO2022138582A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/22Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using a secondary device in the form of a single substantially straight conductive element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • H01Q1/325Adaptation for use in or on road or rail vehicles characterised by the location of the antenna on the vehicle
    • H01Q1/3275Adaptation for use in or on road or rail vehicles characterised by the location of the antenna on the vehicle mounted on a horizontal surface of the vehicle, e.g. on roof, hood, trunk
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/24Polarising devices; Polarisation filters 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0428Substantially flat resonant element parallel to ground plane, e.g. patch antenna radiating a circular polarised wave
    • H01Q9/0435Substantially flat resonant element parallel to ground plane, e.g. patch antenna radiating a circular polarised wave using two feed points

Definitions

  • the present invention relates to a patch antenna.
  • Patent Document 1 discloses a patch antenna including a ground conductor plate, a dielectric substrate, and a radiating element.
  • the antenna device for accommodating the patch antenna is miniaturized, the area of the base on which the patch antenna is grounded becomes small, and the gain of the low elevation angle of the patch antenna may decrease.
  • An example of an object of the present invention is to improve the gain of a low elevation angle of a patch antenna.
  • Other objects of the invention will become apparent from the description herein.
  • One aspect of the present invention comprises a dielectric member, a radiation element provided on the dielectric member, and at least one non-feeding element provided around the dielectric member and the radiation element and grounded. It is a patch antenna to be equipped.
  • the gain of the patch antenna at a low elevation angle is improved.
  • FIG. 1 is a side view of the front part of the vehicle 1 to which the vehicle-mounted antenna device 10 is attached.
  • the front-rear direction of the vehicle to which the vehicle-mounted antenna device 10 is attached is defined as the X direction
  • the left-right direction perpendicular to the X direction is defined as the Y direction
  • the vertical direction perpendicular to the X direction and the Y direction is defined as the Z direction.
  • the front side (front side) from the driver's seat of the vehicle is in the + X direction
  • the right side is in the + Y direction
  • the zenith direction (upward direction) is in the + Z direction.
  • the front-back, left-right, and up-down directions of the in-vehicle antenna device 10 will be described as being the same as the front-back, left-right, and up-down directions of the vehicle.
  • the in-vehicle antenna device 10 is housed in a cavity 4 between the roof panel 2 of the vehicle 1 and the roof lining 3 on the ceiling surface in the vehicle interior.
  • the roof panel 2 is made of, for example, an insulating resin so that the in-vehicle antenna device 10 can receive an electromagnetic wave (hereinafter, appropriately referred to as “radio wave”).
  • the in-vehicle antenna device 10 housed in the cavity 4 is fixed to the roof lining 3 made of an insulating resin by a screw or the like. As described above, the in-vehicle antenna device 10 is surrounded by the insulating roof panel 2 and the roof lining 3. In the present embodiment, the in-vehicle antenna device 10 is fixed to the roof lining 3, but may be fixed to, for example, a vehicle frame or a resin roof panel 2.
  • an in-vehicle antenna device 10 including a patch antenna capable of improving the gain of a low elevation angle will be described.
  • FIG. 2 is an exploded perspective view of the in-vehicle antenna device 10.
  • the in-vehicle antenna device 10 is an antenna device including a plurality of antennas having different operating frequency bands, and includes a base 11, a case 12, antennas 21 to 26, and a patch antenna 30.
  • the base 11 is a quadrilateral metal plate used as a ground common to the antennas 21 to 26 and the patch antenna 30, and is installed on the roof lining 3 in the cavity 4. Further, the base 11 is a thin plate spread in front, back, left and right.
  • the case 12 is a box-shaped member, and the lower surface of the six surfaces is open. Further, since the case 12 is made of an insulating resin, radio waves can pass through the case 12. Then, the case 12 is attached to the base 11 so that the opening of the case 12 is closed by the base 11. Therefore, the antennas 21 to 26 and the patch antenna 30 are housed in the space inside the case 12.
  • the antennas 21 to 26 and the patch antenna 30 are mounted on the base 11 in the case 12.
  • the patch antenna 30 is arranged near the center of the base 11, and the antennas 21 to 26 are arranged around the patch antenna 30.
  • the antennas 21 and 22 are arranged on the front side and the rear side of the patch antenna 30, respectively.
  • the antennas 23 and 24 are arranged on the left side and the right side of the patch antenna 30, respectively.
  • the antenna 25 is arranged on the left side of the antenna 22 and behind the antenna 23, and the antenna 26 is arranged on the right side of the antenna 21 and on the front side of the antenna 24.
  • the antenna 21 is, for example, a planar antenna used for GNSS (Global Navigation Satellite System), and receives radio waves in the 1.5 GHz band from an artificial satellite.
  • GNSS Global Navigation Satellite System
  • the antenna 22 is, for example, a monopole antenna used in a V2X (Vehicle-to-everything) system, and transmits / receives radio waves in the 5.8 GHz band or the 5.9 GHz band.
  • V2X Vehicle-to-everything
  • the antenna 22 is an antenna for V2X, it may be an antenna for Wi-Fi or Bluetooth, for example.
  • Antennas 23 and 24 are antennas used for, for example, LTE (Long Term Evolution) and 5th generation mobile communication systems.
  • the antennas 23 and 24 transmit and receive radio waves in the 2.7 GHz band from the 700 MHz frequency band defined by the LTE standard. Further, the antennas 23 and 24 also transmit and receive radio waves in the Sub-6 band defined by the standard of the 5th generation mobile communication system, that is, the frequency band from 3.6 GHz band to less than 6 GHz.
  • the antennas 23 and 24 may be telematics antennas.
  • Antennas 25 and 26 are, for example, antennas used in the 5th generation mobile communication system.
  • the antennas 25 and 26 transmit and receive radio waves in the Sub-6 band defined by the standard of the 5th generation mobile communication system.
  • the antennas 25 and 26 may be telematics antennas.
  • the applicable communication standards and frequency bands of the antennas 21 to 26 are not limited to those described above, and may be other communication standards and frequency bands.
  • the patch antenna 30 is, for example, an antenna used in the method of satellite digital audio radio service (SDARS: Satellite Digital Audio Radio Service).
  • SDARS Satellite Digital Audio Radio Service
  • the patch antenna 30 receives the left-handed circular polarization in the 2.3 GHz band.
  • FIGS. 3 to 6 are perspective views of the patch antenna 30, FIG. 4 is a cross-sectional view of the patch antenna 30 of line AA of FIG. 3, and FIG. 6 including FIG. 5 is a plan view of the patch antenna 30.
  • the patch antenna 30 includes a circuit board 32 on which conductive patterns 31 and 33 (described later) are formed, a dielectric member 34, a radiating element 35, non-feeding elements 36 to 39, and a shield cover 40.
  • the circuit board 32, the dielectric member 34, and the radiating element 35 stacked in order in the positive direction of the Z axis will be referred to as a “main body portion of the patch antenna 30”.
  • four non-feeding elements 36 to 39 are arranged around the main body of the patch antenna 30.
  • the circuit board 32 is a dielectric plate material in which conductor patterns 31 and 33 are formed on the back surface (the surface in the negative direction of the Z axis) and the front surface (the surface in the positive direction of the Z axis), respectively.
  • the pattern 31 includes a circuit pattern 31a and a ground pattern 31b.
  • the circuit pattern 31a is, for example, a conductive pattern to which the signal line 45a of the coaxial cable 45 from the amplifier board (not shown) is connected. Further, the braid 45b of the coaxial cable 45 is electrically connected to the ground pattern 31b by solder (not shown). The configuration for connecting the circuit pattern 31a and the radiating element 35 will be described later.
  • the ground pattern 31b is a conductive pattern for grounding the main body of the patch antenna 30.
  • the ground pattern 31b and the four pedestals 11a provided on the metal base 11 are electrically connected.
  • a part of the base 11 is formed by bending so as to support the main body portion of the patch antenna 30.
  • the ground pattern 31b is grounded by electrically connecting the ground pattern 31b and the pedestal portion 11a.
  • a metallic shield cover 40 for protecting the circuit pattern 31a is attached to the back surface of the circuit board 32, for example. Further, the shield cover 40 shields electronic circuit components such as an amplifier mounted on the back surface of the circuit board 32.
  • the pattern 33 formed on the front surface of the circuit board 32 is a ground pattern that functions as a ground for the ground conductor plate (or ground conductor film) of the patch antenna 30 and a circuit (not shown).
  • the pattern 33 is electrically connected to the ground pattern 31b via a through hole. Further, the ground pattern 31b is electrically connected to the base 11 via a fixing screw for fixing the circuit board 32 to the pedestal portion 11a and the pedestal portion 11a. Therefore, the pattern 33 will be electrically connected to the base 11.
  • the dielectric member 34 is a substantially quadrilateral plate-shaped member having a side parallel to the X axis and a side parallel to the Y axis.
  • the front surface and the back surface of the dielectric member 34 are parallel to the X-axis and the Y-axis, the front surface of the dielectric member 34 is directed in the positive direction of the Z-axis, and the back surface of the dielectric member 34 is directed.
  • the surface is oriented in the negative direction of the Z axis.
  • the back surface of the dielectric member 34 is attached to the pattern 33 by, for example, double-sided tape.
  • the dielectric member 34 is made of a dielectric material such as ceramic.
  • the radiating element 35 is a substantially quadrilateral conductive element smaller than the area of the front surface of the dielectric member 34, and is formed on the front surface of the dielectric member 34.
  • the normal direction of the radiation surface of the radiation element 35 is the Z-axis positive direction.
  • the radiating element 35 has sides 35a and 35c parallel to the Y axis and sides 35b and 35d parallel to the X axis.
  • the "substantially quadrilateral” means, for example, a shape consisting of four sides including a square or a rectangle, and for example, at least a part of the corners may be cut out diagonally with respect to the sides. Further, in the shape of "substantially quadrilateral", a notch (concave portion) or a protrusion (convex portion) may be provided in a part of the side. That is, the "substantially quadrilateral” may have a shape in which the radiating element 35 can transmit and receive radio waves in a desired frequency band.
  • the through hole 41 penetrates the circuit board 32, the pattern 33, and the dielectric member 34. Inside the through hole 41, a feeder line 42 for connecting the circuit pattern 31a and the radiating element 35 is provided.
  • the feeder line 42 connects the circuit pattern 31a and the radiating element 35 in a state of being electrically insulated from the grounded pattern 33. Further, in the present embodiment, the point at which the feeder line 42 is electrically connected to the radiating element 35 is defined as the feeder point 43a.
  • FIG. 5 is a diagram showing the position of the feeding point 43a of the radiating element 35 of the 1 feeding method.
  • the feeding point 43a is provided at a position deviated from the center point 35p of the radiating element 35 in the positive direction of the X-axis.
  • the position of the feeding point 43a is not limited to this, and for example, as shown by the alternate long and short dash line in FIG. 5, the feeding point 43a is shifted from the center point 35p of the radiating element 35 in the positive direction on the X axis and the negative direction on the Y axis. It may be provided at a position.
  • the “center point 35p of the radiating element 35” means the center point in the outer edge shape of the radiating element 35, that is, the geometric center.
  • the radiation element 35 of the 1-feed supply system of FIG. 5 has, for example, a substantially rectangular shape having different vertical and horizontal lengths so that desired circular polarization can be transmitted and received.
  • the "substantially rectangular” is a shape included in the above-mentioned “substantially quadrilateral”. Therefore, the "center point 35p of the radiating element 35" is a point where the diagonal lines of the radiating element 35 intersect.
  • the “substantially rectangular” is a shape included in the above-mentioned “substantially quadrilateral”.
  • feeder line to be added can be provided through a through hole (not shown) penetrating the dielectric member 34 or the like, similarly to the feeder line 42, detailed description of the configuration will be omitted here.
  • FIG. 6 is a diagram showing the positions of the feeding points 43a of the radiating element 35 of the two feeding system.
  • the positions of the two feeding points 43a in FIG. 6 are examples, and may be suitable positions so that the radiating element 35 can transmit and receive the desired circular polarization.
  • the radiating element 35 of FIG. 6 has, for example, a substantially square shape having the same vertical and horizontal lengths so that desired circular polarization can be transmitted and received.
  • the "substantially square” is a shape included in the above-mentioned "substantially quadrilateral".
  • the non-feeding elements 36 to 39 are conductive rod-shaped members bent in an L shape. Each of the non-feeding elements 36 to 39 is provided on the base 11 around the radiating element 35 of the patch antenna 30. Here, since the non-feeding elements 36 to 39 and the base are electrically connected, each of the non-feeding elements 36 to 39 is grounded.
  • the “around the radiating element 35” means that the gain of the patch antenna 30 at a low elevation angle of the patch antenna 30 is higher than that in the case where the non-feeding elements 36 to 39 are not provided.
  • the “periphery of the radiating element 35” means, for example, a range from the outer edge of the radiating element 35 to a place separated by a quarter of the wavelength used.
  • the "used wavelength” is a wavelength corresponding to a desired frequency in a desired frequency band in which the patch antenna 30 is used, and specifically, for example, a wavelength corresponding to the center frequency of the desired frequency band.
  • Each of the non-feeding elements 36 to 39 is provided so as to be separated from the outer edge of the radiating element 35 to the outside, and the distance from each of the non-feeding elements 36 to 39 to the outer edge of the radiating element 35 is equal to each other.
  • the outside of the radiating element 35 is a direction away from the center point 35p of the radiating element 35 on the base 11. Further, although the details will be described later, the characteristics of the patch antenna 30 can be adjusted by changing the distance from the non-feeding elements 36 to 39 to the outer edge of the radiating element 35.
  • the non-feeding element 36 has a support column portion 36a and an extension portion 36b.
  • the support column portion 36a is provided around the main body portion of the patch antenna 30 in a state of being vertically erected on the base 11.
  • the strut portion 36a is perpendicular not only to the base 11 but also to the radiating surface of the radiating element 35. Therefore, the support column portion 36a extends in the Z-axis direction.
  • the base end of the strut portion 36a (one end of the strut portion 36a) is electrically connected to the base 11 and is grounded.
  • the extending portion 36b extends from the top of the strut portion 36a (the other end of the strut portion 36a) in the direction orthogonal to the strut portion 36a.
  • the total length of the non-feeding element 36 is made shorter than one-fourth of the wavelength used, more preferably one-fourth of the wavelength used.
  • the "total length of the non-feeding element" is, for example, the length along the support column 36a and the extension portion 36b from the base end of the support column portion 36a to the tip end of the extension portion 36b.
  • the base end of the support column portion 36a corresponds to a "grounded end portion".
  • the non-feeding element 36 functions as a waveguide. It should be noted that the non-feeding element 36 can be used as a waveguide by not grounding the non-feeding element 36 and by reducing the total length of the non-feeding element 36 to approximately half of the wavelength used. However, when the non-feeding element 36 is not grounded, the non-feeding element 36 is not affected by the mirror image effect, and as a result, the total length becomes long. Therefore, the patch antenna 30 can be made smaller by using the grounded non-feeding element 36.
  • Each of the non-feeding elements 37 to 39 is the same element as the non-feeding element 36.
  • the non-feeding element 37 has a strut portion 37a and an extending portion 37b
  • the non-feeding element 38 has a strut portion 38a and an extending portion 38b
  • the non-feeding element 39 has a support column portion 39a and an extension portion 39b. Therefore, detailed description of each of the non-feeding elements 37 to 39 will be omitted.
  • the support columns 36a to 39a are separated outward from the outer edge of the radiating element 35 and are parallel to the normal line of the radiating element 35, that is, the Z axis.
  • the non-feeding element 36 is attached so that the extending portion 36b extending from the top of the supporting portion 36a is parallel to the side 35a of the radiating element 35 closest to the extending portion 36b. Therefore, in a plan view of the front surface of the radiating element 35 from the positive direction of the Z axis, the "distance D" between the non-feeding element 36 and the radiating element 35 is from the extending portion 36b (or the strut portion 36a). , The distance from the non-feeding element 36 to the side 35a of the nearest radiating element 35. The distance D corresponds to a "predetermined distance".
  • the non-feeding elements 37 to 39 are installed in the same manner as the non-feeding elements 36. Although the details will be described later, the non-feeding elements 36 to 39 are provided on the base 11 so that the distance D of each of the non-feeding elements 36 to 39 is 16/3 of the wavelength used. In the present embodiment, the distances D of the non-feeding elements 37 to 39 are the same, but the distance D is not limited to this. For example, the distance D of each of the non-feeding elements 37 to 39 may be different. Further, a part of the distances D of the non-feeding elements 37 to 39 may be the same.
  • the extending portions 36b to 39b extend from the tops of the support columns 36a to 39a in the turning direction of the left-handed circularly polarized wave so as to follow the turning direction of the left-handed circularly polarized wave. That is, when viewed in the negative direction of the Z axis, the extending portions 36b to 39b extend in the counterclockwise direction from the strut portions 36a to 39a, respectively.
  • the gain of the low elevation angle of the patch antenna 30 can be improved by installing the non-feeding elements 36 to 39 in such a direction.
  • Non-feeding elements 36 to 39 may be installed.
  • the "height" means, for example, the distance from the base 11 to the target.
  • the distance from the grounded base end of the support columns 36a to 39a, that is, the base 11, to the top of the support columns 36a to 39a is defined as “height H”.
  • the height from the base 11 to the top of the support columns 36a to 39a along the Z-axis direction is equal to the height from the base 11 to the radiating element 35 along the Z-axis direction.
  • the height H of ⁇ 39a is adjusted. Therefore, the height from the base 11 to the extending portions 36b to 39b along the Z-axis direction is also equal to the height from the base 11 to the radiating element 35 along the Z-axis direction.
  • the positions of the extending portions 36b to 39b in the Z-axis direction are aligned with the positions of the radiating elements 35 in the Z-axis direction, and the extending portions 36b to 39b and the radiating element 35 are on the same XY plane. It is above.
  • the distance at which the target deviates along the X-axis direction from the position of the midpoint of the side 35b (or the side 35d) of the radiating element 35 in the X-axis direction is defined as the X-axis direction offset amount. do. Further, the distance at which the target deviates from the position of the midpoint of the side 35a (or the side 35c) of the radiating element 35 in the Y-axis direction along the Y-axis direction is defined as the Y-axis direction offset amount.
  • the offset amount in the X-axis direction of the midpoints of the extending portions 37b and 39b in the X-axis direction is 0 mm. That is, the positions of the midpoints of the extending portions 37b and 39b in the X-axis direction are aligned with the positions of the midpoints of the sides 35b of the radiating element 35 in the X-axis direction.
  • the offset amount in the Y-axis direction of the midpoint of the extending portions 36b and 38b in the Y-axis direction is 0 mm. That is, the positions of the midpoints of the extending portions 36b and 38b in the Y-axis direction are aligned with the positions of the midpoints of the sides 35a and 35c of the radiating element 35 in the Y-axis direction.
  • the gains of the patch antenna 30 and the patch antenna of the comparative example (hereinafter referred to as patch antenna X) were calculated under the conditions shown in Table 1 (hereinafter referred to as “reference conditions”).
  • the patch antenna X (not shown) is an antenna in which the non-feeding elements 36 to 39 are not provided in the patch antenna 30, that is, an antenna using only the main body of the patch antenna 30. Further, in the simulation of the patch antenna 30 and the patch antenna X, for convenience, a model in which the circuit pattern 31a and the like having a small influence on the gain are omitted is used.
  • FIG. 7 is a calculation result of the patch antenna X
  • FIG. 8 is a calculation result of the patch antenna 30 in which the non-feeding elements 36 to 39 are installed.
  • 7 and 8 are diagrams showing the relationship between the elevation angle and the average gain.
  • the horizontal axis represents the elevation angle
  • the vertical axis represents the average gain.
  • the average gains at elevation angles of 20 °, 25 °, and 30 ° are ⁇ 0.7 dBic, 0.5 dBic, and 1.5 dBic.
  • FIG. 7 is a calculation result of the patch antenna X
  • FIG. 8 is a calculation result of the patch antenna 30 in which the non-feeding elements 36 to 39 are installed.
  • 7 and 8 are diagrams showing the relationship between the elevation angle and the average gain.
  • the horizontal axis represents the elevation angle
  • the vertical axis represents the average gain.
  • the average gains at elevation angles of 20 °, 25 °, and 30 ° are ⁇ 0.7 dBic, 0.5 dBic
  • the average gains at elevation angles of 20 °, 25 °, and 30 ° are 0.3 dBic, 1.3 dBic, and 1.2 dBic. Is. Therefore, the patch antenna 30 on which the non-feeding elements 36 to 39 are installed has a higher average gain at a low elevation angle of 20 ° to 30 ° than the patch antenna X.
  • the patch antenna 30 can efficiently receive the incoming radio wave having a low elevation angle.
  • FIGS. 9 to 11 are diagrams showing the relationship between the elevation angle and the average gain.
  • the horizontal axis represents the elevation angle and the vertical axis represents the average gain.
  • the patch antenna 30 in which the distance D is set to 12 mm or 32 mm has a higher average gain at a low elevation angle of 20 ° to 30 ° than the patch antenna X.
  • the patch antenna 30 in which the distance D is set to 48 mm has a lower average gain at a low elevation angle of 20 ° to 30 ° than the patch antenna X. Therefore, in order for the extending portions 36b to 39b to contribute to the improvement of the gain at a low elevation angle, the distance D from the extending portions 36b to 39b to the outer edge of the radiating element 35 is set to 32 mm (1/4 of the wavelength used). The following is preferable.
  • the feeding method of the patch antenna 30 is changed from the two feeding method to the one feeding method.
  • the reference conditions were adopted, and the gains of the patch antenna 30 and the patch antenna X of the one feeding method were calculated.
  • the lengths of the sides 35a and 35c of the radiating element 35 were set to 19.9 mm, and the lengths of the sides 35b and 35c were set to 21.7 mm.
  • the feeding point 41a is set at a position shifted from the center point 35p of the radiating element 35 in the positive direction on the X-axis and the negative direction on the Y-axis.
  • FIG. 12 is a diagram showing the calculation result of the patch antenna 30 of the one feeding system
  • FIG. 13 is a diagram showing the calculation result of the patch antenna X of the one feeding system.
  • 12 and 13 are diagrams showing the relationship between the elevation angle and the average gain.
  • the 1-feed type patch antenna 30 is more like the 2-feed type patch antenna 30 than the 1-feed type and 2-feed type patch antenna X.
  • the height H is 9 mm
  • the heights of the support columns 36a to 39a are adjusted so as to be lower than the height (13 mm) from the base 11 to the radiating element 35. .. Therefore, the positions of the extending portions 36b to 39b in the Z-axis direction are deviated from the position of the radiating element 35 in the Z-axis direction in the negative direction of the Z-axis.
  • FIG. 15 is a diagram showing the calculation result of the patch antenna 30A in which the height H is changed to 9 mm under the reference condition. As is clear from comparing FIGS. 7, 9 and 15, the patch antenna 30A can efficiently receive incoming radio waves having a lower elevation angle than the patch antenna X, like the patch antenna 30.
  • the height H is set lower than the height from the base 11 to the surface of the radiating element 15 (13 mm), but the height H is set to, for example, 15 mm, which is higher than the height to the surface of the radiating element 15. May be.
  • the calculation result is omitted, but even in such a case, the incoming radio wave having a lower elevation angle than the patch antenna X can be efficiently received.
  • the characteristics of the patch antenna 30 can be adjusted by adjusting the height H.
  • the height of the patch antenna 30 can be lowered. Therefore, the height of the in-vehicle antenna device 10 including the patch antenna 30 can also be lowered.
  • FIG. 16 is a plan view of an example of the patch antenna 30B in which the offset amount is changed.
  • the position of the midpoint of the extending portions 37b and 39b in the X-axis direction deviates from the position of the midpoint of the sides 35b and 35d of the radiating element 35 in the X-axis direction in the direction of turning of the left-handed circular polarization.
  • the position of the midpoint of the extending portions 36b and 38b in the Y-axis direction is deviated from the position of the midpoint of the sides 35a and 35c of the radiating element 35 in the Y-axis direction in the turning direction of the left-handed circular polarization.
  • FIG. 17 is a diagram showing the relationship between the elevation angle and the average gain when the offset amount in the X-axis direction and the Y-axis direction is 14 mm.
  • the patch antenna 30B can increase the gain at a lower elevation angle than the patch antenna X, like the patch antenna 30 without offset.
  • the position of the midpoint of the extending portions 37b and 39b in the X-axis direction is opposite to the turning direction of the left-handed circular polarization from the position of the midpoint of the sides 35b and 35d of the radiating element 35 in the X-axis direction. It may shift. Further, the position of the midpoint of the extending portions 36b and 38b in the Y-axis direction is opposite to the turning direction of the left-handed circular polarization from the position of the midpoint of the sides 35a and 35c of the radiating element 35 in the Y-axis direction. It may be off. Although detailed calculation results are omitted here, even in such a case, the gain of the low elevation angle can be improved as in FIG.
  • the gain of the low elevation angle can be improved even when the offset amount is set, but the gain extends to the outside of each range of the sides 35a to 35d of the radiating element 35.
  • the protrusions 36b to 39d appear. Therefore, in such a configuration, the size of the patch antenna 30B becomes large. Therefore, it is preferable to set an offset amount in which each of the extending portions 36b to 39d falls within the range of the sides 35a to 35d. By setting the offset amount in this way, the space of the patch antenna can be reduced.
  • the extending portions 36b to 39d are on the respective sides of the dielectric member 34. If it is inside the range, the space of the patch antenna can be reduced. Therefore, at least the extending portions 36b to 39d need only be inside the range of each side of the dielectric member 34.
  • the direction in which the extending portions 36b to 39b extend from the support portions 36a to 39a is the same as the turning direction of the left-handed circularly polarized wave received. Not limited to.
  • the direction in which the extending portions 36b to 39b extend from the support columns 36a to 39a, respectively, is simply referred to as the orientation of the extending portions 36b to 39b.
  • the directions of the extending portions 36b to 39b are opposite to the directions of the swirling of the circularly polarized waves received.
  • the directions of the extending portions 37b and 38b are the same as the directions of the swirling of the circularly polarized waves received.
  • the directions of the extending portions 36b and 39b are opposite to the directions of the swirling of the received circularly polarized waves.
  • the directions of the extending portions 37b and 39b are opposite to the directions of the swirling of the circularly polarized waves received.
  • the directions of the extending portions 36b and 38b are the same as the directions of the swirling of the received circularly polarized waves. Therefore, in the patch antenna 30E, the tip of the extension portion 36b and the tip of the extension portion 37b face each other, and the extension portion 38b and the tip of the extension portion 39b face each other.
  • each of the extending portions 36b to 39b extends from the outside of the sides 35a to 35d closest to the extending portions 36b to 39b toward the center point 35p of the radiating element 35. .. That is, the extending portions 36b to 39b extend from the outer edge of the radiating element 35 toward the center point 35p. However, the tips of the extending portions 36b to 39b are located at positions that do not overlap with the radiating element 35.
  • the entire extending portion 36b to 39b is located outside the outer edge of the radiating element 35 when viewed in the normal direction of the radiating surface of the radiating element 35, that is, in the negative direction of the Z axis. That is, in a plan view viewed from a direction orthogonal to the radiation plane of the radiation element 35 (Z-axis direction), the non-feeding elements 36 to 39 are the radiation elements 36 to 39 (extending portions 36b to 39b). It is provided on the base 11 so as not to overlap the 35. As a result, it is possible to prevent the non-feeding elements 36 to 39 from adversely affecting the radio waves from the radiating element 35.
  • each of the extending portions 36b to 39b is directed from the outside of the sides 35a to 35d closest to the extending portions 36b to 39b toward the direction opposite to the center point 35p of the radiating element 35. It is extended.
  • the gains of the patch antennas 30C, 30D, 30E, 30F, and 30G were calculated.
  • the conditions other than the orientation of the extension portions 36b to 39b are the same as the reference conditions in Table 1.
  • the distance D from the support columns 36a to 39a to the outer edge of the radiating element 35 is set to 24 mm.
  • FIG. 23 is the calculation result of the patch antenna 30C of FIG. 18,
  • FIG. 24 is the calculation result of the patch antenna 30D of FIG. 19, and
  • FIG. 25 is the calculation result of the patch antenna 30E of FIG.
  • FIG. 26 is a calculation result of the patch antenna 30F of FIG. 21, and
  • FIG. 27 is a calculation result of the patch antenna 30G of FIG. 22.
  • the patch antennas 30C, 30D, 30E, 30F, and 30G of FIGS. 18 to 22 are similar to the patch antenna 30 of FIG. It is possible to increase the gain of a lower elevation angle than the patch antenna X.
  • the direction of the extension portions 36b to 39b shown in FIG. 3 is the direction of the turning of the left-handed circular polarization
  • the direction of the extension portions 36b to 39b shown in FIG. 19 is the left-handed circular polarization.
  • the patch antenna 30C opposite to the direction of the wave turning is compared.
  • FIG. 9 which is the calculation result of the patch antenna 30 and FIG. 23 which is the calculation result of the patch antenna 30C the patch antenna 30 has a higher gain from the medium elevation angle to the high elevation angle than the patch antenna 30C.
  • the extending direction of the extending portions 36b to 39b of the non-feeding elements 36 to 39 is the same as the turning direction of the circularly polarized wave, the incoming radio waves are efficiently received as a whole from the low elevation angle to the high elevation angle. can.
  • the patch antennas 30D and 30E are from a medium elevation angle more than the patch antenna 30E. It can efficiently receive incoming radio waves with a high elevation angle. Therefore, if at least one of the extension portions 36b to 39b has the same extension direction as the turning direction of the circularly polarized wave, the gain at the low elevation angle is not sacrificed at the gain from the medium elevation angle to the high elevation angle. Can be improved.
  • the extension portions 36b to 39b affect the gain from the medium elevation angle to the high elevation angle, and the support portions 36a to 39a improve the gain of the low elevation angle. It is thought to contribute.
  • the patch antenna 30 receives left-handed circular polarization, but may also receive linear polarization.
  • the one feeding method is adopted, and the feeding point 41a is deviated from the center point of the radiating element 35 in the positive direction of the X-axis.
  • the main plane of polarization is a plane defined by a straight line connecting the center point of the radiation element 35 and the feeding point and the normal line of the radiation element 35. Therefore, the main plane of polarization is parallel to the XZ plane.
  • the sub-main polarization plane is a plane orthogonal to the main polarization plane and passing through the center point of the radiating element 35. Therefore, the cross-polarization plane is parallel to the YZ plane.
  • FIG. 28 is a perspective view of the patch antenna 30H that receives linearly polarized waves.
  • the patch antenna 30H is an antenna in which the non-feeding elements 37 and 39 are removed from the patch antenna 30 shown in FIG. 3 and only two non-feeding elements 36 and 38 are provided.
  • the non-feeding elements 36 and 38 are provided at positions facing each other with the radiating element 35 in the linear direction connecting the feeding point 43a of the radiating element 35 and the center point 35P in the shape of the radiating element 35. ..
  • the distance D between the non-feeding elements 36 and 38 and the radiating element 35 is 24 mm (3/16 ⁇ wavelength used).
  • the main polarization plane is the XZ plane
  • the non-feeding elements 36 and 38 intersect the main polarization planes.
  • FIG. 29 is a perspective view of the patch antenna 30I that receives linearly polarized waves.
  • the non-feeding elements 36 and 38 are removed from the patch antenna 30 shown in FIG. 3, and only two non-feeding elements 37 and 38 are provided.
  • the patch antenna 30H as shown in FIG. 29 receives linearly polarized waves, the non-feeding elements 37 and 39 intersect the cross-polarized plane.
  • the patch antenna X is the same as the patch antennas 30H and 30I except that the non-feeding elements 36 to 39 are not provided.
  • various conditions other than the feeding method and the polarization are the same as the reference conditions in Table 1.
  • FIGS. 30, 32 and 34 are diagrams of radiation patterns showing the long-distance realized gain in the main polarization plane of linear polarization in a polar coordinate system.
  • the Z-axis positive direction is 0 °
  • the X-axis positive direction and the X-axis negative direction are 90 °.
  • FIGS. 31, 33 and 35 are diagrams of radiation patterns showing the long-distance realized gain in the cross-polarized plane of linearly polarized waves in a polar coordinate system.
  • the radiation pattern in the patch antenna 30H that is, the shape surrounded by the curve is wider in the direction of 90 ° than the radiation pattern in the patch antenna X.
  • the radiation pattern in the patch antenna 30H is narrower in the direction of 90 ° than the radiation pattern in the patch antenna X.
  • the patch antenna 30H provided with the non-feeding elements 36 and 38 has a lower gain in the low elevation angle on the cross-polarization plane than the patch antenna X, but has a higher gain in the low elevation angle on the main polarization plane.
  • the non-feeding elements 36 and 38 may be arranged at positions facing each other with the radiation element 35 sandwiched along the main polarization plane. preferable.
  • the support columns 36a to 39a are perpendicular to the radiating element 35, but the present invention is not limited to this. May be good. Even when the support columns 36a to 39a are provided so as to be inclined with respect to the base 11, the distance from the base end to the top of the support column portions 36a to 39a may be set as "height H".
  • the strut portion 36a and the extending portion 36b are bent from the strut portion 36a to form a right angle, but the present invention is not limited to this, and for example, the strut portion 36a and the extending portion 36b have an acute angle or an obtuse angle. May be. Further, each of the non-feeding elements 36 to 39 may be formed by bending a rod-shaped conductive member. Therefore, "bending" may be bent.
  • the radiating element 35 is "substantially a quadrilateral", but the present invention is not limited to this, and may be, for example, a polygon other than a circle, an ellipse, or a substantially quadrilateral.
  • the radiating element 35 is, for example, circular
  • the extending portions 36b to 39b may have an arc shape along the outer edge of the radiating element 35. Even if such a radiating element or a non-feeding element is used, the gain of a low elevation angle can be improved.
  • FIG. 36 is a diagram showing a patch antenna 30J having one extending portion along the turning direction of circularly polarized waves.
  • the extending portion 36b is extended along the turning direction (extending along the turning direction), but the extending portions 37b to 39b are extended in the direction opposite to the turning direction. There is.
  • FIG. 37 is a diagram showing a patch antenna 30K having three extending portions along the turning direction of circularly polarized waves.
  • the extending portions 36b, 37b, 39b extend along the turning direction (extended along the turning direction), but the extending portion 38b extends in the direction opposite to the turning direction.
  • the characteristics of the patch antenna can be adjusted by changing the number of extending portions along the turning direction of the circular polarization.
  • the non-feeding elements 36 to 39 are bent rods, but for example, four separate plate-shaped metal members may be bent and installed as the non-feeding elements 36 to 39.
  • a grounded frame-shaped non-feeding element 100 is installed within a quarter of the frequency used so as to surround the radiation element 35. Is also good. By providing such a frame-shaped non-feeding element 100 around the radiating element 35, it is possible to improve the gain of the low elevation angle of the patch antenna 30L.
  • the patch antenna 30 of the present embodiment is provided in the in-vehicle antenna device 10, but the present invention is not limited to this.
  • the patch antenna 30 may be provided in the housing of a general shark fin antenna.
  • the patch antenna 30 may be provided in the antenna device mounted on the instrument panel. In such a case, the patch antenna 30 may be directly provided on a metal plate or the like corresponding to the base 11.
  • the patch antenna 30 of this embodiment has been described above.
  • the non-feeding elements 36 to 39, 100 are provided around the radiating element 35, that is, outside the outer edge of the radiating element 35. Therefore, by using such patch antennas 30 and 30L, the gain at a low elevation angle can be improved. Further, with such a configuration, even when the area of the ground is small, the gain at a low elevation angle can be improved, and the miniaturization of the antenna device and the patch antenna is not hindered.
  • a frame-shaped non-feeding element 100 may be provided as in the patch antenna 30L, but in the patch antenna 30, a position where a plurality of non-feeding elements 36 to 39 are separated outward from the outer edge of the radiating element 35 by a distance D. It is provided in. By providing the plurality of non-feeding elements 36 to 39 in this way, it is possible to improve the gain at a low elevation angle.
  • the distance D between the non-feeding elements 36 to 39 is one-fourth or less of the wavelength used (wavelength of the desired frequency band).
  • the total length of the non-feeding element 36 of the present embodiment is one-fourth or less of the operating frequency (wavelength of a desired frequency band).
  • the non-feeding element 36 operates as a waveguide. Therefore, the patch antenna 30 can improve the gain of the low elevation angle.
  • the patch antenna 30 can improve the gain of a low elevation angle even when receiving not only circularly polarized waves but also linearly polarized waves.
  • the non-feeding elements 36 and 38 are arranged along the main polarization plane of the radiating element 35 and at positions facing each other with the radiating element 35 interposed therebetween. By arranging the non-feeding elements 36, 38 at such a position, the gain of the low elevation angle can be improved.
  • the patch antenna 30 can improve the gain of the low elevation angle even when the radiating element 35 receives the circularly polarized wave.
  • the extending portion 36b is bent and extends from the top of the strut portion 36a with respect to the strut portion 36a. Therefore, it is possible to prevent the height from becoming too high while keeping the total length of the non-feeding element 36 as a desired length. Therefore, by using such a non-feeding element 36, the patch antenna 30 can be miniaturized.
  • the gain can be improved as a whole from the low elevation angle to the high elevation angle. ..
  • the radiating element 35 is a "substantially quadrilateral", and for example, the extending portion 36b is provided parallel to the nearest side of the radiating element 35.
  • “parallel” includes substantially parallel, and the non-feeding element 36 may be installed with respect to the radiating element 35 so that the effect of the non-feeding element 36 can be obtained.
  • the height H (distance) from the base 11 to the non-feeding element 36 is substantially the same as or lower (shorter) than the height (distance) from the base 11 to the radiating element 35. Therefore, the patch antenna 30 using the non-feeding element 36 can be miniaturized.
  • the non-feeding element 36 and the like are arranged so as not to overlap the radiating element 35 in a plan view of the radiating surface of the radiating element 35 from the Z-axis direction. Therefore, it is possible to prevent the radio wave of the radiating element 35 from being adversely affected.
  • in-vehicle means that it can be mounted on a vehicle, and therefore, it is not limited to the one attached to the vehicle, but also includes the one brought into the vehicle and used in the vehicle.
  • the antenna device of the present embodiment is used for a "vehicle” which is a vehicle with wheels, but the present invention is not limited to this, for example, a flying object such as a drone, a probe, or a construction machine without wheels. , Agricultural machinery, ships and other moving objects.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

パッチアンテナは、誘電体部材と、前記誘電体部材に設けられた放射素子と、前記誘電体部材及び前記放射素子の周囲に設けられ、接地される少なくとも一つの無給電素子と、を備える。さらに、放射素子の周囲には、複数の前記無給電素子が設けられ、複数の無給電素子の各々は、放射素子の外縁から所定距離離間した位置に設けられる。

Description

パッチアンテナ
 本発明は、パッチアンテナに関する。
 特許文献1には、地導体板、誘電体基板及び放射素子を含むパッチアンテナが開示されている。
特開2014-160902号公報
 ところで、パッチアンテナを収納するアンテナ装置を小型化すると、パッチアンテナが接地されるベースの面積が小さくなり、パッチアンテナの低仰角の利得が低下してしまうことがある。
 本発明の目的の一例は、パッチアンテナの低仰角の利得を向上することである。本発明の他の目的は、本明細書の記載から明らかになるであろう。
 本発明の一態様は、誘電体部材と、前記誘電体部材に設けられた放射素子と、前記誘電体部材及び前記放射素子の周囲に設けられ、接地される少なくとも一つの無給電素子と、を備える、パッチアンテナである。
 本発明の一態様によれば、低仰角におけるパッチアンテナの利得が向上する。
車両1の側面図である。 車載用アンテナ装置10の分解斜視図である。 パッチアンテナ30の斜視図である。 パッチアンテナ30の断面図である。 1給電方式のパッチアンテナ30の平面図である。 2給電方式のパッチアンテナ30の平面図である。 比較対象のパッチアンテナXにおける仰角と平均利得の関係の図である。 パッチアンテナ30における仰角と平均利得の関係の図である。 パッチアンテナ30における仰角と平均利得の関係の図である。 パッチアンテナ30における仰角と平均利得の関係の図である。 パッチアンテナ30における仰角と平均利得の関係の図である。 1給電方式のパッチアンテナ30の仰角と平均利得の関係の図である。 1給電方式のパッチアンテナXの仰角と平均利得の関係の図である。 パッチアンテナ30Aの断面図である。 パッチアンテナ30Aにおける仰角と平均利得の関係の図である。 パッチアンテナ30Bの平面図である。 パッチアンテナ30Bにおける仰角と平均利得の関係の図である。 パッチアンテナ30Cの斜視図である。 パッチアンテナ30Dの斜視図である。 パッチアンテナ30Eの斜視図である。 パッチアンテナ30Fの斜視図である。 パッチアンテナ30Gの斜視図である。 パッチアンテナ30Cの仰角と平均利得の関係の図である。 パッチアンテナ30Dの仰角と平均利得の関係の図である。 パッチアンテナ30Eの仰角と平均利得の関係の図である。 パッチアンテナ30Fの仰角と平均利得の関係の図である。 パッチアンテナ30Gの仰角と平均利得の関係の図である。 パッチアンテナ30Hの斜視図である。 パッチアンテナ30Iの斜視図である。 パッチアンテナXの主偏波面における放射パターンの図である。 パッチアンテナXの交差偏波面における放射パターンの図である。 パッチアンテナ30Hの主偏波面における放射パターンの図である。 パッチアンテナ30Hの交差偏波面における放射パターンの図である。 パッチアンテナ30Iの主偏波面における放射パターンの図である。 パッチアンテナ30Iの交差偏波面における放射パターンの図である。 パッチアンテナ30Jの斜視図である。 パッチアンテナ30Kの斜視図である。 パッチアンテナ30Lの斜視図である。
 本明細書及び添付図面の記載により、少なくとも以下の事項が明らかとなる。
<<<車両1における車載用アンテナ装置10の取り付け位置>>>
 図1は、車載用アンテナ装置10が取り付けられた車両1の前部の側面図である。以下、車載用アンテナ装置10が取り付けられる車両の前後方向をX方向、X方向と垂直な左右方向をY方向、X方向とY方向に垂直な鉛直方向をZ方向とする。また、車両の運転席からフロント側(前側)を+X方向、右側を+Y方向とし、天頂方向(上方向)を+Z方向とする。以下、本実施形態では、車載用アンテナ装置10の前後、左右、及び上下のそれぞれの方向は、車両の前後、左右、及び上下の方向と同じであるとして説明する。
 車載用アンテナ装置10は、車両1のルーフパネル2と、車室内の天井面のルーフライニング3との間の空洞4に収納されている。ここで、ルーフパネル2は、車載用アンテナ装置10が電磁波(以下、適宜「電波」と称する。)を受信できるよう、例えば、絶縁性の樹脂で構成されている。
 空洞4に収納された車載用アンテナ装置10は、ビス等によって絶縁性の樹脂で構成されたルーフライニング3に固定されている。このように、車載用アンテナ装置10は、絶縁性のルーフパネル2及びルーフライニング3によって包囲されている。なお、本実施形態では、車載用アンテナ装置10は、ルーフライニング3に固定されたが、例えば、車両フレーム、または樹脂製のルーフパネル2に固定されても良い。
 また、実際の空洞4のスペースは限られているため、車載用アンテナ装置10のグランドとして機能する地板の面積を大きくすることは難しい。このため、車載用アンテナ装置において、一般的なパッチアンテナを設けた場合、低仰角の利得が低下してしまうことがある。以下、本実施形態では、低仰角の利得を改善可能なパッチアンテナを含む車載用アンテナ装置10について説明する。
<<<車載用アンテナ装置10の概要>>>
 図2は車載用アンテナ装置10の分解斜視図である。車載用アンテナ装置10は、動作する周波数帯が異なる複数のアンテナを含むアンテナ装置であり、ベース11、ケース12、アンテナ21~26、及びパッチアンテナ30を備える。
 ベース11は、アンテナ21~26、及びパッチアンテナ30に共通のグランドとして利用される四辺形の金属板であり、空洞4内においてルーフライニング3上に設置される。また、ベース11は、前後左右に広がった薄板である。
 ケース12は、箱状の部材であり、六面のうち下側の面が開口している。また、ケース12は、絶縁性の樹脂で形成されているため、電波は、ケース12を通過し得る。そして、ケース12は、ケース12の開口が、ベース11によって閉塞されるよう、ベース11に取り付けられる。このため、ケース12の内側の空間には、アンテナ21~26及びパッチアンテナ30が収容される。
 アンテナ21~26及びパッチアンテナ30は、ケース12内においてベース11上に搭載されている。パッチアンテナ30は、ベース11の中央付近に配置され、アンテナ21~26は、パッチアンテナ30の周囲に配置されている。具体的には、アンテナ21,22は、パッチアンテナ30の前側及び後ろ側にそれぞれ配置される。また、アンテナ23,24は、パッチアンテナ30の左側及び右側にそれぞれ配置される。さらに、アンテナ25は、アンテナ22の左側且つアンテナ23の後ろ側に配置され、アンテナ26は、アンテナ21の右側且つアンテナ24の前側に配置されている。
 アンテナ21は、例えば、GNSS(Global Navigation Satellite System)に利用される平面アンテナであり、人工衛星からの1.5GHz帯の電波を受信する。
 アンテナ22は、例えば、V2X(Vehicle-to-everything)のシステムに利用されるモノポールアンテナであり、5.8GHz帯又は5.9GHz帯の電波を送受信する。なお、アンテナ22は、V2X用のアンテナであることとしたが、例えば、Wi-FiやBluetooth用のアンテナであっても良い。
 アンテナ23,24は、例えば、LTE(Long Term Evolution)及び第5世代移動通信システムに利用されるアンテナである。アンテナ23,24は、LTEの規格で定められた700MHz周波数帯から2.7GHz帯の電波を送受信する。さらに、アンテナ23,24は、第5世代移動通信システムの規格で定められたSub-6帯、つまり3.6GHz帯から6GHz未満の周数帯の電波も送受信する。アンテナ23,24は、テレマティクス用のアンテナであっても良い。
 アンテナ25,26は、例えば、第5世代移動通信システムに利用されるアンテナである。アンテナ25,26は、第5世代移動通信システムの規格で定められたSub-6帯の電波を送受信する。アンテナ25,26は、テレマティクス用のアンテナであっても良い。
 なお、アンテナ21~26の適用可能な通信規格及び周波数帯は上述のものに限定するものではなく、他の通信規格及び周波数帯域であってもよい。
 パッチアンテナ30は、例えば、衛星デジタル音声ラジオサービス(SDARS:Satellite Digital Audio Radio Service)の方式に利用されるアンテナである。パッチアンテナ30は、2.3GHz帯の左旋円偏波を受信する。
<<<パッチアンテナ30の詳細>>>
 以下、図3~図6を参照して、パッチアンテナ30について詳細に説明する。図3は、パッチアンテナ30の斜視図であり、図4は、図3のA-A線のパッチアンテナ30の断面図であり、図5及ぶ図6は、パッチアンテナ30の平面図である。
 パッチアンテナ30は、導電性のパターン31,33(後述)が形成された回路基板32、誘電体部材34、放射素子35、無給電素子36~39、及びシールドカバー40を備えて構成される。なお、以下、本実施形態では、Z軸正方向に順に積み重ねられた、回路基板32、誘電体部材34、及び放射素子35を、「パッチアンテナ30の本体部」と称する。また、パッチアンテナ30の本体部の周囲には、4つの無給電素子36~39が配置されている。
 回路基板32は、うら面(Z軸負方向の面)と、おもて面(Z軸正方向の面)とのそれぞれに、導体のパターン31,33が形成された誘電体の板材であって、例えばガラスエポキシ樹脂からなる。そして、パターン31は、回路パターン31aと、グランドパターン31bとを含む。
 回路パターン31aは、例えば、アンプ基板(不図示)からの同軸ケーブル45の信号線45aが接続される導電性のパターンである。また、同軸ケーブル45の編組45bは、はんだ(不図示)により、グランドパターン31bに電気的に接続されている。なお、回路パターン31aと、放射素子35とを接続する構成については後述する。
 グランドパターン31bは、パッチアンテナ30の本体部を接地させるための導電パターンである。グランドパターン31bと、金属製のベース11に設けられた4つの台座部11aとは、電気的に接続される。ここで、4つの台座部11aの各々は、パッチアンテナ30の本体部を支持できるよう、ベース11の一部が曲げ加工によって形成されている。そして、グランドパターン31bと、台座部11aとが電気的に接続されることにより、グランドパターン31bは接地される。なお、回路基板32のうら面には、例えば、回路パターン31aを保護するための金属性のシールドカバー40が取り付けられている。また、シールドカバー40は、回路基板32のうら面に搭載されるアンプ等の電子回路部品をシールドしている。
 回路基板32のおもて面に形成されたパターン33は、パッチアンテナ30の地導体板(または、地導体膜)、及び回路(不図示)のグランドとして機能するグランドパターンである。パターン33は、スルーホールを介し、グランドパターン31bに電気的に接続されている。また、グランドパターン31bは、回路基板32を台座部11aに固定する固定用のビス及び台座部11aを介し、ベース11に電気的に接続される。したがって、パターン33は、ベース11に電気的に接続されることになる。
 誘電体部材34は、X軸に平行な辺及びY軸に平行な辺を有する略四辺形の板状の部材である。誘電体部材34のおもて面及びうら面は、X軸及びY軸に対して平行であり、誘電体部材34のおもて面がZ軸正方向に向けられ、誘電体部材34のうら面は、Z軸負方向に向けられている。そして、誘電体部材34のうら面は、例えば両面テープによりパターン33に取り付けられている。なお、誘電体部材34は、セラミック等の誘電体材料で形成されている。
 放射素子35は、誘電体部材34のおもて面の面積より小さい、略四辺形の導電性の素子であり、誘電体部材34のおもて面に形成されている。なお、本実施形態では、放射素子35の放射面の法線方向が、Z軸正方向となっている。また、放射素子35は、Y軸に平行な辺35a,35cと、X軸に平行な辺35b,35dを有している。
 ここで、「略四辺形」とは、例えば、正方形や長方形を含む、4つの辺からなる形状をいい、例えば、少なくとも一部の角が辺に対して斜めに切り欠かれていても良い。また、「略四辺形」の形状では、辺の一部に切り込み(凹部)や出っ張り(凸部)が設けられていても良い。つまり、「略四辺形」には、放射素子35が、所望の周波数帯の電波を送受信できる形状であれば良い。
 貫通孔41は、回路基板32、パターン33、及び誘電体部材34を貫通する。貫通孔41の内側には、回路パターン31aと、放射素子35とを接続する給電線42が設けられている。なお、給電線42は、接地されるパターン33とは電気的に絶縁された状態で、回路パターン31aと、放射素子35とを接続する。また、本実施形態では、給電線42が放射素子35に電気的に接続される点を給電点43aとする。
 図5は、1給電方式の放射素子35の給電点43aの位置を示す図である。本実施形態では、図5の実線で示すように、給電点43aを、放射素子35の中心点35pからX軸正方向にずれた位置に設けている。ただし、給電点43aの位置はこれに限られず、例えば、図5の一点鎖線で示すように、給電点43aを、放射素子35の中心点35pからX軸正方向及びY軸負方向にずらした位置に設けてもよい。
 なお、「放射素子35の中心点35p」とは、放射素子35の外縁形状における中心点、つまり幾何中心をいう。図5の1給電方式の放射素子35は、例えば、所望の円偏波を送受信できるよう、縦、横の長さが異なる略長方形状の形状を有する。なお、「略長方形」は、上述した「略四辺形」に含まれる形状である。このため、「放射素子35の中心点35p」は、放射素子35の対角線が交わる点となる。なお、「略長方形」は、上述した「略四辺形」に含まれる形状である。
 なお、図3~5では、放射素子35に接続される給電線が、給電線42の1本のみの構成を説明したが、放射素子35に接続される給電線を追加し、2本設けても良い。なお、追加する給電線は、給電線42と同様に、誘電体部材34等を貫通する貫通孔(不図示)を介して設けることができるため、ここでは詳細な構成の説明は省略する。
 図6は、2給電方式の放射素子35の給電点43aの位置を示す図である。なお、図6の2つの給電点43aの位置は一例であり、放射素子35が所望の円偏波を送受信できるよう、適した位置にあれば良い。また、図6の放射素子35は、例えば、所望の円偏波を送受信できるよう、縦、横の長さが等しい略正方形状の形状を有する。なお、「略正方形」は、上述した「略四辺形」に含まれる形状である。
<<<無給電素子の概要>>>
 無給電素子36~39は、図3に示すようにL字状に屈曲した導電性の棒状部材である。無給電素子36~39の各々は、パッチアンテナ30の放射素子35の周囲において、ベース11に設けられている。ここで、無給電素子36~39と、ベースとは電気的に接続されているため、無給電素子36~39の各々は接地されることになる。
 なお、詳細は後述するが、「放射素子35の周囲」とは、無給電素子36~39が設けられていない場合と比較して、パッチアンテナ30の低仰角におけるパッチアンテナ30の利得が高くなる程度に無給電素子36~39が放射素子35の外縁から離れた範囲をいう。本実施形態では、「放射素子35の周囲」とは、例えば、放射素子35の外縁から使用波長の4分の1だけ離れた場所までの範囲をいう。また、「使用波長」とは、パッチアンテナ30が用いられる所望の周波数帯の所望の周波数に対応する波長であり、具体的には、例えば所望周波数帯の中心周波数に対応する波長をいう。
 無給電素子36~39の各々は、放射素子35の外縁から外側に離間して設けられており、無給電素子36~39の各々から放射素子35の外縁までの距離は互いに等しい。なお、ここで、放射素子35の外側とは、ベース11において、放射素子35の中心点35pから離れる方向である。また、詳細は後述するが、無給電素子36~39から放射素子35の外縁までの距離を変化させることにより、パッチアンテナ30の特性を調整できる。
 無給電素子36は、支柱部36a及び延出部36bを有する。支柱部36aは、パッチアンテナ30の本体部の周囲において、ベース11に垂直に立てられた状態で設けられている。なお、支柱部36aは、ベース11に対してのみならず、放射素子35の放射面に対しても垂直である。従って、支柱部36aはZ軸方向に延びていることになる。
 支柱部36aの基端(支柱部36aの一端)は、ベース11に電気的に接続されて、接地されている。延出部36bは、支柱部36aの頂部(支柱部36aの他端)から、支柱部36aの直交方向に延出している。そして、本実施形態では、無給電素子36の全長を、使用波長の4分の1以下、より好ましくは使用波長の4分の1よりも少し短くしている。なお、「無給電素子の全長」とは、例えば、支柱部36aの基端から、延出部36bの先端までの支柱部36a及び延出部36bに沿う長さである。また、支柱部36aの基端は、「接地された端部」に相当する。
 このように、接地された無給電素子36の全長を、使用波長の略4分の1とすることで、無給電素子36は、導波器として機能することになる。なお、無給電素子36を接地せず、無給電素子36の全長を、使用波長の略2分の1することで導波器として用いることもできる。しかしながら、無給電素子36を接地しない場合、無給電素子36は鏡像効果の影響を受けないため、結果的に全長が長くなる。したがって、接地した無給電素子36を用いることで、パッチアンテナ30をより小さくすることができる。
 無給電素子37~39の各々は、無給電素子36と同様の素子である。具体的には、無給電素子37は、支柱部37a及び延出部37bを有し、無給電素子38は、支柱部38a及び延出部38bを有する。さらに、無給電素子39は、支柱部39a及び延出部39bを有する。このため、無給電素子37~39の各々の詳細な説明については省略する。
<<<無給電素子の設置条件について>>>
 ところで、無給電素子36~39は、導波器として動作し、放射素子35は、2.3GHz帯の左旋円偏波を受信する。したがって、無給電素子36~39の設置位置や方向を変化させることにより、放射素子35で受信する電波は影響を受ける。このため、まず、無給電素子36~39の設置条件について、図6を参照しつつ説明する。なお、図6には、放射素子35が受信する左旋円偏波の旋回の向きが、矢印Aによって示されている。
==放射素子の外縁から支柱部及び延出部までの距離について==
 図6に示すように、支柱部36a~39aは、それぞれ放射素子35の外縁から外側に離間しているとともに、放射素子35の法線、つまりZ軸に対して平行である。
 また、支柱部36aの頂部から延出した延出部36bは、延出部36bに最も近い放射素子35の辺35aと平行になるよう、無給電素子36は取り付けられている。したがって、放射素子35のおもて面をZ軸正方向からみた平面視において、無給電素子36と、放射素子35との「距離D」は、延出部36b(または、支柱部36a)から、無給電素子36から最も近い放射素子35の辺35aまでの距離となる。なお、距離Dは、「所定距離」に相当する。
 なお、無給電素子37~39は、無給電素子36と同様に設置されている。詳細は後述するが、無給電素子36~39の各々の距離Dが、使用波長の3分の16となるよう、無給電素子36~39は、ベース11に設けられている。本実施形態では、無給電素子37~39の各々の距離Dは、同じであることとしたが、これに限られない。例えば、無給電素子37~39の各々の距離Dは異なっていても良い。また、無給電素子37~39の各々の距離Dのうち、一部が同じであっても良い。
==延出部の延び出る向きについて==
 図6に示すように、延出部36b~39bは、それぞれ支柱部36a~39aの頂部から左旋円偏波の旋回方向に沿うように、左旋円偏波の旋回の向きに延出する。つまり、Z軸負方向に見て、延出部36b~39bがそれぞれ支柱部36a~39aから反時計回りの向きに延出する。なお、詳細は後述するが、このような方向に無給電素子36~39を設置することにより、パッチアンテナ30の低仰角の利得を向上させることができる。
 また、パッチアンテナ30が右旋円偏波を受信するものであれば、Z軸負方向に見て、延出部36b~39bがそれぞれ支柱部36a~39aから時計回りの向きに延出するよう、無給電素子36~39を設置すれば良い。
==高さについて==
 本実施形態で「高さ」とは、例えば、ベース11から、対象までの距離をいう。例えば、図4において、支柱部36a~39aの接地された基端、つまりベース11から、支柱部36a~39aの頂部までの距離を「高さH」とする。ここでは、ベース11から、Z軸方向に沿って支柱部36a~39aの頂部までの高さは、ベース11からZ軸方向に沿って放射素子35までの高さに等しくなるよう、支柱部36a~39aの高さHが調整されている。このため、ベース11からZ軸方向に沿って延出部36b~39bまでの高さも、ベース11からZ軸方向に沿って放射素子35までの高さに等しくなる。したがって、パッチアンテナ30において、Z軸方向における延出部36b~39bの位置は、Z軸方向における放射素子35の位置に揃っており、延出部36b~39b及び放射素子35は同一のXY平面上にある。
==延出部の位置及びオフセットについて==
 また、図6に示すように、X軸方向における放射素子35の辺35b(または、辺35d)の中点の位置から、対象がX軸方向に沿ってずれた距離をX軸方向オフセット量とする。さらに、Y軸方向における放射素子35の辺35a(または、辺35c)の中点の位置から、対象がY軸方向に沿ってずれた距離をY軸方向オフセット量とする。
 図6の例では、X軸方向における延出部37b,39bの中点のX軸方向オフセット量は0mmである。つまり、X軸方向における延出部37b,39bの中点の位置が、X軸方向における放射素子35の辺35bの中点の位置に揃っている。
 また、Y軸方向における延出部36b,38bの中点のY軸方向オフセット量は0mmである。つまり、Y軸方向における延出部36b,38bの中点の位置がY軸方向における放射素子35の辺35a,35cの中点の位置に揃っている。
==基準条件==
 ここで、表1の条件(以下、「基準条件」と称する。)において、パッチアンテナ30、及び比較例のパッチアンテナ(以下、パッチアンテナXと称する。)の利得を計算した。なお、パッチアンテナX(不図示)とは、パッチアンテナ30において無給電素子36~39が設けられていないもの、つまり、パッチアンテナ30の本体部のみを用いたアンテナである。また、パッチアンテナ30及パッチアンテナXのシミュレーションにあたっては、便宜上、利得への影響の小さい回路パターン31a等を省略したモデルを用いている。
Figure JPOXMLDOC01-appb-T000001
 図7は、パッチアンテナXの計算結果であり、図8は、無給電素子36~39が設置されたパッチアンテナ30の計算結果である。図7及び図8は、仰角と平均利得との関係を表す図である。これらの図において、横軸は仰角を表し、縦軸は平均利得を表す。図7に示すように、パッチアンテナXでは、仰角20°,25°,30°における平均利得が-0.7dBic、0.5dBic、1.5dBicである。それに対して、図8に示すように、無給電素子36~39が設置されたパッチアンテナ30では、仰角20°,25°,30°における平均利得が0.3dBic、1.3dBic、1.2dBicである。したがって、無給電素子36~39が設置されたパッチアンテナ30はパッチアンテナXよりも20°~30°の低仰角における平均利得が高い。
 このように、接地された無給電素子36~39が放射素子35の周囲に設けられることによって、低仰角におけるパッチアンテナ30の利得が向上する。この結果、パッチアンテナ30は、低仰角の到来電波を効率的に受信することができる。
<<<無給電素子の設置条件の変更について>>>
 ここで、無給電素子の設置条件を変更した場合について説明する。なお、以下に説明する条件を2以上変更させ、を組み合わせて適用してもよい。
==距離Dを変更した場合==
 まず、無給電素子36~39の設置条件のうち、距離Dを変化させた場合のパッチアンテナ30の特性について検証する。なお、距離D以外のパッチアンテナ30の各種条件(例えば、パッチアンテナ30の主要部の物理的なサイズ、給電方式)等は、上述した基準条件と同じである。
 ここでは、距離Dを12mm(0.093×使用波長)、32mm(1/4×使用波長)、48mm(3/8×使用波長)と変化させた結果を、図9~11に示す。図9~11は、仰角と平均利得との関係を表す図である。これらの図において、横軸は仰角を表し、縦軸は平均利得を表す。これらの結果と、距離Dを24mm(3/16×使用波長)に設定した場合の結果(図8)と、パッチアンテナXの結果(図7)を比較する。
 距離Dが24mmに設定されたパッチアンテナ30と同様に、距離Dが12mm又は32mmに設定されたパッチアンテナ30は、パッチアンテナXよりも20°~30°の低仰角における平均利得が高い。しかしながら、距離Dを48mmに設定したパッチアンテナ30は、パッチアンテナXよりも、20°~30°の低仰角における平均利得が低い。したがって、延出部36b~39bが低仰角における利得の向上に寄与するためには、延出部36b~39bから放射素子35の外縁までの距離Dを、32mm(使用波長の4分の1)以下とすることが好ましい。
==給電方式の変更した場合==
 つぎに、パッチアンテナ30の給電方式を、2給電方式から1給電方式に変更した場合について説明する。なお、ここでは、放射素子35のサイズ及び給電方式以外は、基準条件を採用し、1給電方式のパッチアンテナ30及びパッチアンテナXの利得を計算した。放射素子35の辺35a,35cの長さは、19.9mmに設定し、辺35b,35cの長さは、21.7mmに設定した。さらに、本実施形態では、図5の2点鎖線に示すように、放射素子35の中心点35pからX軸正方向及びY軸負方向にずらした位置に給電点41aを設定した。
 図12は、1給電方式のパッチアンテナ30の計算結果を示す図であり、図13は、1給電方式のパッチアンテナXの計算結果を示す図である。図12及び図13は、仰角と平均利得との関係を表す図である。図7、図9、図12及び図13から明らかなように、1給電方式のパッチアンテナ30は、2給電方式のパッチアンテナ30と同様に、1給電方式及び2給電方式のパッチアンテナXよりも、20°~30°の低仰角の到来電波を効率的に受信できる。したがって、給電方式に関わらず、無給電素子36~39を有するパッチアンテナ30は、低仰角の利得を向上させることができる。
==高さHの変更==
 図4に示すように、パッチアンテナ30では、延出部36b~39b及び放射素子35は同一のXY平面上にある。しかしながら、ベース11から延出部36b~39bまでの高さHを変更し、延出部36b~39bを、放射素子35の存するXY平面とは異なるXY平面上に設けてもよい。
 例えば、図14に示すパッチアンテナ30Aでは、高さHを9mmとし、ベース11から放射素子35までの高さ(13mmm)よりも低くなるよう、支柱部36a~39aの高さを調整している。このため、Z軸方向における延出部36b~39bの位置が、Z軸方向における放射素子35の位置からZ軸負方向にずれている。
 図15は、基準条件において高さHを9mmに変更したパッチアンテナ30Aの計算結果を示す図である。図7、図9及び図15を比較すると明らかなように、パッチアンテナ30Aは、パッチアンテナ30と同様に、パッチアンテナXよりも低仰角の到来電波を効率的に受信できる。
 なお、ここでは、高さHを、ベース11から放射素子15の表面までの高さ(13mm)より低くしたが、高さHを、例えば15mmとし、放射素子15の表面までの高さより高くしても良い。便宜上、計算結果は省略するが、このような場合であっても、パッチアンテナXよりも低仰角の到来電波を効率的に受信できる。
 ここで、延出部36b~39bが放射素子35よりも高い位置にあると、無給電素子36~39による低仰角の利得向上効果が高いものの、高仰角の利得が低下しやすい。一方、延出部36b~39bが放射素子35よりも低い位置にあると、無給電素子36~39による低仰角の利得向上効果が低いものの、高仰角の利得が低下しにくい。したがって、高さHを調整することにより、パッチアンテナ30の特性を調整することができる。
 また、延出部36b~39bの位置を、放射素子35の放射面と同じ、または放射素子35の放射面低い位置とした場合、パッチアンテナ30の高さを低くすることができる。したがって、パッチアンテナ30を含む車載用アンテナ装置10の高さも低くすることが可能となる。
==オフセット量を変更した場合==
 図5及び図6に示すように、パッチアンテナ30では、X軸方向オフセット量、及びY軸方向のオフセット量は、ともに0mmであるが、これらを変更しても良い。
 例えば、図16は、オフセット量を変更したパッチアンテナ30Bの一例の平面図である。ここで、X軸方向における延出部37b,39bの中点の位置は、X軸方向における放射素子35の辺35b,35dの中点の位置から、左旋円偏波の旋回の向きにずれている。また、Y軸方向における延出部36b,38bの中点の位置は、Y軸方向における放射素子35の辺35a,35cの中点の位置から、左旋円偏波の旋回の向きにずれている。図17は、X軸方向及びY軸方向オフセット量を14mmとした場合の仰角と平均利得との関係を表す図である。
 図7,図9及び図17から明らかなように、パッチアンテナ30Bは、オフセットの無いパッチアンテナ30と同様に、パッチアンテナXよりも低仰角の利得を増加できる。
 なお、X軸方向における延出部37b,39bの中点の位置が、X軸方向における放射素子35の辺35b,35dの中点の位置から、左旋円偏波の旋回の向きの逆向きにずれてもよい。また、Y軸方向における延出部36b,38bの中点の位置が、Y軸方向における放射素子35の辺35a,35cの中点の位置から、左旋円偏波の旋回の向きの逆向きにずれていても良い。ここでは、詳細な計算結果は省略するが、このような場合であっても、図17と同様に、低仰角の利得を向上させることができる。
 ところで、例えば、パッチアンテナ30Bのように、オフセット量を設定した場合であっても低仰角の利得を向上させることができるが、放射素子35の辺35a~35dの各々の範囲の外側に、延出部36b~39dがでてしまう。このため、このような構成では、パッチアンテナ30Bのサイズが大きくなってしまう。したがって、延出部36b~39dの各々が、辺35a~35dの範囲内に収まるオフセット量を設定することが好ましい。そのようにオフセット量を設定することにより、パッチアンテナのスペースを小さくすることができる。
 また、延出部36b~39dが、放射素子35の辺35a~35dの各々の範囲の外側にでた場合であっても、延出部36b~39dが、誘電体部材34のそれぞれの辺の範囲の内側に入っている場合、パッチアンテナのスペースを小さくすることができる。したがって、少なくとも、延出部36b~39dは、誘電体部材34のそれぞれの辺の範囲の内側に入っていれば良い。
==向きを変更した場合==
 図3に示すように、上述のパッチアンテナ30では、延出部36b~39bがそれぞれ支柱部36a~39aから延出する向きは、受信する左旋円偏波の旋回の向きと同じであるがこれに限られない。なお、延出部36b~39bがそれぞれ支柱部36a~39aから延出する向きを、単に、延出部36b~39bの向きと称する。
 例えば図18に示すパッチアンテナ30Cでは、延出部36b~39bの向きは、受信する円偏波の旋回の向きの逆である。
 図19に示すパッチアンテナ30Dでは、延出部37b,38bの向きは、受信する円偏波の旋回の向きと同じである。一方、延出部36b,39bの向きは、受信する円偏波の旋回の向きの逆である。
 図20に示すパッチアンテナ30Eでは、延出部37b,39bの向きは、受信する円偏波の旋回の向きの逆である。一方、延出部36b,38bの向きは、受信する円偏波の旋回の向きと同じである。このため、パッチアンテナ30Eでは、延出部36bの先端と、延出部37bの先端とが向かい合い、延出部38bと、延出部39bの先端とが向かい合うことになる。
 図21に示すパッチアンテナ30Fでは、延出部36b~39bのそれぞれは、延出部36b~39bに最も近い辺35a~35dの外側から、放射素子35の中心点35pに向かって延出している。つまり、延出部36b~39bは、放射素子35の外縁から中心点35pに向かって延出している。ただし、延出部36b~39bの先端は、放射素子35と重ならない位置にある。
 なお、パッチアンテナ30Fでは、放射素子35の放射面の法線方向、つまりZ軸負方向に見て、延出部36b~39bの全体が放射素子35の外縁よりも外側に位置している。つまり、放射素子35の放射面に直交する方向(Z軸方向)から見た平面視において、無給電素子36~39は、無給電素子36~39(延出部36b~39b)が、放射素子35に重ならないよう、ベース11に設けられている。この結果、無給電素子36~39が、放射素子35からの電波に悪影響を与えることを防ぐことができる。
 図22に示すパッチアンテナ30Gでは、延出部36b~39bのそれぞれは、延出部36b~39bに最も近い辺35a~35dの外側から放射素子35の中心点35pとは反対の方向に向かって延出している。
 ここで、パッチアンテナ30C,30D,30E,30F,30Gの利得を計算した。なお、基本的には、延出部36b~39bの向き以外の条件は、表1の基準条件と同じである。ただし、図21,図22のパッチアンテナ30F,30Gでは、支柱部36a~39aから放射素子35の外縁までの距離Dを24mmに設定した。
 図23は、図18のパッチアンテナ30Cの計算結果であり、図24は、図19のパッチアンテナ30Dの計算結果であり、図25は、図20のパッチアンテナ30Eの計算結果である。また、図26は、図21のパッチアンテナ30Fの計算結果であり、図27は、図22のパッチアンテナ30Gの計算結果である。
 図7及び図9と、図23~図27とを比較すると明らかなように、図18~図22のパッチアンテナ30C,30D,30E、30F,30Gは、図3のパッチアンテナ30と同様に、パッチアンテナXよりも低仰角の利得を増加させることができる。
 ここで、図3に示す、延出部36b~39bの向きが、左旋円偏波の旋回の向きのパッチアンテナ30と、図19に示す、延出部36b~39bの向きが、左旋円偏波の旋回の向きと逆のパッチアンテナ30Cと、を比較する。パッチアンテナ30の計算結果である図9と、パッチアンテナ30Cの計算結果である図23から明らかなように、パッチアンテナ30は、パッチアンテナ30Cよりも中仰角から高仰角の利得が高い。
 したがって、無給電素子36~39の延出部36b~39bの延出の向きを、円偏波の旋回の向きと同じにすると、低仰角から高仰角にわたって全体的に到来電波を効率的に受信できる。
 また、パッチアンテナ30Cの計算結果の図23と、パッチアンテナ30D,30Eの計算結果の図24,図25とを比較すると明らかなように、パッチアンテナ30D,30Eはパッチアンテナ30Eよりも中仰角から高仰角の到来電波を効率的に受信できる。したがって、延出部36b~39bのうち、少なくとも1つでも延出の向きが円偏波の旋回の向きと同じであると、中仰角から高仰角における利得を犠牲にせずに、低仰角における利得を向上させることができる。
 また、パッチアンテナ30Fの計算結果の図21と、パッチアンテナ30Gの計算結果の図22とを比較すると明らかなように、パッチアンテナ30F,30Gの放射特性は殆ど同じである。したがって、延出部36b~39bが延び出る向きに関わらず、延出部36b~39bは、中仰角から高仰角の利得に影響を及ぼし、支柱部36a~39aは、低仰角の利得の向上に寄与すると考えられる。
==直線偏波を受信する場合==
 パッチアンテナ30は、左旋円偏波を受信するものであるが、直線偏波を受信するものでもよい。このような場合、1給電方式が採用され、給電点41aが放射素子35の中心点からX軸正方向にずれることになる。そして、主偏波面は、放射素子35の中心点と、給電点とを結ぶ直線及び放射素子35の法線によって定義される平面である。このため、主偏波面は、XZ平面に対して平行である。また、副主偏波面は、主偏波面に対して直交するとともに放射素子35の中心点を通る平面である。このため、交差偏波面はYZ平面に対して平行である。
 図28は、直線偏波を受信するパッチアンテナ30Hの斜視図である。パッチアンテナ30Hは、図3に示すパッチアンテナ30から無給電素子37,39をなくし、2体の無給電素子36,38のみを設けたアンテナである。そして、無給電素子36,38は、放射素子35の給電点43aと、放射素子35の形状における中心点35Pとを結ぶ直線方向において、放射素子35を挟んで互いに対向する位置に設けられている。なお、無給電素子36,38と、放射素子35との距離Dは、24mm(3/16×使用波長)である。また、パッチアンテナ30Hが直線偏波を受信する場合、主偏波面はXZ平面であり、無給電素子36,38が主偏波面に交差する。
 図29は、直線偏波を受信するパッチアンテナ30Iの斜視図である。図29に示すようなパッチアンテナ30Iは、図3に示すパッチアンテナ30から無給電素子36,38をなくし、2体の無給電素子37,38のみが設けられたものである。図29に示すようなパッチアンテナ30Hが直線偏波を受信する場合、無給電素子37,39が交差偏波面に交差する。
 なお、パッチアンテナXは、無給電素子36~39がないことを除き、パッチアンテナ30H,30Iと同様である。ここでは、計算に当たっては、給電方式及び偏波以外の各種条件等は、表1の基準条件と同じである。
 図30及び図31は、パッチアンテナXの計算結果であり、図32及び図33は、パッチアンテナ30Hの計算結果である。また、図34及び図35は、パッチアンテナ30Iの計算結果である。ここで、図30、図32及び図34は、直線偏波の主偏波面における遠距離実現利得を極座標系で示す放射パターンの図である。図30、図32及び図31において、Z軸正方向を0°とし、X軸正方向及びX軸負方向を90°とする。また、図31、図33及び図35は、直線偏波の交差偏波面における遠距離実現利得を極座標系で示す放射パターンの図である。
 図30と、図32とを比較すると明らかなように、パッチアンテナ30Hにおける放射パターン、つまり曲線によって囲われた形状は、パッチアンテナXにおける放射パターンよりも、90°の方向に広くなっている。また、図31と、図33とを比較すると明らかなように、パッチアンテナ30Hにおける放射パターンは、パッチアンテナXにおける放射パターンよりも、90°の方向に狭くなっている。このことから、無給電素子36,38が設けられたパッチアンテナ30HはパッチアンテナXよりも、交差偏波面における低仰角の利得が低いものの、主偏波面における低仰角の利得が高い。
 一方、図30及び図31と、図34及び図35とを比較すると明らかなように、パッチアンテナ30Iの放射特性は、パッチアンテナXの放射特性と殆ど同じである。従って、無給電素子37,39が設けられても、低仰角の利得の向上効果は認められない。
 したがって、直線偏波の主偏波面における低仰角の利得の向上の為には、主偏波面に沿って放射素子35を挟んで互いに対向する位置に無給電素子36,38が配置されることが好ましい。
==無給電素子の数について==
 パッチアンテナ30では、4体の無給電素子36~39がパッチアンテナ30の本体部の周囲に設けられているが、無給電素子の数はこれに限られない。例えば、パッチアンテナ30の放射素子35の各辺に、無給電素子が複数設けられていても良い。
==支柱部の傾斜について==
 パッチアンテナ30では、支柱部36a~39aが放射素子35に対して垂直であるがこれに限られず、例えば、放射素子35の放射面に対して垂直な線、つまりZ軸に対して傾斜してもよい。支柱部36a~39aがベース11に対して傾斜して設けられている場合であっても、支柱部36a~39aの基端から頂部までの距離を「高さH」としても良い。
==延出部の傾斜について==
 無給電素子36では、支柱部36aと延出部36bが支柱部36aから屈曲し、直角をなしているが、これに限られず、例えば、支柱部36aと延出部36bが鋭角又は鈍角をなしても良い。また、無給電素子36~39の各々は、棒状の導電性部材が湾曲して形成されても良い。このため、「屈曲」とは、曲がっていれば良い。
==放射素子の形状について==
 パッチアンテナ30では、放射素子35が「略四辺形」であるが、これに限られず、例えば、円形、楕円形、略四辺形以外の多角形であっても良い。そして、放射素子35が、例えば円形である場合、延出部36b~39bは、放射素子35の外縁に沿って弧状の形状を有していても良い。このような放射素子や無給電素子を用いるであっても、低仰角の利得を改善することができる。
==旋回方向に沿う延出部の数==
 上述したパッチアンテナ30は、4つの延出部が円偏波の旋回方向に沿って延出され、パッチアンテナ30Dは、2つの延出部が円偏波の旋回方向に沿って延出されているが、これに限られない。
 図36は、円偏波の旋回方向に沿う延出部が1つのパッチアンテナ30Jを示す図である。パッチアンテナ30Jでは、延出部36bは、旋回方向に沿っている(旋回方向に沿って延出されている)が、延出部37b~39bは、旋回方向とは逆向きに延出されている。
 図37は、円偏波の旋回方向に沿う延出部が3つのパッチアンテナ30Kを示す図である。パッチアンテナ30Kでは、延出部36b,37b,39bは、旋回方向に沿っている(旋回方向に沿って延出されている)が、延出部38bは、旋回方向とは逆向きに延出されている。円偏波の旋回方向に沿う延出部の数を変化させることにより、パッチアンテナの特性を調整することができる。
==板状の無給電素子について==
 パッチアンテナ30では、無給電素子36~39が屈曲した棒体であるが、例えば、無給電素子36~39として、4つの別々の板状の金属部材を屈曲して設置しても良い。また、例えば、図38に示すパッチアンテナ30Lのように、放射素子35の周囲を囲むよう、接地された枠状の無給電素子100を、使用周波数の4分の1以内の範囲に設置しても良い。このような、枠状の無給電素子100を、放射素子35の周囲に設けることにより、パッチアンテナ30Lの低仰角の利得を向上することができる。
 本実施形態のパッチアンテナ30は、車載用アンテナ装置10に設けられることとしたがこれに限られない。例えば、パッチアンテナ30は、一般的なシャークフィンアンテナの筐体の中に設けられても良い。また、パッチアンテナ30は、インストルメントパネルに装着されるアンテナ装置内に設けられても良い。このような場合、パッチアンテナ30は、ベース11に相当する金属プレート等に直接設けられていても良い。
<<<<まとめ>>>>
 以上、本実施形態のパッチアンテナ30について説明した。例えば、パッチアンテナ30,30Lでは、無給電素子36~39,100が放射素子35の周囲、つまり放射素子35の外縁の外側に設けられている。このため、このようなパッチアンテナ30,30Lを用いることによりは、低仰角における利得を向上させることができる。また、このような構成とすることにより、グランドの面積が小さい場合であっても、低仰角における利得を向上することができ、かつ、アンテナ装置及びパッチアンテナの小型化を妨げることがない。
 また、パッチアンテナ30Lのように、枠状の無給電素子100を設けても良いが、パッチアンテナ30では、複数の無給電素子36~39が放射素子35の外縁から外側に距離D離間した位置に設けられている。このように、複数の無給電素子36~39を設けることにより、低仰角における利得を向上させることができる。
 また、パッチアンテナ30において、無給電素子36~39の距離Dは、使用波長(所望周波数帯の波長)の4分の1以下である。このような位置に無給電素子36~39を設けることによって、確実に低仰角の利得を向上させることができる。
 また、本実施形態の無給電素子36の全長は、使用周波数(所望周波数帯の波長)の4分の1以下である。接地された無給電素子36の全長を、このような長さとすることで、無給電素子36は、導波器として動作する。したがって、パッチアンテナ30では、低仰角の利得を向上させることができる。
 また、パッチアンテナ30は、円偏波のみならず、直線偏波を受信した場合であっても低仰角の利得を向上させることができる。例えば、パッチアンテナ30Hは、放射素子35の主偏波面に沿うとともに、放射素子35を挟んで互いに対向する位置に無給電素子36,38が配置されている。このような位置に無給電素子36,38を配置することにより、低仰角の利得を向上させることができる。
 また、上述のように、パッチアンテナ30は、放射素子35が円偏波を受信する場合でも、低仰角の利得を向上させることができる。
 また、無給電素子36では、支柱部36aの頂部から、支柱部36aに対して延出部36bが屈曲して延出している。したがって、無給電素子36の全長を所望の長さとしつつ、高さが高くなりすぎることを防ぐことができる。したがって、このような無給電素子36を用いることにより、パッチアンテナ30を小型化できる。
 また、例えば、パッチアンテナ30では、延出部36b~39bが、円偏波の旋回方向に沿うように延出されているため、低仰角から高仰角にわたって全体的に利得を向上させることができる。
 また、放射素子35は、「略四辺形」であり、例えば、延出部36bは、放射素子35の最も近い辺に平行に設けられている。なお、「平行」とは、略平行を含み、無給電素子36の効果が得られるよう、無給電素子36は、放射素子35に対して設置されていれば良い。
 また、ベース11から無給電素子36の高さH(距離)は、ベース11から放射素子35までの高さ(距離)と略同じか、それより低い(短い)。したがって、無給電素子36を用いたパッチアンテナ30を小型化することができる。
 また、パッチアンテナ30では、無給電素子36等は、放射素子35の放射面をZ軸方向からみた平面視において、放射素子35に重ならないよう配置されている。したがって、放射素子35の電波が悪影響を受けることを防ぐことができる。
 上記の実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。また、本発明は、その趣旨を逸脱することなく、変更や改良され得るとともに、本発明にはその等価物が含まれるのはいうまでもない。
 本実施形態で「車載」とは、車両にのせることができるとの意味であるため、車両に取り付けられているものに限らず、車両に持ち込まれ、車両内で用いられるものも含まれる。また、本実施形態のアンテナ装置は、車輪のついた乗り物である「車両」に用いられることとしたが、これに限られず、例えばドローン等の飛行体、探査機、車輪を有さない建機、農機、船舶等の移動体に用いられても良い。
 1 車両
 2 ルーフパネル
 3 ルーフライニング
 4 空洞
 10 車載用アンテナ装置
 11 ベース
 11a 台座部
 12 ケース
 21~26 アンテナ
 30,30A~30L パッチアンテナ
 31,33 パターン
 31a 回路パターン
 31b グランドパターン
 32 回路基板
 34 誘電体部材
 35 放射素子
 35a~35d 辺
 35p 中心点
 36~39,100 無給電素子
 36a~39a 支柱部
 36b~39b 延出部
 41 貫通孔
 42 給電線
 43a 給電点
 45 同軸ケーブル
 45a 信号線
 45b 編組

Claims (11)

  1.  誘電体部材と、
     前記誘電体部材に設けられた放射素子と、
     前記誘電体部材及び前記放射素子の周囲に設けられ、接地される少なくとも一つの無給電素子と、
     を備えるパッチアンテナ。
  2.  前記放射素子の周囲には、複数の前記無給電素子が設けられ、
     前記複数の前記無給電素子の各々は、前記放射素子の外縁から所定距離離間した位置に設けられる、
     請求項1に記載のパッチアンテナ。
  3.  前記所定距離は、所望の周波数帯の波長の4分の1以下である、
     請求項2に記載のパッチアンテナ。
  4.  前記無給電素子は、接地された端部から先端までの長さが所望の周波数帯の波長の4分の1以下の屈曲した導体である、
     請求項2または3に記載のパッチアンテナ。
  5.  前記放射素子は、直線偏波の電磁波を受信する素子であり、
     前記複数の前記無給電素子の各々は、前記放射素子の給電点と前記放射素子の形状における中心点とを結ぶ直線方向において、前記放射素子を挟んで互いに対向する位置に設けられる、
     請求項2~4の何れか一項に記載のパッチアンテナ。
  6.  前記放射素子は、円偏波の電磁波を受信する素子である、
     請求項1~4の何れか一項に記載のパッチアンテナ。
  7.  ベースをさらに備え、
     前記無給電素子は、
     前記ベースに設けられる支柱部と、
     前記支柱部の頂部から、前記支柱部に対して屈曲して延出する延出部と、
     を有する
     請求項1~6の何れか一項に記載のパッチアンテナ。
  8.  ベースをさらに備え、
     前記無給電素子は、
     前記ベースに設けられる支柱部と、
     前記支柱部の頂部から、前記支柱部に対して屈曲して延出する延出部と、
     を有し
     前記延出部は、前記支柱部の頂部から円偏波の旋回方向に沿うように延出される、
     請求項6に記載のパッチアンテナ。
  9.  前記放射素子は、略四辺形の形状であり、
     前記延出部は、前記放射素子の辺と平行に設けられている、
     請求項7又は請求項8に記載のパッチアンテナ。
  10.  前記支柱部の接地された端部から頂部までの距離は、前記ベースから前記放射素子の位置までの距離と略同じ又はより短い、
     請求項7~9の何れか一項に記載のパッチアンテナ。
  11.  前記無給電素子は、前記放射素子の放射面に直交する方向から見た平面視において、前記放射素子に重ならないよう配置される、
     請求項2~10の何れか一項に記載のパッチアンテナ。
PCT/JP2021/047073 2020-12-23 2021-12-20 パッチアンテナ WO2022138582A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/268,605 US20240047879A1 (en) 2020-12-23 2021-12-20 Patch antenna
CN202180085134.6A CN116783781A (zh) 2020-12-23 2021-12-20 贴片天线
EP21910725.7A EP4270649A1 (en) 2020-12-23 2021-12-20 Patch antenna

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020213444A JP2022099596A (ja) 2020-12-23 2020-12-23 パッチアンテナ
JP2020-213444 2020-12-23

Publications (1)

Publication Number Publication Date
WO2022138582A1 true WO2022138582A1 (ja) 2022-06-30

Family

ID=82159347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/047073 WO2022138582A1 (ja) 2020-12-23 2021-12-20 パッチアンテナ

Country Status (5)

Country Link
US (1) US20240047879A1 (ja)
EP (1) EP4270649A1 (ja)
JP (1) JP2022099596A (ja)
CN (1) CN116783781A (ja)
WO (1) WO2022138582A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006261941A (ja) * 2005-03-16 2006-09-28 Ricoh Co Ltd アンテナ装置、無線モジュールおよび無線システム
WO2008105126A1 (ja) * 2007-02-28 2008-09-04 Nec Corporation アレイアンテナ、無線通信装置、およびアレイアンテナ制御方法
JP2008219574A (ja) * 2007-03-06 2008-09-18 Samsung Yokohama Research Institute Co Ltd アンテナ装置、及び無線装置
JP2008252857A (ja) * 2006-07-12 2008-10-16 Toto Ltd 高周波センサ装置
JP2014160902A (ja) 2013-02-19 2014-09-04 Toyota Motor Corp アンテナ装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006261941A (ja) * 2005-03-16 2006-09-28 Ricoh Co Ltd アンテナ装置、無線モジュールおよび無線システム
JP2008252857A (ja) * 2006-07-12 2008-10-16 Toto Ltd 高周波センサ装置
WO2008105126A1 (ja) * 2007-02-28 2008-09-04 Nec Corporation アレイアンテナ、無線通信装置、およびアレイアンテナ制御方法
JP2008219574A (ja) * 2007-03-06 2008-09-18 Samsung Yokohama Research Institute Co Ltd アンテナ装置、及び無線装置
JP2014160902A (ja) 2013-02-19 2014-09-04 Toyota Motor Corp アンテナ装置

Also Published As

Publication number Publication date
EP4270649A1 (en) 2023-11-01
JP2022099596A (ja) 2022-07-05
US20240047879A1 (en) 2024-02-08
CN116783781A (zh) 2023-09-19

Similar Documents

Publication Publication Date Title
JP6528748B2 (ja) アンテナ装置
CN110622352B (zh) 阵列天线
JPH0955621A (ja) アレーアンテナ
JP7162033B2 (ja) アンテナ装置
WO2022138582A1 (ja) パッチアンテナ
US20230039277A1 (en) Antenna device
US7088295B2 (en) Vehicle-mounted antenna
US20240047897A1 (en) Antenna device
JP5837452B2 (ja) アンテナ装置
JP3764289B2 (ja) マイクロストリップアンテナ
US20230253712A1 (en) Antenna device for vehicle
JP7401254B2 (ja) アンテナ装置
JP4815832B2 (ja) アンテナおよびテレビ受信機
WO2022181576A1 (ja) パッチアンテナ
WO2022138856A1 (ja) パッチアンテナ及び車載用アンテナ装置
WO2024029098A1 (ja) アンテナ装置
WO2024034680A1 (ja) パッチアンテナ
WO2022210699A1 (ja) 車載用アンテナ装置
JP7203883B2 (ja) 複合アンテナ装置
WO2022181295A1 (ja) アンテナ装置
WO2023127835A1 (ja) パッチアンテナ及びアンテナ装置
WO2022202073A1 (ja) アンテナ装置
WO2023068007A1 (ja) アンテナ装置
US20220352629A1 (en) Composite antenna device
CN117178430A (zh) 车载用天线装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21910725

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180085134.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18268605

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021910725

Country of ref document: EP

Effective date: 20230724