WO2022138302A1 - 二酸化炭素吸収剤 - Google Patents

二酸化炭素吸収剤 Download PDF

Info

Publication number
WO2022138302A1
WO2022138302A1 PCT/JP2021/045917 JP2021045917W WO2022138302A1 WO 2022138302 A1 WO2022138302 A1 WO 2022138302A1 JP 2021045917 W JP2021045917 W JP 2021045917W WO 2022138302 A1 WO2022138302 A1 WO 2022138302A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
polyamine compound
less
temperature
dioxide absorbent
Prior art date
Application number
PCT/JP2021/045917
Other languages
English (en)
French (fr)
Inventor
和起 河野
裕貴 川島
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to KR1020237020392A priority Critical patent/KR20230125193A/ko
Priority to JP2022572182A priority patent/JPWO2022138302A1/ja
Priority to CN202180084536.4A priority patent/CN116568632A/zh
Priority to EP21910451.0A priority patent/EP4268932A1/en
Priority to US18/267,616 priority patent/US20240123425A1/en
Publication of WO2022138302A1 publication Critical patent/WO2022138302A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/262Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon to carbon unsaturated bonds, e.g. obtained by polycondensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1493Selection of liquid materials for use as absorbents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/02Polyamines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20415Tri- or polyamines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/06Polluted air
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Definitions

  • the present invention relates to a carbon dioxide absorbent.
  • CCS Carbon dioxide Capture and Storage
  • Patent Document 1 describes a method for recovering carbon dioxide using specific alkanolamines as a carbon dioxide absorbent.
  • Patent Document 2 describes that a carbon dioxide absorbent containing a carbon dioxide chemically absorbing amine having a nitrogen-hydrogen bond and a tertiary amine solvent having no nitrogen-hydrogen bond is used as the carbon dioxide absorber.
  • Patent Document 3 describes a method for removing an acid gas with a steric hindrance amine and an amino acid.
  • Patent Document 4 describes an acid gas absorbent containing a diamine compound having a hydroxyalkyl group.
  • Patent Document 5 describes a carbon dioxide absorber in air containing an alkylamine substituted with a hydroxy group or an optionally substituted amino group.
  • the present invention has been made in view of the above circumstances, and provides a carbon dioxide absorbent having an improved ability to absorb carbon dioxide in air.
  • the carbon dioxide absorbent shown below is provided.
  • [1] Contains the polyamine compound (A) having an alicyclic hydrocarbon structure, A carbon dioxide absorbent having a content of the polyamine compound (A) of 60% by mass or more.
  • R 1 to R 4 may each independently have a hydrogen atom or at least one substituent selected from an amino group, a cyano group and a phenyl group, and have 1 or more carbon atoms and 10 carbon atoms.
  • R 5 to R 10 each independently represent a hydrogen atom or a hydrocarbon group having 1 or more and 4 or less carbon atoms
  • x and y each independently represent an integer of 0 or more and 6 or less, and x + y. Is 1 or more and 6 or less
  • p and q are independently integers of 0 or more and 4 or less.
  • the carbon dioxide absorber according to any one of the above [1] to [5], wherein the maximum endothermic temperature of the polyamine compound (A) measured by the following method is 130 ° C. or higher and 300 ° C. or lower.
  • Method The polyamine compound (A) is heated from 23 ° C. to 350 ° C. at a heating rate of 10 ° C./min, the temperature at which the endothermic amount associated with the volatilization of the polyamine compound (A) is maximized is measured, and the temperature is set to the above temperature.
  • the maximum endothermic temperature of the polyamine compound (A) is used.
  • the polyamine compound (A) contains at least one selected from bis (aminomethyl) cyclohexane and its derivatives, limonene diamine and its derivatives, and isophorone diamine and its derivatives.
  • the carbon dioxide absorbent according to any one of the above [1] to [11] which is used for directly absorbing carbon dioxide in the air.
  • the present embodiment The embodiment for carrying out the present invention (hereinafter, simply referred to as "the present embodiment") will be described in detail.
  • the following embodiments are examples for explaining the present invention, and do not limit the contents of the present invention.
  • the present invention can be appropriately modified and carried out within the scope of the gist thereof.
  • the preferable provisions can be arbitrarily adopted, and it can be said that the combination of preferable ones is more preferable.
  • the description of "XX to YY" means "XX or more and YY or less”.
  • the carbon dioxide absorber of the present embodiment contains a polyamine compound (A) having an alicyclic hydrocarbon structure, and the content of the polyamine compound (A) is 60% by mass or more.
  • the alicyclic hydrocarbon structure refers to a cyclic structure composed of saturated or unsaturated carbon and hydrogen having no aromaticity, and is a heterocycle containing a hetero atom in the ring. Cyclic structures are excluded.
  • the polyamine compound (A) having an alicyclic hydrocarbon structure may be any of a cis form, a trans form, and a mixture of a cis form and a trans form.
  • the carbon dioxide absorbent of the present embodiment is an absorbent containing a specific amount of the polyamine compound (A) and having an improved ability to absorb carbon dioxide in the air. Further, the carbon dioxide absorbent of the present embodiment is also excellent in repetitive usability.
  • improved carbon dioxide absorption capacity in air means a low concentration in air (about 0.04% by volume) when the concentrations of the amine compounds in the carbon dioxide absorber are aligned and compared. It means that the absorption rate of carbon dioxide is faster and the amount of carbon dioxide absorbed is larger. Further, in the present embodiment, “excellent in repetitive usability” means that weight loss and reduction in carbon dioxide absorption capacity are unlikely to occur when a cycle test of carbon dioxide absorption and dissociation is performed.
  • the carbon dioxide absorbent of the present embodiment contains a specific amount of the polyamine compound (A) having an alicyclic hydrocarbon structure.
  • a specific amount of the polyamine compound (A) By containing a specific amount of the polyamine compound (A), the carbon dioxide absorption capacity in the air and the repeatability can be improved. The reason is not clear, but it can be considered as follows. First, since the polyamine compound (A) having an alicyclic hydrocarbon structure has a structure having a large steric hindrance, it is considered that the reaction heat at the time of absorption of carbon dioxide is low and the absorption rate of carbon dioxide is high. Further, the polyamine compound (A) having an alicyclic hydrocarbon structure is strongly basic and contains a plurality of amino groups in the molecule, so that it is considered that the amount of carbon dioxide absorbed is large.
  • the polyamine compound (A) having an alicyclic hydrocarbon structure has a structure having a large steric hindrance, it is excellent in dissociative property of carbon dioxide. Further, the polyamine compound (A) having an alicyclic hydrocarbon structure has a relatively large molecular weight, and is unlikely to undergo an oxidation reaction or weight loss even if it is heat-treated when dissociating carbon dioxide. Therefore, the polyamine compound (A) having an alicyclic hydrocarbon structure is considered to be excellent in repeatability. It should be noted that the acyclic aliphatic amine is considered to be inferior in repetitive usability because cyclization reaction, oxidation reaction, weight loss and the like are likely to occur due to the heat treatment. For the above reasons, it is considered that the carbon dioxide absorbent of the present embodiment can improve the carbon dioxide absorption capacity in the air and the repeatability.
  • the carbon dioxide absorbent of the present embodiment can improve the carbon dioxide absorption capacity in the air, it can be suitably used for a technique (DAC) for directly absorbing carbon dioxide in the air. Further, the carbon dioxide absorbent of the present embodiment can be suitably used, for example, when recovering low-concentration carbon dioxide of 0.01% by volume or more and 1% by volume or less.
  • DAC technique for directly absorbing carbon dioxide in the air.
  • the alicyclic hydrocarbon structure of the polyamine compound (A) preferably contains at least one selected from a 5-membered ring and a 6-membered ring from the viewpoint of further improving the carbon dioxide absorption capacity in the air and the repeatability. , 6-membered rings are more preferred.
  • Examples of the alicyclic hydrocarbon structure of the polyamine compound (A) include a cyclopropane ring, a cyclobutane ring, a cyclopentane ring, a cyclohexane ring, a cycloheptane ring, a cyclooctane ring and the like.
  • a cyclopentane ring and a cyclohexane ring are preferable, a cyclohexane ring is more preferable, and a 1,3-substituted cyclohexane ring is further preferable.
  • the number of amino groups of the polyamine compound (A) is preferably 2 or more and 6 or less, more preferably 2 or more and 4 or less, and further, from the viewpoint of further improving the carbon dioxide absorption capacity in the air and the repeatability. It is preferably 2 or more and 3 or less, and more preferably 2. Further, as the amino group, an amino group having a nitrogen-hydrogen bond is preferable, and a primary amino group is more preferable, from the viewpoint of further improving the absorption amount of carbon dioxide in the air.
  • polyamine compound (A) is preferably a compound represented by the following formula (1).
  • R 1 to R 4 may each independently have a hydrogen atom or at least one substituent selected from an amino group, a cyano group and a phenyl group, and have 1 or more and 10 or less carbon atoms.
  • R 5 to R 10 each independently represent a hydrogen atom or a hydrocarbon group having 1 or more and 4 or less carbon atoms
  • x and y each independently represent an integer of 0 or more and 6 or less
  • x + y It is 1 or more and 6 or less
  • p and q are independently integers of 0 or more and 4 or less.
  • R 1 to R 4 are hydrocarbon groups having 1 or more and 10 or less carbon atoms, which may independently have a hydrogen atom or at least one substituent selected from an amino group, a cyano group and a phenyl group. Yes, preferably a hydrogen atom or an alkyl group having at least one substituent selected from an amino group, a cyano group and a phenyl group and having 1 or more and 4 or less carbon atoms, more preferably a hydrogen atom. Alternatively, it is an alkyl group having 1 or more and 4 or less carbon atoms which may have at least one substituent selected from an amino group and a cyano group, and more preferably selected from a hydrogen atom or an amino group and a cyano group.
  • the carbon atoms of the hydrocarbon groups of R 1 to R 4 are independently 1 or more, preferably 2 or more, and 10 or less, preferably 5 or less, more preferably 4 or less, still more preferably 3 or less.
  • Each of R5 to R10 is independently a hydrogen atom or a hydrocarbon group having 1 or more and 4 or less carbon atoms, preferably a hydrogen atom or an alkyl group having 1 or more and 4 or less carbon atoms, and more preferably a hydrogen atom or an alkyl group. It is an alkyl group having 1 or more carbon atoms and 3 or less carbon atoms, more preferably a hydrogen atom or a methyl group, and further preferably a hydrogen atom.
  • the hydrocarbon groups of R 5 to R 10 each independently have 1 or more and 4 or less, preferably 1 or 2, and more preferably 1.
  • P and q are independently 0 or more, preferably 1 or more, and 4 or less, preferably 2 or less, and more preferably 1. Further, at least one of p and q is preferably 1 or more, and 4 or less, preferably 2 or less, and more preferably 1.
  • X and y each independently represent an integer of 0 or more and 6 or less, and x + y is 1 or more and 6 or less.
  • x + y is preferably 2 or more, preferably 3 or more, more preferably 4 or more, and the amount of carbon dioxide absorbed. From the viewpoint of improving the above, it is preferably 5 or less, and more preferably 4. That is, the alicyclic hydrocarbon structure is preferably a 5-membered ring or a 6-membered ring, and more preferably a 6-membered ring.
  • x + y is 4, preferably x is 1 and y is 3.
  • the polyamine compound (A) is selected from bis (aminomethyl) cyclohexane and its derivatives, limonenediamine and its derivatives, and isophoronediamine and its derivatives from the viewpoint of further improving the carbon dioxide absorption capacity in the air and its repeatability. At least one of these is preferred, bis (aminomethyl) cyclohexane and its derivatives are more preferred, 1,3-bis (aminomethyl) cyclohexane and its derivatives are even more preferred, and 1,3-bis (aminomethyl) cyclohexane derivatives are more preferred. More preferably, a derivative of 1,3-bis (aminomethyl) cyclohexane represented by the following formula (2) or formula (3) is further preferable.
  • the derivative of bis (aminomethyl) cyclohexane, the derivative of limonenediamine, or the derivative of isophoronediamine for example, at least one of the hydrogen atoms of the amino group is selected from the amino group, the cyano group and the phenyl group. May have at least one substituent and may have at least one substituent selected from a hydrocarbon group having 1 or more and 10 or less carbon atoms, preferably an amino group, a cyano group and a phenyl group.
  • alkyl group having 1 or more and 4 or less carbon atoms more preferably an alkyl group having 1 or more and 4 or less carbon atoms which may have at least one substituent selected from an amino group and a cyano group, and still more preferably an amino group.
  • Examples thereof include compounds substituted with an alkyl group having 2 or more and 4 or less carbon atoms, which may have at least one substituent selected from a group and a cyano group.
  • polyamine compounds (A) can be used alone or in combination of two or more.
  • the content of the polyamine compound (A) in the carbon dioxide absorber of the present embodiment is 100% by mass when the total amount of the carbon dioxide absorbent is 100% by mass from the viewpoint of improving the carbon dioxide absorption capacity in the air and the repeatability. , 60% by mass or more, preferably 70% by mass or more, more preferably 75% by mass or more, still more preferably 80% by mass or more, still more preferably 85% by mass or more, still more preferably 90% by mass or more, still more preferably 95% by mass. % Or more, more preferably 98% by mass or more, and preferably 100% by mass or less.
  • the content of the polyamine compound (A) in the carbon dioxide absorber of the present embodiment is the total amount of the amine compound contained in the carbon dioxide absorber from the viewpoint of improving the carbon dioxide absorption capacity in the air and the repeatability.
  • the content of water in the carbon dioxide absorber of the present embodiment is preferably 30% by mass or less, more preferably 25% by mass or less, still more preferably, from the viewpoint of improving the carbon dioxide absorption capacity in the air and the repeatability. Is 20% by mass or less, more preferably 15% by mass or less, further preferably 10% by mass or less, still more preferably 5% by mass or less, still more preferably 1% by mass or less, still more preferably 0.5% by mass or less, still more preferably. Is 0.1% by mass or less, more preferably 0.01% by mass or less, and it is further preferable that the carbon dioxide absorber of the present embodiment contains substantially no water.
  • substantially free of water means that water is not intentionally added, and does not exclude the presence of a small amount of water as an impurity.
  • the maximum carbon dioxide dissociation temperature of the polyamine compound (A) measured by the following method is preferably 140 ° C. or lower, more preferably 130, from the viewpoint of improving the dissociation property of carbon dioxide and further improving the repeatability. ° C. or lower, more preferably 120 ° C. or lower, still more preferably 110 ° C. or lower, still more preferably 100 ° C. or lower.
  • the lower limit of the maximum carbon dioxide dissociation temperature is not particularly limited, but is, for example, 40 ° C. or higher.
  • the polyamine compound (A) that has absorbed carbon dioxide is heated from 23 ° C to 250 ° C at a heating rate of 10 ° C / min, and the temperature at which the amount of heat absorbed due to the desorption of carbon dioxide is maximized is measured, and this temperature is measured. Let be the maximum carbon dioxide dissociation temperature.
  • the polyamine compound (A) having absorbed carbon dioxide can be prepared, for example, by allowing 5 mmol of the polyamine compound (A) to stand in air at 23 ° C. and 50% RH for 24 hours.
  • the acid dissociation constant (pKa) of the polyamine compound (A) is preferably 8.0 or more, more preferably 9.0 or more, still more preferably 9.3 or more, from the viewpoint of further improving the carbon dioxide absorption capacity in the air. It is preferably 12.0 or less from the viewpoint of improving the dissociation property of carbon dioxide and further improving the repeatability.
  • the acid dissociation constant of the polyamine compound (A) is a value obtained by the following measuring method based on the acid-base appropriate method. (1) 0.2 g of the polyamine compound (A) is dissolved in 30 mL of purified water.
  • the molecular weight of the polyamine compound (A) is preferably 140 or more, more preferably 150 or more, still more preferably 160, from the viewpoint of suppressing weight loss during heat treatment when dissociating carbon dioxide and further improving repetitive usability.
  • the above is more preferably 180 or more, and from the viewpoint of further improving the carbon dioxide absorption capacity in the air, it is preferably 1000 or less, more preferably 500 or less, still more preferably 300 or less, still more preferably 250 or less, still more preferably. It is 220 or less.
  • the maximum endothermic temperature of the polyamine compound (A) measured by the following method is preferably 130 ° C. or higher from the viewpoint of suppressing weight loss during heat treatment when dissociating carbon dioxide and further improving repetitive usability. It is more preferably 150 ° C. or higher, further preferably 160 ° C. or higher, further preferably 180 ° C. or higher, still more preferably 200 ° C. or higher, still more preferably 220 ° C. or higher, and from the viewpoint of further improving the carbon dioxide absorption capacity in the air. It is preferably 300 ° C. or lower, more preferably 280 ° C. or lower, and further preferably 260 ° C. or lower. (Method) The polyamine compound (A) is heated from 23 ° C.
  • the temperature at which the endothermic amount associated with the volatilization of the polyamine compound (A) is maximized is measured, and this temperature is used as the polyamine compound (A). Let it be the maximum endothermic temperature of A).
  • the amine value of the polyamine compound (A) is preferably 500 mgKOH / g or more, more preferably 550 mgKOH / g or more, and preferably 1500 mgKOH / g from the viewpoint of further improving the carbon dioxide absorption capacity in air and repetitive usability. It is g or less, more preferably 1200 mgKOH / g or less, still more preferably 1000 mgKOH / g or less, still more preferably 900 mgKOH / g or less.
  • the amine value indicates the amount of amine in the compound, and refers to the number of mg of potassium hydroxide (KOH) equivalent to the acid required to neutralize 1 g of the compound.
  • the amine value can be measured by the following method according to JIS K7237-1995.
  • the carbon dioxide absorbent of the present embodiment can appropriately contain components other than the polyamine compound (A) as long as the effects of the invention are not impaired.
  • the components other than the polyamine compound (A) include compounds other than the polyamine compound (A) capable of absorbing carbon dioxide (for example, methanol, polyethylene glycol, etc.), water, an organic solvent, a deterioration inhibitor, and defoaming. Examples thereof include agents, viscosity modifiers, antioxidants, desiccants for removing water (magnesium sulfate, molecular sieves, etc.).
  • the organic solvent include alcohol, dimethylacetamide, N-methylpyrrolidone, dimethylformamide and the like.
  • the acid dissociation constant of the amine compound was determined by the following measuring method. (1) 0.2 g of the amine compound was dissolved in 30 mL of purified water. (2) Acid by titrating the solution obtained in (1) above with a 0.1 specified perchloric acid-acetic acid solution using an automatic potential difference titrator (AT-610, manufactured by Kyoto Electronics Industry Co., Ltd.). The dissociation constant (pKa) was calculated. The temperature at the time of measurement was 25 ⁇ 2 ° C.
  • the amine value was measured by the following measuring method according to JIS K7237-1995. (1) 0.1 g of the amine compound was dissolved in 20 mL of acetic acid. (2) Amin by titrating the solution obtained in (1) above with a 0.1 specified perchloric acid-acetic acid solution using an automatic potential difference titrator (AT-610, manufactured by Kyoto Electronics Manufacturing Co., Ltd.). The value was calculated.
  • the DSC measurement was performed on the amine compounds used in Examples and Comparative Examples as follows, and the maximum endothermic temperature of the amine compound was measured.
  • a differential thermogravimetric analyzer product name: DTG-60, manufactured by Shimadzu Corporation
  • DTG-60 a differential thermogravimetric analyzer
  • the differential scanning calorimetry was measured using this. From the DSC curve thus obtained, the temperature at which the endothermic amount associated with the volatilization of the amine compound became maximum was calculated, and the temperature was defined as the maximum endothermic temperature of the amine compound.
  • the absorbed carbon dioxide was dissociated, and the amine compound was regenerated again.
  • the weight of the amine compound before and after the heat treatment was measured, and the weight retention rate (second time) was calculated.
  • the carbon dioxide absorption capacity of the regenerated amine compound was evaluated again, and the change in carbon dioxide concentration in the desiccator after 2 hours and 24 hours was measured (third time).
  • 1,3-BAC 1,3-bis (aminomethyl) cyclohexane (manufactured by Mitsubishi Gas Chemical Company, Inc.) 1,4-BAC (trans 40 mol%, cis 60 mol%): 1,4-bis (aminomethyl) cyclohexane (manufactured by Mitsubishi Gas Chemical Company, Inc.) 1,4-BACT (85 mol% trans, 15 mol% cis): 1,4-bis (aminomethyl) cyclohexane (manufactured by Mitsubishi Gas Chemical Company, Inc.) 1,3-BAC-AN: 1: 1 (molar ratio) reactant of 1,3-BAC and acrylonitrile (prepared according to Synthesis Example 1 below) 1,3-BAC-BisAP: Hydrogenated product of a 1: 2 (molar ratio) reaction adduct of 1,3-bis (aminomethyl) cyclohexane and acrylonitrile (prepared according to Synthesis Example 2 below).
  • IPDA Isophorone diamine (manufactured by Evonik)
  • LDA Limonene diamine (prepared according to Synthesis Example 3 below)
  • MXDA M-Xylylenediamine (manufactured by Mitsubishi Gas Chemical Company, Inc.)
  • TETA Triethylenetetramine (manufactured by Tokyo Chemical Industry Co., Ltd.)
  • reaction solution (1) A hydrogenation catalyst (three-leaf type, diameter 1.2 mm ⁇ , manufactured by Johnson Matthey Japan; HTCCo2000) having a cobalt content of 15% by mass was added to a tubular vertical hydrogenation reactor (glass, inner diameter 10 mm ⁇ ). After filling with 0.0 g and holding at 120 ° C. under a hydrogen stream for 1 hour, the temperature was raised to 240 ° C. and held for 4 hours or more for reduction and activation.
  • a hydrogenation catalyst three-leaf type, diameter 1.2 mm ⁇ , manufactured by Johnson Matthey Japan; HTCCo2000 having a cobalt content of 15% by mass was added to a tubular vertical hydrogenation reactor (glass, inner diameter 10 mm ⁇ ).
  • reaction solution was analyzed by gas chromatography and confirmed to contain 19.2 g (97 mmol) of limonene diamine and 0.6 g (3 mmol) of limonene monoamine monoaldehyde. Subsequently, vacuum distillation was performed under a nitrogen atmosphere using a distillation apparatus equipped with a distillation column filled with Dixon packing and a nitrogen-introduced capillary tube. The target limonene diamine (15.7 g) (purity 99% by mass) was obtained as the main diamine.
  • Example 1 to 7 and Comparative Examples 1 to 2 In Examples 1 to 7 and Comparative Examples 1 to 2, each of the above evaluations was carried out using a carbon dioxide absorbent having an amine compound content of 100% by mass shown in Table 1. The results obtained are shown in Table 1. Cycle evaluation was performed for Examples 4, 5 and Comparative Example 2. The results obtained are shown in Table 2.
  • Example 8 (Example 8 and Comparative Example 3) Each of the above evaluations was carried out in the same manner as in Example 1 except that the carbon dioxide absorbent was changed to the amine compound aqueous solution having the concentration shown in Table 3. The results obtained are shown in Table 3.
  • Example 9 (Example 9 and Comparative Example 4) Each of the above evaluations was carried out in the same manner as in Example 4 except that the carbon dioxide absorbent was changed to the amine compound aqueous solution having the concentration shown in Table 3. The results obtained are shown in Table 3.
  • Example 10 Example 10 and Comparative Example 5
  • Example 10 Example 10 and Comparative Example 5
  • Example 10 Each of the above evaluations was carried out in the same manner as in Example 6 except that the carbon dioxide absorbent was changed to the amine compound aqueous solution having the concentration shown in Table 3.
  • the results obtained are shown in Table 3.
  • the carbon dioxide absorbent of the example containing a specific amount of the polyamine compound (A) having an alicyclic hydrocarbon structure has a high absorption rate for low concentration carbon dioxide in the air, and further carbon dioxide. It can be seen that the amount of carbon dioxide absorbed is large. That is, it can be seen that the carbon dioxide absorbent of the present invention can efficiently absorb carbon dioxide from the air. On the other hand, it can be seen that the carbon dioxide absorbent of the comparative example has a slower absorption rate for low-concentration carbon dioxide in the air than the example.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Gas Separation By Absorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

脂環式炭化水素構造を有するポリアミン化合物(A)を含み、ポリアミン化合物(A)の含有量が60質量%以上である、二酸化炭素吸収剤。

Description

二酸化炭素吸収剤
 本発明は、二酸化炭素吸収剤に関する。
 地球温暖化問題の観点から、二酸化炭素の削減が求められている。
 二酸化炭素の削減方法の一つとして、火力発電所等から排出される排ガスから高濃度(約10~30体積%)の二酸化炭素を効率的に回収し、地中や海中に埋めて貯蔵する技術(CCS:Carbon dioxide Capture and Storage)が挙げられる。CCSで用いられる二酸化炭素吸収剤に関する技術としては、例えば、特許文献1~4に記載のものが挙げられる。
 特許文献1には、二酸化炭素吸収剤として特定のアルカノールアミン類を用いた、二酸化炭素の回収方法が記載されている。
 特許文献2には、二酸化炭素吸収剤として、窒素-水素結合を有する二酸化炭素化学吸収性アミンと、窒素-水素結合を有さない3級アミン溶媒とを含む二酸化炭素吸収液を用いることが記載されている。
 特許文献3には、立体障害アミン及びアミノ酸で酸性ガスを除去する方法が記載されている。
 特許文献4には、ヒドロキシアルキル基を有するジアミン化合物を含有する酸性ガス吸収剤が記載されている。
 特許文献5には、ヒドロキシ基又は置換されていてもよいアミノ基で置換されたアルキルアミンを含有してなる、空気中の二酸化炭素吸収剤が記載されている。
特開2008-13400号公報 特開2017-104776号公報 特開昭53-81490号公報 特開2015-27647号公報 特開2017-031046号公報
 近年、空気中の低濃度の二酸化炭素(約0.04体積%)を直接回収する技術(DAC:Direct Air Capture)が注目されている。DACで使用される二酸化炭素吸収剤には、CCSで用いられる二酸化炭素吸収剤よりも高い二酸化炭素吸収能力が求められる。
 ここで、特許文献1~4に記載の二酸化炭素吸収剤は、DAC用の吸収剤としては十分に満足できるものではなかった。
 また、本発明者らの検討によれば、特許文献5に記載の二酸化炭素吸収剤は、空気中の二酸化炭素吸収速度という点で改善の余地があることが明らかになった。
 本発明は上記事情に鑑みてなされたものであり、空気中の二酸化炭素吸収能力が向上した二酸化炭素吸収剤を提供するものである。
 本発明者らは、上記課題を解決するために鋭意検討を重ねた。その結果、脂環式炭化水素構造を有するポリアミン化合物(A)を特定量含む二酸化炭素吸収剤が、空気中の二酸化炭素吸収能力を向上できることを見出し、本発明を完成させた。
 すなわち、本発明によれば、以下に示す二酸化炭素吸収剤が提供される。
[1]
 脂環式炭化水素構造を有するポリアミン化合物(A)を含み、
 上記ポリアミン化合物(A)の含有量が60質量%以上である、二酸化炭素吸収剤。
[2]
 上記ポリアミン化合物(A)が下記式(1)で示される化合物である、上記[1]に記載の二酸化炭素吸収剤。
Figure JPOXMLDOC01-appb-C000002

(上記式(1)中、R~Rはそれぞれ独立に水素原子、又はアミノ基、シアノ基及びフェニル基から選択される少なくとも一種の置換基を有していてもよい炭素数1以上10以下の炭化水素基を示し、R~R10はそれぞれ独立に水素原子又は炭素数1以上4以下の炭化水素基を示し、x及びyはそれぞれ独立に0以上6以下の整数を表し、x+yは1以上6以下であり、p及びqはそれぞれ独立に0以上4以下の整数である。)
[3]
 以下の方法で測定される、上記ポリアミン化合物(A)の二酸化炭素最大解離温度が140℃以下である、上記[1]又は[2]に記載の二酸化炭素吸収剤。
(方法)
 二酸化炭素を吸収させた上記ポリアミン化合物(A)を、昇温速度10℃/分で23℃から250℃まで加熱し、上記二酸化炭素の脱離に伴う吸熱量が最大になる温度を測定し、上記温度を上記二酸化炭素最大解離温度とする。
[4]
 上記ポリアミン化合物(A)の酸解離定数(pKa)が8.0以上12.0以下である、上記[1]~[3]のいずれかに記載の二酸化炭素吸収剤。
[5]
 上記ポリアミン化合物(A)の分子量が140以上1000以下である、上記[1]~[4]のいずれかに記載の二酸化炭素吸収剤。
[6]
 以下の方法で測定される、上記ポリアミン化合物(A)の最大吸熱温度が130℃以上300℃以下である、上記[1]~[5]のいずれかに記載の二酸化炭素吸収剤。
(方法)
 上記ポリアミン化合物(A)を、昇温速度10℃/分で23℃から350℃まで加熱し、上記ポリアミン化合物(A)の揮発に伴う吸熱量が最大になる温度を測定し、上記温度を上記ポリアミン化合物(A)の最大吸熱温度とする。
[7]
 上記ポリアミン化合物(A)のアミン価が500mgKOH/g以上1500mgKOH/g以下である、上記[1]~[6]のいずれかに記載の二酸化炭素吸収剤。
[8]
 上記ポリアミン化合物(A)のアミノ基の数が2以上6以下である、上記[1]~[7]のいずれかに記載の二酸化炭素吸収剤。
[9]
 上記脂環式炭化水素構造が5員環及び6員環から選択される少なくとも一種を含む、上記[1]~[8]のいずれかに記載の二酸化炭素吸収剤。
[10]
 上記ポリアミン化合物(A)がビス(アミノメチル)シクロヘキサン及びその誘導体、リモネンジアミン及びその誘導体、並びにイソホロンジアミン及びその誘導体から選択される少なくとも一種を含む、上記[1]~[9]のいずれかに記載の二酸化炭素吸収剤。
[11]
 水の含有量が30質量%以下である、上記[1]~[10]のいずれかに記載の二酸化炭素吸収剤。
[12]
 空気中の二酸化炭素を直接吸収するために用いられる、上記[1]~[11]のいずれかに記載の二酸化炭素吸収剤。
 本発明によれば、空気中の二酸化炭素吸収能力が向上した二酸化炭素吸収剤を提供することができる。
 本発明を実施するための形態(以下、単に「本実施形態」という。)について詳細に説明する。以下の本実施形態は、本発明を説明するための例示であり、本発明の内容を限定しない。本発明は、その要旨の範囲内で適宜に変形して実施できる。本実施形態において、好ましいとされている規定は任意に採用することができ、好ましいもの同士の組み合わせはより好ましいといえる。本実施形態において、「XX~YY」の記載は、「XX以上YY以下」を意味する。
 本実施形態の二酸化炭素吸収剤は、脂環式炭化水素構造を有するポリアミン化合物(A)を含み、ポリアミン化合物(A)の含有量が60質量%以上である。ここで、本実施形態において、脂環式炭化水素構造とは、芳香族性を有しない飽和又は不飽和の炭素と水素からなる環式構造のことをいい、環の中にヘテロ原子を含む複素環式構造は除かれる。
 また、脂環式炭化水素構造を有するポリアミン化合物(A)は、シス体、トランス体、シス体とトランス体との混合物のいずれであってもよい。
 本実施形態の二酸化炭素吸収剤は特定量のポリアミン化合物(A)を含有し、空気中の二酸化炭素吸収能力が向上した吸収剤である。また、本実施形態の二酸化炭素吸収剤は繰り返し使用性にも優れている。
 本実施形態において「空気中の二酸化炭素吸収能力が向上した」とは、二酸化炭素吸収剤中のアミン化合物の濃度を揃えて比較した場合に、空気中の低濃度(約0.04体積%)の二酸化炭素に対する吸収速度がより速く、更に二酸化炭素の吸収量がより多いことを意味する。また、本実施形態において「繰り返し使用性に優れる」とは、二酸化炭素の吸収と解離のサイクル試験をおこなったときに、重量減少や二酸化炭素吸収能力の低下が起きにくいことを意味する。
 本実施形態の二酸化炭素吸収剤は、脂環式炭化水素構造を有するポリアミン化合物(A)を特定量含有する。特定量のポリアミン化合物(A)を含有することで、空気中の二酸化炭素吸収能力及び繰り返し使用性を向上できる。その理由は定かではないが、以下のように考えられる。
 まず、脂環式炭化水素構造を有するポリアミン化合物(A)は立体障害の大きい構造を有するため、二酸化炭素の吸収時における反応熱が低く、二酸化炭素の吸収速度が速いと考えられる。更に、脂環式炭化水素構造を有するポリアミン化合物(A)は、塩基性が強く、分子中にアミノ基を複数含むため、二酸化炭素の吸収量が多いと考えられる。
 また、脂環式炭化水素構造を有するポリアミン化合物(A)は立体障害の大きい構造を有するため、二酸化炭素の解離性に優れている。更に、脂環式炭化水素構造を有するポリアミン化合物(A)は、分子量が比較的大きく、二酸化炭素を解離させる際に加熱処理しても酸化反応や重量減少が起こり難い。そのため、脂環式炭化水素構造を有するポリアミン化合物(A)は、繰り返し使用性に優れていると考えられる。なお、非環式脂肪族アミンは加熱処理によって環化反応や酸化反応、重量減少等が起き易いため、繰り返し使用性に劣っていると考えられる。
 以上の理由から、本実施形態の二酸化炭素吸収剤は空気中の二酸化炭素吸収能力及び繰り返し使用性を向上できると考えられる。
 本実施形態の二酸化炭素吸収剤は、空気中の二酸化炭素吸収能力を向上できるため、空気中の二酸化炭素を直接吸収する技術(DAC)に好適に用いることができる。
 また、本実施形態の二酸化炭素吸収剤は、例えば、0.01体積%以上1体積%以下の低濃度の二酸化炭素を回収する場合に好適に用いることができる。
 ポリアミン化合物(A)の脂環式炭化水素構造は、空気中の二酸化炭素吸収能力及び繰り返し使用性をより向上させる観点から、5員環及び6員環から選択される少なくとも一種を含むことが好ましく、6員環を含むことがより好ましい。
 ポリアミン化合物(A)の脂環式炭化水素構造としては、例えばシクロプロパン環、シクロブタン環、シクロペンタン環、シクロヘキサン環、シクロヘプタン環、シクロオクタン環等が挙げられる。上記の環構造の中でも、シクロペンタン環、シクロヘキサン環が好ましく、シクロヘキサン環がより好ましく、1,3-置換のシクロヘキサン環が更に好ましい。
 ポリアミン化合物(A)のアミノ基の数は、空気中の二酸化炭素吸収能力及び繰り返し使用性をより向上させる観点から、好ましくは2以上6以下であり、より好ましくは2以上4以下であり、更に好ましくは2以上3以下であり、更に好ましくは2である。
 また、アミノ基としては、空気中の二酸化炭素の吸収量をより向上させる観点から、窒素-水素結合を有するアミノ基が好ましく、1級アミノ基がより好ましい。
 ポリアミン化合物(A)は、より具体的には、好ましくは下記式(1)で示される化合物である。
Figure JPOXMLDOC01-appb-C000003

 上記式(1)中、R~Rはそれぞれ独立に水素原子、又はアミノ基、シアノ基及びフェニル基から選択される少なくとも一種の置換基を有していてもよい炭素数1以上10以下の炭化水素基を示し、R~R10はそれぞれ独立に水素原子又は炭素数1以上4以下の炭化水素基を示し、x及びyはそれぞれ独立に0以上6以下の整数を表し、x+yは1以上6以下であり、p及びqはそれぞれ独立に0以上4以下の整数である。
 R~Rは、それぞれ独立に、水素原子、又はアミノ基、シアノ基及びフェニル基から選択される少なくとも一種の置換基を有していてもよい炭素数1以上10以下の炭化水素基であり、好ましくは水素原子、又はアミノ基、シアノ基及びフェニル基から選択される少なくとも一種の置換基を有していてもよい炭素数1以上4以下のアルキル基であり、より好ましくは水素原子、又はアミノ基及びシアノ基から選択される少なくとも一種の置換基を有していてもよい炭素数1以上4以下のアルキル基であり、更に好ましくは水素原子、又はアミノ基及びシアノ基から選択される少なくとも一種の置換基を有していてもよい炭素数2以上4以下のアルキル基である。
 R~Rの炭化水素基の炭素数は、それぞれ独立に、1以上、好ましくは2以上、そして10以下、好ましくは5以下、より好ましくは4以下、更に好ましくは3以下である。
 R~R10は、それぞれ独立に、水素原子又は炭素数1以上4以下の炭化水素基であり、好ましくは水素原子又は炭素数1以上4以下のアルキル基であり、より好ましくは水素原子又は炭素数1以上3以下のアルキル基であり、更に好ましくは水素原子又はメチル基であり、更に好ましくは水素原子である。
 R~R10の炭化水素基の炭素数は、それぞれ独立に、1以上4以下、好ましくは1又は2、より好ましくは1である。
 p及びqは、それぞれ独立に、0以上、好ましくは1以上であり、そして4以下、好ましくは2以下、より好ましくは1である。また、p及びqの少なくとも一方は、好ましくは1以上であり、そして4以下、好ましくは2以下、より好ましくは1である。
 x及びyは、それぞれ独立に、0以上6以下の整数を表し、x+yは1以上6以下である。分子全体の立体障害をより大きくし、空気中の二酸化炭素吸収能力をより向上させる観点から、x+yは、好ましくは2以上、好ましくは3以上、より好ましくは4以上であり、二酸化炭素の吸収量を向上させる観点から、好ましくは5以下、より好ましくは4である。すなわち、脂環式炭化水素構造は5員環又は6員環であることが好ましく、6員環であることがより好ましい。x+yが4の場合、好ましくはxが1であり、yが3である。
 ポリアミン化合物(A)としては、空気中の二酸化炭素吸収能力及び繰り返し使用性をより向上させる観点から、ビス(アミノメチル)シクロヘキサン及びその誘導体、リモネンジアミン及びその誘導体、並びにイソホロンジアミン及びその誘導体から選択される少なくとも一種が好ましく、ビス(アミノメチル)シクロヘキサン及びその誘導体がより好ましく、1,3-ビス(アミノメチル)シクロヘキサン及びその誘導体が更に好ましく、1,3-ビス(アミノメチル)シクロヘキサンの誘導体が更に好ましく、下記式(2)又は式(3)で示される1,3-ビス(アミノメチル)シクロヘキサンの誘導体が更に好ましい。
 ここで、ビス(アミノメチル)シクロヘキサンの誘導体、リモネンジアミンの誘導体、又はイソホロンジアミンの誘導体としては、例えば、アミノ基の水素原子のうちの少なくとも1つが、アミノ基、シアノ基及びフェニル基から選択される少なくとも一種の置換基を有していてもよい炭素数1以上10以下の炭化水素基、好ましくはアミノ基、シアノ基及びフェニル基から選択される少なくとも一種の置換基を有していてもよい炭素数1以上4以下のアルキル基であり、より好ましくはアミノ基及びシアノ基から選択される少なくとも一種の置換基を有していてもよい炭素数1以上4以下のアルキル基、更に好ましくはアミノ基及びシアノ基から選択される少なくとも一種の置換基を有していてもよい炭素数2以上4以下のアルキル基で置換された化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000004
 これらのポリアミン化合物(A)は、単独で又は2種以上を組み合わせて用いることができる。
 本実施形態の二酸化炭素吸収剤中のポリアミン化合物(A)の含有量は、空気中の二酸化炭素吸収能力及び繰り返し使用性を向上させる観点から、二酸化炭素吸収剤の全量を100質量%としたとき、60質量%以上、好ましくは70質量%以上、より好ましくは75質量%以上、更に好ましくは80質量%以上、更に好ましくは85質量%以上、更に好ましくは90質量%以上、更に好ましくは95質量%以上、更に好ましくは98質量%以上であり、そして好ましくは100質量%以下である。
 また、本実施形態の二酸化炭素吸収剤中のポリアミン化合物(A)の含有量は、空気中の二酸化炭素吸収能力及び繰り返し使用性を向上させる観点から、二酸化炭素吸収剤に含まれるアミン化合物の全量を100質量部としたとき、好ましくは50質量部以上、より好ましくは60質量部以上、更に好ましくは70質量部以上、更に好ましくは80質量部以上、更に好ましくは90質量部以上、更に好ましくは95質量部以上であり、そして好ましくは100質量部以下である。
 本実施形態の二酸化炭素吸収剤中の水の含有量は、空気中の二酸化炭素吸収能力及び繰り返し使用性を向上させる観点から、好ましくは30質量%以下、より好ましくは25質量%以下、更に好ましくは20質量%以下、更に好ましくは15質量%以下、更に好ましくは10質量%以下、更に好ましくは5質量%以下、更に好ましくは1質量%以下、更に好ましくは0.5質量%以下、更に好ましくは0.1質量%以下、更に好ましくは0.01質量%以下であり、本実施形態の二酸化炭素吸収剤は水を実質的に含まないことが更に好ましい。ここで、「水を実質的に含まない」とは、意図的に水を添加しないという意味であり、不純物として少量の水が存在することを排除するものではない。
 以下の方法で測定される、ポリアミン化合物(A)の二酸化炭素最大解離温度は、二酸化炭素の解離性を向上させ、繰り返し使用性をより向上させる観点から、好ましくは140℃以下、より好ましくは130℃以下、更に好ましくは120℃以下、更に好ましくは110℃以下、更に好ましくは100℃以下である。上記二酸化炭素最大解離温度の下限値は特に限定されないが、例えば40℃以上である。
(方法)
 二酸化炭素を吸収させたポリアミン化合物(A)を、昇温速度10℃/分で23℃から250℃まで加熱し、二酸化炭素の脱離に伴う吸熱量が最大になる温度を測定し、この温度を二酸化炭素最大解離温度とする。ここで、二酸化炭素を吸収させたポリアミン化合物(A)は、例えば、ポリアミン化合物(A)5mmolを23℃、50%RHの空気中に24時間静置することにより調製することができる。
 ポリアミン化合物(A)の酸解離定数(pKa)は、空気中の二酸化炭素吸収能力をより向上させる観点から、好ましくは8.0以上、より好ましくは9.0以上、更に好ましくは9.3以上であり、そして二酸化炭素の解離性を向上させ、繰り返し使用性をより向上させる観点から、好ましくは12.0以下である。
 本実施形態において、ポリアミン化合物(A)の酸解離定数は、酸塩基適定法に基づく下記測定方法により求められる値である。
(1)ポリアミン化合物(A)0.2gを精製水30mLに溶解する。
(2)上記(1)により得られた溶液を、電位差自動滴定装置(例えば京都電子工業株式会社製、AT-610)を用いて、0.1規定過塩素酸-酢酸溶液で滴定することにより酸解離定数(pKa)を算出する。
 なお、測定時の温度は、25±2℃とする。
 ポリアミン化合物(A)の分子量は、二酸化炭素を解離させる際の熱処理時の重量減少を抑制し、繰り返し使用性をより向上させる観点から、好ましくは140以上、より好ましくは150以上、更に好ましくは160以上、更に好ましくは180以上であり、空気中の二酸化炭素吸収能力をより向上させる観点から、好ましくは1000以下、より好ましくは500以下、更に好ましくは300以下、更に好ましくは250以下、更に好ましくは220以下である。
 以下の方法で測定されるポリアミン化合物(A)の最大吸熱温度は、二酸化炭素を解離させる際の熱処理時の重量減少を抑制し、繰り返し使用性をより向上させる観点から、好ましくは130℃以上、より好ましくは150℃以上、更に好ましくは160℃以上、更に好ましくは180℃以上、更に好ましくは200℃以上、更に好ましくは220℃以上であり、空気中の二酸化炭素吸収能力をより向上させる観点から、好ましくは300℃以下、より好ましくは280℃以下、更に好ましくは260℃以下である。
(方法)
 ポリアミン化合物(A)を、昇温速度10℃/分で23℃から350℃まで加熱し、ポリアミン化合物(A)の揮発に伴う吸熱量が最大になる温度を測定し、この温度をポリアミン化合物(A)の最大吸熱温度とする。
 ポリアミン化合物(A)のアミン価は、空気中の二酸化炭素吸収能力及び繰り返し使用性をより向上させる観点から、好ましくは500mgKOH/g以上、より好ましくは550mgKOH/g以上であり、そして好ましくは1500mgKOH/g以下、より好ましくは1200mgKOH/g以下、更に好ましくは1000mgKOH/g以下、更に好ましくは900mgKOH/g以下である。アミン価とは、化合物中のアミンの量を示し、化合物1g量を中和するのに要する酸と当量の水酸化カリウム(KOH)のmg数をいう。
 アミン価はJIS K7237-1995に準じて、下記方法により測定することができる。
(1)ポリアミン化合物(A)0.1gを酢酸20mLに溶解する。
(2)上記(1)により得られた溶液を、電位差自動滴定装置(例えば京都電子工業株式会社製、AT-610)を用いて、0.1規定過塩素酸-酢酸溶液で滴定することによりアミン価を算出する。
 本実施形態の二酸化炭素吸収剤は、発明の効果を損なわない範囲で、ポリアミン化合物(A)以外の成分を適宜含有することができる。ポリアミン化合物(A)以外の成分としては、例えば、ポリアミン化合物(A)以外の二酸化炭素を吸収することができる化合物(例えば、メタノール、ポリエチレングリコール等)、水、有機溶媒、劣化抑制剤、消泡剤、粘度調整剤、酸化防止剤、水分を除去するための乾燥剤(硫酸マグネシウム、モレキュラーシーブス等)等が挙げられる。
 有機溶媒としては、例えば、アルコール、ジメチルアセトアミド、N-メチルピロリドン、及びジメチルホルムアミド等が挙げられる。
 以下、本発明を実施例により説明するが、本発明は実施例の範囲に限定されない。なお本実施例において、各種測定及び評価は以下の方法により行った。
(アミン化合物の酸解離定数(pKa))
 アミン化合物の酸解離定数は、下記測定方法により求めた。
(1)アミン化合物0.2gを精製水30mLに溶解した。
(2)上記(1)により得られた溶液を、電位差自動滴定装置(京都電子工業株式会社製、AT-610)を用いて、0.1規定過塩素酸-酢酸溶液で滴定することにより酸解離定数(pKa)を算出した。
 なお、測定時の温度は、25±2℃とした。
(アミン化合物のアミン価)
 アミン価はJIS K7237-1995に準じて、下記測定方法により測定した。
(1)アミン化合物0.1gを酢酸20mLに溶解した。
(2)上記(1)により得られた溶液を、電位差自動滴定装置(京都電子工業株式会社製、AT-610)を用いて、0.1規定過塩素酸-酢酸溶液で滴定することによりアミン価を算出した。
(アミン化合物の最大吸熱温度)
 実施例及び比較例で使用したアミン化合物に対して、次のようにしてDSC測定を行い、アミン化合物の最大吸熱温度を測定した。まず、アミン化合物に対し、測定温度範囲23~350℃、昇温速度10℃/分、窒素雰囲気の条件下で、示差熱重量測定計(製品名:DTG-60、株式会社島津製作所製)を用いて示差走査熱量測定を行った。これにより得られたDSC曲線から、アミン化合物の揮発に伴う吸熱量が最大になる温度を算出し、その温度をアミン化合物の最大吸熱温度とした。
(空気中の二酸化炭素吸収能力の評価)
 開閉可能なデシケーター(内寸:370mm×260mm×272mm)内に二酸化炭素濃度計とシャーレを配置した。その後、アミン化合物(5mmol)をデシケーター内のシャーレに加え、すぐに扉を閉め、デシケーター内の二酸化炭素濃度を、23℃、50%RHの空気環境下、24時間経時的に測定した。なお、二酸化炭素の初期濃度は、約400ppmに調整した。デシケーター内にアミン化合物を配置してから2時間後及び24時間後のデシケーター内の二酸化炭素濃度変化を表1に示す。ここで、デシケーター内の二酸化炭素濃度変化が大きいほど、二酸化炭素吸収剤の二酸化炭素の吸収量が多いことを意味する。
(サイクル評価)
 上記の二酸化炭素吸収能力の評価が終了した後、デシケーター内からアミン化合物を取り出し、二酸化炭素を吸収させたアミン化合物を100℃で1時間加熱し、吸収した二酸化炭素を解離させてアミン化合物を再生した。このとき、加熱処理前後のアミン化合物の重量を測定し、重量保持率(1回目)を算出した。
 次いで、再生したアミン化合物に対して、上記の二酸化炭素吸収能力の評価を再度おこない、2時間後及び24時間後のデシケーター内の二酸化炭素濃度変化を測定した(2回目)。
 次いで、デシケーター内からアミン化合物を取り出し、二酸化炭素を吸収させたアミン化合物を100℃で1時間加熱し、吸収した二酸化炭素を解離させてアミン化合物を再度再生した。このとき、加熱処理前後のアミン化合物の重量を測定し、重量保持率(2回目)を算出した。
 次いで、再生したアミン化合物に対して、上記の二酸化炭素吸収能力の評価を再度おこない、2時間後及び24時間後のデシケーター内の二酸化炭素濃度変化を測定した(3回目)。
(アミン化合物の二酸化炭素(CO)最大解離温度)
 上記の二酸化炭素吸収能力の評価が終了した後、デシケーター内からアミン化合物を取り出し、二酸化炭素を吸収させたアミン化合物を得た。二酸化炭素を吸収させたアミン化合物に対して、次のようにしてDSC測定を行い、アミン化合物の二酸化炭素最大解離温度を測定した。まず、アミン化合物に対し、測定温度範囲23~250℃、昇温速度10℃/分、窒素雰囲気の条件下で、示差熱重量測定計(製品名:DTG-60、株式会社島津製作所製)を用いて示差走査熱量測定を行った。これにより得られたDSC曲線から、二酸化炭素の脱離に伴う吸熱量が最大になる温度を算出し、その温度をアミン化合物の二酸化炭素最大解離温度とした。
 実施例及び比較例において、アミン化合物としては以下のものを用いた。
(アミン化合物)
1,3-BAC:1,3-ビス(アミノメチル)シクロヘキサン(三菱瓦斯化学株式会社製)
1,4-BAC(トランス体40モル%、シス体60モル%):1,4-ビス(アミノメチル)シクロヘキサン(三菱瓦斯化学株式会社製)
1,4-BACT(トランス体85モル%、シス体15モル%):1,4-ビス(アミノメチル)シクロヘキサン(三菱瓦斯化学株式会社製)
1,3-BAC-AN:1,3-BACとアクリロニトリルの1:1(モル比)反応物(以下の合成例1に従って作製した。)
1,3-BAC-BisAP:1,3-ビス(アミノメチル)シクロヘキサンとアクリロニトリルの1:2(モル比)の反応付加物の水添品(以下の合成例2に従って作製した。)
IPDA:イソホロンジアミン(Evonik社製)
LDA:リモネンジアミン(以下の合成例3に従って作製した。)
MXDA:メタキシリレンジアミン(三菱瓦斯化学株式会社製)
TETA:トリエチレンテトラミン(東京化成工業株式会社製)
(合成例1:1,3-BAC-ANの製造)
 撹拌装置、温度計、アルゴン導入管、滴下漏斗及び冷却管を備えた内容積100mLの丸底フラスコに、1,3-ビス(アミノメチル)シクロヘキサン(三菱瓦斯化学株式会社製)10.0gを仕込み、アルゴン気流下、十分に撹拌した後、アクリロニトリル(Sigma-Aldrich社製)3.73gを10分かけて滴下した。滴下終了後、65℃まで昇温させて1時間保持した後室温まで冷却し、1,3-BAC-ANを得た。
(合成例2:1,3-BAC-BisAPの製造)
(1)撹拌装置、温度計、アルゴン導入管、滴下漏斗及び冷却管を備えた内容積100mLの丸底フラスコに、1,3-ビス(アミノメチル)シクロヘキサン(三菱瓦斯化学株式会社製)10.0g、2-プロパノール(富士フイルム和光純薬株式会社製)20.0gを仕込み、アルゴン気流下、十分に撹拌した後、アクリロニトリル(Sigma-Aldrich社製)7.5gを10分かけて滴下した。滴下終了後、65℃まで昇温させて1時間保持した後室温まで冷却し、反応液(1)を得た。
(2)管状縦型水素化反応器(ガラス製、内径10mmφ)に、コバルト含有量15質量%である水素化触媒(三つ葉型、直径1.2mmφ、ジョンソン・マッセイ・ジャパン製;HTCCo2000)を7.0g充填し、水素気流下120℃で1時間保持した後、240℃まで昇温させて4時間以上保持し、還元、活性化させた。冷却後、撹拌機及びヒーターを備えたオートクレーブ(容量150mL、材質:SUS316L)に、2-プロパノール14.8g、上記触媒及び反応液(1)を全量仕込み、気相部を水素置換した。水素で3.5MPaGに加圧後、撹拌しながら昇温を開始し、20分間で液温を80℃にした後、圧力を8.0MPaGに調整した。その後、液温80℃の条件下、圧力を8.0MPaGに保つように水素供給を随時行いながら反応を3時間継続させた。反応液を真空下で完全に濃縮し、1,3-BAC-BisAPを17.5g得た。
(合成例3:LDAの製造)
 300mLステンレス製オートクレーブにリモネンジアルデヒド20.0g(102mmol)、1-ブタノール100g、スポンジコバルト触媒5mlを加えた(スポンジコバルト触媒は1-ブタノールで溶媒置換した後、デカンテーションにより1-ブタノールを除去してから使用した)。次いで、液体アンモニア52g(3053mmol)を加えた後、室温で内圧2.5MPaまで水素を充填し、更に窒素を充填し、内圧を5.0MPaに調整した。撹拌しながらオートクレーブを90℃に昇温し、90℃に到達した後、内圧が6MPaになるよう水素を適宜充填し3時間反応を行った(水素/窒素モル比=1)。冷却後、水素及びアンモニアをパージしてから反応液をろ過しスポンジコバルト触媒を除去した。得られた反応液のガスクロマトグラフによる分析を行いリモネンジアミン19.2g(97mmol)、リモネンモノアミンモノアルデヒド0.6g(3mmol)が含まれていることを確認した。続いて、Dixonパッキンを充填した蒸留塔及び窒素導入キャピラリー管を備え付けた蒸留装置を使用し窒素雰囲気下での減圧蒸留を行った。目的とするリモネンジアミン15.7g(純度99質量%)を主留として取得した。
(実施例1~7及び比較例1~2)
 実施例1~7及び比較例1~2では、表1に示すアミン化合物の含有量が100質量%の二酸化炭素吸収剤を用いて上記の各評価をそれぞれおこなった。得られた結果を表1に示す。サイクル評価は、実施例4、5及び比較例2に対しておこなった。得られた結果を表2に示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
(実施例8及び比較例3)
 二酸化炭素吸収剤を表3に示す濃度のアミン化合物水溶液に変更した以外は実施例1と同様にして上記の各評価をそれぞれおこなった。得られた結果を表3に示す。
(実施例9及び比較例4)
 二酸化炭素吸収剤を表3に示す濃度のアミン化合物水溶液に変更した以外は実施例4と同様にして上記の各評価をそれぞれおこなった。得られた結果を表3に示す。
(実施例10及び比較例5)
 二酸化炭素吸収剤を表3に示す濃度のアミン化合物水溶液に変更した以外は実施例6と同様にして上記の各評価をそれぞれおこなった。得られた結果を表3に示す。
Figure JPOXMLDOC01-appb-T000007
 表1~3より、脂環式炭化水素構造を有するポリアミン化合物(A)を特定量含有する実施例の二酸化炭素吸収剤は、空気中の低濃度の二酸化炭素に対する吸収速度が速く、更に二酸化炭素の吸収量が多いことが分かる。すなわち、本発明の二酸化炭素吸収剤は、空気中から二酸化炭素を効率よく吸収できることが分かる。これに対し、比較例の二酸化炭素吸収剤は、空気中の低濃度の二酸化炭素に対する吸収速度が実施例よりも遅いことが分かる。

Claims (12)

  1.  脂環式炭化水素構造を有するポリアミン化合物(A)を含み、
     前記ポリアミン化合物(A)の含有量が60質量%以上である、二酸化炭素吸収剤。
  2.  前記ポリアミン化合物(A)が下記式(1)で示される化合物である、請求項1に記載の二酸化炭素吸収剤。
    Figure JPOXMLDOC01-appb-C000001

    (上記式(1)中、R~Rはそれぞれ独立に水素原子、又はアミノ基、シアノ基及びフェニル基から選択される少なくとも一種の置換基を有していてもよい炭素数1以上10以下の炭化水素基を示し、R~R10はそれぞれ独立に水素原子又は炭素数1以上4以下の炭化水素基を示し、x及びyはそれぞれ独立に0以上6以下の整数を表し、x+yは1以上6以下であり、p及びqはそれぞれ独立に0以上4以下の整数である。)
  3.  以下の方法で測定される、前記ポリアミン化合物(A)の二酸化炭素最大解離温度が140℃以下である、請求項1又は2に記載の二酸化炭素吸収剤。
    (方法)
     二酸化炭素を吸収させた前記ポリアミン化合物(A)を、昇温速度10℃/分で23℃から250℃まで加熱し、前記二酸化炭素の脱離に伴う吸熱量が最大になる温度を測定し、前記温度を前記二酸化炭素最大解離温度とする。
  4.  前記ポリアミン化合物(A)の酸解離定数(pKa)が8.0以上12.0以下である、請求項1~3のいずれかに記載の二酸化炭素吸収剤。
  5.  前記ポリアミン化合物(A)の分子量が140以上1000以下である、請求項1~4のいずれかに記載の二酸化炭素吸収剤。
  6.  以下の方法で測定される、前記ポリアミン化合物(A)の最大吸熱温度が130℃以上300℃以下である、請求項1~5のいずれかに記載の二酸化炭素吸収剤。
    (方法)
     前記ポリアミン化合物(A)を、昇温速度10℃/分で23℃から350℃まで加熱し、前記ポリアミン化合物(A)の揮発に伴う吸熱量が最大になる温度を測定し、前記温度を前記ポリアミン化合物(A)の最大吸熱温度とする。
  7.  前記ポリアミン化合物(A)のアミン価が500mgKOH/g以上1500mgKOH/g以下である、請求項1~6のいずれかに記載の二酸化炭素吸収剤。
  8.  前記ポリアミン化合物(A)のアミノ基の数が2以上6以下である、請求項1~7のいずれかに記載の二酸化炭素吸収剤。
  9.  前記脂環式炭化水素構造が5員環及び6員環から選択される少なくとも一種を含む、請求項1~8のいずれかに記載の二酸化炭素吸収剤。
  10.  前記ポリアミン化合物(A)がビス(アミノメチル)シクロヘキサン及びその誘導体、リモネンジアミン及びその誘導体、並びにイソホロンジアミン及びその誘導体から選択される少なくとも一種を含む、請求項1~9のいずれかに記載の二酸化炭素吸収剤。
  11.  水の含有量が30質量%以下である、請求項1~10のいずれかに記載の二酸化炭素吸収剤。
  12.  空気中の二酸化炭素を直接吸収するために用いられる、請求項1~11のいずれかに記載の二酸化炭素吸収剤。
PCT/JP2021/045917 2020-12-22 2021-12-14 二酸化炭素吸収剤 WO2022138302A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020237020392A KR20230125193A (ko) 2020-12-22 2021-12-14 이산화탄소 흡수제
JP2022572182A JPWO2022138302A1 (ja) 2020-12-22 2021-12-14
CN202180084536.4A CN116568632A (zh) 2020-12-22 2021-12-14 二氧化碳吸收剂
EP21910451.0A EP4268932A1 (en) 2020-12-22 2021-12-14 Carbon dioxide absorbent
US18/267,616 US20240123425A1 (en) 2020-12-22 2021-12-14 Carbon dioxide absorbent

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-212873 2020-12-22
JP2020212873 2020-12-22

Publications (1)

Publication Number Publication Date
WO2022138302A1 true WO2022138302A1 (ja) 2022-06-30

Family

ID=82157929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/045917 WO2022138302A1 (ja) 2020-12-22 2021-12-14 二酸化炭素吸収剤

Country Status (7)

Country Link
US (1) US20240123425A1 (ja)
EP (1) EP4268932A1 (ja)
JP (1) JPWO2022138302A1 (ja)
KR (1) KR20230125193A (ja)
CN (1) CN116568632A (ja)
TW (1) TW202231335A (ja)
WO (1) WO2022138302A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024053366A1 (ja) * 2022-09-08 2024-03-14 三菱瓦斯化学株式会社 発泡樹脂形成性組成物、ポリウレア系樹脂発泡体、及びポリウレア系樹脂発泡体の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5262307A (en) * 1975-11-17 1977-05-23 Chiyoda Chem Eng & Constr Co Ltd Removing of acidic gas from mixed gas
JP2008238073A (ja) * 2007-03-28 2008-10-09 Nippon Steel Chem Co Ltd 二酸化炭素吸収剤および二酸化炭素吸収方法
WO2013075697A1 (de) * 2011-11-25 2013-05-30 Buettner Hermann Verwendung von cyclischen aminen zur reversiblen co2-absorption
JP2015027647A (ja) * 2013-07-30 2015-02-12 株式会社東芝 酸性ガス吸収剤、酸性ガス除去方法及び酸性ガス除去装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4094957A (en) 1976-12-14 1978-06-13 Exxon Research & Engineering Co. Process for removing acid gases with hindered amines and amino acids
JP2008013400A (ja) 2006-07-05 2008-01-24 Research Institute Of Innovative Technology For The Earth 排ガス中の二酸化炭素を吸収及び脱離して回収する方法
JP6782961B2 (ja) 2015-07-29 2020-11-11 学校法人神戸学院 空気由来の二酸化炭素の吸収剤及び発生剤
JP6685547B2 (ja) 2015-12-07 2020-04-22 国立研究開発法人産業技術総合研究所 二酸化炭素吸収液および二酸化炭素分離回収方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5262307A (en) * 1975-11-17 1977-05-23 Chiyoda Chem Eng & Constr Co Ltd Removing of acidic gas from mixed gas
JP2008238073A (ja) * 2007-03-28 2008-10-09 Nippon Steel Chem Co Ltd 二酸化炭素吸収剤および二酸化炭素吸収方法
WO2013075697A1 (de) * 2011-11-25 2013-05-30 Buettner Hermann Verwendung von cyclischen aminen zur reversiblen co2-absorption
JP2015027647A (ja) * 2013-07-30 2015-02-12 株式会社東芝 酸性ガス吸収剤、酸性ガス除去方法及び酸性ガス除去装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024053366A1 (ja) * 2022-09-08 2024-03-14 三菱瓦斯化学株式会社 発泡樹脂形成性組成物、ポリウレア系樹脂発泡体、及びポリウレア系樹脂発泡体の製造方法

Also Published As

Publication number Publication date
JPWO2022138302A1 (ja) 2022-06-30
EP4268932A1 (en) 2023-11-01
US20240123425A1 (en) 2024-04-18
KR20230125193A (ko) 2023-08-29
TW202231335A (zh) 2022-08-16
CN116568632A (zh) 2023-08-08

Similar Documents

Publication Publication Date Title
KR100768383B1 (ko) 이산화탄소 분리용 혼합 흡수제
JP5659084B2 (ja) 酸性ガス吸収剤、酸性ガス除去方法および酸性ガス除去装置
US9878285B2 (en) Method and absorption medium for absorbing CO2 from a gas mixture
JP6412523B2 (ja) 立体障害型アミン及び関連する方法
JPS6327336B2 (ja)
NO341954B1 (no) Alkylaminoalkyloksy (alkohol) monoalkyleter for syregass scrubbingprosess
US20140360369A1 (en) Process for the asborption of co2 from a gas mixture with an absorption medium comprising amines
JPS6312648B2 (ja)
JP2017164696A (ja) 炭酸ガス吸収材料、炭酸ガス回収システム及び炭酸ガス回収方法
KR20200036011A (ko) 환형 알킬렌우레아를 그의 상응하는 알킬렌아민으로 전환시키기 위한 다단계 방법
WO2022138302A1 (ja) 二酸化炭素吸収剤
JP2017196547A (ja) 酸性ガス吸収剤、酸性ガスの除去方法および酸性ガス除去装置
KR20200037362A (ko) 환형 알킬렌 우레아를 그의 상응하는 알킬렌 아민으로 전환시키기 위한 반응 분리 공정
US9486737B2 (en) Absorbent tertiary monoalkanolamine solution belonging to the 3-alcoxypropylamine family, and method for removing acidic compounds contained in a gas effluent
JP2019506290A (ja) 1,6−ヘキサンジアミンのヒドロキシル誘導体をベースとした吸収溶液およびガス状排出物から酸性化合物を除去する方法
US11135544B2 (en) Acidic gas absorbent, acidic gas removal method and acidic gas removal apparatus
NO155839B (no) Sekundaere og tertiaere aminoalkoholer.
WO2022163209A1 (ja) 二酸化炭素吸収剤
FR2961114A1 (fr) Procede pour eliminer le co2 dans des fumees de combustion et solution absorbante, a base de diamines appartenant a la famille des 1,2-bis(2-aminoethoxy)ethane.
US20230104687A1 (en) Novel amine compound, acid gas absorbent, method for removing acid gas, and acid gas removal apparatus
WO2023013397A1 (ja) 二酸化炭素吸収剤、二酸化炭素の回収方法、及び二酸化炭素分離回収装置
US11745137B2 (en) Diamine solvent system for CO2 capture
JP6940824B2 (ja) 二酸化炭素吸収剤、該吸収剤を用いた二酸化炭素の分離回収方法及び分離回収装置
JP2022049431A (ja) 酸性ガス吸収剤、酸性ガス除去方法および酸性ガス除去装置
JP2024059402A (ja) 二酸化炭素を回収するためのアミン溶液、及びそれを用いた二酸化炭素を分離回収する方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21910451

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022572182

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18267616

Country of ref document: US

Ref document number: 202180084536.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021910451

Country of ref document: EP

Effective date: 20230724