WO2022137819A1 - 車両 - Google Patents
車両 Download PDFInfo
- Publication number
- WO2022137819A1 WO2022137819A1 PCT/JP2021/040446 JP2021040446W WO2022137819A1 WO 2022137819 A1 WO2022137819 A1 WO 2022137819A1 JP 2021040446 W JP2021040446 W JP 2021040446W WO 2022137819 A1 WO2022137819 A1 WO 2022137819A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lane
- vehicle
- steering
- virtual
- motorcycle
- Prior art date
Links
- 230000008859 change Effects 0.000 claims description 63
- 238000001514 detection method Methods 0.000 description 12
- 230000001133 acceleration Effects 0.000 description 7
- 230000009471 action Effects 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 230000004048 modification Effects 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 3
- 239000006096 absorbing agent Substances 0.000 description 2
- 230000004397 blinking Effects 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 239000002828 fuel tank Substances 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 230000036962 time dependent Effects 0.000 description 2
- 125000002066 L-histidyl group Chemical group [H]N1C([H])=NC(C([H])([H])[C@](C(=O)[*])([H])N([H])[H])=C1[H] 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/10—Path keeping
- B60W30/12—Lane keeping
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62K—CYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
- B62K21/00—Steering devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/20—Conjoint control of vehicle sub-units of different type or different function including control of steering systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/10—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
- B60W40/114—Yaw movement
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D15/00—Steering not otherwise provided for
- B62D15/02—Steering position indicators ; Steering position determination; Steering aids
- B62D15/025—Active steering aids, e.g. helping the driver by actively influencing the steering system after environment evaluation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62J—CYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
- B62J27/00—Safety equipment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62J—CYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
- B62J45/00—Electrical equipment arrangements specially adapted for use as accessories on cycles, not otherwise provided for
- B62J45/20—Cycle computers as cycle accessories
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2300/00—Indexing codes relating to the type of vehicle
- B60W2300/36—Cycles; Motorcycles; Scooters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2520/00—Input parameters relating to overall vehicle dynamics
- B60W2520/14—Yaw
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Y—INDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
- B60Y2200/00—Type of vehicle
- B60Y2200/10—Road Vehicles
- B60Y2200/12—Motorcycles, Trikes; Quads; Scooters
Definitions
- the present invention relates to a vehicle.
- This application claims priority based on Japanese Patent Application No. 2020-214794 filed in Japan on December 24, 2020, the contents of which are incorporated herein by reference.
- Patent Document 1 a technique capable of maintaining running along the lane even when the vehicle receives a strong crosswind while driving is known (for example, Patent Document 1). reference).
- an object of the present invention is to suppress the occurrence of unnatural behavior in a vehicle equipped with a lane keeping support system.
- the present invention is a vehicle (1) provided with a lane keeping support system, and includes a control device (71) for controlling the steering of the vehicle (1).
- the control device (71) divides the width of the lane (110A) in which the vehicle (1) travels into a plurality of virtual lanes (111, 112, 113, 114, 115).
- the control device (71) controls the vehicle (1) to travel in one virtual lane among the plurality of virtual lanes (111, 112, 113, 114, 115).
- virtual lanes divided into a plurality of parts within the width of the lane are regarded, and the vehicle is controlled to travel in one of these virtual lanes.
- the control device (71) controls as follows when the vehicle (1) traveling in the one virtual lane is about to travel out of the one virtual lane. You may. That is, the control device (71) may control the traveling position of the vehicle (1) so as to return to the inside of the one virtual lane. According to this configuration, when the vehicle is about to travel out of one virtual lane, it is controlled to return the traveling position to the inside of one virtual lane. As a result, it is possible to maintain the running in the divided virtual lane, and it is possible to maintain the straightness of the vehicle.
- the width of each of the plurality of virtual lanes may be set to be uniform. According to this configuration, the width of each of the plurality of virtual lanes is set to be uniform. This allows the driver to easily recognize the position of each virtual lane.
- the vehicle (1) traveling in the one virtual lane changes the yaw angle ( ⁇ ) with respect to the forward direction along the lane (110A).
- the control device (71) may be controlled so as to reduce the change in the yaw angle ( ⁇ ).
- the yaw angle with respect to the forward direction along the lane increases, for example, the yaw angle is controlled to decrease.
- the straightness of the vehicle can be maintained by the feedback according to the change of the yaw angle.
- the control device (71) may be controlled as follows when the rate of change of the yaw angle ( ⁇ ) exceeds the first threshold value (Th1). That is, the control device (71) controls the running virtual lane to change the lane of the vehicle (1) up to the virtual lane adjacent to the side where the yaw angle ( ⁇ ) has changed. You may. According to this configuration, when the change speed of the yaw angle exceeds the first threshold value due to the influence of disturbance during traveling, the lane change is allowed up to the virtual lane adjacent to the virtual lane during traveling. As a result, it becomes possible to control the strong disturbance so as to suppress the occurrence of unnatural behavior.
- the control device (71) controls as follows when the rate of change of the yaw angle ( ⁇ ) exceeds a second threshold value (Th2) larger than the first threshold value (Th1). You may. That is, the control device (71) causes the vehicle (1) to change lanes to the second virtual lane adjacent to the side where the yaw angle ( ⁇ ) has changed with respect to the running virtual lane. It may be controlled to. According to this configuration, when the change speed of the yaw angle exceeds the second threshold value larger than the first threshold value, the lane change is allowed up to the second virtual lane adjacent to the running virtual lane. As a result, control according to the strength of the disturbance becomes possible, and the occurrence of unnatural behavior can be further suppressed.
- the vehicle (1) travels on the outermost virtual lane (111, 115) among the plurality of virtual lanes (111, 112, 113, 114, 115). If so, it may be controlled as follows. That is, the control device (71) may be controlled so as not to change the lane of the vehicle (1) regardless of the change speed of the yaw angle ( ⁇ ). According to this configuration, when traveling in the outermost virtual lane among a plurality of virtual lanes, it is controlled so that the lane is not changed even if the change speed of the yaw angle exceeds the first threshold value. As a result, the vehicle can continue to run in the same lane.
- the control device (71) when the vehicle (1) is to be changed from the one virtual lane to the adjacent virtual lane, the control device (71) is predetermined behind the adjacent virtual lane to be changed.
- the control may be performed as follows. That is, the control device (71) may be controlled so as not to change the lane of the vehicle (1) regardless of the change speed of the yaw angle ( ⁇ ).
- ⁇ change speed of the yaw angle
- FIG. 1 shows a motorcycle 1 as an example of the vehicle of the present embodiment.
- the motorcycle 1 includes a front wheel (steering wheel) 3 steered by the steering wheel 2 and a rear wheel (driving wheel) 4 driven by the power unit 20.
- the motorcycle 1 is a saddle-riding vehicle on which the driver straddles the vehicle body, and can swing (bank) the vehicle body in the left-right direction (roll direction) with reference to the ground contact points of the front and rear wheels 3 and 4.
- the vehicle of the embodiment is not limited to a vehicle that turns in a direction in which the vehicle body is banked, such as a motorcycle.
- the vehicle of the embodiment includes a vehicle that turns by steering the steering wheels without banking the vehicle body.
- the motorcycle 1 is equipped with a steering system component 10A including a steering wheel 2 and a front wheel 3.
- the steering system component 10A is steerably supported by the head pipe 6.
- the head pipe 6 is located at the front end of the vehicle body frame 5, which is the skeleton of the motorcycle 1.
- the front wheels 3 are supported by the lower ends of the pair of left and right front forks 10 in the steering system component 10A.
- the periphery of the vehicle body frame 5 is covered with the vehicle body cover 12.
- the vehicle body frame 5 includes a head pipe 6, a pair of left and right main frames 7, a pair of left and right pivot frames 8, and a pair of left and right seat frames 9.
- the head pipe 6 supports the steering system component 10A so as to be steerable.
- the left and right main frames 7 extend backward from the head pipe 6.
- the left and right pivot frames 8 extend downward from the rear ends of the left and right main frames 7.
- the left and right seat frames 9 extend backward from the upper portions of the left and right pivot frames 8.
- Pivot shafts 8a along the vehicle width direction are provided to the left and right pivot frames 8.
- the front end portion of the swing arm 11 is supported by the left and right pivot frames 8 so as to be able to swing up and down via the pivot shaft 8a.
- the rear wheel 4 is supported by the rear end portion of the swing arm 11.
- a cushion unit (not shown), which is a shock absorber, is provided between the vehicle body frame 5 and the swing arm 11.
- a fuel tank 18 is supported on the upper portions of the left and right main frames 7. Behind the fuel tank 18, the seat 19 is supported by the left and right seat frames 9. Below the seat 19, a pair of left and right steps 25 on which the driver seated on the seat 19 rests his / her feet are arranged.
- the power unit 20 of the motorcycle 1 is supported by the left and right main frames 7 and the left and right pivot frames 8.
- the output shaft of the power unit 20 is connected to the rear wheel 4 so as to be able to transmit power via a chain type transmission mechanism (not shown).
- the power unit 20 integrally includes an engine (internal combustion engine) 13 as a prime mover and a transmission 21 connected to the rear of the engine 13.
- the motorcycle 1 includes a front wheel brake 3B for braking the front wheels 3 and a rear wheel brake 4B for braking the rear wheels 4.
- the front wheel brake 3B and the rear wheel brake 4B are disc brakes, respectively.
- the front wheel brake 3B and the rear wheel brake 4B appropriately brake the rotation of the front wheels 3 and the rear wheels 4 by operating the brake lever and the brake pedal, which are brake operators. Further, the front wheel brake 3B and the rear wheel brake 4B appropriately brake the rotation of the front wheel 3 and the rear wheel 4 by operating the brake actuator 102 (see FIG. 4) described later.
- the motorcycle 1 includes a driving support device 70 (see FIG. 4) that supports a driver's driving operation (in the embodiment, a steering operation for steering the front wheel 3 and a braking operation for braking the front wheel 3 and the rear wheel 4). ing.
- the driving support device 70 includes a control device 71 that controls a function of automatically intervening in the driver's driving operation (automatic operation intervention function).
- the automatic operation intervention function includes an automatic steering intervention function and an automatic braking intervention function.
- the motorcycle 1 is equipped with a lane keeping support system (LKAS: Lane Keeping Assistance System).
- the automatic steering intervention function is at least part of the lane keeping support system.
- FIG. 2 shows the front part of the vehicle body as seen from the driver's point of view.
- the upper portions of the left and right front forks 10 are supported by the head pipe 6 via the steering stem 31.
- the left and right front forks 10 are telescopic shock absorbers.
- the steering stem 31 includes a top bridge 32 and a bottom bridge 33 that connect the upper portions of the left and right front forks 10, and a stem shaft (steering shaft) 34 that is inserted into the head pipe 6.
- the front part of the vehicle body is covered with the front cowl 27 of the vehicle body cover 12.
- the handle 2 of the motorcycle 1 is a separate left and right handle, and includes a pair of left and right right handles 36 and a left handle 37.
- the right-hand drive 36 and the left-hand drive 37 are attached to the upper parts of the left and right front forks 10 below the top bridge 32, respectively.
- a meter device 61 is arranged in front of the front fork 10.
- the meter device 61 is supported by the vehicle body frame 5 or the front cowl 27.
- the meter device 61 includes, for example, a display screen 62 such as a liquid crystal display that displays images such as vehicle speed and engine speed, and an indicator lamp group 63 that is arranged around the display screen 62 and notifies various information.
- the indicator lamp group 63 includes a right indicator lamp 66 arranged on the right side of the display screen 62 and a left indicator lamp 67 arranged on the left side of the display screen 62.
- the display screen 62 notifies the driver of predetermined information by displaying a predetermined image.
- the indicator lamp group 63 notifies the driver of predetermined information by performing a predetermined light emission display (lighting or blinking).
- FIG. 3 shows the periphery of the top bridge 32 as seen from above the stem shaft 34 in the axial direction.
- a steering input is automatically made to the steering system component 10A by the steering assist device 73, in addition to the operation of the steering wheel 2 by the driver.
- the steering assist device 73 includes a steering actuator 74, an arm 75, a connecting rod 76, and a steering control unit 77.
- the steering actuator 74 includes an electric motor that is a drive source for the automatic steering intervention function.
- the steering actuator 74 is fixed to, for example, the vehicle body frame 5.
- the base end portion of the arm 75 is integrally rotatably fixed to the drive shaft 74a, which is the output shaft of the steering actuator 74.
- One end of the connecting rod 76 is swingably connected to the tip of the arm 75 via the first connecting pin 78.
- the other end of the connecting rod 76 is swingably connected to the rod connecting portion 32a provided on the top bridge 32 via the second connecting pin 79.
- the operation of the steering actuator 74 is controlled by the steering control unit 77.
- the output of the steering actuator 74 (rotational torque of the drive shaft 74a) is transmitted to the top bridge 32 via the arm 75 and the connecting rod 76.
- the steering actuator 74 generates steering torque (assist torque) in the steering system component 10A.
- the operation support device 70 includes a control device 71, various sensors 81, and various devices 82.
- the control device 71 controls the operation of the various devices 82 based on the detection information acquired from the various sensors 81.
- the control device 71 includes, for example, a single or a plurality of ECUs (Electronic Control Units).
- the control device 71 may be realized at least in part by the cooperation of software and hardware.
- the control device 71 includes an engine control unit 85, a steering control unit 77, a brake control unit 87, and a display control unit 88.
- the various sensors 81 include a steering torque sensor 91, a steering angle sensor 92, a vehicle body acceleration sensor 93, a vehicle speed sensor 94, a camera device 96, and a radar device 97.
- the steering torque sensor 91 is, for example, a magnetostrictive torque sensor provided between the steering wheel 2 and the steering system component 10A other than the steering wheel 2.
- the steering torque sensor 91 detects the torsional torque (steering input) input from the steering wheel 2 to the other steering system component 10A.
- the steering angle sensor 92 is, for example, a potentiometer provided on the steering shaft (stem shaft 34).
- the steering angle sensor 92 detects the rotation angle (steering angle) of the steering shaft with respect to the vehicle body.
- the vehicle body acceleration sensor 93 is a 5-axis or 6-axis IMU (Inertial Measurement Unit).
- the vehicle body acceleration sensor 93 detects the angular velocities of the three axes (roll axis, pitch axis, and yaw axis) in the vehicle body, and can estimate the angle and acceleration from the results.
- the vehicle speed sensor 94 detects, for example, the rotational speed of the output shaft of the power unit 20.
- the vehicle speed sensor 94 can detect the rotation speed of the rear wheel 4 and thus the vehicle speed of the motorcycle 1 from the rotation speed.
- the camera device 96 includes a camera using a solid-state image sensor such as a CCD or CMOS.
- the camera device 96 periodically photographs the periphery (for example, front / rear / left / right) of the motorcycle 1, for example, by the camera.
- the camera device 96 generates image data from the captured image through image processing such as filtering and binarization.
- the radar device 97 radiates radio waves such as millimeter waves around the motorcycle 1.
- the radar device 97 detects radio waves (reflected waves) reflected by an object around the vehicle.
- the radar device 97 can detect at least the front / rear / left / right positions (distance and direction with respect to the motorcycle 1) and the speed of the object with respect to the motorcycle 1.
- the information from the camera device 96 and the radar device 97 described above is used for recognizing the position, type, speed, etc. of the object in the detection direction. Based on this recognition, driving assist control, automatic driving control, and the like of the motorcycle 1 are performed.
- Various devices 82 include a steering actuator 74, a brake actuator 102, and an indicator lamp group 63.
- the steering actuator 74 generates steering torque for steering the front wheels 3 separately from the operation of the steering wheel 2 by the driver.
- the steering actuator 74 may also serve as a steering damper.
- the brake actuator 102 supplies hydraulic pressure to the front wheel brake 3B and the rear wheel brake 4B to operate the front wheel brake 3B and the rear wheel brake 4B, separately from the operation on the brake controller by the driver.
- the brake actuator 102 may also serve as a control unit for ABS (Anti-lock Brake System).
- the brake actuator 102 may be connected to a brake pipe branched from a normal brake circuit.
- the indicator lamp group 63 includes a right indicator lamp 66 and a left indicator lamp 67.
- the right indicator lamp 66 and the left indicator lamp 67 emit light in conjunction with the operation of, for example, the steering actuator 74 and the brake actuator 102. This makes the driver aware that the driving support device 70 is functioning.
- the engine control unit 85 controls the output of the engine 13 based on the throttle opening degree, the suction negative pressure, the fuel injection amount, the valve timing, the ignition timing, and the like in the engine 13. Further, by controlling the output of the engine 13, the vehicle speed of the motorcycle 1 is changed depending on the crank shaft rotation speed of the engine 13 and the gear ratio of the transmission 21.
- the steering control unit 77 controls the operation of the steering actuator 74 based on the following signals and information.
- the signals and information were detected by the steering torque signal detected by the steering torque sensor 91, the angular speed signal detected by the vehicle body acceleration sensor 93, the vehicle speed signal detected by the vehicle speed sensor 94, the camera device 96 and the radar device 97. Detection information, etc.
- the assist torque is applied to the steering system component 10A. This assist torque assists the steering of the front wheels 3, which are the steering wheels. In this way, the steering control unit 77 controls the automatic steering intervention function.
- the brake control unit 87 controls the operation of the brake actuator 102 based on the engine output, the vehicle speed signal detected by the vehicle speed sensor 94, the detection information detected by the camera device 96 and the radar device 97, and the like. As a result, the front wheel brake 3B and the rear wheel brake 4B generate an assist braking force. The assist braking force assists the braking of the front wheels 3 and the rear wheels 4. In this way, the brake control unit 87 controls the automatic braking intervention function.
- the display control unit 88 controls the light emission (lighting or blinking) of the right indicator lamp 66 and the left indicator lamp 67 in accordance with the control of the following functions.
- the control of the function is the control of the automatic steering intervention function by the steering control unit 77 and the control of the automatic braking intervention function by the brake control unit 87.
- the display control unit 88 controls each of them in synchronization.
- one of a plurality of lanes constituting the road 110 or a single lane constituting the road 110 is referred to as a lane 110A.
- the left and right sides of the lane 110A are partitioned by lane markings 111B and 111C.
- the lane 110A is separated from the other lanes by a pair of left and right parallel lane markings 111B and 111C.
- the lane 110A is a single lane, at least one of the lane markings 111B and 111C may be a curb or a shoulder.
- the lane marking 111B on the left side may be a curb or a shoulder
- the lane marking 111C on the right side may be a median strip.
- the steering control unit 77 of the control device 71 is input with the detection information of the lane 110A in which the motorcycle 1 is traveling by the camera device 96 and the radar device 97. Based on the detection information from the camera device 96 and the radar device 97, the steering control unit 77 equally divides the width W of the lane 110A (distance between the left and right lane markings 111B and 111C) into a plurality of virtual lanes in the width direction. Make settings. For example, the first virtual lane 111, the second virtual lane 112, the third virtual lane 113, the fourth virtual lane 114, and the fifth virtual lane 115 are set in order from the left lane marking 111B side. For example, the width of each virtual lane 111 to 115 is set so that the motorcycle 1 can roll the vehicle body.
- the steering control unit 77 sets each virtual lane 111 to 115 by dividing the width W of the lane 110A into substantially equal parts in the width direction. For example, the steering control unit 77 may set the third virtual lane 113 at the center of the lane 110A in the width direction to have a wider width than the other virtual lanes. The steering control unit 77 may set the outermost first virtual lane 111 and fifth virtual lane 115 to a narrower width than the other virtual lanes.
- Virtual lane boundary virtual lines 121, 122, 123, 124 are set at the boundary positions of each virtual lane from the first virtual lane 111 to the fifth virtual lane 115 by the steering control unit 77, respectively.
- the lane boundary virtual lines 121, 122, 123, 124 are parallel to the lane markings 111B, 111C.
- the steering control unit 77 has an automatic steering intervention function so that the motorcycle 1 travels along the lane boundary virtual lines 122 and 123 in the widthwise center of the third virtual lane 113 located in the center of the lane 110A.
- the steering control unit 77 arranges that when the motorcycle 1 is traveling forward, the vehicle center line C1 extending in the vehicle front-rear direction through the center of the motorcycle 1 in the vehicle width direction is parallel to the lane markings 111B and 111C. Control.
- the motorcycle 1 is subjected to a lateral disturbance such as a strong crosswind, it is conceivable that the motorcycle 1 is likely to deviate from the virtual lane in which the motorcycle 1 is currently traveling in the width direction.
- a lateral disturbance such as a strong crosswind
- the steering control unit 77 of the control device 71 tries to return the motorcycle 1 to the inside (center side) in the width direction of the virtual lane currently traveling by the steering control.
- the steering control at this time includes yaw angle feedback control and lateral position feedback control, which will be described later.
- the steering control is not limited to the control of returning the motorcycle 1 to the center side in the width direction of the current virtual lane.
- the steering control may be simply a control to return to the inside in the width direction of the current virtual lane.
- the following angle ⁇ may increase to be equal to or higher than the predetermined first threshold value ⁇ 1 due to lateral disturbance.
- the angle ⁇ is an angle formed by the direction in which the lane 110A extends (direction along the lane markings 111B and 111C) and the traveling direction of the motorcycle 1 (direction along the vehicle center line C1).
- the steering control unit 77 controls the steering intervention function to return (decrease) the inclination in the traveling direction.
- the steering control unit 77 has, for example, such that the angle ⁇ is less than the target value (predetermined second threshold value ⁇ 2) smaller than the first threshold value ⁇ 1. Steering control is performed.
- the above-mentioned angle ⁇ is referred to as a yaw angle
- the above-mentioned steering control is referred to as a yaw angle feedback control.
- the automatic steering intervention function is stopped. That is, when the driver M performs a steering operation for changing the lane from the third virtual lane 113 to the second virtual lane 112 or the fourth virtual lane 114, the steering operation is prioritized and the automatic steering intervention function is stopped. do.
- the motorcycle 1 may be subject to lateral disturbance such as a gust while traveling in, for example, the third virtual lane 113.
- the motorcycle 1 is likely to travel away from the third virtual lane 113 to one of the left and right sides (the fourth virtual lane 114 side in the figure) without the steering operation (steering wheel input) for changing the lane.
- the automatic steering intervention function by the steering control unit 77 is activated.
- the camera device 96 and the radar device 97 perform the following detection. That is, the camera device 96 and the radar device 97 continuously detect the distance in the lane width direction between the vehicle body of the motorcycle 1 and the lane boundary virtual lines 122 and 123 on both the left and right sides of the motorcycle 1. ..
- the steering control unit 77 performs the following control. That is, the steering control unit 77 controls the motorcycle 1 so as not to deviate from the virtual lane in which the motorcycle 1 is currently traveling (to maintain the traveling in the current virtual lane).
- the steering control unit 77 applies a relatively weak steering torque to the steering system component 10A, and controls the motorcycle 1 to return to the center side in the width direction of the current virtual lane.
- the steering control unit 77 applies a relatively strong steering torque to the steering system component 10A.
- the motorcycle 1 can be returned to the inside of the current virtual lane.
- the steering control unit 77 detects that the distance in the lane width direction between the motorcycle 1 traveling in the third virtual lane 113 and the right lane boundary virtual line 123 is less than a predetermined threshold value. , Performs the following controls. That is, the steering control unit 77 drives and controls the steering actuator 74 based on this detection information.
- the position (horizontal position) of the motorcycle 1 in the vehicle width direction is corrected.
- This steering control is called lateral position feedback control. Even when this lateral position feedback is performed, if the following steering operation (steering wheel input) is performed by the driver M, the automatic steering intervention function is stopped. That is, when the driver M performs a steering operation for changing the lane from the third virtual lane 113 to the second virtual lane 112 or the fourth virtual lane 114, the steering operation is prioritized and the automatic steering intervention function is stopped. do.
- the following operations are performed to turn the vehicle body in the direction of arrow A. That is, first, the steering wheel is steered in the direction opposite to the direction of arrow A (reverse handle), and the vehicle body is rolled in the direction of arrow A to generate a steering angle in the steering wheel.
- the steering control unit 77 Controls the following. That is, the steering control unit 77 controls steering so that the traveling direction of the motorcycle 1 is directed in the direction opposite to the change in yaw angle (direction of arrow B in the figure). That is, the steering control unit 77 controls the automatic steering intervention function so as to maintain the running of the third virtual lane 113.
- the steering control unit 77 when the yaw angular velocity d ⁇ / dt is equal to or higher than the threshold value Th1 (d ⁇ / dt ⁇ Th1), the steering control unit 77 performs the following control. That is, the steering control unit 77 also uses the fourth virtual lane 114 adjacent in the yaw angle change direction (direction of arrow C in the figure) to perform steering control so as to gently return the traveling direction of the motorcycle 1. That is, the steering control unit 77 controls the automatic steering intervention function so as to change the lane from the third virtual lane 113 to the fourth virtual lane 114 adjacent to the yaw angle change direction. The reason for performing such control is that there are the following risks.
- the steering control unit 77 performs the following control. That is, the steering control unit 77 slowly returns the traveling direction of the motorcycle 1 while allowing the lane change to the second fifth virtual lane 115 adjacent in the yaw angle change direction (see reference numeral 1'in the figure). Steering control. That is, the steering control unit 77 controls the automatic steering intervention function so as to change the lane from the third virtual lane 113 to the second fifth virtual lane 115 adjacent to the yaw angle change direction. In this way, by increasing the lane width required for correcting the traveling direction according to the strength of the disturbance, it is possible to suppress the motorcycle 1 and the driver M from causing a large behavior.
- the steering control unit 77 controls to operate the automatic steering intervention function as follows.
- the gust suddenly and strongly acts on the motorcycle 1 and the driver M.
- the changes in the steering angle, vehicle body acceleration, yaw angle, vehicle speed, etc. detected by the various sensors 81 of the motorcycle 1 become large due to the gust, the behavior of the motorcycle 1 and the driver M becomes large. It is also possible to quickly return the direction of the motorcycle 1 from this state and maintain the running of the third virtual lane 113. However, in that case, the behavior of the motorcycle 1 and the driver M becomes large as in the gust.
- the steering control unit 77 allows the lane change to the adjacent first or second lane according to the yaw angle change.
- a sudden steering operation is not performed, and a marginal steering operation is performed. Therefore, the stability of the motorcycle 1 can be ensured, the influence on the posture of the driver M and the like can be suppressed, and the commercial value of the vehicle can be improved.
- FIG. 10 shows a case where the crosswind does not stop even after the lane change of the motorcycle 1 to the fourth virtual lane 114 as shown in FIG. 9, that is, a continuous crosswind (continuous wind) is received from the vehicle side (left side of the vehicle body).
- the steering control in the case of crosswind is shown.
- the steering control unit 77 continues to control the operation of the automatic steering intervention function.
- the continuous wind shown in FIG. 10 (a) continues with a weaker strength than, for example, a temporary gust.
- a weaker strength than, for example, a temporary gust.
- changes in the steering angle, vehicle body acceleration, yaw angle, vehicle speed, etc. detected by the various sensors 81 (see FIG. 4) of the motorcycle 1 due to the continuous wind are the same as in the case of receiving a temporary gust. Or become smaller.
- the steering control unit 77 performs steering control to continuously drive the motorcycle 1 in the fourth virtual lane 114. At this time, it is not necessary to suddenly control the steering of the motorcycle 1, and it is possible to secure the stability of the motorcycle 1 and suppress the influence on the posture of the driver M and the like.
- FIG. 11 is a graph showing changes over time in the yaw angle ⁇ when the motorcycle 1 receives a “momentary crosswind” and a “gust (momentary strong crosswind)” from the side while traveling.
- the vertical axis of each graph shows the yaw angle ⁇ of the motorcycle 1, and the horizontal axis shows the time T.
- the "momentary crosswind” in FIG. 11A is a relatively weak momentary crosswind.
- the yaw angular velocity d ⁇ / dt which is the slope of the line L1 indicating the yaw angle ⁇ during this period, is less than the first threshold value Th1 (d ⁇
- the "gust” in Fig. 11 (b) is a relatively strong momentary crosswind.
- the yaw angular velocity d ⁇ / dt which is the slope of the line L2 indicating the yaw angle ⁇ during this period, becomes equal to or higher than the first threshold value Th1 (d ⁇ / dt ⁇ Th1).
- FIG. 12 is a graph showing changes over time in the yaw angle ⁇ when the motorcycle 1 receives a “continuous crosswind” and a “continuous strong crosswind” from the side while traveling.
- the “continuous crosswind” in FIG. 12 (a) is a relatively weak crosswind that continues continuously.
- the yaw angular velocity d ⁇ / dt which is the slope of the line L3 indicating the yaw angle ⁇ during this period, is less than the first threshold value Th1 (d ⁇ / dt ⁇ Th1).
- the “continuously strong crosswind” in FIG. 12 (b) is a continuously relatively strong crosswind.
- the yaw angular velocity d ⁇ / dt which is the slope of the line L4 indicating the yaw angle ⁇ during this period, becomes equal to or higher than the first threshold value Th1 (d ⁇ / dt ⁇ Th1).
- the motorcycle 1 of the embodiment includes a lane keeping support system and a control device 71 for controlling the steering of the motorcycle 1.
- the control device 71 divides the width of the lane 110A on which the motorcycle 1 travels into a plurality of virtual lanes 111, 112, 113, 114, 115.
- the control device 71 controls the motorcycle 1 to travel in one of the virtual lanes 111, 112, 113, 114, 115.
- virtual lanes 111, 112, 113, 114, 115 divided into a plurality of lanes within the width of the lane 110A are regarded, and one of these virtual lanes is regarded as the virtual lane. Control the vehicle to run. As a result, even if the vehicle is suddenly disturbed, it is possible to maintain traveling in the same lane while allowing movement in the divided virtual lanes. As a result, it is possible to suppress giving the driver unnatural behavior while maintaining the straightness of the vehicle.
- the control device 71 controls as follows when the motorcycle 1 traveling in the one virtual lane is about to travel out of the one virtual lane. That is, the control device 71 controls so that the traveling position of the motorcycle 1 is returned to the inside of the one virtual lane. According to this configuration, when the vehicle is about to travel out of one virtual lane, it is controlled to return the traveling position to the inside of one virtual lane. As a result, it is possible to maintain the running in the divided virtual lane, and it is possible to maintain the straightness of the vehicle.
- the widths of the plurality of virtual lanes 111, 112, 113, 114, 115 are set to be uniform. As a result, the driver can easily recognize the positions of the virtual lanes 111, 112, 113, 114, 115.
- the control device 71 is described below when the motorcycle 1 traveling in the one virtual lane changes the yaw angle ⁇ with respect to the forward direction along the lane 110A. To control. That is, the control device 71 controls so as to reduce the change in the yaw angle ⁇ . According to this configuration, when the yaw angle ⁇ with respect to the forward direction along the lane 110A increases, for example, the yaw angle ⁇ is controlled to decrease. As a result, the straightness of the vehicle can be maintained by the feedback according to the change of the yaw angle ⁇ .
- the control device 71 controls as follows when the change speed of the yaw angle ⁇ exceeds the first threshold value Th1. That is, the control device 71 controls the running virtual lane to change the lane of the motorcycle 1 up to the virtual lane adjacent to the side where the yaw angle ⁇ has changed. According to this configuration, when the change speed of the yaw angle ⁇ exceeds the first threshold value Th1 due to the influence of disturbance during traveling, the lane change is allowed up to the virtual lane adjacent to the virtual lane during traveling. As a result, it becomes possible to control the strong disturbance so as to suppress the occurrence of unnatural behavior.
- the control device 71 controls as follows. That is, the control device 71 controls the running virtual lane to change the lane of the motorcycle 1 up to the second virtual lane adjacent to the side where the yaw angle ⁇ has changed. According to this configuration, when the change speed of the yaw angle ⁇ exceeds the second threshold value larger than the first threshold value, the lane change is allowed up to the second virtual lane adjacent to the running virtual lane. As a result, control according to the strength of the disturbance becomes possible, and the occurrence of unnatural behavior can be further suppressed.
- FIG. 13 shows a situation in which the motorcycle 1 is traveling in the fifth virtual lane 115, which is the outermost virtual lane on one side (right side) of the lane 110A, as a modification of the embodiment. Further, in this case (that is, when there is no changeable lane on the right side), a situation where a gust is received from the side (left side) opposite to the fifth virtual lane 115 is shown. At this time, even if the motorcycle 1 receives a gust from the side (left side) opposite to the fifth virtual lane 115, there is no virtual lane that can change the lane on the leeward side of the motorcycle 1. Therefore, the steering control unit 77 controls the automatic steering intervention function so that the motorcycle 1 maintains the fifth virtual lane 115 and travels based on the detection information by the various sensors 81.
- the steering control unit 77 controls as follows. do. That is, the steering control unit 77 does not change the lane of the motorcycle 1 regardless of the yaw angle ⁇ and the yaw angular velocity d ⁇ / dt, and the automatic steering intervention is performed so as to maintain the fifth virtual lane 115 and continue traveling. Control functions. The same control is performed when the motorcycle 1 is traveling in the first virtual lane 111, which is the outermost virtual lane on the other side (left side) of the lane 110A.
- control device 71 is described below when the motorcycle 1 is traveling in the outermost virtual lanes 111, 115 among the plurality of virtual lanes 111, 112, 113, 114, 115. To control. That is, the control device 71 controls the motorcycle 1 so as not to change the lane even if the change speed of the yaw angle ⁇ exceeds the first threshold value Th1. According to this configuration, when traveling in the outermost virtual lane among a plurality of virtual lanes, control is performed so that the lane is not changed even if the change speed of the yaw angle ⁇ exceeds the first threshold value. As a result, the vehicle can continue to run in the same lane.
- FIG. 14 shows, as another modification of the embodiment, a situation when the motorcycle 1 is traveling in, for example, the third virtual lane 113 in the lane 110A and tries to change the lane to the adjacent fourth virtual lane 114. Further, at this time, it shows a situation in which a following vehicle 130 (another vehicle) traveling in the fourth virtual lane 114 is present behind the motorcycle 1. At this time, the steering control unit 77 determines whether or not the inter-vehicle distance between the motorcycle 1 and the following vehicle 130 is shorter than a predetermined threshold value based on the detection information from the various sensors 81.
- the automatic steering intervention function is performed so as to maintain the third virtual lane 113 and continue traveling without changing the lane of the motorcycle 1.
- the automatic steering intervention function is controlled so that the motorcycle 1 changes lanes to the fourth virtual lane 114.
- the steering control unit 77 detects the relative speed between the motorcycle 1 and the following vehicle 130 based on the detection information from the various sensors 81, and determines whether or not the lane can be changed in consideration of this relative speed. May be good.
- the control device 71 when the motorcycle 1 is to change the lane from the one virtual lane to the adjacent virtual lane, the control device 71 is within a predetermined distance behind the adjacent virtual lane to be changed.
- the control is performed as follows. That is, the control device 71 controls the motorcycle 1 so as not to change the lane even if the change speed of the yaw angle ⁇ exceeds the first threshold value Th1.
- the control is performed when the motorcycle 1 is to be changed from one virtual lane to an adjacent virtual lane. That is, it is controlled so that the lane is not changed even if the change speed of the yaw angle ⁇ exceeds the first threshold value Th1. As a result, the vehicle can continue to run in the same lane.
- the present invention is not limited to the above embodiment.
- the present invention can be applied to vehicles other than motorcycles.
- Saddle-type vehicles including motorcycles (including motorized bicycles and scooter-type vehicles), include all vehicles in which the driver rides across the vehicle body. That is, the saddle-riding type vehicle includes not only a two-wheeled vehicle but also a three-wheeled vehicle (including a front two-wheeled and rear one-wheeled vehicle in addition to the front one-wheeled and rear two-wheeled vehicle) or a four-wheeled vehicle. It also includes vehicles that include electric motors in their prime movers.
- a small vehicle such as a saddle-riding vehicle is desirable because it is easy to set a virtual lane in which a plurality of lanes are divided, but the vehicle is not limited to the saddle-riding vehicle.
- the disturbance acting on the vehicle is not limited to the crosswind, gust, and other winds of the embodiment, but other vehicles located around the own vehicle, water, earth and sand, vegetation, falling objects, and the like can be considered.
- the configuration in the above embodiment is an example of the present invention. That is, various changes can be made without departing from the gist of the present invention, such as replacing the constituent elements of the embodiment with well-known constituent elements.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Transportation (AREA)
- Automation & Control Theory (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Steering Control In Accordance With Driving Conditions (AREA)
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
Abstract
Description
本願は、2020年12月24日に、日本に出願された特願2020-214794号に基づき優先権を主張し、その内容をここに援用する。
そこで本発明は、車線維持支援システムを備える車両において、不自然な挙動の発生を抑制することを目的とする。
この構成によれば、車線維持支援システムを備える車両において、車線の幅内で複数に分割した仮想レーンを見立て、これらの内の一つの仮想レーン内を当該車両が走行するように制御する。これにより、当該車両が突然の外乱を受けた場合でも、分割された仮想レーン内での移動を許容しつつ、同一車線内の走行を維持することができる。これにより、車両の直進性を保ちつつ、運転者に不自然な挙動を与えることを抑えることができる。
この構成によれば、当該車両が一つの仮想レーンから外れて走行しそうになった場合に、一つの仮想レーンの内側に走行位置を戻すように制御する。これにより、分割された仮想レーン内の走行を維持することができ、車両の直進性を保つことができる。
この構成によれば、複数の仮想レーンのそれぞれの幅が均一となるように設定される。これにより、運転者が各仮想レーンの位置を容易に認識することができる。
この構成によれば、車線に沿った前進方向を基準とするヨー角が例えば増加したときに、このヨー角が小さくなるように制御する。これにより、ヨー角の変化に応じたフィードバックによって車両の直進性を維持することができる。
この構成によれば、走行中の外乱等の影響によりヨー角の変化速度が第一の閾値を超えた場合、走行中の仮想レーンに隣接する仮想レーンまでレーン変更を許容する。これにより、強い外乱をいなすように制御可能となり、不自然な挙動の発生を抑えることができる。
この構成によれば、ヨー角の変化速度が、第一の閾値よりも大きい第二の閾値を超えた場合、走行中の仮想レーンに隣接する二本目の仮想レーンまでレーン変更を許容する。これにより、外乱の強さに応じた制御が可能となり、不自然な挙動の発生をより一層抑えることができる。
この構成によれば、複数の仮想レーンの中の最外端の仮想レーンを走行している場合、ヨー角の変化速度が第一の閾値を超えてもレーン変更させないように制御する。これにより、同一レーン内で車両の走行を継続することができる。
この構成によれば、当該車両を一つの仮想レーンから隣接する仮想レーンに変更させようとするとき、レーン変更予定の隣接する仮想レーンの後方で予め定めた距離内に他の車両が走行している場合、以下の制御を行う。すなわち、ヨー角の変化速度が第一の閾値を超えてもレーン変更させないように制御する。これにより、同一レーン内で車両の走行を継続することができる。
図1は、本実施形態の車両の一例としての自動二輪車1を示す。自動二輪車1は、ハンドル2によって操舵される前輪(操舵輪)3と、パワーユニット20によって駆動される後輪(駆動輪)4と、を備えている。自動二輪車1は、運転者が車体を跨いで乗車する鞍乗り型車両であり、前後輪3,4の接地点を基準に車体を左右方向(ロール方向)に揺動(バンク)可能である。実施形態の車両は、自動二輪車のように車体をバンクさせた方向に旋回する車両に限らない。実施形態の車両は、車体をバンクさせずに操舵輪の操舵によって旋回する車両を含む。
ヘッドパイプ6は、ステアリング系部品10Aを操舵可能に支持する。左右のメインフレーム7は、ヘッドパイプ6から後ろ下がりに延びる。左右のピボットフレーム8は、左右のメインフレーム7の各後端部からそれぞれ下方に延びる。左右のシートフレーム9は、左右のピボットフレーム8の各上部からそれぞれ後ろ上がりに延びる。
左右のメインフレーム7の上部には、燃料タンク18が支持されている。燃料タンク18の後方には、左右のシートフレーム9によってシート19が支持されている。シート19の下方には、シート19に着座した運転者が足を載せる左右一対のステップ25が配置されている。
パワーユニット20は、原動機となるエンジン(内燃機関)13と、エンジン13の後方に連なる変速機21と、を一体に備えている。
前輪ブレーキ3B及び後輪ブレーキ4Bは、ブレーキ操作子であるブレーキレバー及びブレーキペダルが操作されることで、前輪3および後輪4の回転を適宜制動する。また、前輪ブレーキ3B及び後輪ブレーキ4Bは、後述するブレーキアクチュエータ102(図4参照)が作動することによっても、前輪3および後輪4の回転を適宜制動する。
表示画面62は、予め定めた画像表示を行うことによって、運転者に予め定めた情報を通知する。インジケータランプ群63は、予め定めた発光表示(点灯または点滅)を行うことによって、運転者に予め定めた情報を通知する。
ステアリング系部品10Aには、運転者によるハンドル2への操作とは別に、ステアリングアシスト装置73により自動で操舵入力がなされる。
ステアリングアシスト装置73は、ステアリングアクチュエータ74、アーム75、連結ロッド76、ステアリング制御部77を備えている。
図4に示すように、運転支援装置70は、制御装置71、各種センサ類81、各種装置類82を備える。制御装置71は、各種センサ類81から取得した検出情報に基づき、各種装置類82の作動を制御する。
制御装置71は、エンジン制御部85、ステアリング制御部77、ブレーキ制御部87、表示制御部88を備える。
操舵角センサ92は、例えば、操舵軸(ステムシャフト34)に設けられたポテンショメータである。操舵角センサ92は、車体に対する操舵軸の回動角度(操舵角度)を検出する。
車速センサ94は、例えばパワーユニット20の出力軸の回転速度を検出する。車速センサ94は、前記回転速度から後輪4の回転速度ひいては自動二輪車1の車速を検知可能とする。
レーダ装置97は、自動二輪車1の周辺にミリ波などの電波を放射する。レーダ装置97は、車両周囲の物体によって反射された電波(反射波)を検出する。レーダ装置97は、少なくとも前記物体における、自動二輪車1に対する前後左右の位置(自動二輪車1に対する距離及び方位)と速度とを検知可能とする。
ブレーキアクチュエータ102は、運転者によるブレーキ操作子への操作とは別に、前輪ブレーキ3B及び後輪ブレーキ4Bに液圧を供給して、前輪ブレーキ3B及び後輪ブレーキ4Bを作動させる。ブレーキアクチュエータ102は、ABS(Anti-lock Brake System)の制御ユニットを兼ねていてもよい。ブレーキアクチュエータ102は、通常のブレーキ回路から分岐させたブレーキ配管に接続されていてもよい。
エンジン制御部85は、エンジン13におけるスロットル開度、吸入負圧、燃料噴射量、バルブタイミング、点火時期等に基づいてエンジン13の出力を制御する。また、エンジン13の出力が制御されることで、エンジン13のクランク軸回転数と変速機21の変速比とにより、自動二輪車1の車速が変更される。
表示制御部88は、ステアリングアクチュエータ74及びブレーキアクチュエータ102が作動しているときは、それぞれの制御が同期して行われる。
上記したエンジン制御部85、ステアリング制御部77、ブレーキ制御部87、表示制御部88は、全てマイクロコンピュータを備えるとともに、相互に通信自在に構成される。
以下、操舵介入機能における外乱への対応の一例について説明する。以下の説明において、自動二輪車1が走行する道路は左側通行とするが、右側通行の道路であっても適用可能である。
ステアリング制御部77は、カメラ装置96及びレーダ装置97からの検出情報に基づき、車線110Aの幅(左右区画線111B,111Cの間の距離)W内を、幅方向で複数の仮想レーンに等分割する設定を行う。例えば、左側の区画線111B側から順に、第一仮想レーン111、第二仮想レーン112、第三仮想レーン113、第四仮想レーン114、第五仮想レーン115のように設定する。例えば、各仮想レーン111~115の幅は、自動二輪車1が車体をロール可能な程度に設定される。
例えば、ステアリング制御部77は、第三仮想レーン113を走行する自動二輪車1と右側のレーン境界仮想線123との間の車線幅方向の距離が、予め定めた閾値未満になったことを検出すると、以下の制御を行う。すなわち、ステアリング制御部77は、この検出情報に基づいて、ステアリングアクチュエータ74を駆動制御する。これにより、ステアリング系部品10Aに比較的強い操舵トルクが付与され、図7(b)中矢印Aで示すように、自動二輪車1の車体を左側に向けさせる。すなわち、自動二輪車1を第三仮想レーン113の内側(幅方向中央側)へ戻すように操舵制御がなされる。
この横位置フィードバックが行われているときにも、運転者Mによって以下の操舵操作(ハンドル入力)がなされると、自動操舵介入機能は停止する。すなわち、運転者Mによって、第三仮想レーン113から第二仮想レーン112又は第四仮想レーン114にレーン変更しようとする操舵操作がなされると、その操舵操作が優先され、自動操舵介入機能は停止する。
図11(a)の「瞬間的な横風」は、比較的弱い瞬間的な横風である。この「瞬間的な横風」を受けた自動二輪車1のヨー角θは、横風が発生してから最大のヨー角θ=a1となるまで徐々に増加する。この間のヨー角θを示す線L1の傾きであるヨー角速度dθ/dtは、前記第一の閾値Th1未満である(dθ/dt<Th1)。
ヨー角θ=a1となった後は、ヨー角θが次第に小さくなるように、ステアリング制御部77による自動操舵介入機能が継続される。
ヨー角θ=a2となった後は、ヨー角θはほぼ横ばいとなる。その後、ヨー角θが次第に小さくなるように、ステアリング制御部77による自動操舵介入機能が継続される。
ヨー角θ=a3となった後は、ヨー角θが次第に小さくなるように、ステアリング制御部77による自動操舵介入機能が継続される。
ヨー角θ=a4となった後は、ヨー角θはほぼ横ばいとなる。その後、ヨー角θが次第に小さくなるように、ステアリング制御部77による自動操舵介入機能が継続される。
この構成によれば、車線維持支援システムを備える車両において、車線110Aの幅内で複数に分割した仮想レーン111,112,113,114,115を見立て、これらの内の一つの仮想レーン内を当該車両が走行するように制御する。これにより、当該車両が突然の外乱を受けた場合でも、分割された仮想レーン内での移動を許容しつつ、同一車線内の走行を維持することができる。これにより、車両の直進性を保ちつつ、運転者に不自然な挙動を与えることを抑えることができる。
この構成によれば、当該車両が一つの仮想レーンから外れて走行しそうになった場合に、一つの仮想レーンの内側に走行位置を戻すように制御する。これにより、分割された仮想レーン内の走行を維持することができ、車両の直進性を保つことができる。
この構成によれば、車線110Aに沿った前進方向を基準とするヨー角θが例えば増加したときに、このヨー角θが小さくなるように制御する。これにより、ヨー角θの変化に応じたフィードバックによって車両の直進性を維持することができる。
この構成によれば、走行中の外乱等の影響によりヨー角θの変化速度が第一の閾値Th1を超えた場合、走行中の仮想レーンに隣接する仮想レーンまでレーン変更を許容する。これにより、強い外乱をいなすように制御可能となり、不自然な挙動の発生を抑えることができる。
この構成によれば、ヨー角θの変化速度が、第一の閾値よりも大きい第二の閾値を超えた場合、走行中の仮想レーンに隣接する二本目の仮想レーンまでレーン変更を許容する。これにより、外乱の強さに応じた制御が可能となり、不自然な挙動の発生をより一層抑えることができる。
このとき、自動二輪車1が第五仮想レーン115とは反対側(左側)から突風を受けても、自動二輪車1の風下にはレーン変更可能な仮想レーンが無い。このため、ステアリング制御部77は、各種センサ類81による検出情報に基づき、自動二輪車1が第五仮想レーン115を維持して走行するように、自動操舵介入機能を制御する。
この構成によれば、複数の仮想レーンの中の最外端の仮想レーンを走行している場合、ヨー角θの変化速度が第一の閾値を超えてもレーン変更させないように制御する。これにより、同一レーン内で車両の走行を継続することができる。
このとき、ステアリング制御部77は、各種センサ類81からの検出情報に基づいて、自動二輪車1と後続車両130との間の車間距離が、予め定めた閾値よりも短いか否かを判定する。そして、後続車両130との車間距離が閾値よりも短いと判定したときは、自動二輪車1のレーン変更を行わず、第三仮想レーン113を維持して走行を継続するように、自動操舵介入機能を制御する。後続車両130との車間距離が閾値よりも長いと判定したときは、自動二輪車1が第四仮想レーン114にレーン変更するように、自動操舵介入機能を制御する。
ステアリング制御部77は、各種センサ類81からの検出情報に基づいて、自動二輪車1と後続車両130との間の相対速度を検知し、この相対速度も加味してレーン変更の可否を判断してもよい。
この構成によれば、自動二輪車1を一つの仮想レーンから隣接する仮想レーンにレーン変更させようとするとき、レーン変更予定の隣接する仮想レーンの後方で予め定めた距離内に他の車両が走行している場合、以下の制御を行う。すなわち、ヨー角θの変化速度が第一の閾値Th1を超えてもレーン変更させないように制御する。これにより、同一レーン内で車両の走行を継続することができる。
車両に作用する外乱としては、実施形態の横風、突風などの風に限らず、自車の周囲に位置する他車、水や土砂、草木、落下物、等が考えられる。
そして、上記実施形態における構成は本発明の一例である。すなわち、実施形態の構成要素を周知の構成要素に置き換える等、本発明の要旨を逸脱しない範囲で種々の変更が可能である。
71 制御装置
110A 車線
111 第一仮想レーン(仮想レーン)
112 第二仮想レーン(仮想レーン)
113 第三仮想レーン(仮想レーン)
114 第四仮想レーン(仮想レーン)
115 第五仮想レーン(仮想レーン)
130 他の車両
Th1 第一の閾値
Th2 第二の閾値
θ ヨー角
Claims (8)
- 車線維持支援システムを備える車両(1)であって、
当該車両(1)の操舵を制御する制御装置(71)を備え、前記制御装置(71)は、当該車両(1)が走行する車線(110A)の幅内を複数の仮想レーン(111,112,113,114,115)に分割し、前記複数の仮想レーン(111,112,113,114,115)の中の一つの仮想レーン内を当該車両(1)が走行するように制御する車両。 - 前記制御装置(71)は、前記一つの仮想レーン内を走行する当該車両(1)が、前記一つの仮想レーン内から外れて走行しそうになった場合に、当該車両(1)の走行位置を前記一つの仮想レーンの内側に戻すように制御する請求項1に記載の車両。
- 前記複数の仮想レーン(111,112,113,114,115)のそれぞれの幅は、均一になるように設定される請求項1又は2に記載の車両。
- 前記制御装置(71)は、前記一つの仮想レーン内を走行する当該車両(1)が、前記車線(110A)に沿った前進方向を基準とするヨー角(θ)を変化させたときに、前記ヨー角(θ)の変化を小さくするように制御する請求項1から3の何れか一項に記載の車両。
- 前記制御装置(71)は、前記ヨー角(θ)の変化速度が第一の閾値(Th1)を超えた場合、走行中の前記仮想レーンに対して、前記ヨー角(θ)が変化した側に隣接する仮想レーンまで、当該車両(1)をレーン変更させるように制御する請求項4に記載の車両。
- 前記制御装置(71)は、前記ヨー角(θ)の変化速度が前記第一の閾値(Th1)よりも大きい第二の閾値(Th2)を超えた場合、走行中の前記仮想レーンに対して、前記ヨー角(θ)が変化した側に隣接する二本目の仮想レーンまで、当該車両(1)をレーン変更させるように制御する請求項5に記載の車両。
- 前記制御装置(71)は、前記複数の仮想レーン(111,112,113,114,115)の中の最外端の仮想レーン(111,115)を当該車両(1)が走行している場合、前記ヨー角(θ)の変化速度によらず、当該車両(1)をレーン変更させないように制御する請求項4から6の何れか一項に記載の車両。
- 前記制御装置(71)は、当該車両(1)を前記一つの仮想レーンから隣接する仮想レーンへレーン変更させようとするとき、レーン変更予定の隣接する仮想レーンの後方で予め定めた距離内に他の車両(130)が走行している場合、前記ヨー角(θ)の変化速度によらず、当該車両(1)をレーン変更させないように制御する請求項4から7のいずれか1項に記載の車両。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022571931A JP7413572B2 (ja) | 2020-12-24 | 2021-11-02 | 車両 |
DE112021005643.3T DE112021005643T5 (de) | 2020-12-24 | 2021-11-02 | Fahrzeug |
US18/039,732 US20240025401A1 (en) | 2020-12-24 | 2021-11-02 | Vehicle |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020214794 | 2020-12-24 | ||
JP2020-214794 | 2020-12-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022137819A1 true WO2022137819A1 (ja) | 2022-06-30 |
Family
ID=82157547
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/040446 WO2022137819A1 (ja) | 2020-12-24 | 2021-11-02 | 車両 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20240025401A1 (ja) |
JP (1) | JP7413572B2 (ja) |
DE (1) | DE112021005643T5 (ja) |
WO (1) | WO2022137819A1 (ja) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003121543A (ja) * | 2001-10-19 | 2003-04-23 | Nissan Motor Co Ltd | 車両用走行車線判断装置 |
JP2004243783A (ja) * | 2002-11-20 | 2004-09-02 | Nissan Motor Co Ltd | 車線逸脱防止装置 |
JP2009176188A (ja) * | 2008-01-28 | 2009-08-06 | Aisin Aw Co Ltd | 道路走行予想軌跡導出装置、道路走行予想軌跡導出方法および道路走行予想軌跡導出プログラム |
JP2015041242A (ja) * | 2013-08-22 | 2015-03-02 | アイシン・エィ・ダブリュ株式会社 | 運転支援システム、方法およびプログラム |
WO2017009934A1 (ja) * | 2015-07-13 | 2017-01-19 | 日産自動車株式会社 | 信号機認識装置及び信号機認識方法 |
JP2017126219A (ja) * | 2016-01-14 | 2017-07-20 | 株式会社デンソー | 運転支援装置 |
WO2020041191A1 (en) * | 2018-08-20 | 2020-02-27 | Indian Motorcycle International, LLC | Wheeled vehicle notification system and method |
US20200211399A1 (en) * | 2017-09-14 | 2020-07-02 | Huawei Technologies Co., Ltd. | Information Transmission Method, Traffic Control Unit, and On-Board Unit |
-
2021
- 2021-11-02 JP JP2022571931A patent/JP7413572B2/ja active Active
- 2021-11-02 DE DE112021005643.3T patent/DE112021005643T5/de active Pending
- 2021-11-02 US US18/039,732 patent/US20240025401A1/en active Pending
- 2021-11-02 WO PCT/JP2021/040446 patent/WO2022137819A1/ja active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003121543A (ja) * | 2001-10-19 | 2003-04-23 | Nissan Motor Co Ltd | 車両用走行車線判断装置 |
JP2004243783A (ja) * | 2002-11-20 | 2004-09-02 | Nissan Motor Co Ltd | 車線逸脱防止装置 |
JP2009176188A (ja) * | 2008-01-28 | 2009-08-06 | Aisin Aw Co Ltd | 道路走行予想軌跡導出装置、道路走行予想軌跡導出方法および道路走行予想軌跡導出プログラム |
JP2015041242A (ja) * | 2013-08-22 | 2015-03-02 | アイシン・エィ・ダブリュ株式会社 | 運転支援システム、方法およびプログラム |
WO2017009934A1 (ja) * | 2015-07-13 | 2017-01-19 | 日産自動車株式会社 | 信号機認識装置及び信号機認識方法 |
JP2017126219A (ja) * | 2016-01-14 | 2017-07-20 | 株式会社デンソー | 運転支援装置 |
US20200211399A1 (en) * | 2017-09-14 | 2020-07-02 | Huawei Technologies Co., Ltd. | Information Transmission Method, Traffic Control Unit, and On-Board Unit |
WO2020041191A1 (en) * | 2018-08-20 | 2020-02-27 | Indian Motorcycle International, LLC | Wheeled vehicle notification system and method |
Also Published As
Publication number | Publication date |
---|---|
US20240025401A1 (en) | 2024-01-25 |
JP7413572B2 (ja) | 2024-01-15 |
JPWO2022137819A1 (ja) | 2022-06-30 |
DE112021005643T5 (de) | 2023-12-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102470909B (zh) | 用于倾斜车辆的控制系统 | |
EP3335953B1 (en) | Leaning vehicle | |
US8620525B2 (en) | Posture control device of motorcycle and motorcycle | |
JP5475603B2 (ja) | 鞍乗型車両の操舵装置及びこれを搭載した自動二輪車 | |
JP7285673B2 (ja) | 鞍乗り型車両の姿勢制御装置 | |
JP2016068769A (ja) | 鞍乗り型車両 | |
JP7253422B2 (ja) | 鞍乗り型車両の自動制御装置 | |
JP7262603B2 (ja) | 鞍乗り型車両の操舵アシスト装置 | |
JP7170149B2 (ja) | 鞍乗り型車両の操舵アシスト装置 | |
JP6898428B2 (ja) | 車両 | |
JP5191057B2 (ja) | ステアリングダンパ装置 | |
TWI832423B (zh) | 傾斜控制裝置及傾斜車輛 | |
JP7414838B2 (ja) | 鞍乗り型車両 | |
JP5606256B2 (ja) | 自動二輪車の操舵装置及び自動二輪車 | |
WO2022137819A1 (ja) | 車両 | |
JP7450034B2 (ja) | ライダー支援システムの制御装置、ライダー支援システム、及び、ライダー支援システムの制御方法 | |
JP7197552B2 (ja) | 車両 | |
JP2022100555A (ja) | 車両 | |
JP3703321B2 (ja) | パワーステアリング装置 | |
WO2022107529A1 (ja) | 車両の情報通知装置 | |
JP2023013722A (ja) | 車両、車両用制御装置及び車両の制御方法 | |
FR2865989A1 (fr) | Procede et systeme d'aide au braquage de roues directrices de vehicule ainsi equipe. | |
JP2019189125A (ja) | 鞍乗り型車両のフロントカウル構造 | |
WO2019059333A1 (ja) | 自動二輪車 | |
JP2007176264A (ja) | 車輌の操舵制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21909974 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022571931 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18039732 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112021005643 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21909974 Country of ref document: EP Kind code of ref document: A1 |