WO2020246037A1 - ガイドワイヤ - Google Patents
ガイドワイヤ Download PDFInfo
- Publication number
- WO2020246037A1 WO2020246037A1 PCT/JP2019/022797 JP2019022797W WO2020246037A1 WO 2020246037 A1 WO2020246037 A1 WO 2020246037A1 JP 2019022797 W JP2019022797 W JP 2019022797W WO 2020246037 A1 WO2020246037 A1 WO 2020246037A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- guide wire
- tip
- section
- coil body
- tubular body
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/01—Introducing, guiding, advancing, emplacing or holding catheters
- A61M25/09—Guide wires
Definitions
- the present invention relates to a guide wire.
- Patent Document 1 discloses a guide wire in which a coil (spring coil) is arranged near the RF electrode at the tip.
- the coil at the tip of the guide wire has a function of imparting flexibility to the tip of the guide wire, and is also used as a radiation opaque member as a marker for visually recognizing the position of the tip of the guide wire by X-rays.
- a guide wire that discharges RF from the tip it is generally necessary to insulate the part other than the base end (hand part) and the tip end of the guide wire with a resin tube or the like.
- a resin tube or the like In order to prevent the outer diameter of the tip of the guide wire from becoming large due to the coating of the resin tube or the like, it is necessary to reduce the diameter of the coil at the tip of the guide wire.
- the diameter of the coil is reduced, there is a problem that the opacity (X-ray visibility) is lowered.
- the problem that the impermeability is reduced due to the reduction in the diameter of the coil is not limited to the high-frequency guide wire having an RF electrode at the tip, but is common to all guide wires inserted into the living lumen. ..
- An object of the present invention is to provide a technique for suppressing a decrease in opacity of a guide wire tip while ensuring flexibility of the guide wire tip.
- the present invention has been made to solve at least a part of the above-mentioned problems, and can be realized as the following forms.
- a guide wire is provided.
- the guide wire is arranged outside the first tubular body having radiation opacity and the first tubular body, and is arranged outside the insulating film having electrical insulation and the insulating film.
- a second tubular body having radiation opacity is provided.
- the first tubular body inside the insulating film ensures the flexibility of the tip of the guide wire, while the second tubular body outside the insulating film makes the tip of the guide wire impermeable. Can be improved.
- the second tubular body is a coil body, and the guide wire is further arranged outside the second tubular body to form the second tubular body. It may be provided with a protective film that protects the body. According to this configuration, when the guide wire is inserted into the lumen of the living body, the protective film can reduce the frictional force between the second tubular body and the inner wall of the living body, and the second tubular shape. Deformation of the second tubular body due to contact between the body and the inner wall of the living body can be reduced.
- the guide wire of the above-described form further includes a core shaft whose tip end side is arranged inside the first tubular body, and a protective tube that covers the base end side of the core shaft.
- the outer diameter of the guide wire in the first section where the second tubular body is arranged is the outer diameter of the guide wire in the second section where the protective tube is arranged. May be equal to. According to this configuration, the difference in outer diameter on the tip side of the guide wire can be reduced, so that the guide wire can be easily advanced (improved insertability and operability with the combined device) in the living lumen.
- the tip end side of the protective tube may cover a part of the base end side of the insulating film. According to this configuration, the insulation between the inside and the outside of the guide wire can be further improved. In addition, it is possible to suppress a decrease in flexural rigidity near the boundary between the protective tube and the insulating film and reduce the occurrence of kink.
- the guide wire of the above-described form is further between the first section and the second section, outside the first section and the second section, respectively.
- a third section having an outer diameter smaller than the diameter may be provided. According to this configuration, since the third section creates a gap between the first section and the second section, interference between the first section and the second section is suppressed when the guide wire is bent. As a result, the tip end side of the guide wire can be easily bent.
- the guide wire of the above embodiment further includes an RF electrode on the tip end side of the first tubular body, the core shaft is formed of a conductive member, and the tip end side of the core shaft is It may be configured so that it is electrically connected to the RF electrode and the proximal end side of the core shaft can be electrically connected to the high frequency generator. According to this configuration, even in a high-frequency guide wire having an RF electrode at the tip, the guide wire tip is opaque due to the second tubular body outside the insulating film while ensuring the flexibility of the guide wire tip. It can be improved.
- the first tubular body is a coil body
- the second tubular body is a flat wire coil body formed containing tungsten.
- the coil pitch of the tubular body 2 may be larger than the coil pitch of the first tubular body. According to this configuration, the outer circumference of the tip of the guide wire can be made flatter. Further, it is possible to improve the opacity while making the tip of the guide wire more flexible.
- the tip and the proximal end of the second tubular body are fixed to the insulating film, respectively, and in the section between the distal end and the proximal end, the protective film provides the second tubular body.
- the movement of the coils forming the tubular body of 2 may be restricted. According to this configuration, it is possible to prevent the second tubular body from being displaced relative to the insulating film when the guide wire is bent. Further, when the guide wire is inserted into the lumen of the living body, the deformation of the second tubular body due to the contact between the second tubular body and the inner wall of the living body can be further reduced.
- the present invention can be realized in various aspects, for example, in the form of a guide wire manufacturing apparatus, a guide wire manufacturing method, and the like.
- FIG. 1 is an explanatory diagram illustrating the overall configuration of the guide wire 1 of the first embodiment.
- FIG. 2 is an explanatory view illustrating a cross-sectional configuration on the tip end side of the guide wire 1.
- FIG. 3 is an enlarged explanatory view of the cross-sectional structure of the guide wire 1 in the vicinity of the second coil body 50.
- the left side of FIGS. 1 to 3 will be referred to as the “tip side” of the guide wire 1 and each component
- the right side of FIGS. 1 to 3 will be referred to as the “base end side” of the guide wire 1 and each component.
- the tip end side of the guide wire 1 is the side to be inserted into the body (distal side)
- the proximal end side of the guide wire 1 is the side operated by a technician such as a doctor (proximal side).
- the guide wire 1 is a medical device inserted into a biological lumen such as a blood vessel or an organ.
- the guide wire 1 includes a core shaft 10, a tip tip 20, a first coil body 30, and an insulating film 40.
- a second coil body 50, a third coil body 60, a protective tube 70, a tip tube 80, and a protective film 90 are provided.
- the base end of the core shaft 10 is connected to the high frequency generator 2, and the tip tip 20 inserted into the biological lumen is used to treat a stenotic lesion or an occluded lesion.
- It is configured as a radio frequency guide wire (radio frequency guide wire for RF ablation) that discharges RF (radio frequency) or plasma.
- the guide wire 1 of the present embodiment may be configured as a guide wire other than the high frequency guide wire.
- the core shaft 10 is a long (tapered) conductive member configured so that the outer diameter decreases from the proximal end side toward the distal end side.
- the core shaft 10 can be made of, for example, a stainless alloy (SUS302, SUS304, SUS316, etc.), a superelastic alloy such as Ni—Ti alloy, a piano wire, a nickel-chromium alloy, a cobalt alloy, a tungsten, or the like. ..
- the core shaft 10 may be formed of a known conductive material other than the above.
- the length of the core shaft 10 is not particularly limited, but for example, a range of 1000 mm to 3000 mm can be exemplified.
- the outer diameter of the core shaft 10 is also not particularly limited, and for example, a range of 0.1 mm to 1.0 mm can be exemplified.
- a tip tip 20 is formed at the tip of the core shaft 10.
- the base end (FIG. 1) of the core shaft 10 is connected to the high frequency generator 2, and a high frequency is supplied from the high frequency generator 2 to the tip 20 via the core shaft 10 made of a conductive material.
- the tip tip 20 is a conductive metal member that joins the tip of the core shaft 10 and the tip of the first coil body 30.
- the tip 20 has a function as an RF electrode, and can be formed of, for example, chrome molybdenum steel, nickel chrome molybdenum steel, stainless steel such as SUS304, NiTi alloy or the like.
- the tip shape of the tip tip 20 has a conical tapered shape. That is, the tip of the tip tip 20 has an arrowhead shape.
- the tip of the tip 20 is not sharp but rounded.
- the tip of the tip 20 may have a flat shape.
- the guide wire 1 discharges RF (radio frequency) or plasma from the arrowhead-shaped tip of the tip tip 20 toward a counter electrode provided on another guide wire (not shown).
- the first coil body 30 is composed of a single coil or a hollow stranded coil, and is wound around the core shaft 10 so as to cover the outer periphery of the tip side of the core shaft 10.
- the first coil body 30 is wound around a small diameter portion or a tapered portion on the tip end side of the core shaft 10.
- the first coil body 30 is made of a radiation-impermeable material.
- the first coil body 30 can be formed of, for example, a radiation-impermeable alloy such as gold, platinum, tungsten, or an alloy containing these elements (for example, a platinum-nickel alloy).
- the tip of the first coil body 30 is fixed to the core shaft 10 via the tip tip 20, and the base end is fixed to the core shaft 10 by a brazing material (not shown).
- the first coil body 30 can transmit the rotational force from the base end side of the core shaft 10 to the tip of the core shaft 10 by the operation of the operator. Further, since the tip side of the core shaft 10 can be made smaller in diameter, the flexibility of the tip of the core shaft 10 can be improved.
- the length of the first coil body 30 is not particularly limited, but for example, 10 mm to 100 mm can be exemplified.
- the outer diameter of the first coil body 30 is not particularly limited, but for example, a range of 0.1 mm to 1.0 mm can be exemplified.
- the insulating film 40 is a tubular member that covers the outer periphery of each of the first coil body 30 and the third coil body 60, and has electrical insulation.
- the insulating film 40 is composed of a PFA tube.
- the insulating film 40 causes the core shaft 10, the first coil body 30, the third coil body 60, and the second coil body 50 arranged outside the insulating film 40 to be arranged inside the insulating film 40. It is electrically insulated.
- the outer diameter D1 (FIG. 3) of the insulating film 40 is not particularly limited, and for example, a range of 0.15 mm to 1.1 mm can be exemplified.
- the second coil body 50 is composed of one or a plurality of coils, is arranged outside the insulating film 40, and is wound around the insulating film 40.
- the tip of the second coil body 50 is located closer to the proximal end side than the tip of the first coil body 30.
- the base end of the second coil body 50 is substantially equal in position in the axial direction of the guide wire 1 to the base end of the first coil body 30.
- the second coil body 50 of the present embodiment is a flat wire coil and is formed by containing tungsten, which is a radiation-impermeable material. As a result, the thickness of the flat wire coil can be reduced and the width can be increased by hot coiling.
- the second coil body 50 may be formed of the same material as the first coil body 30 or may be made of a different material as long as it is made of a radiation-impermeable material.
- the length of the second coil body 50 is not particularly limited, but for example, a range of 10 mm to 50 mm can be exemplified.
- the thickness t and the width W of the wire cross section of the second coil body 50 are not particularly limited, but the thickness t can be exemplified in the range of 5 ⁇ m to 20 ⁇ m, for example.
- the width W can be exemplified by exemplifying a range of 30 ⁇ m to 100 ⁇ m.
- the gap between the strands of the second coil body 50 is also not particularly limited, and for example, a range of 1 ⁇ m to 50 ⁇ m can be exemplified.
- the third coil body 60 is arranged on the proximal end side of the first coil body 30, and the outside is covered with the insulating film 40.
- the third coil body 60 is wound around the core shaft 10 so as to cover the outer periphery on the tip end side of the core shaft 10, and the tip end and the base end of the third coil body 60 are each made of a brazing material (not shown). It is fixed to the shaft 10.
- the third coil body 60 is composed of a single coil or a hollow stranded coil, and can be formed of the same material as the first coil body 30.
- the third coil body 60 may be made of a material different from that of the first coil body 30.
- the outer diameter of the third coil body 60 is the same as the outer diameter of the first coil body 30, but these outer diameters may be different from each other.
- the strands of the first coil body 30 and the third coil body 60 may have the same cross-sectional shape or may be different.
- the protective tube 70 is a resin tube that covers the base end side of the core shaft 10, and is made of polyimide here.
- the protective tube 70 may be made of a material other than polyimide as long as it has an insulating property.
- PTFE polytetrafluoroethylene
- PVDF polyvinylidene fluoride
- PFA perfluoroalkoxy alkane
- FEP perfluoroethylene propene
- ETFE ethylene tetrafluoroethylene
- PE polyethylene
- PP polyethylene
- It may be formed of (polypropylene) or the like.
- the tip end side of the protective tube 70 covers the proximal end side of the insulating film 40.
- the tip side of the protective tube 70 is fixed to the insulating film 40, and the base end side is fixed to the core shaft 10.
- the outer diameter D2 of the protective tube 70 is not particularly limited, but for example, a range of 0.2 mm to 1.2 mm can be exemplified.
- the tip tube 80 is a resin tube that covers the tip side of the insulating film 40, and is made of the same material as the protective tube 70 here.
- the tip tube 80 has a function of blocking the discharge from the RF electrode (tip tip 20) from going toward the outer surface of the guide wire 1.
- the outer diameter D3 of the tip tube 80 may be different from the outer diameter D2 of the protective tube.
- the protective film 90 is a resin tube arranged on the outside of the second coil body 50 and covers the entire outer surface of the second coil body 50.
- the outside of the second coil body 50 is recessed inside the protective film 90.
- the protective film 90 protects the second coil body 50 and regulates the relative movement between the coils constituting the second coil body 50.
- the protective film 90 can be formed by, for example, PET.
- the wall thickness of the protective film 90 is not particularly limited, and for example, 3-5 ⁇ can be exemplified.
- the guide wire 1 will be described by dividing it into the following seven sections.
- the first section N1, the second section N2, the third section N3, the fourth section N4, the fifth section N5, the sixth section N6, and the seventh section N7 of the guide wire 1 are from the tip end to the base end of the guide wire 1. It continues in this order toward.
- First section N1 Section from the tip of the tip tip 20 to the tip of the tip tube 80
- Second section N2 Section from the tip to the base end of the tip tube 80
- Third section N3 Protective film 90 from the base end of the tip tube 80
- Section 4 to the tip of the protective film N4 Section from the tip of the protective film 90 to the base end 5th section N5: Section from the base end of the protective film 90 to the tip of the protective tube 70
- 6th section N6 Of the protective tube 70 Section from the tip to the base end of the insulating film 40
- 7th section N7 Section from the base end of the insulating film 40 to the base end of the protective tube 70
- Each section of the guide wire 1 has the following configuration.
- First section N1 Tip tip 20
- Second section N2 core shaft 10, first coil body 30, insulating film 40, tip tube 80
- Third section N3 core shaft 10, first coil body 30, insulating film 40
- Fourth section N4 core shaft 10, first coil body 30, insulating film 40, second coil body 50, protective film 90
- Fifth section N5 core shaft 10, third coil body 60
- insulating film 40 6th section N6 core shaft 10, 3rd coil body 60, insulating film 40
- protective tube 70 7th section N7 core shaft 10, protective tube 70
- the second section N2 and the third section N3 of the guide wire 1 are composed of the core shaft 10, the first coil body 30, and the insulating film 40, and the tip tube 80 is further added to the second section N2.
- the fourth section N4 the second coil body 50 and the protective film 90 are further added to the configuration of the third section N3. That is, the second section N2 and the third section N3 of the guide wire 1 have lower rigidity and flexibility than the four section N4 including the second coil body 50.
- the fifth section N5 is composed of a core shaft 10, a third coil body 60, and an insulating film 40, and has lower rigidity and flexibility than the fourth section N4. In this way, the second section N2, the third section N3, and the fifth section N5 can impart flexibility to the guide wire 1.
- each section of the guide wire 1 is as follows. Outer diameter of second section N2: Outer diameter D3 of tip tube 80 Outer diameter of third section N3: Outer diameter D1 of insulating film 40 Outer diameter of 4th section N4: Outer diameter D4 of protective film 90 Outer diameter of fifth section N5: Outer diameter D1 of insulating film 40 Outer diameter of 6th section N6: Outer diameter D2 of protective tube 70 Outer diameter of 7th section N7: Outer diameter D2 of protective tube 70
- the outer diameter D1 of the third section N3 of the guide wire 1 is smaller than the outer diameter D3 of the second section N2 on both sides and the outer diameter D4 of the fourth section N4. That is, a reduced diameter third section N3 is provided between the second section N2 and the fourth section N4. As a result, a gap is created between the tip tube 80 and the protective film 90, so that when the guide wire 1 is bent, contact (interference) between the tip tube 80 and the protective film 90 can be suppressed, and the guide wire 1 is bent. It can be made easier.
- the outer diameter D1 of the fifth section N5 is smaller than the outer diameter D4 of the fourth section N4 and the outer diameter D2 of the sixth section N6 on both sides.
- a fifth section N5 with a reduced diameter is provided between the fourth section N4 and the sixth section N6.
- a gap is created between the protective film 90 and the protective tube 70, so that when the guide wire 1 is bent, contact (interference) between the protective film 90 and the protective tube 70 can be suppressed, and the guide wire 1 can be further increased. It can be made easier to bend.
- the outer diameter D4 of the protective film 90 and the outer diameter D2 of the protective tube 70 are equal, the outer diameter D4 of the fourth section N4 of the guide wire 1 is equal to the outer diameter D2 of the sixth section N6.
- the difference in outer diameter on the tip side of the guide wire 1 can be reduced, and the guide wire can be easily advanced (improved insertability and operability with the combined device) in the living lumen.
- the outer diameter means the average value of the outer diameters, and the equal outer diameter means that the outer diameters do not have to be completely equal, but are substantially equal. , ⁇ 10% may be different.
- the tip end side of the protective tube 70 covers the proximal end side of the insulating film 40. That is, the tip of the protective tube 70 is located closer to the tip of the guide wire 1 than the base end of the insulating film 40. Thereby, the insulating property between the inside and the outside of the insulating film 40 and the protective tube 70 can be further improved. Further, it is possible to suppress a decrease in bending rigidity at the boundary between the insulating film 40 and the protective tube 70 and reduce the occurrence of kink.
- the coil pitch P2 of the second coil body 50 is larger than the coil pitch P1 of the first coil body 30. Therefore, it is possible to suppress the increase in flexural rigidity due to the second coil body 50, maintain the flexibility of the tip of the guide wire 1, and improve the impermeable property of the second coil body 50.
- the second coil body 50 is formed containing tungsten. As a result, the thickness of the flat wire coil can be reduced and the width can be widened by hot coiling, so that the impermeability can be further improved while suppressing an increase in the outer diameter of the guide wire 1. Further, since the second coil body 50 is formed by a flat wire coil, the outer circumference of the guide wire 1 can be flattened.
- the tip and base of the second coil body 50 are fixed to the insulating film 40 by the adhesive 55. Further, the second coil body 50 bites into the protective film 90 in the section between the tip end and the base end, and the protective film 90 regulates the relative movement of the coils constituting the second coil body 50. As a result, it is possible to prevent the second coil body 50 from being displaced relative to the insulating film 40 when the guide wire 1 is bent. Further, when the guide wire is inserted into the lumen of the living body, the deformation of the second coil body 50 due to the contact between the second coil body 50 and the inner wall of the living body can be reduced.
- the first coil body 30 inside the insulating film 40 ensures the flexibility of the tip of the guide wire 1 while the second coil outside the insulating film 40.
- the body 50 can improve the impermeableness of the guide wire 1. That is, by providing the first coil body 30, the diameter of the tip of the guide wire can be reduced while maintaining the torque transmissibility of the tip of the guide wire 1.
- the second coil body 50 By providing the second coil body 50, the impermeable property of the tip of the guide wire 1 can be improved.
- the protective film 90 is provided on the outside of the second coil body 50. Thereby, the relative movement between the coils constituting the second coil body 50 can be regulated. Further, when the guide wire 1 is inserted into the living body cavity, the protective film 90 can reduce the frictional force between the second coil body 50 and the living body inner wall, and the second coil body 50 and the living body inner wall The deformation of the second coil body 50 due to the contact with the coil body 50 can be reduced.
- the portion other than the base end portion (hand portion) and the most advanced portion of the guide wire 1 is covered with the insulating film 40 or the protective tube 70.
- the second coil body 50 is provided in order to prevent the outer diameter from becoming large due to the insulating film 40 and the protective tube 70, even when the diameter of the first coil body 30 is reduced. The opacity of the guide wire 1 can be improved.
- FIG. 4 is an explanatory diagram illustrating the overall configuration of the guide wire 1A of the second embodiment.
- the guide wire 1A of the second embodiment is different from the guide wire 1 of the first embodiment in that the protective film 90 (FIG. 2) is not provided on the outside of the second coil body 50. Since other configurations are the same as those of the guide wire 1 of the first embodiment, the description thereof will be omitted.
- the second coil body 50 is fixed to the insulating film 40 by an adhesive (not shown). In the second coil body 50, only the tip end and the base end may be fixed by an adhesive, or the entire second coil body 50 may be fixed to the insulating film 40.
- the outer diameter of the second coil body 50 may be the same as or different from the outer diameter of the protective tube 70.
- the guide wire 1 of the present embodiment does not have to include the protective film 90. Even in this case, the first coil body 30 inside the insulating film 40 ensures the flexibility of the tip of the guide wire 1, while the second coil body 50 outside the insulating film 40 ensures the flexibility of the guide wire 1. It is possible to improve the opacity.
- the guide wire 1 is provided with the protective film 90, the friction between the second coil body 50 and the inner wall of the living body can be reduced, and the second coil due to the contact between the second coil body 50 and the inner wall of the living body can be reduced. It is more preferable because the deformation of the body 50 can be reduced.
- FIG. 5 is an explanatory view illustrating the overall configuration of the guide wire 1B of the third embodiment.
- the guide wire 1B of the third embodiment has a different configuration of the second coil body 50 (FIG. 2) as compared with the guide wire 1 of the first embodiment. Since other configurations are the same as those of the guide wire 1 of the first embodiment, the description thereof will be omitted.
- the guide wire 1B of the third embodiment includes a second coil body 50b.
- the second coil body 50b is a coil in which the wire has a circular cross section, and has the same coil diameter and coil pitch as the first coil body 30.
- the second coil body 50b may be formed of the same material as the first coil body 30, or may be formed of a different material.
- the coil diameter and coil pitch of the second coil body 50 are arbitrary as long as the second coil body 50 is made of a radiation-impermeable material. You can. Even in this case, the first coil body 30 can secure the flexibility of the tip of the guide wire 1, and the second coil body 50 can improve the opacity of the guide wire 1. It is more preferable that the second coil body 50 has a larger coil pitch than the first coil body 30 because the increase in flexural rigidity due to the second coil body 50 can be suppressed. Further, it is more preferable that the second coil body 50 is formed as a flat wire coil because the outer circumference of the guide wire 1 can be flattened.
- FIG. 6 is an explanatory view illustrating the overall configuration of the guide wire 1C of the fourth embodiment.
- the guide wire 1C of the fourth embodiment has a different outer diameter D2 of the protective tube 70 as compared with the guide wire 1 of the first embodiment. Since other configurations are the same as those of the guide wire 1 of the first embodiment, the description thereof will be omitted.
- the outer diameter D2c of the protective tube 70 is larger than the outer diameter D3 of the tip tube 80 and the outer diameter D4 of the protective film 90.
- the outer diameter of the protective tube 70 may be different from the outer diameter of the tip tube 80 or the outer diameter of the protective film 90.
- the outer diameter of the protective film 90 may be different from the outer diameter of the tip tube 80. Even in these cases, it is possible to improve the opacity of the guide wire 1 while ensuring the flexibility of the tip of the guide wire 1. If the outer diameter of the protective tube 70, the outer diameter of the tip tube 80, and the outer diameter of the protective film 90 are close to each other, the difference in outer diameter on the tip side of the guide wire 1 can be reduced. preferable.
- FIG. 7 is an explanatory view illustrating the overall configuration of the guide wire 1D of the fifth embodiment.
- the guide wire 1D of the fifth embodiment has a protective tube 70 extending toward the tip end side, and the tip end of the protective tube 70 is connected to the base end of the protective film 90. The point is different. Since other configurations are the same as those of the guide wire 1 of the first embodiment, the description thereof will be omitted.
- the guide wire 1D of the fifth embodiment includes a protective tube 70d.
- the protective tube 70d extends to the tip end side so as to connect to the base end of the second coil body 50.
- the guide wire 1D of the fifth embodiment does not have a section corresponding to the fifth section N5 (FIG. 2) of the first embodiment because the sixth section N6 is extended.
- the guide wire 1 of the present embodiment does not have to have a gap formed between the protective tube 70 and the protective film 90. Even in this case, it is possible to improve the opacity of the guide wire 1 while ensuring the flexibility of the tip of the guide wire 1.
- the guide wire 1 of the present embodiment does not have to include the third section N3 because the base end of the tip tube 80 is connected to the tip of the protective film 90.
- FIG. 8 is an explanatory view illustrating the overall configuration of the guide wire 1E of the sixth embodiment.
- the guide wire 1E of the sixth embodiment is different from the guide wire 1 of the first embodiment in that a metal tube is used instead of the second coil body 50 (FIG. 2). Since other configurations are the same as those of the guide wire 1 of the first embodiment, the description thereof will be omitted.
- the metal tube 50e is arranged on the outside of the insulating film 40.
- the tube 50e is made of a radiation opaque material and has a plurality of slits.
- the tube 50e is configured to be bendable and deformable by the plurality of slits.
- a protective film 90 is arranged on the outside of the tube 50e.
- the guide wire 1 of the present embodiment may include a tubular body other than the coil having radiation opacity instead of the second coil body 50.
- FIG. 9 is an explanatory view illustrating the overall configuration of the guide wire 1F of the seventh embodiment.
- the guide wire 1F of the seventh embodiment is different from the guide wire 1 of the first embodiment in that a metal tube is used instead of the first coil body 30 (FIG. 2). Since other configurations are the same as those of the guide wire 1 of the first embodiment, the description thereof will be omitted.
- the metal tube 30f is arranged so as to cover the outer periphery of the core shaft 10 on the tip end side.
- the tube 30f is made of a radiation opaque material and has a plurality of slits.
- the tube 30f is configured to be bendable and deformable by the plurality of slits.
- the guide wire 1 of the present embodiment may include a tubular body other than the coil having radiation opacity instead of the first coil body 30.
- FIG. 10 is an explanatory diagram illustrating the overall configuration of the guide wire 1G according to the eighth embodiment.
- the guide wire 1G of the eighth embodiment does not include the third coil body 60 (FIG. 2), and the first coil body 30 is further extended to the proximal end side. The point that is done is different. Since other configurations are the same as those of the guide wire 1 of the first embodiment, the description thereof will be omitted.
- the guide wire 1G of the eighth embodiment includes 30 g of the first coil body.
- the length of the first coil body 30 g is substantially equal to the length of the insulating film 40, the tip of the first coil body 30 g is connected to the tip tip 20, and the base end of the first coil body 30 g is the base end of the insulating film 40.
- the guide wire 1 of the present embodiment does not have to include the third coil body 60.
- the third coil body 60 may not be provided, and the first coil body 30 may not be extended to the proximal end side.
- FIG. 11 is an explanatory view illustrating the overall configuration of the guide wire 1H of the ninth embodiment.
- the guide wire 1H of the ninth embodiment does not have the protective film 90 (FIG. 2), and the protective tube 70 is further extended to the tip side. different. Since other configurations are the same as those of the guide wire 1 of the first embodiment, the description thereof will be omitted.
- the guide wire 1H of the ninth embodiment includes a protective tube 70h.
- the protective tube 70h covers from the tip of the second coil body 50 to the base end of the core shaft 10.
- the protective tube 70 may extend to the tip of the second coil body 50 and cover the entire second coil body 50.
- FIG. 12 is an explanatory diagram illustrating the overall configuration of the guide wire 1J according to the tenth embodiment.
- the guide wire 1J of the tenth embodiment does not have the protective tube 70 (FIG. 2), and the insulating film 40 is further extended to the proximal end side. Is different. Since other configurations are the same as those of the guide wire 1 of the first embodiment, the description thereof will be omitted.
- the guide wire 1J of the tenth embodiment includes an insulating film 40j.
- the insulating film 40j covers the entire core shaft 10 except for the base end of the core shaft 10.
- the insulating film 40 may be further extended to the proximal end side instead of the protective tube 70.
- FIG. 13 is an explanatory diagram illustrating the overall configuration of the guide wire 1K of the eleventh embodiment.
- the guide wire 1K of the eleventh embodiment is different from the guide wire 1 of the first embodiment in that the tip tip 20 (FIG. 2) does not have a function as an RF electrode. Therefore, the high frequency generator 2 is not connected to the base end portion of the guide wire 1K of the eleventh embodiment. Since other configurations are the same as those of the guide wire 1 of the first embodiment, the description thereof will be omitted.
- the guide wire 1K of the eleventh embodiment includes a tip tip 20k at the tip.
- the tip of the tip tip 20k does not have a galling shape and is hemispherical.
- the tip tip 20k may be formed of the same material as the tip tip 20 of the first embodiment, or may be formed of a non-conductive material such as resin.
- the guide wire 1 of the present embodiment may be configured as a guide wire other than the high frequency guide wire.
- the positions of the base ends of the second coil body 50 and the base ends of the first coil body 30 are the same. However, the positions of these proximal ends may be different. Further, in the guide wire 1 of the first embodiment, the positions of the tip of the tip tube 80 and the tip of the insulating film 40 are the same. However, the positions of these tips may be different.
- the tip tube 80 may extend toward the proximal end side to cover the second coil body 50.
- the guide wire 1 of the first embodiment may not include the tip tube 80.
- the tip of the protective tube 70 covers the base end of the insulating film 40.
- the tip of the protective tube 70 may not cover the base end of the insulating film 40 and may be connected to the base end of the insulating film 40.
- the second coil body 50 of the first embodiment only the tip end and the base end are fixed to the insulating film 40 by the adhesive 55. However, the entire second coil body 50 may be fixed to the insulating film 40 by the adhesive 55. Alternatively, the second coil body 50 may be fixed to the insulating film 40 by welding the protective film 90 to the insulating film 40.
- the guide wire 1 of the first embodiment includes the outer surface of the insulating film 40 of the second section N2 and the fifth section N5, the outer surface of the protective film 90 of the fourth section N4, and the sixth section N6 and the seventh section N7.
- the outer surface of the protective tube 70 may be covered with one or more kinds of resins.
- the tip of the guide wire 1 of the first embodiment is assumed to be formed linearly. However, the tip of the guide wire 1 may be curved or partially bent.
- the guide wire 1 may discharge a high frequency from the tip 20 or may discharge plasma. Moreover, both of them may be discharged.
- the high frequency frequency supplied from the high frequency generator 2 may be any frequency.
- a coil may be further arranged on the outside of the protective film 90. Further, in the guide wire 1 of the first embodiment, a plurality of combinations of the second coil body 50 and the protective film 90 may be arranged side by side. Further, the guide wire 1 may include a counter electrode. Further, the first coil body 30 and the second coil body 50 may be configured by arranging a plurality of coil bodies side by side. Further, the cross-sectional shape of the strands constituting these coil bodies may be any shape.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Surgery (AREA)
- Veterinary Medicine (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Anesthesiology (AREA)
- Hematology (AREA)
- Pulmonology (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Otolaryngology (AREA)
- Biophysics (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Media Introduction/Drainage Providing Device (AREA)
- Surgical Instruments (AREA)
Abstract
ガイドワイヤは、放射線不透過性を有する第1の筒状体と、第1の筒状体の外側に配置され、電気的絶縁性を有する絶縁膜と、絶縁膜の外側に配置され、放射線不透過性を有する第2の筒状体と、を備える。
Description
本発明は、ガイドワイヤに関する。
従来から、生体管腔内に挿入されるガイドワイヤにおいて、先端からRF(高周波)放電して狭窄病変や閉塞病変を貫通するガイドワイヤが知られている。特許文献1には、先端のRF電極の近くにコイル(スプリングコイル)を配置したガイドワイヤが開示されている。一般的に、ガイドワイヤ先端のコイルは、ガイドワイヤ先端に柔軟性を付与する機能のほか、放射線不透過部材として、ガイドワイヤ先端位置をX線によって視認するためのマーカとして利用される。
先端からRF放電をおこなうガイドワイヤでは、一般的に、ガイドワイヤの基端部(手元部)と最先端部以外の部分は樹脂チューブ等で被覆して絶縁する必要がある。この樹脂チューブ等の被覆によってガイドワイヤ先端の外径が大きくなるのを抑制するために、ガイドワイヤの先端のコイルを細径化する必要があった。しかしながら、コイルを細径化すると、不透過性(X線視認性)の低下が発生するという課題があった。なお、コイルの細径化によって不透過性の低下が発生する課題は、先端にRF電極を備える高周波ガイドワイヤに限らず、生体管腔内に挿入されるガイドワイヤの全般に共通するものである。
本発明は、ガイドワイヤ先端の柔軟性を確保しつつ、ガイドワイヤ先端の不透過性の低下を抑制する技術の提供を目的とする。
本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態として実現することが可能である。
(1)本発明の一形態によれば、ガイドワイヤが提供される。このガイドワイヤは、放射線不透過性を有する第1の筒状体と、前記第1の筒状体の外側に配置され、電気的絶縁性を有する絶縁膜と、前記絶縁膜の外側に配置され、放射線不透過性を有する第2の筒状体と、を備える。
この構成によれば、絶縁膜の内側の第1の筒状体によって、ガイドワイヤ先端の柔軟性を確保しつつ、絶縁膜の外側の第2の筒状体によって、ガイドワイヤ先端の不透過性の向上を図ることができる。
(2)上記形態のガイドワイヤにおいて、前記第2の筒状体は、コイル体であり、前記ガイドワイヤは、さらに、前記第2の筒状体の外側に配置され、前記第2の筒状体を保護する保護膜を備えていてもよい。この構成によれば、ガイドワイヤを生体管腔内に挿入したとき、保護膜によって、第2の筒状体と生体内壁との間の摩擦力を低減させることができるとともに、第2の筒状体と生体内壁との接触による第2の筒状体の変形を低減できる。
(3)上記形態のガイドワイヤは、さらに、先端側が前記第1の筒状体の内側に配置されるコアシャフトと、前記コアシャフトの基端側を覆う保護チューブと、を備えており、前記ガイドワイヤにおいて、前記第2の筒状体が配設されている第1の区間における前記ガイドワイヤの外径は、前記保護チューブが配設されている第2の区間における前記ガイドワイヤの外径と等しくてもよい。この構成によれば、ガイドワイヤ先端側の外径差を低減できるため、生体管腔内においてガイドワイヤを容易に進行(挿通性および併用デバイスとの操作性を向上)させることができる。
(4)上記形態のガイドワイヤにおいて、前記保護チューブの先端側は、前記絶縁膜の基端側の一部を被覆していてもよい。この構成によれば、ガイドワイヤ内側と外側との絶縁性をより向上させることができる。また、保護チューブと絶縁膜との境界部付近の曲げ剛性の低下を抑制してキンクの発生を低減できる。
(5)上記形態のガイドワイヤは、さらに、前記ガイドワイヤにおいて、前記第1の区間と、前記第2の区間との間には、前記第1の区間および前記第2の区間のそれぞれの外径よりも小さい外径を有する第3の区間を備えてもよい。この構成によれば、第3の区間によって、第1区間と第2区間との間に隙間ができるため、ガイドワイヤを折り曲げたとき、第1区間と第2区間との干渉が抑制される。これにより、ガイドワイヤ先端側を曲げやすくすることができる。
(6)上記形態のガイドワイヤは、さらに、前記第1の筒状体の先端側にRF電極を備えており、前記コアシャフトは、導電性部材によって形成されており、前記コアシャフトの先端側が前記RF電極に電気的に接続され、前記コアシャフトの基端側が高周波発生装置に電気的に接続可能に構成されてもよい。この構成によれば、先端にRF電極を備える高周波ガイドワイヤにおいても、ガイドワイヤ先端の柔軟性を確保しつつ、絶縁膜の外側の第2の筒状体によって、ガイドワイヤ先端の不透過性の向上を図ることができる。
(7)上記形態のガイドワイヤにおいて、前記第1の筒状体は、コイル体であり、前記第2の筒状体は、タングステンを含んで形成された平線のコイル体であり、前記第2の筒状体のコイルピッチは、前記第1の筒状体のコイルピッチよりも大きくてもよい。この構成によれば、ガイドワイヤ先端の外周をより平坦にすることができる。また、ガイドワイヤ先端をより柔軟にしつつ、不透過性の向上を図ることができる。
(8)上記形態のガイドワイヤにおいて、前記第2の筒状体は、先端および基端がそれぞれ前記絶縁膜に固定されており、先端と基端の間の区間において、前記保護膜によって前記第2の筒状体を構成するコイルの移動が規制されてもよい。この構成によれば、ガイドワイヤを折り曲げたときに第2の筒状体が絶縁膜に対して相対的にズレることを抑制できる。また、ガイドワイヤを生体管腔内に挿入したときに、第2の筒状体と生体内壁との接触による第2の筒状体の変形をより低減できる。
なお、本発明は、種々の態様で実現することが可能であり、例えば、ガイドワイヤの製造装置、ガイドワイヤの製造方法などの形態で実現することができる。
<第1実施形態>
図1は、第1実施形態のガイドワイヤ1の全体構成を例示した説明図である。図2は、ガイドワイヤ1の先端側の断面構成を例示した説明図である。図3は、ガイドワイヤ1の第2コイル体50付近の断面構成を拡大した説明図である。以下では、図1~図3の左側をガイドワイヤ1および各構成部材の「先端側」と呼び、図1~図3の右側をガイドワイヤ1および各構成部材の「基端側」と呼ぶ。ガイドワイヤ1の先端側は、体内に挿入される側(遠位側)であり、ガイドワイヤ1の基端側は、医師等の手技者によって操作される側(近位側)である。
図1は、第1実施形態のガイドワイヤ1の全体構成を例示した説明図である。図2は、ガイドワイヤ1の先端側の断面構成を例示した説明図である。図3は、ガイドワイヤ1の第2コイル体50付近の断面構成を拡大した説明図である。以下では、図1~図3の左側をガイドワイヤ1および各構成部材の「先端側」と呼び、図1~図3の右側をガイドワイヤ1および各構成部材の「基端側」と呼ぶ。ガイドワイヤ1の先端側は、体内に挿入される側(遠位側)であり、ガイドワイヤ1の基端側は、医師等の手技者によって操作される側(近位側)である。
ガイドワイヤ1は、血管や臓器などの生体管腔内に挿入される医療器具であり、図2に示すように、コアシャフト10と、先端チップ20と、第1コイル体30と、絶縁膜40と、第2コイル体50と、第3コイル体60と、保護チューブ70と、先端チューブ80と、保護膜90と、を備えている。図1に示すように、本実施形態のガイドワイヤ1は、コアシャフト10の基端が高周波発生装置2に接続され、生体管腔内に挿入された先端チップ20から狭窄病変や閉塞病変に対して、RF(高周波)またはプラズマを放電する高周波ガイドワイヤ(RF焼灼用ガイドワイヤ)として構成される。なお、本実施形態のガイドワイヤ1は、高周波ガイドワイヤ以外のガイドワイヤとして構成されてもよい。
図2に示すように、コアシャフト10は、基端側から先端側に向かって外径が小さくなるように構成された(先細りした)長尺形状の導電性部材である。コアシャフト10は、例えば、ステンレス合金(SUS302、SUS304、SUS316等)、Ni-Ti合金等の超弾性合金、ピアノ線、ニッケル-クロム系合金、コバルト合金、タングステン等の材料で形成することができる。コアシャフト10は、上記以外の公知の導電性材料によって形成されていてもよい。コアシャフト10の長さについては特に限定されないが、例えば、1000mm~3000mmの範囲を例示することができる。コアシャフト10の外径についても特に限定されないが、例えば、0.1mm~1.0mmの範囲を例示することができる。コアシャフト10の先端には、先端チップ20が形成されている。コアシャフト10の基端(図1)は、高周波発生装置2に接続されており、導電材のコアシャフト10を介して、高周波発生装置2から先端チップ20に高周波が供給される。
先端チップ20は、コアシャフト10の先端と第1コイル体30の先端とを接合する導電性の金属部材である。先端チップ20は、RF電極としての機能を有しており、例えば、クロムモリブデン鋼、ニッケルクロムモリブデン鋼、SUS304等のステンレス鋼、NiTi合金等で形成することができる。先端チップ20の先端形状は円錐形のテーパー形状を有している。すなわち、先端チップ20の先端は、やじり形状を有している。先端チップ20の最先端は先鋭形状ではなく、丸みを帯びている。なお、先端チップ20の最先端は平坦形状であってもよい。ガイドワイヤ1は、先端チップ20のやじり形状の先端から、図示しない他のガイドワイヤに設けられた対向電極に向かってRF(高周波)またはプラズマを放電する。
第1コイル体30は、単コイルまたは中空撚線コイルによって構成されており、コアシャフト10の先端側の外周を覆うようにコアシャフト10に巻回されている。ここでは、第1コイル体30は、コアシャフト10の先端側の細径部やテーパー部に巻き回されている。第1コイル体30は、放射線不透過性の材料によって形成されている。第1コイル体30は、例えば、金、白金、タングステン、これらの元素を含む合金(例えば、白金-ニッケル合金)等の放射線不透過性合金で形成することができる。第1コイル体30の先端は、先端チップ20を介してコアシャフト10に固定され、基端は、図示しないろう材によって、コアシャフト10に固定されている。これにより、第1コイル体30は、手技者の操作による、コアシャフト10の基端側からの回転力をコアシャフト10の先端に伝達させることができる。また、コアシャフト10の先端側を細径にできるため、コアシャフト10の先端の柔軟性を向上させることができる。なお、第1コイル体30の長さについては特に限定されないが、例えば、10mm~100mmを例示することができる。第1コイル体30の外径は、特に限定はないが、例えば、0.1mm~1.0mmの範囲を例示することができる。
絶縁膜40は、第1コイル体30と第3コイル体60のそれぞれの外周を覆う筒状の部材であり、電気的絶縁性を有している。ここでは、絶縁膜40は、PFAチューブによって構成されている。絶縁膜40によって、絶縁膜40の内側に配置される、コアシャフト10、第1コイル体30、および、第3コイル体60と、絶縁膜40の外側に配置される第2コイル体50とが電気的に絶縁される。絶縁膜40の外径D1(図3)は、特に限定されないが、例えば、0.15mm~1.1mmの範囲を例示することができる。
第2コイル体50は、1つまたは複数のコイルによって構成されており、絶縁膜40の外側に配置され、絶縁膜40に巻回されている。第2コイル体50の先端は、第1コイル体30の先端よりも基端側に位置している。第2コイル体50の基端は、第1コイル体30の基端とガイドワイヤ1の軸線方向における位置がほぼ等しい。本実施形態の第2コイル体50は、平線コイルであり、放射線不透過性の材料であるタングステンを含んで形成されている。これにより、熱間コイリングによって平線コイルの厚みを薄く、幅を広く形成することができる。なお、第2コイル体50は、放射線不透過性の材料によって形成されていれば、第1コイル体30と同じ材料によって形成されていてもよいし、異なる材料によって形成されていてもよい。第2コイル体50の長さについては、特に限定はないが、例えば、10mm~50mmの範囲を例示することができる。第2コイル体50の素線断面の厚みtおよび幅Wは、特に限定はないが、厚みtとしては、例えば、5μm~20μmの範囲を例示することができる。幅Wとしては、30μm~100μmの範囲を例示することが例示することができる。第2コイル体50の素線間の隙間についても、特に限定はないが、例えば、1μm~50μmの範囲を例示することができる。
第3コイル体60は、第1コイル体30の基端側に配置され、外側が絶縁膜40に覆われている。第3コイル体60は、コアシャフト10の先端側の外周を覆うようにコアシャフト10に巻回されており、第3コイル体60の先端と基端が、それぞれ、図示しないろう材によって、コアシャフト10に固定されている。第3コイル体60は、単コイルまたは中空撚線コイルによって構成されており、第1コイル体30と同様の材料によって形成することができる。なお、第3コイル体60は、第1コイル体30と異なる材料によって形成されていてもよい。ここでは、第3コイル体60の外径は、第1コイル体30の外径と同じであるが、これらの外径は互いに異なっていてもよい。第1コイル体30と第3コイル体60の素線は同じ断面形状であってもよいし、異なっていてもよい。
保護チューブ70は、コアシャフト10の基端側を覆う樹脂チューブであり、ここでは、ポリイミドによって形成されている。なお、保護チューブ70は、絶縁性を有していれば、ポリイミド以外の材料によって形成されていてもよい。例えば、例えば、PTFE(ポリテトラフルオロチレン)、PVDF(ポリビニリデンフルオライド)、PFA(パーフルオロアルコキシアルカン)、FEP(パーフルオロエチレンプロペン)、ETFE(エチレンテトラフルオロエチレン)、PE(ポリエチレン)、PP(ポリプロピレン)などによって形成されてもよい。保護チューブ70の先端側は、絶縁膜40の基端側を覆っている。保護チューブ70は、先端側が絶縁膜40に固定され、基端側がコアシャフト10に固定されている。保護チューブ70の外径D2は、特に限定されないが、例えば、0.2mm~1.2mmの範囲を例示することができる。
先端チューブ80は、絶縁膜40の先端側を覆う樹脂チューブであり、ここでは、保護チューブ70と同様の材料によって形成されている。先端チューブ80は、RF電極(先端チップ20)からの放電が、ガイドワイヤ1の外表面に向かうのを遮断する機能を有している。ここでは、先端チューブ80の外径D3は、保護チューブ70の外径D2と同じ(D2=D3)である。なお、先端チューブ80の外径D3は、保護チューブの外径D2と異なっていてもよい。
保護膜90は、第2コイル体50の外側に配置された樹脂チューブであり、第2コイル体50の外表面全体を覆っている。第2コイル体50の外側は保護膜90の内側にめり込んでいる。保護膜90は、第2コイル体50を保護するとともに第2コイル体50を構成するコイル間の相対移動を規制する。保護膜90は、例えば、PETによって形成することができる。本実施形態の保護膜90の外径D4は、保護チューブ70の外径D2と同じ(D2=D3=D4)である。保護膜90の肉厚には特に限定はないが、例えば、3-5μを例示することができる。
ここでは、ガイドワイヤ1を以下の7つの区間に分けて説明する。ガイドワイヤ1の第1区間N1、第2区間N2、第3区間N3、第4区間N4、第5区間N5、第6区間N6、および、第7区間N7は、ガイドワイヤ1の先端から基端に向かってこの順に連続している。
第1区間N1:先端チップ20の先端から先端チューブ80の先端までの区間
第2区間N2:先端チューブ80の先端から基端までの区間
第3区間N3:先端チューブ80の基端から保護膜90の先端までの区間
第4区間N4:保護膜90の先端から基端までの区間
第5区間N5:保護膜90の基端から保護チューブ70の先端までの区間
第6区間N6:保護チューブ70の先端から絶縁膜40の基端までの区間
第7区間N7:絶縁膜40の基端から保護チューブ70の基端までの区間
なお、本実施形態の「第4区間N4」は、請求の範囲の「第1の区間」に対応している。また、本実施形態の「第6区間N6」は、請求の範囲の「第2の区間」に対応している。また、本実施形態の「第5区間N5」は、請求の範囲の「第3の区間」に対応している。
第1区間N1:先端チップ20の先端から先端チューブ80の先端までの区間
第2区間N2:先端チューブ80の先端から基端までの区間
第3区間N3:先端チューブ80の基端から保護膜90の先端までの区間
第4区間N4:保護膜90の先端から基端までの区間
第5区間N5:保護膜90の基端から保護チューブ70の先端までの区間
第6区間N6:保護チューブ70の先端から絶縁膜40の基端までの区間
第7区間N7:絶縁膜40の基端から保護チューブ70の基端までの区間
なお、本実施形態の「第4区間N4」は、請求の範囲の「第1の区間」に対応している。また、本実施形態の「第6区間N6」は、請求の範囲の「第2の区間」に対応している。また、本実施形態の「第5区間N5」は、請求の範囲の「第3の区間」に対応している。
ガイドワイヤ1の各区間は以下の構成を有している。
第1区間N1:先端チップ20
第2区間N2:コアシャフト10、第1コイル体30、絶縁膜40、先端チューブ80
第3区間N3:コアシャフト10、第1コイル体30、絶縁膜40
第4区間N4:コアシャフト10、第1コイル体30、絶縁膜40、第2コイル体50、保護膜90
第5区間N5:コアシャフト10、第3コイル体60、絶縁膜40
第6区間N6:コアシャフト10、第3コイル体60、絶縁膜40、保護チューブ70
第7区間N7:コアシャフト10、保護チューブ70
第1区間N1:先端チップ20
第2区間N2:コアシャフト10、第1コイル体30、絶縁膜40、先端チューブ80
第3区間N3:コアシャフト10、第1コイル体30、絶縁膜40
第4区間N4:コアシャフト10、第1コイル体30、絶縁膜40、第2コイル体50、保護膜90
第5区間N5:コアシャフト10、第3コイル体60、絶縁膜40
第6区間N6:コアシャフト10、第3コイル体60、絶縁膜40、保護チューブ70
第7区間N7:コアシャフト10、保護チューブ70
ガイドワイヤ1の第2区間N2と第3区間N3は、コアシャフト10、第1コイル体30、および、絶縁膜40によって構成され、第2区間N2には、さらに、先端チューブ80が付加されている。一方、第4区間N4は、第3区間N3の構成にさらに第2コイル体50と保護膜90が付加されている。すなわち、ガイドワイヤ1の第2区間N2と第3区間N3は、第2コイル体50を備える4区間N4に比べて剛性が低く柔軟性を有している。また、第5区間N5は、コアシャフト10、第3コイル体60、および、絶縁膜40によって構成されており、第4区間N4に比べて剛性が低く柔軟性を有している。このように、第2区間N2、第3区間N3、および、第5区間N5によって、ガイドワイヤ1に柔軟性を付与することがきる。
ガイドワイヤ1の各区間の外径は以下のようになっている。
第2区間N2の外径:先端チューブ80の外径D3
第3区間N3の外径:絶縁膜40の外径D1
第4区間N4の外径:保護膜90の外径D4
第5区間N5の外径:絶縁膜40の外径D1
第6区間N6の外径:保護チューブ70の外径D2
第7区間N7の外径:保護チューブ70の外径D2
第2区間N2の外径:先端チューブ80の外径D3
第3区間N3の外径:絶縁膜40の外径D1
第4区間N4の外径:保護膜90の外径D4
第5区間N5の外径:絶縁膜40の外径D1
第6区間N6の外径:保護チューブ70の外径D2
第7区間N7の外径:保護チューブ70の外径D2
ガイドワイヤ1の第3区間N3の外径D1は、両側の第2区間N2の外径D3および第4区間N4の外径D4よりも小さい。すなわち、第2区間N2と第4区間N4との間に縮径された第3区間N3が設けられている。これにより、先端チューブ80と保護膜90との間に隙間ができるため、ガイドワイヤ1を曲げたときに、先端チューブ80と保護膜90との接触(干渉)を抑制でき、ガイドワイヤ1を曲げやすくすることができる。また、同様に、第5区間N5の外径D1は、両側の第4区間N4の外径D4および第6区間N6の外径D2よりも小さい。すなわち、第4区間N4と第6区間N6との間に縮径された第5区間N5が設けられている。これにより、保護膜90と保護チューブ70との間に隙間ができるため、ガイドワイヤ1を曲げたときに、保護膜90と保護チューブ70との接触(干渉)を抑制でき、ガイドワイヤ1をさらに曲げやすくすることができる。
既述の通り、保護膜90の外径D4と保護チューブ70の外径D2は等しいため、ガイドワイヤ1の第4区間N4の外径D4は、第6区間N6の外径D2と等しい。これにより、ガイドワイヤ1の先端側の外径差を低減でき、生体管腔内においてガイドワイヤを容易に進行(挿通性や併用デバイスとの操作性を向上)させることができる。なお、本実施形態において、外径とは、外径の平均値を意味しており、外径が等しいとは、外径が完全に等しい必要はなく、実質的に等しいことを意味しており、±10%程度異なっていてもよい。
第6区間N6に示すように、保護チューブ70の先端側は絶縁膜40の基端側を覆っている。すなわち、保護チューブ70の先端は、絶縁膜40の基端よりも、ガイドワイヤ1の先端側に位置している。これにより、絶縁膜40や保護チューブ70の内側と外側との絶縁性をより向上させることができる。また、絶縁膜40と保護チューブ70との境界部における曲げ剛性の低下を抑制し、キンクの発生を低減できる。
図3に示すように、第2コイル体50のコイルピッチP2は、第1コイル体30のコイルピッチP1よりも大きい。そのため、第2コイル体50による曲げ剛性の増加を抑制して、ガイドワイヤ1の先端の柔軟性を維持しつつ、第2コイル体50による不透過性の向上を図ることができる。また、第2コイル体50は、タングステンを含んで形成されている。これにより、熱間コイリングによって平線コイルの厚みを薄く、幅を広く形成することができるため、ガイドワイヤ1の外径の増加を抑制しつつ、不透過性をさらに向上させることができる。また、第2コイル体50は平線コイルによって形成されているため、ガイドワイヤ1の外周を平坦にすることができる。
第2コイル体50は、先端および基端が、接着剤55によって絶縁膜40に固定されている。また、第2コイル体50は、先端と基端の間の区間において、保護膜90に食い込んでおり、保護膜90によって、第2コイル体50を構成するコイルの相対移動がが規制される。これらによって、ガイドワイヤ1を折り曲げたときに第2コイル体50が絶縁膜40に対して相対的にズレることを抑制できる。また、ガイドワイヤを生体管腔内に挿入したときに、第2コイル体50と生体内壁との接触による第2コイル体50の変形を低減できる。
以上説明した、本実施形態のガイドワイヤ1によれば、絶縁膜40の内側の第1コイル体30によって、ガイドワイヤ1の先端の柔軟性を確保しつつ、絶縁膜40の外側の第2コイル体50によって、ガイドワイヤ1の不透過性の向上を図ることができる。すなわち、第1コイル体30を備えることによって、ガイドワイヤ1の先端のトルク伝達性を維持しつつ、ガイドワイヤ先端の径を細径にすることができる。そして、第2コイル体50を備えることによって、ガイドワイヤ1の先端の不透過性を向上させることができる。
また、本実施形態のガイドワイヤ1によれば、第2コイル体50の外側に保護膜90を備えている。これにより、第2コイル体50を構成するコイル間の相対移動を規制することができる。また、ガイドワイヤ1を生体管腔内に挿入したとき、保護膜90によって第2コイル体50と生体内壁との間の摩擦力を低減させることができるとともに、第2コイル体50と生体内壁との接触による第2コイル体50の変形を低減できる。
また、本実施形態のRF電極付きのガイドワイヤ1(高周波ガイドワイヤ)によれば、ガイドワイヤ1の基端部(手元部)と最先端部以外の部分を絶縁膜40や保護チューブ70で被覆して絶縁することができる。その一方、絶縁膜40や保護チューブ70によって外径が大きくなるのを抑制するために、第1コイル体30を細径化した場合であっても、第2コイル体50を備えているため、ガイドワイヤ1の不透過性の向上を図ることができる。
<第2実施形態>
図4は、第2実施形態のガイドワイヤ1Aの全体構成を例示した説明図である。第2実施形態のガイドワイヤ1Aは、第1実施形態のガイドワイヤ1と比較すると、第2コイル体50の外側に保護膜90(図2)を備えていない点が異なる。その他の構成は、第1実施形態のガイドワイヤ1と同様であるため説明を省略する。第2実施形態のガイドワイヤ1Aでは、第2コイル体50は、図示しない接着剤によって絶縁膜40に固定されている。第2コイル体50は、先端と基端のみを接着剤によって固定されていてもよいし、全体が絶縁膜40に固定されてもよい。第2コイル体50の外径は、保護チューブ70の外径と同じであってもよいし、異なっていてもよい。
図4は、第2実施形態のガイドワイヤ1Aの全体構成を例示した説明図である。第2実施形態のガイドワイヤ1Aは、第1実施形態のガイドワイヤ1と比較すると、第2コイル体50の外側に保護膜90(図2)を備えていない点が異なる。その他の構成は、第1実施形態のガイドワイヤ1と同様であるため説明を省略する。第2実施形態のガイドワイヤ1Aでは、第2コイル体50は、図示しない接着剤によって絶縁膜40に固定されている。第2コイル体50は、先端と基端のみを接着剤によって固定されていてもよいし、全体が絶縁膜40に固定されてもよい。第2コイル体50の外径は、保護チューブ70の外径と同じであってもよいし、異なっていてもよい。
このように、本実施形態のガイドワイヤ1は、保護膜90を備えていなくてもよい。この場合であっても、絶縁膜40の内側の第1コイル体30によって、ガイドワイヤ1の先端の柔軟性を確保しつつ、絶縁膜40の外側の第2コイル体50によって、ガイドワイヤ1の不透過性の向上を図ることができる。なお、ガイドワイヤ1は、保護膜90を備えた方が、第2コイル体50と生体内壁との摩擦を低減させることができるとともに、第2コイル体50と生体内壁との接触による第2コイル体50の変形を低減できるため、より好ましい。
<第3実施形態>
図5は、第3実施形態のガイドワイヤ1Bの全体構成を例示した説明図である。第3実施形態のガイドワイヤ1Bは、第1実施形態のガイドワイヤ1と比較すると、第2コイル体50(図2)の構成が異なる。その他の構成は、第1実施形態のガイドワイヤ1と同様であるため説明を省略する。第3実施形態のガイドワイヤ1Bは、第2コイル体50bを備えている。第2コイル体50bは、素線が円形断面を有するコイルであり、第1コイル体30とコイル径、および、コイルピッチが等しい。第2コイル体50bは、第1コイル体30と同じ材料によって形成されていてもよいし、異なる材料によって形成されていてもよい。
図5は、第3実施形態のガイドワイヤ1Bの全体構成を例示した説明図である。第3実施形態のガイドワイヤ1Bは、第1実施形態のガイドワイヤ1と比較すると、第2コイル体50(図2)の構成が異なる。その他の構成は、第1実施形態のガイドワイヤ1と同様であるため説明を省略する。第3実施形態のガイドワイヤ1Bは、第2コイル体50bを備えている。第2コイル体50bは、素線が円形断面を有するコイルであり、第1コイル体30とコイル径、および、コイルピッチが等しい。第2コイル体50bは、第1コイル体30と同じ材料によって形成されていてもよいし、異なる材料によって形成されていてもよい。
このように、本実施形態のガイドワイヤ1は、第2コイル体50が放射線不透過性の材料によって形成されていれば、第2コイル体50のコイル径やコイルピッチについては任意のものであってよい。この場合であっても、第1コイル体30によって、ガイドワイヤ1の先端の柔軟性を確保しつつ、第2コイル体50によって、ガイドワイヤ1の不透過性の向上を図ることができる。なお、第2コイル体50は、第1コイル体30よりもコイルピッチを大きくした方が、第2コイル体50による曲げ剛性の増加を抑制できるため、より好ましい。また、第2コイル体50は、平線コイルとして形成されている方が、ガイドワイヤ1の外周を平坦にすることができるため、より好ましい。
<第4実施形態>
図6は、第4実施形態のガイドワイヤ1Cの全体構成を例示した説明図である。第4実施形態のガイドワイヤ1Cは、第1実施形態のガイドワイヤ1と比較すると、保護チューブ70の外径D2が異なる。その他の構成は、第1実施形態のガイドワイヤ1と同様であるため説明を省略する。第4実施形態のガイドワイヤ1Cでは、保護チューブ70の外径D2cは、先端チューブ80の外径D3や保護膜90の外径D4よりも大きい。このように、本実施形態のガイドワイヤ1は、保護チューブ70の外径が先端チューブ80の外径や保護膜90の外径と異なっていてもよい。同様に、本実施形態のガイドワイヤ1は、保護膜90の外径が先端チューブ80の外径と異なっていてもよい。これらの場合であっても、ガイドワイヤ1の先端の柔軟性を確保しつつ、ガイドワイヤ1の不透過性の向上を図ることができる。なお、保護チューブ70の外径、先端チューブ80の外径、および、保護膜90の外径は、互いに近似している方が、ガイドワイヤ1の先端側の外径差を低減できるため、より好ましい。
図6は、第4実施形態のガイドワイヤ1Cの全体構成を例示した説明図である。第4実施形態のガイドワイヤ1Cは、第1実施形態のガイドワイヤ1と比較すると、保護チューブ70の外径D2が異なる。その他の構成は、第1実施形態のガイドワイヤ1と同様であるため説明を省略する。第4実施形態のガイドワイヤ1Cでは、保護チューブ70の外径D2cは、先端チューブ80の外径D3や保護膜90の外径D4よりも大きい。このように、本実施形態のガイドワイヤ1は、保護チューブ70の外径が先端チューブ80の外径や保護膜90の外径と異なっていてもよい。同様に、本実施形態のガイドワイヤ1は、保護膜90の外径が先端チューブ80の外径と異なっていてもよい。これらの場合であっても、ガイドワイヤ1の先端の柔軟性を確保しつつ、ガイドワイヤ1の不透過性の向上を図ることができる。なお、保護チューブ70の外径、先端チューブ80の外径、および、保護膜90の外径は、互いに近似している方が、ガイドワイヤ1の先端側の外径差を低減できるため、より好ましい。
<第5実施形態>
図7は、第5実施形態のガイドワイヤ1Dの全体構成を例示した説明図である。第5実施形態のガイドワイヤ1Dは、第1実施形態のガイドワイヤ1と比較すると、保護チューブ70が先端側に延設され、保護チューブ70の先端が保護膜90の基端に接続している点が異なる。その他の構成は、第1実施形態のガイドワイヤ1と同様であるため説明を省略する。第5実施形態のガイドワイヤ1Dは、保護チューブ70dを備えている。保護チューブ70dは、第2コイル体50の基端に接続するように先端側に延設されている。すなわち、第5実施形態のガイドワイヤ1Dは、第6区間N6が拡張されており、第1実施形態の第5区間N5(図2)に相当する区間を備えていない。このように、本実施形態のガイドワイヤ1は、保護チューブ70と保護膜90との間に隙間が形成されていなくてもよい。この場合であっても、ガイドワイヤ1の先端の柔軟性を確保しつつ、ガイドワイヤ1の不透過性の向上を図ることができる。同様に、本実施形態のガイドワイヤ1は、先端チューブ80の基端が保護膜90の先端に接続し、第3区間N3を備えていなくてもよい。
図7は、第5実施形態のガイドワイヤ1Dの全体構成を例示した説明図である。第5実施形態のガイドワイヤ1Dは、第1実施形態のガイドワイヤ1と比較すると、保護チューブ70が先端側に延設され、保護チューブ70の先端が保護膜90の基端に接続している点が異なる。その他の構成は、第1実施形態のガイドワイヤ1と同様であるため説明を省略する。第5実施形態のガイドワイヤ1Dは、保護チューブ70dを備えている。保護チューブ70dは、第2コイル体50の基端に接続するように先端側に延設されている。すなわち、第5実施形態のガイドワイヤ1Dは、第6区間N6が拡張されており、第1実施形態の第5区間N5(図2)に相当する区間を備えていない。このように、本実施形態のガイドワイヤ1は、保護チューブ70と保護膜90との間に隙間が形成されていなくてもよい。この場合であっても、ガイドワイヤ1の先端の柔軟性を確保しつつ、ガイドワイヤ1の不透過性の向上を図ることができる。同様に、本実施形態のガイドワイヤ1は、先端チューブ80の基端が保護膜90の先端に接続し、第3区間N3を備えていなくてもよい。
<第6実施形態>
図8は、第6実施形態のガイドワイヤ1Eの全体構成を例示した説明図である。第6実施形態のガイドワイヤ1Eは、第1実施形態のガイドワイヤ1と比較すると、第2コイル体50(図2)の代わりに金属製のチューブを用いている点が異なる。その他の構成は、第1実施形態のガイドワイヤ1と同様であるため説明を省略する。第6実施形態のガイドワイヤ1Eでは、絶縁膜40の外側に金属製のチューブ50eが配置されている。チューブ50eは、放射線不透過性の材料によって形成され、複数のスリットを備えている。チューブ50eは、この複数のスリットによって、曲げ変形可能に構成されている。チューブ50eの外側には、保護膜90が配置されている。このように、本実施形態のガイドワイヤ1は、第2コイル体50の代わりに放射線不透過性を有するコイル以外の筒状体を備えていてもよい。
図8は、第6実施形態のガイドワイヤ1Eの全体構成を例示した説明図である。第6実施形態のガイドワイヤ1Eは、第1実施形態のガイドワイヤ1と比較すると、第2コイル体50(図2)の代わりに金属製のチューブを用いている点が異なる。その他の構成は、第1実施形態のガイドワイヤ1と同様であるため説明を省略する。第6実施形態のガイドワイヤ1Eでは、絶縁膜40の外側に金属製のチューブ50eが配置されている。チューブ50eは、放射線不透過性の材料によって形成され、複数のスリットを備えている。チューブ50eは、この複数のスリットによって、曲げ変形可能に構成されている。チューブ50eの外側には、保護膜90が配置されている。このように、本実施形態のガイドワイヤ1は、第2コイル体50の代わりに放射線不透過性を有するコイル以外の筒状体を備えていてもよい。
<第7実施形態>
図9は、第7実施形態のガイドワイヤ1Fの全体構成を例示した説明図である。第7実施形態のガイドワイヤ1Fは、第1実施形態のガイドワイヤ1と比較すると、第1コイル体30(図2)の代わりに金属製のチューブを用いている点が異なる。その他の構成は、第1実施形態のガイドワイヤ1と同様であるため説明を省略する。第7実施形態のガイドワイヤ1Fでは、コアシャフト10の先端側の外周を覆うように金属製のチューブ30fが配置されている。チューブ30fは、放射線不透過性の材料によって形成され、複数のスリットを備えている。チューブ30fは、この複数のスリットによって、曲げ変形可能に構成されている。チューブ30fの外側には、絶縁膜40が配置されている。チューブ30fの先端は、先端チップ20を介してコアシャフト10に固定され、基端は、図示しないろう材によって、コアシャフト10に固定されている。このように、本実施形態のガイドワイヤ1は、第1コイル体30の代わりに放射線不透過性を有するコイル以外の筒状体を備えていてもよい。
図9は、第7実施形態のガイドワイヤ1Fの全体構成を例示した説明図である。第7実施形態のガイドワイヤ1Fは、第1実施形態のガイドワイヤ1と比較すると、第1コイル体30(図2)の代わりに金属製のチューブを用いている点が異なる。その他の構成は、第1実施形態のガイドワイヤ1と同様であるため説明を省略する。第7実施形態のガイドワイヤ1Fでは、コアシャフト10の先端側の外周を覆うように金属製のチューブ30fが配置されている。チューブ30fは、放射線不透過性の材料によって形成され、複数のスリットを備えている。チューブ30fは、この複数のスリットによって、曲げ変形可能に構成されている。チューブ30fの外側には、絶縁膜40が配置されている。チューブ30fの先端は、先端チップ20を介してコアシャフト10に固定され、基端は、図示しないろう材によって、コアシャフト10に固定されている。このように、本実施形態のガイドワイヤ1は、第1コイル体30の代わりに放射線不透過性を有するコイル以外の筒状体を備えていてもよい。
<第8実施形態>
図10は、第8実施形態のガイドワイヤ1Gの全体構成を例示した説明図である。第8実施形態のガイドワイヤ1Gは、第1実施形態のガイドワイヤ1と比較すると、第3コイル体60(図2)を備えておらず、第1コイル体30がさらに基端側に延設されている点が異なる。その他の構成は、第1実施形態のガイドワイヤ1と同様であるため説明を省略する。第8実施形態のガイドワイヤ1Gは、第1コイル体30gを備えている。第1コイル体30gの長さは、絶縁膜40の長さとほぼ等しく、第1コイル体30gの先端は先端チップ20に接続され、第1コイル体30gの基端は、絶縁膜40の基端まで延設されている。このように、本実施形態のガイドワイヤ1は、第3コイル体60を備えていなくてもよい。なお、他の例としては、第3コイル体60を備えておらず、第1コイル体30が基端側に延設されていなくてもよい。
図10は、第8実施形態のガイドワイヤ1Gの全体構成を例示した説明図である。第8実施形態のガイドワイヤ1Gは、第1実施形態のガイドワイヤ1と比較すると、第3コイル体60(図2)を備えておらず、第1コイル体30がさらに基端側に延設されている点が異なる。その他の構成は、第1実施形態のガイドワイヤ1と同様であるため説明を省略する。第8実施形態のガイドワイヤ1Gは、第1コイル体30gを備えている。第1コイル体30gの長さは、絶縁膜40の長さとほぼ等しく、第1コイル体30gの先端は先端チップ20に接続され、第1コイル体30gの基端は、絶縁膜40の基端まで延設されている。このように、本実施形態のガイドワイヤ1は、第3コイル体60を備えていなくてもよい。なお、他の例としては、第3コイル体60を備えておらず、第1コイル体30が基端側に延設されていなくてもよい。
<第9実施形態>
図11は、第9実施形態のガイドワイヤ1Hの全体構成を例示した説明図である。第9実施形態のガイドワイヤ1Hは、第1実施形態のガイドワイヤ1と比較すると、保護膜90(図2)を備えておらず、保護チューブ70がさらに先端側に延設されている点が異なる。その他の構成は、第1実施形態のガイドワイヤ1と同様であるため説明を省略する。
第9実施形態のガイドワイヤ1Hは、保護チューブ70hを備えている。保護チューブ70hは、第2コイル体50の先端からコアシャフト10の基端までを覆っている。このように、本実施形態のガイドワイヤ1は、保護チューブ70が第2コイル体50の先端まで延設され、第2コイル体50の全体を覆っていてもよい。
図11は、第9実施形態のガイドワイヤ1Hの全体構成を例示した説明図である。第9実施形態のガイドワイヤ1Hは、第1実施形態のガイドワイヤ1と比較すると、保護膜90(図2)を備えておらず、保護チューブ70がさらに先端側に延設されている点が異なる。その他の構成は、第1実施形態のガイドワイヤ1と同様であるため説明を省略する。
第9実施形態のガイドワイヤ1Hは、保護チューブ70hを備えている。保護チューブ70hは、第2コイル体50の先端からコアシャフト10の基端までを覆っている。このように、本実施形態のガイドワイヤ1は、保護チューブ70が第2コイル体50の先端まで延設され、第2コイル体50の全体を覆っていてもよい。
<第10実施形態>
図12は、第10実施形態のガイドワイヤ1Jの全体構成を例示した説明図である。第10実施形態のガイドワイヤ1Jは、第1実施形態のガイドワイヤ1と比較すると、保護チューブ70(図2)を備えておらず、絶縁膜40がさらに基端側に延設されている点が異なる。その他の構成は、第1実施形態のガイドワイヤ1と同様であるため説明を省略する。第10実施形態のガイドワイヤ1Jは、絶縁膜40jを備えている。絶縁膜40jは、コアシャフト10の基端を除くコアシャフト10の全体を覆っている。このように、本実施形態のガイドワイヤ1は、保護チューブ70の代わりに、絶縁膜40がさらに基端側に延設されていてもよい。
図12は、第10実施形態のガイドワイヤ1Jの全体構成を例示した説明図である。第10実施形態のガイドワイヤ1Jは、第1実施形態のガイドワイヤ1と比較すると、保護チューブ70(図2)を備えておらず、絶縁膜40がさらに基端側に延設されている点が異なる。その他の構成は、第1実施形態のガイドワイヤ1と同様であるため説明を省略する。第10実施形態のガイドワイヤ1Jは、絶縁膜40jを備えている。絶縁膜40jは、コアシャフト10の基端を除くコアシャフト10の全体を覆っている。このように、本実施形態のガイドワイヤ1は、保護チューブ70の代わりに、絶縁膜40がさらに基端側に延設されていてもよい。
<第11実施形態>
図13は、第11実施形態のガイドワイヤ1Kの全体構成を例示した説明図である。第11実施形態のガイドワイヤ1Kは、第1実施形態のガイドワイヤ1と比較すると、先端チップ20(図2)がRF電極としての機能を備えていない点が異なる。そのため、第11実施形態のガイドワイヤ1Kの基端部には高周波発生装置2が接続されない。その他の構成は、第1実施形態のガイドワイヤ1と同様であるため説明を省略する。第11実施形態のガイドワイヤ1Kは、先端に先端チップ20kを備えている。先端チップ20kの先端はやじり形状を有しておらず、半球状となっている。先端チップ20kは、第1実施形態の先端チップ20と同じ材料によって形成されていてもよいし、樹脂などの非導電性材料によって形成されていてもよい。このように、本実施形態のガイドワイヤ1は、高周波ガイドワイヤ以外のガイドワイヤとして構成されていてもよい。
図13は、第11実施形態のガイドワイヤ1Kの全体構成を例示した説明図である。第11実施形態のガイドワイヤ1Kは、第1実施形態のガイドワイヤ1と比較すると、先端チップ20(図2)がRF電極としての機能を備えていない点が異なる。そのため、第11実施形態のガイドワイヤ1Kの基端部には高周波発生装置2が接続されない。その他の構成は、第1実施形態のガイドワイヤ1と同様であるため説明を省略する。第11実施形態のガイドワイヤ1Kは、先端に先端チップ20kを備えている。先端チップ20kの先端はやじり形状を有しておらず、半球状となっている。先端チップ20kは、第1実施形態の先端チップ20と同じ材料によって形成されていてもよいし、樹脂などの非導電性材料によって形成されていてもよい。このように、本実施形態のガイドワイヤ1は、高周波ガイドワイヤ以外のガイドワイヤとして構成されていてもよい。
<本実施形態の変形例>
本発明は上記の実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様において実施することが可能であり、例えば次のような変形も可能である。
本発明は上記の実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様において実施することが可能であり、例えば次のような変形も可能である。
[変形例1]
第1実施形態のガイドワイヤ1は、第2コイル体50の基端と、第1コイル体30の基端の位置が等しいものとした。しかし、これらの基端の位置は異なっていてもよい。また、また、第1実施形態のガイドワイヤ1は、先端チューブ80の先端と、絶縁膜40の先端の位置が等しいものとした。しかし、これらの先端の位置は異なっていてもよい。
第1実施形態のガイドワイヤ1は、第2コイル体50の基端と、第1コイル体30の基端の位置が等しいものとした。しかし、これらの基端の位置は異なっていてもよい。また、また、第1実施形態のガイドワイヤ1は、先端チューブ80の先端と、絶縁膜40の先端の位置が等しいものとした。しかし、これらの先端の位置は異なっていてもよい。
[変形例2]
第1実施形態のガイドワイヤ1は、保護膜90の代わりに、先端チューブ80が基端側に延設されて第2コイル体50を覆ってもよい。または、第1実施形態のガイドワイヤ1は、先端チューブ80を備えていなくてもよい。
第1実施形態のガイドワイヤ1は、保護膜90の代わりに、先端チューブ80が基端側に延設されて第2コイル体50を覆ってもよい。または、第1実施形態のガイドワイヤ1は、先端チューブ80を備えていなくてもよい。
[変形例3]
第1実施形態のガイドワイヤ1は、保護チューブ70の先端が絶縁膜40の基端を覆っているものとした。しかし、保護チューブ70の先端は、絶縁膜40の基端を覆わず、絶縁膜40の基端に接続されていてもよい。
第1実施形態のガイドワイヤ1は、保護チューブ70の先端が絶縁膜40の基端を覆っているものとした。しかし、保護チューブ70の先端は、絶縁膜40の基端を覆わず、絶縁膜40の基端に接続されていてもよい。
[変形例4]
第1実施形態の第2コイル体50は、先端と基端のみが接着剤55によって絶縁膜40に固定されているものとした。しかし、第2コイル体50は、接着剤55によって全体が絶縁膜40に固定されていてもよい。または、第2コイル体50は、保護膜90が絶縁膜40に溶着することによって絶縁膜40に固定されてもよい。
第1実施形態の第2コイル体50は、先端と基端のみが接着剤55によって絶縁膜40に固定されているものとした。しかし、第2コイル体50は、接着剤55によって全体が絶縁膜40に固定されていてもよい。または、第2コイル体50は、保護膜90が絶縁膜40に溶着することによって絶縁膜40に固定されてもよい。
[変形例5]
第1実施形態のガイドワイヤ1は、第2区間N2や第5区間N5の絶縁膜40の外表面、第4区間N4の保護膜90の外表面、および、第6区間N6や第7区間N7の保護チューブ70の外表面が1または複数種類の樹脂によって覆われていてもよい。
第1実施形態のガイドワイヤ1は、第2区間N2や第5区間N5の絶縁膜40の外表面、第4区間N4の保護膜90の外表面、および、第6区間N6や第7区間N7の保護チューブ70の外表面が1または複数種類の樹脂によって覆われていてもよい。
[変形例6]
第1実施形態のガイドワイヤ1の先端部は、直線的に形成されているものとした。しかし、ガイドワイヤ1の先端部は、曲線状であってもよいし、一部が折れ曲がっていてもよい。ガイドワイヤ1は、先端チップ20から高周波を放電してもよいし、プラズマを放電してもよい。また、その両方を放電してもよい。高周波発生装置2から供給される高周波の周波数は任意の周波数であってよい。
第1実施形態のガイドワイヤ1の先端部は、直線的に形成されているものとした。しかし、ガイドワイヤ1の先端部は、曲線状であってもよいし、一部が折れ曲がっていてもよい。ガイドワイヤ1は、先端チップ20から高周波を放電してもよいし、プラズマを放電してもよい。また、その両方を放電してもよい。高周波発生装置2から供給される高周波の周波数は任意の周波数であってよい。
[変形例7]
第1実施形態のガイドワイヤ1は、保護膜90の外側にさらにコイルが配置されていてもよい。また、第1実施形態のガイドワイヤ1は、第2コイル体50と保護膜90との組み合わせが複数並んで配置されていてもよい。また、ガイドワイヤ1は、対向電極を備えていてもよい。また、第1コイル体30や第2コイル体50は、複数のコイル体が並んで構成されていてもよい。また、これらのコイル体を構成する素線の断面形状は任意の形状であってよい。
第1実施形態のガイドワイヤ1は、保護膜90の外側にさらにコイルが配置されていてもよい。また、第1実施形態のガイドワイヤ1は、第2コイル体50と保護膜90との組み合わせが複数並んで配置されていてもよい。また、ガイドワイヤ1は、対向電極を備えていてもよい。また、第1コイル体30や第2コイル体50は、複数のコイル体が並んで構成されていてもよい。また、これらのコイル体を構成する素線の断面形状は任意の形状であってよい。
[変形例8]
上述した第1~第11実施形態の構成は、ガイドワイヤ以外の医療器具に対しても適用することができる。例えば、本実施形態の構成は、ダイレータ、内視鏡、カテーテルなどにおいても適用することができる。また、第1~第11実施形態で例示したガイドワイヤの各構成は、その一部を適宜組み合わせることができるとともに、適宜除くことができる。
上述した第1~第11実施形態の構成は、ガイドワイヤ以外の医療器具に対しても適用することができる。例えば、本実施形態の構成は、ダイレータ、内視鏡、カテーテルなどにおいても適用することができる。また、第1~第11実施形態で例示したガイドワイヤの各構成は、その一部を適宜組み合わせることができるとともに、適宜除くことができる。
以上、実施形態、変形例に基づき本態様について説明してきたが、上記した態様の実施の形態は、本態様の理解を容易にするためのものであり、本態様を限定するものではない。本態様は、その趣旨並びに特許請求の範囲を逸脱することなく、変更、改良され得ると共に、本態様にはその等価物が含まれる。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することができる。
1、1A~1K…ガイドワイヤ
2…高周波発生装置
10…コアシャフト
20…先端チップ
30…第1コイル体
40…絶縁膜
50…第2コイル体
55…接着剤
60…第3コイル体
70…保護チューブ
80…先端チューブ
90…保護膜
2…高周波発生装置
10…コアシャフト
20…先端チップ
30…第1コイル体
40…絶縁膜
50…第2コイル体
55…接着剤
60…第3コイル体
70…保護チューブ
80…先端チューブ
90…保護膜
Claims (8)
- ガイドワイヤであって、
放射線不透過性を有する第1の筒状体と、
前記第1の筒状体の外側に配置され、電気的絶縁性を有する絶縁膜と、
前記絶縁膜の外側に配置され、放射線不透過性を有する第2の筒状体と、を備える、
ガイドワイヤ。 - 請求項1に記載のガイドワイヤであって、
前記第2の筒状体は、コイル体であり、
前記ガイドワイヤは、さらに、
前記第2の筒状体の外側に配置され、前記第2の筒状体を保護する保護膜を備える、
ガイドワイヤ。 - 請求項2に記載のガイドワイヤは、さらに、
先端側が前記第1の筒状体の内側に配置されるコアシャフトと、
前記コアシャフトの基端側を覆う保護チューブと、を備えており、
前記ガイドワイヤにおいて、前記第2の筒状体が配設されている第1の区間における前記ガイドワイヤの外径は、前記保護チューブが配設されている第2の区間における前記ガイドワイヤの外径と等しい、
ガイドワイヤ。 - 請求項3に記載のガイドワイヤであって、
前記保護チューブの先端側は、前記絶縁膜の基端側の一部を被覆している、
ガイドワイヤ。 - 請求項3または請求項4に記載のガイドワイヤは、さらに、
前記ガイドワイヤにおいて、前記第1の区間と、前記第2の区間との間には、前記第1の区間および前記第2の区間のそれぞれの外径よりも小さい外径を有する第3の区間を備える
ガイドワイヤ。 - 請求項3から請求項5までのいずれか一項に記載のガイドワイヤは、さらに、
前記第1の筒状体の先端側にRF電極を備えており、
前記コアシャフトは、導電性部材によって形成されており、前記コアシャフトの先端側が前記RF電極に電気的に接続され、前記コアシャフトの基端側が高周波発生装置に電気的に接続可能に構成されている、
ガイドワイヤ。 - 請求項2から請求項6までのいずれか一項に記載のガイドワイヤであって、
前記第1の筒状体は、コイル体であり、
前記第2の筒状体は、タングステンを含んで形成された平線のコイル体であり、
前記第2の筒状体のコイルピッチは、前記第1の筒状体のコイルピッチよりも大きい、
ガイドワイヤ。 - 請求項2から請求項7までのいずれか一項に記載のガイドワイヤであって、
前記第2の筒状体は、先端および基端がそれぞれ前記絶縁膜に固定されており、先端と基端の間の区間において、前記保護膜によって前記第2の筒状体を構成するコイルの移動が規制されている、
ガイドワイヤ。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021524648A JPWO2020246037A1 (ja) | 2019-06-07 | 2019-06-07 | ガイドワイヤ |
PCT/JP2019/022797 WO2020246037A1 (ja) | 2019-06-07 | 2019-06-07 | ガイドワイヤ |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/022797 WO2020246037A1 (ja) | 2019-06-07 | 2019-06-07 | ガイドワイヤ |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020246037A1 true WO2020246037A1 (ja) | 2020-12-10 |
Family
ID=73653148
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/022797 WO2020246037A1 (ja) | 2019-06-07 | 2019-06-07 | ガイドワイヤ |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2020246037A1 (ja) |
WO (1) | WO2020246037A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022138290A1 (ja) * | 2020-12-25 | 2022-06-30 | 朝日インテック株式会社 | プラズマアブレーションシステム、及び、プラズマガイドワイヤ |
WO2023223642A1 (ja) * | 2022-05-17 | 2023-11-23 | 朝日インテック株式会社 | プラズマガイドワイヤ |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6335241A (ja) * | 1986-06-30 | 1988-02-15 | メドツクス・メデイカルズ・インコーポレイテツド | 操作自在の小径ガイドワイヤ |
US5542434A (en) * | 1994-10-28 | 1996-08-06 | Intelliwire Inc. | Guide wire with deflectable tip and method |
JP2006519068A (ja) * | 2003-02-26 | 2006-08-24 | ボストン サイエンティフィック リミテッド | 長尺状体内医療器具 |
JP2012223256A (ja) * | 2011-04-18 | 2012-11-15 | Asahi Intecc Co Ltd | 医療用ガイドワイヤ |
JP2016221198A (ja) * | 2015-05-29 | 2016-12-28 | 株式会社エフエムディ | 医療用ガイドワイヤ |
JP2018192058A (ja) * | 2017-05-18 | 2018-12-06 | 日本ライフライン株式会社 | 医療用ガイドワイヤ |
WO2019003382A1 (ja) * | 2017-06-29 | 2019-01-03 | 朝日インテック株式会社 | プラズマ用ガイドワイヤ |
-
2019
- 2019-06-07 JP JP2021524648A patent/JPWO2020246037A1/ja active Pending
- 2019-06-07 WO PCT/JP2019/022797 patent/WO2020246037A1/ja active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6335241A (ja) * | 1986-06-30 | 1988-02-15 | メドツクス・メデイカルズ・インコーポレイテツド | 操作自在の小径ガイドワイヤ |
US5542434A (en) * | 1994-10-28 | 1996-08-06 | Intelliwire Inc. | Guide wire with deflectable tip and method |
JP2006519068A (ja) * | 2003-02-26 | 2006-08-24 | ボストン サイエンティフィック リミテッド | 長尺状体内医療器具 |
JP2012223256A (ja) * | 2011-04-18 | 2012-11-15 | Asahi Intecc Co Ltd | 医療用ガイドワイヤ |
JP2016221198A (ja) * | 2015-05-29 | 2016-12-28 | 株式会社エフエムディ | 医療用ガイドワイヤ |
JP2018192058A (ja) * | 2017-05-18 | 2018-12-06 | 日本ライフライン株式会社 | 医療用ガイドワイヤ |
WO2019003382A1 (ja) * | 2017-06-29 | 2019-01-03 | 朝日インテック株式会社 | プラズマ用ガイドワイヤ |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022138290A1 (ja) * | 2020-12-25 | 2022-06-30 | 朝日インテック株式会社 | プラズマアブレーションシステム、及び、プラズマガイドワイヤ |
WO2023223642A1 (ja) * | 2022-05-17 | 2023-11-23 | 朝日インテック株式会社 | プラズマガイドワイヤ |
Also Published As
Publication number | Publication date |
---|---|
JPWO2020246037A1 (ja) | 2021-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2937108B1 (en) | Catheter | |
US8608670B2 (en) | Guidewire | |
US8622932B2 (en) | Guidewire | |
JP5531352B2 (ja) | カテーテルアセンブリ | |
US8449526B2 (en) | Torqueable soft tip medical device and method of usage | |
KR970069050A (ko) | 복합 맥관 가이드와이어 | |
US11633567B2 (en) | Catheter and balloon catheter | |
CA2493013A1 (en) | Medical device for navigation through anatomy and method of making same | |
EP2502645A1 (en) | Guidewire | |
WO2020246037A1 (ja) | ガイドワイヤ | |
US20220016396A1 (en) | Catheter With Embedded Core Wires And Shaping Ribbons | |
US20220016395A1 (en) | Intraluminal device with looped core wire | |
WO2018062155A1 (ja) | ガイドワイヤ | |
WO2020031409A1 (ja) | ガイドワイヤ | |
US20220105310A1 (en) | Hollow shaft and catheter | |
WO2020032033A1 (ja) | 電極カテーテルに使用されるカテーテルチューブユニットとその製造方法、カテーテルチューブ及び電極カテーテル | |
JP6276522B2 (ja) | 位置決め医療機器 | |
JP7511355B2 (ja) | ガイドワイヤ | |
WO2024106172A1 (ja) | ガイドワイヤ | |
JP7376340B2 (ja) | カテーテル | |
WO2024116321A1 (ja) | ガイドワイヤ、及び、医療システム | |
WO2024024349A1 (ja) | ダイレータ | |
WO2024116319A1 (ja) | 医療デバイス、医療デバイスの製造方法 | |
WO2024116318A1 (ja) | 医療デバイス | |
JP2024027763A (ja) | 医療用長尺体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19931912 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021524648 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19931912 Country of ref document: EP Kind code of ref document: A1 |