WO2022138528A1 - 無電解めっき装置 - Google Patents

無電解めっき装置 Download PDF

Info

Publication number
WO2022138528A1
WO2022138528A1 PCT/JP2021/046925 JP2021046925W WO2022138528A1 WO 2022138528 A1 WO2022138528 A1 WO 2022138528A1 JP 2021046925 W JP2021046925 W JP 2021046925W WO 2022138528 A1 WO2022138528 A1 WO 2022138528A1
Authority
WO
WIPO (PCT)
Prior art keywords
plating
plating solution
supply pipe
tank
semiconductor wafers
Prior art date
Application number
PCT/JP2021/046925
Other languages
English (en)
French (fr)
Inventor
孝幸 古澤
Original Assignee
アスカコーポレーション株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アスカコーポレーション株式会社 filed Critical アスカコーポレーション株式会社
Priority to US18/258,995 priority Critical patent/US20240044007A1/en
Publication of WO2022138528A1 publication Critical patent/WO2022138528A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1619Apparatus for electroless plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1619Apparatus for electroless plating
    • C23C18/1628Specific elements or parts of the apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1619Apparatus for electroless plating
    • C23C18/1632Features specific for the apparatus, e.g. layout of cells and of its equipment, multiple cells
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1639Substrates other than metallic, e.g. inorganic or organic or non-conductive
    • C23C18/1642Substrates other than metallic, e.g. inorganic or organic or non-conductive semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/288Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition

Definitions

  • the present invention relates to an electroless plating apparatus capable of forming uniform and high quality metal plating on the plated surface of a semiconductor wafer.
  • the plating film is formed by the chemical reaction between the plating solution in which the metal ions to be plated are dissolved and the metal (for example, aluminum) on the surface of the semiconductor wafer, so that the plating film flows on the plating surface of the semiconductor wafer. It is well known that the flow characteristics of the plating solution have a great influence on the formation of the plating film.
  • the size of the plating tank filled with the plating solution is increased, and the semiconductor wafer is immersed in the plating tank to reduce the influence of the characteristic flow of the plating solution, so that the plating solution flowing on the plating surface of the semiconductor wafer can be reduced. Aiming for flow homogeneity is being carried out. However, if the size of the plating tank is increased, not only a large amount of plating solution is required, but also the equipment becomes huge and the equipment cost is high.
  • the plating solution is replaced regularly because by-products such as reaction by-products and metal ions eluted from the object to be plated accumulate in the plating solution and the quality of the plating film deteriorates.
  • the used plating solution is discarded. Since a large amount of impurities (phosphorus, etc.) are mixed in the discarded plating solution, COD (chemical oxygen demand, which is the amount of oxygen consumed when organic substances in water are oxidized with an oxidizing agent). , A typical index for measuring organic pollution in the sea area) becomes large, which may cause an environmental load.
  • a reaction tank that forms a plating film on a semiconductor wafer, a supply pipe that extends inside the reaction tank and has a plurality of ejection holes that eject reaction solutions along the extension direction, and one end of the supply pipe. It is provided adjacent to the reaction tank on the side and has a reserve tank for storing the reaction solution overflowing from the reaction tank.
  • a device for manufacturing a semiconductor device whose aperture ratio is at least partially larger than the aperture ratio of a portion having a short distance is disclosed (see Patent Document 1).
  • the opening ratio of a portion of a plurality of ejection holes far from the reserve tank is at least partially larger than the opening ratio of the portion close to the reserve tank. It's just made bigger. In this case, it is not possible to completely make the flow of the reaction solution (plating solution) vertically passing between the semiconductor wafers vertically held by the carriers from the lower part to the upper part.
  • the present invention is a metal having a uniform and high-quality film thickness on the plating surface of a semiconductor wafer, while considering cost reduction and environmental load without enlarging the plating tank filled with the plating solution. It provides an electroless plating apparatus capable of forming plating (nickel).
  • a plurality of semiconductor wafers are spaced apart from each other so that the plating tank filled with the plating solution, the reserve tank for storing the plating solution overflowing from the plating solution, and the plating surfaces of the plurality of semiconductor wafers do not come into contact with each other.
  • a flow meter that measures the flow velocity of the plating solution in the circulation path, and a plating solution supply pipe in which a plurality of ejection ports that eject the plating solution from the reserve tank into the plating tank are formed at regular intervals at the upper part.
  • the electroless plating apparatus provided with When the holding means is installed on the upper part of the plating liquid supply pipe installed at the bottom of the plating tank, the plating liquid is held at regular intervals of a plurality of semiconductor wafers held by the holding means.
  • the electroless plating apparatus is characterized in that a plurality of spouts formed on the upper part of the supply pipe are arranged so as to be located.
  • the holding means is characterized by being a wafer carrier in which the area in contact with the plurality of semiconductor wafers is minimized while ensuring the strength to hold the plurality of semiconductor wafers.
  • the plating solution supply pipe is characterized in that the angle of the ejection port that ejects the plating solution upward can be adjusted within a predetermined range with the central axis of the plating solution supply pipe as the rotation axis.
  • the spout is characterized in that it is formed in a conical shape that expands downward.
  • the holding means immersed in the plating tank while holding the plating surfaces upright at regular intervals in a face-to-face state so that the plating surfaces of a plurality of semiconductor wafers do not come into contact with each other by the holding means.
  • the plating solution is ejected upward from a plurality of ejection ports formed at regular intervals on the upper portion of the plating solution supply pipe arranged at the lower portion at regular intervals of the plurality of semiconductor wafers held by the holding means. Therefore, the flow of the plating solution flowing from the lower side to the upper side is surely formed at regular intervals of the plurality of semiconductor wafers.
  • the flow of the plating solution flowing from the bottom to the top can be made as uniform as possible between the plating surfaces of the semiconductor wafer, and bubbles such as hydrogen generated in the plating solution in the electroless plating process are used for plating the semiconductor wafer. It is possible to suppress the adhesion to the surface and the retention as low as possible. As a result, unevenness in the film thickness of the surface to be plated of the semiconductor wafer can be prevented, and film quality uniformity can be achieved. That is, it is possible to form a uniform and high-quality metal plating of a predetermined thickness on the plating surface of a semiconductor wafer by making the plating tank filled with the plating solution the minimum necessary size and considering cost reduction and environmental load. can.
  • a plurality of semiconductor wafers are spaced apart from each other so that the plating tank filled with the plating solution, the reserve tank for storing the plating solution overflowing from the plating solution, and the plating surfaces of the plurality of semiconductor wafers do not come into contact with each other.
  • a circulation pump that supplies the plating solution of the reserve tank to the plating tank through the supply path, a supply path for supplying the plating solution of the reserve tank to the plating tank, and a holding means for holding the plating solution upright.
  • a flow meter that measures the flow velocity of the plating solution in the circulation path, and a plating solution supply pipe in which a plurality of ejection ports that eject the plating solution from the reserve tank into the plating tank are formed at regular intervals at the upper part.
  • the electroless plating apparatus provided with When the holding means is installed on the upper part of the plating liquid supply pipe installed at the bottom of the plating tank, the plating liquid is held at regular intervals of a plurality of semiconductor wafers held by the holding means. It relates to a electroless plating apparatus characterized in that a plurality of spouts formed on the upper part of a supply pipe are arranged so as to be located.
  • FIG. 1 is a front view illustrating the configuration of the electroless plating apparatus of the present embodiment.
  • FIG. 2 is a plan view illustrating the configuration of the plating solution supply pipe of the electroless plating apparatus of the present embodiment.
  • FIG. 3 is a schematic diagram illustrating a flow of a plating solution of a conventional electroless plating apparatus.
  • FIG. 4 is a schematic diagram illustrating a flow of a plating solution of the electroless plating apparatus of the present embodiment.
  • FIG. 5 is a perspective view illustrating the configuration of the plating tank of the electroless plating apparatus of the present embodiment.
  • FIG. 6 is a perspective view illustrating a mounting plate of a holding means installed on an upper portion of a plating solution supply pipe of the electroless plating apparatus of the present embodiment.
  • FIG. 7 is a perspective view illustrating the configuration of a wafer carrier, which is a means for holding a semiconductor wafer in the electroless plating apparatus of the present embodiment.
  • FIG. 8 is a perspective view illustrating a configuration of a modified example of a semiconductor wafer holding means of the electroless plating apparatus of the present embodiment.
  • FIG. 9 is a cross-sectional view illustrating the angle adjustment of the ejection port of the plating solution supply pipe of the electroless plating apparatus of the present embodiment.
  • FIG. 10 is a cross-sectional view illustrating the shape of the ejection port of the plating solution supply pipe of the electroless plating apparatus of the present embodiment.
  • an aluminum alloy is formed on the plated surface by a vacuum vapor deposition method, a sputtering method, or the like, for example, with a thickness of about 5 ⁇ m.
  • a zinc (Zn) film is formed on the surface of the Al (aluminum) alloy while removing the oxide film of Al.
  • the zincating treatment is performed again to form a zinc film on the surface of the Al (aluminum) alloy.
  • electroless plating with nickel is performed on the plated surface of the semiconductor wafer. That is, when the plating surface of a semiconductor wafer formed of an Al alloy film coated with zinc is immersed in a plating solution containing nickel (nickel sulfate), zinc has a lower standard oxidation-reduction potential than nickel. First, nickel is deposited on the surface of the Al alloy. Subsequently, when the surface is coated with nickel, nickel is reduced and precipitated by the action of the reducing agent contained in the plating solution to form a nickel film having a predetermined thickness. In the following electroless plating apparatus, a uniform and high quality nickel film is formed on the plated surface of the semiconductor wafer by using the above characteristics.
  • various devices constituting the electroless plating apparatus 10 are mounted on a rack (shelf) housing 12 made of metal (for example, iron, aluminum, etc.). It is installed and configured.
  • a supply pipe 15 for supplying the plating solution of the reserve tank 11a to the plating tank 11 is arranged inside the housing 12. The supply pipe 15 is communicated and connected from the lower part of the reserve tank 11a to the lower part of the plating tank 11.
  • the start end of the supply pipe 15 is communicated with the lower part of the reserve tank 11a, and the end of the supply pipe 15 is the lower part of the plating tank 11 (to be exact, the plating solution supply pipe arranged in the lower part of the plating tank 11). It is communicated and connected to the lower part of 20).
  • a circulation pump 13, a flow meter 14, a filter 16, and a heater 17 are attached to the supply pipe 15.
  • the circulation pump 13 allows the plating liquid stored in the reserve tank 11a via the supply pipe 15 to flow into the plating tank 11 via the plating liquid supply pipe 20 arranged at the lower part of the plating tank 11. And supply by pressure.
  • the flow meter 14 measures the flow rate of the plating solution flowing through the supply pipe 15 and controls the output of the circulation pump 13 so that the plating solution having a predetermined pressure and a predetermined flow rate is supplied to the plating tank 11.
  • the filter 16 removes impurities (reaction by-products, dust, etc.) from the plating solution supplied to the plating tank 11 via the supply pipe 15.
  • the heater 17 heats the plating solution supplied to the plating tank 11 via the supply pipe 15 to a predetermined temperature (for example, 60 ° C.).
  • the plating solution supplied from the reserve tank 11a to the plating tank 11 via the supply pipe 15 is stably supplied at a predetermined pressure and a predetermined flow rate, impurities are removed from the plating solution, and the plating solution is heated to a predetermined temperature. It is possible to form a uniform and high-quality nickel film on the plated surface of the semiconductor wafer 40 immersed in the plating tank 11.
  • the plating tank 11 is placed on the upper part of the housing 12.
  • a water tank having a box shape formed of glass or the like and having an upper portion open is preferably used as the plating tank 11 .
  • the plating tank 11 is filled with the plating solution W.
  • the basic composition of the plating solution W of the present embodiment is composed by adding nickel sulfate (NiSO4), sodium hypophosphite (2NaH2PO2) as a reducing agent, a complexing agent, and the like.
  • a reserve tank 11a is arranged on one side of the plating tank 11 in the lateral direction.
  • the plating tank 11 is provided with a gutter-shaped recovery path 11b for the plating solution so as to surround the upper ends of the four sides of the upper opening.
  • the recovery path 11b is provided with an inclination toward the reserve tank 11a in order to collect the plating liquid W overflowing from the upper four sides of the plating tank 11 and store it in the reserve tank 11a.
  • a plurality of V-shaped notches 11c are formed at regular intervals at the upper ends of the four sides of the plating tank 11.
  • the cut portion 11c forms a flow path of the plating solution W that overflows from the upper ends of the four sides of the plating tank 11 to the recovery path 11b.
  • a plurality of discharge ports 11d are bored at equal intervals in the lower center between the notches 11c formed at regular intervals at the upper ends of the four sides of the plating tank 11.
  • the purpose is to form a discharge path for discharging impurities (dust and the like) contained in the plating solution W at the upper part of the discharge port 11d and the plating tank 11 into the recovery path 11b for each plating solution W.
  • the plating solution W overflowing from the plating tank 11 flows out from the notch portion 11c and the discharge port 11d to the recovery path 11b, flows down the recovery path 11b, and is stored in the reserve tank 11a. Will be done.
  • two wafer carriers 30 which are holding means for the plurality of semiconductor wafers 40 of the present embodiment are formed in the shape of a plurality of (13 in the figure) thin plates.
  • the plated surface (front and back surfaces of the disk-shaped thin plate) of the semiconductor wafer 40 is immersed in the plating solution W while being held at regular intervals (for example, 4.75 mm) in a face-to-face state.
  • the wafer carrier 30 is a dedicated jig capable of transporting a plurality of disk-shaped semiconductor wafers 40 in a state of being held substantially vertically.
  • the wafer carrier 30 constitutes a front plate 31a and a rear surface plate 31b by a plate body formed in a substantially H shape in a front view, and the left and right upper end side surfaces of the front plate 31a and the rear surface plate 31b.
  • the left and right grip portions 32 and 32 connected to each other, the side holding portions 33 and 33 connecting the substantially central portions of the left and right side surfaces of the same horizontal plane of the front plate 31a and the rear surface plate 31b, and the left and right lower end side surfaces of the front plate 31a and the rear surface plate 31b.
  • the left and right side surfaces are formed by the lower holding portions 34, 34 connected to each other, and a space capable of accommodating a plurality of semiconductor wafers 40 is formed inside.
  • the left and right grip portions 32, 32 are flat plates protruding from the left and right upper end side surfaces of the front plate 31a and the rear surface plate 31b to the left and right outside, and function as handles for transporting the wafer carrier 30.
  • the side surface holding portions 33, 33 have a plurality of holding grooves 33a for holding the left and right side portions of the plurality of semiconductor wafers 40 at regular intervals (for example, at equal pitches of 4.75 mm intervals) horizontally inside the wafer carrier 30. It is formed so as to protrude.
  • a plurality of holding grooves 34a for holding the lower parts of the plurality of semiconductor wafers 40 so as to face each other substantially vertically are provided at regular intervals (for example, at intervals of 4.75 mm, etc.). It is formed so as to project vertically at (pitch).
  • the plurality of holding grooves 33a and 33a formed in the left and right side surface holding portions 33 and the plurality of holding grooves 34a and 34a formed in the left and right lower holding portions 34 and 34 are short of the wafer carrier 30 in a plan view. They are formed so as to overlap each other on the same horizontal line in the hand direction.
  • the wafer carrier 30 having the above configuration holds both side portions of the plurality of disk-shaped semiconductor wafers 40 by the side surface holding portions 33 and 33, and the lower portion of the semiconductor wafer 40 is held by the lower holding portion 34.
  • the plating surfaces of the plurality of semiconductor wafers 40 can be held vertically at substantially equal intervals in a state of facing each other.
  • the wafer carrier 30 in the present embodiment reliably holds a plurality of semiconductor wafers 40 and interferes with the flow of the plating solution W on the plating surface of the semiconductor wafer 40 in the plating tank 11 from below to above.
  • the contact area between the wafer carrier 30 and the semiconductor wafer 40 is made as small as possible so as not to prevent the wafer carrier 30 from coming into contact with the semiconductor wafer 40.
  • a plurality of ejection ports 21 for supplying the plating solution W from the reserve tank 11a to the plating tank 11 are formed on the lower portion of the wafer carrier 30 immersed in the plating tank 11 at regular intervals.
  • the plated liquid supply pipe 20 is arranged.
  • the end of the supply pipe 15 is communicated and connected to the lower center of the plating solution supply pipe 20.
  • the plating solution W stored in the reserve tank 11a is communicated from the start end of the supply pipe 15 which is communicated and connected to the lower part of the reserve tank 11a to the substantially center of the lower end portion of the plating solution supply pipe 20 by the circulation pump 13.
  • the plating solution supply pipe 20 It is supplied to the plating solution supply pipe 20 from the end of the connected supply pipe 15, and is supplied into the plating tank 11 from a plurality of ejection ports 21 formed on the upper portion of the plating solution supply pipe 20 at regular intervals. Then, as described above, the plating solution W overflowing from the upper part of the plating tank 11 is collected in the recovery path 11b and stored in the reserve tank 11a. That is, in the electroless plating apparatus 10, the plating solution W circulates between the plating tank 11 and the reserve tank 11a.
  • the plating solution supply pipe 20 for supplying the plating solution inside the plating tank 11 has four supply nozzles 22 provided parallel to the box-shaped longitudinal direction of the plating tank 11. , The central portion and both ends of the supply nozzle 22 are composed of three short tubes 23 which are communicated and connected in the lateral direction of the plating tank 11. As the supply nozzle 22 and the short tube 23, a tube made of a material (stainless steel, vinyl chloride, etc.) that does not react with the plating solution is preferably used.
  • the four supply nozzles 22 of the plating solution supply pipe 20 may be provided with at least two as a pair at predetermined intervals with respect to the longitudinal direction of the plating solution supply pipe 20. Hereinafter, the supply nozzles 22 may be provided. The number of the number can be appropriately changed according to the size of the plating tank 11 and the semiconductor wafer 40, such as 4 and 6.
  • a plurality of (28 per supply nozzle 22 in the figure) spouts 21 are provided at regular intervals on the upper part of the four supply nozzles 22.
  • the end 15c of the supply pipe 15 is communicated and connected to substantially the center of the lower end of the short pipe 23 in the center of the plating solution supply pipe 20.
  • the plating solution W supplied from the terminal 15c of the supply pipe 15 to the plating solution supply pipe 20 is ejected from the plurality of ejection ports 21 toward the upper portion between the plurality of wafer carriers 30 arranged in the upper portion.
  • the intervals between the plurality of ejection ports 21 are provided at regular intervals (4.75 mm, which is the same interval as the constant intervals of the semiconductor wafer 40 held by the PT1 and the wafer carrier 30 in the figure).
  • the plating solution W ejected upward from the ejection port 21 toward the upper wafer carrier 30 has a constant plating surface facing the semiconductor wafer 40 held by the wafer carrier 30 in the vertical direction. It is ejected upward in the interval.
  • a plurality of mounting plates 24 for mounting the wafer carrier 30, which is a holding means, are installed on the upper portion of the plating solution supply pipe 20.
  • a total of three mounting plates 24 are installed above the short tubes 23 at both ends and the short tube 23 at the center, which are communicated and connected in the lateral direction of the plating tank 11 orthogonal to the supply nozzle 22.
  • the mounting plate 24 is formed in the shape of a rectangular plate using a fluororesin having excellent heat resistance, chemical resistance, and the like as a material. In order to position and mount both lower ends 34b and 34b in the longitudinal direction of the lower holding portion 34 (see FIG.
  • Positioning portions 24a are formed at two locations. On the upper part of the mounting plate 24 installed on the upper part of the central short tube 23, positioning portions 24a for positioning and mounting both lower ends 34b and 34b in the longitudinal direction of the lower holding portion 34 of the wafer carrier 30, respectively, are provided. It is formed in 4 places.
  • the configuration is such that a plurality of ejection ports 21 provided at regular intervals are located at regular intervals on the plating surface of the semiconductor wafer 40 held by the wafer carrier 30 arranged above the plating solution supply pipe 20. There is. That is, the left and right grip portions 32 of the two wafer carriers 30 are gripped and immersed in the plating solution W of the plating tank 11, and both lower ends 34b and 34b of the lower holding portion 34 of the wafer carrier 30 are placed on the mounting plate 24.
  • the plating liquid is upwardly mounted from the plurality of ejection ports 21 at regular intervals on the plating surface of the semiconductor wafer 40 held by the wafer carrier 30. W can be ejected.
  • the ejection port 21 provided at the upper part of the plating solution supply pipe 20 is necessarily two semiconductor wafers 40 held on the wafer carrier 30 so as to face the plating surface. It was not always distributed in the upper part. That is, the fixed interval PT1 between the two semiconductor wafers 40 and the predetermined interval PT2 of the ejection port 21 provided on the upper part of the plating solution supply pipe 20 were different.
  • the plating solution flows to the upper part between the two semiconductor wafers 40, the plating solution smoothly flows to the upper part (upper arrow in the figure), but in other cases, the two semiconductor wafers 40. In some cases, it was sucked out by the rapid flow of the plating solution to the upper part of the wafer and circulated to the lower part between two adjacent semiconductor wafers 40 (lower arrow in the figure).
  • the PT1 at regular intervals between the plurality of semiconductor wafers 40 and the plurality of jets provided on the upper portion of the plating solution supply pipe 20 are provided.
  • the fixed intervals PT1 of the outlet 21 are set to exactly the same interval.
  • the wafer carrier 30 holding the plurality of semiconductor wafers 40 is simply placed on the upper portion of the plating solution supply pipe 20 by shifting the wafer carrier 30 in the longitudinal direction of the plating solution supply pipe 20 by a certain distance, and the plating surface is placed on the wafer carrier 30.
  • the plating solution W is made to flow from the lower part to the upper part between the plurality of semiconductor wafers 40 held so as to face each other.
  • both lower ends 34b and 34b of the lower holding portion 34 of the wafer carrier 30 are fitted to the positioning portion 24a formed on the upper portion of the mounting plate 24.
  • the positions of the fixed interval PT1 between the semiconductor wafers 40 at the same interval and the fixed interval PT1 of the ejection port 21 provided on the upper part of the plating solution supply pipe 20 are displaced by a certain distance. It will be.
  • the plating solution W can be circulated from the bottom to the top between the PT1s at regular intervals on the plating surface of the semiconductor wafer 40 held by the wafer carrier 30 arranged on the upper part of the plating solution supply pipe 20.
  • the plating solution can be uniformly distributed from the bottom to the top on the plating surfaces of the plurality of semiconductor wafers 40 held in the wafer carrier 30 immersed in the plating solution W of the plating tank 11, so that the semiconductor wafer 40 can be uniformly distributed. It is possible to suppress the occurrence of eddy current, laminar flow, turbulent flow or stagnant flow on the plated surface of the plating surface as low as possible.
  • two mounting plates 24 are connected to the upper part of the plating solution supply pipe 20 in the short direction of the plating tank 11 orthogonal to the supply nozzle 22 at both ends. Install two places on the upper part of the short pipe 23. Then, two wafer mounting portions 50, 50 as holding means of the modified example are suspended between the mounting plates 24 at both ends in parallel with the longitudinal direction of the plating solution supply pipe 20.
  • the wafer mounting portions 50, 50 are configured to evenly hold both lower side portions of the semiconductor wafer 40.
  • a plurality of holding grooves 50a for holding the plurality of semiconductor wafers 40 so as to face each other and substantially vertically are provided at regular intervals (for example, at intervals of 4.75 mm). It is provided at the same pitch).
  • the plurality of holding grooves 50a and 50a formed in the left and right wafer mounting portions 50 and 50 are formed so as to overlap each other on the same horizontal line in the lateral direction of the plating solution supply pipe 20 in a plan view.
  • the fixed interval of the holding grooves 50a is the same as the fixed interval PT1 (see FIG. 2) of the plurality of ejection ports 21 provided in the upper part of the supply nozzle 22.
  • the wafer mounting portions 50, 50 are positioned in the longitudinal direction of the supply nozzle 22 so that the fixed intervals of the plurality of holding grooves 50a and the fixed intervals PT1 of the plurality of ejection ports 21 above the supply nozzle 22 do not overlap. They are arranged in a staggered state.
  • the plating surfaces of the plurality of semiconductor wafers 40 are opposed to each other and held substantially vertically by the holding grooves 50a formed in the upper portions of the two wafer mounting portions 50, 50. ..
  • the semiconductor wafer in the plating tank 11 is held by holding the plurality of semiconductor wafers 40 substantially vertically at regular intervals by the wafer mounting portions 50, 50 at two points on both lower side portions without using the wafer carrier 30.
  • the risk of obstructing the flow of the plating solution W flowing from the lower side to the upper side of the plating surface of 40 is reduced as much as possible. As a result, more uniform and high-quality metal plating having a predetermined thickness can be formed on the plated surface of the semiconductor wafer 40.
  • the positioning portion 24a for positioning and mounting both lower ends 34b and 34b of the lower holding portion 34 of the wafer carrier 30 described above is formed on the upper portion of the mounting plate 24.
  • a rectangular plate-shaped mounting plate 24 having a flat surface is used.
  • the four supply nozzles 22 of the plating solution supply pipe 20 set the angle of the ejection port 21 that ejects the plating solution W upward onto the plating surfaces of the plurality of semiconductor wafers 40 located at the upper part of the plating solution supply pipe.
  • the central axis is used as the rotation axis and can be adjusted within a predetermined range. That is, as shown in FIG. 9A, the central axis 22a of the supply nozzle 22 is used as a rotation axis and is rotatable at a predetermined angle ⁇ (for example, 2 to 4 degrees to the left and right). As a result, as shown in FIG.
  • the angle of the ejection ports 21 of the four supply nozzles 22 of the plating solution supply pipe 20 arranged at the bottom of the semiconductor wafer 40 is set to the angle of the plating surface 40a of the semiconductor wafer 40. It can be displaced toward the substantially central part of.
  • the plated surface 40a of the semiconductor wafer 40 formed in a disk shape is circular. Therefore, the area closer to the center of the plating surface 40a requires plating.
  • the plating solution W is simply ejected vertically upward from the ejection port 21, the same amount of plating solution W flows from the lower side to the upper side on the plating surface 40a having a small area required for plating outside from the center of the circular plating surface 40a. become. Therefore, as shown in FIG. 9B, the angle of the ejection port 21 of the supply nozzle 22 far from the center of the plating surface 40a is set toward the center of the circular plating surface 40a.
  • the plating solution W from the ejection port 21 of the supply nozzle 22 is concentrated and efficiently distributed from the lower side to the upper side (dotted arrow in the figure) on the plating surface 40a at the substantially central portion of the semiconductor wafer 40. Therefore, a uniform and high-quality plating film can be formed on the plating surface 40a.
  • the plurality of spouts 21 for ejecting the plating solution W formed in the supply nozzle 22 to the upper part can be formed into a conical shape that expands downward. That is, as shown in FIG. 10A, the spout 21 is formed in a conical shape that expands downward in a side view. As shown in FIG. 10B, in the conventional spout 21 formed in a columnar shape, the plating solution W was discharged upward at the substantially central portion, but the side wall 21a of the spout 21 formed in parallel was discharged. In the vicinity of, the pressure discharged due to friction with the side wall 21a may decrease (dotted arrow in the figure).
  • the discharged pressure does not drop even in areas other than the substantially central portion of the spouts 21 (). (Dotted arrow in the figure), the plating solution can be discharged almost uniformly from the bottom to the top. As a result, the discharge pressure of the plating solution discharged upward from the ejection port 21 can be made substantially uniform, which helps to form a uniform and high-quality plating film.
  • the flow of the plating solution passing between the semiconductor wafers 40 from the bottom to the top can be made as uniform as possible, and in the electroless plating step. It is possible to prevent bubbles such as hydrogen generated in the plating solution W from adhering to and staying on the plating surface of the semiconductor wafer 40 as low as possible. As a result, it is possible to prevent unevenness in the film thickness of the plating surface of the semiconductor wafer 40, and to form a uniform film quality and a high-quality plating film. That is, the plating tank 11 filled with the plating solution has the minimum required size, and uniform and high-quality nickel plating having a predetermined thickness is formed on the plating surface of the semiconductor wafer 40 while considering cost reduction and environmental load. be able to.
  • Electroless plating equipment 11 Plating tank 11a Reserve tank 12 Housing 13 Circulation pump 14 Water meter 15 Supply path 16 Filter 17 Heater 20 Plating liquid supply pipe 21 Spout 22 Supply nozzle 23 Short pipe 30 Wafer carrier 40 Semiconductor wafer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemically Coating (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

コスト削減や環境負荷を配慮しつつ、半導体ウェハのめっき面に均一に高品質なニッケルめっきを形成することができる無電解めっき装置を提供する。 めっき槽と、リザーブ槽と、複数の半導体ウェハを一定間隔で立設して保持する保持手段と、めっき液の循環路と、循環ポンプと、流量計と、複数の噴出口が一定間隔で上部に形成されためっき液供給パイプと、を備えた無電解めっき装置において、保持手段で保持する複数の半導体ウェハを立設する一定間隔と、めっき液供給パイプの上部に形成される複数の噴出口の一定間隔とは同間隔とし、めっき槽の最下部に設置されためっき液供給パイプの上部に保持手段を設置する際に、保持手段に保持された複数の半導体ウェハの一定間隔間に、当該めっき液供給パイプの上部に形成された複数の噴出口が位置するように配設した無電解めっき装置。

Description

無電解めっき装置
 本発明は、半導体ウェハのめっき面に均一で高品質の金属めっきを形成することができる無電解めっき装置に関する。
 近年、電子部品の高性能化に伴い、電気導電性を高めるために半導体ウェハの金属(例えば、ニッケル等)によるめっき被膜の更なる均一性質及び高品質が求められている。
 無電解めっき被膜の形成においては、めっきをする金属イオンが溶解しためっき液と半導体ウェハ表面の金属(例えば、アルミニウム)との化学反応により、めっき皮膜を形成するので、半導体ウェハのめっき面を流れるめっき液の流れ特性がめっき被膜の形成に大きく影響することは周知である。
 このため、めっき液を充填しためっき槽を大型化して、このめっき槽に半導体ウェハを浸漬して、めっき液の特徴的な流れの影響を小さくして、半導体ウェハのめっき面を流れるめっき液の流れの均質性を図ることが行われている。しかしながら、めっき槽を大型化するとめっき液が大量に必要となるばかりか装置が巨大化し設備コストもかかる。
 めっき液は、めっき処理を繰り返すにつれて、反応副生成物や被メッキ物から溶出する金属イオン等の副生成物がめっき液中に蓄積されてめっき被膜の品質が劣化するため定期的に交換して使用済みのめっき液は破棄される。破棄されるめっき液には多量の不純物(リン等)が混入しているため、COD(化学的酸素要求量であり、水中の有機物を酸化剤で酸化した際に消費される酸素の量。湖沼、海域の有機 汚濁を測る代表的な指標)の値が大きくなり、環境負荷の要因となる虞がある。
 このため、設備コストを抑え環境負荷にも考慮しつつ、半導体ウェハの被めっき面に対して膜厚および膜質均一性の優れためっき膜を形成するために、半導体ウェハを反応溶液に浸漬させて半導体ウェハにめっき膜を形成する反応槽と、反応槽の内部に延設され、かつ、反応溶液を噴出する複数の噴出孔が延設方向に沿って設けられた供給管と、供給管の一端側において反応槽に隣接して設けられ、かつ、反応槽からオーバーフローした反応溶液を溜めるリザーブ槽とを備え、複数の噴出孔におけるリザーブ槽からの距離が遠い部分の開口率は、リザーブ槽からの距離が近い部分の開口率より少なくとも部分的に大きくした半導体装置の製造装置が開示されている(特許文献1参照)。
特開2019-206729号公報
 しかしながら、特許文献1に開示されている半導体装置の製造装置は、複数の噴出孔におけるリザーブ槽からの距離が遠い部分の開口率をリザーブ槽からの距離が近い部分の開口率より少なくとも部分的に大きくしただけのものである。これでは、キャリアに複数枚垂直に保持された半導体ウェハ間を下部から上部にかけて垂直に通過する反応溶液(めっき液)の流れを完全に均一にすることはできない。
 このため、無電解めっきの工程でめっき液中に発生する水素等の気泡が半導体ウェハのめっき面に付着して滞留することを完全に防ぐことができず、半導体ウェハの被めっき面の膜厚にムラが生じ、均一性や高品質な膜厚を形成することは困難である。
 本発明は、上記課題に鑑みで、めっき液が充填されためっき槽を大型化することなく、コスト削減や環境負荷を配慮しつつ、半導体ウェハのめっき面に均一かつ高品質な膜厚の金属めっき(ニッケル)を形成することができる無電解めっき装置を提供するものである。
 本発明は、めっき液が充填されためっき槽と、前記めっき槽からオーバーフローしためっき液を貯留するリザーブ槽と、複数の半導体ウェハのめっき面が当接しないように、一定間隔で複数の半導体ウェハを立設して保持する保持手段と、前記リザーブ槽のめっき液を前記めっき槽へ供給する供給路と、前記リザーブ槽のめっき液を、前記供給路を介して前記めっき槽へ供給する循環ポンプと、前記循環路におけるめっき液の流速を計測する流量計と、前記リザーブ槽からのめっき液を、前記めっき槽に噴出する複数の噴出口が上部に一定間隔で形成されためっき液供給パイプと、を備えた無電解めっき装置において、前記保持手段で保持する複数の半導体ウェハを立設する一定間隔と、前記めっき液供給パイプの上部に形成される複数の噴出口の一定間隔とは同間隔であり、前記めっき槽の最下部に設置された前記めっき液供給パイプの上部に前記保持手段を設置する際に、前記保持手段に保持された複数の半導体ウェハの一定間隔間に、当該めっき液供給パイプの上部に形成された複数の噴出口が位置するように配設することを特徴とする無電解めっき装置とした。
 また、前記保持手段は、複数の半導体ウェハを保持する強度を確保しつつ、複数の半導体ウェハと接する面積を最小限に形成したウェハキャリアであることを特徴とする。
 また、前記めっき液供給パイプは、めっき液を上方に噴出する前記噴出口の角度を、めっき液供給パイプの中心軸を回動軸として所定範囲で調整可能としたことを特徴とする。
 また、前記噴出口は、下方に拡開した円錐状に形成していることを特徴とする。
 本発明によれば、保持手段により複数の半導体ウェハのめっき面が当接しないようにめっき面を対面状態で一定間隔を空けて立設して保持しつつ、めっき槽に浸漬された保持手段の下部に配設されためっき液供給パイプの上部に一定間隔で形成された複数の噴出口から、保持手段に保持された複数の半導体ウェハの一定間隔間に、めっき液を上方に噴出する。このため、複数の半導体ウェハの一定間隔間に下方から上方に流通するめっき液の流れを確実に形成する。すなわち、半導体ウェハのめっき面間を下方から上方に流通するめっき液の流れを限りなく均一にすることができ、無電解めっきの工程でめっき液中に発生する水素等の気泡が半導体ウェハのめっき面に付着して滞留することを可及的に低く抑えることができる。これにより、半導体ウェハの被めっき面の膜厚のムラを防ぎ、膜質均一性を達成することができる。すなわち、めっき液が充填されためっき槽を必要最小限の大きさで、コスト削減や環境負荷を配慮しつつ、半導体ウェハのめっき面に均一かつ高品質な所定厚みの金属めっきを形成することができる。
本実施形態の無電解めっき装置の構成を説明する正面図である。 本実施形態の無電解めっき装置のめっき液供給パイプの構成を説明する平面図である。 従来の無電解めっき装置のめっき液の流れを説明する模式図である。 本実施形態の無電解めっき装置のめっき液の流れを説明する模式図である。 本実施形態の無電解めっき装置のめっき槽の構成を説明する斜視図である。 本実施形態の無電解めっき装置のめっき液供給パイプの上部に設置された保持手段の載置板を説明する斜視図である。 本実施形態の無電解めっき装置の半導体ウェハの保持手段であるウェハキャリアの構成を説明する斜視図である。 本実施形態の無電解めっき装置の半導体ウェハの保持手段の変形例の構成を説明する斜視図である。 本実施形態の無電解めっき装置のめっき液供給パイプの噴出口の角度調整を説明する断面図である。 本実施形態の無電解めっき装置のめっき液供給パイプの噴出口の形状を説明する断面図である。
 本発明は、めっき液が充填されためっき槽と、前記めっき槽からオーバーフローしためっき液を貯留するリザーブ槽と、複数の半導体ウェハのめっき面が当接しないように、一定間隔で複数の半導体ウェハを立設して保持する保持手段と、前記リザーブ槽のめっき液を前記めっき槽へ供給する供給路と、前記リザーブ槽のめっき液を、前記供給路を介して前記めっき槽へ供給する循環ポンプと、前記循環路におけるめっき液の流速を計測する流量計と、前記リザーブ槽からのめっき液を、前記めっき槽に噴出する複数の噴出口が上部に一定間隔で形成されためっき液供給パイプと、を備えた無電解めっき装置において、前記保持手段で保持する複数の半導体ウェハを立設する一定間隔と、前記めっき液供給パイプの上部に形成される複数の噴出口の一定間隔とは同間隔であり、前記めっき槽の最下部に設置された前記めっき液供給パイプの上部に前記保持手段を設置する際に、前記保持手段に保持された複数の半導体ウェハの一定間隔間に、当該めっき液供給パイプの上部に形成された複数の噴出口が位置するように配設することを特徴とする無電解めっき装置に関するものである。
 以下、本発明の無電解めっき装置の実施形態を、図1~10を参照して説明する。図1は、本実施形態の無電解めっき装置の構成を説明する正面図である。図2は、本実施形態の無電解めっき装置のめっき液供給パイプの構成を説明する平面図である。図3は、従来の無電解めっき装置のめっき液の流れを説明する模式図である。図4は、本実施形態の無電解めっき装置のめっき液の流れを説明する模式図である。図5は、本実施形態の無電解めっき装置のめっき槽の構成を説明する斜視図である。図6は、本実施形態の無電解めっき装置のめっき液供給パイプの上部に設置された保持手段の載置板を説明する斜視図である。図7は、本実施形態の無電解めっき装置の半導体ウェハの保持手段であるウェハキャリアの構成を説明する斜視図である。図8は、本実施形態の無電解めっき装置の半導体ウェハの保持手段の変形例の構成を説明する斜視図である。図9は、本実施形態の無電解めっき装置のめっき液供給パイプの噴出口の角度調整を説明する断面図である。図10は、本実施形態の無電解めっき装置のめっき液供給パイプの噴出口の形状を説明する断面図である。
 ここで、本実施形態で使用される半導体ウェハは、前工程として、めっき面にアルミニウムウ合金が、真空蒸着法またはスパッタ法などにより、例えば、5μm程度の厚みで形成されている。そして、ジンケート処理により、Al(アルミニウム)合金表面にAlの酸化膜を除去しつつ亜鉛(Zn)の被膜を形成する。その後、硝酸に浸漬し亜鉛被膜を除去した後、再度ジンケート処理を実施し、Al(アルミニウム)合金表面に亜鉛被膜を形成する。このように、2回のジンケート処理(ダブルジンケート処理)を実施することで、Al(アルミニウム)合金表面に緻密な亜鉛被膜が形成される。
 そして、半導体ウェハのめっき面にニッケル(Ni)による無電解めっきを行う。つまり、亜鉛で被覆されたAl合金皮膜で形成された半導体ウェハのめっき面を、ニッケル(硫酸ニッケル)を含むめっき液に浸漬すると、亜鉛の方がニッケルよりも標準酸化還元電位が卑であるため、最初はAl合金表面にニッケルを析出する。続いて表面がニッケルで被覆されると、めっき液中に含まれる還元剤の作用にニッケルが還元析出して所定の厚みのニッケル被膜が形成される。以下の、無電解めっき装置では、上記特性を用いて半導体ウェハのめっき面に均一で高品質なニッケル被膜を形成する。
 図1に示すように、本実施形態の無電解めっき装置10は、金属(例えば、鉄、アルミ等)製のラック(棚)の筐体12に、無電解めっき装置10を構成する各種装置が設置されて構成されている。各種装置としては、筐体12の内部には、リザーブ槽11aのめっき液をめっき槽11へ供給する供給管15が配設されている。供給管15はリザーブ槽11aの下部からめっき槽11の下部に連通連結されている。つまり、供給管15の始端はリザーブ槽11aの下部に連通連結されており、供給管15の終端はめっき槽11の下部(正確には、めっき槽11の下部に配設されためっき液供給パイプ20の下部略中央部)に連通連結されている。供給管15には、循環ポンプ13、流量計14、フィルタ16、ヒータ17が付設されている。
 循環ポンプ13は、供給管15を介してリザーブ槽11aに貯留されためっき液を、めっき槽11の下部に配設されためっき液供給パイプ20を経由して、めっき槽11内に所定の流量及び圧力で供給する。流量計14は、供給管15を流通するめっき液の流量を測定し、所定圧力、所定流量のめっき液がめっき槽11に供給されるように、循環ポンプ13の出力を制御する。フィルタ16は、供給管15を介してめっき槽11に供給されるめっき液から不純物(反応副生成物やごみ等)を除去する。ヒータ17は、供給管15を介してめっき槽11に供給されるめっき液を所定温度(例えば、60℃)まで加熱する。このように、供給管15を介してリザーブ槽11aからめっき槽11に供給されるめっき液を、所定圧力及び所定流量で安定して供給するとともに、めっき液から不純物の除去し所定温度まで加熱して供給することで、めっき槽11に浸漬された半導体ウェハ40のめっき面に均一で高品質なニッケル被膜を形成することができる。
 めっき槽11は、筐体12の上部に載置されている。めっき槽11は、例えば、ガラス等により箱型に形成された上部を開口した水槽が好適に用いられる。めっき槽11にはめっき液Wが充填されている。本実施形態のめっき液Wの基本組成は、硫酸ニッケル(NiSO4)、還元剤としての次亜リン酸ナトリウム(2NaH2PO2)、錯化剤等を加えて構成される。
 図5に示すように、めっき槽11の短手方向の一辺にはリザーブ槽11aが配設されている。めっき槽11には、上部開口部の四辺上端を囲繞するように、樋状のめっき液の回収路11bが設けられている。回収路11bは、めっき槽11の四辺上部からオーバーフローしためっき液Wを回収して、リザーブ槽11aに貯留するために、リザーブ槽11aに向かって傾斜が設けられている。
 めっき槽11の四辺上端には、一定間隔で複数のV字状の切り込み部11cが形成されている。切り込み部11cは、めっき槽11の四辺上端から回収路11bへオーバーフローするめっき液Wの流路を形成している。めっき槽11の四辺上端に一定間隔に形成された切り込み部11c間の中央下部には、複数の排出口11dが等間隔で穿設されている。この排出口11d、めっき槽11の上部のめっき液Wに含まれる不純物(ごみ等)をめっき液W毎回収路11bに排出する排出路を形成するためのものである。そして、図5中矢印で示すように、めっき槽11からオーバーフローしためっき液Wは、切り込み部11cや排出口11dから回収路11bに流出して、回収路11bを流下してリザーブ槽11aに貯留される。
 図1に示すように、めっき槽11には、本実施形態の複数の半導体ウェハ40の保持手段である2個のウェハキャリア30が、複数(図中は13枚)の薄板の円盤状に形成された半導体ウェハ40のめっき面(円盤状の薄板の表裏面)を対面状態で一定間隔(例えば、4.75mm)を空けて保持した状態でめっき液Wに浸漬されている。ウェハキャリア30は、複数の円盤状の半導体ウェハ40を略垂直に保持した状態で運搬可能とした専用治具である。
 図7(a)に示すように、ウェハキャリア30は、正面視で略H状に形成された板体により前面板31a及び後面板31bを構成し、前面板31a及び後面板31bの左右上端側面を連結した左右把持部32、32と、前面板31a及び後面板31bの同一水平面の左右側面の略中央部を連結した側面保持部33、33と、前面板31a及び後面板31bの左右下端側面を連結した下部保持部34、34とにより左右両側面を形成し、内部に複数の半導体ウェハ40を収納可能な空間を形成している。
 左右把持部32、32は、前面板31a及び後面板31bの左右上端側面から左右外側に突出した平板であり、ウェハキャリア30を運搬するための持ち手として機能する。側面保持部33、33は、複数の半導体ウェハ40の左右両側部を保持するための複数の保持溝33aが一定間隔(例えば、4.75mm間隔の等ピッチ)でウェハキャリア30の内側に水平に突出して形成されている。下部保持部34、34の上部には、複数の半導体ウェハ40の下部を、めっき面を対向させて略垂直に保持するための複数の保持溝34aが一定間隔(例えば、4.75mm間隔の等ピッチ)で垂直に突出して形成されている。そして、左右の側面保持部33に形成された複数の保持溝33a、33aと、左右の下部保持部34、34に形成された複数の保持溝34a、34aは、平面視でウェハキャリア30の短手方向にそれぞれ同一水平線上に重なるように形成されている。
 上記構成のウェハキャリア30は、図7(b)に示すように、複数の円盤状の半導体ウェハ40の両側部を側面保持部33、33で保持し、半導体ウェハ40の下部を下部保持部34、34で保持することで、複数の半導体ウェハ40のめっき面を対向させた状態で略等間隔に垂直に保持可能としている。上述してきたように、本実施形態におけるウェハキャリア30は、複数の半導体ウェハ40を確実に保持しつつ、めっき槽11における半導体ウェハ40のめっき面におけるめっき液Wの下方から上方への流通に干渉しないように、ウェハキャリア30と半導体ウェハ40との接触面積を可及的に小さくしている。
 図1に示すように、めっき槽11に浸漬されたウェハキャリア30の下部には、リザーブ槽11aからのめっき液Wを、めっき槽11に供給する複数の噴出口21が一定間隔で上部に形成されためっき液供給パイプ20が配設されている。このめっき液供給パイプ20の略中央下部には、供給管15の終端が連通連結されている。この構成により、リザーブ槽11aに貯留されためっき液Wは、リザーブ槽11aの下部に連通連結された供給管15の始端から、循環ポンプ13により、めっき液供給パイプ20の下端部略中央に連通連結された供給管15の終端からめっき液供給パイプ20に供給され、そして、一定間隔でめっき液供給パイプ20上部に形成された複数の噴出口21からめっき槽11内に供給される。そして、上述したように、めっき槽11の上部からオーバーフローしためっき液Wは、回収路11bで回収されてリザーブ槽11aに貯留される。すなわち、無電解めっき装置10においては、めっき槽11とリザーブ槽11aとの間で、めっき液Wが循環する構成としている。
 図2に示すように、めっき槽11の内部にめっき液を供給するめっき液供給パイプ20は、めっき槽11の箱型状の長手方向に対して平行に設けられた4本の供給ノズル22と、供給ノズル22の中央部及び両端部にめっき槽11の短手方向に連通連結された3本の短管23とにより構成されている。この供給ノズル22及び短管23としては、めっき液と反応しない材質(ステンレス鋼や塩化ビニール等)の管が好適に用いられる。なお、めっき液供給パイプ20の4本の供給ノズル22は、めっき液供給パイプ20の長手方向に対して所定間隔を空けて最低2本を一対として設けられていればよく、以下、供給ノズル22の数は、4本、6本のように、めっき槽11や半導体ウェハ40の大きさに応じて適宜変更可能である。
 4本の供給ノズル22の上部には、複数(図中は1本の供給ノズル22につき28個)の噴出口21が一定間隔で設けられている。そして、めっき液供給パイプ20の中央の短管23の下端略中央には、供給管15の終端15cが連通連結されている。供給管15の終端15cからめっき液供給パイプ20に供給されためっき液Wは、複数の噴出口21から上部に配設された複数のウェハキャリア30間に向けて上部に噴出する。また、複数の噴出口21の間隔は一定間隔(図中PT1、ウェハキャリア30に保持される半導体ウェハ40の一定間隔と同間隔である4.75mm)で設けられている。このとき、詳細は後述するが、噴出口21から上部のウェハキャリア30に向けて上部に噴出するめっき液Wは、ウェハキャリア30により保持された半導体ウェハ40の垂直方向に対向するめっき面の一定間隔間に上方に噴出される。
 図6に示すように、めっき液供給パイプ20の上部には、保持手段であるウェハキャリア30を載置するための複数の載置板24が設置されている。この載置板24は、供給ノズル22と直交するめっき槽11の短手方向に連通連結された両端の短管23と、中央の短管23との上部に合計3枚設置されている。載置板24は耐熱性、耐薬品性等に優れたフッ素樹脂を素材として矩形板状に形成されている。両端の短管23上部に設置された載置板24の上部には、それぞれウェハキャリア30の下部保持部34(図7参照)の長手方向の両下端34b、34bを位置決めして載置するための位置決め部24aが2箇所形成されている。中央の短管23上部に設置された載置板24の上部には、それぞれウェハキャリア30の下部保持部34の長手方向の両下端34b、34bを位置決めして載置するための位置決め部24aが4箇所形成されている。
 そして、図7(b)に示すように、ウェハキャリア30の下部保持部34の両下端34b、34bを、載置板24の上部に形成された位置決め部24aに嵌合して載置するだけで、めっき液供給パイプ20の上部に配設されたウェハキャリア30で保持された半導体ウェハ40のめっき面の一定間隔間に、同じく一定間隔で設けられた複数の噴出口21が位置する構成としている。つまり、2個のウェハキャリア30の左右把持部32を把持して、めっき槽11のめっき液Wに浸漬させてウェハキャリア30の下部保持部34の両下端34b、34bを、載置板24の上部に形成された位置決め部24aに嵌合して載置するだけで、簡単にウェハキャリア30で保持された半導体ウェハ40のめっき面の一定間隔間に、複数の噴出口21から上方にめっき液Wを噴出することができる。
 以下、図3及び図4を参照して、めっき槽11に浸漬したウェハキャリア30にめっき面を対向して略垂直に保持された半導体ウェハ40におけるめっき液の流れを説明する。
 図3に示すように、従来の装置においては、めっき液供給パイプ20の上部に設けられた噴出口21は、必ずしもウェハキャリア30にめっき面を対向して保持された二枚の半導体ウェハ40の間を上部に流通するとは限らなかった。つまり、二枚の半導体ウェハ40の間の一定間隔PT1と、めっき液供給パイプ20の上部に設けられた噴出口21の所定間隔PT2とが異なっていた。
 このため、二枚の半導体ウェハ40の間を上部にめっき液が流通する場合は上部へめっき液がスムーズに流通(図中上矢印)するが、それ以外の場合は、二枚の半導体ウェハ40の上部へのめっき液の早い流れに吸い出されて、隣接する二枚の半導体ウェハ40の間において下部に流通(図中下矢印)する場合があった。
 また、二枚の半導体ウェハ40の間の流れが異なる場合は、めっき槽11に浸漬したウェハキャリア30に保持された半導体ウェハ40の下部に渦流が生じ、その上部においては、上方と下方に流れの異なる層流が形成され、さらに、半導体ウェハ40の上部においては、乱流又は停滞流が生じていた。
 上述したように、無電解めっきの工程においては、めっき液中の化学反応により水素の気泡が発生する。この水素の気泡は、半導体ウェハ40の上部に生じた停滞流により、半導体ウェハ40のめっき面に付着して滞留したままとなる。これにより、水素の気泡が付着しためっき面では、めっき液中に含まれる還元剤の作用にニッケルが還元析出する化学反応が発生せず、結果としてニッケル被膜にムラが発生し、膜質均一性や高品質を達成することができない。
 これに対して、図4に示すように、本実施形態の無電解めっき装置10では、複数の半導体ウェハ40の間の一定間隔PT1と、めっき液供給パイプ20の上部に設けられた複数の噴出口21の一定間隔PT1を全く同じ間隔にしている。これにより、複数の半導体ウェハ40を保持したウェハキャリア30を、めっき液供給パイプ20の長手方向に一定距離ずらしてめっき液供給パイプ20の上部に載置するだけで、ウェハキャリア30にめっき面を対向して保持された複数の半導体ウェハ40の間をめっき液Wが下部から上部に流通するようにしている。
 すなわち、図7(b)に示すように、本実施形態においては、ウェハキャリア30の下部保持部34の両下端34b、34bを、載置板24の上部に形成された位置決め部24aに嵌合して載置するだけで、同じ間隔の半導体ウェハ40の間の一定間隔PT1と、めっき液供給パイプ20の上部に設けられた噴出口21の一定間隔PT1の位置が一定距離ずれて設置されることになる。これにより、めっき液供給パイプ20の上部に配設されたウェハキャリア30で保持された半導体ウェハ40のめっき面の一定間隔PT1間に、めっき液Wを下方から上方に流通させることができる。
 このように、めっき槽11のめっき液Wに浸漬したウェハキャリア30に保持された複数の半導体ウェハ40のめっき面において、下方から上方へ均一にめっき液を流通させることができるので、半導体ウェハ40のめっき面に、渦流、層流、乱流又は停滞流が生じることを可及的に低く抑えることができる。
 これにより、めっき液中の化学反応により水素の気泡が発生した場合でも。水素の気泡を上方に流し、半導体ウェハ40のめっき面に付着して滞留したままとなることを防ぐことができる。これにより、めっき面に形成されるニッケル被膜にムラが生じることを防止して、膜質均一性や高品質なめっき被膜を形成することができる。
 ここで、本実施形態における半導体ウェハ40の保持手段の変形例を、図8を参照して説明する。上述した実施形態では、複数の半導体ウェハ40をウェハキャリア30により、めっき面を対向させて略垂直に保持する構成を説明してきたが、保持手段として必ずしもウェハキャリア30を必要とするものではない。
 すなわち、図8(a)に示すように、めっき液供給パイプ20の上部に、2個の載置板24を、供給ノズル22と直交するめっき槽11の短手方向に連通連結された両端の短管23の上部に2箇所設置する。そして、両端の載置板24間に、めっき液供給パイプ20の長手方向と平行に、変形例の保持手段としての2個のウェハ載置部50、50を懸架する。このウェハ載置部50、50は、半導体ウェハ40の下部両側部を均等に保持する構成としている。
 2個のウェハ載置部50、50の上部には、複数の半導体ウェハ40を、めっき面を対向させて略垂直に保持するための複数の保持溝50aが一定間隔(例えば、4.75mm間隔の等ピッチ)で設けられている。左右のウェハ載置部50、50に形成された複数の保持溝50a、50aは、平面視でめっき液供給パイプ20の短手方向にそれぞれ同一水平線上に重なるように形成されている。この保持溝50aの一定間隔は、供給ノズル22の上部に設けられた複数の噴出口21の一定間隔PT1(図2参照)と同間隔である。そして、ウェハ載置部50、50は、複数の保持溝50aの一定間隔と供給ノズル22の上部の複数の噴出口21の一定間隔PT1とが重ならないように供給ノズル22の長手方向に位置をずらした状態で配設されている。
 そして、図8(b)に示すように、2個のウェハ載置部50、50の上部に形成された保持溝50aにより、複数の半導体ウェハ40のめっき面を対向させて略垂直に保持する。このように、ウェハキャリア30を用いずに、複数の半導体ウェハ40を下部両側部の2点でウェハ載置部50、50により一定間隔で略垂直に保持することにより、めっき槽11における半導体ウェハ40のめっき面を下方から上方に流通するめっき液Wの流通を妨げる恐れが可及的に低減することになる。これにより、半導体ウェハ40のめっき面に、さらに均一かつ高品質な所定厚みの金属めっきを形成することができる。
 なお、図8に示す保持手段の変形例においては、上述したウェハキャリア30の下部保持部34の両下端34b、34bを位置決めして載置する位置決め部24aは載置板24の上部には形成されておらず、表面がフラットな矩形板状の載置板24を用いている。
 ここで、めっき液供給パイプ20の4本の供給ノズル22は、上部に位置する複数の半導体ウェハ40のめっき面にめっき液Wを上方に噴出する噴出口21の角度を、めっき液供給パイプの中心軸を回動軸として所定範囲で調整可能としている。すなわち、図9(a)に示すように、供給ノズル22の中心軸22aを回動軸として所定角度θ(例えば、左右に2~4度)で回動自在としている。これにより、図9(b)に示すように、半導体ウェハ40の下部に配設されためっき液供給パイプ20の4本の供給ノズル22の噴出口21の角度を、半導体ウェハ40のめっき面40aの略中央部に向けて変位させることができる。
 つまり、円盤状に形成された半導体ウェハ40のめっき面40aは円形である。このため、めっき面40aの中央に近い方がめっきを要する面積が大きい。単に噴出口21から鉛直上方にめっき液Wを噴出すると、円形のめっき面40aの中心から外側のめっき要する面積の小さいめっき面40aにも同量のめっき液Wが下方から上方に向けて流れることになる。そこで、図9(b)に示すように、めっき面40aの中央から遠い供給ノズル22の噴出口21の角度を、円形のめっき面40aの中央に向けて角度をつける。これにより、供給ノズル22の噴出口21からのめっき液Wを、半導体ウェハ40の略中央部のめっき面40aに、集中して効率よく下方から上方へ流通(図中は点線の矢印)させることができるので、均一で高品質のめっき被膜をめっき面40aに形成することができる。
 また、供給ノズル22に形成されためっき液Wを上部に噴出する複数の噴出口21は、下方に拡開した円錐状に形成することもできる。すなわち、図10(a)に示すように、噴出口21を側面視で下方に拡開した円錐状に形成する。図10(b)に示すように、従来の円柱状に形成された噴出口21では、略中心部ではめっき液Wは上方に吐出されていたが、平行に形成された噴出口21の側壁21aの近傍では、側壁21aとの摩擦により吐出される圧力が低下する(図中の点線矢印)場合がある。そこで、複数の噴出口21を下方に拡開した円錐状に形成することで、図10(a)に示すように、噴出口21の略中心部以外でも、吐出される圧力が落ちずに(図中の点線矢印)、略均一に下方から上方へめっき液を吐出することができる。これにより、噴出口21から上方へ吐出されるめっき液の吐出圧力を略均一とすることができ、均一で高品質のめっき被膜の形成への一助となる。
 上述してきたように、本実施形態の無電解めっき装置10によれば、半導体ウェハ40間を下方から上方に通過するめっき液の流れを限りなく均一にすることができ、無電解めっきの工程でめっき液W中に発生する水素等の気泡が半導体ウェハ40のめっき面に付着して滞留することを可及的に低く抑えることができる。これにより、半導体ウェハ40のめっき面の膜厚にムラが生じることを防ぎ、膜質均一性や高品質なめっき被膜を形成することができる。すなわち、めっき液が充填されためっき槽11を必要最小限の大きさで、コスト削減や環境負荷を配慮しつつ、半導体ウェハ40のめっき面に均一かつ高品質な所定厚みのニッケルめっきを形成することができる。
 以上、上述した実施形態を通して本発明を説明してきたが、本発明はこれらに限定されるものではない。また、上述した各効果は、本発明から生じる最も好適な効果を列挙したに過ぎず、本発明による効果は、本実施形態に記載されたものに限定されるものではない
 10 無電解めっき装置
 11 めっき槽
 11a リザーブ槽
 12 筐体
 13 循環ポンプ
 14 水量計
 15 供給路
 16 フィルタ
 17 ヒータ
 20 めっき液供給パイプ
 21 噴出口
 22 供給ノズル
 23 短管
 30 ウェハキャリア
 40 半導体ウェハ

Claims (4)

  1.  めっき液が充填されためっき槽と、
     前記めっき槽からオーバーフローしためっき液を貯留するリザーブ槽と、
     複数の半導体ウェハのめっき面が当接しないように、一定間隔で複数の半導体ウェハを立設して保持する保持手段と、
     前記リザーブ槽のめっき液を前記めっき槽へ供給する供給路と、
     前記リザーブ槽のめっき液を、前記供給路を介して前記めっき槽へ供給する循環ポンプと、
     前記循環路におけるめっき液の流速を計測する流量計と、
     前記リザーブ槽からのめっき液を、前記めっき槽に噴出する複数の噴出口が上部に一定間隔で形成されためっき液供給パイプと、
    を備えた無電解めっき装置において、
     前記保持手段で保持する複数の半導体ウェハを立設する一定間隔と、前記めっき液供給パイプの上部に形成される複数の噴出口の一定間隔とは同間隔であり、
     前記めっき槽の最下部に設置された前記めっき液供給パイプの上部に前記保持手段を設置する際に、前記保持手段に保持された複数の半導体ウェハの一定間隔間に、当該めっき液供給パイプの上部に形成された複数の噴出口が位置するように配設することを特徴とする無電解めっき装置。
  2.  前記保持手段は、
     複数の半導体ウェハを保持する強度を確保しつつ、複数の半導体ウェハと接する面積を最小限に形成したウェハキャリアであることを特徴とする請求項1に記載の無電解めっき装置。
  3.  前記めっき液供給パイプは、
     めっき液を上方に噴出する前記噴出口の角度を、めっき液供給パイプの中心軸を回動軸として所定範囲で調整可能としたことを特徴とする請求項1又は請求項2に記載の無電解めっき装置。
  4.  前記噴出口は、下方に拡開した円錐状に形成していることを特徴とする請求項1~3のいずれか1項に記載の無電解めっき装置。
PCT/JP2021/046925 2020-12-25 2021-12-20 無電解めっき装置 WO2022138528A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/258,995 US20240044007A1 (en) 2020-12-25 2021-12-20 Electroless plating apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020216621A JP7111386B2 (ja) 2020-12-25 2020-12-25 無電解めっき装置
JP2020-216621 2020-12-25

Publications (1)

Publication Number Publication Date
WO2022138528A1 true WO2022138528A1 (ja) 2022-06-30

Family

ID=82157882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/046925 WO2022138528A1 (ja) 2020-12-25 2021-12-20 無電解めっき装置

Country Status (4)

Country Link
US (1) US20240044007A1 (ja)
JP (1) JP7111386B2 (ja)
TW (1) TW202235678A (ja)
WO (1) WO2022138528A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4873335A (ja) * 1971-12-30 1973-10-03
JPS52133038A (en) * 1976-04-30 1977-11-08 Nippon Electric Co Partially plating device
JPH05106055A (ja) * 1991-10-09 1993-04-27 Ibiden Co Ltd プリント配線板の表面処理装置
JP2004162093A (ja) * 2002-11-11 2004-06-10 Seiko Epson Corp めっき装置及びめっき方法並びに電子装置の製造方法
JP2019206729A (ja) * 2018-05-28 2019-12-05 三菱電機株式会社 半導体装置の製造装置および半導体装置の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4873335A (ja) * 1971-12-30 1973-10-03
JPS52133038A (en) * 1976-04-30 1977-11-08 Nippon Electric Co Partially plating device
JPH05106055A (ja) * 1991-10-09 1993-04-27 Ibiden Co Ltd プリント配線板の表面処理装置
JP2004162093A (ja) * 2002-11-11 2004-06-10 Seiko Epson Corp めっき装置及びめっき方法並びに電子装置の製造方法
JP2019206729A (ja) * 2018-05-28 2019-12-05 三菱電機株式会社 半導体装置の製造装置および半導体装置の製造方法

Also Published As

Publication number Publication date
US20240044007A1 (en) 2024-02-08
JP7111386B2 (ja) 2022-08-02
JP2022102091A (ja) 2022-07-07
TW202235678A (zh) 2022-09-16

Similar Documents

Publication Publication Date Title
TWI345801B (en) Electrochemical processing cell
US8540857B1 (en) Plating method and apparatus with multiple internally irrigated chambers
TWI586846B (zh) 具有遠距陰極電解質流體管理之電化學沉積設備
JP6000473B2 (ja) 基板上への電解金属の垂直堆積装置
JP2912538B2 (ja) 浸漬型基板処理装置
US20060081478A1 (en) Plating apparatus and plating method
JP2001355096A (ja) 金属層を均一に堆積させるための有孔陽極
TWI535888B (zh) Electroplating treatment device, electroplating treatment method and memory medium
US9816197B2 (en) Sn alloy plating apparatus and Sn alloy plating method
WO2022138528A1 (ja) 無電解めっき装置
JP6650072B2 (ja) 基板に垂直電気金属成膜を行うための装置
TWI711726B (zh) 用於化學及/或電解表面處理之系統
US11566329B2 (en) Device for electroless metallization of a target surface of at least one workpiece
JP5449920B2 (ja) 無電解めっき処理方法
KR20100011853A (ko) 기판도금장치
TW202242201A (zh) 電化學電鍍裝置
KR101103442B1 (ko) 기판도금장치
JP3400278B2 (ja) 半導体製造装置及び半導体装置の製造方法
JP3884150B2 (ja) 高速メッキ装置及び高速メッキ方法
JP6938253B2 (ja) 半導体製造装置および半導体装置の処理方法
TW202012705A (zh) 流體產生器、沉積裝置及材料沉積之方法
JP2002266098A (ja) めっき装置、及び半導体装置の製造方法
JP2005179724A (ja) 無電解めっき装置
JP6706095B2 (ja) 無電解めっき装置および無電解めっき方法
JPH1053892A (ja) 基板のパターン電気めっき装置及び電気メッキ方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21910673

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18258995

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21910673

Country of ref document: EP

Kind code of ref document: A1