WO2022138343A1 - エポキシ樹脂組成物、接着フィルム、プリント配線板、半導体チップパッケージ、半導体装置、及び接着フィルムの使用方法 - Google Patents

エポキシ樹脂組成物、接着フィルム、プリント配線板、半導体チップパッケージ、半導体装置、及び接着フィルムの使用方法 Download PDF

Info

Publication number
WO2022138343A1
WO2022138343A1 PCT/JP2021/046127 JP2021046127W WO2022138343A1 WO 2022138343 A1 WO2022138343 A1 WO 2022138343A1 JP 2021046127 W JP2021046127 W JP 2021046127W WO 2022138343 A1 WO2022138343 A1 WO 2022138343A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
curing agent
resin composition
less
adhesive film
Prior art date
Application number
PCT/JP2021/046127
Other languages
English (en)
French (fr)
Inventor
賢三 鬼塚
直弥 上村
真典 吉田
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to JP2022572204A priority Critical patent/JPWO2022138343A1/ja
Priority to KR1020237009513A priority patent/KR20230052965A/ko
Priority to US18/268,741 priority patent/US20240301176A1/en
Priority to CN202180086693.9A priority patent/CN116615509A/zh
Publication of WO2022138343A1 publication Critical patent/WO2022138343A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/10Encapsulated ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/686Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/08Macromolecular additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/35Heat-activated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the groups H01L21/18 - H01L21/326 or H10D48/04 - H10D48/07 e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/006Additives being defined by their surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49866Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers characterised by the materials
    • H01L23/49894Materials of the insulating layers or coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/06Lamination
    • H05K2203/068Features of the lamination press or of the lamination process, e.g. using special separator sheets
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/10Using electric, magnetic and electromagnetic fields; Using laser light
    • H05K2203/107Using laser light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/14Related to the order of processing steps
    • H05K2203/1461Applying or finishing the circuit pattern after another process, e.g. after filling of vias with conductive paste, after making printed resistors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4661Adding a circuit layer by direct wet plating, e.g. electroless plating; insulating materials adapted therefor

Definitions

  • the present invention relates to an epoxy resin composition, an adhesive film, a printed wiring board, a semiconductor chip package, a semiconductor device, and a method of using the adhesive film.
  • thermosetting resin composition containing an epoxy resin or the like having excellent adhesiveness and high reliability
  • an epoxy resin, a curing agent such as a phenol resin having a reactivity with the epoxy resin, and a curing catalyst for accelerating the reaction between the epoxy resin and the curing agent are generally used.
  • the performance of semiconductor devices and printed wiring boards has been improved, and build-up layers are used and the layers are multi-layered. Therefore, there is a demand for finer and higher density wiring and lower dielectric loss tangent. There is. Further, with the multi-layered mounting of semiconductor elements and printed wiring boards, there is a demand for an adhesive that can be cured under low temperature conditions.
  • Patent Document 1 describes (A) an epoxy resin, (B) an active ester compound as a curing agent for the epoxy resin, (C) a triazine-containing cresol novolak resin, and (D) an inorganic filling having an average particle size of 1 ⁇ m or less.
  • the epoxy resin composition containing the material when the non-volatile component in the epoxy resin composition is 100% by mass, (D) the content of the inorganic filler having an average particle size of 1 ⁇ m or less is 48% by mass or more.
  • An epoxy resin composition for forming an insulating layer of a multilayer printed wiring board having an amount of 85% by mass or less is disclosed.
  • Patent Document 1 describes that the epoxy resin composition exhibits high adhesion to a plated conductor, and can achieve a low linear expansion coefficient and a low dielectric loss tangent of an insulating layer.
  • Patent Document 2 as a resin composition for printed wiring showing good reflow behavior in a component mounting process even if the printed wiring board is thin, (A) epoxy resin, (B) curing agent, and the like. And (C) an epoxy resin composition containing an inorganic filler surface-treated with a specific surface treatment agent is disclosed.
  • Patent Documents 1 and 2 have insufficient storage stability after film formation, poor embedding property of fine wiring, and require a high temperature at the time of curing. It has problems that the warp property is poor, the curing performance is insufficient in practical use, and there is room for improvement in these characteristics.
  • the present invention provides an epoxy resin composition having good storage stability after film formation, good embedding property of fine wiring and good warpage of a substrate, and excellent curing performance, and a resin layer containing the epoxy resin composition. It is an object of the present invention to provide an adhesive film, a printed wiring board, a semiconductor chip package, a semiconductor device, and the like.
  • the present inventor has the potential to satisfy specific conditions in a resin composition containing an epoxy resin (A) and a latent curing agent (B). It has been found that the above-mentioned problems can be solved by adopting the curing agent (B), and the present invention has been completed. That is, the present invention is as follows.
  • the latent curing agent (B) is an epoxy resin composition that is solid at 25 ° C.
  • R 1 to R 9 are independently composed of a group consisting of a hydrogen atom, a hydroxyl group, an alkyl group, an aromatic group, a substituent containing a hetero atom, and a substituent containing a halogen atom. It is a kind to be selected, and R 1 to R 9 may be the same or different from each other, and any one selected from R 5 to R 9 is bonded to each other to form a ring structure.
  • the ring structure may be a fused ring with the benzene ring shown in the formula.
  • the latent curing agent (B) is The particle size D50 with an integrated fraction under sieving of 50% exceeds 0.3 ⁇ m and is 10 ⁇ m or less.
  • the particle size distribution represented by the ratio (D99 / D50) of the particle size D99 having an integrated under-sieving fraction of 99% to the particle size D50 having an integrated fraction under a sieve of 50% is 6 or less.
  • the epoxy resin composition according to any one of the above [1] to [4]. 4.0X-1 ⁇ Y ⁇ 8.3X-1 (2) (When the latent curing agent (B) is obtained by encapsulating the curing agent component with an encapsulating agent, the curing agent component before encapsulation satisfies the above formula (2)).
  • the latent curing agent (B) is It has a core (c) which is a curing agent component and a shell (s) which covers the core (c).
  • the shell (s) has at least a bonding group (x) that absorbs infrared rays having a wave number of 1630 cm -1 or more and 1680 cm -1 or less, and a bonding group (y) that absorbs infrared rays having a wave number of 1680 cm -1 or more and 1725 cm -1 or less. It has a bonding group (z) that absorbs infrared rays having a wave number of 1730 cm -1 or more and 1755 cm -1 or less.
  • the epoxy resin composition according to any one of the above [1] to [5].
  • one or more curing agents selected from the group consisting of a phenol-based curing agent, an active ester-based curing agent, an amine-based curing agent, an acid anhydride-based curing agent, and a thiol-based curing agent.
  • D film-forming polymer
  • E filler
  • a semiconductor device comprising the printed wiring board according to the above [19] and / or the semiconductor chip package according to the above [20].
  • the adhesive film according to the above [15] or [16] is laminated under the condition of a crimping pressure of 40 MPa or less, and then the laminated material or the semiconductor chip package is manufactured under the heating condition of a temperature of 220 ° C. or less. How to use.
  • an epoxy resin composition having good storage stability after film formation, excellent embedding property of fine wiring and curing performance, and capable of achieving both storage stability and reactivity can be obtained.
  • the present embodiment is an example for explaining the present invention, and the present invention is not limited to the present embodiment. That is, the present invention can be variously modified without departing from the gist thereof.
  • a numerical value or a physical property value is put before and after using "-"
  • it is used as including the value before and after that.
  • Epoxy resin composition The epoxy resin composition of the present embodiment is Epoxy resin (A) and Containing a latent curing agent (B), The latent curing agent (B) is solid at 25 ° C.
  • an epoxy resin composition having good storage stability after film formation, excellent embedding property and curing performance of fine wiring, and excellent storage stability and reactivity can be obtained.
  • adhesive films, printed wiring boards, semiconductor chip packages, semiconductor devices, etc. which are required to have multiple layers, finer wiring and higher density, lower dielectric loss tangent, etc. In, reliability can be improved.
  • Epoxy resin (A) The epoxy resin composition of the present embodiment contains an epoxy resin (A).
  • the epoxy resin (A) is not particularly limited, and various known ones can be appropriately selected and used.
  • the epoxy resin (A) may be used alone or in combination of two or more.
  • the epoxy resin (A) is not limited to the following, and is, for example, a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, a bisphenol AD type epoxy resin, a bisphenol AF type epoxy resin, a tetrabromo bisphenol A type epoxy resin, and a biphenyl type.
  • Epoxy resin tetramethylbiphenyl type epoxy resin, tetrafluorobiphenyl type epoxy resin, tetrabromobiphenyl type epoxy resin, diphenyl ether type epoxy resin, benzophenone type epoxy resin, phenylbenzoate type epoxy resin, diphenyl sulfide type epoxy resin, diphenyl sulfoxide type epoxy Resin, diphenylsulfone type epoxy resin, diphenyldisulfide type epoxy resin, naphthalene type epoxy resin, anthracene type epoxy resin, hydroquinone type epoxy resin, methylhydroquinone type epoxy resin, dibutylhydroquinone type epoxy resin, resorcin type epoxy resin, methylresorcin type epoxy Examples thereof include bifunctional epoxy resins such as resins, catechol type epoxy resins, and N, N-diglycidylaniline type epoxy resins.
  • the epoxy resin (A) includes, for example, trifunctional epoxy such as N, N-diglycidylaminobenzene type epoxy resin, o- (N, N-diglycidylamino) toluene type epoxy resin, and triazine type epoxy resin.
  • tetrafunctional epoxy resins such as tetraglycidyldiaminodiphenylmethane type epoxy resin and diaminobenzene type epoxy resin; phenol novolac type epoxy resin, cresol novolac type epoxy resin, triphenylmethane type epoxy resin, tetraphenylethane type epoxy resin , Dicyclopentadiene type epoxy resin, naphthol aralkyl type epoxy resin, bromoized phenol novolak type epoxy resin and other polyfunctional epoxy resins.
  • tetrafunctional epoxy resins such as tetraglycidyldiaminodiphenylmethane type epoxy resin and diaminobenzene type epoxy resin
  • phenol novolac type epoxy resin cresol novolac type epoxy resin, triphenylmethane type epoxy resin, tetraphenylethane type epoxy resin , Dicyclopentadiene type epoxy resin, naphthol aralkyl type epoxy resin, bromoized phenol novol
  • examples of the epoxy resin (A) include (poly) ethylene glycol diglycidyl ether, (poly) propylene glycol diglycidyl ether, butanediol diglycidyl ether, neopentyl glycol diglycidyl ether, and 1,6-hexanediol di.
  • Diepoxy resins such as glycidyl ether, trimethylolpropane diglycidyl ether, polytetramethylene ether glycol diglycidyl ether, glycerin diglycidyl ether, neopentyl glycol diglycidyl ether, cyclohexane type diglycidyl ether, dicyclopentadiene type diglycidyl ether;
  • Examples thereof include triepoxy resins such as trimethylolpropane triglycidyl ether and glycerin triglycidyl ether.
  • epoxy resin (A) for example, vinyl (3,4-cyclohexene) dioxide, 2- (3,4-epoxycyclohexyl) -5,1-spiro- (3,4-epoxycyclohexyl) -m.
  • -Alicyclic epoxy resin such as dioxane; hydridein type epoxy resin such as 1,3-diglycidyl-5-methyl-5-ethylhydantin; and 1,3-bis (3-glycidoxypropyl) -1
  • examples thereof include epoxy resins having a silicone skeleton such as 1,3,3-tetramethyldisiloxane.
  • examples of the epoxy resin (A) include 2-ethylhexyl glycidyl ether, cyclohexanedimethanol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, ethylene glycol diglycidyl ether, and water.
  • a liquid epoxy resin and a solid epoxy resin can be used in combination as the epoxy resin (A).
  • their mass ratio liquid epoxy resin: solid epoxy resin
  • their mass ratio is not particularly limited, but is preferably in the range of 1: 0.1 to 1: 6.
  • the mass ratio of the liquid epoxy resin to the solid epoxy resin is more in the range of 1: 0.3 to 1: 5.
  • the range of 1: 0.6 to 1: 4 is preferable, and the range of 1: 0.6 to 1: 4 is more preferable.
  • the content of the epoxy resin (A) in the epoxy resin composition of the present embodiment can be appropriately set according to the desired performance for the epoxy resin of the present embodiment, and is not particularly limited, but from the viewpoint of curability, 2. It is preferably 5% by mass or more, more preferably 5% by mass or more, and further preferably 10% by mass or more. Further, from the viewpoint of film forming property, it is preferably 99% by mass or less, more preferably 95% by mass or less, and further preferably 90% by mass or less.
  • the epoxy resin composition of the present embodiment contains a latent curing agent (B).
  • the latent curing agent (B) is solid at room temperature (25 ° C.).
  • the stability at room temperature is improved and the reactivity with the epoxy resin (A) is improved. It will be good.
  • a curing agent other than the latent curing agent (B) is used in combination, it can serve as a curing catalyst, which is preferable.
  • an amine-based curing agent having an amine moiety is preferable.
  • the "amine moiety” is an organic derivative of ammonia and is a functional group that behaves as a base.
  • Examples of the latent curing agent (B) include, but are not limited to, imidazoles, imidazole-based adducts and amine adducts, and encapsulated products thereof. Specific examples thereof include Amicure PN-23J, PN-40J, MY-24 (manufactured by Ajinomoto Fine-Techno Co., Ltd.), Fujicure FXR-1020, FXR-1030 (manufactured by Fuji Kasei Kogyo Co., Ltd.) and the like.
  • the latent curing agent (B) may be used alone or in combination of two or more.
  • the latent curing agent (B) is a viewpoint of obtaining a homogeneous cured product of the epoxy resin composition of the present embodiment, and the epoxy resin composition by preventing the particles of the latent curing agent (B) from agglomerating with each other.
  • the particle size D50 having a cumulative fraction under the sieve of 50% is more than 0.3 ⁇ m and composed of particles of 10 ⁇ m or less, and more preferably 1 ⁇ m or more and 8 ⁇ m. Below, it is more preferably 1.5 ⁇ m or more and 5 ⁇ m or less.
  • the particle size D50 of the latent curing agent (B) When the particle size D50 of the latent curing agent (B) is 10 ⁇ m or less, a homogeneous cured product tends to be obtained in the epoxy resin composition, and when the particle size D50 is more than 0.3 ⁇ m, there is a potential. Aggregation between curing agents can be suppressed, uneven curing does not occur, and the heat resistance of the cured product tends to improve.
  • Examples of the method for setting the particle size D50 of the latent curing agent (B) to more than 0.3 ⁇ m and 10 ⁇ m or less include a method of performing mechanical pulverization and a method of performing particle growth in a solvent.
  • the latent curing agent (B) may be described as the ratio of the particle size D99 having a cumulative fraction under sieving of 99% to the particle size D50 having an integrated fraction under sieving of 50% (hereinafter, simply referred to as "D99 / D50". ),
  • the particle size distribution is preferably 6.0 or less, more preferably 5.5 or less, still more preferably 5.0 or less, from the viewpoint of preventing aggregation of the particles.
  • D99 / D50 is 6.0 or less, the number of coarse particles in the powder particles of the latent curing agent (B) is small, the formation of agglomerates is suppressed, and the physical properties of the cured product of the epoxy resin composition are impaired. It tends to suppress the problem.
  • D99 / D50 is preferably 1.2 or more. When D99 / D50 is 1.2 or more, it tends to suppress the formation of many gaps between the particles of the latent curing agent (B). D99 / D50 is more preferably 1.5 or more, still more preferably 1.7 or more, and even more preferably 2.0 or more.
  • the latent curing agent (B) D99 / D50 can be controlled to 6 or less by a classification operation such as removal of coarse particles and fine particles.
  • the latent curing agent (B) may be single-layer particles, but may be core-shell type curing agent particles having a core of the curing agent component and a shell covering the core.
  • the curing agent particles (curing agent component) for epoxy resin used as the core are referred to as “hardener particles (H) for epoxy resin", “curing agent particles (H)", or “curing agent (H)”.
  • the core-shell type curing agent particles as the latent curing agent (B) include a core formed from the epoxy resin curing agent particles (H) and the like (hereinafter, also referred to as “core (c)”) and the core (hereinafter, also referred to as “core (c)”).
  • shell (s) a shell covering c
  • binding group (y) a bonding group that absorbs infrared rays with a wave number of 1680 cm -1 or more and 1725 cm -1 or less
  • binding group (z) At least one bonding group that absorbs infrared rays of 1 or more and 1755 cm -1 or less on the surface thereof.
  • binding group (z) At least one bonding group that absorbs infrared rays of 1 or more and 1755 cm -1 or less on the surface thereof.
  • the aggregation ratio of the particles of the latent curing agent (B) is reduced, and the epoxy resin composition of the present embodiment has any of curability, storage stability, and crevice permeability. Also tends to be excellent.
  • Examples of the method for obtaining the agent (B) include a method in which a predetermined encapsulating agent is selected and reacted with the curing agent component of the core.
  • X indicates a particle size D50 ( ⁇ m) having a cumulative fraction under the sieve of the latent curing agent (B) of 50%
  • Y indicates a specific surface area value (m 2 / g).
  • the latent curing agent (B) As a method for satisfying the relationship between the specific surface area value and the particle size D50 in the above formula (2), for example, a method of modifying the surface of the latent curing agent (B) can be mentioned. Further, when Y is 4.0X-1 or more, the aggregation of the particles of the latent curing agent (B) can be suppressed, and when Y is 8.3X-1 or less, the latent curing agent (B) can be suppressed. ) And the epoxy resin (A) can be mixed to improve the stability.
  • the latent curing agent (B) is a core-shell type curing agent particle having a core of the curing agent component and a shell covering the core, for example, the curing agent component is encapsulated with an encapsulating agent. In this case, the curing agent component before encapsulation may satisfy the above formula (2).
  • the content of the latent curing agent (B) in the epoxy resin composition of the present embodiment can be appropriately set according to the desired performance and is not particularly limited, but is preferably 0.2% by mass or more from the viewpoint of reactivity. , More preferably 1.0% by mass or more, still more preferably 2.0% by mass or more. Further, from the viewpoint of stability, it is preferably 50% by mass or less, more preferably 40% by mass or less, and further preferably 30% by mass or less.
  • the epoxy resin composition of the present embodiment preferably further contains an alcohol (C) represented by the following general formula (1).
  • an alcohol (C) represented by the following general formula (1).
  • R 1 to R 9 are independently composed of a group consisting of a hydrogen atom, a hydroxyl group, an alkyl group, an aromatic group, a substituent containing a hetero atom, and a substituent containing a halogen atom. It is a kind to be selected, and R 1 to R 9 may be the same or different from each other, and any one selected from R 5 to R 9 is bonded to each other to form a ring structure.
  • the ring structure may be a fused ring with the benzene ring shown in the formula.
  • the alcohol (C) represented by the formula (1) has excellent coordination with the latent curing agent (B) described above and compatibility with the epoxy resin (A) due to having an aromatic ring. , Has a function of improving the curability of the epoxy resin composition of the present embodiment.
  • the alcohol (C) does not act on the latent curing agent (B) under room temperature conditions. However, under conditions of a predetermined temperature or higher, the alcohol (C) has improved solubility in the epoxy resin (A), and the SP value, which is a solubility parameter, is a latent curing agent (B), which is an amine-based curing agent.
  • the curability is improved by the action of facilitating the solubility of the latent curing agent (B) in the epoxy resin (A).
  • the room temperature stability of the epoxy resin composition of the present embodiment is added. Achieves both curability at warm temperature. This effect is more pronounced when the latent curing agent (B) is in the capsule type.
  • R 1 in the formula (1) representing the alcohol (C) is preferably a hydroxyl group.
  • R 2 , R 3 and R 4 in the above formula (1) are hydrogen atoms.
  • the alcohol (C) represented by the formula (1) is not limited to the following, but is, for example, 3-phenoxy-1-propanol, 3-phenoxy-1,2-propanediol, 3-phenoxy-1,3-.
  • Examples thereof include ether, bisphenol A (2,3-dihydroxypropyl) glycidyl ether, and a compound represented by the following formula (1-1) (hereinafter, also referred to as “compound 1”).
  • the alcohol (C) represented by the formula (1) is, for example, a compound having a 1-propanol structure produced by opening the terminal epoxy group of the bisphenol F type epoxy resin, or a bisphenol F type epoxy resin.
  • a compound having a 1,2-propanezyl structure (for example, bisphenol F glycidyl 2,3-dihydroxypropyl ether) produced by opening the terminal epoxy group, and a naphthalene type epoxy resin produced by opening the terminal epoxy group.
  • Examples thereof include a compound having a 1-propanol structure and a compound having a 1,2-propanezyl structure produced by opening a ring of a cresol novolac type epoxy resin terminal epoxy group.
  • the epoxy resin composition of the present embodiment has a high effect of lowering the thickening start temperature and has good compatibility with the epoxy resin (A), a uniform epoxy resin composition can be obtained.
  • Examples of the alcohol (C) include 3-phenoxy-1-propanol, 3-phenoxy-1,2-propanediol, bisphenol A (3-hydroxypropyl) glycidyl ether, and bisphenol A (2,3-dihydroxypropyl) glycidyl ether.
  • the compound 1 is preferable.
  • the content of the alcohol (C) in the epoxy resin composition of the present embodiment can be appropriately set according to the desired performance and is not particularly limited, but is latently cured with the epoxy resin (A) from the viewpoint of improving the reactivity. It is preferably 0.001 part by mass or more, more preferably 0.005 part by mass or more, still more preferably 0.01 part by mass or more, and even more preferably 0, based on 100 parts by mass of the total amount of the agent (B). .1 part by mass or more. Further, from the viewpoint of stability and physical properties after curing, it is preferably 20 parts by mass or less, more preferably 15 parts by mass or less, and further preferably 10 parts by mass or less.
  • the epoxy resin composition of the present embodiment contains a phenol-based curing agent, an active ester curing agent, an amine-based curing agent, an acid anhydride-based curing agent, and other curing agent components other than the latent curing agent (B) described above. And one or more curing agents selected from the group consisting of thiol-based curing agents.
  • the phenolic resin-based curing agent is not particularly limited as long as it can cure the epoxy resin (A), and examples thereof include phenol novolac, bisphenol A novolak, cresol novolak, naphthol novolak, and triazine ring-containing phenol novolac. .. From the viewpoint of improving the dielectric loss tangent of the epoxy resin composition of the present embodiment, the triazine ring-containing phenol novolac is preferable as the phenolic curing agent. Specific examples thereof include LA3018, LA3018-50P, EXB9808, and EXB9829 (manufactured by DIC Corporation).
  • the active ester curing agent is not particularly limited as long as it functions as a curing agent for the epoxy resin (A) and has an active ester, but a compound having two or more active ester groups in one molecule is preferable.
  • the active ester curing agent is an activity obtained by reacting a carboxylic acid compound and / or a thiocarboxylic acid compound with a hydroxy compound and / or a thiol compound.
  • Ester compounds are more preferable, and active ester compounds obtained by reacting a carboxylic acid compound with one or more selected from the group consisting of a phenol compound, a naphthol compound, and a thiol compound are further preferable. Further, an aromatic compound having two or more active ester groups in one molecule obtained by reacting a carboxylic acid compound with an aromatic compound having a phenolic hydroxyl group is even more preferable. An aromatic compound obtained by reacting a compound having at least two or more carboxylic acids in one molecule with an aromatic compound having a phenolic hydroxyl group, and in one molecule of the aromatic compound. Aromatic compounds having two or more active ester groups are even more preferred.
  • the active ester curing agent may be linear or branched.
  • the “compound having at least two or more carboxylic acids in one molecule” is a compound containing an aliphatic chain
  • the “compound having at least two or more carboxylic acids in one molecule” is used.
  • the active ester curing agent thus obtained has high compatibility with the epoxy resin (A). Further, if the active ester curing agent is a compound having an aromatic ring, the heat resistance of the epoxy resin composition of the present embodiment can be increased.
  • the carboxylic acid compound used for producing the active ester curing agent is not limited to the following, and for example, benzoic acid, acetic acid, succinic acid, maleic acid, itaconic acid, phthalic acid, isophthalic acid, terephthalic acid, and pyromerit. Acids and the like can be mentioned.
  • succinic acid, maleic acid, itaconic acid, phthalic acid, isophthalic acid and terephthalic acid are preferable, and isophthalic acid and terephthalic acid are more preferable.
  • the thiocarboxylic acid compound used for producing the active ester curing agent is not limited to the following, and examples thereof include thioacetic acid and thiobenzoic acid.
  • the phenol compound or naphthol compound used for producing the active ester curing agent is not limited to the following, and is, for example, hydroquinone, resorcin, bisphenol A, bisphenol F, bisphenol S, phenolphthalin, methylated bisphenol A, and methylated bisphenol F.
  • Hydroxybenzophenone, dicyclopentadienyldiphenol, phenol novolac are even more preferred, dihydroxybenzophenone, trihydroxybenzophenone, tetrahydroxybenzophenone, dicyclopentadienyldiphenol, phenol novolac are even more preferred, and dicyclopentadienyldiphenol.
  • Phenol novolak is particularly preferred, and dicyclopentadienyldiphenol is even more preferred.
  • Examples of the thiol compound used for producing the active ester curing agent include, but are not limited to, benzenedithiol and triazinedithiol.
  • the active ester curing agent the active ester compound disclosed in JP-A-2004-277460 may be used, or a commercially available product may be used.
  • the commercially available active ester compound is not limited to the following, and for example, a compound containing a dicyclopentadienyldiphenol structure, an acetylated product of phenol novolac, and a benzoyl product of phenol novolac are preferable, and dicyclopentadi is particularly preferable. Those containing an enyldiphenol structure are more preferable.
  • Examples of those containing a dicyclopentadienyldiphenol structure include EXB9451, EXB9460, EXB9460S (manufactured by DIC Corporation), DC808 (manufactured by Mitsubishi Chemical Corporation) as an acetylated product of phenol novolac, and a benzoylated product of phenol novolac. Examples thereof include YLH1026 (manufactured by Mitsubishi Chemical Corporation).
  • the amine-based curing agent is not limited to the following, and examples thereof include dicyandiamide derivatives such as dicyandiamide, dicyandiamide-aniline adduct, dicyandiamide-methylaniline adduct, dicyandiamide-diaminodiphenylmethane adduct, dicyandiamide-diaminodiphenylether adduct, and guanidine nitrate.
  • dicyandiamide derivatives such as dicyandiamide, dicyandiamide-aniline adduct, dicyandiamide-methylaniline adduct, dicyandiamide-diaminodiphenylmethane adduct, dicyandiamide-diaminodiphenylether adduct, and guanidine nitrate.
  • Guanidine Carbonate Guanidine Phosphate, Guanidine Sulfamate, Guanidine Salts such as Aminoguanidine Dicarbonate, Acetyl Guanidine, Diacetyl Guanidine, Propionyl Guanidine, Dipropionil Guanidine, Cyanoacetyl Guanidine, Guanidine Succinate, diethyl Cyanoacetyl Guanidine, Dicyanodiamidin , N-oxymethyl-N'-cyanoguanidine, N, N'-dicarboethoxyguanidine, metaphenylenediamine, paraphenylenediamine, 3,3'-diaminodiphenylsulfone, 4,4'-diaminodiphenylsulfone, 4, Examples thereof include 4'-diaminodiphenylmethane, 4'-diaminodiphenyl ether and the like.
  • the latent curing agent (B) is an amine-based curing agent having an amine moiety, it can be distinguished from an amine-based curing agent other than the component (B) depending on whether or not it has a latent property.
  • the acid anhydride-based curing agent is not limited to the following, and for example, phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, and methylnadic anhydride. , Hexahydrophthalic anhydride, methylhexahydrophthalic anhydride and the like.
  • the thiol-based curing agent may contain two or more thiol groups in one molecule, and is not limited to the following, and is, for example, 3,3'-dithiodipropionic acid and trimethylpropanthris (thio).
  • pentaerythritol tetrakis (3-mercaptopropionate) and pentaerythritol tetrakis (3-mercaptobutyrate) are more preferable.
  • the content of the curing agent component other than the latent curing agent (B) in the epoxy resin composition of the present embodiment can be appropriately set according to the desired performance, and is not particularly limited, but from the viewpoint of reactivity. , 0.01% by mass or more, more preferably 0.1% by mass or more, still more preferably 1.0% by mass or more. Further, from the viewpoint of stability, it is preferably 50% by mass or less, more preferably 45% by mass or less, and further preferably 40% by mass or less.
  • the epoxy resin composition of the present embodiment may contain a film-forming polymer (D).
  • the film-forming polymer (D) is a general polymer having a function of preventing the occurrence of cracks and cracks and maintaining the film shape when formed into a film by casting or coating and drying to a certain thickness. Can be used.
  • the film-forming polymer (D) is not limited to the following, and is, for example, a phenoxy resin, a polyvinyl butyral resin, a polyvinyl acetal resin, and elastomers having a functional group such as a carboxyl group, a hydrosixyl group, a vinyl group, and an amino group. And so on.
  • the film-forming polymer (D) may be used alone or in combination of two or more.
  • a phenoxy resin having excellent long-term connection reliability is preferable.
  • the phenoxy resin is not limited to the following, and for example, bisphenol A type phenoxy resin, bisphenol F type phenoxy resin, bisphenol A bisphenol F mixed type phenoxy resin, bisphenol A biphenyl mixed type phenoxy resin, bisphenol A bisphenol S mixed type phenoxy resin. , Fluolene ring-containing phenoxy resin, caprolactone-modified bisphenol A type phenoxy resin and the like.
  • the molecular weight of the film-forming polymer (D) is not particularly limited, but the number average molecular weight is preferably 9,000 or more and 23,000 or less, more preferably 9,500 or more and 21,000 or less, and further preferably. Is 10,000 or more and 20,000 or less.
  • the number average molecular weight is a polystyrene-equivalent number average molecular weight obtained by gel permeation chromatography (hereinafter referred to as GPC), and is a value obtained by calculating an average value for a region having a polystyrene-equivalent molecular weight of 728 or more.
  • the number average molecular weight of the film-forming polymer (D) is 9,000 or more, it is possible to suppress the slip-through of the film-forming polymer (D) from the crosslinked structure of the cured epoxy resin (A). It is preferable because it is possible to suppress a decrease in the cohesive force of the cured product of the epoxy resin composition, and thus it is possible to suppress a decrease in connection reliability between the substrates in the printed wiring board and between the printed wiring board and the semiconductor package.
  • the number average molecular weight of the film-forming polymer (D) is 23,000 or less, the adhesive film using the epoxy resin composition of the present embodiment as the material of the adhesive layer is a predetermined substrate, IC chip, or the like. It is preferable because high adhesion to the adherend can be maintained, local curing failure can be suppressed at the time of connection, corrosion of wiring and electrodes is unlikely to occur, and high insulation reliability can be obtained.
  • the content of the film-forming polymer (D) in the epoxy resin composition of the present embodiment can be appropriately set according to the desired performance and is not particularly limited, but after the epoxy resin composition of the present embodiment is formed into a film. From the viewpoint of preventing cracking, it is preferably 5% by mass or more, more preferably 10% by mass or more, and further preferably 15% by mass or more. Further, from the viewpoint of handleability of the varnish and ease of producing the film, 90% by mass or less is preferable, 80% by mass or less is more preferable, and 70% by mass or less is further preferable.
  • the epoxy resin composition of the present embodiment preferably further contains the filler (E).
  • the filler (E) is not particularly limited, but from the viewpoint of thermal expansion coefficient and thermal conductivity, an inorganic filler, an inorganic filler obtained by treating the inorganic filler with a silane coupling agent, and an improvement in adhesive strength and resistance. From the viewpoint of improving crackability, organic fillers and the like can be mentioned.
  • the filler (E) may be used alone or in combination of two or more.
  • the shape of the filler (E) is not particularly limited, and may be, for example, an indefinite shape, a spherical shape, or a scaly shape.
  • the coefficient of thermal expansion can be adjusted, and heat resistance and moisture resistance tend to be improved.
  • the inorganic filler is not limited to the following, but is not limited to, for example, silicates such as talc, fired clay, unburned clay, mica, and glass; titanium oxide, aluminum oxide (alumina), molten silica (molten spherical silica, melt crushing).
  • Oxides such as silica), synthetic silica, crystalline silica and the like; carbonates such as calcium carbonate, magnesium carbonate and hydrotalcite; hydroxides such as aluminum hydroxide, magnesium hydroxide and calcium hydroxide; barium sulfate , Sulfates such as calcium sulfate; Sulfates such as calcium sulfite; Borates such as zinc borate, barium metaborate, aluminum borate, calcium borate, sodium borate; nitrides such as aluminum nitride, boron nitride, silicon nitride, etc. Things can be mentioned.
  • fused silica, crystalline silica, and synthetic silica powder are preferable, and silicon oxide, from the viewpoint of improving the heat resistance, moisture resistance, and strength of the cured product obtained from the epoxy resin composition of the present embodiment.
  • silicon oxide from the viewpoint of improving the heat resistance, moisture resistance, and strength of the cured product obtained from the epoxy resin composition of the present embodiment.
  • Either aluminum oxide or boron nitride is preferable.
  • the content of the inorganic filler in the epoxy resin composition of the present embodiment can be appropriately set according to the desired performance, and is not particularly limited, but the epoxy resin composition. It is preferably 10% by mass or more and 90% by mass or less, and more preferably 20% by mass or more and 85% by mass or less with respect to the total amount. By setting the content of the inorganic filler to 10% by mass or more, an excellent low coefficient of thermal expansion tends to be realized. By setting the content of the inorganic filler to 90% by mass or less, the increase in elastic modulus tends to be further suppressed.
  • the inorganic filler is preferably surface-treated with a silane coupling agent.
  • a silane coupling agent exhibits its performance even when it is contained in the epoxy resin composition of the present embodiment
  • the epoxy of the present embodiment is subjected to surface treatment of the inorganic filler with the silane coupling agent.
  • the resin composition there is a tendency to realize further reduction in viscosity.
  • the silane coupling agent is not limited to, for example, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, and the like.
  • N-phenyl- ⁇ -aminopropyltrimethoxysilane N- (2-aminoethyl) 3-aminopropylmethyldimethoxysilane, N- (2-aminoethyl) 3-aminopropylmethyltrimethoxysilane, 3-aminopropyltri Ethoxysilane, 3-mercaptopropyltrimethoxysilane, vinyltrimethoxysilane, N- (2- (vinylbenzylamino) ethyl) 3-aminopropyltrimethoxysilane hydrochloride, 3-methacryloxypropyltrimethoxysilane, 3-chloro Examples thereof include silane coupling agents such as propylmethyldimethoxysilane and 3-chloropropyltrimethoxysilane. Among these, a silane coupling agent having a polymerizable functional group is preferable from the viewpoint of the adhesive strength of the epoxy resin composition of the present embodiment after curing
  • the organic filler has a function as an impact relaxation agent having stress relaxation property in the epoxy resin composition of the present embodiment.
  • the epoxy resin composition of the present embodiment further improves the adhesiveness with various connecting members. In addition, there is a tendency that the generation and growth of cracks can be suppressed.
  • the organic filler examples include, but are not limited to, acrylic resin, silicone resin, butadiene rubber, polyester, polyurethane, polyvinyl butyral, polyarylate, polymethylmethacrylate, acrylic rubber, polystyrene, NBR, SBR, and silicone-modified resin.
  • organic fine particles of a copolymer containing these as a component include, for example, (meth) alkyl acrylate-butadiene-styrene copolymer, (meth) alkyl acrylate-silicone copolymer, and silicone- (meth) acrylic copolymer.
  • a composite of silicone and (meth) acrylic acid, a composite of (meth) alkyl acrylate-butadiene-styrene and silicone, and a composite of (meth) alkyl acrylate and silicone are preferred.
  • organic fine particles having a core-shell type structure and having different compositions between the core layer and the shell layer can also be used.
  • the core-shell type organic fine particles include, but are not limited to, particles obtained by grafting an acrylic resin on a silicone-acrylic rubber as a core, particles having an acrylic resin grafted on an acrylic copolymer, and the like.
  • the constituent material of the core layer it is preferable to use a material having excellent flexibility.
  • the constituent material of the core layer include, but are not limited to, silicone-based elastomers, butadiene-based elastomers, styrene-based elastomers, acrylic-based elastomers, polyolefin-based elastomers, and silicone / acrylic-based composite elastomers.
  • a material having an excellent affinity for other components of the semiconductor resin encapsulant particularly an epoxy resin
  • the constituent material of the shell layer is not limited to the following, and examples thereof include acrylic resin and epoxy resin. Among these, the acrylic resin is particularly preferable from the viewpoint of the affinity for other components in the epoxy resin composition of the present embodiment, particularly the affinity for the epoxy resin (A).
  • the content of the organic filler in the epoxy resin composition of the present embodiment can be appropriately set according to the desired performance, and is not particularly limited, but the epoxy resin composition. It is preferably 1% by mass or more and 20% by mass or less, more preferably 2% by mass or more and 18% by mass or less, and further preferably 3% by mass or more and 16% by mass or less with respect to the total amount of the above.
  • the content of the organic filler is 1% by mass or more, stress relaxation works, and the effect of improving the adhesive strength of the epoxy resin composition of the present embodiment can be obtained.
  • the content of the organic filler is 20% by mass or less, the effect of improving the heat-resistant reflow property can be obtained in the epoxy resin composition of the present embodiment.
  • the epoxy resin composition of the present embodiment may further contain an additive (F) other than the alcohol (C), the film-forming polymer (D), and the filler (E) described above.
  • the additive (F) includes, for example, a reactive diluent, a solvent, a thermoplastic polymer, a stabilizer, a liquid low stress agent, a flame retardant, and a flame retardant from the viewpoint of adjusting the viscosity of the epoxy resin composition of the present embodiment.
  • a leveling agent or the like can be used.
  • the additive (F) may be used alone or in combination of two or more.
  • the content of the additive (F) can be appropriately set according to the desired performance and is not particularly limited, but is preferably 0.00001% by mass or more, preferably 0.0001, based on the entire epoxy resin composition of the present embodiment. By mass or more is more preferable, and 0.001% by mass or more is further preferable.
  • the content of the additive (F) is preferably less than 20% by mass, more preferably less than 15% by mass, still more preferably less than 10% by mass, and further preferably 8% by mass with respect to the entire epoxy resin composition of the present embodiment.
  • Less than% is even more preferred, less than 7% by weight is even more preferred, less than 6% by weight is particularly preferred, less than 5% by weight is even more preferred, less than 3% by weight is even more preferred, and less than 2% by weight is particularly preferred. ..
  • the reactive diluent can reduce the viscosity of the epoxy resin composition of the present embodiment and react with the latent curing agent (B) to become a part of the cured product.
  • a compound containing one or more glycidyl groups in the molecule can be used.
  • Reactive diluents include, but are not limited to, butyl glycidyl ether, diglycidyl aniline, N, N'-glycidyl-o-toluidine, phenylglycidyl ether, styrene oxide, ethylene glycol diglycidyl ether, and the like.
  • Examples thereof include propylene glycol diglycidyl ether and 1,6-hexanediol diglycidyl ether.
  • an epoxy resin that can be used as the above-mentioned reactive diluent can be mentioned. That is, examples of the reaction diluent include 2-ethylhexyl glycidyl ether, cyclohexanedimethanol diglycidyl ether, neopentyl glycol diglycidyl ether, hydrogenated bisphenol A type epoxy resin, silicone-modified epoxy resin, and (poly) ethylene glycol diglycidyl.
  • the reactive diluent various monoepoxy compounds and glycidyl ether compounds of polyhydric alcohol can also be used, but these are functional groups (epoxy group, glycidyl group) that contribute to the reaction with the latent curing agent (B). ) Is only one in one molecule, and three-dimensional crosslinks cannot be formed during curing. Therefore, the cured product of the epoxy resin composition of the present embodiment has sufficient glass transition temperature (Tg) and toughness. It tends to be impossible to make it. Therefore, as the reactive diluent, a compound containing two or more glycidyl groups in one molecule is preferable because it can form a three-dimensional crosslink at the time of curing. As a result, there is a tendency to suppress a decrease in glass transition temperature (Tg) and toughness during curing.
  • the reactive diluent may be used alone or in combination of two or more.
  • the content of the reactive diluent in the epoxy resin composition of the present embodiment can be appropriately set according to the desired performance and is not particularly limited, but is 1.0 mass with respect to 100 parts by mass of the epoxy resin (A). 30 parts or more and 30 parts by mass or less are preferable.
  • the content of the reactive diluent is 1.0 part by mass or more, the increase in the viscosity of the epoxy resin composition at room temperature is suppressed, and the epoxy resin composition of the present embodiment is used as a film for embedding wiring. In some cases, good implantability tends to be obtained. Further, the epoxy resin composition of the present embodiment tends to suppress the decrease in glass transition temperature (Tg) and toughness at the time of curing, and suppress the generation and growth of fillet cracks.
  • Tg glass transition temperature
  • the content of the reactive diluent is 30 parts by mass or less with respect to 100 parts by mass of the epoxy resin (A), deterioration of adhesion to the adherend is suppressed, and peeling during the moisture absorption reflow test is performed. Tends to suppress. Further, the content of the reactive diluent may be adjusted in a large amount for the purpose of suppressing an increase in the viscosity of the epoxy resin composition generated when the filler (E) is highly filled.
  • the solvent is not limited to the following, but for example, halogen-based solvents such as dichloromethane and chloroform; aromatic solvents such as benzene, toluene, xylene and mesitylene; acetone, methyl ethyl ketone, methyl isopropyl ketone, methyl isobutyl ketone, cyclohexanone and the like. Examples thereof include ketone solvents such as aliphatic ketones and aromatic ketones such as acetophenone. Further, a solvent such as ethyl acetate, dimethylformamide, methylcellosolve, propylene glycol monomethyl ether and the like can also be used in combination with the above solvent.
  • halogen-based solvents such as dichloromethane and chloroform
  • aromatic solvents such as benzene, toluene, xylene and mesitylene
  • acetone methyl ethyl ketone
  • ethyl acetate As the solvent to be combined with ethyl acetate, an aromatic solvent having a boiling point of 120 ° C. or lower, such as toluene, is preferable.
  • the solvent may be used alone or in combination of two or more.
  • thermoplastic polymer examples include, but are not limited to, polyamide resin, polyimide, polyester resin, polyurethane resin, acrylic resin, carboxylic acid vinyl ester, and polyether resin. Among these, acrylic resin is preferable, and carboxylic acid vinyl ester is more preferable.
  • the thermoplastic polymer may be used alone or in combination of two or more.
  • acrylic resin an acrylic resin having a glass transition temperature (Tg) of 25 ° C. or lower is preferable, and a hydroxy group-containing acrylic resin, a carboxy group-containing acrylic resin, an acid anhydride group-containing acrylic resin, an epoxy group-containing acrylic resin, and an isocyanate are preferable.
  • One or more resins selected from the group consisting of a group-containing acrylic resin and a urethane group-containing acrylic resin are more preferable, and a phenolic hydroxyl group-containing acrylic resin is further preferable.
  • the "acrylic resin” refers to a resin containing a (meth) acrylate structure, and in these resins, the (meth) acrylate structure may be contained in the main chain or the side chain.
  • the number average molecular weight (Mn) of the acrylic resin is preferably 10,000 or more and 1,000,000 or less, and more preferably 30,000 or more and 900,000 or less.
  • the number average molecular weight (Mn) of the acrylic resin is a polystyrene-equivalent number average molecular weight measured by using GPC (gel permeation chromatography).
  • the functional group equivalent is preferably 1000 or more and 50,000 or less, and more preferably 2500 or more and 30,000 or less.
  • the carboxylic acid vinyl ester may contain a monomer copolymerizable with the carboxylic acid vinyl ester as a monomer unit. Examples of such a monomer include carboxylic acid allyl ester and (meth) acrylic acid alkyl ester, and specific examples thereof include allyl acetate, methyl (meth) acrylate and ethyl (meth) acrylate.
  • a material that improves storage stability can be used, and examples thereof include, but are not limited to, boric acid and cyclic boric acid ester compounds.
  • the cyclic boric acid ester compound contains boron in a cyclic structure.
  • 2,2'-oxybis (5,5'-dimethyl-1,3,2-oxabolinane) is preferable.
  • the stabilizer may be used alone or in combination of two or more.
  • liquid low stress agent examples include, but are not limited to, polyalkylene glycols and their amine modified products, organic rubbers such as polybutadiene and acrylonitrile; silicone rubbers such as dimethylsiloxane; silicone oils and the like.
  • the liquid low stress agent may be used alone or in combination of two or more.
  • the content of the liquid low stress agent is not particularly limited, but is preferably 5.0 parts by mass or more and 40 parts by mass or less, more preferably 10 parts by mass, with respect to the mass (100 parts by mass) of the epoxy resin (A). 20 parts by mass or less.
  • the flame retardant is not limited to the following, and examples thereof include a bromine-based flame retardant, a phosphorus-based flame retardant, and an inorganic flame retardant.
  • the brominated flame retardant is not limited to the following, and examples thereof include tetrabromophenol and the like.
  • the phosphorus-based flame retardant is not limited to the following, and for example, 9,10-dihydro-9-oxa-10-phosphananslen-10-oxide and its epoxy derivative, triphenylphosphine and its derivative, phosphoric acid ester, and the like. Examples thereof include condensed phosphoric acid ester and phosphazene compound.
  • Examples of the nitrogen-based flame retardant include, but are not limited to, a guanidine-based flame retardant, a triazine structure-containing phenol, melamine polyphosphate, and isocyanuric acid.
  • Examples of the inorganic flame-retardant compound include, but are not limited to, magnesium hydroxide and aluminum hydroxide.
  • the inorganic flame-retardant compound is preferably magnesium hydroxide from the viewpoint of heat resistance.
  • the flame retardant may be used alone or in combination of two or more.
  • the content of the flame retardant is not particularly limited, but is preferably 5.0 parts by mass or more and 200 parts by mass or less, and more preferably 10 parts by mass or more with respect to the mass (100 parts by mass) of the epoxy resin (A). It is 100 parts by mass or less.
  • Leveling agent examples include, but are not limited to, a silicone-based leveling agent, an acrylic-based leveling agent, and the like.
  • the leveling agent may be used alone or in combination of two or more.
  • the adhesive film of the present embodiment has a support and a resin layer containing the epoxy resin composition of the present embodiment on the support.
  • the support is not limited to the following, but is, for example, polyolefin such as polyethylene, polypropylene, polyvinyl chloride, polyethylene terephthalate (hereinafter, may be abbreviated as “PET”), polyester such as polyethylene naphthalate, polycarbonate, and polyimide.
  • PET polyethylene terephthalate
  • polyester such as polyethylene naphthalate, polycarbonate, and polyimide.
  • metal foils such as release paper, copper foil, and aluminum foil may be mentioned, and these may be subjected to a mold release treatment in addition to a matte treatment and a corona treatment.
  • the thickness of the support is preferably 10 ⁇ m or more and 150 ⁇ m or less.
  • the resin layer contains the epoxy resin composition of the present embodiment in an amount of 50% by mass or more and 100% by mass or less.
  • the resin layer may also contain conductive particles.
  • the adhesive film of the present embodiment can be an adhesive film for forming a build-up layer of a printed wiring board or an adhesive film for an insulating layer of a semiconductor chip package.
  • the printed wiring board of the present embodiment includes the cured product of the adhesive film, and the semiconductor chip package of the present embodiment includes the cured product of the adhesive film.
  • the semiconductor device of this embodiment includes the printed wiring board and / or the semiconductor chip package.
  • the epoxy resin composition of the present embodiment includes the above-mentioned epoxy resin (A), a latent curing agent (B), and if necessary, a curing agent other than the latent curing agent (B), an alcohol ( It can be produced by mixing C), a film-forming polymer (D), a filler (E), an additive (F), and the like.
  • a method known in the art can be applied. For example, a method of heating to a temperature at which it does not cure and mixing, or a method of dissolving or dispersing each resin composition in an organic solvent to form a varnish can be mentioned.
  • the polymer (D), filler (E), additive (F), etc. for use are dissolved in a solvent by heating or uniformly dispersed, and then cooled to 50 ° C. or lower as necessary to form an epoxy resin composition.
  • the solid content concentration in the varnish is not particularly limited, but is preferably 30% by mass or more and 80% by mass or less.
  • the solvent is not limited to the following, but for example, halogen-based solvents such as dichloromethane and chloroform; aromatic solvents such as benzene, toluene, xylene and mesitylene; acetone, methyl ethyl ketone, methyl isopropyl ketone, methyl isobutyl ketone, cyclohexanone and the like.
  • halogen-based solvents such as dichloromethane and chloroform
  • aromatic solvents such as benzene, toluene, xylene and mesitylene
  • acetone methyl ethyl ketone
  • methyl isopropyl ketone methyl isobutyl ketone
  • cyclohexanone cyclohexanone and the like.
  • ketone solvents such as aliphatic ketones and aromatic ketones such as acetophenone.
  • other solvents such as ethyl acetate, di
  • ethyl acetate in combination as another solvent.
  • an aromatic solvent having a boiling point of 120 ° C. or lower, such as toluene.
  • the solvent may be used alone or in combination of two or more.
  • Dissolving at room temperature means that a solution state can be obtained at room temperature when the mixture is mixed at a solid content concentration of 10% by mass, and a state in which there is substantially no solid content is preferably for one day or more. A state that can be maintained for 30 days or more.
  • the adhesive film of the present embodiment can be produced by applying the varnish of the above-mentioned epoxy resin composition on the support film and heating and drying to remove the solvent to form a film. As a result, a semi-curable adhesive film can be obtained.
  • the thickness of the adhesive film after heat-drying is preferably 5 ⁇ m or more and 200 ⁇ m or less, more preferably 5 ⁇ m or more and 120 ⁇ m or less, still more preferably 7 ⁇ m or more and 70 ⁇ m or less, and even more preferably 10 ⁇ m or more and 20 ⁇ m. It is as follows.
  • the adhesive film of the present embodiment preferably has a thickness of 200 ⁇ m or less from the viewpoint that the members used can be made smaller.
  • the thickness is preferably 5 ⁇ m or more. It is more preferably 7 ⁇ m or more, and further preferably 10 ⁇ m or more.
  • the heating temperature is 60 ° C. or higher and 150 ° C. or lower, preferably 90 ° C. or higher and 120 ° C. or lower, and the heating time is 1 minute or longer and 20 minutes or shorter, preferably 2 minutes or longer and 10 minutes or shorter.
  • the heat-drying condition is within this range, the solvent remaining in the obtained adhesive film is sufficiently removed, and the volatile content in the adhesive film can be reduced to 1% by mass or less. Further, the curing of the adhesive film due to the film formation can be suppressed, and when the adhesive film of the present embodiment is laminated on a predetermined inner layer circuit board and used, the embedding property between wirings can be ensured.
  • a known method can be applied as a method of applying the varnish containing the epoxy resin composition of the present embodiment to the support, and the method is not particularly limited, but is limited to a bar coater and a lip. Examples include coaters, die coaters, roll coaters, doctor blade coaters, and the like.
  • the printed wiring board of the present embodiment includes a layer obtained by curing the above-mentioned adhesive film of the present embodiment.
  • the adhesive film produced by the above method is bonded to a patterned inner layer circuit board, and laminated while being pressurized and heated from the support side.
  • the surface of the inner layer circuit may be roughened in advance.
  • Laminating is performed under normal pressure or reduced pressure in a batch system or a continuous system in a roll, but it is preferable to laminate both sides at the same time.
  • the laminating conditions at this time are preferably in the range of a crimping temperature of 70 ° C. to 150 ° C. and a crimping pressure of 0.1 to 60 MPa.
  • the crimping pressure is preferably 40 MPa or less.
  • the support is peeled off from the adhesive film, and then the resin layer laminated on the inner circuit board is heat-cured.
  • the curing conditions are preferably such that the curing temperature is 130 to 250 ° C. and the curing time is within the range of 30 minutes to 180 minutes.
  • an oxidizing agent such as permanganate, dichromate, or ozone is used for the purpose of removing smear and improving the adhesion to the plating.
  • Roughening processing is performed.
  • a conductor circuit is selectively formed on the resin layer of the edge layer by electroless plating and electrolytic plating, and at the same time, an outer layer circuit is formed by forming a conductor layer on the inner wall of the via hole.
  • the adhesion between the conductor layer and the resin layer can be improved by performing an annealing treatment at a temperature in the range of 150 to 250 ° C. for a time in the range of 30 minutes to 60 minutes.
  • a multi-stage build-up layer is formed to manufacture a multilayer printed wiring board.
  • the heat curing is preferably carried out under the condition of 220 ° C. or lower from the viewpoint of volatilizing the organic compound and suppressing decomposition.
  • the semiconductor chip package of this embodiment includes a cured product of the adhesive film.
  • the semiconductor device of this embodiment includes the printed wiring board and / or the semiconductor chip package.
  • the adhesive film of the present embodiment is laminated under the condition of a crimping pressure of 40 MPa or less, and then heat-cured under the heating condition of a temperature of 220 ° C. or less, and the predetermined lamination is performed. It is preferable to manufacture a material or a semiconductor chip package.
  • the crimping pressure is more preferably 20 MPa or less, still more preferably 10 MPa or less.
  • the heat curing temperature is more preferably 200 ° C. or lower, still more preferably 180 ° C. or lower.
  • Epoxy resin curing agent 1 which is a curing agent for epoxy resin having a distribution of D99 / D50 of 5.4 was obtained.
  • a peak was confirmed due to the binding group (y) that absorbs infrared rays and the binding group (z) that absorbs infrared rays with a wave number of 1730 cm -1 or more and 1755 cm -1 or less.
  • a peak was confirmed due to the binding group (y) that absorbs infrared rays and the binding group (z) that absorbs infrared rays with a wave number of 1730 cm -1 or more and 1755 cm -1 or less.
  • the obtained curing agent for epoxy resin is pulverized with a turbo mill to obtain an epoxy resin having a specific surface area value of 0.36 m 2 / g, an average particle size under a sieve of 9.80 ⁇ m, and a D99 / D50 of 4.2.
  • a curing agent 5 was obtained.
  • the obtained adhesive film was subjected to FT-IR measurement, and the peak ratio F1 (P1 / P2) between the peak of 926 cm -1 derived from the epoxy group (P1) and the peak of 1510 cm -1 derived from the phenyl group (P2) was obtained.
  • F1 peak ratio
  • P1 / P2 peak ratio between the peak of 926 cm -1 derived from the epoxy group (P1) and the peak of 1510 cm -1 derived from the phenyl group (P2) was obtained.
  • FT-IR measurement was performed by the same method, and the peak ratio F2 (P1 / P2) after storage was calculated.
  • the residual amount of the peak ratio of the epoxy group ((F2 / F1) ⁇ 100) was calculated.
  • the residual peak ratio of the epoxy group is 90% or more and 99% or more, it is “ ⁇ ”, if it is 70% or more and less than 90%, it is “ ⁇ ”, if it is 50% or more and less than 70%, it is “ ⁇ ”, and it is less than 50%. If so, it was evaluated as "x".
  • the wiring line / space depicted by the direct imaging process using a dry film resist is 10 ⁇ m / 10 ⁇ m, and the wiring thickness is 7 ⁇ m on the FR-5 substrate (17 cm ⁇ 34 cm, thickness 0.4 mm).
  • the adhesive film produced in (1) above was attached with a PET film under the conditions of a crimping temperature of 90 ° C., a crimping pressure of 0.3 to 0.5 MPa, and a laminating speed of 0.4 m / min. It was laminated on one side of the substrate as it was.
  • the gap between the wirings where no resin was contained was judged to be a bubble, and the presence of the bubble was visually inspected. If the bubble did not exist, it was evaluated as " ⁇ ", and if it did exist, it was evaluated as "x".
  • ⁇ ⁇ tan ⁇ is less than 0.01, it is “ ⁇ ”, if it is 0.01 or more and less than 0.012, it is “ ⁇ ”, and 0.012 or more is 0. Less than .015 was evaluated as “ ⁇ ”, and more than 0.015 was evaluated as "x".
  • Epoxy resin A-1: Epicron 850CRP (bisphenol A type epoxy resin, manufactured by DIC Corporation, epoxy equivalent 175 g / eq)
  • ((B) component) B-1 Hardening agent for epoxy resin 1 of Production Example 1
  • B-2 Curing agent for epoxy resin 2 of Production Example 2
  • B-3 Epoxy resin curing agent 3 of Production Example 3
  • B-4 Epoxy resin curing agent 4 of Production Example 4
  • B-5 Curing agent for epoxy resin 5 of Production Example 5
  • DMAP 4-dimethylaminopyridine (manufactured by Koei Chemical Industry Co., Ltd., water content 1.7%, specific surface area value 0.1 m 2 / g, sieve average particle size D50 15.4 ⁇ m, D99 / D50 6.
  • LA7054 (Phenolic novolac type resin, manufactured by DIC Corporation, hydroxyl group equivalent 125 g / eq)
  • LA3018 (Phenolic novolac type resin, manufactured by DIC Corporation, hydroxyl group equivalent 150 g / eq)
  • EXB9460S (Active ester resin, manufactured by DIC Corporation, ester equivalent 223 g / eq)
  • HPC8000 (active ester resin, manufactured by DIC Corporation, ester equivalent 223 g / eq)
  • ((C) component) C-1 Alcohol of Production Example 7
  • C-2 3-Phenoxy-1-propanol (reagent, manufactured by Tokyo Kasei Co., Ltd.)
  • C-3 3-Phenoxy-1,2-propanediol (reagent, manufactured by Tokyo Kasei Co., Ltd.)
  • D-1 Film-forming polymer of Production Example 6
  • D-2 YP50 (phenoxy resin (manufactured by Nittetsu Chemical & Materials Co., Ltd.))
  • ((E) component) E-1 Aminosilane-treated synthetic spherical silica SO-C2 (manufactured by Admatex Co., Ltd.)
  • F-1 YED216L (1,6-hexanediol diglycidyl ether, manufactured by Mitsubishi Chemical Corporation)
  • F-2 CDMDG (1,4-Cyclohexanedimethanol diglycidyl ether, manufactured by Showa Denko KK)
  • the epoxy resin composition of the present invention is industrially applicable in the fields of adhesive films, printed wiring boards, semiconductor chip packages, semiconductor devices, etc., which require multi-layering, miniaturization and high density of wiring, low dielectric loss tangent, etc. Has the availability of.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Epoxy Resins (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

エポキシ樹脂(A)と、 潜在性硬化剤(B)と、 を、含有し、 前記潜在性硬化剤(B)は、25℃で固体であるエポキシ樹脂組成物。

Description

エポキシ樹脂組成物、接着フィルム、プリント配線板、半導体チップパッケージ、半導体装置、及び接着フィルムの使用方法
 本発明は、エポキシ樹脂組成物、接着フィルム、プリント配線板、半導体チップパッケージ、半導体装置、及び接着フィルムの使用方法に関する。
 従来、半導体素子の接着剤やプリント配線板の接着剤としては、接着性に優れ、かつ高い信頼性を示すエポキシ樹脂等を含む熱硬化性樹脂組成物が用いられている。前記熱硬化性樹脂組成物の構成成分としては、エポキシ樹脂、前記エポキシ樹脂と反応性を有するフェノール樹脂等の硬化剤、及び前記エポキシ樹脂と前記硬化剤との反応を促進する硬化触媒が一般に用いられている。
 近年、半導体素子やプリント配線板の高性能化が進み、これらはビルドアップ層が使用され、かつ、多層化しており、配線の微細化及び高密度化、さらには低誘電正接化が求められている。また、半導体素子やプリント配線板の多層化実装に伴い、低温条件下で硬化可能な接着剤が要求されている。
 これに対し、様々な取り組みがなされている。
 例えば、特許文献1には、(A)エポキシ樹脂、(B)エポキシ樹脂の硬化剤としての活性エステル化合物、(C)トリアジン含有クレゾールノボラック樹脂、及び(D)平均粒径が1μm以下の無機充填材を含有するエポキシ樹脂組成物であって、前記エポキシ樹脂組成物中の不揮発成分を100質量%とした場合、(D)平均粒径が1μm以下の無機充填材の含有量が48質量%以上85質量%以下である、多層プリント配線板の絶縁層形成用のエポキシ樹脂組成物が開示されている。かかる特許文献1には、前記エポキシ樹脂組成物が、めっき導体に対して高い密着力を示し、かつ絶縁層の低線膨張率化、低誘電正接化を達成し得ることが記載されている。
 また、特許文献2には、プリント配線板が薄型であっても、部品の実装工程において良好なリフロー挙動を示すプリント配線用の樹脂組成物として、(A)エポキシ樹脂、(B)硬化剤、及び(C)特定の表面処理剤で表面処理された無機充填材を含有するエポキシ樹脂組成物が開示されている。
特許第6190092号公報 特開2020-045501号公報
 しかしながら、特許文献1及び2に開示されているエポキシ樹脂組成物は、フィルム化後の保存安定性が不十分であり、微配線の埋め込み性が悪く、また、硬化時に高温が必要なため基板の反り性が悪く、硬化性能が実用上不十分であり、これらの特性に改善の余地があるという問題点を有している。
 そこで、本発明は、フィルム化後の保存安定性が良好で、微配線の埋め込み性及び基板の反り性が良好で、硬化性能に優れるエポキシ樹脂組成物、前記エポキシ樹脂組成物を含む樹脂層を有する接着フィルム、プリント配線板、半導体チップパッケージ、及び半導体装置等を提供することを目的とする。
 本発明者は、上述した課題を解決するために鋭意検討を重ねた結果、エポキシ樹脂(A)と、潜在性硬化剤(B)とを含有する樹脂組成物において、特定の条件を満たす潜在性硬化剤(B)を採用することにより、上述した課題を解決できることを見出し、本発明を完成するに至った。
 すなわち、本発明は、以下の通りである。
〔1〕
 エポキシ樹脂(A)と、
 潜在性硬化剤(B)と、
を、含有し、
 前記潜在性硬化剤(B)は、25℃で固体であるエポキシ樹脂組成物。
〔2〕
 下記式(1)で示されるアルコール(C)をさらに含む、前記〔1〕に記載のエポキシ樹脂組成物。
Figure JPOXMLDOC01-appb-C000002
 前記式(1)中、R~Rは、それぞれ独立して、水素原子、ヒドロキシル基、アルキル基、芳香族基、ヘテロ原子を含む置換基、及びハロゲン原子を含む置換基よりなる群から選ばれる一種であり、R~Rは、それぞれ同一であっても、異なっていてもよく、また、R~Rから選ばれるいずれかが互いに結合して環構造を形成していてもよく、該環構造は式中に示されているベンゼン環との縮合環であってもよい。
〔3〕
 前記潜在性硬化剤(B)が、アミン部位を有するアミン系硬化剤である、前記〔1〕又は〔2〕に記載のエポキシ樹脂組成物。
〔4〕
 前記潜在性硬化剤(B)は、
 篩下積算分率50%の粒径D50が0.3μmを超えて10μm以下であり、
 篩下積算分率99%の粒径D99と前記篩下積算分率50%の前記粒径D50との比率(D99/D50)で表される粒度分布が6以下である、前記〔1〕乃至〔3〕のいずれか一に記載のエポキシ樹脂組成物。
〔5〕
 前記潜在性硬化剤(B)は、
 比表面積値(=Y(m/g))と前記篩下積算分率50%の前記粒径D50(=X(μm))とが、下記式(2)で表される関係を満たす、
 前記〔1〕乃至〔4〕のいずれか一に記載のエポキシ樹脂組成物。
 4.0X-1 ≦ Y ≦ 8.3X-1 (2)
(前記潜在性硬化剤(B)がカプセル化剤で硬化剤成分をカプセル化したものである場合、カプセル化前の前記硬化剤成分が上記式(2)を満たす。)
〔6〕
 前記潜在性硬化剤(B)は、
 硬化剤成分であるコア(c)と、前記コア(c)を被覆するシェル(s)と、を有し、
 前記シェル(s)は、少なくとも、波数1630cm-1以上1680cm-1以下の赤外線を吸収する結合基(x)と、波数1680cm-1以上1725cm-1以下の赤外線を吸収する結合基(y)と、波数1730cm-1以上1755cm-1以下の赤外線を吸収する結合基(z)と、を有する、
 前記〔1〕乃至〔5〕のいずれか一に記載のエポキシ樹脂組成物。
〔7〕
 前記式(1)中のRが、ヒドロキシル基である、前記〔2〕乃至〔6〕のいずれか一に記載のエポキシ樹脂組成物。
〔8〕
 前記アルコール(C)を、
 前記エポキシ樹脂(A)と前記潜在性硬化剤(B)の合計100質量部に対し、
0.001質量部以上20質量部以下、含有する、
 前記〔2〕乃至〔7〕のいずれか一に記載のエポキシ樹脂組成物。
〔9〕
 前記アルコール(C)を、
 前記エポキシ樹脂(A)と前記潜在性硬化剤(B)の合計100質量部に対し、
0.1質量部以上20質量部以下、含有する、
 前記〔2〕乃至〔8〕のいずれか一に記載のエポキシ樹脂組成物。
〔10〕
 前記潜在性硬化剤(B)以外に、フェノール系硬化剤、活性エステル硬化剤、アミン系硬化剤、酸無水物系硬化剤、及びチオール系硬化剤よりなる群から選択される一種以上の硬化剤を、さらに含む、前記〔1〕乃至〔9〕のいずれか一に記載のエポキシ樹脂組成物。
〔11〕
 フィルム形成性ポリマー(D)を、さらに含む、前記〔1〕乃至〔10〕のいずれか一に記載のエポキシ樹脂組成物。
〔12〕
 充填剤(E)をさらに含む、前記〔1〕乃至〔11〕のいずれか一に記載のエポキシ樹脂組成物。
〔13〕
 前記充填剤(E)が、無機充填剤である、前記〔1〕乃至〔12〕のいずれか一に記載のエポキシ樹脂組成物。
〔14〕
 添加剤(F)をさらに含む、前記〔1〕乃至〔13〕のいずれか一に記載のエポキシ樹脂組成物。
〔15〕
 支持体と、
 前記支持体上に、前記〔1〕乃至〔14〕のいずれか一に記載のエポキシ樹脂組成物を含む樹脂層と、
を、有する、
 接着フィルム。
〔16〕
 厚さが20μm以下である、前記〔15〕に記載の接着フィルム。
〔17〕
 プリント配線板のビルドアップ層形成用の接着フィルムである、前記〔15〕又は〔16〕に記載の接着フィルム。
〔18〕
 半導体チップパッケージの絶縁層用の接着フィルムである、前記〔15〕又は〔16〕に記載の接着フィルム。
〔19〕
 前記〔15〕又は〔16〕に記載の接着フィルムを硬化した層を含む、プリント配線板。
〔20〕
 前記〔15〕又は〔16〕に記載の接着フィルムを硬化した層を含む、半導体チップパッケージ。
〔21〕
 前記〔19〕に記載のプリント配線板及び/又は前記〔20〕に記載の半導体チップパッケージを備える、半導体装置。
〔22〕
 前記〔15〕又は〔16〕に記載の接着フィルムを、圧着圧力40MPa以下の条件下でラミネートし、その後、温度220℃以下の加熱条件下で積層材、又は半導体チップパッケージを製造する、接着フィルムの使用方法。
 本発明によれば、フィルム化後の保存安定性が良好で、微配線の埋め込み性や硬化性能に優れ、保存安定性と反応性の両立が可能な、エポキシ樹脂組成物が得られる。
 以下、本発明を実施するための形態(以下、単に「本実施形態」ともいう。)について詳細に説明する。
 本実施形態は、本発明を説明するための例示であり、本発明はその本実施形態のみに限定されるものではない。すなわち、本発明は、その要旨を逸脱しない範囲で様々な変形が可能である。
 なお、本明細書において、「~」を用いてその前後に数値又は物性値を挟んで表現する場合、その前後の値を含むものとして用いる。
〔エポキシ樹脂組成物〕
 本実施形態のエポキシ樹脂組成物は、
 エポキシ樹脂(A)と、
 潜在性硬化剤(B)を含有し、
 前記潜在性硬化剤(B)は、25℃で固体である。
 上記構成を有することにより、フィルム化後の保存安定性が良好で、微配線の埋め込み性や硬化性能に優れ、保存安定性及び反応性に優れたエポキシ樹脂組成物が得られる。
 また、本実施形態のエポキシ樹脂組成物を用いることにより、多層化、配線の微細化及び高密度化、低誘電正接化等が求められる接着フィルム、プリント配線板、半導体チップパッケージ、及び半導体装置等において、信頼性を高めることができる。
(エポキシ樹脂(A))
 本実施形態のエポキシ樹脂組成物は、エポキシ樹脂(A)を含有する。
 エポキシ樹脂(A)は、特に限定されるものではなく、各種公知のものを適宜選択して用いることができる。
 エポキシ樹脂(A)は、1種単独で用いてもよく、又は2種以上を組み合わせて用いてもよい。
 エポキシ樹脂(A)としては、以下に限定されないが、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ビスフェノールAF型エポキシ樹脂、テトラブロモビスフェノールA型エポキシ樹脂、ビフェニル型エポキシ樹脂、テトラメチルビフェニル型エポキシ樹脂、テトラフルオロビフェニル型エポキシ樹脂、テトラブロモビフェニル型エポキシ樹脂、ジフェニルエーテル型エポキシ樹脂、ベンゾフェノン型エポキシ樹脂、フェニルベンゾエート型エポキシ樹脂、ジフェニルスルフィド型エポキシ樹脂、ジフェニルスルホキシド型エポキシ樹脂、ジフェニルスルホン型エポキシ樹脂、ジフェニルジスルフィド型エポキシ樹脂、ナフタレン型エポキシ樹脂、アントラセン型エポキシ樹脂、ヒドロキノン型エポキシ樹脂、メチルヒドロキノン型エポキシ樹脂、ジブチルヒドロキノン型エポキシ樹脂、レゾルシン型エポキシ樹脂、メチルレゾルシン型エポキシ樹脂、カテコール型エポキシ樹脂、N,N-ジグリシジルアニリン型エポキシ樹脂等の2官能型エポキシ樹脂類が挙げられる。
 また、エポキシ樹脂(A)としては、例えば、N,N-ジグリシジルアミノベンゼン型エポキシ樹脂、o-(N,N-ジグリシジルアミノ)トルエン型エポキシ樹脂、トリアジン型エポキシ樹脂等の3官能型エポキシ樹脂類;テトラグリシジルジアミノジフェニルメタン型エポキシ樹脂、ジアミノベンゼン型エポキシ樹脂等の4官能型エポキシ樹脂類;フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ブロモ化フェノールノボラック型エポキシ樹脂等の多官能型エポキシ樹脂類が挙げられる。
 さらに、エポキシ樹脂(A)としては、例えば、(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル、ブタンジオールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、トリメチロールプロパンジグリシジルエーテル、ポリテトラメチレンエーテルグリコールジグリシジルエーテル、グリセリンジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、シクロヘキサン型ジグリシジルエーテル、ジシクロペンタジエン型ジグリシジルエーテルのようなジエポキシ樹脂;トリメチロールプロパントリグリシジルエーテル、グリセリントリグリシジルエーテルのようなトリエポキシ樹脂が挙げられる。
 さらにまた、エポキシ樹脂(A)としては、例えば、ビニル(3,4-シクロヘキセン)ジオキシド、2-(3,4-エポキシシクロヘキシル)-5,1-スピロ-(3,4-エポキシシクロヘキシル)-m-ジオキサンのような脂環式エポキシ樹脂;1,3-ジグリシジル-5-メチル-5-エチルヒダントインのようなヒダントイン型エポキシ樹脂;及び1,3-ビス(3-グリシドキシプロピル)-1,1,3,3-テトラメチルジシロキサンのようなシリコーン骨格を有するエポキシ樹脂が挙げられる。
 またさらに、エポキシ樹脂(A)としては、例えば、2-エチルヘキシルグリシジルエーテル、シクロヘキサンジメタノールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、エチレングリコールジグリシジルエーテル、水添ビスフェノールA型エポキシ樹脂、シリコーン変性エポキシ樹脂、(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル、ブタンジオールジグリシジルエーテル、トリメチロールプロパンジグリシジルエーテル、ポリテトラメチレンエーテルグリコールジグリシジルエーテル、グリセリンジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、シクロヘキサン型ジグリシジルエーテル、ジシクロペンタジエン型ジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、グリセリントリグリシジルエーテル、ビニル(3,4-シクロヘキセン)ジオキシド、2-(3,4-エポキシシクロヘキシル)-5,1-スピロ-(3,4-エポキシシクロヘキシル)-m-ジオキサン、テトラグリシジルビス(アミノメチル)シクロヘキサンのようなグリシジルアミン型エポキシ樹脂、1,3-ジグリシジル-5-メチル-5-エチルヒダントイン型エポキシ樹脂、1,3-ビス(3-グリシドキシプロピル)-1,1,3,3-テトラメチルジシロキサン型エポキシ樹脂、フェニルグリシジルエーテル、クレジルグリシジルエーテル、p-s-ブチルフェニルグリシジルエーテル、スチレンオキシド、p-tert-ブチルフェニルグリシジルエーテル、o-フェニルフェノールグリシジルエーテル、p-フェニルフェノールグリシジルエーテル、N-グリシジルフタルイミド、n-ブチルグリシジルエーテル、2-エチルヘキシルグリシジルエーテル、α-ピネンオキシド、アリルグリシジルエーテル、1-ビニル-3,4-エポキシシクロヘキサン、1,2-エポキシ-4-(2-メチルオキシラニル)-1-メチルシクロヘキサン、1,3-ビス(3-グリシドキシプロピル)-1,1,3,3-テトラメチルジシロキサン、ネオデカン酸グリシジルエステル等の、反応性希釈剤としても使用できる各種エポキシ樹脂類;等が挙げられる。
 本実施形態のエポキシ樹脂組成物は、エポキシ樹脂(A)として、液状エポキシ樹脂と固体状エポキシ樹脂とを併用することができる。
 液状エポキシ樹脂と固体状エポキシ樹脂とを併用する場合、それらの質量比(液状エポキシ樹脂:固体状エポキシ樹脂)は、特に限定されないが、1:0.1~1:6の範囲が好ましい。液状エポキシ樹脂と固体状エポキシ樹脂との質量比を前記範囲とすることにより、(i)支持体と樹脂層とを有する接着フィルムであって、本実施形態のエポキシ樹脂組成物を樹脂層に用いた接着フィルムにおいて、適度な粘着性が得られる、(ii)前記接着フィルムの形態で使用する場合に十分な可撓性が得られ、取り扱い性が向上する、並びに、(iii)十分な破断強度を有する硬化物を得ることができる等の効果が得られる。
 上記(i)~(iii)の効果の観点から、液状エポキシ樹脂と固体状エポキシ樹脂の質量比(液状エポキシ樹脂:固体状エポキシ樹脂)は、1:0.3~1:5の範囲がより好ましく、1:0.6~1:4の範囲がさらに好ましい。
 本実施形態のエポキシ樹脂組成物における、エポキシ樹脂(A)の含有量は、本実施形態のエポキシ樹脂に対する所望の性能に応じて適宜設定でき、特に限定されないが、硬化性の観点から、2.5質量%以上が好ましく、より好ましくは5質量%以上であり、さらに好ましくは10質量%以上である。また、成膜性の観点から、99質量%以下が好ましく、より好ましくは95質量%以下であり、さらに好ましくは90質量%以下である。
(潜在性硬化剤(B))
 本実施形態のエポキシ樹脂組成物は、潜在性硬化剤(B)を含有する。
 潜在性硬化剤(B)は、常温(25℃)で固体である。
 本実施形態のエポキシ樹脂組成物が、常温(25℃)で固体の潜在性硬化剤(B)を含むことにより、室温での安定性が向上し、前記エポキシ樹脂(A)との反応性が良好となる。また、潜在性硬化剤(B)以外の、その他の硬化剤を併用した場合に、硬化触媒となり得るため、好ましい。
 常温(25℃)で固体の潜在性硬化剤(B)としては、アミン部位を有するアミン系硬化剤が好ましい。
 「アミン部位」とは、アンモニアの有機誘導体であり、塩基として挙動する官能基である。
 潜在性硬化剤(B)として、アミン部位を有するアミン系硬化剤を用いることにより、所定温度で高い反応性が得られる、という効果を奏することができる。
 潜在性硬化剤(B)としては、以下に限定されるものではないが、例えば、イミダゾール類、イミダゾール系アダクトやアミンアダクト、及びこれらをカプセル化したもの等が挙げられる。
 具体的には、アミキュア PN-23J、PN-40J、MY-24(味の素ファインテクノ株式会社製)、フジキュアー FXR-1020、FXR-1030(富士化成工業株式会社製)等が挙げられる。
 潜在性硬化剤(B)は、1種単独で用いてもよく、2種以上併用してもよい。
 さらに、潜在性硬化剤(B)は、本実施形態のエポキシ樹脂組成物の均質な硬化物を得る観点、及び潜在性硬化剤(B)の粒子同士の凝集を防止してエポキシ樹脂組成物の硬化物の良好な物性を確保する観点から、篩下積算分率50%の粒径D50が、0.3μmを超えて10μm以下の粒子からなるものであることが好ましく、より好ましくは1μm以上8μm以下、さらに好ましくは1.5μm以上5μm以下である。潜在性硬化剤(B)の粒径D50が10μm以下であると、エポキシ樹脂組成物において均質な硬化物を得ることができる傾向にあり、粒径D50が0.3μm超であると、潜在性硬化剤間での凝集を抑制でき、硬化ムラが発生せず、硬化物の耐熱性が向上する傾向にある。
 潜在性硬化剤(B)の粒径D50を0.3μm超10μm以下とする方法としては、力学的な粉砕を行う方法、溶媒中での粒子成長を行う方法が挙げられる。
 潜在性硬化剤(B)は、篩下積算分率50%の粒径D50に対する篩下積算分率99%の粒径D99の比率(以下、単に「D99/D50」と記載する場合がある。)で表される粒度分布が、粒子同士の凝集を防止する観点から、6.0以下であることが好ましく、より好ましくは5.5以下であり、さらに好ましくは5.0以下である。
 D99/D50が6.0以下であることにより、潜在性硬化剤(B)の粉体粒子中の粗大粒子が少なく、凝集物の生成を抑制し、エポキシ樹脂組成物の硬化物の物性が損なわれることを抑制する傾向にある。
 D99/D50の値が小さいほど、潜在性硬化剤(B)の粒度の分布がシャープであることを意味し、本実施形態のエポキシ樹脂組成物において均質な硬化物を得やすく、良好な硬化性能が得られる傾向にある。
 また、D99/D50の値が6.0以下であることにより、潜在性硬化剤(B)の粒度分布が狭く、粒径の比較的大きな粒子が存在しにくくなるため、本実施形態のエポキシ樹脂組成物をフィルム化したときにおいて、当該フィルムの所定の隙間への浸透性が優れたものとなる傾向にある。
 また、D99/D50は、1.2以上であることが好ましい。
 D99/D50が1.2以上であることにより、潜在性硬化剤(B)の粒子間に、多くの隙間ができることを抑制する傾向にある。D99/D50は、より好ましくは1.5以上であり、さらに好ましくは1.7以上であり、さらにより好ましくは2.0以上である。
 潜在性硬化剤(B)のD99/D50は、粗大粒子や微粒系粒子の除去といった分級操作により、6以下に制御することができる。
 なお、潜在性硬化剤(B)は、単層の粒子であってもよいが、硬化剤成分のコアと前記コアを被覆するシェルとを有するコアシェル型の硬化剤粒子であってもよい。
 前記コアとして用いるエポキシ樹脂用の硬化剤粒子(硬化剤成分)を、「エポキシ樹脂用硬化剤粒子(H)」、「硬化剤粒子(H)」、又は「硬化剤(H)」という。
 潜在性硬化剤(B)としてのコアシェル型の硬化剤粒子は、エポキシ樹脂用硬化剤粒子(H)等から形成されるコア(以下、「コア(c)」ともいう。)と、前記コア(c)を被覆するシェル(以下、「シェル(s)」ともいう。)と、を有し、前記シェル(s)が、波数1630cm-1以上1680cm-1以下の赤外線を吸収する結合基(以下、「結合基(x)」、ともいう。)と、波数1680cm-1以上1725cm-1以下の赤外線を吸収する結合基(以下、「結合基(y)」ともいう。)と、波数1730cm-1以上1755cm-1以下の赤外線を吸収する結合基(以下、「結合基(z)」ともいう。)と、を少なくともその表面に有することが好ましい。
 このように構成されていると、潜在性硬化剤(B)の粒子同士の凝集比率が低減され、本実施形態のエポキシ樹脂組成物は、硬化性、貯蔵安定性、及び隙間浸透性のいずれにも優れたものとなる傾向にある。
 上述したようなコアシェル型の硬化剤粒子であって前記シェル(s)が上述したような所定の結合基(x)、結合基(y)、結合基(z)を有するものである潜在性硬化剤(B)を得る方法としては、コアの硬化剤成分に、所定のカプセル化剤を選択してこれらを反応させる方法が挙げられる。
 また、潜在性硬化剤(B)は、比表面積値(=Y(m/g))と前記篩下積算分率50%の前記粒径D50(=X(μm))とが、下記式(2)で表される関係を満たすことが好ましい。
 4.0X-1 ≦ Y ≦ 8.3X-1 (2)
 下記式(2)中、Xは、潜在性硬化剤(B)の篩下積算分率50%の粒径D50(μm)を示し、Yは、比表面積値(m/g)を示す。
 比表面積値と粒径D50とを上記式(2)の関係を満たすようにする方法としては、例えば、潜在性硬化剤(B)の表面を改質する方法が挙げられる。
 また、Yが4.0X-1以上であることにより、潜在性硬化剤(B)の粒子同士の凝集を抑制でき、Yが8.3X-1以下であることにより、潜在性硬化剤(B)とエポキシ樹脂(A)とを混合した後の安定性が向上させることができる。
 なお、潜在性硬化剤(B)が硬化剤成分のコアと前記コアを被覆するシェルとを有するコアシェル型の硬化剤粒子である場合、例えばカプセル化剤で硬化剤成分をカプセル化したものである場合、カプセル化前の前記硬化剤成分が、上記式(2)を満たせばよい。
 本実施形態のエポキシ樹脂組成物における、潜在性硬化剤(B)の含有量は、所望性能に応じて適宜設定でき、特に限定されないが、反応性の観点から、0.2質量%以上が好ましく、より好ましくは1.0質量%以上であり、さらに好ましくは2.0質量%以上である。また、安定性の観点から、50質量%以下が好ましく、より好ましくは40質量%以下であり、さらに好ましくは30質量%以下である。
(アルコール(C))
 本実施形態のエポキシ樹脂組成物は、下記一般式(1)で表されるアルコール(C)をさらに含有することが好ましい。
 アルコール(C)を含有することにより、本実施形態のエポキシ樹脂組成物は、安定性を維持しつつ反応性が向上する傾向にある。
Figure JPOXMLDOC01-appb-C000003
 前記式(1)中、R~Rは、それぞれ独立して、水素原子、ヒドロキシル基、アルキル基、芳香族基、ヘテロ原子を含む置換基、及びハロゲン原子を含む置換基よりなる群から選ばれる一種であり、R~Rは、それぞれ同一であっても、異なっていてもよく、また、R~Rから選ばれるいずれかが互いに結合して環構造を形成していてもよく、該環構造は式中に示されているベンゼン環との縮合環であってもよい。
 前記式(1)で示されるアルコール(C)は、上述した潜在性硬化剤(B)への優れた配位性と、芳香環を有することによるエポキシ樹脂(A)との相容性を兼ね備え、本実施形態のエポキシ樹脂組成物の硬化性を向上させる機能を有する。
 潜在性硬化剤(B)が25℃で固体のアミン系硬化剤の場合、アルコール(C)は、室温条件下では潜在性硬化剤(B)に作用をしない。しかし、所定の温度以上の条件下になると、アルコール(C)はエポキシ樹脂(A)への溶解性が向上し、溶解パラメーターであるSP値がアミン系硬化剤である潜在性硬化剤(B)に近づき、潜在性硬化剤(B)をエポキシ樹脂(A)に溶解しやすくする作用により硬化性が向上するようになる。そのため、25℃で固体のアミン系硬化剤である潜在性硬化剤(B)の存在下に、アルコール(C)を添加することにより、本実施形態のエポキシ樹脂組成物における室温安定性と、加温時の硬化性の両立を達成できる。この効果は潜在性硬化剤(B)がカプセル型であるとより顕著に表れる。
 また、潜在性硬化剤(B)への配位性を高め、より本実施形態のエポキシ樹脂組成物の硬化性を向上させる観点から、前記アルコール(C)を表す式(1)中のRが、ヒドロキシル基であることが好ましい。
 さらに、ヒドロキシル基の配位性を立体障害により阻害しない観点から、前記式(1)中のR、R及びRが水素原子であることが好ましい。
 前記式(1)で示されるアルコール(C)としては、以下に限定されないが、例えば、3-フェノキシ-1-プロパノール、3-フェノキシ-1,2-プロパンジオール、3-フェノキシ-1,3-プロパンジオール、メフェネシン(3-(2-メチルフェノキシ)-1,2-プロパンジオール)、グアイフェネシン(3-(2-メトキシフェノキシ)プロパン-1,2-ジオール)、ビスフェノールA(3-ヒドロキシプロピル)グリシジルエーテル、ビスフェノールA(2,3-ジヒドロキシプロピル)グリシジルエーテル、及び下記式(1-1)で表される化合物(以下「化合物1」とも記す)が挙げられる。
Figure JPOXMLDOC01-appb-C000004
 また、前記式(1)で示されるアルコール(C)としては、例えば、ビスフェノールF型エポキシ樹脂の末端エポキシ基が開環することで生成する1-プロパノール構造を有する化合物、ビスフェノールF型エポキシ樹脂の末端エポキシ基が開環することで生成する1,2-プロパンジール構造を有する化合物(例えばビスフェノールFグリシジル2,3-ジヒドロキシプロピルエーテル)、ナフタレン型エポキシ樹脂末端エポキシ基が開環することで生成する1-プロパノール構造を有する化合物、ナフタレン型エポキシ樹脂末端エポキシ基が開環することで生成する1,2-プロパンジール構造を有する化合物、フェノールノボラック型エポキシ樹脂末端エポキシ基が開環することで生成する1-プロパノール構造を有する化合物、フェノールノボラック型エポキシ樹脂末端エポキシ基が開環することで生成する1,2-プロパンジール構造を有する化合物、クレゾールノボラック型エポキシ樹脂末端エポキシ基が開環することで生成する1-プロパノール構造を有する化合物、クレゾールノボラック型エポキシ樹脂末端エポキシ基が開環することで生成する1,2-プロパンジール構造を有する化合物等が挙げられる。
 特に、本実施形態のエポキシ樹脂組成物の増粘開始温度を低下させる効果が高く、エポキシ樹脂(A)との相容性が良好であるために均一なエポキシ樹脂組成物が得られる観点から、アルコール(C)としては、3-フェノキシ-1-プロパノール、3-フェノキシ-1,2-プロパンジオール、ビスフェノールA(3-ヒドロキシプロピル)グリシジルエーテル、ビスフェノールA(2,3-ジヒドロキシプロピル)グリシジルエーテル、前記化合物1が好ましい。
 本実施形態のエポキシ樹脂組成物における、アルコール(C)の含有量は、所望性能に応じて適宜設定でき、特に限定されないが、反応性を向上させる観点から、エポキシ樹脂(A)と潜在性硬化剤(B)の合計100質量部に対し、0.001質量部以上が好ましく、より好ましくは0.005質量部以上であり、さらに好ましくは0.01質量部以上であり、さらにより好ましくは0.1質量部以上である。
 また、安定性や硬化後の物性の観点から、20質量部以下が好ましく、より好ましくは15質量部以下であり、さらに好ましくは10質量部以下である。
(他の硬化剤成分)
 本実施形態のエポキシ樹脂組成物は、上述した潜在性硬化剤(B)以外の他の硬化剤成分として、フェノール系硬化剤、活性エステル硬化剤、アミン系硬化剤、酸無水物系硬化剤、及びチオール系硬化剤よりなる群から選択される一種以上の硬化剤を含んでいてもよい。
<フェノール系硬化剤>
 フェノール樹脂系硬化剤としては、エポキシ樹脂(A)を硬化できるものであれば、特に限定されないが、例えば、フェノールノボラック、ビスフェノールAノボラック、クレゾールノボラック、ナフトールノボラック、トリアジン環含有フェノールノボラック等が挙げられる。
 本実施形態のエポキシ樹脂組成物の誘電正接を向上させる観点から、フェノール系硬化剤としては、トリアジン環含有フェノールノボラックが好ましい。具体的にはLA3018、LA3018-50P、EXB9808、EXB9829(DIC(株)製)等が挙げられる。
<活性エステル硬化剤>
 活性エステル硬化剤としては、エポキシ樹脂(A)の硬化剤として機能し、活性エステルを有するものであれば、特に限定されないが、1分子中に2個以上の活性エステル基を有する化合物が好ましい。
 本実施形態のエポキシ樹脂組成物の耐熱性等の観点から、活性エステル硬化剤は、カルボン酸化合物及び/又はチオカルボン酸化合物と、ヒドロキシ化合物及び/又はチオール化合物とを反応させたものから得られる活性エステル化合物がより好ましく、カルボン酸化合物と、フェノール化合物、ナフトール化合物、及びチオール化合物とからなる群より選択される1種又は2種以上とを反応させたものから得られる活性エステル化合物がさらに好ましい。そして、カルボン酸化合物とフェノール性水酸基を有する芳香族化合物とを反応させたものから得られる1分子中に2個以上の活性エステル基を有する芳香族化合物がさらにより好ましい。そして、少なくとも2個以上のカルボン酸を1分子中に有する化合物と、フェノール性水酸基を有する芳香族化合物とを反応させたものから得られる芳香族化合物であり、かつ前記芳香族化合物の1分子中に2個以上の活性エステル基を有する芳香族化合物がよりさらに好ましい。
 活性エステル硬化剤は、直鎖状又は分岐状であってもよい。また、前記「少なくとも2個以上のカルボン酸を1分子中に有する化合物」が、脂肪族鎖を含む化合物である場合、当該「少なくとも2個以上のカルボン酸を1分子中に有する化合物」を用いて得られる活性エステル硬化剤は、エポキシ樹脂(A)との相容性が高くなる。また、かかる活性エステル硬化剤が芳香族環を有する化合物であれば、本実施形態のエポキシ樹脂組成物の耐熱性を高くすることができる。
 ここで、活性エステル硬化剤の生成に用いるカルボン酸化合物としては、以下に限定されないが、例えば、安息香酸、酢酸、コハク酸、マレイン酸、イタコン酸、フタル酸、イソフタル酸、テレフタル酸、ピロメリット酸等が挙げられる。特に、本実施形態のエポキシ樹脂組成物の耐熱性の観点から、コハク酸、マレイン酸、イタコン酸、フタル酸、イソフタル酸、テレフタル酸が好ましく、イソフタル酸、テレフタル酸がより好ましい。
 活性エステル硬化剤の生成に用いるチオカルボン酸化合物としては、以下に限定されないが、例えば、チオ酢酸、チオ安息香酸等が挙げられる。
 活性エステル硬化剤の生成に用いるフェノール化合物又はナフトール化合物としては、以下に限定されないが、例えば、ハイドロキノン、レゾルシン、ビスフェノールA、ビスフェノールF、ビスフェノールS、フェノールフタリン、メチル化ビスフェノールA、メチル化ビスフェノールF、メチル化ビスフェノールS、フェノール、o-クレゾール、m-クレゾール、p-クレゾール、カテコール、α-ナフトール、β-ナフトール、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、ジヒドロキシベンゾフェノン、トリヒドロキシベンゾフェノン、テトラヒドロキシベンゾフェノン、フロログルシン、ベンゼントリオール、ジシクロペンタジエニルジフェノール、フェノールノボラック等が挙げられる。これらのなかでも、本実施形態のエポキシ樹脂組成物から得られた硬化物の耐熱性、活性エステル硬化剤の溶解性の観点から、ビスフェノールA、ビスフェノールF、ビスフェノールS、メチル化ビスフェノールA、メチル化ビスフェノールF、メチル化ビスフェノールS、カテコール、α-ナフトール、β-ナフトール、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、ジヒドロキシベンゾフェノン、トリヒドロキシベンゾフェノン、テトラヒドロキシベンゾフェノン、フロログルシン、ベンゼントリオール、ジシクロペンタジエニルジフェノール、フェノールノボラックが好ましく、カテコール、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、ジヒドロキシベンゾフェノン、トリヒドロキシベンゾフェノン、テトラヒドロキシベンゾフェノン、フロログルシン、ベンゼントリオール、ジシクロペンタジエニルジフェノール、フェノールノボラックがより好ましく、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、ジヒドロキシベンゾフェノン、トリヒドロキシベンゾフェノン、テトラヒドロキシベンゾフェノン、ジシクロペンタジエニルジフェノール、フェノールノボラックがさらに好ましく、ジヒドロキシベンゾフェノン、トリヒドロキシベンゾフェノン、テトラヒドロキシベンゾフェノン、ジシクロペンタジエニルジフェノール、フェノールノボラックがさらにより好ましく、ジシクロペンタジエニルジフェノール、フェノールノボラックが殊更好ましく、ジシクロペンタジエニルジフェノールがよりさらに好ましい。
 活性エステル硬化剤の生成に用いるチオール化合物としては、以下に限定されないが、例えば、ベンゼンジチオール、トリアジンジチオール等が挙げられる。
 前記活性エステル硬化剤としては、特開2004-277460号公報に開示されている活性エステル化合物を用いてもよく、また市販のものを用いることもできる。市販されている活性エステル化合物としては、以下に限定されないが、例えば、ジシクロペンタジエニルジフェノール構造を含むもの、フェノールノボラックのアセチル化物、フェノールノボラックのベンゾイル化物が好ましく、特に、ジシクロペンタジエニルジフェノール構造を含むものがより好ましい。ジシクロペンタジエニルジフェノール構造を含むものとしては、例えば、EXB9451、EXB9460、EXB9460S(DIC(株)製)、フェノールノボラックのアセチル化物としてDC808(三菱ケミカル(株)製)、フェノールノボラックのベンゾイル化物としてYLH1026(三菱ケミカル(株)製)等が挙げられる。
<アミン系硬化剤>
 アミン系硬化剤としては、以下に限定されないが、例えば、ジシアンジアミド、ジシアンジアミド-アニリン付加物、ジシアンジアミド-メチルアニリン付加物、ジシアンジアミド-ジアミノジフェニルメタン付加物、ジシアンジアミド-ジアミノジフェニルエーテル付加物等のジシアンジアミド誘導体、硝酸グアニジン、炭酸グアニジン、リン酸グアニジン、スルファミン酸グアニジン、重炭酸アミノグアニジン等のグアニジン塩、アセチルグアニジン、ジアセチルグアニジン、プロピオニルグアニジン、ジプロピオニルグアニジン、シアノアセチルグアニジン、コハク酸グアニジン、ジエチルシアノアセチルグアニジン、ジシアンジアミジン、N-オキシメチル-N’-シアノグアニジン、N,N’-ジカルボエトキシグアニジン、メタフェニレンジアミン、パラフェニレンジアミン、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルメタン、4、4’-ジアミノジフェニルエーテル等が挙げられる。
 なお、上述した潜在性硬化剤(B)がアミン部位を有するアミン系硬化剤である場合、これらの(B)成分以外のアミン系硬化剤とは、潜在性を有するか否かにより区別できる。
<酸無水物系硬化剤>
 酸無水物系硬化剤としては、以下に限定されないが、例えば、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸等が挙げられる。
<チオール系硬化剤>
 チオール系硬化剤としては、1分子中に2個以上のチオール基を含有するものであればよく、以下に限定されないが、例えば、3,3’-ジチオジプロピオン酸、トリメチロールプロパントリス(チオグリコレート)、ペンタエリスリトールテトラキス(チオグリコレート)、エチレングリコールジチオグリコレート、1,4-ビス(3-メルカプトブチリルオキシ)ブタン、トリス[(3-メルカプトプロピオニルオキシ)-エチル]-イソシアヌレート、1,3,5-トリス(3-メルカプトブチルオキシエチル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン、トリメチロールプロパントリス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3-メルカプトブチレート)、ジペンタエリスリトールヘキサキス(3-メルカプトプロピオネート)、1,3,4,6-テトラキス(2-メルカプトエチル)グリコールウリル、4-ブタンジチオール、1,6-ヘキサンジチオール、1,10-デカンジチオール等が挙げられる。本実施形態のエポキシ樹脂組成物から得られた硬化物の耐衝撃性の観点から、1,4-ビス(3-メルカプトブチリルオキシ)ブタン、1,3,5-トリス(3-メルカプトブチルオキシエチル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3-メルカプトブチレート)が好ましく、本実施形態のエポキシ樹脂組成物の低温硬化性の観点から、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3-メルカプトブチレート)がより好ましい。
 本実施形態のエポキシ樹脂組成物における、前記潜在性硬化剤(B)以外の他の硬化剤成分の含有量は、所望の性能に応じて適宜設定でき、特に限定されないが、反応性の観点から、0.01質量%以上が好ましく、より好ましくは0.1質量%以上であり、さらに好ましくは1.0質量%以上である。また、安定性の観点から、50質量%以下が好ましく、より好ましくは45質量%以下であり、さらに好ましくは40質量%以下である。
(フィルム形成性ポリマー(D))
 本実施形態のエポキシ樹脂組成物は、フィルム形成性ポリマー(D)を含有してもよい。
 フィルム形成性ポリマー(D)としては、キャスティング又はある一定の厚さで塗布乾燥することでフィルム状に形成した場合に、ヒビや割れの発生を防止でき、フィルム形状を維持できる機能を有するポリマー全般を使用できる。
 フィルム形成性ポリマー(D)としては、以下に限定されないが、例えば、フェノキシ樹脂、ポリビニルブチラール樹脂、ポリビニルアセタール樹脂、並びに、カルボキシル基、ヒドロシキシル基、ビニル基及びアミノ基等の官能基を有するエラストマー類等が挙げられる。
 フィルム形成性ポリマー(D)は、1種を単独で用いてもよく、又は2種以上を組み合わせて用いてもよい。
 フィルム形成性ポリマー(D)としては、長期接続信頼性に優れるフェノキシ樹脂が好ましい。フェノキシ樹脂としては、以下に限定されないが、例えば、ビスフェノールA型フェノキシ樹脂、ビスフェノールF型フェノキシ樹脂、ビスフェノールAビスフェノールF混合型フェノキシ樹脂、ビスフェノールAビフェニル混合型フェノキシ樹脂、ビスフェノールAビスフェノールS混合型フェノキシ樹脂、フルオレン環含有フェノキシ樹脂、カプロラクトン変性ビスフェノールA型フェノキシ樹脂等が挙げられる。
 フィルム形成性ポリマー(D)の分子量は、特に限定されないが、数平均分子量が9,000以上23,000以下であることが好ましく、より好ましくは9,500以上21,000以下であり、さらに好ましくは10,000以上20,000以下である。ここで数平均分子量は、ゲルパーミエーションクロマトグラフィ(以下GPCと称す。)によるポリスチレン換算の数平均分子量であり、ポリスチレン換算分子量が728以上の領域について平均値を算出した値である。
 フィルム形成性ポリマー(D)の数平均分子量が9,000以上であることにより、硬化したエポキシ樹脂(A)の架橋構造からのフィルム形成性ポリマー(D)のすり抜けを抑制でき、本実施形態のエポキシ樹脂組成物の硬化物の凝集力の低下を抑制でき、よって、プリント配線板内の基板同士や、プリント配線板と半導体パッケージとの接続信頼性の低下を抑制できるため好ましい。
 一方、フィルム形成性ポリマー(D)の数平均分子量が23,000以下であることにより、本実施形態のエポキシ樹脂組成物を接着層の材料として用いた接着フィルムが、所定の基板又はICチップ等の被接着物と高い密着性を維持でき、また、接続時に局所的な硬化不良の発生が抑制でき、配線及び電極の腐食の発生が起き難く、高い絶縁信頼性が得られるため好ましい。
 本実施形態のエポキシ樹脂組成物における、フィルム形成用ポリマー(D)の含有量は、所望の性能に応じて適宜設定でき、特に限定されないが、本実施形態のエポキシ樹脂組成物をフィルム化した後の割れ防止の観点から、5質量%以上が好ましく、より好ましくは10質量%以上であり、さらに好ましくは15質量%以上である。また、ワニスの取り扱い性やフィルムの作製容易性の観点から、90質量%以下が好ましく、より好ましくは80質量%以下であり、さらに好ましくは70質量%以下である。
 フィルム形成用ポリマー(D)の含有量を上記数値範囲とすることにより、フィルム化した際の保存安定性が良好で、埋め込み性や硬化性能に優れるエポキシ樹脂組成物が得られる。
(充填剤(E))
 本実施形態のエポキシ樹脂組成物は、充填剤(E)を、さらに含んでいることが好ましい。
 充填剤(E)としては、特に限定されないが、熱膨張係数や熱伝導性の観点から、無機充填剤、無機充填剤をシランカップリング剤で処理した無機充填剤、並びに、接着強度向上及び耐クラック性向上の観点から、有機充填剤等が挙げられる。
 充填剤(E)は、1種単独で用いてもよく、2種以上併用してもよい。また、充填剤(E)の形状は、特に限定されず、例えば、不定形状、球状、鱗片状のいずれの形態であってもよい。
 本実施形態のエポキシ樹脂組成物が無機充填剤を含有することにより、熱膨張係数を調整でき、耐熱性及び耐湿性が向上する傾向にある。
 無機充填剤としては、以下に限定されないが、例えば、タルク、焼成クレー、未焼成クレー、マイカ、ガラス等のケイ酸塩;酸化チタン、酸化アルミニウム(アルミナ)、溶融シリカ(溶融球状シリカ、溶融破砕シリカ)、合成シリカ、結晶シリカ等の酸化シリカ等の酸化物;炭酸カルシウム、炭酸マグネシウム、ハイドロタルサイト等の炭酸塩;水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム等の水酸化物;硫酸バリウム、硫酸カルシウム等の硫酸塩;亜硫酸カルシウム等亜硫酸塩;ホウ酸亜鉛、メタホウ酸バリウム、ホウ酸アルミニウム、ホウ酸カルシウム、ホウ酸ナトリウム等のホウ酸塩;窒化アルミニウム、窒化ホウ素、窒化ケイ素等の窒化物が挙げられる。これらの中でも、本実施形態のエポキシ樹脂組成物から得られる硬化物の耐熱性、耐湿性、及び強度を向上できる観点から、溶融シリカ、結晶シリカ、及び合成シリカ粉末が好ましく、また、酸化ケイ素、酸化アルミニウム、及び窒化ホウ素のいずれかが好ましい。これらを用いることにより、本実施形態のエポキシ樹脂組成物から得られる硬化物の熱膨張係数を抑制できるため、冷熱サイクル試験の改善等が見込まれる。
 充填剤(E)として無機充填剤を用いる場合、本実施形態のエポキシ樹脂組成物中の無機充填剤の含有量は、所望性能に応じて適宜設定でき、特に限定されないが、エポキシ樹脂組成物の総量に対して、好ましくは10質量%以上90質量%以下であり、より好ましくは20質量%以上85質量%以下である。
 無機充填剤の含有量を10質量%以上とすることにより、優れた低熱膨張係数が実現できる傾向にある。無機充填剤の含有量を90質量%以下とすることにより、弾性率の上昇をより抑えることができる傾向にある。
 無機充填剤は、シランカップリング剤で表面処理されていることが好ましい。
 シランカップリング剤は、本実施形態のエポキシ樹脂組成物中に含有させることでも、その性能は発揮されるが、シランカップリング剤で無機充填剤の表面処理を行うことにより、本実施形態のエポキシ樹脂組成物において、一層の低粘度化を実現できる傾向にある。
 シランカップリング剤としては、以下に限定されないが、例えば、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)3-アミノプロピルメチルジメトキシシラン、N-(2-アミノエチル)3-アミノプロピルメチルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、ビニルトリメトキシシラン、N-(2-(ビニルベンジルアミノ)エチル)3-アミノプロピルトリメトキシシラン塩酸塩、3-メタクリロキシプロピルトリメトキシシラン、3-クロロプロピルメチルジメトキシシラン、3-クロロプロピルトリメトキシシラン等のシランカップリング剤等が挙げられる。
 これらの中でも、本実施形態のエポキシ樹脂組成物の硬化後の接着強度の観点から、重合性官能基を有するシランカップリング剤が好ましい。
 有機充填剤は、本実施形態のエポキシ樹脂組成物において、応力緩和性を有する耐衝撃緩和剤としての機能を有する。
 本実施形態のエポキシ樹脂組成物は、有機充填剤を含有することにより、各種接続部材との接着性がより一層向上する。また、クラックの発生及び進展を抑制することができる傾向にある。
 有機充填剤としては、以下に限定されないが、例えば、アクリル樹脂、シリコーン樹脂、ブタジエンゴム、ポリエステル、ポリウレタン、ポリビニルブチラール、ポリアリレート、ポリメチルメタクリレート、アクリルゴム、ポリスチレン、NBR、SBR、シリコーン変性樹脂、及びこれらを成分として含む共重合体の有機微粒子等が挙げられる。
 接着性向上の観点から、前記有機微粒子としては、例えば、(メタ)アクリル酸アルキル-ブタジエン-スチレン共重合体、(メタ)アクリル酸アルキル-シリコーン共重合体、シリコーン-(メタ)アクリル共重合体、シリコーンと(メタ)アクリル酸との複合体、(メタ)アクリル酸アルキル-ブタジエン-スチレンとシリコーンとの複合体及び(メタ)アクリル酸アルキルとシリコーンとの複合体が好ましい。
 前記有機充填剤としては、コアシェル型の構造を有し、コア層とシェル層とで組成が異なる有機微粒子を用いることもできる。
 コアシェル型の有機微粒子としては、以下に限定されないが、例えば、シリコーン-アクリルゴムをコアとしてアクリル樹脂をグラフトした粒子、及びアクリル共重合体にアクリル樹脂をグラフトとした粒子等が挙げられる。
 コアシェル型の有機微粒子の含有による低弾性率化によって、フィレット部に生じる応力が低減され、クラックの発生を抑制することができる傾向にある。また、クラックが発生した場合には、含有させたコアシェル型の有機微粒子が応力緩和剤として作用し、クラックの進展を抑制する傾向にある。
 前記コア層の構成材料としては、柔軟性に優れた材料が用いられることが好ましい。コア層の構成材料としては、以下に限定されないが、例えば、シリコーン系エラストマー、ブタジエン系エラストマー、スチレン系エラストマー、アクリル系エラストマー、ポリオレフィン系エラストマー、及びシリコーン/アクリル系複合系エラストマー等が挙げられる。
 一方、前記シェル層の構成材料としては、半導体樹脂封止材の他の成分に対する親和性、特にエポキシ樹脂に対する親和性に優れた材料が好ましい。シェル層の構成材料としては、以下に限定されないが、例えば、アクリル樹脂、及びエポキシ樹脂等が挙げられる。これらの中でも、アクリル樹脂が、本実施形態のエポキシ樹脂組成物中の他の成分に対する親和性、特にエポキシ樹脂(A)に対する親和性の観点から特に好ましい。
 充填剤(E)として有機充填剤を用いる場合、本実施形態のエポキシ樹脂組成物中の有機充填剤の含有量は、所望の性能に応じて適宜設定でき、特に限定されないが、エポキシ樹脂組成物の総量に対して、好ましくは1質量%以上20質量%以下であり、より好ましくは2質量%以上18質量%以下であり、さらに好ましくは3質量%以上16質量%以下である。
 有機充填剤の含有量が1質量%以上であることにより、応力緩和が働き、本実施形態のエポキシ樹脂組成物の接着力が向上する効果が得られる。有機充填剤の含有量が20質量%以下であることにより、本実施形態のエポキシ樹脂組成物において耐熱リフロー性が向上する効果が得られる。
(添加剤(F))
 本実施形態のエポキシ樹脂組成物は、上述したアルコール(C)、フィルム形成性ポリマー(D)、及び充填剤(E)以外の、他の添加剤(F)をさらに含んでもよい。
 添加剤(F)としては、本実施形態のエポキシ樹脂組成物の粘度調整等の観点から、例えば、反応性希釈剤、溶剤、熱可塑性ポリマー、安定化剤、液状低応力剤、難燃剤、及びレベリング剤等を用いることができる。
 添加剤(F)は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 添加剤(F)の含有量は、所望の性能に応じて適宜設定でき、特に限定されないが、本実施形態のエポキシ樹脂組成物全体に対して、0.00001質量%以上が好ましく、0.0001質量%以上がより好ましく、0.001質量%以上がさらに好ましい。また、添加剤(F)の含有量は、本実施形態のエポキシ樹脂組成物全体に対して、20質量%未満が好ましく、15質量%未満がより好ましく、10質量%未満がさらに好ましく、8質量%未満がさらにより好ましく、7質量%未満がよりさらに好ましく、6質量%未満が特に好ましく、5質量%未満がより一層好ましく、3質量%未満がさらに極めて好ましく、2質量%未満が特に極めて好ましい。
<反応性希釈剤>
 反応性希釈剤は、本実施形態のエポキシ樹脂組成物の粘度を下げるとともに、潜在性硬化剤(B)と反応して硬化物の一部となり得るものである。
 反応性希釈剤は、その分子内にグリシジル基を1つ以上含有する化合物を用いることができる。反応性希釈剤としては、以下に限定されないが、例えば、ブチルグリシジルエーテル、ジグリシジルアニリン、N,N’-グリシジル-o-トルイジン、フェニルグリシジルエーテル、スチレンオキサイド、エチレングリコールジグリシジルエーテル、
プロピレングリコールジグリシジルエーテル、及び1,6-ヘキサンジオールジグリシジルエーテル等が挙げられる。
 また、先に述べた反応性希釈剤として使用できるエポキシ樹脂が挙げられる。すなわち、反応希釈剤としては、例えば、2-エチルヘキシルグリシジルエーテル、シクロヘキサンジメタノールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、水添ビスフェノールA型エポキシ樹脂、シリコーン変性エポキシ樹脂、(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル、ブタンジオールジグリシジルエーテル、トリメチロールプロパンジグリシジルエーテル、ポリテトラメチレンエーテルグリコールジグリシジルエーテル、グリセリンジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、シクロヘキサン型ジグリシジルエーテル、ジシクロペンタジエン型ジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、グリセリントリグリシジルエーテル、ビニル(3,4-シクロヘキセン)ジオキシド、2-(3,4-エポキシシクロヘキシル)-5,1-スピロ-(3,4-エポキシシクロヘキシル)-m-ジオキサン、テトラグリシジルビス(アミノメチル)シクロヘキサンのようなグリシジルアミン型エポキシ樹脂、1,3-ジグリシジル-5-メチル-5-エチルヒダントイン型エポキシ樹脂、1,3-ビス(3-グリシドキシプロピル)-1,1,3,3-テトラメチルジシロキサン型エポキシ樹脂、フェニルグリシジルエーテル、クレジルグリシジルエーテル、p-s-ブチルフェニルグリシジルエーテル、p-tert-ブチルフェニルグリシジルエーテル、o-フェニルフェノールグリシジルエーテル、p-フェニルフェノールグリシジルエーテル、N-グリシジルフタルイミド、n-ブチルグリシジルエーテル、2-エチルヘキシルグリシジルエーテル、α-ピネンオキシド、アリルグリシジルエーテル、1-ビニル-3,4-エポキシシクロヘキサン、1,2-エポキシ-4-(2-メチルオキシラニル)-1-メチルシクロヘキサン、1,3-ビス(3-グリシドキシプロピル)-1,1,3,3-テトラメチルジシロキサン、ネオデカン酸グリシジルエステル等の各種エポキシ樹脂類等も挙げられる。
 なお、反応性希釈剤として、各種のモノエポキシ化合物や多価アルコールのグリシジルエーテル化合物も使用できるが、これらは、潜在性硬化剤(B)との反応に寄与する官能基(エポキシ基、グリシジル基)が1分子中に1つのみであり、硬化時に三次元的な架橋を形成することができないため、本実施形態のエポキシ樹脂組成物の硬化物のガラス転移温度(Tg)や強靱性を十分なものとすることができない傾向にある。よって、反応性希釈剤としては、1分子中に2以上のグリシジル基を含む化合物が、硬化時に三次元的に架橋を形成できるため、好ましい。これにより、硬化時におけるガラス転移温度(Tg)や強靱性の低下を抑制する傾向にある。
 反応性希釈剤は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 本実施形態のエポキシ樹脂組成物中の反応性希釈剤の含有量は、所望の性能に応じて適宜設定でき、特に限定されないが、エポキシ樹脂(A)100質量部に対して、1.0質量部以上30質量部以下が好ましい。反応性希釈剤の含有量が1.0質量部以上であることにより、常温でのエポキシ樹脂組成物の粘度の上昇を抑制し、本実施形態のエポキシ樹脂組成物を配線埋め込み用フィルムとして使用する場合に、良好な埋め込み性が得られる傾向にある。また、本実施形態のエポキシ樹脂組成物の硬化時におけるガラス転移温度(Tg)や強靱性の低下を抑制し、フィレットクラックの発生及び進展を抑制する傾向にある。
 一方、反応性希釈剤の含有量が、エポキシ樹脂(A)100質量部に対して30質量部以下であることにより、被着体との密着性の低下を抑制し、吸湿リフロー試験時の剥離を抑制する傾向にある。
 また、充填剤(E)を高充填化した時に生じるエポキシ樹脂組成物の粘度の上昇を抑制する目的で反応性希釈剤の含有量を多く調整してもよい。
<溶剤>
 溶剤としては、以下に限定されないが、例えば、ジクロロメタン、クロロホルム等のハロゲン系溶剤;ベンゼン、トルエン、キシレン、メシチレン等の芳香族系溶剤;アセトン、メチルエチルケトン、メチルイソプロピルケトン、メチルイソブチルケトン、シクロヘキサノン等の脂肪族ケトン、アセトフェノン等の芳香族ケトン等のケトン類溶剤;等が挙げられる。
 また、酢酸エチル、ジメチルホルムアミド、メチルセロソルブ、プロピレングリコールモノメチルエーテル等の溶剤を、上記溶剤と組み合わせて使用することもできる。これらの中でも、本実施形態のエポキシ樹脂組成物の溶解性と沸点の観点から、エステル類として酢酸エチルを用いことが好ましい。
 酢酸エチルと組み合わせる上記溶剤としては、トルエンのような沸点が120℃以下の芳香族系溶剤が好ましい。なお、溶剤は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
<熱可塑性ポリマー>
 熱可塑性ポリマーとしては、以下に限定されないが、例えば、ポリアミド樹脂、ポリイミド、ポリエステル樹脂、ポリウレタン樹脂、アクリル樹脂、カルボン酸ビニルエステル、及びポリエーテル樹脂等が挙げられる。これらの中でも、アクリル樹脂が好ましく、カルボン酸ビニルエステルがより好ましい。なお、熱可塑性ポリマーは、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 なお、アクリル樹脂としては、ガラス転移温度(Tg)が25℃以下のアクリル樹脂が好ましく、ヒドロキシ基含有アクリル樹脂、カルボキシ基含有アクリル樹脂、酸無水物基含有アクリル樹脂、エポキシ基含有アクリル樹脂、イソシアネート基含有アクリル樹脂、及びウレタン基含有アクリル樹脂からなる群から選択される1種以上の樹脂がより好ましく、フェノール性水酸基含有アクリル樹脂がさらに好ましい。ここで、「アクリル樹脂」とは、(メタ)アクリレート構造を含有する樹脂をいい、これらの樹脂において(メタ)アクリレート構造は主鎖に含まれていても側鎖に含まれていてもよい。
 アクリル樹脂の数平均分子量(Mn)は、好ましくは10,000以上1,000,000以下、より好ましくは30,000以上900,000以下である。ここで、アクリル樹脂の数平均分子量(Mn)は、GPC(ゲルパーミエーションクロマトグラフィ)を使用して測定されるポリスチレン換算の数平均分子量である。
 また、アクリル樹脂が官能基を有する場合の官能基当量は、好ましくは1000以上50000以下、より好ましくは2500以上30000以下である。
 カルボン酸ビニルエステルは、前記カルボン酸ビニルエステルと共重合可能なモノマーをモノマー単位として含んでいてもよい。このようなモノマーとしては、例えば、カルボン酸アリルエステル、(メタ)アクリル酸アルキルエステルが挙げられ、具体的には、酢酸アリル、(メタ)アクリル酸メチル及び(メタ)アクリル酸エチルが挙げられる。
<安定化剤>
 安定化剤としては、貯蔵安定性を向上させる材料を用いることができ、以下に限定されないが、例えば、ホウ酸、及び環状ホウ酸エステル化合物等が挙げられる。
 環状ホウ酸エステル化合物とは、ホウ素が環式構造に含まれているものである。環状ホウ酸エステル化合物としては、2,2’-オキシビス(5,5’-ジメチル-1,3,2-オキサボリナン)が好ましい。
 なお、安定化剤は、1種を単独で用いてもよいし、2種以上を併用してもよい。
<液状低応力剤>
 液状低応力剤としては、以下に限定されないが、例えば、ポリアルキレングリコール類及びそのアミン変性体、ポリブタジエン、アクリロニトリル等の有機ゴム;ジメチルシロキサン等のシリコーンゴム;シリコーンオイル等が挙げられる。
 なお、液状低応力剤は、1種を単独で用いてもよいし、2種以上を併用してもよい。
 液状低応力剤の含有量は、特に限定されないが、エポキシ樹脂(A)の質量(100質量部)に対して、好ましくは5.0質量部以上40質量部以下であり、より好ましくは10質量部以上20質量部以下である。
<難燃剤>
 難燃剤としては、以下に限定されないが、例えば、臭素系難燃剤、リン系難燃剤、及び無機系難燃剤等が挙げられる。
 臭素系難燃剤としては、以下に限定されないが、例えば、テトラブロモフェノール等が挙げられる。
 リン系難燃剤としては、以下に限定されないが、例えば、9、10-ジヒドロ-9-オキサ-10-フォスファナンスレン-10-オキサイド及びそのエポキシ誘導体、トリフェニルホスフィンやその誘導体、リン酸エステル、縮合リン酸エステル、ホスファゼン化合物等が挙げられる。
 窒素系難燃剤としては、以下に限定されないが、例えば、グアニジン系難燃剤、トリアジン構造含有フェノール、ポリリン酸メラミン、及びイソシアヌル酸等が挙げられる。
 無機系難燃化合物としては、以下に限定されないが、例えば、水酸化マグネシウム、及び水酸化アルミニウム等が挙げられる。無機系難燃化合物は、耐熱性の観点から水酸化マグネシウムが好ましい。
 なお、難燃剤は、1種を単独で用いてもよいし、2種以上を併用してもよい。
 難燃剤の含有量は、特に限定されないが、エポキシ樹脂(A)の質量(100質量部)に対して、好ましくは5.0質量部以上200質量部以下であり、より好ましくは10質量部以上100質量部以下である。
<レベリング剤>
 レベリング剤としては、以下に限定されないが、例えば、シリコーン系レベリング剤、及びアクリル系レベリング剤等が挙げられる。
 なお、レベリング剤は、1種を単独で用いてもよいし、2種以上を併用してもよい。
〔接着フィルム〕
 本実施形態の接着フィルムは、支持体と前記支持体上に本実施形態のエポキシ樹脂組成物を含む樹脂層を有する。
 支持体としては、以下に限定されないが、例えば、ポリエチレン、ポリプロピレン、ポリ塩化ビニル等のポリオレフィン、ポリエチレンテレフタレート(以下「PET」と略称することがある。)、ポリエチレンナフタレート等のポリエステル、ポリカーボネート、ポリイミド、更には離型紙や銅箔、アルミニウム箔等の金属箔等が挙げられ、これらをマット処理、コロナ処理の他、離型処理を施してあってもよい。支持体の厚みは、好ましくは10μm以上150μm以下である。
 樹脂層は、本実施形態のエポキシ樹脂組成物を50質量%以上100質量%以下含有することが信頼性の観点から好ましい。樹脂層は、その他、導電粒子を含有してもよい。
 本実施形態の接着フィルムは、プリント配線板のビルドアップ層形成用の接着フィルムや、半導体チップパッケージの絶縁層用の接着フィルムとすることができる。
 本実施形態のプリント配線板は、前記接着フィルムの硬化物を具備するものであり、本実施形態の半導体チップパッケージは、前記接着フィルムの硬化物を具備する。
 本実施形態の半導体装置は、前記プリント配線板及び/又は半導体チップパッケージを具備する。
〔エポキシ樹脂組成物の製造方法〕
 本実施形態のエポキシ樹脂組成物は、上述したエポキシ樹脂(A)と、潜在性硬化剤(B)と、必要に応じて、前記潜在性硬化剤(B)以外の他の硬化剤、アルコール(C)、フィルム形成用ポリマー(D)、充填剤(E)、添加剤(F)等と、を混合することにより製造できる。混合方法は、当業界で公知の手法を適用することができる。例えば、硬化しない程度の温度まで加温して混合したり、有機溶媒に各樹脂組成物を溶解したり分散したりしてワニス化したりする方法が挙げられる。
〔接着フィルムの作製方法〕
 接着フィルムの製造方法としては、例えば、エポキシ樹脂(A)、潜在性硬化剤(B)、及び、必要に応じて、前記潜在性硬化剤以外の他の硬化剤、アルコール(C)、フィルム形成用ポリマー(D)、充填剤(E)、及び添加剤(F)等を加温により溶剤に溶解させ、または均一に分散させた後、必要に応じて50℃以下に冷却し、エポキシ樹脂組成物のワニスを得る。ワニス中の固形分濃度は、特に限定されないが、好ましくは30質量%以上80質量%以下である。
 溶剤としては、以下に限定されないが、例えば、ジクロロメタン、クロロホルム等のハロゲン系溶剤;ベンゼン、トルエン、キシレン、メシチレン等の芳香族系溶剤;アセトン、メチルエチルケトン、メチルイソプロピルケトン、メチルイソブチルケトン、シクロヘキサノン等の脂肪族ケトン、アセトフェノン等の芳香族ケトン等のケトン類溶剤;等が挙げられる。また、酢酸エチル、ジメチルホルムアミド、メチルセロソルブ、プロピレングリコールモノメチルエーテル等のその他の溶剤を併せて使用することもできる。これらの中でも、エポキシ樹脂組成物の溶解性と沸点の観点から、その他の溶剤として酢酸エチルを組み合わせて用いることが好ましい。酢酸エチルと組み合わせる上述した溶剤としては、トルエンのような沸点が120℃以下の芳香族系溶剤を使用することが好ましい。なお、溶剤は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 本実施形態の接着フィルムの製造工程においては、本実施形態のエポキシ樹脂組成物を、酢酸エチル類を含む混合溶剤に室温で溶解することが好ましい。ここでいう室温で溶解するとは、固形分濃度が10質量%で混合したときに、室温において溶液状態が得られることを意味し、実質的に固形分が存在しない状態が1日以上、好ましくは30日以上保たれる状態をいう。
 本実施形態の接着フィルムは、上記のエポキシ樹脂組成物のワニスを支持フィルムの上に塗布し、加熱乾燥することにより溶剤を除去してフィルム化することで、製造することができる。これにより、半硬化状の接着フィルムが得られる。上述のように加熱乾燥した後の接着フィルムの厚みは、5μm以上200μm以下であることが好ましく、より好ましくは5μm以上120μm以下、さらに好ましくは7μm以上70μm以下であり、さらにより好ましくは10μm以上20μm以下である。
 本実施形態の接着フィルムは、使用部材を小さくできる観点から、厚みが200μm以下であることが好ましい。より好ましくは120μm以下であり、さらに好ましくは70μm以下であり、さらに好ましくは20μm以下である。また、埋め込み性、絶縁性確保の観点から、厚みが5μm以上であることが好ましい。より好ましくは7μm以上であり、さらに好ましくは10μm以上である。
 上記加熱乾燥条件としては、加熱温度が60℃以上150℃以下、好ましくは90℃以上120℃以下であり、加熱時間が1分以上20分以下、好ましくは2分以上10分以下である。
 加熱乾燥条件がこの範囲内であると、得られる接着フィルム中に残留する溶剤が十分に除去され、接着フィルム中の揮発分を1質量%以下にすることができる。また、成膜による接着フィルムの硬化を抑制でき、本実施形態の接着フィルムを、所定の内層回路基板上に積層して用いる場合、配線間の埋め込み性を確保し得る。
 接着フィルムの製造工程において、支持体に、本実施形態のエポキシ樹脂組成物を含有するワニスを塗工する方法としては、公知の方法を適用することができ、特に限定されないが、バーコーター、リップコーター、ダイコーター、ロールコーター、ドクターブレードコーター等が挙げられる。
〔プリント配線板〕
 本実施形態のプリント配線板は、上した本実施形態の接着フィルムを硬化した層を含む。接着フィルムを使用してプリント配線板を製造する場合は、上記の方法で製造した接着フィルムをパターン加工された内層回路基板に貼り合わせ、支持体側から加圧、加熱しながらラミネートする。内層回路表面は予め粗化処理されていてもよい。ラミネートは常圧または減圧下で、バッチ式またはロールでの連続式で行うが、両面同時にラミネートすることが好ましい。このときのラミネート条件は、圧着温度が70℃~150℃、圧着圧力が0.1~60MPaの範囲が好ましい。また、ボイド削減の観点から2KPa以下の減圧下でラミネートすることが好ましい。圧着後の接着フィルムの厚みを保持する観点から、圧着圧力は40MPa以下が好ましい。
 ラミネート後、室温まで冷却してから、接着フィルムから支持体を剥離した後、内層回路基板に積層された樹脂層を加熱硬化させる。硬化の条件としては、硬化温度が130~250℃、硬化時間が30分~180分の範囲内が好ましい。
 次に、バイアホールとなる箇所を炭酸ガスレーザー等のレーザーで形成した後、スミアの除去とめっきとの密着性向上を目的として、過マンガン酸塩、重クロム酸塩、オゾン等の酸化剤で粗面化処理を行う。その後、無電解めっき、電解めっきにより縁層の樹脂層上に選択的に導体回路を形成し、同時にバイアホールの内壁に導体層を形成することで外層回路を形成する。その後、150~250℃の範囲の温度で、30分~60分の範囲の時間アニール処理することで、導体層と樹脂層との密着性を向上させることができる。このようにして得られた導体回路層の上に、さらに、本実施形態の接着フィルムを用いて上記の製造方法を繰り返すことにより、多段のビルドアップ層を形成して多層プリント配線板を製造することができる。
 加熱硬化の際は、有機化合物を揮発させ、かつ分解を抑制する観点から、220℃以下の条件下で行うことが好ましい。
〔半導体チップパッケージ、半導体装置〕
 本実施形態の半導体チップパッケージは、前記接着フィルムの硬化物を具備する。
 本実施形態の半導体装置は、前記プリント配線板及び/又は半導体チップパッケージを具備する。
〔接着フィルムの使用方法〕
 本実施形態の接着フィルムは、上記〔プリント配線板〕に記載したように、圧着圧力40MPa以下の条件下でラミネートし、その後、温度220℃以下の加熱条件下で加熱硬化を行い、所定の積層材や、半導体チップパッケージを作製することが好ましい。
 圧着圧力は、より好ましくは20MPa以下であり、さらに好ましくは10MPa以下である。
 加熱硬化の温度は、より好ましくは200℃以下であり、さらに好ましくは180℃以下である。
 圧着圧力を40MPa以下とすることにより、圧着後において、実用上十分な厚みを確保できる。
 また、加熱硬化の温度を220℃以下とすることにより、有機化合物を十分に揮発でき、さらには、接着フィルムの樹脂層の分解を防止できる。
 以下、実施例及び比較例を挙げて、本実施形態をさらに詳細に説明するが、これらは例示的なものであり、本発明は以下の実施例及び比較例により限定されるものではない。すなわち、当業者は以下に示す実施例に様々な変更を加えて本発明を実施することができる。
 なお、以下において特に断りのない限り、「部」は質量基準である。
 また、以下の実施例における各種の製造条件や評価結果の値は、本発明の実施態様における上限又は下限の好ましい値としての意味を持つ。好ましい範囲は前記した上限又は下限の好ましい値としての意味をもつものであり、好ましい範囲は前記した上限又は下限の値と、下記実施例の値又は実施例同士の値との組み合わせで規定される範囲であってもよい。
〔エポキシ樹脂組成物の構成材料の製造〕
 以下、後述する実施例及び比較例のエポキシ樹脂組成物に用いる構成材料の製造例を示す。
((製造例1)エポキシ樹脂用硬化剤1の製造)
 ビスフェノールA型エポキシ樹脂(三菱ケミカル(株)製:商品名「jER828EL」)1当量と、2-エチル-4-メチルイミダゾール1当量(活性水素換算)を、n-ブタノールとトルエンとの1:1混合溶媒中、80℃で反応させた。その後、減圧下で過剰のアミンを溶剤と共に留去し、25℃で固体のブロック状エポキシ樹脂用硬化剤を得た。
 次いで、前記ブロック状エポキシ樹脂硬化剤をジェットミルで粉砕し、さらには、分級機による分級操作を実施して、比表面積値が3.63m/g、篩下平均粒径D50が2.50μm、D99/D50が5.4の分布を持つエポキシ樹脂用硬化剤である、エポキシ樹脂用硬化剤1を得た。
((製造例2)カプセル化されたエポキシ樹脂用硬化剤2の製造)
 ヘキサン200質量部中に、前記エポキシ樹脂用硬化剤1を100質量部、均一分散させ、カプセル化剤(東ソー(株)製:商品名「MR-400」)30質量部を加え、50℃で攪拌しながら3時間反応を行い、25℃で固体のカプセル化されたエポキシ樹脂用硬化剤2を得た。
 得られたエポキシ樹脂用硬化剤2のIR測定を行ったところ、シェルにおいて、波数1630cm-1以上1680cm-1以下の赤外線を吸収する結合基(x)、波数1680cm-1以上1725cm-1以下の赤外線を吸収する結合基(y)、波数1730cm-1以上1755cm-1以下の赤外線を吸収する結合基(z)に起因するピークが確認された。
((製造例3)エポキシ樹脂用硬化剤3の製造)
 前記(製造例1)で得たエポキシ樹脂用硬化剤1を用いて、アーステクニカ株式会社製のクリプトロンオーブを使用し、温度10℃、湿度30%の環境下、回転速度13500rpm、供給速度10kg/hr、風量3m/minで、形状補正処置を行った。分級機にサイクロン式捕集機、バグフィルターを付属させ、分級操作を行って、比表面積値が2.67m/g、D50が3.1μm、D99/D50が4.5となる粒度の分布を持つエポキシ樹脂用硬化剤であるエポキシ樹脂用硬化剤3を得た。
((製造例4)カプセル化されたエポキシ樹脂用硬化剤4の製造)
 ヘキサン200質量部中に、前記エポキシ樹脂用硬化剤3を100質量部、均一分散させ、カプセル化剤(東ソー(株)製:商品名「コロネートT100」)20質量部を加え、50℃で攪拌しながら3時間反応を続け、25℃で固体のカプセル化されたエポキシ樹脂用硬化剤4を得た。
 得られたエポキシ樹脂用硬化剤4のIR測定を行ったところ、シェルにおいて、波数1630cm-1以上1680cm-1以下の赤外線を吸収する結合基(x)、波数1680cm-1以上1725cm-1以下の赤外線を吸収する結合基(y)、波数1730cm-1以上1755cm-1以下の赤外線を吸収する結合基(z)に起因するピークが確認された。
((製造例5)エポキシ樹脂用硬化剤5の製造)
 ビスフェノールA型エポキシ樹脂(三菱ケミカル(株)製:商品名「jER828EL」)1当量と、2-メチルイミダゾール1当量(活性水素換算)を、n-ブタノールとトルエンとの1:1混合溶媒中、80℃で反応させた。その後、減圧下で過剰のイミダゾールと溶剤とを共に留去し、25℃で固体のブロック状エポキシ樹脂用硬化剤を得た。得られたエポキシ樹脂用硬化剤に対し、ターボミルで粉砕を行い、比表面積値が0.36m/g、篩下平均粒径D50が9.80μm、D99/D50が4.2となるエポキシ樹脂用硬化剤5を得た。
((製造例6)フィルム形成用ポリマーD-1の製造)
 ビフェニル型エポキシ樹脂(三菱ケミカル(株)製:商品名「YX4000」)170質量部、ビフェノール:110質量部、キシレン:30質量部及びトリエチルアミン:0.05質量部を混合し、窒素雰囲気下、攪拌しながら170℃で2時間反応を行った。反応終了後、キシレンを系外へ除去しながら200℃まで3時間かけて昇温し、200℃でさらに7時間反応を続け、数平均分子量:22,500のフィルム形成ポリマーD-1を得た。
((製造例7)アルコールC-1の製造)
 ビスフェノールAジグリシジルエーテル(BADGE、Aldrich試薬、エポキシ当量172g/eq):50質量部、メタノール:10質量部、水:1質量部、及びトリメチルアンモニウムクロリド:0.005質量部を混合し、窒素雰囲気下、攪拌しながら60℃で2時間反応を行った。
 反応終了後、減圧下140℃でメタノール及び残った水を留去し、アルコール性水酸基当量が約20000g/eqのアルコールC-1を得た。
〔特性の評価方法〕
 以下、後述する実施例及び比較例の樹脂組成物の特性の評価方法を示す。
((1)フィルム保存安定性の評価)
 実施例及び比較例のエポキシ樹脂組成物の50%MEK(メチルエチルケトン)溶液を作製してワニスとした。ワニス調製直後に塗工機を用いて、PETフィルム上に厚さ約50μmに塗工した後、オーブンにて100℃で5分間乾燥を行い、接着フィルムを得た。
 得られた接着フィルムに対し、FT-IR測定を行い、エポキシ基由来の926cm-1のピーク(P1)とフェニル基由来の1510cm-1のピーク(P2)とのピーク比率F1(P1/P2)を算出した。
 さらにこの接着フィルムを9℃で30日間保存した後に同様の手法でFT-IR測定を行い、保存後のピーク比率F2(P1/P2)を算出した。
 前記F1とF2とを比較するため、エポキシ基のピーク比率残存量((F2/F1)×100)を算出した。エポキシ基のピーク比率残存量が90%以上99%以上であれば「◎」、70%以上90%未満であれば「○」、50%以上70%未満であれば「△」、50%未満であれば「×」と評価した。
((2)埋め込み性の評価)
 ドライフィルムレジストを用いたダイレクトイメージング処理により描写された配線のライン/スペースが10μm/10μm、配線厚み7μmの配線ラインを施したFR-5基板(17cm×34cm、厚さ0.4mm)上に、ロール式ラミネーターを用いて、圧着温度90℃、圧着圧力0.3~0.5MPa、ラミネート速度0.4m/分の条件で、前記(1)において作製した、接着フィルムを、PETフィルムを付けたままの状態で基板の片面にラミネートした。
 配線間に樹脂が入っていない隙間を気泡と判断し、気泡の存在を目視で調べ、気泡が存在しない場合は「○」、存在する場合は「×」と評価した。
((3)反り性の評価)
 前記((2)埋め込み性)の試験でラミネートした後、接着フィルムからPETフィルムを剥離し、さらに175℃×45分、40MPaで圧着硬化させ、試験片を得た。硬化後、室温にて、下に凸の状態で置き、試験片の17cmの一辺を机上に押し付けたときに、もう一辺が机から浮いた高さを測定した。
 このときの机からの高さが1.0cm未満を「◎」1.0cm以上1.5cm未満を「○」、1.5以上3cm未満を「△」、3cm以上を「×」と評価した。
((4)耐熱性の評価)
 前記((3)反り性)で作製した試験片において、気泡が存在しない部分を0.5cm×0.5cmの大きさに切断し、測定機器TMAQ400(TAインスツルメンタル社製)を用いて288℃一定で加熱し、膨れが生じるまでの時間を測定した。
 膨れが生じるまでの時間が60分以上のものを「〇」、45分以上60分未満のものを「△」、45分以下のものを「×」と評価した。
((5)ピール強度の評価)
 PETフィルムを剥がしたフィルム状接着剤を、FR-5基板と箔厚1/2оzの銅箔の間に挟み、165℃、30分間、40MPaで圧着した。次に、基板上の銅箔に対し、幅10mm、長さ150mmの部分に切れ込みを入れ、90度ピール強度測定を実施した。
 ピール強度:1.0kgf/cm以上を「◎」、0.8以上1.0未満kgf/cmを「〇」、0.6以上0.8未満を「△」、0.4以上0.6未満を「×」、0.4未満を「××」と評価した。
((6)誘電率、誘電正接の測定)
 PETフィルムを剥がしたフィルム状接着剤を40枚重ね、減圧下で180℃、60分間、硬化し、硬化物を得た。
 得られた硬化物を、幅2mm、長さ80mmに切断して試験片を得た。この試験片に対し、関東応用電子開発(株)製空洞共振器摂動法誘電率測定装置、及びアジレントテクノロジー(株)製ネットワークアナライザーE8362Bを使用して、空洞共振法で測定周波数1.0GHzにて誘電率(ε)、誘電正接(tanδ)の測定を行った。
 5本の試験片について測定を行い、平均値を算出し、√ε×tanδの値が0.01未満を「◎」、0.01以上0.012未満を「〇」、0.012以上0.015未満を「△」、0.015以上を「×」として評価した。
〔実施例1~10〕、〔比較例1、2〕
 表1及び表2に記載の配合割合で、(A)成分、(B)成分、(D)成分、その他の硬化剤成分、充填剤(E)、及び添加剤(F)を、60℃に加温した溶剤に溶解又は均一に分散させ、その後、30℃まで冷却し、さらに(C)成分を混合して均一に分散させることで、エポキシ樹脂組成物を得た。
 また、前記エポキシ樹脂組成物を、PETフィルム上に厚さ約50μmにダイコーターで塗工した後、オーブンにて100℃で5分間乾燥を行うことにより、上記評価に用いた接着フィルムを作製した。
〔エポキシ樹脂組成物の構成材料〕
 下記表1、表2に記載する各成分を以下に示す。
((A)エポキシ樹脂)
A-1:エピクロン850CRP(ビスフェノールA型エポキシ樹脂、DIC(株)製、エポキシ当量175g/eq)
A-2:YX4000(ビフェニル型エポキシ樹脂、三菱ケミカル(株)製、エポキシ当量170g/eq)
A-3:NC3000H(ビフェニルアラルキル型エポキシ樹脂、日本化薬(株)製、エポキシ当量269g/eq)
A-4:HP4710(ナフタレン型エポキシ樹脂、DIC(株)製、エポキシ当量170g/eq)
A-5:YX7760(フッ素含有エポキシ樹脂、三菱ケミカル(株)製、エポキシ当量235g/eq)
((B)成分)
B-1:製造例1のエポキシ樹脂用硬化剤1
B-2:製造例2のエポキシ樹脂用硬化剤2
B-3:製造例3のエポキシ樹脂用硬化剤3
B-4:製造例4のエポキシ樹脂用硬化剤4
B-5:製造例5のエポキシ樹脂用硬化剤5
(その他の硬化剤成分)
DMAP:4-ジメチルアミノピリジン(広栄化学(株)製、水分量が1.7%、比表面積値0.1m/g、篩下平均粒径D50が15.4μm、D99/D50が6.4)
LA7054:(フェノールノボラック型樹脂、DIC(株)製、水酸基当量125g/eq)
LA3018:(フェノールノボラック型樹脂、DIC(株)製、水酸基当量150g/eq)
EXB9460S:(活性エステル樹脂、DIC(株)製、エステル当量223g/eq)
HPC8000:(活性エステル樹脂、DIC(株)製、エステル当量223g/eq)
((C)成分)
C-1:製造例7のアルコール
C-2:3-フェノキシ-1-プロパノール(試薬、東京化成(株)製)
C-3:3-フェノキシ-1,2-プロパンジオール(試薬、東京化成(株)製)
((D)フィルム形成ポリマー)
D-1:製造例6のフィルム形成ポリマー
D-2:YP50(フェノキシ樹脂(日鉄ケミカル&マテリアル(株)社製))
((E)成分)
E-1:アミノシラン処理合成球状シリカSO-C2((株)アドマテックス製)
((F)成分)
F-1:YED216L(1,6-ヘキサンジオールジグリシジルエーテル、三菱ケミカル(株)製)
F-2:CDMDG(1,4-シクロヘキサンジメタノールジグリシジルエーテル、昭和電工(株)製)
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表1及び表2に示すように、実施例1~10においては、フィルム化後の保存安定性が良好で、微配線の埋め込み性や硬化性能に優れ、保存安定性と反応性の両立が可能な、エポキシ樹脂組成物が得られた。
 本出願は、2020年12月22日に日本国特許庁に出願された日本特許出願(特願2020-212769、及び2021年1月18日に日本国特許庁に出願された日本特許出願(特願2021-005649)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明のエポキシ樹脂組成物は、多層化、配線の微細化及び高密度化、低誘電正接化等が求められる接着フィルム、プリント配線板、半導体チップパッケージ、及び半導体装置等の分野において、産業上の利用可能性を有している。

Claims (22)

  1.  エポキシ樹脂(A)と、
     潜在性硬化剤(B)と、
    を、含有し、
     前記潜在性硬化剤(B)は、25℃で固体であるエポキシ樹脂組成物。
  2.  下記式(1)で示されるアルコール(C)をさらに含む、
     請求項1に記載のエポキシ樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (前記式(1)中、R~Rは、それぞれ独立して、水素原子、ヒドロキシル基、アルキル基、芳香族基、ヘテロ原子を含む置換基、及びハロゲン原子を含む置換基よりなる群から選ばれる一種であり、R~Rは、それぞれ同一であっても、異なっていてもよく、また、R~Rから選ばれるいずれかが互いに結合して環構造を形成していてもよく、該環構造は式中に示されているベンゼン環との縮合環であってもよい。)
  3.  前記潜在性硬化剤(B)が、アミン部位を有するアミン系硬化剤である、
     請求項1又は2に記載のエポキシ樹脂組成物。
  4.  前記潜在性硬化剤(B)は、
     篩下積算分率50%の粒径D50が0.3μmを超えて10μm以下であり、
     篩下積算分率99%の粒径D99と前記篩下積算分率50%の前記粒径D50との比率(D99/D50)で表される粒度分布が6以下である、
     請求項1乃至3のいずれか一項に記載のエポキシ樹脂組成物。
  5.  前記潜在性硬化剤(B)は、
     比表面積値(=Y(m/g))と前記篩下積算分率50%の前記粒径D50(=X(μm))とが、下記式(2)で表される関係を満たす、
     請求項1乃至4のいずれか一項に記載のエポキシ樹脂組成物。
     4.0X-1 ≦ Y ≦ 8.3X-1 (2)
    (前記潜在性硬化剤(B)がカプセル化剤で硬化剤成分をカプセル化したものである場合、カプセル化前の前記硬化剤成分が上記式(2)を満たす。)
  6.  前記潜在性硬化剤(B)は、
     硬化剤成分であるコア(c)と、前記コア(c)を被覆するシェル(s)と、を有し、
     前記シェル(s)は、少なくとも、波数1630cm-1以上1680cm-1以下の赤外線を吸収する結合基(x)と、波数1680cm-1以上1725cm-1以下の赤外線を吸収する結合基(y)と、波数1730cm-1以上1755cm-1以下の赤外線を吸収する結合基(z)と、を有する、
     請求項1乃至5のいずれか一項に記載のエポキシ樹脂組成物。
  7.  前記式(1)中のRが、ヒドロキシル基である、
     請求項2乃至6のいずれか一項に記載のエポキシ樹脂組成物。
  8.  前記アルコール(C)を、
     前記エポキシ樹脂(A)と前記潜在性硬化剤(B)の合計100質量部に対し、
    0.001質量部以上20質量部以下、含有する、
     請求項2乃至7のいずれか一項に記載のエポキシ樹脂組成物。
  9.  前記アルコール(C)を、
     前記エポキシ樹脂(A)と前記潜在性硬化剤(B)の合計100質量部に対し、
    0.1質量部以上20質量部以下、含有する、
     請求項2乃至8のいずれか一項に記載のエポキシ樹脂組成物。
  10.  前記潜在性硬化剤(B)以外に、フェノール系硬化剤、活性エステル硬化剤、アミン系硬化剤、酸無水物系硬化剤、及びチオール系硬化剤よりなる群から選択される一種以上の硬化剤を、さらに含む、
     請求項1乃至9のいずれか一項に記載のエポキシ樹脂組成物。
  11.  フィルム形成性ポリマー(D)を、さらに含む、
     請求項1乃至10のいずれか一項に記載のエポキシ樹脂組成物。
  12.  充填剤(E)をさらに含む、
     請求項1乃至11のいずれか一項に記載のエポキシ樹脂組成物。
  13.  前記充填剤(E)が、無機充填剤である、
     請求項1乃至12のいずれか一項に記載のエポキシ樹脂組成物。
  14.  添加剤(F)をさらに含む、
     請求項1乃至13のいずれか一項に記載のエポキシ樹脂組成物。
  15.  支持体と、
     前記支持体上に請求項1乃至14のいずれか一項に記載のエポキシ樹脂組成物を含む樹脂層と、
    を、有する、
     接着フィルム。
  16.  厚さが20μm以下である、
     請求項15に記載の接着フィルム。
  17.  プリント配線板のビルドアップ層形成用の接着フィルムである、
     請求項15又は16に記載の接着フィルム。
  18.  半導体チップパッケージの絶縁層用の接着フィルムである、
     請求項15又は16に記載の接着フィルム。
  19.  請求項15又は16に記載の接着フィルムを硬化した層を含む、プリント配線板。
  20.  請求項15又は16に記載の接着フィルムを硬化した層を含む、半導体チップパッケージ。
  21.  請求項19に記載のプリント配線板及び/又は請求項20に記載の半導体チップパッケージを備える、半導体装置。
  22.  請求項15又は16に記載の接着フィルムを、圧着圧力40MPa以下の条件下でラミネートし、その後、温度220℃以下の加熱条件下で積層材、又は半導体チップパッケージを製造する、
     接着フィルムの使用方法。
PCT/JP2021/046127 2020-12-22 2021-12-14 エポキシ樹脂組成物、接着フィルム、プリント配線板、半導体チップパッケージ、半導体装置、及び接着フィルムの使用方法 WO2022138343A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022572204A JPWO2022138343A1 (ja) 2020-12-22 2021-12-14
KR1020237009513A KR20230052965A (ko) 2020-12-22 2021-12-14 에폭시 수지 조성물, 접착 필름, 프린트 배선판, 반도체 칩 패키지, 반도체 장치, 및 접착 필름의 사용 방법
US18/268,741 US20240301176A1 (en) 2020-12-22 2021-12-14 Epoxy resin composition, adhesive film, printed wiring board, semiconductor chip package, semiconductor device, and method for using adhesive film
CN202180086693.9A CN116615509A (zh) 2020-12-22 2021-12-14 环氧树脂组合物、粘接薄膜、印刷电路板、半导体芯片封装体、半导体装置和粘接薄膜的使用方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020212769 2020-12-22
JP2020-212769 2020-12-22
JP2021-005649 2021-01-18
JP2021005649 2021-01-18

Publications (1)

Publication Number Publication Date
WO2022138343A1 true WO2022138343A1 (ja) 2022-06-30

Family

ID=82159085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/046127 WO2022138343A1 (ja) 2020-12-22 2021-12-14 エポキシ樹脂組成物、接着フィルム、プリント配線板、半導体チップパッケージ、半導体装置、及び接着フィルムの使用方法

Country Status (5)

Country Link
US (1) US20240301176A1 (ja)
JP (1) JPWO2022138343A1 (ja)
KR (1) KR20230052965A (ja)
TW (1) TWI820542B (ja)
WO (1) WO2022138343A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023245621A1 (zh) * 2022-06-24 2023-12-28 深圳先进电子材料国际创新研究院 一种绝缘胶膜、制备方法及其应用

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6079030A (ja) * 1983-10-04 1985-05-04 Sumitomo Chem Co Ltd 硬化促進効果を有するエポキシ樹脂組成物
JPS6079031A (ja) * 1983-10-04 1985-05-04 Sumitomo Chem Co Ltd 貯蔵安定性に優れたエポキシ樹脂組成物
JP2005179580A (ja) * 2003-12-22 2005-07-07 Nippon Kayaku Co Ltd エポキシ樹脂用の硬化剤、エポキシ樹脂組成物、及びその硬化物
JP2005220205A (ja) * 2004-02-05 2005-08-18 Nippon Kayaku Co Ltd エポキシ樹脂用硬化剤及びエポキシ樹脂組成物
WO2011039879A1 (ja) * 2009-10-01 2011-04-07 株式会社Ihiエアロスペース 繊維強化プラスチック用のマトリックス樹脂組成物及び繊維強化プラスチック構造体
JP2014156515A (ja) * 2013-02-14 2014-08-28 Ajinomoto Co Inc 硬化性樹脂組成物
WO2016080202A1 (ja) * 2014-11-17 2016-05-26 東レ株式会社 エポキシ樹脂組成物、プリプレグ、樹脂硬化物および繊維強化複合材料
JP2017095571A (ja) * 2015-11-20 2017-06-01 旭化成株式会社 封止材用エポキシ樹脂組成物、及び封止材。
JP2017095570A (ja) * 2015-11-20 2017-06-01 旭化成株式会社 接着フィルム用エポキシ樹脂組成物。
JP2019127507A (ja) * 2018-01-23 2019-08-01 ナトコ株式会社 金属用粉体塗料組成物、金属用粉体塗料組成物により形成された塗膜、金属用粉体塗料組成物により形成された塗膜を備える金属材、および、塗膜を備える金属材を製造する方法
JP2021155508A (ja) * 2020-03-25 2021-10-07 旭化成株式会社 エポキシ樹脂組成物

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI506082B (zh) 2009-11-26 2015-11-01 Ajinomoto Kk Epoxy resin composition
JP6950732B2 (ja) 2015-08-07 2021-10-13 味の素株式会社 樹脂組成物

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6079030A (ja) * 1983-10-04 1985-05-04 Sumitomo Chem Co Ltd 硬化促進効果を有するエポキシ樹脂組成物
JPS6079031A (ja) * 1983-10-04 1985-05-04 Sumitomo Chem Co Ltd 貯蔵安定性に優れたエポキシ樹脂組成物
JP2005179580A (ja) * 2003-12-22 2005-07-07 Nippon Kayaku Co Ltd エポキシ樹脂用の硬化剤、エポキシ樹脂組成物、及びその硬化物
JP2005220205A (ja) * 2004-02-05 2005-08-18 Nippon Kayaku Co Ltd エポキシ樹脂用硬化剤及びエポキシ樹脂組成物
WO2011039879A1 (ja) * 2009-10-01 2011-04-07 株式会社Ihiエアロスペース 繊維強化プラスチック用のマトリックス樹脂組成物及び繊維強化プラスチック構造体
JP2014156515A (ja) * 2013-02-14 2014-08-28 Ajinomoto Co Inc 硬化性樹脂組成物
WO2016080202A1 (ja) * 2014-11-17 2016-05-26 東レ株式会社 エポキシ樹脂組成物、プリプレグ、樹脂硬化物および繊維強化複合材料
JP2017095571A (ja) * 2015-11-20 2017-06-01 旭化成株式会社 封止材用エポキシ樹脂組成物、及び封止材。
JP2017095570A (ja) * 2015-11-20 2017-06-01 旭化成株式会社 接着フィルム用エポキシ樹脂組成物。
JP2019127507A (ja) * 2018-01-23 2019-08-01 ナトコ株式会社 金属用粉体塗料組成物、金属用粉体塗料組成物により形成された塗膜、金属用粉体塗料組成物により形成された塗膜を備える金属材、および、塗膜を備える金属材を製造する方法
JP2021155508A (ja) * 2020-03-25 2021-10-07 旭化成株式会社 エポキシ樹脂組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Sosetsu Epoxy Jushi Kisohen I", 19 November 2003, THE JAPAN SOCIETY OF EPOXY RESIN TECHNOLOGY , ISBN: 4-9900150-1-0, article EDITORIAL COMMITTEE EDITION: "Passage; Review Epoxy Resin Volume 1 (Basics 1)", pages: 186 - 191, XP009537823 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023245621A1 (zh) * 2022-06-24 2023-12-28 深圳先进电子材料国际创新研究院 一种绝缘胶膜、制备方法及其应用

Also Published As

Publication number Publication date
US20240301176A1 (en) 2024-09-12
TW202231703A (zh) 2022-08-16
JPWO2022138343A1 (ja) 2022-06-30
KR20230052965A (ko) 2023-04-20
TWI820542B (zh) 2023-11-01

Similar Documents

Publication Publication Date Title
KR102590625B1 (ko) 수지 조성물
KR102376600B1 (ko) 수지 조성물 및 그것을 이용한 적층체
EP1860133A1 (en) Epoxy resin, epoxy resin composition, and utilizing the same, prepreg and laminated plate
TWI820004B (zh) 樹脂組成物
JP7480808B2 (ja) 樹脂組成物、樹脂シート、プリント配線板及び半導体装置
KR20160000858A (ko) 수지 조성물
EP3985691A1 (en) Magnetic paste
JP7214981B2 (ja) 樹脂組成物、シート状積層材料、プリント配線板及び半導体装置
JP2020029494A (ja) 絶縁層用樹脂組成物、シート状積層材料、多層プリント配線板及び半導体装置
JP5308409B2 (ja) 電子部品封止用シート状エポキシ樹脂組成物材料の製造方法と電子部品
JP6366136B2 (ja) エポキシ樹脂組成物、樹脂シート、プリプレグ及び金属張積層板、プリント配線基板
JP7467431B2 (ja) エポキシ樹脂組成物
WO2022138343A1 (ja) エポキシ樹脂組成物、接着フィルム、プリント配線板、半導体チップパッケージ、半導体装置、及び接着フィルムの使用方法
JP2012015465A (ja) 層間接着シートおよび多層フレキシブル配線板の製造方法
JP6950233B2 (ja) ビルドアップフィルム接着用熱硬化性樹脂組成物、熱硬化性樹脂組成物、プリプレグ、積層体、積層板、多層プリント配線板及び半導体パッケージ
TW202246376A (zh) 樹脂組成物
JP7562944B2 (ja) 基材付き樹脂膜、プリント配線基板および電子装置
JP2001081282A (ja) エポキシ樹脂組成物及びそれを用いたフレキシブル印刷配線板材料
JP4968770B2 (ja) エポキシ樹脂、エポキシ樹脂組成物及びその硬化物
CN111849122B (zh) 一种树脂组合物及其应用
JP6769465B2 (ja) 樹脂組成物
TWI736593B (zh) 樹脂組成物
CN107417890B (zh) 组合物、硬化物、预浸料以及积层板
JP2004189815A (ja) エポキシ樹脂組成物及びそれを用いたフレキシブル印刷配線板材料
CN116615509A (zh) 环氧树脂组合物、粘接薄膜、印刷电路板、半导体芯片封装体、半导体装置和粘接薄膜的使用方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21910492

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237009513

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022572204

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18268741

Country of ref document: US

Ref document number: 202180086693.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21910492

Country of ref document: EP

Kind code of ref document: A1