WO2022138431A1 - 送信装置、送信方法及び送信プログラムの記録媒体 - Google Patents

送信装置、送信方法及び送信プログラムの記録媒体 Download PDF

Info

Publication number
WO2022138431A1
WO2022138431A1 PCT/JP2021/046476 JP2021046476W WO2022138431A1 WO 2022138431 A1 WO2022138431 A1 WO 2022138431A1 JP 2021046476 W JP2021046476 W JP 2021046476W WO 2022138431 A1 WO2022138431 A1 WO 2022138431A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
signal
command signal
response signal
submarine
Prior art date
Application number
PCT/JP2021/046476
Other languages
English (en)
French (fr)
Inventor
上総 宇賀神
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US18/267,312 priority Critical patent/US20240048236A1/en
Priority to JP2022572254A priority patent/JP7513119B2/ja
Publication of WO2022138431A1 publication Critical patent/WO2022138431A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
    • H04B10/0773Network aspects, e.g. central monitoring of transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/80Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water

Definitions

  • the present invention relates to a transmission device, a transmission method, and a recording medium of a transmission program in an optical submarine device that responds to a command signal from a land terminal device.
  • Patent Document 1 outputs a signal including control information from a first optical signal including a main signal and a control signal, executes control based on the control information, and responds in a wavelength band different from the main signal.
  • an optical transmission device that outputs a signal according to control.
  • Patent Document 2 receives an optical component that processes an optical signal output by an optical transmission device, a control unit that controls the optical component, an optical signal and a control signal, and converts the control signal into an electric signal.
  • a submarine optical transmission device including a receiving unit for outputting to a control unit is disclosed.
  • the first sub-signal modulated by the terminal station is superimposed on the main signal and transmitted, and the optical repeater transmits the second sub-signal having a frequency different from that of the first sub-signal modulated by the response signal.
  • a monitoring method of an optical repeater that superimposes a sub signal on a main signal and returns it to a terminal station.
  • each optical submarine device is connected to the land end. There is a concern that the response signal may be mixed with the local equipment.
  • the "optical signal for communication” refers to an optical signal used for optical communication performed between land-based terminal equipment.
  • a method of transmitting a response signal by modulating the communication optical signal with a different frequency band set for each optical submarine device for the communication optical signal can be considered.
  • this method has a problem of complicated demodulation due to a mixture of a plurality of frequencies in which a communication optical signal is modulated.
  • An object of the present invention is to provide a transmission device or the like that can easily control the transmission timing of a command signal and demodulate a response signal in a land terminal device and can secure a wider frequency band for communication.
  • the transmission device of the present invention has a first detection unit that detects a first command signal superimposed on a first optical signal traveling the optical submarine cable in the first direction, and the optical submarine cable traveling in the second direction. It is a response signal to the first command signal superimposed on the second optical signal to be superimposed by the first other optical seabed device which is an optical seafloor device other than the self-lighting seafloor device which is an optical seafloor device provided with a self-transmitting device.
  • the first command signal whose destination is the self-luminous submarine device A first superimposing unit that superimposes a first response signal, which is a response signal, on the second optical signal, and a first command signal whose destination is the first other optical submarine device at the first step. It includes a first update unit that updates from the number of times the detection is completed, the number of times the detection of the first response signal is completed, and the number of times the detection is completed.
  • the transmission method of the present invention is a transmission method in an optical submarine device provided in an optical submarine cable system that performs optical communication through an optical submarine cable, and is a transmission method for a first optical signal traveling in the first direction of the optical submarine cable.
  • the superimposed first command signal is detected and superimposed on the second optical signal traveling in the second direction of the optical submarine cable by the first other optical submarine device which is an optical submarine device other than the self-lighting submarine device.
  • the first response signal which is a response signal to the first command signal
  • the first stage which is the stage of the first transmission permission information
  • the first response signal which is a response signal to the first command signal, is superimposed on the second optical signal, and the first step is the first command signal whose destination is the first other optical submarine device.
  • the procedure including updating from the number of times the detection is completed and the number of times the detection of the first response signal is completed is included.
  • the recording medium of the transmission program of the present invention is a first optical signal traveling in the first direction of the optical submarine cable to a computer provided in the optical submarine device provided in the optical submarine cable system that performs optical communication through the optical submarine cable.
  • the process of detecting the first response signal, which is the response signal to the first command signal, which is superimposed, and the first step, which is the stage of the first transmission permission information, is the first setting step
  • the destination is the self.
  • the process of superimposing the first response signal which is the response signal to the first command signal to be the optical submarine device, on the second optical signal, the first step, and the destination to the first other optical submarine device.
  • It is a recording medium recording a program for causing a computer to execute a process of updating from the number of times the detection of the first command signal is completed and the number of times the detection of the first response signal is completed.
  • the transmission device and the like of the present invention can easily control the transmission timing of the command signal and demodulate the response signal in the land terminal device, and can secure a wider frequency band for communication.
  • FIG. 1 is a conceptual diagram showing the configuration of an optical submarine cable system 10 which is an example of the optical submarine cable system of the present embodiment.
  • the optical submarine cable system 10 includes land terminal devices 11 and 12 and optical submarine devices 21 to 2n.
  • the optical submarine cable system 10 is for bidirectional optical communication between the land end station device 11 and the land end station device 12 through a submarine optical cable including optical fibers F1 and F2.
  • Optical communication from the land terminal device 11 to the land terminal device 12 is performed by the optical signal S1 traveling through the optical fiber F1.
  • the optical communication from the land terminal device 12 to the land terminal device 11 is performed by the optical signal S2 traveling through the optical fiber F2.
  • Each of the optical fibers F1 and F2 is one or a plurality of optical fibers.
  • the n optical submarine devices of the optical submarine devices 21 to 2n superimpose the first response signal, which is the response signal to the first command signal transmitted by the land terminal device 11 on the optical signal S1, on the optical signal S2. It is an optical submarine device that transmits to the land terminal device 11.
  • n is an integer of 2 or more. Further, when n is 2, the optical seafloor device 2n is deleted from FIG.
  • the frequency band of the first command signal is set so as not to overlap with the frequency band of the communication optical signal included in the optical signal S1.
  • the frequency band of the first command signal is set lower than, for example, the frequency band of the communication optical signal included in the optical signal S1.
  • the frequency band of the first response signal is set so as not to overlap with the frequency band of the communication optical signal included in the optical signal S2.
  • the frequency band of the second response signal is set lower than, for example, the frequency band of the communication optical signal included in the optical signal S2. Whether or not the frequency band of the first command signal overlaps with the frequency band of the first response signal is arbitrary.
  • the optical submarine device that superimposes the first response signal on the optical signal S2 and transmits it to the land terminal device 11 with respect to the first command signal that the land terminal device 11 superimposes on the optical signal S1 and transmits is "the first. 1 Target light submarine device ".
  • the optical seafloor device is, for example, an optical relay device, a branching device, or the like.
  • An optical submarine device that is not a device may be installed.
  • FIG. 2 is a conceptual diagram showing the configuration of the optical seabed device 20 which is an example of each of the optical seabed devices 21 to 2n of FIG.
  • the optical seafloor device 20 includes reception circuits R1 and R2, a control unit CT, a storage unit MM, a transmission circuit T1, and optical couplers C1 and C2.
  • a part of the optical signal S1 transmitted from the land terminal device 11 through the optical fiber F1 is separated by the optical coupler C1 and input to the receiving circuit R1.
  • the optical signal S1 has a time zone in which a first command signal transmitted from the land terminal device 11 to any first target optical seafloor device is superimposed.
  • the optical signal S2 has a time zone in which the first response signal from the first target optical seafloor device between the land terminal device 12 and the optical seafloor device 20 is superimposed.
  • the first response signal is a response signal to the first command signal.
  • the receiving circuit R1 receives the first command signal superimposed on the input optical signal S1.
  • the first command signal includes one addressed to the optical submarine device 20 and one addressed to another first target optical submarine device.
  • the reception circuit R1 receives the reception signal of the first command signal by the control unit CT regardless of whether the first command signal is addressed to the optical seafloor device 20 or another first target optical seafloor device. Send to.
  • the reception circuit R2 When the first response signal is superimposed on the input optical signal S2, the reception circuit R2 receives the first response signal.
  • the reception does not necessarily have to be at a level that recognizes the source and contents of the first response signal.
  • the reception may be, for example, a detection to the extent that it can be recognized as the first response signal.
  • the first response signal received by the receiving circuit R2 is from the first target optical submarine device between the optical submarine device 20 and the land terminal device 12.
  • the reception circuit R2 sends the reception information of the first response signal to the control unit CT.
  • the control unit CT When the control unit CT receives the reception signal of the first command signal from the reception circuit R1, it determines whether the transmission destination of the first command signal is the optical seafloor device 20.
  • the first command signal includes the identifier of the first target optical submarine device designated by the land terminal device 11 as the transmission destination of the first command signal.
  • the storage unit MM holds the identifier of the optical seafloor device 20. Therefore, the control unit CT can make the determination by the identifier representing the transmission destination included in the first command signal and the identifier of the optical seafloor device 20 held by the storage unit MM.
  • the control unit CT When the control unit CT receives the transmission of the first command signal addressed to the optical submarine device 20 from the land terminal device 1, the control unit CT creates and creates the first response information regarding the instruction content of the first command signal. 1 The response information is stored in the storage unit MM. Then, the control unit CT determines whether the first transmission permission value held by the storage unit MM is 0.
  • the first transmission permission value means that the first response information can be transmitted to the land terminal device 11 when the value is 0, and the first response information when the value is other than 0. Is an integer of 0 or more, which means that transmission to the land terminal device 11 is impossible.
  • the control unit CT causes the transmission circuit T1 to transmit the first response information held in the storage unit MM to the land terminal device 11.
  • the control unit CT waits until the first transmission permission value becomes 0, and then transmits the first response information to the land terminal device 11 in the transmission circuit. Let T1 do it.
  • the control unit CT also updates the first transmission permission value by the operation described below.
  • the control unit CT sets the initial value of the first transmission permission value to 0.
  • the control unit CT transmits the first command signal to the first target optical seabed between the optical seafloor device 20 and the land terminal device 12. Judgment as to whether it is a device.
  • the definition of the first target device is as described above.
  • the first target optical seafloor device between the optical seafloor device 20 and the land terminal device 12 will be referred to as a “first target optical seafloor device to be monitored”.
  • the "first target optical seafloor device to be monitored” is a first target optical seafloor device in which the optical cable distance from the land terminal device 11 is longer than that of the optical seafloor device 20.
  • the optical cable distance is the length following the optical cable.
  • the "first target optical submarine device to be monitored” is also a first target optical device in the direction of travel of the optical signal S1 rather than the optical submarine device 20.
  • the storage unit MM holds the identifier of the first target optical submarine device to be monitored. Therefore, the control unit CT can make the determination by the identifier representing the transmission destination included in the first command signal and the identifier of the first target optical seafloor device to be monitored held by the storage unit MM. When the transmission destination of the first command signal whose reception is completed is the first target optical submarine device to be monitored, the control unit CT increases the value of the first transmission permission value by one.
  • the control unit CT also reduces the value of the first transmission permission value by one when the reception circuit R2 completes the reception of the first response signal superimposed on the optical signal S2.
  • the fact that the first transmission permission value is 0 means that the first target optical submarine device to the first command signal transmitted to the first target optical submarine device to be monitored by that time is sent from the first target optical submarine device to the land terminal device 11. It means that the transmission of the first response signal of is completed. Therefore, even if the optical submarine device 20 superimposes the first response signal from the optical submarine device 20 on the optical signal S2 to the land terminal device 11, the other first target optical submarine device is superimposed on the optical signal S2. The first response signal from is not superimposed. Therefore, the control unit CT can prevent the first response signal from being superimposed on the optical signal S2 by the above operation. Therefore, the optical seafloor device 20 can avoid the problem of difficulty in demodulating the first response signal in the land terminal device 11 due to the multiple superposition of the first response signal on the optical signal S2.
  • the storage unit MM in FIG. 2 is provided with a recording medium capable of holding recording information non-temporarily.
  • the recording medium is pre-recorded with programs and information necessary for the control unit CT to perform the above operation.
  • the storage unit MM stores information instructed by the control unit CT. Further, the storage unit MM sends the information instructed by the control unit CT to the control unit CT.
  • the transmission circuit T1 transmits the information and the signal instructed by the control unit CT to the land terminal device 11 by superimposing the information and the signal on the optical signal S2.
  • FIG. 3 is a conceptual diagram showing an example of the storage process of the first response information performed by the control unit CT in response to the transmission of the first command signal.
  • the control unit CT starts the process of FIG. 3, for example, by inputting a start signal from the outside.
  • the control unit CT first determines, as the process of S11, whether or not the reception circuit R1 has completed receiving the first command signal addressed to the optical seafloor device 20. If the determination result by the process of S11 is yes, the control unit CT performs the process of S12. On the other hand, when the determination result by the processing of S11 is no, the control unit CT performs the processing of S11 again and waits for the completion of receiving a new first command signal.
  • the control unit CT When the control unit CT performs the processing of S12, the control unit CT creates the first response information for the instruction information included in the received first command signal, and holds the created first response information in the storage unit MM.
  • the content of the instruction information is arbitrary. It is assumed that the instruction information is, for example, the transmission of temperature information detected by a temperature sensor at a predetermined position of the optical seabed device 20. In that case, the control unit CT acquires temperature information from the temperature sensor, creates first response information including the temperature information, and causes the storage unit MM to hold the first response information.
  • control unit CT determines whether to end the process of FIG. 3 as the process of S13.
  • the control unit CT makes the determination, for example, by determining whether or not the end information is input from the outside.
  • control unit CT ends the process of FIG. On the other hand, when the determination result by the process of S13 is no, the control unit CT performs the process of S11 again.
  • FIG. 4 is a conceptual diagram showing an example of transmission processing of the first response signal performed by the control unit CT.
  • the control unit CT starts the process of FIG. 4, for example, by inputting a start signal from the outside.
  • control unit CT first determines, as the process of S15, whether or not the latest first transmission permission value held by the storage unit MM is 0. If the determination result by the processing of S15 is yes, the control unit CT performs the processing of S16. On the other hand, when the determination result by the processing of S15 is no, the control unit CT performs the processing of S15 again and waits for the first transmission permission value to become 0.
  • the storage unit MM determines whether or not the first response information is held as the same processing. If the determination result by the processing of S16 is yes, the control unit CT performs the processing of S17. On the other hand, when the determination result by the processing of S16 is no, the control unit CT performs the processing of S19.
  • control unit CT When the control unit CT performs the processing of S17, the control unit CT selects one first response information held by the storage unit MM as the same processing. Then, the control unit CT instructs the transmission circuit T1 to transmit the first response signal related to the selected first response information as the process of S18.
  • control unit CT determines whether to end the process of FIG. 4 as the process of S19.
  • the control unit CT makes the determination, for example, by determining whether or not the end information is input from the outside.
  • the control unit CT ends the process of FIG. 4 when the determination result by the process of S19 is yes. On the other hand, when the determination result by the processing of S19 is no, the control unit CT performs the processing of S15 again.
  • FIG. 5 is a conceptual diagram showing an example of the update processing of the first transmission permission value performed by the control unit CT.
  • the process of FIG. 5 is performed in parallel with the process of FIG.
  • the control unit CT starts the process of FIG. 5, for example, by inputting a start signal from the outside. Then, the control unit CT first sets the first transmission permission value to 0 as the process of S21.
  • control unit CT determines, as the process of S22, whether or not the receiving circuit R1 has received the first command signal addressed to the first target optical submarine device to be monitored.
  • the control unit CT performs the processing of S23.
  • the control unit CT skips the processing of S23 and performs the processing of S24.
  • the control unit CT performs the process of S23, the first transmission permission value is increased by one as the process. Then, the control unit CT performs the processing of S24.
  • the control unit CT determines whether or not the receiving circuit R2 has received the first response signal as the same processing. If the determination result by the processing of S24 is yes, the control unit CT performs the processing of S25. On the other hand, when the determination result by the processing of S24 is no, the control unit CT skips the processing of S25 and performs the processing of S26. When the control unit CT performs the processing of S25, the first transmission permission value is reduced by one in the same processing. Then, the control unit CT performs the processing of S26.
  • control unit CT determines whether to end the processing of FIG. 5 as the same processing.
  • the control unit CT makes the determination, for example, by determining whether or not the end information is input from the outside.
  • the control unit CT ends the process of FIG. 5 when the determination result by the process of S26 is yes. On the other hand, when the determination result by the processing of S26 is no, the control unit CT performs the processing of S22 again.
  • FIG. 6 is a conceptual diagram showing a specific example of a timing chart of each operation or the like in the optical seafloor devices 21, 22 and 2n of FIG.
  • Each of the operations, etc. includes a first command signal reception operation, a command execution operation, a first transmission permission value, a first transmission permission value at the time of completion of reception of the first command signal and at the start of transmission of the first response signal, and a first. It is a response signal reception operation.
  • the reception order, reception timing, reception period, time required for command execution operation, transmission time of the first response signal, etc. in each optical seafloor device of the first command signal are simply for FIG. It is assumed to be. In FIG. 6, it is assumed that the first command signal is received in the order of the light seafloor device 2n, the light seafloor device 22, and the light seafloor device 21 in each optical seafloor device. Has been done.
  • the optical submarine devices 21, 22 and 2n complete the operation of receiving the first command signal addressed to the optical submarine device 2n.
  • the difference in the arrival time of the optical signal S1 due to the difference in the propagation distance of the light in the optical fiber F1 between the optical seafloor devices can be ignored.
  • the optical seafloor device 2n Upon completion of the reception operation of the first command signal, the optical seafloor device 2n determines yes by the process of S11 in FIG. 3, and performs the process of S12. Then, the optical seafloor device 2n determines yes in the process of S15 in FIG. 4, and processes S16, S17, and S18. As a result, the optical seafloor device 2n starts the transmission operation of the first response signal at time t2. The transmission operation continues until time t6.
  • the optical submarine devices 21 and 22 determine yes by the process of S22 in FIG. 5 at time t1, and set the first transmission permission value to 1 by the process of S23.
  • the operation of receiving the first command signal addressed to the optical seafloor device 22 by each optical seafloor device is completed.
  • the optical seafloor device 22 determines yes by the process of S11 in FIG. 3 and performs the process of S12. Then, the optical seafloor device 22 determines no by the process of S15 in FIG. 4, repeats the process of S15, and waits for the first transmission permission value to become 0.
  • the optical submarine device 21 determines yes by the process of S22 in FIG. 5 at time t3, and sets the first transmission permission value to 2 by the process of S23. Further, at time t3, the optical seafloor device 2n determines no by the process of S22 in FIG. 5 because the destination of the command signal, the optical seafloor device 22, is not the first target optical seafloor device to be monitored. Then, the optical seafloor device 2n skips the processing of S23 and maintains the first transmission permission value of 0.
  • the command execution operation by the optical seafloor device 22 (S12 in FIG. 3) is completed.
  • the first transmission permission value of the optical seafloor device 22 at time t4 is 1. Therefore, the optical seafloor device 22 determines no in the process of S13 in FIG. 3, repeats the process of S13 until the first transmission permission value becomes 0, and waits for the first transmission permission value to become 0.
  • the optical seafloor device 21 determines yes by the process of S11 in FIG. 3 at time t5, and performs the process of S12. Then, the optical seafloor device 21 determines no by the process of S15 in FIG. 4, repeats the process of S15, and waits for the first transmission permission value to become 0.
  • the optical submarine device 22 determines no by the process of S22 in FIG. Then, the optical seafloor device 22 skips the processing of S23 and maintains the first transmission permission value of 1.
  • the optical seafloor device 2n determines no by the process of S22 in FIG. Then, the optical seafloor device 2n skips the processing of S23 and maintains the first transmission permission value of 0.
  • the optical seafloor device 2n completes the transmission operation of the first response signal. Then, the optical seafloor devices 21 and 22 complete the reception operation of the first response signal. Upon completion of the reception operation, the optical seafloor device 21 determines yes by the process of S24 in FIG. 5 at time t6. Then, the optical seabed device 21 sets the first transmission permission value to 1 by the processing of S25.
  • the optical seafloor device 22 determines yes by the process of S24 in FIG. 5 at time t6. Then, the optical seafloor device 22 sets the first transmission permission value to 0 by the processing of S25.
  • the optical seafloor device 22 sets the determination result by the process of S16 in FIG. 4 as yes. Then, the optical seafloor device 22 starts the transmission operation of the first response signal including the first response information by the processing of S17 and S18 in FIG. The transmission continues until time t8.
  • the command execution operation processing of S12 in FIG. 3 by the optical seafloor device 21 is completed.
  • the first transmission permission value of the optical seafloor device 21 at time t7 is 1. Therefore, the optical submarine device 21 repeats the process of S15 in FIG. 4 and waits for the first transmission permission value to become 0.
  • the optical seafloor device 22 completes the transmission operation of the first response signal.
  • the optical seafloor device 21 completes the operation of receiving the first response signal at time t8. Then, the optical seafloor device 21 sets the determination result by the process of S24 in FIG. 5 to yes, and sets the first transmission permission value to 0 by the process of S25.
  • the optical seafloor device 21 In response to the fact that the first transmission permission value becomes 0 at time t8, the optical seafloor device 21 sets the determination result of S15 in FIG. 4 as yes. Then, the optical seafloor device 21 determines yes by the processing of S16, and starts the transmission operation of the first response signal by the processing of S17 and S18. The transmission operation continues until time t9. [effect]
  • the optical submarine device of the present embodiment transmits a first response signal to the first command signal addressed to the self-lighting submarine device that has been received only when the held first transmission permission value is 0.
  • the optical submarine device also has a first command signal addressed to the optical submarine device (the first target optical submarine device to be monitored) whose optical cable distance from the land terminal device that transmits the first command signal is farther than that of the self-optical submarine device. When the reception of is completed, the first transmission permission value is incremented by one.
  • the optical submarine device also reduces the first transmission permission value by one when the reception of the first response signal is completed.
  • the transmission of the first response signal from the first target optical submarine device to the first command signal transmitted to the monitored optical submarine device up to that point is determined. It means that everything is done. Therefore, even if the optical submarine device superimposes the first response signal on the optical signal, the first response signal from another first target optical submarine device is not superimposed on the optical signal.
  • the period during which the first response signal from the other first target optical submarine device passes through the optical submarine cable and the first response signal transmitted by the optical submarine device of the present embodiment are It is possible to prevent the period of passing through the optical submarine cable from overlapping. Therefore, in the optical seafloor apparatus of the present embodiment, the frequency band of each first response signal of each first target optical submarine apparatus can be made the same. Therefore, the optical submarine device of the present embodiment facilitates control of the transmission timing of the command signal and demodulation of the response signal in the land terminal device, and makes it possible to secure a wider frequency band for communication.
  • the optical submarine device of the first embodiment the optical cable distance from the land terminal device to which the destination of the first command signal transmits the first command signal is farther than that of the self-lighting submarine device in order to update the first transmission permission value.
  • a process for determining whether or not the device is an optical seafloor device is required.
  • the processing to be executed is correspondingly complicated.
  • the optical submarine device of the present embodiment solves this problem.
  • An example of the configuration of the optical submarine cable system of this embodiment is the configuration of the optical submarine cable system 10 of FIG.
  • a configuration example of the optical seabed device of the present embodiment is the configuration of the optical seabed device 20 of FIG.
  • the optical submarine device 20 of the present embodiment has the following operations different from those of the first embodiment.
  • the optical seabed device 20 of the present embodiment a portion different from that of the first embodiment will be mainly described.
  • the control unit CT of the optical seabed device 20 of the present embodiment shown in FIG. 2 determines the destination of the first command signal. Instead, increase the first transmission permission value by one. Then, when the receiving circuit R2 detects the first response signal, the control unit CT reduces the first transmission permission value by one. Further, when the predetermined threshold time (time limit) has elapsed from the reception completion time of the first response signal to the nearest first command signal destined for a destination other than the optical seafloor device 20, the control unit CT further controls. , The first transmission permission value is set to 0. For the threshold time (time limit), for example, a value that is understood by experience or the like that the transmission of the first response signal to the first command signal is naturally completed is used.
  • FIG. 1 An example of the processing of the storage processing of the first response information performed by the control unit CT of the present embodiment is shown in FIG. Further, an example of the transmission processing of the first response signal performed by the control unit CT of the present embodiment is shown in FIG.
  • FIG. 7 is a conceptual diagram showing an example of the first transmission permission value update process (additional portion in the present embodiment) performed by the control unit CT of the present embodiment.
  • the control unit CT starts the process of FIG. 7, for example, by inputting start information from the outside. Then, the control unit CT first specifies the reception completion time of the latest first command signal other than the one addressed to the self-luminous submarine device as the process of S31. Then, as the process of S32, the control unit CT determines whether the elapsed time from the time specified in S31 exceeds the threshold time (time limit). As for the threshold time, it is assumed that the transmission of the first response signal is naturally completed when the time exceeding the threshold time elapses after the reception of the first command signal is completed. The time set as.
  • control unit CT performs the processing of S34.
  • the control unit CT sets the first transmission permission value to zero as the process of S33. Then, the control unit CT determines whether to end the process of FIG. 7 as the process of S34.
  • the control unit CT makes the determination, for example, by determining whether or not the end information is input from the outside.
  • the control unit CT ends the process of FIG. 7. On the other hand, when the determination result by the processing of S34 is no, the control unit CT performs the processing of S31 again.
  • the time on which it is assumed that the response to the first command signal is naturally completed has elapsed from the latest reception completion time of the first command signal addressed to the other optical submarine device. In that case, the first transmission permission value is set to 0. This operation is performed when the number of detected first command signals is larger than the number of detected first response signals.
  • the optical submarine device of the present embodiment can set the first transmission permission value to 0.
  • the optical cable distance from the land terminal device to which the destination of the first command signal transmits the first command signal for updating the first transmission permission value is larger than that of the self-lighting submarine device. It does not require a process to determine whether it is a distant optical submarine device. Therefore, the optical seabed device of the present embodiment can simplify the processing to be executed as compared with the optical seabed device of the first embodiment.
  • the present embodiment is an embodiment relating to an optical submarine cable system in which both land-based station devices transmit a command signal to the optical submarine device and the optical submarine device returns a response signal.
  • An example of the configuration of the optical submarine cable system of the present embodiment is the optical submarine cable system 10 of FIG.
  • the optical submarine cable system 10 of the present embodiment is different from the optical submarine cable system 10 of the first embodiment in the following points.
  • the differences between the optical submarine cable system 10 of the present embodiment and the optical submarine cable system 10 of the first embodiment will be mainly described.
  • the land-based terminal device 11 included in the optical submarine cable system 10 of the present embodiment transmits a first command signal to each of the optical submarine devices 21 to 2n, as in the case of the first embodiment. ..
  • Each of the optical submarine devices 21 to 2n transmits a first response signal to the first command signal addressed to the self-luminous submarine device to the land terminal device 11 as in the case of the first embodiment.
  • the land terminal device 12 transmits a command signal (second command signal) to each of the optical seabed devices 21 to 2n.
  • Each of the optical seafloor devices 21 to 2n transmits a response signal (second response signal) to the command signal addressed to the self-luminous submarine device to the land terminal station device 12.
  • the frequency band of the first command signal transmitted by the land terminal device 11 through the optical fiber F1 and the frequency band of the second response signal transmitted by each of the optical submarine devices 21 to 2n through the optical fiber F1 should not overlap with each other. Is set to. The reason is that the first command signal and the second response signal may be superimposed on the optical signal S1 in the same time zone, and in that case, when the frequency bands overlap, the second response signal by the land terminal device 12 This is because it becomes difficult to demodulate.
  • the frequency band of the second command signal transmitted by the land terminal device 12 through the optical fiber F2 and the frequency band of the first response signal transmitted by each of the optical submarine devices 21 to 2n through the optical fiber F2 overlap each other. It is set not to be. The reason is that the second command signal and the first response signal may be superimposed on the optical signal S2 in the same time zone, and in that case, when the frequency bands overlap, the first response signal by the land terminal device 11 This is because it becomes difficult to demodulate.
  • FIG. 8 is a conceptual diagram showing the configuration of the optical seabed device 20 which is an example of the optical seabed device of the present embodiment.
  • the optical seafloor device 20 of FIG. 8 includes a transmission circuit T2 in addition to the configuration of the optical seafloor device 20 of FIG.
  • the receiving circuits R1 and R2, the transmitting circuit T1, the control unit CT, and the storage unit MM in FIG. 8 first perform the same operation as the configuration with the same reference numerals in FIG. 2 of the first embodiment.
  • the receiving circuits R1 and R2, the transmitting circuit T2, the control unit CT, and the storage unit MM in FIG. 8 also perform the operations described below with respect to the second command signal.
  • the optical signal S2 has a time zone in which the second command signal transmitted by the land terminal device 12 to any of the optical seafloor devices is superimposed. Further, the optical signal S2 has a time zone in which the second response signal from the target optical seafloor device between the land terminal device 11 and the optical seafloor device 20 is superimposed. The second response signal is a response signal to the second command signal.
  • the receiving circuit R2 receives the second command signal.
  • the second command signal received by the receiving circuit R2 includes one addressed to the optical seabed device 20 and one addressed to another second target optical seabed device.
  • the second target optical submarine device refers to an optical submarine device that transmits (replies) a second response signal to the transmitted second command signal.
  • the reception circuit R2 sends the reception signal of the second command signal to the control unit CT.
  • the receiving circuit R1 When the second response signal is superimposed on the input optical signal S1, the receiving circuit R1 receives the second response signal.
  • the reception circuit R1 sends the reception signal of the second response signal to the control unit CT.
  • the control unit CT determines whether the transmission destination of the second command signal is the optical seafloor device 20.
  • the second command signal includes the identifier of the second target optical submarine device designated by the land terminal device 12 as the transmission destination of the second command signal.
  • the storage unit MM holds the identifier of the optical seafloor device 20. Therefore, the control unit CT can make the determination by the identifier representing the transmission destination included in the second command signal and the identifier of the optical seafloor device 20 held by the storage unit MM.
  • control unit CT When the control unit CT receives the transmission of the second command signal addressed to the optical submarine device 20 from the land terminal device 1, it creates response information (second response information) regarding the instruction content of the second command signal. , The created second response information is stored in the storage unit MM. Then, the control unit CT determines whether the second transmission permission value held by the storage unit MM is 0.
  • the second transmission permission value means that the second response information can be transmitted to the land terminal device 12 when the value is 0, and the second response information is when the value is other than 0. Is an integer of 0 or more, which means that transmission to the land terminal device 12 is impossible.
  • the control unit CT causes the transmission circuit T2 to transmit the second response information held in the storage unit MM to the land terminal device 12.
  • the control unit CT waits until the second transmission permission value becomes 0, and then transmits the second response information to the land terminal device 11 in the transmission circuit. Let T1 do it.
  • the control unit CT also updates the second transmission permission value by the operation described below.
  • the control unit CT sets the initial value of the second transmission permission value to 0.
  • the control unit CT transmits the second command signal to the second target optical seabed between the optical seafloor device 20 and the land terminal device 11. Judgment as to whether it is a device.
  • the second target optical seafloor device between the optical seafloor device 20 and the land terminal device 11 will be referred to as a “second target optical seafloor device to be monitored”.
  • the "second target optical seafloor device to be monitored” is a second target optical seafloor device in which the optical cable distance from the land terminal device 12 is longer than that of the optical seafloor device 20.
  • the optical cable distance is the length following the optical cable as described above.
  • the second target optical seafloor device to be monitored is also the second target optical seafloor device in the direction of travel of the optical signal S2 rather than the optical seafloor device 20.
  • the storage unit MM holds the identifier of the second target optical submarine device to be monitored. Therefore, the control unit CT can make the determination by the identifier representing the transmission destination included in the second command signal and the identifier of the second target optical seafloor device to be monitored held by the storage unit MM. When the transmission destination of the second command signal whose reception is completed is the second target optical submarine device to be monitored, the control unit CT increases the value of the second transmission permission value by one.
  • the control unit CT When the receiving circuit R1 receives the second response signal superimposed on the optical signal S1, the control unit CT also reduces the value of the second transmission permission value by one.
  • the fact that the second transmission permission value is 0 means that the second target optical submarine device to be monitored to the second command signal transmitted to the second target optical submarine device to be monitored up to that point is the land terminal device 12 It means that the transmission of the second response signal to is completed. Therefore, even if the optical submarine device 20 superimposes the second response signal on the optical signal S1 to the land terminal device 11, the optical signal S1 has a second response signal from another second target optical submarine device. Not superimposed. Therefore, the control unit CT can prevent the second response signal from being superimposed on the optical signal S1 by the above operation.
  • the optical submarine device 20 of FIG. 8 the period during which the second response signal from the second target optical submarine device to be monitored passes through the optical submarine cable and the second response signal transmitted by the optical submarine device 20 are the optical submarine cable. It is possible to prevent the period of passing through the above from overlapping. Therefore, the optical submarine device 20 of FIG. 8 can have the same frequency band of the second response signal of each of the second target optical submarine devices. Therefore, the optical submarine device 20 of FIG. 8 facilitates control of the transmission timing of the second command signal and demodulation of the response signal in the land terminal device 12, and makes it possible to secure a wider frequency band for communication. ..
  • the optical seafloor device of the present embodiment operates in the same manner as the optical seafloor device of the first embodiment in response to command signals transmitted from both land terminal devices.
  • the frequency band of each command signal and the frequency band of the response signal to each other command signal traveling on the same optical fiber are set so as not to overlap.
  • the optical submarine cable system of the present embodiment can avoid the problem of difficulty in demodulating the response signal in each land terminal device while achieving both command signals transmitted from both land terminal devices. can.
  • the optical seabed device of the present embodiment may operate the optical seafloor device of the second embodiment with respect to both the first command signal and the second command signal.
  • the optical submarine cable system of the present embodiment exhibits the effect of the optical submarine cable system of the second embodiment in addition to the effect of the optical submarine cable system of the present embodiment.
  • the optical submarine cable system of the present embodiment may include a first target optical submarine device that is not the second target optical submarine device, or may include a second target optical submarine device that is not the first target optical submarine device. .. ⁇ Fourth Embodiment>
  • the frequency band of each command signal and the frequency band of the response signal to each other command signal traveling on the same optical fiber are set so as not to overlap. Therefore, there is a problem that the frequency band assigned to the command signal and the frequency band assigned to the response signal cannot be used for optical communication, and the communication capacity is reduced by that amount.
  • the present embodiment is an embodiment relating to an optical submarine cable system in which the frequency band of each command signal and the frequency band of the response signal to each of the other command signals can be set so as to overlap each other.
  • An example of the configuration of the optical submarine cable system of the present embodiment is the optical submarine cable system 10 of FIG.
  • the optical submarine cable system 10 of the present embodiment is different from the optical submarine cable system 10 of the third embodiment in the following.
  • the differences between the optical submarine cable system 10 of the present embodiment and the optical submarine cable system 10 of the third embodiment will be mainly described.
  • the frequency band of the first command signal transmitted by the land terminal device 11 and the frequency band of the second response signal transmitted by each of the optical seafloor devices 21 to 2n may overlap. Further, the frequency band of the second command signal transmitted by the land terminal device 12 and the frequency band of the first response signal transmitted by each of the optical seafloor devices 21 to 2n may overlap.
  • FIG. 9 is a conceptual diagram showing a configuration example of the optical seabed device 20 which is an example of each of the optical seabed devices 21 to 2n of the present embodiment.
  • the optical seafloor device 20 of FIG. 9 includes filters FL1 and FL2 in addition to the configuration of the optical seafloor device 20 of FIG.
  • the filter FL1 blocks light in the frequency band of the first command signal superimposed on the optical signal S1. Therefore, the first command signal does not pass through the filter FL1.
  • the filter FL2 blocks light in the frequency band of the second command signal superimposed on the optical signal S2. Therefore, the second command signal does not pass through the filter FL2.
  • the operation performed by the optical seabed device 20 in FIG. 9 is different from the operation performed by the optical seafloor device 20 in FIG.
  • the points different from the operations performed by the optical seabed device 20 of FIG. 8 will be mainly described.
  • the control unit CT When the receiving circuit R1 receives the first command signal, the control unit CT causes the storage unit MM to hold the first command information corresponding to the first command signal. When the receiving circuit R2 receives the second command signal, the control unit CT also causes the storage unit MM to hold the second command information corresponding to the second command signal.
  • the control unit CT sequentially determines whether or not the first response permission information is 0. Then, when the control unit CT determines that the first response permission information is 0, the control unit CT determines whether the storage unit MM holds the second command information. When the control unit CT determines that the storage unit MM holds the second command information, the control unit CT superimposes the second command signal corresponding to the second command information on the transmission circuit T1 on the optical signal S2. It is transmitted to the optical fiber F2. When the control unit CT causes the transmission circuit T1 to transmit the second command signal, the control unit CT causes the storage unit MM to delete the second command information related to the second command signal. When the storage unit MM holds a plurality of second command information, the control unit CT transmits the second command signal for all the second command information held by the storage unit MM to the transmission circuit T1. Let me do it.
  • the control unit CT determines whether the storage unit MM holds the first response information. When the control unit CT determines that the storage unit MM holds the first response information, the control unit CT causes the transmission circuit T1 to transmit the first response signal corresponding to the first response information. When the control unit CT causes the transmission circuit T1 to transmit the first response signal, the control unit CT causes the storage unit MM to delete the first response information related to the first response signal. When the storage unit MM holds a plurality of first response information, the control unit CT transmits the first response signal for all the first response information held by the storage unit MM to the transmission circuit T1. Let me do it.
  • the control unit CT performs the same transmission processing as the transmission processing for causing the transmission circuit T1 to perform the second command signal and the first response signal described above on the transmission circuit T2 for the first command signal and the second response signal. Let me.
  • control unit CT prevents the time zones superimposed on the first signal from overlapping between the second command signal and the first response signal, and the first command signal and the second response signal are second. Make sure that the time zones superimposed on the two signals do not overlap. Therefore, the above operation of the control unit CT allows the frequency band of each command signal to overlap with the frequency band of the response signal to each of the other command signals.
  • the optical submarine device of the present embodiment allows the frequency band of each command signal to overlap with the frequency band of the response signal to each of the other command signals, in addition to the effect of the optical submarine device of the third embodiment. Has the effect of
  • the transmission permission information does not necessarily have to be a transmission permission value.
  • the transmission permission information may be composed of information indicating the stage.
  • the transmission permission information may be, for example, letters, numbers, symbols, or a combination thereof having a predetermined order.
  • FIG. 10 is a conceptual diagram showing the configuration of the transmission device 20x, which is the minimum configuration of the optical seabed device of the embodiment.
  • the transmission device 20x includes a first detection unit R1x, a second detection unit R2x, a first superimposing unit T1x, and a first update unit CTx.
  • the first detection unit R1x detects the first command signal superimposed on the first optical signal traveling in the first direction of the optical submarine cable.
  • the second detection unit R2x is a first response signal which is a response signal to the first command signal superimposed on the second optical signal traveling in the second direction of the optical submarine cable by the first other optical submarine device. Is detected.
  • the first other optical seafloor device is an optical seafloor device other than the self-lighting seafloor device, which is an optical seafloor device provided with a self-transmitting device.
  • the first superimposing unit T1x is a response signal to the first command signal whose destination is the self-luminous submarine device when the first stage, which is the stage of the first transmission permission information, is the first setting stage.
  • the response signal is superimposed on the second optical signal.
  • the first update unit CTx updates the first step from the number of times the detection of the first command signal is completed and the number of times the first response signal is detected with the destination as the first other optical seafloor device. do.
  • the transmission device 20x has a period in which the first response signal from the other optical submarine device passes through the optical submarine cable and the first response signal transmitted by the self-luminous submarine device is the optical submarine cable. It is possible to prevent the period of passing through the above from overlapping. Therefore, the transmission device 20x can first make the frequency band of each response signal of the optical seafloor device the same. Therefore, the transmission device 20x facilitates control of the transmission timing of the command signal and demodulation of the response signal in the land terminal device, and makes it possible to secure a wider frequency band for communication.
  • the transmission device 20x exhibits the effects described in the section of [Effects of the Invention] according to the above configuration.
  • Appendix 1 A first detector that detects a first command signal superimposed on a first optical signal traveling in the first direction of the optical submarine cable, and a first detector.
  • the second optical signal traveling in the second direction of the optical submarine cable is superimposed on the first other optical submarine device, which is an optical submarine device other than the self-light submarine device, which is an optical submarine device provided with a self-transmitting device.
  • a second detection unit that detects the first response signal, which is a response signal to the first command signal
  • the first stage which is the stage of the first transmission permission information
  • the first response signal which is the response signal to the first command signal whose destination is the self-luminous submarine device
  • the first superimposing part that superimposes on the optical signal
  • a first update unit that updates the first step from the number of times the detection of the first command signal is completed and the number of times the first response signal is detected, and the number of times the destination is the first other optical seafloor device.
  • the frequency band of the first optical signal and the frequency band of the first command signal do not overlap, and the frequency band of the second optical signal and the frequency band of the first response signal do not overlap.
  • the transmitter according to any one of Supplementary Note 1 to Supplementary Note 3. (Appendix 5)
  • the first other optical seafloor device is an optical seafloor device in the traveling direction of the first optical signal from the optical seafloor device.
  • the first detection unit identifies whether or not the destination of the first command signal is the first other optical submarine device from the identifier of the first other optical submarine device included in the received first command signal. , The transmitter according to any one of Supplementary note 1 to Supplementary note 5.
  • a second update unit that updates the second step from the number of times the detection of the second command signal is completed and the number of times the second response signal is detected and the number of times the destination is the second other optical seafloor device.
  • the transmitter according to any one of Supplementary note 1 to Supplementary note 6. (Appendix 8) Each time the detection of the second command signal with the destination as the second other optical submarine device is completed, the second update unit increases or decreases the first step by one step with respect to the second step. Do, Each time the detection of the first response signal is completed, the first update unit performs an increase / decrease in the opposite direction of the first increase / decrease in the first step with respect to the second step.
  • the transmitter according to Appendix 7.
  • the second update unit sets the second step as the second setting step when the elapsed time from the time when the latest detection of the second command signal is completed exceeds the second threshold value.
  • the transmitter according to Appendix 7 or Appendix 8. (Appendix 10)
  • the frequency band of the second optical signal and the frequency band of the second command signal do not overlap, and the frequency band of the first optical signal and the frequency band of the second response signal do not overlap.
  • the second other optical seafloor device is an optical seafloor device in the traveling direction of the second optical signal from the optical seafloor device.
  • the second detection unit identifies whether or not the destination of the second command signal is the second other optical submarine device from the identifier of the second other optical submarine device included in the received second command signal.
  • the transmitting device according to any one of Supplementary note 7 to Supplementary note 11.
  • the frequency band of the first command signal does not overlap with the frequency band of the second response signal, and the frequency band of the second command signal does not overlap with the frequency band of the first response signal.
  • the transmitter according to any one of Supplementary note 7 to Supplementary note 12.
  • the first detection unit is common to the fourth detection unit, and the second detection unit is common to the third detection unit.
  • the transmitting device according to any one of Supplementary note 7 to Supplementary note 13.
  • the fourth superimposing part that superimposes the command signal including the command information Further prepare The period of superimposition of the unsuperimposed first command signal, which is the first command signal that has not been superposed on the first optical signal, on the first optical signal and the superimposition on the first optical signal are performed.
  • the period of superimposition of the unsuperimposed second command signal which is the second command signal that has not been superposed on the second optical signal, on the second optical signal and the superimposition on the second optical signal are performed.
  • a second control unit that controls the period of superimposition of the unsuperimposed first response signal, which is the first response signal, on the second optical signal so as not to overlap. Further prepare, The transmitting device according to any one of Supplementary note 7 to Supplementary note 14. (Appendix 16) When the unsuperimposed first command signal is received and the unsuperimposed second response signal is present, the unsuperimposed first command signal is sent to the unsuperimposed second response signal before the unsuperimposed second response signal. Controlled to be superimposed on the optical signal, When the second control unit has received the unsuperimposed second command signal and there is the unsuperimposed first response signal, the unsuperimposed second command signal is combined with the unsuperimposed first response signal. First, it is controlled so as to be superimposed on the second optical signal. The transmitter according to Appendix 15.
  • the first command signal superimposed on the first optical signal traveling in the first direction of the optical submarine cable is detected. It is a response signal to the first command signal superimposed on the second optical signal traveling in the second direction of the optical submarine cable by the first other optical submarine device which is an optical submarine device other than the self-lighting submarine device. Detects the first response signal and When the first stage, which is the stage of the first transmission permission information, is the first setting stage, the first response signal, which is the response signal to the first command signal whose destination is the self-luminous submarine device, is the second. Superimposed on the optical signal The first step is updated from the number of times the detection of the first command signal is completed and the number of times the first response signal is detected, with the destination being the first other optical seafloor device.
  • the process of updating the first step from the number of times the detection of the first command signal is completed and the number of times the first response signal is detected with the destination as the first other optical seafloor device.
  • the "optical submarine cable” in the above-mentioned appendix is, for example, an optical submarine cable including the optical fibers F1 and F2 of FIG.
  • the "first optical signal” is, for example, the optical signal S1 of FIGS. 1, 2, 8, and 9.
  • the "first detection unit” is, for example, a portion of the reception circuit R1 of FIGS. 2, 8, and 9 or the first detection unit R1x of FIG. 10 that detects the first command signal. ..
  • the “second optical signal” is, for example, the optical signal S2 of FIGS. 1, 2, 8, and 9.
  • the "first other optical submarine device” is, for example, a device other than the self-luminous submarine device among the optical submarine devices 21 to 2n in FIG.
  • the "second detection unit” is, for example, a portion of the reception circuit R2 of FIGS. 2, 8 and 9, or the second detection unit R2x of FIG. 10 that detects the first response signal. ..
  • the "first stage” is, for example, a stage represented by an integer of 0 or more constituting the above-mentioned first transmission permission value.
  • the "first setting stage” is, for example, a stage represented by the above-mentioned first transmission permission value being 0.
  • the "first superimposition unit” is, for example, a portion of the transmission circuit T1 of FIGS. 2, 8 and 9, or the first superimposition unit T1x of FIG. 10 for transmitting the first response information.
  • the "first update unit” is, for example, a portion of the control unit CT of FIGS. 2, 8, and 9 that performs the processing of FIG. 5, or the first update unit CTx of FIG.
  • the "transmitting device” is, for example, the optical seabed device 20 of FIGS. 2, 8 and 9, or the transmitting device 20x of FIG. 10.
  • the "third detection unit” is, for example, a portion of the receiving circuit R2 of FIGS. 8 and 9 that receives the second command signal.
  • the "fourth detection unit” is, for example, a part of the receiving circuit R1 of FIGS. 8 and 9, for detecting the second response signal.
  • the “second superimposing unit” is, for example, a portion of the transmission circuit T2 of FIGS. 8 and 9 that superimposes the second response signal.
  • the "second update unit” is, for example, a part of the control unit CT of FIGS. 2, 8 and 9, which updates the second transmission permission information.
  • the "second other optical seafloor device” is, for example, a light seafloor device 21 to 2n of FIG. 1 in the third embodiment or the fourth embodiment other than the self-lighting seafloor device.
  • the "first removal unit” is, for example, the filter FL1 of FIG.
  • the "second removal unit” is, for example, the filter FL2 of FIG.
  • the "third superimposing unit” is, for example, a portion of the transmission circuit T2 of FIGS. 8 and 9 that superimposes the first command signal.
  • the "fourth superimposing unit” is, for example, a portion of the transmission circuit T1 of FIGS. 8 and 9 that superimposes the second command signal.
  • the "first control unit” is, for example, in the control unit CT of FIG. 8, the period of superimposition of the unsuperimposed first command signal on the first optical signal and the unsuperimposed second response signal. It is a part that controls the period of superimposition on the first optical signal so as not to overlap.
  • the "second control unit” is, for example, in the control unit CT of FIG. 8, the period of superimposition of the unsuperimposed second command signal on the second optical signal and the first of the unsuperimposed first response signals. It is a part that controls the period of superimposition on the two optical signals so as not to overlap.
  • the "computer,” is, for example, a computer provided in the control unit CT of FIGS. 2, 7, and 8, or provided in the control unit CT of FIGS. 2, 7, and 8.
  • the "program” is, for example, a program held by the storage unit MM of FIGS. 2, 7, and 8 to cause the computer to execute a process.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

陸上端局装置でのコマンド信号の送信タイミングの制御及び応答信号の復調が容易であり、通信用により広い周波数帯を確保できる光海底装置を提供するために、送信装置は、光海底ケーブルを進行する第1光信号に重畳された第1コマンド信号を検出し、前記光海底ケーブルを逆向きに進行する第2光信号に、第1他光海底装置により重畳された、前記第1コマンド信号に対する応答信号である第1応答信号を検出し、第1送信許可情報の段階である第1の段階が第1設定段階の場合に、宛先を自光海底装置とする前記第1コマンド信号に対する応答信号である第1応答信号を、前記第2光信号に重畳し、第1重畳部と、前記第1の段階を、前記宛先を前記第1他光海底装置とする前記第1コマンド信号の検出完了回数と、前記第1応答信号の検出完了回数と、から更新する。

Description

送信装置、送信方法及び送信プログラムの記録媒体
 本発明は、陸上端局装置からのコマンド信号に応答する光海底装置における、送信装置、送信方法及び送信プログラムの記録媒体に関する。
 近年、光海底ケーブルシステムが備える光海底装置において、陸上端局装置から送信されるコマンド信号に対し、そのコマンド信号の送信元の陸上端局装置に向けて応答信号を送信する機能が求められている。この機能により、光海底装置の設定情報や各種アラーム、モニタ値といった様々な情報をその陸上端局装置から取得することが可能になる。
 ここで、特許文献1は、主信号と制御信号とを含む第1の光信号から制御情報を含む信号を出力し、制御情報に基づいて制御を実行し、主信号とは異なる波長帯の応答信号を制御に応じて出力する光伝送装置を開示する。
 また、特許文献2は、光伝送装置が出力した光信号を処理する光コンポーネントと、光コンポーネントを制御する制御部と、光信号と制御信号とを受信し、制御信号を電気信号に変換して制御部に出力する受信部と、を備える海底光伝送装置を開示する。
 また、特許文献3は、端局が変調された第1の副信号を主信号に重畳して送信し、光中継器が応答信号で変調された第1の副信号と異なる周波数の第2の副信号を主信号に重畳して端局に返送する光中継器の監視方法を開示する。
国際公開第2020/137821号 国際公開第2019/116776号 特開平08-298486号公報
 光海底ケーブルシステムが、背景技術の項で説明した応答信号を送信する機能を備える場合、一本の光ファイバを通じて応答信号を送信する光海底装置の数が増えると、各光海底装置から陸上端局装置への応答信号の混線が懸念される。
 この混線を避ける方法として、陸上端局装置からある光海底装置へコマンド信号を送信した後、陸上端局装置がそのコマンド信号に対する応答信号を受信するまでの間は、他のコマンド信号を送信しない方法が考えられる。しかしながら、この方法は、陸上端局が複数のコマンド信号を連続で送信することができず、さらに、陸上端局装置での煩雑なコマンド信号の送信タイミングの制御が要求される。
 この問題を避けるために、応答信号用の波長帯を光海底装置ごとに設定する方法が考えられる。しかしながら、この方法を適用すると、応答信号用の波長帯の幅が大きくなる。そのため、通信用光信号に割り当てられる波長帯の数が減り、通信容量が低下する。ここで、本明細書において、「通信用光信号」は、陸上端局装置間で行われる光通信に用いられる光信号をいう。
 この問題を避けるために、通信用光信号に対して光海底装置ごとに設定される異なる周波数帯により、通信用光信号を変調することで、応答信号を送信する方法が考えられる。しかしながら、この方法は、通信用光信号が変調される複数の周波数が混在していることによる復調の煩雑さが問題となる。
 本発明は、陸上端局装置でのコマンド信号の送信タイミングの制御及び応答信号の復調が容易であり、通信用により広い周波数帯を確保できる送信装置等の提供を目的とする。
 本発明の送信装置は、光海底ケーブルを第1の向きに進行する第1光信号に重畳された第1コマンド信号を検出する第1検出部と、前記光海底ケーブルを第2の向きに進行する第2光信号に、自送信装置が備えられる光海底装置である自光海底装置以外の光海底装置である第1他光海底装置により重畳された、前記第1コマンド信号に対する応答信号である第1応答信号を検出する第2検出部と、第1送信許可情報の段階である第1の段階が第1設定段階の場合に、宛先を前記自光海底装置とする前記第1コマンド信号に対する応答信号である第1応答信号を、前記第2光信号に重畳する、第1重畳部と、前記第1の段階を、前記宛先を前記第1他光海底装置とする前記第1コマンド信号の検出完了回数と、前記第1応答信号の検出完了回数と、から更新する第1更新部と、を備える。
 本発明の送信方法は、光海底ケーブルを通じた光通信を行う光海底ケーブルシステムに備えられる光海底装置における送信方法であって、前記光海底ケーブルを第1の向きに進行する第1光信号に重畳された第1コマンド信号を検出し、前記光海底ケーブルを第2の向きに進行する第2光信号に、自光海底装置以外の光海底装置である第1他光海底装置により重畳された、前記第1コマンド信号に対する応答信号である第1応答信号を検出し、第1送信許可情報の段階である第1の段階が第1設定段階の場合に、宛先を前記自光海底装置とする前記第1コマンド信号に対する応答信号である第1応答信号を、前記第2光信号に重畳し、前記第1の段階を、前記宛先を前記第1他光海底装置とする前記第1コマンド信号の検出完了回数と、前記第1応答信号の検出完了回数と、から更新する、手順を含む。
 本発明の送信プログラムの記録媒体は、光海底ケーブルを通じた光通信を行う光海底ケーブルシステムに備えられる光海底装置が備えるコンピュータに、前記光海底ケーブルを第1の向きに進行する第1光信号に重畳された第1コマンド信号を検出する処理と、前記光海底ケーブルを第2の向きに進行する第2光信号に、自光海底装置以外の光海底装置である第1他光海底装置により重畳された、前記第1コマンド信号に対する応答信号である第1応答信号を検出する処理と、第1送信許可情報の段階である第1の段階が第1設定段階の場合に、宛先を前記自光海底装置とする前記第1コマンド信号に対する応答信号である第1応答信号を、前記第2光信号に重畳する処理と、前記第1の段階を、前記宛先を前記第1他光海底装置とする前記第1コマンド信号の検出完了回数と、前記第1応答信号の検出完了回数と、から更新する処理と、をコンピュータに実行させるプログラムを記録した、記録媒体である。
 本発明の、送信装置等は、陸上端局装置でのコマンド信号の送信タイミングの制御及び応答信号の復調が容易であり、通信用により広い周波数帯を確保できる。
第1実施形態の光海底ケーブルシステムの構成例を表す概念図である。 第1実施形態の光海底装置の構成例を表す概念図である。 第1応答情報の格納処理の例を表す概念図である。 第1応答信号の送信処理の例を表す概念図である。 第1送信許可値の更新処理の例を表す概念図である。 各動作等のタイミングチャートの具体例を表す概念図である。 第1送信許可値の更新処理(第2実施形態における追加分)の例を表す概念図である。 第3実施形態の光海底装置の構成例を表す概念図である。 第4実施形態の光海底装置の構成例を表す概念図である。 実施形態の送信装置の最小限の構成を表す概念図である。
<第1実施形態>
 本実施形態の光海底ケーブルシステムにおいては、一方の陸上端局装置が、光海底装置へコマンド信号(第1コマンド信号)を送信する。そして、その光海底装置は、第1コマンド信号に対する応答信号(第1応答信号)をその陸上端局装置へ送信する。
[構成と動作]
 図1は、本実施形態の光海底ケーブルシステムの例である光海底ケーブルシステム10の構成を表す概念図である。光海底ケーブルシステム10は、陸上端局装置11及び12と、光海底装置21乃至2nとを備える。光海底ケーブルシステム10は、陸上端局装置11と陸上端局装置12との間で、光ファイバF1及びF2を備える海底光ケーブルを通じて、双方向の光通信を行うためのものである。
 陸上端局装置11から陸上端局装置12への光通信は光ファイバF1を進行する光信号S1により行われる。一方、陸上端局装置12から陸上端局装置11への光通信は、光ファイバF2を進行する光信号S2により行われる。光ファイバF1及びF2の各々は、一本又は複数本の光ファイバである。
 光海底装置21乃至2nのn台の光海底装置は、陸上端局装置11が光信号S1に重畳して送信する第1コマンド信号に対する応答信号である第1応答信号を、光信号S2に重畳して陸上端局装置11へ送信する光海底装置である。ここで、nは、2以上の整数である。また、nが2の時は、光海底装置2nは図1からは削除される。
 第1コマンド信号の周波数帯は、光信号S1に含まれる通信用光信号の周波数帯とは重ならないように設定されている。第1コマンド信号の周波数帯は、例えば、光信号S1に含まれる通信用光信号の周波数帯より、低く設定される。
 また、第1応答信号の周波数帯は、光信号S2に含まれる通信用光信号の周波数帯とは重ならないように設定されている。第2応答信号の周波数帯は、例えば、光信号S2に含まれる通信用光信号の周波数帯より、低く設定される。第1コマンド信号の周波数帯が、第1応答信号の周波数帯と重なるか否かについては任意である。
 以下、陸上端局装置11が光信号S1に重畳して送信する第1コマンド信号に対し、第1応答信号を光信号S2に重畳して陸上端局装置11へ送信する光海底装置を「第1対象光海底装置」ということにする。光海底装置は、例えば、光中継装置や分岐装置等である。
 陸上端局装置11と光海底装置21との間、隣り合う2台の第1対象光海底装置の間、又は、光海底装置2nと陸上端局装置12との間に、第1対象光海底装置ではない光海底装置が設置されていても構わない。
 図2は、図1の光海底装置21乃至2nの各々の例である光海底装置20の構成を表す概念図である。光海底装置20は、受信回路R1及びR2と、制御部CTと、記憶部MMと、送信回路T1と、光カプラC1及びC2とを備える。
 光ファイバF1を通じて陸上端局装置11から送信された光信号S1の一部は、光カプラC1により分離され、受信回路R1に入力される。光信号S1には、陸上端局装置11からいずれかの第1対象光海底装置へ送信される第1コマンド信号が重畳される時間帯がある。
 一方、光ファイバF2を通じて陸上端局装置12から送信された光信号S2の一部は、光カプラC2により分離され、受信回路R2に入力される。光信号S2には、陸上端局装置12と光海底装置20との間の第1対象光海底装置からの第1応答信号が重畳されている時間帯がある。第1応答信号は第1コマンド信号への応答信号である。
 受信回路R1は、入力された光信号S1に重畳された第1コマンド信号を受信する。第1コマンド信号には、光海底装置20宛のものと他の第1対象光海底装置宛のものとがある。受信回路R1は、第1コマンド信号が光海底装置20宛のものであるか他の第1対象光海底装置宛のものであるかによらず、第1コマンド信号の受信信号を、制御部CTへ送付する。
 受信回路R2は、入力された光信号S2に第1応答信号が重畳されている場合には、その第1応答信号を受信する。当該受信は、必ずしも、第1応答信号の送信元や内容を認識するレベルのものである必要はない。当該受信は、例えば、第1応答信号であることが認識できる程度の検出であっても構わない。
 受信回路R2により受信される第1応答信号は、光海底装置20と陸上端局装置12との間の第1対象光海底装置からのものである。受信回路R2は、第1応答信号の受信情報を、制御部CTへ送付する。
 制御部CTは、受信回路R1から、第1コマンド信号の受信信号の送付を受けた場合は、その第1コマンド信号の送信先が光海底装置20であるかについて判定する。第1コマンド信号には、陸上端局装置11が第1コマンド信号の送信先として指定した第1対象光海底装置の識別子が含まれている。そして、記憶部MMは、光海底装置20の識別子を保持している。そのため、制御部CTは、第1コマンド信号に含まれる送信先を表す識別子と、記憶部MMが保持する光海底装置20の識別子とにより、当該判定を行うことができる。
 制御部CTは、陸上端局装置1から光海底装置20宛の第1コマンド信号の送信を受けた場合は、その第1コマンド信号の指示内容についての第1応答情報を作成し、作成した第1応答情報を記憶部MMに格納する。そして、制御部CTは、記憶部MMが保持する第1送信許可値が0であるかについての判定を行う。第1送信許可値は、その値が0である場合に、第1応答情報の陸上端局装置11への送信が可能である旨を意味し、その値が0以外の場合に第1応答情報の陸上端局装置11への送信が不可能である旨を意味する、0以上の整数である。
 制御部CTは、第1送信許可値が0の場合は、記憶部MMに保持させている第1応答情報の陸上端局装置11への送信を、送信回路T1に行わせる。一方、制御部CTは、第1送信許可値が0以外の場合は、第1送信許可値が0になるまで待ってから、第1応答情報の陸上端局装置11への送信を、送信回路T1に行わせる。
 制御部CTは、また、次に説明する動作により、第1送信許可値の更新を行う。
 制御部CTは、第1送信許可値の初期値を0に設定する。制御部CTは、受信回路R1が第1コマンド信号の受信を完了した場合は、その第1コマンド信号の送信先が、光海底装置20と陸上端局装置12との間の第1対象光海底装置であるかについての判定を行う。第1対象装置の定義は前述のとおりである。以下、光海底装置20と陸上端局装置12との間の第1対象光海底装置を、「監視対象の第1対象光海底装置」ということにする。「監視対象の第1対象光海底装置」は、陸上端局装置11からの光ケーブル距離が、光海底装置20よりも長い、第1対象光海底装置である。ここで、光ケーブル距離は、光ケーブルをたどった長さである。「監視対象の第1対象光海底装置」は、光海底装置20よりも、光信号S1の進行の向きにある第1対象光装置でもある。
 記憶部MMは、監視対象の第1対象光海底装置の識別子を保持している。そのため、制御部CTは、第1コマンド信号に含まれる送信先を表す識別子と、記憶部MMが保持する監視対象の第1対象光海底装置の識別子とにより、当該判定を行うことができる。制御部CTは、受信が完了した第1コマンド信号の送信先が監視対象の第1対象光海底装置の場合は、第1送信許可値の値を一つ増やす。
 制御部CTは、また、受信回路R2が、光信号S2に重畳されている第1応答信号の受信を完了した場合には、第1送信許可値の値を一つ減らす。
 第1送信許可値が0であることは、それまでに監視対象の第1対象光海底装置へ送信された第1コマンド信号への、それらの第1対象光海底装置から陸上端局装置11への第1応答信号の送信が、すべて完了していることを意味する。従い、光海底装置20が、陸上端局装置11への光信号S2に対し光海底装置20からの第1応答信号を重畳させたとしても、光信号S2に、他の第1対象光海底装置からの第1応答信号は重畳されていない。そのため、制御部CTは上記動作により、光信号S2に第1応答信号が多重に重畳されなくすることができる。そのため、光海底装置20は、光信号S2に第1応答信号が多重に重畳されることによる、陸上端局装置11における第1応答信号の復調の困難さの問題を回避することができる。
 なお、図2の記憶部MMは、非一時的に記録情報を保持することが可能な記録媒体を備える。当該記録媒体には、予め、制御部CTが上記動作を行うために必要なプログラムや情報が記録されている。記憶部MMは、制御部CTが指示する情報を格納する。また、記憶部MMは、制御部CTが指示する情報を、制御部CTに送付する。
 また、送信回路T1は、制御部CTから指示された情報や信号を、光信号S2に重畳することにより、陸上端局装置11へ送信する。
 次に、制御部CTが行う以上説明した動作に対応する処理の具体例を、フローチャートを参照して、説明する。
 図3は、第1コマンド信号の送信を受けて制御部CTが行う第1応答情報の格納処理の例を表す概念図である。制御部CTは、例えば、外部からの開始信号の入力により図3の処理を開始する。
 そして、制御部CTは、まず、S11の処理として、光海底装置20宛の第1コマンド信号を、受信回路R1が受信完了したかについての判定を行う。制御部CTは、S11の処理による判定結果がyesの場合は、S12の処理を行う。一方、制御部CTは、S11の処理による判定結果がnoの場合は、S11の処理を再度行い、新たな第1コマンド信号の受信完了を待つ。
 制御部CTは、S12の処理を行う場合は、同処理として、受信した第1コマンド信号に含まれる指示情報に対する第1応答情報を作成し、作成した第1応答情報を、記憶部MMに保持させる。当該指示情報の内容は任意である。当該指示情報は、例えば、光海底装置20の所定の位置の温度センサが検出した温度の情報の送付であったとする。その場合、制御部CTは、その温度センサから温度の情報を取得し、その温度の情報を含む第1応答情報を作成し、記憶部MMに保持させる。
 そして、制御部CTは、S13の処理として、図3の処理を終了するかについての判定を行う。制御部CTは、当該判定を、例えば、外部からの終了情報の入力の有無を判定することにより行う。
 制御部CTは、S13の処理による判定結果がyesの場合は、図3の処理を終了する。一方、制御部CTは、S13の処理による判定結果がnoの場合は、S11の処理を再度行う。
 図4は、制御部CTが行う、第一応答信号の送信処理の例を表す概念図である。制御部CTは、例えば、外部からの開始信号の入力により図4の処理を開始する。
 そして、制御部CTは、まず、S15の処理として、記憶部MMが保持する直近の第1送信許可値が0であるかについての判定を行う。制御部CTは、S15の処理による判定結果がyesの場合は、S16の処理を行う。一方、制御部CTは、S15の処理による判定結果がnoの場合は、S15の処理を再度行い、第1送信許可値が0になるのを待つ。
 制御部CTは、S16の処理を行う場合は、同処理として、記憶部MMは、第1応答情報を保持しているかについての判定を行う。制御部CTは、S16の処理による判定結果がyesの場合は、S17の処理を行う。一方、制御部CTは、S16の処理による判定結果がnoの場合は、S19の処理を行う。
 制御部CTは、S17の処理を行う場合は、同処理として、記憶部MMが保持している第1応答情報を一つ選択する。そして、制御部CTは、S18の処理として、選択した第1応答情報に係る第1応答信号の送信を、送信回路T1に指示する。
 そして、制御部CTは、S19の処理として、図4の処理を終了するかについての判定を行う。制御部CTは、当該判定を、例えば、外部からの終了情報の入力の有無を判定することにより行う。
 制御部CTは、S19の処理による判定結果がyesの場合は、図4の処理を終了する。一方、制御部CTは、S19の処理による判定結果がnoの場合は、S15の処理を再度行う。
 図5は、制御部CTが行う、第1送信許可値の更新処理の例を表す概念図である。図5の処理は、図3の処理と並行して行われる。制御部CTは、例えば、外部からの開始信号の入力により図5の処理を開始する。そして、制御部CTは、まず、S21の処理として、第1送信許可値を0に設定する。
 次に、制御部CTは、S22の処理として、受信回路R1が、監視対象の第1対象光海底装置宛の第1コマンド信号を受信したかについての判定を行う。
 制御部CTは、S22の処理による判定結果がyesの場合は、S23の処理を行う。一方、制御部CTは、S22の処理による判定結果がnoの場合は、S23の処理をスキップして、S24の処理を行う。制御部CTは、S23の処理を行う場合は、同処理として、第1送信許可値を一つ増やす。そして、制御部CTは、S24の処理を行う。
 制御部CTは、S24の処理を行う場合は、同処理として、受信回路R2が、第1応答信号を受信したかについての判定を行う。制御部CTは、S24の処理による判定結果がyesの場合は、S25の処理を行う。一方、制御部CTは、S24の処理による判定結果がnoの場合は、S25の処理をスキップして、S26の処理を行う。制御部CTは、S25の処理を行う場合は、同処理として、第1送信許可値を一つ減らす。そして、制御部CTは、S26の処理を行う。
 制御部CTは、S26の処理を行う場合は、同処理として、図5の処理を終了するかについての判定を行う。制御部CTは、当該判定を、例えば、外部からの終了情報の入力の有無を判定することにより行う。
 制御部CTは、S26の処理による判定結果がyesの場合は、図5の処理を終了する。一方、制御部CTは、S26の処理による判定結果がnoの場合は、S22の処理を再度行う。
 図6は、図1の光海底装置21、22及び2nにおける、各動作等のタイミングチャートの具体例を表す概念図である。当該各動作等は、第1コマンド信号の受信動作、コマンド実行動作、第1送信許可値、第1コマンド信号の受信完了時と第1応答信号の送信開始時の第1送信許可値、第1応答信号の受信動作である。
 なお、図6において、第1コマンド信号の各光海底装置における受信順、受信タイミング、受信期間、コマンド実行動作に要する時間、及び、第1応答信号の送信時間等は、単に、図6のために仮定されたものである。図6においては、第1コマンド信号は、各光海底装置において、光海底装置2n宛のもの、光海底装置22宛のもの、及び、光海底装置21宛のもの順番で受信されることが想定されている。
 時刻t0においては、光海底装置21、22及び2nのいずれも、いずれの第1対象光海底装置宛の第1コマンド信号も受信していない。そのため、いずれの対象光海底装置の保持する第1送信許可値も0である。
 時刻t1において、光海底装置21、22及び2nは、光海底装置2n宛の第1コマンド信号の受信動作を完了する。ここで、各光海底装置間の、光ファイバF1中の光の伝搬距離の違いによる光信号S1の到達時間の違いは無視できるものとしている。
 当該第1コマンド信号の受信動作の完了を受けて、光海底装置2nは、図3のS11の処理によりyesを判定し、S12の処理を行う。そして、光海底装置2nは、図4のS15の処理でyesを判定し、S16、S17及びS18の処理を行う。これにより、光海底装置2nは、第1応答信号の送信動作を、時刻t2に開始する。当該送信動作は、時刻t6まで続く。
 一方、光海底装置21及び22は、時刻t1に、図5のS22の処理によりyesを判定し、S23の処理により第1送信許可値を1にする。
 時刻t6より前の時刻t3において、各光海底装置による、光海底装置22宛の第1コマンド信号の受信動作が完了する。光海底装置22は、当該第1コマンド信号の受信動作の完了を受けて、図3のS11の処理によりyesを判定し、S12の処理を行う。そして、光海底装置22は、図4のS15の処理によりnoを判定し、S15の処理を繰り返し、第1送信許可値が0になるのを待つ。
 一方、光海底装置21は、時刻t3において、図5のS22の処理によりyesを判定し、S23の処理により、第1送信許可値を2にする。また、光海底装置2nは、時刻t3において、コマンド信号の宛先である光海底装置22宛が監視対象の第1対象光海底装置ではないことから図5のS22の処理によりnoを判定する。そして、光海底装置2nは、S23の処理をスキップし、第1送信許可値の0を維持する。
 その後、時刻t5及びt6より前の時刻t4で、光海底装置22によるコマンド実行動作(図3のS12)が完了する。時刻t4における光海底装置22の第1送信許可値は1である。そのため、光海底装置22は、図3のS13の処理でnoを判定し、第1送信許可値が0になるまでS13の処理を繰り返し、第1送信許可値が0になるのを待つ。
 その後、時刻t5で、光海底装置21、22及び2nにおける、光海底装置21宛の第1コマンド信号の受信動作が完了する。これを受けて、光海底装置21は、時刻t5で、図3のS11の処理によりyesを判定し、S12の処理を行う。そして、光海底装置21は、図4のS15の処理によりnoを判定し、S15の処理を繰り返し、第1送信許可値が0になるのを待つ。
 一方、光海底装置22は、時刻t5で、受信動作が完了した第1コマンド信号の宛先が監視対象の第1対象光海底装置ではないことから、図5のS22の処理によりnoを判定する。そして、光海底装置22は、S23の処理をスキップし、第1送信許可値の1を維持する。
 また、光海底装置2nは、時刻t5で、受信動作が完了した第1コマンド信号の宛先が監視対象の第1対象光海底装置ではないことから、図5のS22の処理によりnoを判定する。そして、光海底装置2nは、S23の処理をスキップし、第1送信許可値の0を維持する。
 そして、時刻t6において、光海底装置2nは、第1応答信号の送信動作を完了する。すると、光海底装置21及び22は、当該第1応答信号の受信動作を完了する。当該受信動作の完了を受けて、光海底装置21は、時刻t6において、図5のS24の処理によりyesを判定する。そして、光海底装置21は、S25の処理により、第1送信許可値を1にする。
 また、光海底装置22は、時刻t6において、図5のS24の処理によりyesを判定する。そして、光海底装置22は、S25の処理により、第1送信許可値を0にする。
 光海底装置22は、第1送信許可値が0になったのを受けて、図4のS16の処理による判定結果をyesとする。そして、光海底装置22は、図4のS17及びS18の処理により、第1応答情報を含む第1応答信号の送信動作を開始する。当該送信は、時刻t8まで続く。
 時刻t8より前の時刻t7で、光海底装置21によるコマンド実行動作(図3のS12の処理)が完了する。時刻t7における、光海底装置21の第1送信許可値は1である。そのため、光海底装置21は、図4のS15の処理を繰り返し、第1送信許可値が0になるのを待つ。
 その後、時刻t8で、光海底装置22は、第1応答信号の送信動作を完了する。これを受けて、光海底装置21は、時刻t8で、その第1応答信号の受信動作を完了する。すると、光海底装置21は、図5のS24の処理による判定結果をyesとし、S25の処理により第1送信許可値を0にする。
 光海底装置21は、時刻t8で、第1送信許可値が0になったのを受けて、図4のS15の判定結果をyesとする。そして、光海底装置21は、S16の処理によりyesを判定し、S17及びS18の処理により、第1応答信号の送信動作を開始する。当該送信動作は、時刻t9まで続く。
[効果]
 本実施形態の光海底装置は、保持する第1送信許可値が0の場合のみ、受信完了した自光海底装置宛の第1コマンド信号に対する第1応答信号を送信する。当該光海底装置は、また、第1コマンド信号を送信する陸上端局装置からの光ケーブル距離が自光海底装置より遠い光海底装置(監視対象の第1対象光海底装置)宛の第1コマンド信号の受信を完了すると、第1送信許可値を一つ増やす。当該光海底装置は、また、第1応答信号の受信を完了すると、第1送信許可値を一つ減らす。
 第1送信許可値が0であることは、それまでに監視対象の光海底装置へ送信された第1コマンド信号への、それらの第1対象光海底装置からの第1応答信号の送信が、すべて完了していることを意味する。従い、光海底装置が、第1応答信号を光信号に重畳したとしても、その光信号に、他の第1対象光海底装置からの第1応答信号が重畳されていることはない。
 すなわち本実施形態の光海底装置は、他の第1対象光海底装置からの第1応答信号の光海底ケーブルを通過する期間と、本実施形態の光海底装置が送信する前記第1応答信号が前記光海底ケーブルを通過する期間とが、重なることを防ぐことができる。そのため、本実施形態の光海底装置は、各第1対象光海底装置の各々の第1応答信号の周波数帯を同じにすることができる。そのため、本実施形態の光海底装置は、陸上端局装置でのコマンド信号の送信タイミングの制御及び応答信号の復調を容易にし、通信用により広い周波数帯を確保することを可能にする。
<第2実施形態>
 第1実施形態の光海底装置は、第1送信許可値の更新のために、第1コマンド信号の宛先が第1コマンド信号を送信する陸上端局装置からの光ケーブル距離が自光海底装置より遠い光海底装置であるか否かを判定する処理を必要とする。第1実施形態の光海底装置は、その分、実行する処理が複雑である。本実施形態の光海底装置は、この課題を解決するものである。
[構成と動作]
 本実施形態の光海底ケーブルシステムの構成例は図1の光海底ケーブルシステム10の構成である。また、本実施形態の光海底装置の構成例は図2の光海底装置20の構成である。
 本実施形態の光海底装置20は、以下の動作が、第1実施形態のものと異なる。以下、本実施形態の光海底装置20が行う動作のうち、第1実施形態のものと異なる部分を主に説明する。
 図2に表される本実施形態の光海底装置20の制御部CTは、受信回路R1が光海底装置20以外を宛先とする第1コマンド信号を検出すると、その第1コマンド信号の宛先によらず、第1送信許可値を一つ増やす。そして、制御部CTは、受信回路R2が第1応答信号を検出すると、第1送信許可値を一つ減らす。さらに、制御部CTは、光海底装置20以外を宛先とする直近の第1コマンド信号への第1応答信号の受信完了時刻から、予め定められた閾値時間(タイムリミット)が経過した場合には、第1送信許可値を0にする。当該閾値時間(タイムリミット)には、例えば、第1コマンド信号に対する第1応答信号の送信が当然に完了することが経験等により理解されている値が用いられる。
 本実施形態の制御部CTが行う、第1応答情報の格納処理の処理例は、図3に表されるものである。また、本実施形態の制御部CTが行う、第1応答信号の送信処理の例は、図4に表されるものである。
 また、本実施形態の制御部CTは、図5の処理を行うが、図5の処理と並行して、図7の処理も行う。図7は、本実施形態の制御部CTが行う、第1送信許可値の更新処理(本実施形態における追加分)の例を表す概念図である。
 制御部CTは、例えば、外部からの開始情報の入力により、図7の処理を開始する。そして、制御部CTは、まず、S31の処理として、自光海底装置宛以外の直近の第1コマンド信号の受信完了時刻を特定する。そして、制御部CTは、S32の処理として、S31で特定した時刻からの経過時間が閾値時間(タイムリミット)を超えたかについての判定を行う。当該閾値時間は、第1コマンド信号の受信が完了してから、その閾値時間を超えた時間が経過した場合には、第1応答信号の送信が当然に完了していることが想定されるものとして設定された時間である。
 制御部CTは、S32の処理による判定結果がyesの場合は、S34の処理を行う。一方、制御部CTは、S32の処理による判定結果がnoの場合は、S33の処理として、第1送信許可値をゼロに設定する。そして、制御部CTは、S34の処理として、図7の処理を終了するかについての判定を行う。制御部CTは、当該判定を、例えば、外部からの終了情報の入力の有無を判定することにより行う。
 制御部CTは、S34の処理による判定結果がyesの場合は、図7の処理を終了する。一方、制御部CTは、S34の処理による判定結果がnoの場合は、S31の処理を再度行う。
[効果]
 本実施形態の光海底装置は、他の光海底装置宛の第1コマンド信号の直近の受信完了時刻から、第1コマンド信号に対する応答が当然に完了していることが想定される時間が経過した場合は、第1送信許可値を0にする。当該動作は、検出した第1コマンド信号の数が検出した第1応答信号の数より多い場合に行われるものである。検出した第1コマンド信号の数が検出した第1応答信号の数より多い場合には、第1コマンド信号の送信元の陸上端局装置からの光ケーブル距離が、本実施形態の光海底装置よりも短い場合が含まれる。本実施形態の光海底装置は、そのような場合でも、第1送信許可値を0にすることができる。
 そのため、本実施形態の光海底装置は、第1送信許可値の更新のための、第1コマンド信号の宛先が第1コマンド信号を送信する陸上端局装置からの光ケーブル距離が自光海底装置より遠い光海底装置であるか否かを判定する処理を必要としない。その分、本実施形態の光海底装置は、第1実施形態の光海底装置と比較して、実行する処理を簡略化することができる。
<第三実施形態>
 本実施形態は、陸上端局装置の双方ともが、光海底装置へコマンド信号を送信し、その光海底装置が応答信号を返す、光海底ケーブルシステムに関する実施形態である。
[構成と動作]
 本実施形態の光海底ケーブルシステムの構成例は、図1の光海底ケーブルシステム10である。本実施形態の光海底ケーブルシステム10は、以下の点が、第1実施形態の光海底ケーブルシステム10と異なる。以下、本実施形態の光海底ケーブルシステム10の第1実施形態の光海底ケーブルシステム10と異なる点を、主に説明する。
 本実施形態の、図1の光海底ケーブルシステム10が備える陸上端局装置11は、第1実施形態の場合と同様に、第1コマンド信号を、光海底装置21乃至2nの各々宛へ送信する。光海底装置21乃至2nの各々は、第1実施形態の場合と同様に、自光海底装置宛の第1コマンド信号への第1応答信号を陸上端局装置11へ送信する。
 陸上端局装置12は、第1実施形態の場合と異なり、コマンド信号(第2コマンド信号)を、光海底装置21乃至2nの各々宛へ送信する。光海底装置21乃至2nの各々は、自光海底装置宛のコマンド信号への応答信号(第2応答信号)を陸上端局装置12へ送信する。
 陸上端局装置11が光ファイバF1を通じて送信する第1コマンド信号の周波数帯と、光海底装置21乃至2nの各々が光ファイバF1を通じて送信する第2応答信号の周波数帯とは、互いに重ならないように設定されている。その理由は、第1コマンド信号と第2応答信号は、同じ時間帯の光信号S1に重畳される可能性があり、その場合、周波数帯が重なると、陸上端局装置12による第2応答信号の復調が困難になるためである。
 また、陸上端局装置12が光ファイバF2を通じて送信する第2コマンド信号の周波数帯と、光海底装置21乃至2nの各々が光ファイバF2を通じて送信する第1応答信号の周波数帯とは、互いに重ならないように設定されている。その理由は、第2コマンド信号と第1応答信号は、同じ時間帯の光信号S2に重畳される可能性があり、その場合、周波数帯が重なると、陸上端局装置11による第1応答信号の復調が困難になるためである。
 図8は、本実施形態の光海底装置の例である光海底装置20の構成を表す概念図である。図8の光海底装置20は、図2の光海底装置20が備える構成に加えて、送信回路T2を備える。
 図8の、受信回路R1及びR2、送信回路T1、制御部CT及び記憶部MMは、まず、第1実施形態の図2の同じ符号を付された構成と同じ動作を行う。図8の、受信回路R1及びR2、送信回路T2、制御部CT及び記憶部MMは、第2コマンド信号に対して、以下に説明される動作も行う。
 光信号S2には、陸上端局装置12がいずれかの光海底装置へ送信する第2コマンド信号が重畳される時間帯がある。また、光信号S2には、陸上端局装置11と光海底装置20との間の対象光海底装置からの第2応答信号が重畳されている時間帯がある。当該第2応答信号は、第2コマンド信号への応答信号である。
 受信回路R2は、第2コマンド信号を受信する。受信回路R2により受信される第2コマンド信号には、光海底装置20宛のものと他の第2対象光海底装置宛のものとが含まれる。ここで、第2対象光海底装置は、送信された第2コマンド信号に対する第2応答信号を送信(返信)する光海底装置をいう。受信回路R2は、第2コマンド信号の受信信号を、制御部CTへ送付する。
 受信回路R1は、入力された光信号S1に、第2応答信号が重畳されている場合には、その第2応答信号を受信する。受信回路R1は、第2応答信号の受信信号を、制御部CTへ送付する。
 制御部CTは、受信回路R2から、第2コマンド信号の受信信号の送付を受けた場合は、その第2コマンド信号の送信先が、光海底装置20であるかについて判定する。第2コマンド信号には、陸上端局装置12が第2コマンド信号の送信先として指定した第2対象光海底装置の識別子が含まれている。そして、記憶部MMは、光海底装置20の識別子を保持している。そのため、制御部CTは、第2コマンド信号に含まれる送信先を表す識別子と、記憶部MMが保持する光海底装置20の識別子とにより、当該判定を行うことができる。
 制御部CTは、陸上端局装置1から光海底装置20宛の第2コマンド信号の送信を受けた場合は、その第2コマンド信号の指示内容についての応答情報(第2応答情報)を作成し、作成した第2応答情報を記憶部MMに格納する。そして、制御部CTは、記憶部MMが保持する第2送信許可値が0であるかについての判定を行う。第2送信許可値は、その値が0である場合に、第2応答情報の陸上端局装置12への送信が可能である旨を意味し、その値が0以外の場合に第2応答情報の陸上端局装置12への送信が不可能である旨を意味する、0以上の整数である。
 制御部CTは、第2送信許可値が0の場合は、記憶部MMに保持させている第2応答情報の陸上端局装置12への送信を、送信回路T2に行わせる。一方、制御部CTは、第2送信許可値が0以外の場合は、第2送信許可値が0になるまで待ってから、第2応答情報の陸上端局装置11への送信を、送信回路T1に行わせる。
 制御部CTは、また、次に説明する動作により、第2送信許可値の更新を行う。
 制御部CTは、第2送信許可値の初期値を0とする。制御部CTは、受信回路R2が第2コマンド信号の受信を完了した場合は、その第2コマンド信号の送信先が、光海底装置20と陸上端局装置11との間の第2対象光海底装置であるかについての判定を行う。以下、光海底装置20と陸上端局装置11との間の第2対象光海底装置を、「監視対象の第2対象光海底装置」ということにする。「監視対象の第2対象光海底装置」は、陸上端局装置12からの光ケーブル距離が、光海底装置20よりも長い、第2対象光海底装置である。ここで、光ケーブル距離は、前述のように、光ケーブルをたどった長さである。監視対象の第2対象光海底装置は、光海底装置20よりも、光信号S2の進行の向きにある第2対象光海底装置でもある。
 記憶部MMは、監視対象の第2対象光海底装置の識別子を保持している。そのため、制御部CTは、第2コマンド信号に含まれる送信先を表す識別子と、記憶部MMが保持する監視対象の第2対象光海底装置の識別子とにより、当該判定を行うことができる。制御部CTは、受信が完了した第2コマンド信号の送信先が監視対象の第2対象光海底装置の場合は、第2送信許可値の値を一つ増やす。
 制御部CTは、また、受信回路R1が、光信号S1に重畳されている第2応答信号を受信した場合には、第2送信許可値の値を一つ減らす。
 第2送信許可値が0であることは、それまでに監視対象の第2対象光海底装置へ送信された第2コマンド信号への、監視対象の第2対象光海底装置から陸上端局装置12への第2応答信号の送信が、すべて完了していることを意味する。従い、光海底装置20が、陸上端局装置11への光信号S1に第2応答信号を重畳させたとしても、光信号S1に、他の第2対象光海底装置からの第2応答信号が重畳されていない。そのため、制御部CTは上記動作により、光信号S1に第2応答信号が多重に重畳されなくすることができる。
 すなわち図8の光海底装置20は、監視対象の第2対象光海底装置からの第2応答信号の光海底ケーブルを通過する期間と、光海底装置20が送信する第2応答信号が光海底ケーブルを通過する期間とが、重なることを防ぐことができる。そのため、図8の光海底装置20は、第2対象光海底装置の各々の第2応答信号の周波数帯を同じにすることができる。そのため、図8の光海底装置20は、陸上端局装置12での第2コマンド信号の送信タイミングの制御及び応答信号の復調を容易にし、通信用により広い周波数帯を確保することを可能にする。
[効果]
 本実施形態の光海底装置は、双方の陸上端局装置から送信されるコマンド信号に対し、第1実施形態の光海底装置と同様の動作を行う。本実施形態の光海底ケーブルシステムにおいては、各コマンド信号の周波数帯と、同じ光ファイバを進行する他方の各コマンド信号への応答信号の周波数帯とが、重ならないように設定されている。これらにより、本実施形態の光海底ケーブルシステムは、双方の陸上端局装置から送信されるコマンド信号を両立させつつ、各陸上端局装置における応答信号の復調の困難さの問題を回避することができる。
 なお、本実施形態の光海底装置は、第1コマンド信号及び第2コマンド信号に対して、共に、第2実施形態の光海底装置の動作を行うものであっても構わない。その場合、本実施形態の光海底ケーブルシステムは、上記本実施形態の光海底ケーブルシステムの奏する効果に加えて、第2実施形態の光海底ケーブルシステムの奏する効果を奏する。
 また、以上の説明では第1対象光海底装置と第2対象光海底装置とが一致する例を説明したが、必ずしもその限りではない。本実施形態の光海底ケーブルシステムが、第2対象光海底装置ではない第1対象光海底装置を備えても良いし、第1対象光海底装置ではない第2対象光海底装置を備えても良い。
<第4実施形態>
 第3実施形態の光海底ケーブルシステムにおいては、各コマンド信号の周波数帯と、同じ光ファイバを進行する他方の各コマンド信号への応答信号の周波数帯とが、重ならないように設定されている。そのため、コマンド信号に割り当てる周波数帯と応答信号に割り当てる周波数帯とが、光通信に使えなくなり、その分通信容量が低下するという課題がある。本実施形態は、各コマンド信号の周波数帯と、他方の各コマンド信号への応答信号の周波数帯とを、重なるように設定することができる、光海底ケーブルシステムに関する実施形態である。
[構成と動作]
 本実施形態の光海底ケーブルシステムの構成例は、図1の光海底ケーブルシステム10である。本実施形態の光海底ケーブルシステム10は、以下が、第3実施形態の光海底ケーブルシステム10と異なる。以下、本実施形態の光海底ケーブルシステム10の第3実施形態の光海底ケーブルシステム10と異なる点を、主に説明する。
 陸上端局装置11が送信する第1コマンド信号の周波数帯と、光海底装置21乃至2nの各々が送信する第2応答信号の周波数帯とは、重なっていても構わない。また、陸上端局装置12が送信する第2コマンド信号の周波数帯と、光海底装置21乃至2nの各々が送信する第1応答信号の周波数帯とは、重なっていても構わない。
 図9は、本実施形態の光海底装置21乃至2nの各々の例である光海底装置20の構成例を表す概念図である。図9の光海底装置20は、図8の光海底装置20が備える構成に加えて、フィルタFL1およびFL2を備える。フィルタFL1は、光信号S1に重畳された第1コマンド信号の周波数帯の光を遮断する。そのため、第1コマンド信号は、フィルタFL1を通過しない。フィルタFL2は、光信号S2に重畳された第2コマンド信号の周波数帯の光を遮断する。そのため、第2コマンド信号は、フィルタFL2を通過しない。
 図9の光海底装置20が行う動作は、以下が、図8の光海底装置20が行う動作と異なる。以下、図9の光海底装置20が行う動作のうち、図8の光海底装置20が行う動作と異なる点について、主に説明する。
 制御部CTは、受信回路R1が第1コマンド信号を受信すると、その第1コマンド信号に対応する第1コマンド情報を、記憶部MMに保持させる。制御部CTは、また、受信回路R2が第2コマンド信号を受信すると、その第2コマンド信号に対応する第2コマンド情報を、記憶部MMに保持させる。
 制御部CTは、第1応答許可情報が0であるかどうかを、逐次、判定する。そして、制御部CTは、第一応答許可情報が0であることを判定すると記憶部MMが第2コマンド情報を保持しているかについての判定を行う。制御部CTは、記憶部MMが第2コマンド情報を保持していることを判定すると、送信回路T1に、その第2コマンド情報に対応する第2コマンド信号を、光信号S2に重畳して、光ファイバF2に送信させる。制御部CTは、第2コマンド信号の送信を送信回路T1に行わせると、その第2コマンド信号に係る第2コマンド情報を記憶部MMに削除させる。制御部CTは、記憶部MMが複数の第2コマンド情報を保持している場合には、記憶部MMが保持するすべての第2コマンド情報についての第2コマンド信号の送信を、送信回路T1に行わせる。
 制御部CTは、記憶部MMが保持する第2コマンド情報がない場合には、記憶部MMが第1応答情報を保持しているかについての判定を行う。制御部CTは、記憶部MMが第1応答情報を保持していることを判定した場合は、その第1応答情報に対応する第1応答信号の送信を送信回路T1に行わせる。制御部CTは、第1応答信号の送信を送信回路T1に行わせると、その第1応答信号に係る第1応答情報を記憶部MMに削除させる。制御部CTは、記憶部MMが複数の第1応答情報を保持している場合には、記憶部MMが保持するすべての第1応答情報についての第1応答信号の送信を、送信回路T1に行わせる。
 制御部CTは、以上説明した、第2コマンド信号及び第1応答信号について送信回路T1に行わせる送信処理と同様の送信処理を、第1コマンド信号と第2応答信号について、送信回路T2に行わせる。
 以上により、制御部CTは、第2コマンド信号と第1応答信号とで、第1信号に重畳される時間帯が重ならないようにするとともに、第1コマンド信号と第2応答信号とで、第2信号に重畳される時間帯も重ならないようにする。そのため、制御部CTの上記動作は、各コマンド信号の周波数帯と、他方の各コマンド信号への応答信号の周波数帯とが重なることを許容する。
[効果]
 本実施形態の光海底装置は、第3実施形態の光海底装置が奏する効果に加えて、各コマンド信号の周波数帯と、他方の各コマンド信号への応答信号の周波数帯とが重なることを許容する効果を奏する。
 以上、実施形態では、送信許可情報に、0以上の整数からなる送信許可値を用いる例について説明した、しかしながら、送信許可情報は、必ずしも、送信許可値である必要はない。送信許可情報は、その段階を表す情報から構成されるものであれば構わない。送信許可情報は、例えば、序列が定められた文字、数字、記号、又は、これらの組合せであっても構わない。
 図10は、実施形態の光海底装置の最小限の構成である送信装置20xの構成を表す概念図である。送信装置20xは、第1検出部R1xと、第2検出部R2xと、第1重畳部T1xと、第1更新部CTxと、を備える。
 第1検出部R1xは、光海底ケーブルを第1の向きに進行する第1光信号に重畳された第1コマンド信号を検出する。第2検出部R2xは、前記光海底ケーブルを第2の向きに進行する第2光信号に、第1他光海底装置により重畳された、前記第1コマンド信号に対する応答信号である第1応答信号を検出する。ここで、第1他光海底装置は、自送信装置が備えられる光海底装置である自光海底装置以外の光海底装置である。
 第1重畳部T1xは、第1送信許可情報の段階である第1の段階が第1設定段階の場合に、宛先を前記自光海底装置とする前記第1コマンド信号に対する応答信号である第1応答信号を、前記第2光信号に重畳する。第1更新部CTxは、前記第1の段階を、前記宛先を前記第1他光海底装置とする前記第1コマンド信号の検出完了回数と、前記第1応答信号の検出完了回数と、から更新する。
 送信装置20xは、上記構成により、前記他光海底装置からの前記第1応答信号の前記光海底ケーブルを通過する期間と、前記自光海底装置が送信する前記第1応答信号が前記光海底ケーブルを通過する期間とが、重なることを防ぐことができる。そのため、送信装置20xは、まず、前記光海底装置の各々の応答信号の周波数帯を同じにすることができる。そのため、送信装置20xは、陸上端局装置でのコマンド信号の送信タイミングの制御及び応答信号の復調を容易にし、通信用により広い周波数帯を確保することを可能にする。
 そのため、送信装置20xは、前記構成により、[発明の効果]の項に記載した効果を奏する。
 以上、本発明の各実施形態を説明したが、本発明は、前記した実施形態に限定されるものではなく、本発明の基本的技術的思想を逸脱しない範囲で更なる変形、置換、調整を加えることができる。例えば、各図面に示した要素の構成は、本発明の理解を助けるための一例であり、これらの図面に示した構成に限定されるものではない。
 また、前記の実施形態の一部又は全部は、以下の付記のようにも記述され得るが、以下には限られない。
(付記1)
 光海底ケーブルを第1の向きに進行する第1光信号に重畳された第1コマンド信号を検出する第1検出部と、
 前記光海底ケーブルを第2の向きに進行する第2光信号に、自送信装置が備えられる光海底装置である自光海底装置以外の光海底装置である第1他光海底装置により重畳された、前記第1コマンド信号に対する応答信号である第1応答信号を検出する第2検出部と、
 第1送信許可情報の段階である第1の段階が第1設定段階の場合に、宛先を前記自光海底装置とする前記第1コマンド信号に対する応答信号である第1応答信号を、前記第2光信号に重畳する、第1重畳部と、
 前記第1の段階を、前記宛先を前記第1他光海底装置とする前記第1コマンド信号の検出完了回数と、前記第1応答信号の検出完了回数と、から更新する第1更新部と、
 を備える、送信装置。
(付記2)
 前記第1更新部は、前記宛先を前記第1他光海底装置とする前記第1コマンド信号の検出が完了するたびに、前記第1の段階に対して、1段階の、第1の増減を行い、
 前記第1更新部は、前記第1応答信号の検出が完了するたびに、前記第1の段階に対して、前記1段階の、前記第1の増減とは逆向きの増減を行う、
 付記1に記載された送信装置。
(付記3)
 前記第1更新部は、前記第1コマンド信号の直近の検出が完了した時刻からの経過時間が第1閾値を超えた場合に、前記第1の段階を前記第1設定段階にする、
 付記1又は付記2に記載された送信装置。
(付記4)
 前記第1光信号の周波数帯と前記第1コマンド信号の周波数帯とは重ならず、前記第2光信号の周波数帯と前記第1応答信号の周波数帯とは重ならない、
 付記1乃至付記3のうちのいずれか一に記載された送信装置。
(付記5)
 前記第1他光海底装置は、前記光海底装置から、前記第1光信号の進行方向にある光海底装置である、
 付記1乃至付記4のうちのいずれか一に記載された送信装置。
(付記6)
 前記第1検出部は、受信した前記第1コマンド信号に含まれる前記第1他光海底装置の識別子から、前記第1コマンド信号の宛先が、前記第1他光海底装置か否かを識別する、
 付記1乃至付記5のうちのいずれか一に記載された送信装置。
(付記7)
 前記第2光信号に重畳された第2コマンド信号を検出する第3検出部と、
 前記第2光信号に、前記自光海底装置以外の光海底装置である第2他光海底装置により重畳された、前記第2コマンド信号に対する応答信号である第2応答信号を検出する第4検出部と、
 第2送信許可情報の段階である第2の段階が第2設定段階の場合に、前記宛先を前記自光海底装置とする前記第2コマンド信号に対する応答信号である第2応答信号を、前記第1光信号に重畳する、第2重畳部と、
 前記第2の段階を、前記宛先を前記第2他光海底装置とする前記第2コマンド信号の検出完了回数と、前記第2応答信号の検出完了回数と、から更新する第2更新部と、
 を備える、
 付記1乃至付記6のうちのいずれか一に記載された送信装置。
(付記8)
 前記第2更新部は、前記宛先を前記第2他光海底装置とする前記第2コマンド信号の検出が完了するたびに、前記第2の段階に対して、1段階の、第1の増減を行い、
 前記第1更新部は、前記第1応答信号の検出が完了するたびに、前記第2の段階に対して、前記1段階の、前記第1の増減とは逆向きの増減を行う、
 付記7に記載された送信装置。
(付記9)
 前記第2更新部は、前記第2コマンド信号の直近の検出が完了した時刻からの経過時間が第2閾値を超えた場合に、前記第2の段階を前記第2設定段階にする、
 付記7又は付記8に記載された送信装置。
(付記10)
 前記第2光信号の周波数帯と前記第2コマンド信号の周波数帯とは重ならず、前記第1光信号の周波数帯と前記第2応答信号の周波数帯とは重ならない、
 付記7乃至付記9のうちのいずれか一に記載された送信装置。
(付記11)
 前記第2他光海底装置は、前記光海底装置から、前記第2光信号の進行方向にある光海底装置である、
 付記7乃至付記10のうちのいずれか一に記載された送信装置。
(付記12)
 前記第2検出部は、受信した前記第2コマンド信号に含まれる前記第2他光海底装置の識別子から、前記第2コマンド信号の宛先が、前記第2他光海底装置か否かを識別する、
 付記7乃至付記11のうちのいずれか一に記載された送信装置。
(付記13)
 前記第1コマンド信号の周波数帯は前記第2応答信号の周波数帯と重ならず、前記第2コマンド信号の周波数帯は前記第1応答信号の周波数帯と重ならない、
 付記7乃至付記12のうちのいずれか一に記載された送信装置。
(付記14)
 前記第1検出部は前記第4検出部と共通であり、前記第2検出部は前記第3検出部と共通である、
 付記7乃至付記13のうちのいずれか一に記載された送信装置。
(付記15)
 前記第1光信号から前記第1コマンド信号を除去する第1除去部と、
 前記第2光信号から前記第2コマンド信号を除去する第2除去部と、
 前記第1除去部により前記第1コマンド信号が除去された前記第1光信号に、前記第2送信許可情報の段階が前記第2設定段階の場合に、受信した前記第1コマンド信号に含まれるコマンド情報を含むコマンド信号を重畳する第3重畳部と、
 前記第2除去部により前記第2コマンド信号が除去された前記第2光信号に、前記第1送信許可情報の段階が前記第1設定段階の場合に、受信した前記第2コマンド信号に含まれるコマンド情報を含むコマンド信号を重畳する第4重畳部と、
 をさらに備え、
 前記第1光信号への重畳を行なっていない前記第1コマンド信号である未重畳第1コマンド信号の前記第1光信号への重畳の期間と、前記第1光信号への重畳が行われていない前記第2応答信号である未重畳第2応答信号の前記第1光信号への重畳の期間とを、重ならないように制御する第1制御部と、
 前記第2光信号への重畳を行っていない前記第2コマンド信号である未重畳第2コマンド信号の前記第2光信号への重畳の期間と、前記第2光信号への重畳が行われていない前記第1応答信号である未重畳第1応答信号の前記第2光信号への重畳の期間とを、重ならないように制御する第2制御部と、
 をさらに備える、
 付記7乃至付記14のうちのいずれか一に記載された送信装置。
(付記16)
 前記未重畳第1コマンド信号を受信しており、かつ、前記未重畳第2応答信号がある場合には、前記未重畳第1コマンド信号を前記未重畳第2応答信号より先に、前記第1光信号に重畳するように制御し、
 前記第2制御部は、前記未重畳第2コマンド信号を受信しており、かつ、前記未重畳第1応答信号がある場合には、前記未重畳第2コマンド信号を前記未重畳第1応答信号より先に、前記第2光信号に重畳するように制御する、
 付記15に記載された送信装置。
(付記17)
 光海底ケーブルを第1の向きに進行する第1光信号に重畳された第1コマンド信号を検出し、
 前記光海底ケーブルを第2の向きに進行する第2光信号に、自光海底装置以外の光海底装置である第1他光海底装置により重畳された、前記第1コマンド信号に対する応答信号である第1応答信号を検出し、
 第1送信許可情報の段階である第1の段階が第1設定段階の場合に、宛先を前記自光海底装置とする前記第1コマンド信号に対する応答信号である第1応答信号を、前記第2光信号に重畳し、
 前記第1の段階を、前記宛先を前記第1他光海底装置とする前記第1コマンド信号の検出完了回数と、前記第1応答信号の検出完了回数と、から更新する、
 送信方法。
(付記18)
 光海底ケーブルを第1の向きに進行する第1光信号に重畳された第1コマンド信号を検出する処理と、
 前記光海底ケーブルを第2の向きに進行する第2光信号に、自光海底装置以外の光海底装置である第1他光海底装置により重畳された、前記第1コマンド信号に対する応答信号である第1応答信号を検出する処理と、
 第1送信許可情報の段階である第1の段階が第1設定段階の場合に、宛先を前記自光海底装置とする前記第1コマンド信号に対する応答信号である第1応答信号を、前記第2光信号に重畳する処理と、
 前記第1の段階を、前記宛先を前記第1他光海底装置とする前記第1コマンド信号の検出完了回数と、前記第1応答信号の検出完了回数と、から更新する処理と、
 をコンピュータに実行させる、送信プログラム。
ここで、上述の付記における「光海底ケーブル」は、例えば、図1の光ファイバF1及びF2を備える光海底ケーブルである。
また、「第1光信号」は、例えば、図1、図2、図8、図9の光信号S1である。
また、「第1検出部」は、例えば、図2、図8、図9の受信回路R1、又は、図10の第1検出部R1x、のうち、前記第1コマンド信号を検出する部分である。
また、「第2光信号」は、例えば、図1、図2、図8、図9の光信号S2である。
また、「第1他光海底装置」は、例えば、図1の光海底装置21乃至2nのうち、前記自光海底装置以外のものである。
また、「第2検出部」は、例えば、図2、図8、図9の受信回路R2、又は、図10の第2検出部R2x、のうち、前記第1応答信号を検出する部分である。
また、「第1の段階」は、例えば、前述の第1送信許可値を構成する0以上の整数で表される段階である。
また、「第1設定段階」は、例えば、前述の第1送信許可値が0であることで表される段階である。
また、「第1重畳部」は、例えば、図2、図8、図9の送信回路T1、又は、図10の第1重畳部T1x、のうち、前記第1応答情報の送信を行う部分である。
また、「第1更新部」は、例えば、図2、図8、図9の制御部CTの図5の処理を行う部分、又は、図10の第1更新部CTxである。
また、「送信装置」は、例えば、図2、図8、図9の光海底装置20、又は、図10の送信装置20xである。
また、「第3検出部」は、例えば、図8、図9の受信回路R2、のうち、前記第2コマンド信号を受信する部分である。
また、「第4検出部」は、例えば、例えば、図8、図9の受信回路R1、のうち、前記第2応答信号を検出する部分である。
また、「第2重畳部」は、例えば、図8、図9の送信回路T2のうち、前記第2応答信号の重畳を行う部分である。
また、「第2更新部」は、例えば、図2、図8、図9の制御部CTのうち、前記第2送信許可情報の更新を行う部分である。
また、「第2他光海底装置」は、例えば、第3実施形態又は第4実施形態における図1の光海底装置21乃至2nのうち、前記自光海底装置以外のものである。
また、「第1除去部」は、例えば、図9のフィルタFL1である。
また、「第2除去部」は、例えば、図9のフィルタFL2である。
また、「第3重畳部」は、例えば、図8、図9の送信回路T2のうち、前記第1コマンド信号の重畳を行う部分である。
また、「第4重畳部」は、例えば、図8、図9の送信回路T1のうち、前記第2コマンド信号の重畳を行う部分である。
また、「第1制御部」は、例えば、図8の制御部CTのうち、前記未重畳第1コマンド信号の前記第1光信号への重畳の期間と、前記未重畳第2応答信号の前記第1光信号への重畳の期間とを、重ならないように制御する部分である。
また、「第2制御部」は、例えば、図8の制御部CTのうち、未重畳第2コマンド信号の前記第2光信号への重畳の期間と、前記未重畳第1応答信号の前記第2光信号への重畳の期間とを、重ならないように制御する部分である。
また、「コンピュータ、」は、例えば、図2、図7、図8の制御部CTが備えるか、図2、図7、図8の制御部CTに備えられる、コンピュータである。
また、「プログラム」は、例えば、図2、図7、図8の記憶部MMが保持する、前記コンピュータに処理を実行させるプログラムである。
 この出願は、2020年12月21日に出願された日本出願特願2020-210946を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 10  光海底ケーブルシステム
 11、12  陸上端局装置
 20、21、22、2n  光海底装置
 20x  送信装置
 C1、C2  光カプラ
 CT  制御部
 CTx  第1更新部
 F1、F2  光ファイバ
 FL1、FL2  フィルタ
 MM  記憶部
 R1、R2  受信回路
 R1x  第1検出部
 R2x  第2検出部
 S1、S2  光信号
 T1、T2  送信回路
 T1x  第1重畳部
 t1、t2、t3、t4、t5、t6、t7、t8、t9  時刻

Claims (18)

  1.  光海底ケーブルを第1の向きに進行する第1光信号に重畳された第1コマンド信号を検出する第1検出部と、
     前記光海底ケーブルを第2の向きに進行する第2光信号に、自送信装置が備えられる光海底装置である自光海底装置以外の光海底装置である第1他光海底装置により重畳された、前記第1コマンド信号に対する応答信号である第1応答信号を検出する第2検出部と、
     第1送信許可情報の段階である第1の段階が第1設定段階の場合に、宛先を前記自光海底装置とする前記第1コマンド信号に対する応答信号である第1応答信号を、前記第2光信号に重畳する、第1重畳部と、
     前記第1の段階を、前記宛先を前記第1他光海底装置とする前記第1コマンド信号の検出完了回数と、前記第1応答信号の検出完了回数と、から更新する第1更新部と、
     を備える、送信装置。
  2.  前記第1更新部は、前記宛先を前記第1他光海底装置とする前記第1コマンド信号の検出が完了するたびに、前記第1の段階に対して、1段階の、第1の増減を行い、
     前記第1更新部は、前記第1応答信号の検出が完了するたびに、前記第1の段階に対して、前記1段階の、前記第1の増減とは逆向きの増減を行う、
     請求項1に記載された送信装置。
  3.  前記第1更新部は、前記第1コマンド信号の直近の検出が完了した時刻からの経過時間が第1閾値を超えた場合に、前記第1の段階を前記第1設定段階にする、
     請求項1又は請求項2に記載された送信装置。
  4.  前記第1光信号の周波数帯と前記第1コマンド信号の周波数帯とは重ならず、前記第2光信号の周波数帯と前記第1応答信号の周波数帯とは重ならない、
     請求項1乃至請求項3のうちのいずれか一に記載された送信装置。
  5.  前記第1他光海底装置は、前記光海底装置から、前記第1光信号の進行方向にある光海底装置である、
     請求項1乃至請求項4のうちのいずれか一に記載された送信装置。
  6.  前記第1検出部は、受信した前記第1コマンド信号に含まれる前記第1他光海底装置の識別子から、前記第1コマンド信号の宛先が、前記第1他光海底装置か否かを識別する、
     請求項1乃至請求項5のうちのいずれか一に記載された送信装置。
  7.  前記第2光信号に重畳された第2コマンド信号を検出する第3検出部と、
     前記第2光信号に、前記自光海底装置以外の光海底装置である第2他光海底装置により重畳された、前記第2コマンド信号に対する応答信号である第2応答信号を検出する第4検出部と、
     第2送信許可情報の段階である第2の段階が第2設定段階の場合に、前記宛先を前記自光海底装置とする前記第2コマンド信号に対する応答信号である第2応答信号を、前記第1光信号に重畳する、第2重畳部と、
     前記第2の段階を、前記宛先を前記第2他光海底装置とする前記第2コマンド信号の検出完了回数と、前記第2応答信号の検出完了回数と、から更新する第2更新部と、
     を備える、
     請求項1乃至請求項6のうちのいずれか一に記載された送信装置。
  8.  前記第2更新部は、前記宛先を前記第2他光海底装置とする前記第2コマンド信号の検出が完了するたびに、前記第2の段階に対して、1段階の、第1の増減を行い、
     前記第1更新部は、前記第1応答信号の検出が完了するたびに、前記第2の段階に対して、前記1段階の、前記第1の増減とは逆向きの増減を行う、
     請求項7に記載された送信装置。
  9.  前記第2更新部は、前記第2コマンド信号の直近の検出が完了した時刻からの経過時間が第2閾値を超えた場合に、前記第2の段階を前記第2設定段階にする、
     請求項7又は請求項8に記載された送信装置。
  10.  前記第2光信号の周波数帯と前記第2コマンド信号の周波数帯とは重ならず、前記第1光信号の周波数帯と前記第2応答信号の周波数帯とは重ならない、
     請求項7乃至請求項9のうちのいずれか一に記載された送信装置。
  11.  前記第2他光海底装置は、前記光海底装置から、前記第2光信号の進行方向にある光海底装置である、
     請求項7乃至請求項10のうちのいずれか一に記載された送信装置。
  12.  前記第2検出部は、受信した前記第2コマンド信号に含まれる前記第2他光海底装置の識別子から、前記第2コマンド信号の宛先が、前記第2他光海底装置か否かを識別する、
     請求項7乃至請求項11のうちのいずれか一に記載された送信装置。
  13.  前記第1コマンド信号の周波数帯は前記第2応答信号の周波数帯と重ならず、前記第2コマンド信号の周波数帯は前記第1応答信号の周波数帯と重ならない、
     請求項7乃至請求項12のうちのいずれか一に記載された送信装置。
  14.  前記第1検出部は前記第4検出部と共通であり、前記第2検出部は前記第3検出部と共通である、
     請求項7乃至請求項13のうちのいずれか一に記載された送信装置。
  15.  前記第1光信号から前記第1コマンド信号を除去する第1除去部と、
     前記第2光信号から前記第2コマンド信号を除去する第2除去部と、
     前記第1除去部により前記第1コマンド信号が除去された前記第1光信号に、前記第2送信許可情報の段階が前記第2設定段階の場合に、受信した前記第1コマンド信号に含まれるコマンド情報を含むコマンド信号を重畳する第3重畳部と、
     前記第2除去部により前記第2コマンド信号が除去された前記第2光信号に、前記第1送信許可情報の段階が前記第1設定段階の場合に、受信した前記第2コマンド信号に含まれるコマンド情報を含むコマンド信号を重畳する第4重畳部と、
     をさらに備え、
     前記第1光信号への重畳を行なっていない前記第1コマンド信号である未重畳第1コマンド信号の前記第1光信号への重畳の期間と、前記第1光信号への重畳が行われていない前記第2応答信号である未重畳第2応答信号の前記第1光信号への重畳の期間とを、重ならないように制御する第1制御部と、
     前記第2光信号への重畳を行っていない前記第2コマンド信号である未重畳第2コマンド信号の前記第2光信号への重畳の期間と、前記第2光信号への重畳が行われていない前記第1応答信号である未重畳第1応答信号の前記第2光信号への重畳の期間とを、重ならないように制御する第2制御部と、
     をさらに備える、
     請求項14に記載された送信装置。
  16.  前記未重畳第1コマンド信号を受信しており、かつ、前記未重畳第2応答信号がある場合には、前記未重畳第1コマンド信号を前記未重畳第2応答信号より先に、前記第1光信号に重畳するように制御し、
     前記第2制御部は、前記未重畳第2コマンド信号を受信しており、かつ、前記未重畳第1応答信号がある場合には、前記未重畳第2コマンド信号を前記未重畳第1応答信号より先に、前記第2光信号に重畳するように制御する、
     請求項15に記載された送信装置。
  17.  光海底ケーブルを通じた光通信を行う光海底ケーブルシステムに備えられる光海底装置における送信方法であって、
     前記光海底ケーブルを第1の向きに進行する第1光信号に重畳された第1コマンド信号を検出し、
     前記光海底ケーブルを第2の向きに進行する第2光信号に、自光海底装置以外の光海底装置である第1他光海底装置により重畳された、前記第1コマンド信号に対する応答信号である第1応答信号を検出し、
     第1送信許可情報の段階である第1の段階が第1設定段階の場合に、宛先を前記自光海底装置とする前記第1コマンド信号に対する応答信号である第1応答信号を、前記第2光信号に重畳し、
     前記第1の段階を、前記宛先を前記第1他光海底装置とする前記第1コマンド信号の検出完了回数と、前記第1応答信号の検出完了回数と、から更新する、
     送信方法。
  18.  光海底ケーブルを通じた光通信を行う光海底ケーブルシステムに備えられる光海底装置が備えるコンピュータに、
     前記光海底ケーブルを第1の向きに進行する第1光信号に重畳された第1コマンド信号を検出する処理と、
     前記光海底ケーブルを第2の向きに進行する第2光信号に、自光海底装置以外の光海底装置である第1他光海底装置により重畳された、前記第1コマンド信号に対する応答信号である第1応答信号を検出する処理と、
     第1送信許可情報の段階である第1の段階が第1設定段階の場合に、宛先を前記自光海底装置とする前記第1コマンド信号に対する応答信号である第1応答信号を、前記第2光信号に重畳する処理と、
     前記第1の段階を、前記宛先を前記第1他光海底装置とする前記第1コマンド信号の検出完了回数と、前記第1応答信号の検出完了回数と、から更新する処理と、
     をコンピュータに実行させるプログラムを記録した、
    送信プログラムの記録媒体。
PCT/JP2021/046476 2020-12-21 2021-12-16 送信装置、送信方法及び送信プログラムの記録媒体 WO2022138431A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/267,312 US20240048236A1 (en) 2020-12-21 2021-12-16 Transmission apparatus, transmission method, and recording medium of transmission program
JP2022572254A JP7513119B2 (ja) 2020-12-21 2021-12-16 送信装置及び送信方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020210946 2020-12-21
JP2020-210946 2020-12-21

Publications (1)

Publication Number Publication Date
WO2022138431A1 true WO2022138431A1 (ja) 2022-06-30

Family

ID=82159278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/046476 WO2022138431A1 (ja) 2020-12-21 2021-12-16 送信装置、送信方法及び送信プログラムの記録媒体

Country Status (3)

Country Link
US (1) US20240048236A1 (ja)
JP (1) JP7513119B2 (ja)
WO (1) WO2022138431A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003032190A (ja) * 2001-07-11 2003-01-31 Mitsubishi Electric Corp 光中継システムおよび光増幅中継器制御方法
JP2003060592A (ja) * 2001-08-14 2003-02-28 Fujitsu Ltd 光伝送システム
JP2014197788A (ja) * 2013-03-29 2014-10-16 日本電気株式会社 海底光ケーブルシステム、監視情報集約型海底機器、システム監視方法、及びその監視用プログラム
US20150318926A1 (en) * 2013-01-15 2015-11-05 Huawei Marine Networks Co., Ltd. Communications device and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003032190A (ja) * 2001-07-11 2003-01-31 Mitsubishi Electric Corp 光中継システムおよび光増幅中継器制御方法
JP2003060592A (ja) * 2001-08-14 2003-02-28 Fujitsu Ltd 光伝送システム
US20150318926A1 (en) * 2013-01-15 2015-11-05 Huawei Marine Networks Co., Ltd. Communications device and method
JP2014197788A (ja) * 2013-03-29 2014-10-16 日本電気株式会社 海底光ケーブルシステム、監視情報集約型海底機器、システム監視方法、及びその監視用プログラム

Also Published As

Publication number Publication date
US20240048236A1 (en) 2024-02-08
JPWO2022138431A1 (ja) 2022-06-30
JP7513119B2 (ja) 2024-07-09

Similar Documents

Publication Publication Date Title
US5956165A (en) Method and apparatus for updating subcarrier modulation in a communication network
WO2022054779A1 (ja) 障害検出装置、ケーブル分岐装置、及び伝送路監視方法
JP2001511621A (ja) 光リング網において波長多重化方式でデータ伝送するための方法および装置
JP2002280978A (ja) 光伝送システム
CN106257846A (zh) 具有弯管通道和导引通道的自由空间光学通信网络
WO1992009873A1 (en) Method of identifying optical cables
JPH04212936A (ja) 光伝送システム
WO2022138431A1 (ja) 送信装置、送信方法及び送信プログラムの記録媒体
WO2018003912A1 (ja) 中継装置、監視システムおよび監視情報の伝達方法
JP3150996B2 (ja) 遠隔測定の方法およびシステム
JP2006135983A (ja) 波長オフセット偏光分割多重化方式のラベリングを用いた光パケット通信システム
JP6560300B2 (ja) 光伝送装置、光伝送ルート識別装置および光伝送ルート識別方法
JP6056494B2 (ja) 判定装置、判定方法、及び、判定プログラム
JP2540935B2 (ja) 一括偏波制御方法
JP2013093680A (ja) 伝送システム、伝送機器セット、及びipカメラの敷設方法
JP2003046413A (ja) 光伝送路切替システムと光伝送路切替方法
JP7310890B2 (ja) 再変調装置、復調受信装置、及び再変調方法
KR102372836B1 (ko) 전투함의 작전 지휘용 통신 시스템
US20200266912A1 (en) Optical transmission device and optical transmission method
JP4346479B2 (ja) 列車検知システム
JP6373244B2 (ja) ネットワークシステム、監視装置、および、光端末装置
WO2022168576A1 (ja) 接続状況特定システム及び接続状況特定方法
WO2023276042A1 (ja) 光トランシーバ、光通信システム、光伝送装置、光トランシーバの設定方法及びコンピュータ可読媒体
WO2023162064A1 (ja) 経路特定システム、経路特定方法、監視装置、監視装置の制御方法及び記録媒体
JPWO2022138431A5 (ja) 送信装置及び送信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21910579

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022572254

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18267312

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21910579

Country of ref document: EP

Kind code of ref document: A1