WO2022138290A1 - プラズマアブレーションシステム、及び、プラズマガイドワイヤ - Google Patents

プラズマアブレーションシステム、及び、プラズマガイドワイヤ Download PDF

Info

Publication number
WO2022138290A1
WO2022138290A1 PCT/JP2021/045862 JP2021045862W WO2022138290A1 WO 2022138290 A1 WO2022138290 A1 WO 2022138290A1 JP 2021045862 W JP2021045862 W JP 2021045862W WO 2022138290 A1 WO2022138290 A1 WO 2022138290A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
plasma
guide wire
tip
catheter
Prior art date
Application number
PCT/JP2021/045862
Other languages
English (en)
French (fr)
Inventor
陽太郎 西尾
隆彰 真柄
駿平 吉武
翔大 三原
賢亮 坂田
Original Assignee
朝日インテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 朝日インテック株式会社 filed Critical 朝日インテック株式会社
Priority to EP21910439.5A priority Critical patent/EP4268745A1/en
Priority to JP2022572175A priority patent/JPWO2022138290A1/ja
Priority to CN202180086084.3A priority patent/CN116648280A/zh
Publication of WO2022138290A1 publication Critical patent/WO2022138290A1/ja
Priority to US18/211,615 priority patent/US20230329781A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/042Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating using additional gas becoming plasma
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1492Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00059Material properties
    • A61B2018/00071Electrical conductivity
    • A61B2018/00083Electrical conductivity low, i.e. electrically insulating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • A61B2018/00583Coblation, i.e. ablation using a cold plasma
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1405Electrodes having a specific shape
    • A61B2018/144Wire

Definitions

  • the present invention relates to a plasma ablation system and a plasma guide wire.
  • ablation treatment is known as a treatment method for arrhythmia and the like that cause abnormalities in the pulsatile rhythm of the heart.
  • Patent Documents 1 to 5 disclose devices and systems that can be used in such ablation treatment to cut a living tissue (a portion causing arrhythmia) using a plasma flow.
  • such a problem is not limited to the vascular system, but is inserted into the biological lumen such as the lymph gland system, biliary system, urinary tract system, airway system, digestive system, secretory gland and reproductive organ, and ablation treatment is performed. Common to all devices or systems that perform.
  • the present invention has been made to solve at least a part of the above-mentioned problems, and an object thereof is to improve safety in a plasma ablation system.
  • the present invention has been made to solve at least a part of the above-mentioned problems, and can be realized as the following forms.
  • a plasma ablation system has a long outer shape and a plasma guide wire having a first electrode having conductivity formed at the tip portion, and a long outer shape and has conductivity on the tip side.
  • a catheter in which a second electrode is formed and a lumen for inserting the plasma guide wire is formed inside, and the plasma guide wire and the catheter are electrically connected to each other, and the first electrode and the said.
  • the second electrode is provided with an RF generator that outputs high-frequency power, and the plasma guide wire can ablate living tissue by discharging between the first electrode and the second electrode.
  • the RF generator outputs the high-frequency power pulse-modulated to have a discharge power of 50 W or more and 100 W or less and a duty ratio of 7.4% or more and 40.0% or less.
  • the plasma ablation system includes a plasma guide wire having a conductive first electrode formed at the tip portion and a catheter having a conductive second electrode formed at the tip end side. Therefore, by outputting high-frequency power to the first electrode and the second electrode with the plasma guide wire inserted in the catheter, the energy released by the discharge between the first electrode and the second electrode Can be used to ablate living tissue. Further, the RF generator outputs high frequency power pulse-modulated to have a discharge power of 50 W or more and 100 W or less and a duty ratio of 7.4% or more and 40.0% or less.
  • the first electrode is provided for a flexible (less rigid) guide wire as compared with the conventional configuration such as, for example, a piercing device, a probe, a cutting electrode, and a conductive blade.
  • the steam layer generated around the first electrode during ablation can be minimized, and the bounce of the tip of the plasma guide wire due to the vibration of surrounding substances can be suppressed.
  • this configuration it is possible to improve the safety in the plasma ablation system.
  • the RF generator may output the high frequency power pulse-modulated to a duty ratio of 9.1% or more and 13.0% or less. According to this configuration, the RF generator outputs high frequency power pulse-modulated with a duty ratio of 9.1% or more and 13.0% or less. Therefore, the size and depth of the holes formed by the ablation can be further increased while minimizing the vapor layer at the time of ablation and suppressing the bounce of the tip of the plasma guide wire.
  • the tip load of the plasma guide wire may be 0.3 gf or more and 20.0 gf or less. According to this configuration, since the tip load of the plasma guide wire is 0.3 gf or more and 20.0 gf or less, the tip portion of the plasma guide wire can be flexibly configured to improve safety.
  • the plasma guide wire has conductivity in addition to the first electrode, and has conductivity with a core shaft having a long outer shape.
  • the first electrode comprises a coil body arranged so as to surround a part on the tip end side of the core shaft, and a covering portion having an insulating property and arranged so as to cover the outer periphery of the coil body, and the first electrode is the core shaft.
  • the coil body, and each tip of the covering portion may be fixed. According to this configuration, since the plasma guide wire includes a coil body having conductivity arranged so as to surround a part on the tip end side of the core shaft, the skin effect on the tip end side of the core shaft can be reduced, and the core can be reduced.
  • the diameter of the tip side of the shaft can be made smaller than that of the base end side. Further, since the plasma guide wire includes an insulating covering portion arranged so as to cover the outer periphery of the coil body, safety can be improved. As a result, the tip side of the plasma guide wire can be configured more flexibly, and the safety of the plasma ablation system can be further improved.
  • the catheter has conductivity in addition to the second electrode, is formed on the proximal end side of the catheter, and is electrically connected to the RF generator.
  • a connection portion that has conductivity and electrically connects the base end side electrode to the base end side electrode, and is embedded in a thick portion of the catheter. And may be provided.
  • the catheter is a connection portion for electrically connecting the second electrode formed on the distal end side and the proximal end side electrode formed on the proximal end side, and is connected to the thick portion of the catheter. It has a buried connection.
  • connection portion is entangled with the outer peripheral surface of the catheter and the operation is hindered, and the connection portion is inserted into the catheter. It is possible to prevent the operation from being entangled with the plasma. As a result, the operability of the plasma ablation system can be improved.
  • the catheter may further include a mesh-shaped reinforcing portion in which a wire is woven into a mesh, and a reinforcing portion embedded in a thick portion of the catheter. good. According to this configuration, since the catheter further includes a mesh-shaped reinforcing portion in which a wire is woven into a mesh, it is possible to suppress the deflection of the catheter and improve the shape retention of the catheter.
  • the linear distance between the first electrode of the plasma guide wire and the second electrode of the catheter may be 10 mm or more and 50 mm or less. .. According to this configuration, the linear distance between the first electrode of the plasma guide wire and the second electrode of the catheter is 10 mm or more and 50 mm or less, so that the hole formed in the living tissue by ablation The depth can be in a good range.
  • a plasma guide wire has conductivity and insulation with a core shaft having a long outer shape and a coil body having conductivity and arranged so as to surround a part on the tip end side of the core shaft.
  • a covering portion having and arranged so as to cover the outer periphery of the coil body, and a first electrode having conductivity and fixing the tips of the core shaft, the coil body, and the covering portion, respectively.
  • the tip load of the plasma guide wire is 0.3 gf or more and 20.0 gf or less.
  • the plasma guide wire can reduce the skin effect on the tip side of the core shaft by the coil body having conductivity, so that the diameter of the tip side of the core shaft is smaller than that on the base end side.
  • the tip side of the plasma guide wire can be flexibly configured.
  • safety can be improved by the insulating covering portion arranged so as to cover the outer periphery of the coil body.
  • the tip end portion of the plasma guide wire may be pre-shaped. According to this configuration, since the tip of the plasma guide wire is pre-shaped, the angle formed by the tip of the plasma guide wire and the living tissue can be increased as compared with the case where the tip of the plasma guide wire is not pre-shaped. As a result, the depth of the holes formed in the living tissue by ablation can be within a good range.
  • the present invention can be realized in various aspects, for example, a plasma guide wire, an RF generator, a plasma ablation system including a plasma guide wire and an RF generator, a method for manufacturing these devices and systems, and these devices. It can be realized in the form of a control method of an RF generator when outputting high frequency power to a system or a system, a computer program, or the like.
  • FIG. 1 is a schematic view showing the overall configuration of the plasma ablation system 100.
  • the plasma ablation system 100 is used for the purpose of opening a chronic total occupation (CTO) by ablating a living tissue, and treating mild to moderate stenosis, significant stenosis, arrhythmia, and the like.
  • the plasma ablation system 100 includes a plasma guide wire 1, a catheter 2, and an RF generator 3.
  • a case where the plasma ablation system 100 is used for opening a CTO in a blood vessel will be described by way of example. It can be used by inserting it into the living lumen such as the airway system, digestive system, secretory gland and reproductive organ.
  • FIG. 1 in the plasma ablation system 100, the axis passing through the center of the plasma guide wire 1 and the catheter 2 is represented by an axial line O (dashed-dotted line).
  • the axis O coincides with the axis passing through the center of the plasma guide wire 1 excluding a part on the distal end side and the center of the catheter 2.
  • the axis O may be different from each central axis of the plasma guide wire 1 and the catheter 2.
  • FIG. 1 shows XYZ axes that are orthogonal to each other.
  • the X-axis corresponds to the longitudinal direction of the plasma guide wire 1 and the catheter 2
  • the Y-axis corresponds to the height direction of the plasma guide wire 1 and the catheter 2
  • the Z-axis corresponds to the width direction of the plasma guide wire 1 and the catheter 2. do.
  • the left side (-X-axis direction) of FIG. 1 is referred to as the "tip side” of the plasma guide wire 1, the catheter 2, and each component
  • the right side (+ X-axis direction) of FIG. 1 is the plasma guide wire 1, the catheter 2, and the catheter 2. It is called the "base end side" of each component. Of both ends in the longitudinal direction (X-axis direction), one end located on the tip side is called the "tip”, and the other end located on the base end side is called the "base end”.
  • the tip and its vicinity are referred to as a "tip portion”, and the proximal end and its vicinity are referred to as a "base end portion”.
  • the distal end side is inserted into the living body, and the proximal end side is operated by a surgeon such as a doctor. These points are also common to FIGS. 1 and later.
  • the plasma guide wire 1 has a long outer shape, and a conductive first electrode 11 is formed at the tip thereof. The detailed configuration of the plasma guide wire 1 will be described later. As shown in FIG. 1, the plasma guide wire 1 is used in a state of being inserted into the lumen 21L (FIG. 2) of the catheter 2.
  • the catheter 2 has a long outer shape, a second electrode 23 having conductivity is formed on the distal end side, and a lumen 21L for inserting the plasma guide wire 1 is formed inside.
  • the catheter 2 of the present embodiment includes a shaft portion 21, a tip tip 22, a second electrode 23, a proximal end side electrode 24, and a cable 25.
  • hatching of diagonal lines is attached to the second electrode 23 and the proximal end side electrode 24.
  • FIG. 2 is an explanatory view illustrating the cross-sectional configuration of the catheter 2 in the line AA of FIG.
  • the shaft portion 21 has a main body portion 211, a reinforcing portion 212, and a connecting portion 213.
  • the main body portion 211 constitutes a thick portion of the catheter 2 and is a member that insulates the reinforcing portion 212 and the connecting portion 213.
  • the main body portion 211 has a hollow substantially cylindrical shape with both ends open.
  • the lumen of the main body 211 functions as a lumen 21L for inserting the plasma guide wire 1.
  • the opening on the base end side of the main body portion 211 is also referred to as a "base end opening 21b".
  • the outer diameter and length of the main body 211 can be arbitrarily determined.
  • At least one of the outer peripheral surface and the inner peripheral surface of the main body portion 211 may be coated with a hydrophilic resin or a hydrophobic resin. In this case, the outer peripheral surface and the inner peripheral surface of the main body portion 211 may be coated with different types of resins, or may be coated with the same resin.
  • the reinforcing portion 212 is a member for reinforcing the main body portion 211.
  • the reinforcing portion 212 has a mesh shape in which conductive strands are woven into a mesh.
  • the reinforcing portion 212 is embedded inside the main body portion 211, inside the connecting portion 213. By providing such a reinforcing portion 212, it is possible to suppress the bending of the catheter 2 and improve the shape retention of the catheter 2.
  • the catheter 2 may be configured not to include the reinforcing portion 212.
  • the connecting portion 213 has conductivity, and electrically connects the second electrode 23 and the proximal end side electrode 24.
  • the connecting portion 213 has a coil shape in which a conductive wire is spirally wound along the circumferential direction of the shaft portion 21.
  • the connecting portion 213 is embedded inside the main body portion 211 and outside the reinforcing portion 212.
  • the tip of the connecting portion 213 is electrically connected to the second electrode 23.
  • the proximal end portion of the connecting portion 213 is electrically connected to the proximal end side electrode 24.
  • the second electrode 23, the proximal end side electrode 24, and the connecting portion 213 form one conductor.
  • the connection portion 213 may be a single-row coil formed by winding one wire into a single wire, or may be a multi-row coil formed by winding a plurality of wires in multiple rows. It may be a single-strand stranded coil formed by winding a stranded wire obtained by twisting a plurality of strands into a single wire, or a plurality of stranded wires obtained by twisting a plurality of strands. It may be a multi-strand stranded coil formed by winding each stranded wire in multiple strands.
  • the tip tip 22 is provided on the most tip side of the catheter 2 (that is, the tip of the catheter 2).
  • the tip tip 22 has an outer shape whose diameter is reduced from the proximal end side to the distal end side in order to facilitate the progress of the catheter 2 in the blood vessel.
  • the tip tip 22 is formed with a through hole that penetrates the tip tip 22 in the O-axis direction. This through hole communicates with the lumen 21L of the shaft portion 21.
  • the opening on the tip end side of the through hole of the tip tip 22 is also referred to as “tip opening 21a”.
  • the outer diameter and length of the tip tip 22 can be arbitrarily determined.
  • the second electrode 23 has conductivity and causes a discharge with the first electrode 11 of the plasma guide wire 1.
  • the second electrode 23 is an annular member arranged at the tip of the shaft portion 21 so as to surround the outer peripheral surface of the shaft portion 21.
  • the base end side electrode 24 has conductivity and is electrically connected to the first terminal 31 of the RF generator 3 via the cable 25.
  • the base end side electrode 24 is an annular member arranged so as to surround the outer peripheral surface of the shaft portion 21 in a part of the base end side of the shaft portion 21.
  • the lengths of the second electrode 23 and the proximal end side electrode 24 can be arbitrarily determined.
  • the cable 25 is a conductive electric wire.
  • the cable 25 is connected to the base end side electrode 24.
  • the main body 211 can be formed of any insulating material, for example, polyolefins such as polyethylene, polypropylene and ethylene-propylene copolymer, polyesters such as polyethylene terephthalate, polyvinyl chloride and ethylene-vinyl acetate copolymers. , Cross-linked ethylene-vinyl acetate copolymer, thermoplastic resin such as polyurethane, polyamide elastomer, polyolefin elastomer, polyurethane elastomer, silicone rubber, latex rubber and the like.
  • the tip 22 is preferably flexible and can be formed of, for example, a resin material such as polyurethane or polyurethane elastomer.
  • any material can be used for the reinforcing portion 212, the connecting portion 213, the second electrode 23, and the proximal end side electrode 24 as long as they have conductivity, for example, stainless steel such as SUS316 and SUS304, and nickel titanium. It can be formed of an alloy, an alloy containing gold, platinum, tungsten, which is an X-ray opaque material, or the like.
  • the reinforcing portion 212, the connecting portion 213, the second electrode 23, and the proximal end side electrode 24 may be formed of the same material or may be formed of different materials.
  • FIG. 3 is an explanatory view illustrating the cross-sectional configuration of the plasma guide wire 1.
  • the plasma guide wire 1 of the present embodiment includes a first electrode 11, a core shaft 14, a coil body 15, a covering portion 17, a tip marker 122, and a connector 18 (FIG. 1 and FIG. 3). 1) and a cable 19 (FIG. 1) are provided.
  • the first electrode 11 has conductivity and causes an electric discharge with the second electrode 23 of the catheter 2.
  • the first electrode 11 is provided on the most distal end side of the plasma guide wire 1 (that is, the distal end portion of the plasma guide wire 1).
  • the first electrode 11 has an outer shape whose diameter is reduced from the proximal end side to the distal end side in order to smooth the progress of the plasma guide wire 1 in the blood vessel.
  • the first electrode 11 fixes the tip of the core shaft 14, the tip of the covering portion 17, and the tip of the coil body 15, respectively.
  • the first electrode 11 is joined to the tips of the core shaft 14 and the coil body 15 by laser welding or the like.
  • the core shaft 14 has conductivity and is a member constituting the central axis of the plasma guide wire 1.
  • the core shaft 14 has an elongated outer shape extending in the longitudinal direction of the plasma guide wire 1.
  • the core shaft 14 has a small diameter portion 141, a first tapered portion 142, a second tapered portion 143, and a large diameter portion 144 from the tip end to the base end.
  • the small diameter portion 141 is a portion having the smallest outer diameter of the core shaft 14, and has a substantially cylindrical shape having a substantially constant outer diameter from the tip end to the base end.
  • the first tapered portion 142 is a portion provided between the small diameter portion 141 and the second tapered portion 143, and has an outer shape whose diameter is reduced from the proximal end side to the distal end side.
  • the second tapered portion 143 is a portion provided between the first tapered portion 142 and the large diameter portion 144, and the outer diameter is reduced from the proximal end side to the distal end side at an angle different from that of the first tapered portion 142. It has a diametered outer shape.
  • the large diameter portion 144 is a portion having the thickest outer diameter of the core shaft 14, and has a substantially cylindrical shape having a substantially constant outer diameter from the tip end to the base end.
  • a cable 19 (FIG. 1) is electrically connected to the base end portion of the large diameter portion 144.
  • FIG. 4 is an explanatory diagram illustrating the cross-sectional configuration of the coil body 15 in the line BB of FIG. 2.
  • the coil body 15 has conductivity and is arranged so as to surround a part of the core shaft 14 on the distal end side.
  • the coil body 15 is arranged so as to surround the entire small diameter portion 141 and a part of the first tapered portion 142 on the distal end side.
  • the coil body 15 is a multi-strand stranded coil formed by using a plurality of stranded wires 151 in which a plurality of strands are twisted and winding each stranded wire in multiple rows.
  • the coil body 15 may be a single-row coil formed by winding one wire into a single wire, or a multi-row coil formed by winding a plurality of wires into multiple rows. It may be a single-strand stranded coil formed by winding a stranded wire obtained by twisting a plurality of strands into a single-strand.
  • the tip of the coil body 15 is fixed to the tip of the core shaft 14 by the first electrode 11.
  • the base end of the coil body 15 is fixed to a part of the core shaft 14 (specifically, the first tapered portion 142) by the fixing portion 152.
  • the fixing portion 152 is a member for fixing the coil body 15 and the core shaft 14.
  • the fixing portion 152 can be formed by brazing with a hard brazing such as silver brazing or gold brazing.
  • the fixed portion 152 may be formed by welding the coil body 15 and the core shaft 14 by laser welding or the like.
  • the covering portion 17 is a member that insulates a part or all of the coil body 15 and the core shaft 14 from the outside.
  • the covering portion 17 has an insulating property, and is arranged so as to cover the outer peripheral surface of the coil body 15 and the outer peripheral surface of the core shaft 14 located on the proximal end side of the coil body 15.
  • the covering portion 17 has a substantially cylindrical shape having a substantially constant outer diameter from the tip end to the base end.
  • the tip of the covering portion 17 is fixed to the tip of the core shaft 14 by the first electrode 11.
  • the base end portion of the covering portion 17 is joined to the base end portion of the core shaft 14.
  • any joining agent such as silver brazing, gold brazing, zinc, metal solder such as Sn-Ag alloy, Au-Sn alloy, or epoxy adhesive is bonded. Agents are available.
  • a gap may be formed between the covering portion 17 and the core shaft 14. Therefore, the covering portion 17 may have a substantially cylindrical shape having a substantially constant outer diameter from the tip end to the base end. Further, there may be no gap between the covering portion 17 and the core shaft 14, and the inner peripheral surface of the covering portion 17 and the outer peripheral surface of the core shaft 14 may be in contact with each other.
  • the tip marker 122 has an insulating property and is colored in an arbitrary color, and functions as a mark indicating the position of the first electrode 11.
  • the tip marker 122 is an annular member arranged so as to surround the outer peripheral surface of the covering portion 17 at the tip portion of the covering portion 17.
  • the connector 18 is provided on the most proximal side of the plasma guide wire 1 and is used when the operator grips the plasma guide wire 1.
  • a cable 19 electrically connected to the core shaft 14 extends from the connector 18.
  • the cable 19 is a conductive electric wire.
  • the plasma guide wire 1 of the present embodiment has a tip load of 0.3 gf or more and 20.0 gf or less.
  • the tip load means the maximum force applied to the lesion when the guide wire is pressed.
  • the tip load of the plasma guide wire 1 can be the weight measured when the tip of the plasma guide wire 1 is pressed against the precision scale.
  • the first electrode 11 can be formed of any conductive material, for example, chrome molybdenum steel, nickel chrome molybdenum steel, stainless steel such as SUS304, nickel-titanium alloy, or the like.
  • the first electrode 11 may be formed by melting the tip of the core shaft 14 with a laser or the like. In this case, the first electrode 11 is formed as a part of the tip of the core shaft 14 (in other words, a part of the tip of the core shaft 14 functions as the first electrode 11).
  • the core shaft 14 can be formed of any conductive material, for example, chrome molybdenum steel, nickel chrome molybdenum steel, stainless steel such as SUS304, nickel-titanium alloy, or the like.
  • the coil body 15 can be formed of any conductive material, for example, a stainless steel such as SUS304, a nickel-titanium alloy, an alloy containing gold, platinum, and tungsten which are X-ray opaque materials.
  • the covering portion 17 and the tip marker 122 can be formed of any insulating material, for example, a copolymer (PFA) of ethylene tetrafluoride and perfluoroalkoxyethylene, polyethylene, polypropylene, or an ethylene-propylene co-weight.
  • PFA copolymer
  • Polyolefins such as coalesced, polyesters such as polyethylene terephthalate, polyvinyl chloride, ethylene-vinyl acetate copolymers, crosslinked ethylene-vinyl acetate copolymers, thermoplastic resins such as polyurethane, polyamide elastomers, polyolefin elastomers, silicone rubber, It can be formed of a superengineering plastic such as latex rubber, polyether ether ketone, polyetherimide, polyamideimide, polysulfone, polyimide, or polyethersulfon.
  • polyesters such as polyethylene terephthalate, polyvinyl chloride, ethylene-vinyl acetate copolymers, crosslinked ethylene-vinyl acetate copolymers, thermoplastic resins such as polyurethane, polyamide elastomers, polyolefin elastomers, silicone rubber, It can be formed of a superengineering plastic such as latex rubber, polyether
  • the RF generator 3 is a device that outputs high frequency power between the first terminal 31 and the second terminal 32.
  • the first terminal 31 is electrically connected to the catheter 2 via the first cable 33 and the first cable connector 34.
  • the second terminal 32 is electrically connected to the plasma guide wire 1 via the second cable 35 and the second cable connector 36.
  • the first cable 33 and the second cable 35 are electric wires having conductivity.
  • the first cable connector 34 and the second cable connector 36 are connection terminals for physically and electrically connecting cables to each other.
  • the high frequency power output from the first terminal 31 is transmitted to the second electrode 23 via the first cable 33, the first cable connector 34, the cable 25, the proximal end side electrode 24, and the connection portion 213. Will be done.
  • the high frequency power output from the second terminal 32 is transmitted to the first electrode 11 via the second cable 35, the second cable connector 36, the cable 19, and the core shaft 14.
  • FIG. 5 is an explanatory diagram showing the state of ablation.
  • FIG. 5A shows a state when the plasma guide wire 1 and the catheter 2 are delivered to the vicinity of the CTO 200.
  • FIG. 5B shows a situation when ablation is not performed correctly.
  • FIG. 5C shows a state when the ablation is performed correctly.
  • the surgeon delivers the catheter 2 to the vicinity of the CTO 200, and then causes the first electrode 11 of the plasma guide wire 1 to protrude from the tip opening 21a of the catheter 2 and then.
  • High-frequency power is output from the RF generator 3 while being positioned near the CTO200.
  • a streamer corona discharge is generated between the first electrode 11 and the second electrode 23 due to the potential difference between the first electrode 11 of the plasma guide wire 1 and the second electrode 23 of the catheter 2.
  • This streamer corona discharge can ablate the CTO200 (living tissue) in the vicinity of the first electrode 11 of the plasma guide wire 1.
  • the energy released from the first electrode 11 causes the surrounding environment of the living tissue to be in an excited state to generate plasma or steam, and the energy evaporates the living tissue. Therefore, during ablation, a vapor layer accompanied by shock waves and cavitation (air bubbles generated by the pressure difference in the liquid) is generated around the electrodes, and the surrounding substances vibrate.
  • the plasma guide wire 1 of the present embodiment has a tip load of 0.3 gf or more and 20.0 gf or less and is flexible. Therefore, when the conventional high-frequency power is output from the RF generator 3, as shown in FIG. 5B, the tip of the plasma guide wire 1 is bounced by the vibration accompanying the steam layer VL, and the CTO200 Ablation cannot be performed correctly.
  • the high frequency power output from the RF generator 3 is set to the next discharge condition a1 or discharge condition a2.
  • the discharge condition a2 is more preferable than the discharge condition a1.
  • (A1) High-frequency power pulse-modulated with a discharge power of 50 W or more and 100 W or less and a duty ratio of 7.4% or more and 40.0% or less.
  • (A2) High-frequency power pulse-modulated with a discharge power of 50 W or more and 100 W or less and a duty ratio of 9.1% or more and 13.0% or less.
  • the size of the vapor layer VL can be made smaller than in the conventional case, and a sufficient output for ablation can be obtained.
  • the bounce of the tip of the plasma guide wire 1 can be suppressed, and the hole 201 can be formed in the CTO 200.
  • FIG. 6 is a diagram illustrating pulse modulation of the RF generator 3.
  • FIG. 6 illustrates a case where a pulse width pa is 2 ⁇ s and a pulse interval pi is modulated to 14 ⁇ s as one pulse, and this is repeated n times (n is a natural number).
  • the RF generator 3 of the present embodiment uses an AC pulse as shown in FIG.
  • the reason why it is preferable to adopt the discharge power and the duty ratio (pa / (pa + pi) ⁇ 100) described in the discharge conditions a1 and a2 described above will be described in the RF generator 3 of the present embodiment.
  • FIG. 7 is a graph showing the test results regarding the size of the vapor layer.
  • the discharge conditions of the RF generator 3 were set to the following discharge conditions b1 to b3.
  • the discharge conditions b1 to b3 the state of the first electrode 11 of the plasma guide wire 1 when the pulse interval pi was changed was photographed with a high-speed camera, and the size of the vapor layer VL was measured.
  • the length of the portion having the largest diameter of the vapor layer VL was adopted. In FIG.
  • the horizontal axis represents the value of the pulse interval pi ( ⁇ s), and the vertical axis represents the value of the size of the vapor layer (mm).
  • the horizontal axis represents the value of the pulse interval pi ( ⁇ s)
  • the vertical axis represents the value of the size of the vapor layer (mm).
  • FIG. 8A shows the state of the plasma guide wire 1 before ablation.
  • FIG. 8B shows the state of the plasma guide wire 1 after ablation.
  • FIG. 9A is a top view of the hole 302 formed in the alternative model 300.
  • FIG. 9B is a cross-sectional view of the hole 302 formed in the alternative model 300.
  • an alternative model 300 of biological tissue made of urethane sponge and a physiological saline solution simulating body fluid The alternative model 300 is placed in a state of being immersed in physiological saline. Then, as shown in FIG. 8A, the first electrode 11 is brought into contact with the surface 301 of the alternative model 300 in a state where the tip end side of the plasma guide wire 1 is projected from the tip opening 21a of the catheter 2. .. In this experiment, the angle ⁇ formed by the central axis O of the catheter 2 and the surface 301 of the alternative model 300 is 10 degrees. Further, the linear distance L1 between the first electrode 11 of the plasma guide wire 1 and the second electrode 23 of the catheter 2 is set to 10 mm. In the illustrated example, the tip end side of the plasma guide wire 1 is pre-shaped.
  • the holes 302 formed in the alternative model 300 were investigated. Specifically, the diameter HL of the hole 302 and the depth HD of the hole 302 were measured for each of the plurality of holes 302 formed in the alternative model 300. As shown in FIG. 9A, the diameter HL of the hole 302 adopts the length of the portion having the largest diameter of the hole 302 formed on the surface 301. As shown in FIG. 9B, the depth HD of the hole 302 adopts the length from the surface 301 at the deepest portion of the hole 302.
  • FIG. 10 is a graph showing the test results regarding the effect of ablation.
  • the transition of the diameter HL of the hole 302 measured by the method described with reference to FIGS. 8 and 9 is represented by a broken line
  • the transition of the depth HD of the hole 302 is represented by a solid line.
  • the vertical axis of FIG. 10 represents the measured value (mm) of the hole 302
  • the horizontal axis represents the value ( ⁇ s) of the pulse interval pi.
  • the pulse interval pi is 13 ⁇ s or more and 25 ⁇ s or less
  • the diameter HL of the hole 302 is relatively large and the depth HD is deep as compared with other parts. You can see that.
  • FIG. 11 is an explanatory diagram of the method of the effectiveness evaluation test by catching.
  • FIG. 11A shows the state of ablation.
  • FIG. 11B shows a state in which the tip end portion of the plasma guide wire 1 is caught in the hole 302 formed by ablation.
  • FIG. 11C shows a state in which the tip end portion of the plasma guide wire 1 is not caught in the hole 302 formed by ablation.
  • the hole 302 formed by ablation is preferably large and deep enough to catch the tip of the plasma guide wire 1.
  • FIG. 12 is a graph showing the results of the effectiveness evaluation test due to catching.
  • FIG. 12 shows the effectiveness evaluation results in which the case where the tip of the plasma guide wire 1 is caught is “A” and the case where the tip of the plasma guide wire 1 is not caught is “B” for each pulse interval pi. ing.
  • the pulse interval pi is 3 ⁇ s or more and 25 ⁇ s or less
  • FIG. 13 is a diagram for explaining the range of the pulse interval based on the test result regarding the effect of ablation and the effectiveness evaluation test result by catching. From the results of the effectiveness evaluation test by catching, it can be seen that the effectiveness can be obtained if the pulse interval pi is within the range of 3 ⁇ s or more and 25 ⁇ s or less (FIG. 13: within the range of the broken line frame). Further, from the balance between the diameter HL of the hole 302 formed by ablation and the depth HD, when the pulse interval pi is within the range of 13 ⁇ s or more and 20 ⁇ s or less (FIG. 13: within the range of the solid line frame). It can be seen that the effectiveness is particularly high.
  • the duty ratio is obtained by dividing the pulse width pa by the sum of the pulse width pa and the pulse interval pi and multiplying by 100 (pa / (pa + pi) ⁇ 100). Therefore, it can be seen that the effectiveness can be obtained by setting the duty ratio of the RF generator 3 to 7.4% or more and 40.0% or less (FIG. 13: within the range of the broken line frame, the discharge condition a1). ). Further, regarding the discharge conditions of the RF generator 3, if the duty ratio is 9.1% or more and 13.0% or less, it can be seen that the effectiveness is particularly high (FIG. 13: within the range of the solid line frame, discharge condition a2). ..
  • FIG. 14 is an explanatory diagram showing the test results regarding the electric power at the time of discharge.
  • the following c1 and c2 were obtained while changing the "discharge voltage" of the discharge condition b1 to 400V, 600V, 800V, 1000V, and 1200V, respectively.
  • C1 The size of the vapor layer VL formed. As the size of the vapor layer VL, the length of the portion having the largest diameter of the vapor layer VL in the image of the first electrode 11 taken by the high-speed camera was adopted.
  • the power value is the RF generator 3 with a resistor (resistor from 20 ohms to 5000 ohms) connected between the first electrode 11 of the plasma guide wire 1 and the second electrode 23 of the catheter 2. It was obtained by measuring the currents flowing between the first electrode 11 and the second electrode 23 when the high frequency power was output from the above.
  • FIG. 14 (A) shows the result of the test c1.
  • FIG. 14A shows the size (mm) of the vapor layer VL for each voltage (V).
  • the magnitude of the voltage and the magnitude of the vapor layer VL have a proportional relationship.
  • the pulse interval pi at which the effectiveness can be obtained.
  • the size of the vapor layer VL in the range of is 0.75 mm or more and 2.16 mm or less.
  • FIG. 14B shows the result of the test c2.
  • a curve showing the relationship between the magnitude of the resistance load and the power value is drawn for each voltage (V).
  • the vertical axis of FIG. 14B represents the power value (W) obtained in the test c2
  • the horizontal axis represents the magnitude (ohms) of the resistance load in the resistors adopted in the test c2, respectively.
  • the resistance of living tissue and body fluid is generally 1000 ohms or less.
  • the discharge voltage is higher than 400V, lower than 800V, and about 600V is appropriate. Therefore, in FIG. 14B, referring to the curve (solid line) of the discharge voltage of 600 V in the range where the resistance load is 1000 ohms or less, it can be seen that the discharge power is preferably 50 W or more and 100 W or less. ..
  • the high frequency power output from the RF generator 3 is obtained. It can be seen that the effect of ablation can be obtained while suppressing the bounce of the tip portion of the plasma guide wire 1 by setting the discharge condition a1 or the discharge condition a2 described above.
  • the plasma guide wire 1 having the first electrode 11 having conductivity formed on the tip portion and the second electrode 23 having conductivity formed on the tip side are formed.
  • the catheter 2 is provided. Therefore, by outputting high-frequency power to the first electrode 11 and the second electrode 23 with the plasma guide wire 1 inserted into the catheter 2, between the first electrode 11 and the second electrode 23.
  • the energy released by the electric discharge can be used to ablate the CTO200 (living tissue).
  • the RF generator 3 outputs high-frequency power pulse-modulated to have a discharge power of 50 W or more and 100 W or less and a duty ratio of 7.4% or more and 40.0% or less (discharge condition a1). ..
  • the first electrode 11 is provided for the flexible (less rigid) guide wire 1 as compared with the conventional configuration such as a piercing device, a probe, a cutting electrode, and a conductive blade.
  • the steam layer VL generated around the first electrode 11 during ablation can be minimized, and the bounce of the tip of the guide wire 1 due to the vibration of the surrounding substance can be suppressed.
  • the safety of the plasma ablation system 100 can be improved.
  • the RF generator 3 may output high frequency power pulse-modulated to a duty ratio of 9.1% or more and 13.0% or less (discharge condition a2). By doing so, the size and depth of the holes formed by the ablation can be further increased while minimizing the vapor layer VL at the time of ablation and suppressing the bounce of the tip portion of the plasma guide wire 1.
  • the plasma guide wire 1 of the first embodiment includes the coil body 15 having conductivity arranged so as to surround a part of the tip end side of the core shaft 14, the skin effect on the tip end side of the core shaft 14 is reduced. Therefore, the diameter of the tip end side of the core shaft 14 can be made smaller than that of the base end side. Further, since the plasma guide wire 1 includes an insulating covering portion 17 arranged so as to cover the outer periphery of the coil body 15, safety can be improved. As a result, the tip end side of the plasma guide wire 1 can be configured more flexibly, and the safety of the plasma ablation system 100 can be further improved.
  • the tip load of the plasma guide wire 1 of the first embodiment is 0.3 gf or more and 20.0 gf or less, the tip portion of the plasma guide wire 1 can be flexibly configured to improve safety. As a result, according to the first embodiment, it is possible to provide the plasma guide wire 1 suitable for ablation using a plasma flow.
  • the catheter 2 of the first embodiment is a connection portion 213 that electrically connects the second electrode 23 formed on the distal end side and the proximal end side electrode 24 formed on the proximal end side, and is a catheter.
  • a connection portion 213 embedded in the main body portion 211 (thick portion) of 2 is provided. Therefore, as compared with the case where the connection portion 213 is exposed to the outside or the inside of the catheter 2, the connection portion 213 is entangled with the outer peripheral surface of the catheter 2 and the operation is hindered, and the connection portion 213 is inside the catheter 2. It is possible to prevent the plasma guide wire 1 from being entangled with the plasma guide wire 1 and obstructing the operation. As a result, the operability of the plasma ablation system 100 can be improved.
  • FIG. 15 is an explanatory diagram illustrating the cross-sectional configuration of the plasma guide wire 1A of the second embodiment.
  • the plasma ablation system 100 of the second embodiment includes the plasma guide wire 1A shown in FIG. 15 in place of the plasma guide wire 1 described in the first embodiment.
  • the plasma guide wire 1A does not include the coil body 15 described in the first embodiment and the fixing portion 152.
  • the configuration of the plasma guide wire 1A can be variously changed, and the coil body 15 may be omitted. Even in the plasma ablation system 100 including the plasma guide wire 1A of the second embodiment, the same effect as that of the first embodiment can be obtained. Further, according to the plasma guide wire 1A of the second embodiment, since the coil body 15 is not provided, the diameter of the tip end side of the plasma guide wire 1A can be reduced and the number of parts constituting the plasma guide wire 1A is reduced. Therefore, the manufacturing man-hours and manufacturing cost of the plasma guide wire 1A can be reduced.
  • FIGS. 8 to 10 show a test for the effect of ablation
  • FIGS. 11 and 12 show an effectiveness evaluation test by catching.
  • FIG. 13 the range of the pulse interval based on the test results of FIGS. 8 to 12 was described.
  • these conditions d1 and d2 were evaluated.
  • (D1) A linear distance L1 between the first electrode 11 of the plasma guide wire 1 and the second electrode 23 of the catheter 2 (hereinafter, also referred to as “distance between electrodes L1”).
  • (D2) An angle ⁇ formed by the central axis O of the catheter 2 and the surface 301 of the alternative model 300 (hereinafter, also referred to as “electrode angle ⁇ ”).
  • FIG. 16 is an explanatory diagram of a test method regarding the distance between electrodes L1.
  • an alternative model 300 of a biological tissue made of urethane sponge and a physiological saline solution simulating a body fluid are prepared, and the alternative model 300 is placed in a state of being immersed in the physiological saline solution.
  • the first electrode 11 is brought into contact with the surface 301 of the alternative model 300 in a state where the tip end side of the plasma guide wire 1 is projected from the tip opening 21a of the catheter 2.
  • the first electrode 11 is brought into contact with the surface 301 of the sample 300 so that the pushing amount D1 of the first electrode 11 is 1 mm.
  • FIG. 16 is an explanatory diagram of a test method regarding the distance between electrodes L1.
  • the indentation amount D1 means that the surface 301 near the end of the alternative model 300 to which the force from the first electrode 11 is not applied is in contact with the first electrode 11 of the alternative model 300. It means the difference in height between the surface 301 and the surface of the portion.
  • the angle (electrode angle ⁇ ) formed by the central axis O of the catheter 2 and the surface 301 of the alternative model 300 was set to 10 degrees, and the tip end side of the plasma guide wire 1 was pre-shaped. The tip load of the plasma guide wire 1 was 3.5 gf.
  • the return electrode 41 of the return wire 4 was used as an electrode to replace the second electrode 23 of the catheter 2.
  • the plasma guide wire 1 of the present embodiment is flexible because the tip load is 0.3 gf or more and 20.0 gf or less. Therefore, when the distance L1 between the first electrode 11 and the second electrode 23 shown in FIG. 16 is directly changed for evaluation, the influence of the support force imparted (improved rigidity) by the catheter 2 may affect the evaluation result. There is. Therefore, in this test, the return electrode 41 of the return wire 4 was used instead of the second electrode 23 of the catheter 2 for evaluation.
  • the return wire 4 is provided with a conductive return electrode 41 at the tip of the conductive coil body 42.
  • the base end side of the coil body 42 is covered with a covering portion 43 made of an insulating resin.
  • the linear distance L1a between the first electrode 11 of the plasma guide wire 1 and the return electrode 41 of the return wire 4 is the first electrode 11 of the plasma guide wire 1 and the second electrode 23 of the catheter 2.
  • the evaluation was performed assuming that it was the same as the linear distance L1 between the electrodes (that is, the distance L1 between the electrodes).
  • FIG. 17 is a diagram showing a method of measuring the depth HD of the hole 302.
  • FIG. 17A shows an alternative model 300 in which the holes 302 are formed.
  • FIG. 17B shows how the alternative model 300 is cut.
  • the depth HD of the hole 302 is measured as follows. First, as shown in FIG. 17A, the alternative model 300 in which the hole 302 is formed is cut along the longitudinal direction of the hole 302 by using a feather cutter 5. Then, using a digital microscope, a cross-sectional image of one of the cut pieces 300a or 300b of the alternative model 300 is taken to obtain a cross-sectional image. The depth HD of the hole 302 is measured by analyzing the obtained cross-sectional image using a well-known image processing software (for example, ImageJ).
  • a well-known image processing software for example, ImageJ
  • the hole 302 formed in the alternative model 300 by ablation is not always formed deepest in the direction perpendicular to the surface 301 of the alternative model 300, but in a direction inclined with respect to the surface 301 of the alternative model 300. It may be formed deepest. According to the above measurement method, the depth HD of not only the hole 302 in the direction perpendicular to the surface 301 of the alternative model 300 but also the hole 302 inclined with respect to the surface 301 of the alternative model 300 is accurately measured. can.
  • the HD measurement method was the same for the tests shown in FIGS. 8 to 10 (tests relating to the effect of ablation) and the tests shown in FIGS. 11 and 12 (effectiveness evaluation test by catching).
  • FIG. 18 is a graph showing the test results regarding the distance between electrodes L1.
  • the vertical axis of FIG. 18 represents the depth (mm) of the hole 302, and the horizontal axis represents the distance between electrodes L1a (that is, the distance between electrodes L1).
  • the tip end 22 having a length of about several mm in the central axis O direction is arranged on the tip end side of the second electrode 23.
  • the distance L1 between the electrodes is made larger than 50 mm for ablation in order to advance both the plasma guide wire 1 and the catheter 2 instead of either one while performing plasma ablation. Is hard to imagine.
  • FIG. 19 is an explanatory diagram of a test method relating to an electrode angle ⁇ .
  • an alternative model 300 of a biological tissue made of urethane sponge and a physiological saline solution simulating a body fluid are prepared, and the alternative model 300 is placed in a state of being immersed in the physiological saline solution.
  • the first electrode 11 is pushed into the surface 301 of the alternative model 300 with the tip end side of the plasma guide wire 1 protruding from the tip opening 21a of the catheter 2, and the pushing amount D1 is 1 mm.
  • a plasma guide wire 1 having a tip load of 3.5 gf is used, and the linear distance L1 (distance between electrodes L1) between the first electrode 11 of the plasma guide wire 1 and the second electrode 23 of the catheter 2 is set to 10 mm.
  • the tip side of the plasma guide wire 1 was pre-shaped at 45 degrees. As shown in FIG. 19, the pre-shape angle ⁇ 1 is an angle formed by the central axis O of the catheter 2 and the central axis O1 of the tip end portion of the plasma guide wire 1.
  • FIG. 20 is a graph showing the test results regarding the electrode angle ⁇ .
  • the vertical axis of FIG. 20 represents the hole depth (mm), and the horizontal axis represents the electrode angle ⁇ .
  • the discharge condition of the RF generator 3 was first implemented in the range of the distance L1 between electrodes used in a normal procedure. It was found that a good effect can be obtained by setting the discharge condition a1 or the discharge condition a2 described in the embodiment. Specifically, if the linear distance L1 (distance between electrodes L1) between the first electrode 11 of the plasma guide wire 1 and the second electrode 23 of the catheter 2 is 10 mm or more and 50 mm or less, plasma The depth of the holes formed in the living tissue by ablation using the guide wire 1 can be set within a good range.
  • the depth of the holes formed in the living tissue by ablation can be within a good range.
  • the angle ⁇ 2 formed by the tip of the plasma guide wire 1 and the living tissue is the central axis O1 of the tip of the plasma guide wire 1 and the surface of the living tissue (in the example of FIG. 19, in the example of FIG. 19). It is an acute angle formed by the surface 301) of the alternative model 300.
  • the configuration of the plasma ablation system 100 can be changed in various ways.
  • another device such as a pad having an electrode corresponding to the second electrode and a guide wire having an electrode corresponding to the second electrode may be used.
  • the plasma ablation system 100 may be configured to include other input / output devices (for example, a foot switch, an input / output touch panel, an operation lever, an operation button) (for example) (not shown).
  • the plasma ablation system 100 may be configured to include other inspection devices (for example, CT device, MRI device, X-ray image pickup device, ultrasonic image pickup device, etc.) (not shown).
  • the configuration of the plasma guide wire 1 can be changed in various ways.
  • the tip load of the plasma guide wire 1 may be less than 0.3 gf or larger than 20.0 gf.
  • the configuration of the core shaft 14 described above is merely an example, and at least a part of the small diameter portion 141, the first tapered portion 142, and the second tapered portion 143 may be omitted.
  • the shape of the first electrode 11 can be arbitrarily changed, and can be any shape such as arrowhead shape, spherical shape, columnar shape, and polygonal columnar shape.
  • the tip marker 122 and the base end side electrode 24 may be omitted.
  • the catheter 2 exemplifies a so-called OTW type (over-the-wire type) catheter having openings at the distal end and the proximal end of the shaft portion 21.
  • the catheter 2 may be a so-called Rx type (rapid exchange type) catheter having a port (opening) for quickly inserting and removing a device such as a delivery guide wire or a plasma guide wire 1.
  • the port can be a through hole that communicates the outside and the inside of the lumen 21L at an arbitrary position between the tip end and the base end of the shaft portion 21.
  • the catheter 2 may be configured as a multi-lumen catheter having a plurality of lumens.
  • Second taper part 144 ... Thick diameter part 151 ... Twisted wire 152 ...
  • Fixed part 200 ... CTO 201 ... hole 211 ... main body 212 ... reinforcement 213 ... connection 300 ... alternative model 301 ... surface 302 ... hole

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Physics & Mathematics (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • Cardiology (AREA)
  • Surgical Instruments (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

プラズマアブレーションシステムは、先端部に導電性を有する第1電極が形成されたプラズマガイドワイヤと、先端側に導電性を有する第2電極が形成されると共に、内側にプラズマガイドワイヤを挿通させるためのルーメンが形成されたカテーテルと、プラズマガイドワイヤ及びカテーテルのそれぞれと電気的に接続され、第1電極と第2電極とに高周波電力を出力するRFジェネレータとを備える。プラズマガイドワイヤは、第1電極と第2電極との間の放電によって生体組織のアブレーションを行うことが可能であり、RFジェネレータは、放電時電力が50W以上かつ100W以下であり、かつ、デューティ比が7.4%以上かつ40.0%以下にパルス変調された高周波電力を出力する。

Description

プラズマアブレーションシステム、及び、プラズマガイドワイヤ
 本発明は、プラズマアブレーションシステム、及び、プラズマガイドワイヤに関する。
 近年、心臓の拍動リズムに異常をきたす不整脈等の治療方法として、アブレーション治療が知られている。例えば、特許文献1~5には、このようなアブレーション治療において使用可能な、プラズマ流を用いて生体組織(不整脈の原因となっている部分)を切断する装置及びシステムが開示されている。
 ここで、プラズマ流を用いたアブレーションでは、電極から放出されたエネルギーが生体組織に吸収され、沸点を超えた生体組織が蒸気やプラズマとなって噴出する。このため、アブレーションの際には、電極の周囲において、衝撃波やキャビテーション(液体中の圧力差により生じる気泡)を伴う蒸気層が生じ、周囲の物質が振動することが知られている。この点、特許文献1~5に記載の装置及びシステムでは、エネルギーを放出する電極を、穿刺装置や、プローブ、切断電極、導電性ブレードのような高剛性の部材に設けることで、アブレーション時の振動に耐えうる構成としている。
米国特許第9179932号明細書 特表2006-517843号公報 米国特許第6135998号明細書 米国特許第6780178号明細書 特表2018-524132号公報
 ところで、慢性完全閉塞(CTO:Chronic Total Occlusion)のように、血管内が病変部によって閉塞されてしまう場合がある。このような場合に、病変部をアブレーションすることで、CTOの開通を容易に行いたいという要望がある。しかし、特許文献1~5に記載の装置及びシステムでは、電極が設けられた部材(穿刺装置、プローブ、切断電極、導電性ブレード等)の剛性が、ガイドワイヤに比べて高い。このため、特許文献1~5に記載の穿刺装置等を、複雑に湾曲した血管内において病変部まで押し進めることは、安全性の観点から好ましくないという課題があった。なお、このような課題は、血管系に限らず、リンパ腺系、胆道系、尿路系、気道系、消化器官系、分泌腺及び生殖器官といった生体管腔内に対して挿入され、アブレーション治療を行う装置またはシステムの全般に共通する。
 本発明は、上述した課題の少なくとも一部を解決するためになされたものであり、プラズマアブレーションシステムにおいて、安全性の向上を図ることを目的とする。
 本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態として実現することが可能である。
(1)本発明の一形態によれば、プラズマアブレーションシステムが提供される。このプラズマアブレーションシステムは、長尺状の外形を有し、先端部に導電性を有する第1電極が形成されたプラズマガイドワイヤと、長尺状の外形を有し、先端側に導電性を有する第2電極が形成されると共に、内側に前記プラズマガイドワイヤを挿通させるためのルーメンが形成されたカテーテルと、前記プラズマガイドワイヤ及び前記カテーテルのそれぞれと電気的に接続され、前記第1電極と前記第2電極とに高周波電力を出力するRFジェネレータと、を備え、前記プラズマガイドワイヤは、前記第1電極と前記第2電極との間の放電によって生体組織のアブレーションを行うことが可能であり、前記RFジェネレータは、放電時電力が50W以上かつ100W以下であり、かつ、デューティ比が7.4%以上かつ40.0%以下にパルス変調された前記高周波電力を出力する。
 この構成によれば、プラズマアブレーションシステムは、先端部に導電性を有する第1電極が形成されたプラズマガイドワイヤと、先端側に導電性を有する第2電極が形成されたカテーテルと、を備える。このため、プラズマガイドワイヤをカテーテル内に挿通させた状態で、第1電極と第2電極とに高周波電力を出力することで、第1電極と第2電極との間の放電によって放出されたエネルギーを用いて、生体組織のアブレーションを行うことができる。また、RFジェネレータは、放電時電力が50W以上かつ100W以下であり、かつ、デューティ比が7.4%以上かつ40.0%以下にパルス変調された高周波電力を出力する。このため、例えば、穿刺装置、プローブ、切断電極、導電性ブレードのような従来の構成と比べて、柔軟な(剛性の低い)ガイドワイヤに対して第1電極を設けた場合であっても、アブレーションの際に第1電極の周囲において生じる蒸気層を最小限に留めることができ、周囲の物質の振動に伴うプラズマガイドワイヤ先端部の跳ねを抑制できる。この結果、本構成によれば、プラズマアブレーションシステムにおいて、安全性の向上を図ることができる。
(2)上記形態のプラズマアブレーションシステムにおいて、前記RFジェネレータは、デューティ比が9.1%以上かつ13.0%以下にパルス変調された前記高周波電力を出力してもよい。
 この構成によれば、RFジェネレータは、デューティ比が9.1%以上かつ13.0%以下にパルス変調された高周波電力を出力する。このため、アブレーション時の蒸気層を最小限にしてプラズマガイドワイヤ先端部の跳ねを抑制しつつ、アブレーションにより形成される穴の大きさや深さを、より大きくできる。
(3)上記形態のプラズマアブレーションシステムにおいて、前記プラズマガイドワイヤの先端荷重は、0.3gf以上かつ20.0gf以下であってもよい。
 この構成によれば、プラズマガイドワイヤの先端荷重は、0.3gf以上かつ20.0gf以下であるため、プラズマガイドワイヤの先端部を柔軟に構成して、安全性を向上できる。
(4)上記形態のプラズマアブレーションシステムにおいて、前記プラズマガイドワイヤは、前記第1電極に加えてさらに、導電性を有し、長尺状の外形を有するコアシャフトと、導電性を有し、前記コアシャフトの先端側の一部分を取り囲んで配置されたコイル体と、絶縁性を有し、前記コイル体の外周を覆って配置された被覆部と、を備え、前記第1電極は、前記コアシャフト、前記コイル体、及び前記被覆部の各先端をそれぞれ固定していてもよい。
 この構成によれば、プラズマガイドワイヤは、コアシャフトの先端側の一部分を取り囲んで配置された導電性を有するコイル体を備えるため、コアシャフトの先端側における表皮効果を低減させることができ、コアシャフトの先端側を基端側と比べて細径化できる。また、プラズマガイドワイヤは、コイル体の外周を覆って配置された絶縁性を有する被覆部を備えるため、安全性を向上できる。これらの結果、プラズマガイドワイヤの先端側をより柔軟に構成できると共に、プラズマアブレーションシステムの安全性をより向上できる。
(5)上記形態のプラズマアブレーションシステムにおいて、前記カテーテルは、前記第2電極に加えてさらに、導電性を有し、前記カテーテルの基端側に形成されており、前記RFジェネレータと電気的に接続される基端側電極と、導電性を有し、前記第2電極と前記基端側電極とを電気的に接続する接続部であって、前記カテーテルの肉厚部に埋設されている接続部と、を備えてもよい。
 この構成によれば、カテーテルは、先端側に形成された第2電極と、基端側に形成された基端側電極とを電気的に接続する接続部であって、カテーテルの肉厚部に埋設されている接続部を備える。このため、接続部がカテーテルの外側または内側に露出している場合と比較して、接続部がカテーテルの外周面に絡みつき操作が阻害されることや、接続部がカテーテルに挿通されたプラズマガイドワイヤに絡みつき操作が阻害されることを抑制できる。この結果、プラズマアブレーションシステムの操作性を向上できる。
(6)上記形態のプラズマアブレーションシステムにおいて、前記カテーテルは、さらに、素線を網目織りにしたメッシュ形状の補強部であって、前記カテーテルの肉厚部に埋設されている補強部を備えてもよい。
 この構成によれば、カテーテルは、さらに、素線を網目織りにしたメッシュ形状の補強部を備えるため、カテーテルの撓みを抑制して、カテーテルの形状維持性を向上できる。
(7)上記形態のプラズマアブレーションシステムにおいて、前記プラズマガイドワイヤの前記第1電極と、前記カテーテルの前記第2電極と、の間の直線距離は、10mm以上、かつ、50mm以下であってもよい。
 この構成によれば、プラズマガイドワイヤの第1電極と、カテーテルの第2電極と、の間の直線距離は、10mm以上、かつ、50mm以下であるため、アブレーションにより生体組織に形成される穴の深さを良好な範囲とできる。
(8)本発明の一形態によれば、プラズマガイドワイヤが提供される。このプラズマガイドワイヤは、導電性を有し、長尺状の外形を有するコアシャフトと、導電性を有し、前記コアシャフトの先端側の一部分を取り囲んで配置されたコイル体と、絶縁性を有し、前記コイル体の外周を覆って配置された被覆部と、導電性を有し、前記コアシャフト、前記コイル体、及び前記被覆部の各先端をそれぞれ固定している第1電極と、を備え、プラズマガイドワイヤの先端荷重は、0.3gf以上かつ20.0gf以下である。
 この構成によれば、プラズマガイドワイヤは、導電性を有するコイル体によって、コアシャフトの先端側における表皮効果を低減させることができるため、コアシャフトの先端側を基端側と比べて細径化でき、プラズマガイドワイヤの先端側を柔軟に構成できる。また、コイル体の外周を覆って配置された絶縁性を有する被覆部によって、安全性を向上できる。これらの結果、本構成によれば、プラズマ流を用いたアブレーションに適したプラズマガイドワイヤを提供できる。
(9)上記形態のプラズマガイドワイヤにおいて、前記プラズマガイドワイヤの先端部は、プリシェイプされていてもよい。
 この構成によれば、プラズマガイドワイヤの先端部はプリシェイプされているため、プリシェイプされていない場合と比べて、プラズマガイドワイヤの先端部と生体組織とが成す角度を大きくできる。この結果、アブレーションにより生体組織に形成される穴の深さを良好な範囲とできる。
 なお、本発明は、種々の態様で実現することが可能であり、例えば、プラズマガイドワイヤ、RFジェネレータ、プラズマガイドワイヤとRFジェネレータとを備えるプラズマアブレーションシステム、これら装置やシステムの製造方法、これら装置やシステムに対して高周波電力を出力する際のRFジェネレータの制御方法、コンピュータプログラムなどの形態で実現することができる。
プラズマアブレーションシステムの全体構成を示す概略図である。 図1のA-A線におけるカテーテルの横断面構成を例示した説明図である。 プラズマガイドワイヤの断面構成を例示した説明図である。 図2のB-B線におけるコイル体の横断面構成を例示した説明図である。 アブレーションの様子を示す説明図である。 RFジェネレータのパルス変調について説明する図である。 蒸気層の大きさに関する試験結果を示すグラフである。 アブレーションの効果に関する試験方法の説明図である。 アブレーションの効果に関する試験方法の説明図である。 アブレーションの効果に関する試験結果を示すグラフである。 引っ掛かりによる有効性評価試験の方法の説明図である。 引っ掛かりによる有効性評価試験結果を示すグラフである。 アブレーションの効果に関する試験結果と、引っ掛かりによる有効性評価試験結果とを踏まえたパルスインターバルの範囲について説明する図である。 放電時電力に関する試験結果を示す説明図である。 第2実施形態のプラズマガイドワイヤの断面構成を例示した説明図である。 電極間距離に関する試験方法の説明図である。 穴の深さの計測方法を示す図である。 電極間距離に関する試験結果を示すグラフである。 電極角度に関する試験方法の説明図である。 電極角度に関する試験結果を示すグラフである。
<第1実施形態>
 図1は、プラズマアブレーションシステム100の全体構成を示す概略図である。プラズマアブレーションシステム100は、生体組織をアブレーションすることによって、慢性完全閉塞(CTO:Chronic Total Occlusion)を開通させたり、軽度~中等度の狭窄、有意狭窄、不整脈等を治療したりする目的で使用されるシステムである。プラズマアブレーションシステム100は、プラズマガイドワイヤ1と、カテーテル2と、RFジェネレータ3と、を備えている。以降では、プラズマアブレーションシステム100を、血管内のCTO開通のために用いる場合を例示して説明するが、プラズマアブレーションシステム100は、血管系に限らず、リンパ腺系、胆道系、尿路系、気道系、消化器官系、分泌腺及び生殖器官といった、生体管腔内に挿入して使用できる。
 図1では、プラズマアブレーションシステム100のうち、プラズマガイドワイヤ1とカテーテル2との中心を通る軸を軸線O(一点鎖線)で表す。図1の例では、軸線Oは、先端側の一部分を除くプラズマガイドワイヤ1の中心と、カテーテル2の中心と、を通る軸とそれぞれ一致している。しかし、軸線Oは、プラズマガイドワイヤ1及びカテーテル2の各中心軸と相違していてもよい。また、図1には、相互に直交するXYZ軸を図示する。X軸はプラズマガイドワイヤ1及びカテーテル2の長手方向に対応し、Y軸はプラズマガイドワイヤ1及びカテーテル2の高さ方向に対応し、Z軸はプラズマガイドワイヤ1及びカテーテル2の幅方向に対応する。図1の左側(-X軸方向)をプラズマガイドワイヤ1、カテーテル2、及び各構成部材の「先端側」と呼び、図1の右側(+X軸方向)をプラズマガイドワイヤ1、カテーテル2、及び各構成部材の「基端側」と呼ぶ。長手方向(X軸方向)における両端のうち、先端側に位置する一端を「先端」と呼び、基端側に位置する他端を「基端」と呼ぶ。先端及びその近傍を「先端部」と呼び、基端及びその近傍を「基端部」と呼ぶ。先端側は生体内部へ挿入され、基端側は医師等の術者により操作される。これらの点は、図1以降においても共通する。
 プラズマガイドワイヤ1は、長尺状の外形を有しており、先端部に導電性を有する第1電極11が形成されている。プラズマガイドワイヤ1の詳細な構成は、後述する。図1に示すように、プラズマガイドワイヤ1は、カテーテル2のルーメン21L(図2)に挿通した状態で使用される。
 カテーテル2は、長尺状の外形を有しており、先端側に導電性を有する第2電極23が形成されていると共に、内側にプラズマガイドワイヤ1を挿通させるためのルーメン21Lが形成されている。図1に示すように、本実施形態のカテーテル2は、シャフト部21と、先端チップ22と、第2電極23と、基端側電極24と、ケーブル25とを備える。なお、図1では、他の部材との区別のために、第2電極23と基端側電極24とに斜線のハッチングを付す。
 図2は、図1のA-A線におけるカテーテル2の横断面構成を例示した説明図である。図2に示すように、シャフト部21は、本体部211と、補強部212と、接続部213とを有している。
 本体部211は、カテーテル2の肉厚部を構成すると共に、補強部212と接続部213とを絶縁する部材である。本体部211は、両端部が開口した中空の略円筒形状を有している。本体部211の内腔は、プラズマガイドワイヤ1を挿通させるためのルーメン21Lとして機能する。以降、本体部211の基端側の開口を「基端開口21b」とも呼ぶ。なお、本体部211の外径及び長さは任意に決定できる。本体部211の外周面と内周面との少なくとも一方は、親水性樹脂や、疎水性樹脂を用いてコーティングされていてもよい。この場合、本体部211の外周面と内周面とは、それぞれ、種類が異なる樹脂によりコーティングされていてもよく、同一の樹脂によりコーティングされていてもよい。
 補強部212は、本体部211を補強するための部材である。補強部212は、導電性を有する素線を網目織りにしたメッシュ形状を有している。補強部212は、本体部211の内部において、接続部213よりも内側に埋設されている。このような補強部212を備えることによって、カテーテル2の撓みを抑制して、カテーテル2の形状維持性を向上できる。尚、カテーテル2が補強部212を備えない構成としてもよい。
 接続部213は、導電性を有しており、第2電極23と基端側電極24とを電気的に接続する。接続部213は、導電性を有する素線をシャフト部21の周方向に沿って螺旋状に巻回したコイル形状を有している。接続部213は、本体部211の内部において、補強部212よりも外側に埋設されている。接続部213の先端部は、第2電極23に電気的に接続されている。接続部213の基端部は、基端側電極24に電気的に接続されている。換言すれば、カテーテル2において、第2電極23、基端側電極24、及び接続部213は、一つの導電体を形成している。なお、接続部213は、1本の素線を単条に巻回して形成される単条コイルであってもよく、複数本の素線を多条に巻回して形成される多条コイルであってもよく、複数本の素線を撚り合せた撚線を単条に巻回して形成される単条撚線コイルであってもよく、複数本の素線を撚り合せた撚線を複数用い、各撚線を多条に巻回して形成される多条撚線コイルであってもよい。
 先端チップ22は、カテーテル2の最も先端側(すなわち、カテーテル2の先端部)に設けられている。先端チップ22は、血管内でのカテーテル2の進行をスムーズにするために、基端側から先端側にかけて縮径した外側形状を有している。先端チップ22には、軸線O方向に先端チップ22を貫通する貫通孔が形成されている。この貫通孔は、シャフト部21のルーメン21Lと連通している。以降、先端チップ22の貫通孔の先端側の開口を「先端開口21a」とも呼ぶ。なお、先端チップ22の外径及び長さは任意に決定できる。
 第2電極23は、導電性を有しており、プラズマガイドワイヤ1の第1電極11との間で放電を生じさせる。第2電極23は、シャフト部21の先端において、シャフト部21の外周面を取り囲むように配置された円環状の部材である。基端側電極24は、導電性を有しており、ケーブル25を介して、RFジェネレータ3の第1端子31と電気的に接続される。基端側電極24は、シャフト部21の基端側の一部分において、シャフト部21の外周面を取り囲むように配置された円環状の部材である。なお、第2電極23及び基端側電極24の長さは任意に決定できる。ケーブル25は、導電性を有する電線である。ケーブル25は、基端側電極24に接続されている。
 本体部211は、絶縁性を有する任意の材料により形成でき、例えば、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体などのポリオレフィン、ポリエチレンテレフタラートなどのポリエステル、ポリ塩化ビニル、エチレン-酢酸ビニル共重合体、架橋型エチレン-酢酸ビニル共重合体、ポリウレタンなどの熱可塑性樹脂、ポリアミドエラストマー、ポリオレフィンエラストマー、ポリウレタンエラストマー、シリコーンゴム、ラテックスゴム等により形成できる。先端チップ22は、柔軟性を有することが好ましく、例えば、ポリウレタン、ポリウレタンエラストマー等の樹脂材料により形成できる。
 補強部212、接続部213、第2電極23、及び基端側電極24は、それぞれ、導電性を有する限りにおいて任意の材料を用いることができ、例えば、SUS316、SUS304等のステンレス鋼、ニッケルチタン合金、X線不透過材料である金、白金、タングステンを含む合金等により形成できる。補強部212、接続部213、第2電極23、及び基端側電極24は、同一の材料により形成されていてもよく、それぞれ異なる材料により形成されていてもよい。
 図3は、プラズマガイドワイヤ1の断面構成を例示した説明図である。図1及び図3に示すように、本実施形態のプラズマガイドワイヤ1は、第1電極11と、コアシャフト14と、コイル体15と、被覆部17と、先端マーカ122と、コネクタ18(図1)と、ケーブル19(図1)とを備える。
 第1電極11は、導電性を有しており、カテーテル2の第2電極23との間で放電を生じさせる。第1電極11は、プラズマガイドワイヤ1の最も先端側(すなわち、プラズマガイドワイヤ1の先端部)に設けられている。第1電極11は、血管内でのプラズマガイドワイヤ1の進行をスムーズにするために、基端側から先端側にかけて縮径した外側形状を有している。第1電極11は、コアシャフト14の先端と、被覆部17の先端と、コイル体15の先端と、をそれぞれ固定している。第1電極11は、コアシャフト14、及びコイル体15の各先端と、レーザ溶接等により接合されている。
 コアシャフト14は、導電性を有しており、プラズマガイドワイヤ1の中心軸を構成する部材である。コアシャフト14は、プラズマガイドワイヤ1の長手方向に延びる長尺状の外形を有している。コアシャフト14は、先端から基端に向かって、細径部141と、第1テーパ部142と、第2テーパ部143と、太径部144とを有している。細径部141は、コアシャフト14の外径が最も細い部分であり、先端から基端まで略一定の外径を有する略円柱形状である。第1テーパ部142は、細径部141と第2テーパ部143との間に設けられた部分であり、基端側から先端側にかけて縮径した外側形状を有している。第2テーパ部143は、第1テーパ部142と太径部144との間に設けられた部分であり、基端側から先端側にかけて、第1テーパ部142とは異なる角度で外径が縮径した外側形状を有している。太径部144は、コアシャフト14の外径が最も太い部分であり、先端から基端まで略一定の外径を有する略円柱形状である。太径部144の基端部には、ケーブル19(図1)が電気的に接続されている。
 図4は、図2のB-B線におけるコイル体15の横断面構成を例示した説明図である。コイル体15は、導電性を有しており、コアシャフト14の先端側の一部分を取り囲んで配置されている。図3の例では、コイル体15は、細径部141の全体と、第1テーパ部142の先端側の一部分と、をそれぞれ取り囲んで配置されている。図4に示すように、コイル体15は、複数本の素線を撚り合せた撚線151を複数用い、各撚線を多条に巻回して形成される多条撚線コイルである。しかし、コイル体15は、1本の素線を単条に巻回して形成される単条コイルであってもよく、複数本の素線を多条に巻回して形成される多条コイルであってもよく、複数本の素線を撚り合せた撚線を単条に巻回して形成される単条撚線コイルであってもよい。
 コイル体15の先端は、第1電極11によって、コアシャフト14の先端と固定されている。コイル体15の基端は、固定部152によって、コアシャフト14(具体的には、第1テーパ部142)の一部分と固定されている。固定部152は、コイル体15とコアシャフト14とを固定する部材である。固定部152は、銀ロウ、金ロウ等の硬ロウでロウ付けすることにより形成できる。なお、固定部152は、コイル体15とコアシャフト14とをレーザ溶接等によって溶接することで形成してもよい。
 被覆部17は、外部からコイル体15とコアシャフト14の一部又は全部を絶縁する部材である。被覆部17は、絶縁性を有しており、コイル体15の外周面と、コイル体15よりも基端側に位置するコアシャフト14の外周面と、を覆うようにして配置されている。被覆部17は、先端から基端まで略一定の外径を有する略円柱形状である。被覆部17の先端は、第1電極11によって、コアシャフト14の先端と固定されている。被覆部17の基端部は、コアシャフト14の基端部と接合されている。被覆部17とコアシャフト14との接合には、任意の接合剤、例えば、銀ロウ、金ロウ、亜鉛、Sn-Ag合金、Au-Sn合金等の金属はんだや、エポキシ系接着剤などの接着剤を利用できる。図3に示すように、被覆部17とコアシャフト14との間には、隙間が形成されていてもよい。したがって、被覆部17は先端から基端まで略一定の外径を有する略円筒形状であってもよい。また、被覆部17とコアシャフト14との間には隙間がなく、被覆部17の内周面とコアシャフト14の外周面とが接触していてもよい。
 先端マーカ122は、絶縁性を有し、かつ、任意の色に着色されており、第1電極11の位置を表す目印として機能する。先端マーカ122は、被覆部17の先端部において、被覆部17の外周面を取り囲むように配置された円環状の部材である。
 図1に示すように、コネクタ18は、プラズマガイドワイヤ1の最も基端側に設けられており、術者がプラズマガイドワイヤ1を把持する際に用いられる。コネクタ18からは、コアシャフト14に電気的に接続されたケーブル19が延伸している。ケーブル19は、導電性を有する電線である。
 ここで、本実施形態のプラズマガイドワイヤ1は、先端荷重が、0.3gf以上かつ20.0gf以下である。先端荷重とは、ガイドワイヤを押し付けた際に病変部に加わる最大の力を意味する。プラズマガイドワイヤ1の先端荷重は、精密はかりにプラズマガイドワイヤ1の先端を押し当てた際に測定される重さとできる。
 第1電極11は、導電性を有する任意の材料により形成でき、例えば、クロムモリブデン鋼、ニッケルクロムモリブデン鋼、SUS304等のステンレス鋼、ニッケルチタン合金等により形成できる。なお、第1電極11は、コアシャフト14の先端部をレーザ等により溶融させることによって形成してもよい。この場合、第1電極11は、コアシャフト14の先端の一部分として形成される(換言すれば、コアシャフト14の先端の一部分が第1電極11として機能する)。
 コアシャフト14は、導電性を有する任意の材料により形成でき、例えば、クロムモリブデン鋼、ニッケルクロムモリブデン鋼、SUS304等のステンレス鋼、ニッケルチタン合金等により形成できる。コイル体15は、導電性を有する任意の材料により形成でき、例えば、SUS304等のステンレス鋼、ニッケルチタン合金、X線不透過材料である金、白金、タングステンを含む合金等により形成できる。
 被覆部17、及び先端マーカ122は、絶縁性を有する任意の材料により形成でき、例えば、四フッ化エチレンとパーフルオロアルコキシエチレンとの共重合体(PFA)、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体などのポリオレフィン、ポリエチレンテレフタラートなどのポリエステル、ポリ塩化ビニル、エチレン-酢酸ビニル共重合体、架橋型エチレン-酢酸ビニル共重合体、ポリウレタンなどの熱可塑性樹脂、ポリアミドエラストマー、ポリオレフィンエラストマー、シリコーンゴム、ラテックスゴム、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリアミドイミド、ポリサルフォン、ポリイミド、ポリエーテルサルフォン等のスーパーエンジニアリングプラスチック等により形成できる。
 図1に戻り、説明を続ける。RFジェネレータ3は、第1端子31と第2端子32との間に高周波電力を出力する装置である。第1端子31は、第1ケーブル33及び第1ケーブルコネクタ34を介して、カテーテル2に電気的に接続されている。第2端子32は、第2ケーブル35及び第2ケーブルコネクタ36を介して、プラズマガイドワイヤ1に電気的に接続されている。第1ケーブル33及び第2ケーブル35は、導電性を有する電線である。第1ケーブルコネクタ34及び第2ケーブルコネクタ36は、ケーブル同士を物理的かつ電気的に接続するための接続端子である。
 このため、第1端子31から出力された高周波電力は、第1ケーブル33、第1ケーブルコネクタ34、ケーブル25、基端側電極24、及び接続部213を介して、第2電極23へと伝達される。同様に、第2端子32から出力された高周波電力は、第2ケーブル35、第2ケーブルコネクタ36、ケーブル19、及びコアシャフト14を介して、第1電極11へと伝達される。
 図5は、アブレーションの様子を示す説明図である。図5(A)は、プラズマガイドワイヤ1及びカテーテル2をCTO200の近傍までデリバリした際の様子を示す。図5(B)は、アブレーションが正しく行われなかった場合の様子を示す。図5(C)は、アブレーションが正しく行われた場合の様子を示す。
 まず、図5(A)に示すように、術者は、カテーテル2をCTO200の近傍までデリバリした後、プラズマガイドワイヤ1の第1電極11を、カテーテル2の先端開口21aから突出させ、かつ、CTO200の近傍に位置させた状態で、RFジェネレータ3から高周波電力を出力する。すると、プラズマガイドワイヤ1の第1電極11と、カテーテル2の第2電極23との間の電位差に起因して、第1電極11と第2電極23との間にストリーマコロナ放電が発生する。このストリーマコロナ放電によって、プラズマガイドワイヤ1の第1電極11の近傍にあるCTO200(生体組織)をアブレーションすることができる。
 ここで、プラズマ流を用いたアブレーションでは、第1電極11から放出されたエネルギーにより、生体組織の周辺環境が励起状態となりプラズマや蒸気が生成され、そのエネルギーによって生体組織が蒸散する。このため、アブレーションの際には、電極の周囲において、衝撃波やキャビテーション(液体中の圧力差により生じる気泡)を伴う蒸気層が生じ、周囲の物質が振動する。上述の通り、本実施形態のプラズマガイドワイヤ1は、先端荷重が、0.3gf以上かつ20.0gf以下であり、柔軟である。このため、RFジェネレータ3から従来のような高周波電力を出力した場合、図5(B)に示すように、プラズマガイドワイヤ1の先端部が、蒸気層VLに伴う振動によって跳ねを生じて、CTO200のアブレーションが正しく行えない。
 そこで、本実施形態のプラズマアブレーションシステム100では、RFジェネレータ3から出力する高周波電力を、次の放電条件a1または放電条件a2とする。なお、放電条件a1よりも、放電条件a2の方がより好ましい。
(a1)放電時電力が50W以上かつ100W以下であり、かつ、デューティ比が7.4%以上かつ40.0%以下にパルス変調された高周波電力。
(a2)放電時電力が50W以上かつ100W以下であり、かつ、デューティ比が9.1%以上かつ13.0%以下にパルス変調された高周波電力。
そうすれば、図5(C)に示すように、蒸気層VLの大きさを従来と比べて小さくでき、かつ、アブレーションに十分な出力を得ることができる。この結果、図5(C)に示すように、プラズマガイドワイヤ1の先端部の跳ねを抑制でき、CTO200に穴201を形成できる。
 図6は、RFジェネレータ3のパルス変調について説明する図である。図6では、パルス幅paを2μsとし、パルスインターバルpiを14μsに変調したパルスを1パルスとして、これをn回(nは自然数)繰り返す場合を例示している。本実施形態のRFジェネレータ3は、図6に示すようなACパルスを用いる。以降では、本実施形態のRFジェネレータ3において、上述した放電条件a1,a2で説明した放電時電力と、デューティ比(pa/(pa+pi)×100)を採用することが好ましい理由について説明する。
 図7は、蒸気層の大きさに関する試験結果を示すグラフである。この試験では、RFジェネレータ3の放電条件を、次に示す放電条件b1~b3とした。
(b1)放電時電圧:700V
(b2)パルス幅pa:2μs
(b3)パルス数:200
そして、放電条件b1~b3のもと、パルスインターバルpiを変化させた際の、プラズマガイドワイヤ1の第1電極11の様子をハイスピードカメラで撮影し、蒸気層VLの大きさを測定した。なお、蒸気層VLの大きさには、蒸気層VLの直径が最も大きい部分の長さを採用した。図7には、横軸にパルスインターバルpiの値(μs)を表し、縦軸に蒸気層の大きさの値(mm)を表す。図7において、蒸気層の大きさの推移R1に示すように、蒸気層VLの大きさは、パルスインターバルpiが長くなるにつれて、小さくなることがわかる。
 図8及び図9は、アブレーションの効果に関する試験方法の説明図である。図8(A)は、アブレーション前のプラズマガイドワイヤ1の様子を表す。図8(B)は、アブレーション後のプラズマガイドワイヤ1の様子を表す。図9(A)は、代替モデル300に形成された穴302を上から見た図である。図9(B)は、代替モデル300に形成された穴302の断面図である。
 まず、ウレタンスポンジからなる生体組織の代替モデル300と、体液を模擬した生理食塩水を準備する。代替モデル300を、生理食塩水に浸した状態で載置する。その後、図8(A)に示すように、カテーテル2の先端開口21aからプラズマガイドワイヤ1の先端側を突出させた状態で、代替モデル300の表面301に対して、第1電極11を接触させる。本実験では、カテーテル2の中心軸Oと、代替モデル300の表面301とが成す角度θを10度とする。また、プラズマガイドワイヤ1の第1電極11と、カテーテル2の第2電極23と、の直線距離L1を10mmとする。なお、図示の例では、プラズマガイドワイヤ1の先端側は、プリシェイプされている。
 この状態で、上述した放電条件b1~b3のもと、パルスインターバルpiを変化させつつ、RFジェネレータ3から高周波電力を出力し、代替モデル300にそれぞれ形成された穴302について調べた。具体的には、代替モデル300に形成された複数の穴302について、それぞれ、穴302の直径HLと穴302の深さHDとを計測した。図9(A)に示すように、穴302の直径HLは、表面301に形成された穴302の直径が最も大きい部分の長さを採用した。図9(B)に示すように、穴302の深さHDは、穴302の深さが最も深い部分における、表面301からの長さを採用した。
 図10は、アブレーションの効果に関する試験結果を示すグラフである。図10には、図8及び図9で説明した方法によって測定した、穴302の直径HLの推移を破線で表し、穴302の深さHDの推移を実線で表している。図10の縦軸は、穴302の測定値(mm)を表し、横軸はパルスインターバルpiの値(μs)を表す。図10に示すように、パルスインターバルpiが13μs以上、かつ、25μs以下の範囲内では、他の部分と比較して、相対的に穴302の直径HLが大きく、かつ、深さHDが深くなることがわかる。
 図11は、引っ掛かりによる有効性評価試験の方法の説明図である。図11(A)は、アブレーションの様子を表す。図11(B)は、アブレーションにより形成された穴302に、プラズマガイドワイヤ1の先端部が引っ掛かる場合の様子を表す。図11(C)は、アブレーションにより形成された穴302に、プラズマガイドワイヤ1の先端部が引っ掛からない場合の様子を表す。
 まず、図8及び図9で説明したと同様の条件(具体的には、角度θ=10度、距離L1=10mm、放電条件b1~b3)のもと、パルスインターバルpiを変化させつつ、RFジェネレータ3から高周波電力を出力し、代替モデル300のアブレーションを行う。その後、図11(B),(C)に示すように、プラズマガイドワイヤ1を左右に移動させて、プラズマガイドワイヤ1の先端部が、代替モデル300に形成された穴302に引っかかるか否かについて評価した。ここで、血管内に挿入されたプラズマガイドワイヤ1は、血流や、手元の細かな振動等の影響を受けて、図11(B),(C)に示すように、先端部が動く場合がある。このような場合に、プラズマガイドワイヤ1の先端部が穴302に引っかかると、先端部の位置ずれを抑制して、CTO200の開通が容易になる。一方、プラズマガイドワイヤ1の先端部が穴302に引っかからない場合は、先端部が位置ずれして、CTO200の開通に手間と時間を要する。このため、図11(B)に示すように、アブレーションにより形成される穴302は、プラズマガイドワイヤ1の先端部が引っ掛かる程度の大きさと深さであることが好ましい。
 図12は、引っ掛かりによる有効性評価試験結果を示すグラフである。図12には、各パルスインターバルpiごとに、プラズマガイドワイヤ1の先端部の引っ掛かりを生じた場合を「A」とし、引っ掛かりを生じなかった場合を「B」とした有効性の評価結果を表している。図12に示すように、パルスインターバルpiが3μs以上、かつ、25μs以下の範囲内では、角度θ=10度のように、カテーテル2と代替モデル300との成す角度が浅い角度である場合にも引っ掛かりを生じ、CTO200の開通が容易になることがわかる。
 図13は、アブレーションの効果に関する試験結果と、引っ掛かりによる有効性評価試験結果とを踏まえたパルスインターバルの範囲について説明する図である。引っ掛かりによる有効性評価試験結果により、パルスインターバルpiを3μs以上、かつ、25μs以下の範囲内(図13:破線枠の範囲内)とすれば、有効性が得られることがわかる。また、アブレーションにより形成される穴302の直径HLと深さHDとのバランスから、パルスインターバルpiを13μs以上、かつ、20μs以下の範囲内(図13:実線枠の範囲内)とした場合に、特に有効性が高いことがわかる。ここで、デューティ比は、パルス幅paを、パルス幅paとパルスインターバルpiとを加算したもので除し、100を乗じることで求められる(pa/(pa+pi)×100)。このため、RFジェネレータ3の放電条件について、デューティ比を7.4%以上かつ40.0%以下とすれば、有効性が得られることがわかる(図13:破線枠の範囲内、放電条件a1)。また、RFジェネレータ3の放電条件について、デューティ比が9.1%以上かつ13.0%以下とすれば、特に有効性が高いことがわかる(図13:実線枠の範囲内、放電条件a2)。
 図14は、放電時電力に関する試験結果を示す説明図である。本試験では、放電条件b1の「放電時電圧」を、400V,600V,800V,1000V,1200Vのそれぞれに変化させつつ、次に示すc1,c2を求めた。この際、放電条件b2,b3は、上述の通り(b2=2μs,b3=200)とし、かつ、パルスインターバルpiは14μsとした。
(c1)形成される蒸気層VLの大きさ。蒸気層VLの大きさは、ハイスピードカメラで撮影した第1電極11の画像において、蒸気層VLの直径が最も大きい部分の長さを採用した。
(c2)抵抗負荷を20オームから5000オームまで変化させた際の電力値。電力値は、プラズマガイドワイヤ1の第1電極11と、カテーテル2の第2電極23との間に、抵抗器(20オームから5000オームまでの抵抗器)をそれぞれ接続した状態で、RFジェネレータ3から高周波電力を出力した際の、第1電極11と第2電極23との間に流れる電流をそれぞれ測定することにより求めた。
 図14(A)は、試験c1の結果を表す。図14(A)には、各電圧(V)ごとの、蒸気層VLの大きさ(mm)を表している。図14(A)に示すように、電圧の大きさと、蒸気層VLの大きさとは比例関係となる。ここで、図13で検討した有効性が得られるパルスインターバルpiの範囲(3μs以上、かつ、25μs以下)と、図7の蒸気層の大きさに関する試験結果から、有効性が得られるパルスインターバルpiの範囲における蒸気層VLの大きさは、0.75mm以上、かつ、2.16mm以下である。そして、図14(A)の試験結果によると、当該範囲(有効性が得られるパルスインターバルpiの範囲における蒸気層VLの大きさの範囲)内となる放電時電圧は、400Vでは低すぎであり、800Vでは高すぎであり、600Vが適当であることがわかる。
 図14(B)は、試験c2の結果を表す。図14(B)には、各電圧(V)ごとに、抵抗負荷の大きさと電力値との関係を示す曲線を描いている。図14(B)の縦軸は、試験c2により求めた電力値(W)を表し、横軸は、試験c2でそれぞれ採用した抵抗器における抵抗負荷の大きさ(ohms)を表す。生体組織や体液の抵抗は、概ね1000オーム以下である。また、図14(A)の検討結果から、放電時電圧は400Vより高く、800Vより低く、600V前後が適当である。従って、図14(B)において、抵抗負荷が1000オーム以下の範囲における、放電時電圧600Vの曲線(実線)を参照すると、放電時電力は、50W以上かつ100W以下とすることが好ましいことがわかる。
 以上のように、図7から図14において説明した各試験の結果により、従来のデバイスよりも柔軟なプラズマガイドワイヤ1を備える本実施形態のプラズマアブレーションシステム100では、RFジェネレータ3から出力する高周波電力を、上述した放電条件a1または放電条件a2とすることによって、プラズマガイドワイヤ1の先端部の跳ねを抑制しつつ、アブレーションの効果を得られることがわかる。
 以上のように、第1実施形態のプラズマアブレーションシステム100は、先端部に導電性を有する第1電極11が形成されたプラズマガイドワイヤ1と、先端側に導電性を有する第2電極23が形成されたカテーテル2と、を備える。このため、プラズマガイドワイヤ1をカテーテル2内に挿通させた状態で、第1電極11と第2電極23とに高周波電力を出力することで、第1電極11と第2電極23との間の放電によって放出されたエネルギーを用いて、CTO200(生体組織)のアブレーションを行うことができる。また、RFジェネレータ3は、放電時電力が50W以上かつ100W以下であり、かつ、デューティ比が7.4%以上かつ40.0%以下にパルス変調された高周波電力を出力する(放電条件a1)。このため、例えば、穿刺装置、プローブ、切断電極、導電性ブレードのような従来の構成と比べて、柔軟な(剛性の低い)ガイドワイヤ1に対して第1電極11を設けた場合であっても、アブレーションの際に第1電極11の周囲において生じる蒸気層VLを最小限に留めることができ、周囲の物質の振動に伴うガイドワイヤ1先端部の跳ねを抑制できる。この結果、本実施形態によれば、プラズマアブレーションシステム100において、安全性の向上を図ることができる。
 また、RFジェネレータ3は、デューティ比が9.1%以上かつ13.0%以下にパルス変調された高周波電力を出力してもよい(放電条件a2)。そうすれば、アブレーション時の蒸気層VLを最小限にしてプラズマガイドワイヤ1の先端部の跳ねを抑制しつつ、アブレーションにより形成される穴の大きさや深さを、より大きくできる。
 さらに、第1実施形態のプラズマガイドワイヤ1は、コアシャフト14の先端側の一部分を取り囲んで配置された導電性を有するコイル体15を備えるため、コアシャフト14の先端側における表皮効果を低減させることができ、コアシャフト14の先端側を基端側と比べて細径化できる。また、プラズマガイドワイヤ1は、コイル体15の外周を覆って配置された絶縁性を有する被覆部17を備えるため、安全性を向上できる。これらの結果、プラズマガイドワイヤ1の先端側をより柔軟に構成できると共に、プラズマアブレーションシステム100の安全性をより向上できる。
 さらに、第1実施形態のプラズマガイドワイヤ1の先端荷重は、0.3gf以上かつ20.0gf以下であるため、プラズマガイドワイヤ1の先端部を柔軟に構成して、安全性を向上できる。これらの結果、第1実施形態によれば、プラズマ流を用いたアブレーションに適したプラズマガイドワイヤ1を提供できる。
 さらに、第1実施形態のカテーテル2は、先端側に形成された第2電極23と、基端側に形成された基端側電極24とを電気的に接続する接続部213であって、カテーテル2の本体部211(肉厚部)に埋設されている接続部213を備える。このため、接続部213がカテーテル2の外側または内側に露出している場合と比較して、接続部213がカテーテル2の外周面に絡みつき操作が阻害されることや、接続部213がカテーテル2内部のプラズマガイドワイヤ1に絡みつき操作が阻害されることを抑制できる。この結果、プラズマアブレーションシステム100の操作性を向上できる。
<第2実施形態>
 図15は、第2実施形態のプラズマガイドワイヤ1Aの断面構成を例示した説明図である。第2実施形態のプラズマアブレーションシステム100は、第1実施形態で説明したプラズマガイドワイヤ1に代えて、図15に示すプラズマガイドワイヤ1Aを備える。プラズマガイドワイヤ1Aは、第1実施形態で説明したコイル体15と、固定部152とを備えていない。
 このように、プラズマガイドワイヤ1Aの構成は種々の変更が可能であり、コイル体15が省略されてもよい。このような第2実施形態のプラズマガイドワイヤ1Aを備えるプラズマアブレーションシステム100においても、第1実施形態と同様の効果を奏することができる。また、第2実施形態のプラズマガイドワイヤ1Aによれば、コイル体15を有さないため、プラズマガイドワイヤ1Aの先端側を細径化できると共に、プラズマガイドワイヤ1Aを構成する部品の数を少なくして、プラズマガイドワイヤ1Aの製造工数と製造コストを低減できる。
<電極間距離及び電極角度に関する評価>
 上記実施形態において、図8~図10では、アブレーションの効果に関する試験を行い、図11,12では、引っ掛かりによる有効性評価試験を行った。そして、図13では、これら図8~図12の試験結果を踏まえたパルスインターバルの範囲について説明した。ここで、図8~図10の試験(アブレーションの効果に関する試験)、及び、図11,12の試験(引っ掛かりによる有効性評価試験)では、便宜上、下記条件d1,d2について「距離L1=10mm、角度θ=10度」であると固定した。以降では、これら条件d1,d2に対する評価を行った。
(d1)プラズマガイドワイヤ1の第1電極11と、カテーテル2の第2電極23と、の直線距離L1(以降「電極間距離L1」とも呼ぶ)。
(d2)カテーテル2の中心軸Oと、代替モデル300の表面301とが成す角度θ(以降「電極角度θ」とも呼ぶ)。
 図16は、電極間距離L1に関する試験方法の説明図である。まず、ウレタンスポンジからなる生体組織の代替モデル300と、体液を模擬した生理食塩水を準備し、代替モデル300を生理食塩水に浸した状態で載置する。その後、図16に示すように、カテーテル2の先端開口21aからプラズマガイドワイヤ1の先端側を突出させた状態で、代替モデル300の表面301に対して、第1電極11を接触させる。この際、サンプル300の表面301に対する第1電極11の押し込み量D1が1mmとなるように、第1電極11を接触させる。押し込み量D1とは、図16に示すように、代替モデル300のうち第1電極11からの力が付加されていない端部近傍の表面301と、代替モデル300のうち第1電極11が接触している部分の表面301と、の間の高さの差を意味する。尚、本実験においても、カテーテル2の中心軸Oと、代替モデル300の表面301とが成す角度(電極角度θ)を10度とし、プラズマガイドワイヤ1の先端側をプリシェイプした。なお、プラズマガイドワイヤ1の先端荷重は、3.5gfとした。
 また、本実験では、カテーテル2の第2電極23に代替する電極として、リターンワイヤ4のリターン電極41を用いた。本実施形態のプラズマガイドワイヤ1は、上述の通り、先端荷重が0.3gf以上かつ20.0gf以下とされており柔軟である。このため、図16に示す第1電極11と第2電極23との間の距離L1を直接変更して評価した場合、カテーテル2によるサポート力付与(剛性向上)の影響が評価結果に影響する虞がある。そこで、本試験では、カテーテル2の第2電極23に代えて、リターンワイヤ4のリターン電極41を用いて評価を行った。
 リターンワイヤ4は、導電性を有するコイル体42の先端部に、導電性を有するリターン電極41が設けられている。コイル体42の基端側は、絶縁性樹脂からなる被覆部43により被覆されている。本試験では、プラズマガイドワイヤ1の第1電極11と、リターンワイヤ4のリターン電極41との間の直線距離L1aが、プラズマガイドワイヤ1の第1電極11と、カテーテル2の第2電極23との間の直線距離L1(すなわち電極間距離L1)と同じであるとみなして評価を行った。具体的には、第1電極11とリターン電極41との間の直線距離L1aを変化させつつ、上述した放電条件b1~b3のもと、RFジェネレータ3から200パルス×60回の高周波電力を出力して、代替モデル300にそれぞれ形成された穴302について調べた。
 図17は、穴302の深さHDの計測方法を示す図である。図17(A)は、穴302が形成された代替モデル300を示す。図17(B)は、代替モデル300をカットする様子を示す。穴302の深さHDは次のようにして計測する。まず、図17(A)に示すように、穴302が形成された代替モデル300を、穴302の長手方向に沿って、フェザーカッター5を用いて切断する。その後、デジタルマイクロスコープを用いて、代替モデル300の切断片300aまたは300bの一方の断面撮影を行い、断面画像を得る。得られた断面画像を、周知の画像処理ソフトウェア(例えば、ImageJ)を用いて解析することで、穴302の深さHDを計測する。アブレーションにより代替モデル300に形成される穴302は、必ずしも代替モデル300の表面301に対して垂直な方向に最も深く形成されるとは限らず、代替モデル300の表面301に対して傾斜した方向に最も深く形成されることもある。上記計測方法によれば、代替モデル300の表面301に対して垂直な方向の穴302のみならず、代替モデル300の表面301に対して傾斜した穴302についても、その深さHDを正確に計測できる。
 なお、押し込み量D1を1mmとする点、先端荷重が3.5gfのプラズマガイドワイヤ1を用いる点、RFジェネレータ3から200パルス×60回の高周波電力を出力する点、及び、穴302の深さHDの計測方法については、図8~図10の試験(アブレーションの効果に関する試験)、及び、図11,12の試験(引っ掛かりによる有効性評価試験)についても同じとした。
 図18は、電極間距離L1に関する試験結果を示すグラフである。図18の縦軸は、穴302の深さ(mm)を表し、横軸は電極間距離L1a(すなわち電極間距離L1)を表す。図18のバーRAは、同条件で複数回(本試験では3回)試験を行った際の測定結果の標準偏差の範囲を表し、点CEは標準偏差の範囲の中心点を表す。図18の結果から、電極間距離L1=10mm以上、かつ、30mm以下とすれば、穴302の深さHDをより深くできることがわかる。また、通常の手技で用いられる電極間距離L1の範囲である、L1=10mm以上、かつ、50mm以下では、良好な穴302の深さHDが得られることがわかる。なお、電極間距離L1を10mmよりも小さくした場合も、穴302の深さHDをより深くできることは、図18に示す試験結果から容易に予測できる。しかしながら、本実施形態のカテーテル2では、第2電極23よりも先端側に中心軸O方向の長さが数mm程度の先端チップ22が配置されている。そうすると、実際の手技において、視認性があまり良くないX線透視下で、プラズマガイドワイヤ1の第1電極11が確実にカテーテル2の先端チップ22から突出していることを視認しながらアブレーションを行う必要があることを鑑みると、電極間距離L1を10mmよりも小さくすることは想定し難い。他方、実際の手技においては、プラズマによるアブレーションを行いながら、プラズマガイドワイヤ1とカテーテル2のどちらか一方ではなく両方を前進させていくため、電極間距離L1を50mmよりも大きくしてアブレーションすることは想定し難い。
 図19は、電極角度θに関する試験方法の説明図である。まず、ウレタンスポンジからなる生体組織の代替モデル300と、体液を模擬した生理食塩水を準備し、代替モデル300を生理食塩水に浸した状態で載置する。その後、図19に示すように、カテーテル2の先端開口21aからプラズマガイドワイヤ1の先端側を突出させた状態で、代替モデル300の表面301に対して、第1電極11を押し込み量D1が1mmとなるように接触させる。本実験では、先端荷重が3.5gfのプラズマガイドワイヤ1を用い、プラズマガイドワイヤ1の第1電極11と、カテーテル2の第2電極23との直線距離L1(電極間距離L1)を10mmとし、プラズマガイドワイヤ1の先端側を45度でプリシェイプした。なお、プリシェイプ角度θ1は、図19に示すように、カテーテル2の中心軸Oと、プラズマガイドワイヤ1の先端部の中心軸O1と、が成す角度である。
 この状態で、カテーテル2の中心軸Oと、代替モデル300の表面301とが成す角度θ(電極角度θ)を変化させつつ、上述した放電条件b1~b3のもと、RFジェネレータ3から200パルス×60回の高周波電力を出力して、代替モデル300にそれぞれ形成された穴について調べた。穴の深さの計測方法は、図17で説明した方法を用いた。
 図20は、電極角度θに関する試験結果を示すグラフである。図20の縦軸は、穴の深さ(mm)を表し、横軸は電極角度θを表す。図20では、同条件で3回試験を行った際に得られた結果を、それぞれ黒丸でプロットしている。図20の結果から、電極角度θが大きくなるにつれて穴の深さも深くできるものの、通常の手技で用いられる電極角度θの範囲である、θ=10度以上、かつ、50度以下では、良好な穴の深さが得られることがわかる。なお、電極角度θを10度よりも小さくすることは、プラズマガイドワイヤ1及びカテーテル2が血管内で使用されることを考慮すると、想定し難い。また、電極角度θを50度よりも大きくすることは、一般にプラズマガイドワイヤ1の先端をプリシェイプすることを考慮すると、想定し難い。
 以上のように、図16~図18の試験(電極間距離L1に関する試験)の結果から、通常の手技で使用される電極間距離L1の範囲においては、RFジェネレータ3の放電条件を第1実施形態で説明した放電条件a1または放電条件a2とすることにより、良好な効果が得られることがわかった。具体的には、プラズマガイドワイヤ1の第1電極11と、カテーテル2の第2電極23との間の直線距離L1(電極間距離L1)を、10mm以上、かつ、50mm以下とすれば、プラズマガイドワイヤ1を用いたアブレーションにより生体組織に形成される穴の深さを良好な範囲とできる。
 また、図19,20の試験(電極角度θに関する試験)の結果から、通常の手技で使用される電極角度θの範囲においては、RFジェネレータ3の放電条件を第1実施形態で説明した放電条件a1または放電条件a2とすることにより、良好な効果が得られることがわかった。ここで、上述の通り、第1,2実施形態のプラズマガイドワイヤ1の先端部はプリシェイプされているため、プリシェイプされていない場合と比べて、プラズマガイドワイヤ1の先端部と生体組織(図19の例では、代替モデル300)とが成す角度θ2を大きくできるため、電極角度θを大きくしたのと同様の効果を得ることができる。この結果、アブレーションにより生体組織に形成される穴の深さを良好な範囲とできる。なお、プラズマガイドワイヤ1の先端部と生体組織とが成す角度θ2は、図19に示すように、プラズマガイドワイヤ1の先端部の中心軸O1と、生体組織の表面(図19の例では、代替モデル300の表面301)とが成す鋭角である。
<本実施形態の変形例>
 本発明は上記の実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様において実施することが可能であり、例えば次のような変形も可能である。
 [変形例1]
 上記第1~2実施形態では、プラズマアブレーションシステム100の構成の一例を示した。しかし、プラズマアブレーションシステム100の構成は種々の変更が可能である。例えば、カテーテル2に代えて、第2電極に相当する電極を有するパッド、第2電極に相当する電極を有するガイドワイヤ等の他のデバイスが用いられてもよい。例えば、プラズマアブレーションシステム100は、図示しない他の入出力デバイス(例えば、フットスイッチ、入出力用タッチパネル、操作レバー、操作ボタン)等を含んで構成されてもよい。例えば、プラズマアブレーションシステム100は、図示しない他の検査装置(例えば、CT装置、MRI装置、X線撮像装置、超音波撮像装置等)を含んで構成されてもよい。
 [変形例2]
 上記第1~2実施形態では、プラズマガイドワイヤ1,1Aの構成の一例を示した。しかし、プラズマガイドワイヤ1の構成は種々の変更が可能である。例えば、プラズマガイドワイヤ1の先端荷重は、0.3gf未満であってもよく、20.0gfより大きくてもよい。例えば、上述したコアシャフト14の構成はあくまで一例であり、細径部141、第1テーパ部142、第2テーパ部143、のうちの少なくとも一部分が省略されてもよい。例えば、第1電極11の形状は任意に変更でき、矢じり状、球状、円柱状、多角柱状等の任意の形状とできる。例えば、先端マーカ122や、基端側電極24は、省略されてもよい。
 [変形例3]
 上記第1~2実施形態では、カテーテル2の構成の一例を示した。しかし、カテーテル2の構成は種々の変更が可能である。例えば、図1の例では、カテーテル2は、シャフト部21の先端と基端とに開口を有する、いわゆるOTWタイプ(オーバーザワイヤタイプ)のカテーテルを例示した。しかし、カテーテル2は、デリバリガイドワイヤや、プラズマガイドワイヤ1等のデバイスを、素早く出し入れするためのポート(開口)を有する、いわゆるRxタイプ(ラピッドエクスチェンジタイプ)のカテーテルであってもよい。この場合、ポートは、シャフト部21の先端と基端の間の任意の位置において、外部とルーメン21L内とを連通する貫通孔とできる。また、カテーテル2は、複数のルーメンを有する、マルチルーメンカテーテルとして構成されてもよい。
 [変形例4]
 第1~2実施形態のプラズマガイドワイヤ1,1A、及び、カテーテル2の構成、及び上記変形例1~3のプラズマガイドワイヤ1,1A、及び、カテーテル2の構成は、適宜組み合わせてもよい。
 以上、実施形態、変形例に基づき本態様について説明してきたが、上記した態様の実施の形態は、本態様の理解を容易にするためのものであり、本態様を限定するものではない。本態様は、その趣旨並びに特許請求の範囲を逸脱することなく、変更、改良され得ると共に、本態様にはその等価物が含まれる。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することができる。
  1,1A…プラズマガイドワイヤ
  2…カテーテル
  3…RFジェネレータ
  4…リターンワイヤ
  5…フェザーカッター
  11…第1電極
  14…コアシャフト
  15…コイル体
  17…被覆部
  18…コネクタ
  19…ケーブル
  21…シャフト部
  22…先端チップ
  23…第2電極
  24…基端側電極
  25…ケーブル
  31…第1端子
  32…第2端子
  33…第1ケーブル
  34…第1ケーブルコネクタ
  35…第2ケーブル
  36…第2ケーブルコネクタ
  41…リターン電極
  42…コイル体
  43…被覆部
  100…プラズマアブレーションシステム
  122…先端マーカ
  123…被覆層
  141…細径部
  142…第1テーパ部
  143…第2テーパ部
  144…太径部
  151…撚線
  152…固定部
  200…CTO
  201…穴
  211…本体部
  212…補強部
  213…接続部
  300…代替モデル
  301…表面
  302…穴

Claims (9)

  1.  プラズマアブレーションシステムであって、
     長尺状の外形を有し、先端部に導電性を有する第1電極が形成されたプラズマガイドワイヤと、
     長尺状の外形を有し、先端側に導電性を有する第2電極が形成されると共に、内側に前記プラズマガイドワイヤを挿通させるためのルーメンが形成されたカテーテルと、
     前記プラズマガイドワイヤ及び前記カテーテルのそれぞれと電気的に接続され、前記第1電極と前記第2電極とに高周波電力を出力するRFジェネレータと、
    を備え、
     前記プラズマガイドワイヤは、前記第1電極と前記第2電極との間の放電によって生体組織のアブレーションを行うことが可能であり、
     前記RFジェネレータは、
      放電時電力が50W以上かつ100W以下であり、かつ、
      デューティ比が7.4%以上かつ40.0%以下にパルス変調された前記高周波電力を出力する、プラズマアブレーションシステム。
  2.  請求項1に記載のプラズマアブレーションシステムであって、
     前記RFジェネレータは、デューティ比が9.1%以上かつ13.0%以下にパルス変調された前記高周波電力を出力する、プラズマアブレーションシステム。
  3.  請求項1または請求項2に記載のプラズマアブレーションシステムであって、
     前記プラズマガイドワイヤの先端荷重は、0.3gf以上かつ20.0gf以下である、プラズマアブレーションシステム。
  4.  請求項1から請求項3のいずれか一項に記載のプラズマアブレーションシステムであって、
     前記プラズマガイドワイヤは、前記第1電極に加えてさらに、
      導電性を有し、長尺状の外形を有するコアシャフトと、
      導電性を有し、前記コアシャフトの先端側の一部分を取り囲んで配置されたコイル体と、
      絶縁性を有し、前記コイル体の外周を覆って配置された被覆部と、を備え、
     前記第1電極は、前記コアシャフト、前記コイル体、及び前記被覆部の各先端をそれぞれ固定している、プラズマアブレーションシステム。
  5.  請求項1から請求項4のいずれか一項に記載のプラズマアブレーションシステムであって、
     前記カテーテルは、前記第2電極に加えてさらに、
      導電性を有し、前記カテーテルの基端側に形成されており、前記RFジェネレータと電気的に接続される基端側電極と、
      導電性を有し、前記第2電極と前記基端側電極とを電気的に接続する接続部であって、前記カテーテルの肉厚部に埋設されている接続部と、を備える、プラズマアブレーションシステム。
  6.  請求項5に記載のプラズマアブレーションシステムであって、
     前記カテーテルは、さらに、素線を網目織りにしたメッシュ形状の補強部であって、前記カテーテルの肉厚部に埋設されている補強部を備える、プラズマアブレーションシステム。
  7.  請求項1から請求項6のいずれか一項に記載のプラズマアブレーションシステムであって、
     前記プラズマガイドワイヤの前記第1電極と、前記カテーテルの前記第2電極と、の間の直線距離は、10mm以上、かつ、50mm以下である、プラズマアブレーションシステム。
  8.  プラズマガイドワイヤであって、
     導電性を有し、長尺状の外形を有するコアシャフトと、
     導電性を有し、前記コアシャフトの先端側の一部分を取り囲んで配置されたコイル体と、
     絶縁性を有し、前記コイル体の外周を覆って配置された被覆部と、
     導電性を有し、前記コアシャフト、前記コイル体、及び前記被覆部の各先端をそれぞれ固定している第1電極と、
    を備え、
     プラズマガイドワイヤの先端荷重は、0.3gf以上かつ20.0gf以下である、プラズマガイドワイヤ。
  9.  請求項8に記載のプラズマガイドワイヤであって、
     前記プラズマガイドワイヤの先端部は、プリシェイプされている、プラズマガイドワイヤ。
PCT/JP2021/045862 2020-12-25 2021-12-13 プラズマアブレーションシステム、及び、プラズマガイドワイヤ WO2022138290A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21910439.5A EP4268745A1 (en) 2020-12-25 2021-12-13 Plasma ablasion system and plasma guide wire
JP2022572175A JPWO2022138290A1 (ja) 2020-12-25 2021-12-13
CN202180086084.3A CN116648280A (zh) 2020-12-25 2021-12-13 等离子消融系统以及等离子导丝
US18/211,615 US20230329781A1 (en) 2020-12-25 2023-06-20 Plasma ablation system and plasma guide wire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020216726 2020-12-25
JP2020-216726 2020-12-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/211,615 Continuation US20230329781A1 (en) 2020-12-25 2023-06-20 Plasma ablation system and plasma guide wire

Publications (1)

Publication Number Publication Date
WO2022138290A1 true WO2022138290A1 (ja) 2022-06-30

Family

ID=82157937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/045862 WO2022138290A1 (ja) 2020-12-25 2021-12-13 プラズマアブレーションシステム、及び、プラズマガイドワイヤ

Country Status (5)

Country Link
US (1) US20230329781A1 (ja)
EP (1) EP4268745A1 (ja)
JP (1) JPWO2022138290A1 (ja)
CN (1) CN116648280A (ja)
WO (1) WO2022138290A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024116321A1 (ja) * 2022-11-30 2024-06-06 朝日インテック株式会社 ガイドワイヤ、及び、医療システム

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5716389A (en) * 1995-11-13 1998-02-10 Walinsky; Paul Cardiac ablation catheter arrangement with movable guidewire
US6135998A (en) 1999-03-16 2000-10-24 Board Of Trustees Of The Leland Stanford Junior University Method and apparatus for pulsed plasma-mediated electrosurgery in liquid media
US6780178B2 (en) 2002-05-03 2004-08-24 The Board Of Trustees Of The Leland Stanford Junior University Method and apparatus for plasma-mediated thermo-electrical ablation
US9179932B2 (en) 2007-01-02 2015-11-10 Baylis Medical Company Inc. Cardiac electrosurgery
US20170164995A1 (en) * 2015-10-29 2017-06-15 Mianyang Lide Electronics Co., Ltd Radio Frequency Generator and A Method of Generating Radio Frequency Energy Utilizing the Radio Frequency Generator
JP2018507044A (ja) * 2015-02-18 2018-03-15 レトロバスキュラー インコーポレイテッド プラズマ生成が制御される高周波ガイドワイヤ及びその使用方法
WO2019189826A1 (ja) * 2018-03-29 2019-10-03 朝日インテック株式会社 カテーテル、及び、再開通カテーテルシステム
WO2020246037A1 (ja) * 2019-06-07 2020-12-10 朝日インテック株式会社 ガイドワイヤ

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5716389A (en) * 1995-11-13 1998-02-10 Walinsky; Paul Cardiac ablation catheter arrangement with movable guidewire
US6135998A (en) 1999-03-16 2000-10-24 Board Of Trustees Of The Leland Stanford Junior University Method and apparatus for pulsed plasma-mediated electrosurgery in liquid media
US6780178B2 (en) 2002-05-03 2004-08-24 The Board Of Trustees Of The Leland Stanford Junior University Method and apparatus for plasma-mediated thermo-electrical ablation
US9179932B2 (en) 2007-01-02 2015-11-10 Baylis Medical Company Inc. Cardiac electrosurgery
JP2018507044A (ja) * 2015-02-18 2018-03-15 レトロバスキュラー インコーポレイテッド プラズマ生成が制御される高周波ガイドワイヤ及びその使用方法
US20170164995A1 (en) * 2015-10-29 2017-06-15 Mianyang Lide Electronics Co., Ltd Radio Frequency Generator and A Method of Generating Radio Frequency Energy Utilizing the Radio Frequency Generator
WO2019189826A1 (ja) * 2018-03-29 2019-10-03 朝日インテック株式会社 カテーテル、及び、再開通カテーテルシステム
WO2020246037A1 (ja) * 2019-06-07 2020-12-10 朝日インテック株式会社 ガイドワイヤ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024116321A1 (ja) * 2022-11-30 2024-06-06 朝日インテック株式会社 ガイドワイヤ、及び、医療システム

Also Published As

Publication number Publication date
CN116648280A (zh) 2023-08-25
EP4268745A1 (en) 2023-11-01
US20230329781A1 (en) 2023-10-19
JPWO2022138290A1 (ja) 2022-06-30

Similar Documents

Publication Publication Date Title
US5957842A (en) High resolution intravascular signal detection
EP1956984B1 (en) Echogenic needle catheter configured to produce an improved ultrasound image
EP3915501A1 (en) Intraluminal reference electrode for cardiovascular treatment apparatus
US20230329781A1 (en) Plasma ablation system and plasma guide wire
JP6529770B2 (ja) 電極カテーテル、電極カテーテルの製造方法
JP5360945B1 (ja) 電極カテーテルおよびその製造方法
JP2016137020A (ja) 電極カテーテル、電極カテーテルの製造方法
JP6291444B2 (ja) アブレーションカテーテル用評価器具
WO2023223642A1 (ja) プラズマガイドワイヤ
JP3168428U (ja) バイポーラ型電気処置器具
WO2022176604A1 (ja) 穿刺デバイス
JP7464600B2 (ja) カテーテルおよびその製造方法
JP7557391B2 (ja) 穿刺デバイス
JP7532280B2 (ja) 穿刺デバイス
WO2021192283A1 (ja) 薬液注入針および薬液注入針システム
WO2024116321A1 (ja) ガイドワイヤ、及び、医療システム
WO2021192284A1 (ja) 薬液注入針システム
JP2024077665A (ja) カテーテル
JP2023176471A (ja) 穿刺デバイス
WO2020194511A1 (ja) 電極カテーテル
JP2023004052A (ja) カテーテル
JP2023068575A (ja) 電極カテーテルの製造方法
JP2024139433A (ja) 電極カテーテルおよび電極カテーテルの製造方法
JP2024072398A (ja) カテーテル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21910439

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022572175

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180086084.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021910439

Country of ref document: EP

Effective date: 20230725