WO2019059333A1 - 自動二輪車 - Google Patents

自動二輪車 Download PDF

Info

Publication number
WO2019059333A1
WO2019059333A1 PCT/JP2018/034970 JP2018034970W WO2019059333A1 WO 2019059333 A1 WO2019059333 A1 WO 2019059333A1 JP 2018034970 W JP2018034970 W JP 2018034970W WO 2019059333 A1 WO2019059333 A1 WO 2019059333A1
Authority
WO
WIPO (PCT)
Prior art keywords
tread surface
vehicle
round tread
tire
rear tire
Prior art date
Application number
PCT/JP2018/034970
Other languages
English (en)
French (fr)
Inventor
恭規 真野
翔太 大木
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to JP2019543723A priority Critical patent/JP6694117B2/ja
Priority to TW107133622A priority patent/TW201919935A/zh
Publication of WO2019059333A1 publication Critical patent/WO2019059333A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J35/00Fuel tanks specially adapted for motorcycles or engine-assisted cycles; Arrangements thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K11/00Motorcycles, engine-assisted cycles or motor scooters with one or two wheels
    • B62K11/02Frames
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K19/00Cycle frames
    • B62K19/30Frame parts shaped to receive other cycle parts or accessories
    • B62K19/38Frame parts shaped to receive other cycle parts or accessories for attaching brake members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K25/00Axle suspensions
    • B62K25/04Axle suspensions for mounting axles resiliently on cycle frame or fork
    • B62K25/12Axle suspensions for mounting axles resiliently on cycle frame or fork with rocking arm pivoted on each fork leg
    • B62K25/14Axle suspensions for mounting axles resiliently on cycle frame or fork with rocking arm pivoted on each fork leg with single arm on each fork leg
    • B62K25/20Axle suspensions for mounting axles resiliently on cycle frame or fork with rocking arm pivoted on each fork leg with single arm on each fork leg for rear wheel

Definitions

  • the present invention relates to a motorcycle in which a rear frame supporting a rear wheel swings relative to an intermediate frame.
  • a motorcycle described in Patent Document 1 has a configuration in which a front frame rotatably supporting a front wheel and a rear frame rotatably supporting a rear wheel are swingably supported by an intermediate frame. Swinging of the rear wheel relative to the intermediate frame steers the rear wheel.
  • the motorcycle of Patent Document 1 includes an actuator that causes the rear frame to swing relative to the intermediate frame.
  • the two-wheeled motor vehicle of patent document 1 is provided with the control apparatus which controls this actuator.
  • the motorcycle of Patent Document 1 has a seat on which an occupant sits.
  • a motorcycle may have a loading platform for loading luggage.
  • the load on the motorcycle differs depending on the weight of the occupant, the number of occupants, the difference in luggage, etc.
  • Patent Document 1 in a motorcycle in which the rear frame supporting the rear wheels swings with respect to the intermediate frame, it is required to improve the controllability of the swing control of the rear wheels with respect to the change of the on-board load There is.
  • the inventors of the present application changed the on-board load of the two-wheeled vehicle disclosed in Patent Document 1 to control the swing of the rear wheels. As a result, it was found that it is difficult to perform the swing control of the rear wheel so that the desired behavior of the vehicle can be obtained when the load on the load changes. Specifically, for example, when the on-board load changes, the magnitude of the torque required to swing the rear wheel by the same angle may change.
  • the present inventors examined the relationship between the position of the rocking central axis of the rear wheel and the controllability of the rocking control of the rear wheel while examining the position of the rocking central axis of the rear wheel.
  • the inventors of the present application arranged the rocking central axis of the rear wheel between the center of gravity of a single vehicle and a seat or the like on which an occupant or the like is mounted. By doing so, as the on-board load increases from zero, the center of gravity of the vehicle including the occupant and the like approaches the swing center axis of the rear wheel. As a result, it is possible to enhance the controllability of the swing control of the rear wheel with respect to the change in the mounted weight.
  • a motorcycle according to the present invention is a round tread surface front tire having an intermediate frame, and a tread surface which is arc-shaped as viewed in the vehicle front direction or the vehicle rear direction when the vehicle stands upright.
  • A-1 a round tread surface rear tire having a tread surface which is separated from the tread surface front tire in the vehicle rear direction and has an arc shape seen in the vehicle front direction or the vehicle rear direction with the vehicle upright straight forward;
  • the above-mentioned round tread surface front tire is rotatably supported around a front axle line passing through the center thereof, and
  • the round tread surface front tire swing has an inclination toward the upper direction of the vehicle toward the rear of the vehicle
  • the round tread surface front tire can swing relative to the intermediate frame around an axis, And a front frame supported on the intermediate frame so as to be pivotable about a pivot axis of the front tread surface, and (b-1) rotatably support the rear tread on the round tread surface and a rear axle line passing through the center And (b-2) a round tread surface rear
  • the round tread surface rear tire rocking axis line is between the center of gravity of the vehicle in a state where no load is applied from the outside and the seat or bed As the load applied to the seat or the platform increases from zero, the center of gravity of the vehicle including the occupant or the load placed on the seat or the platform is shaken by the round tread surface rear tire.
  • the device is formed or arranged.
  • the motorcycle includes a round tread surface front tire, a round tread surface rear tire, an intermediate frame, a front frame, a rear frame, a round tread surface rear tire swing actuator, a round tread surface rear tire swing control device, and a drive source.
  • the round tread surface front tire has a tread surface that is arc-shaped when viewed in the vehicle front direction or the vehicle rear direction in a state where the vehicle 1 is upright so as to be able to travel straight.
  • the round tread surface front tire can be inclined in the lateral direction of the vehicle with respect to the vertical direction of the vehicle.
  • the round tread surface rear tire is separated from the round tread surface front tire in the vehicle rear direction.
  • the round tread surface rear tire has a tread surface that is arc-shaped when viewed in the vehicle front direction or the vehicle rear direction in a state where the vehicle 1 is upright so as to be able to travel straight. Thereby, the round tread surface rear tire can be inclined in the vehicle left-right direction with respect to the vehicle vertical direction.
  • the front frame rotatably supports the round tread surface front tire about a front axle line.
  • the front axle line is an axis passing through the center of the round tread surface front tire.
  • the front frame is pivotable to the middle tread surface front tire pivot axis so that the round tread surface front tire can pivot relative to the middle frame about the round tread surface front tire pivot axis. Be supported.
  • the round tread surface front tire swing axis has an inclination toward the vehicle upper direction toward the vehicle rear direction.
  • the rear frame rotatably supports the round tread surface rear tire around a rear axle line.
  • the rear axle line is an axis passing through the center of the round tread surface front tire.
  • the rear frame is supported by the intermediate frame so as to be able to swing around the round tread surface rear tire swing axis so that the round tread surface rear tire can swing with respect to the intermediate frame around the round tread surface rear tire swing axis.
  • the round tread surface rear tire rocking axis has an inclination toward the vehicle downward direction toward the vehicle rear direction.
  • the round tread surface rear tire rocking actuator swings the rear frame with respect to the intermediate frame around the round tread surface rear tire rocking axis, whereby the round tread surface rear tire is rotated relative to the round tread surface rear tire rocking axis relative to the intermediate frame Rock.
  • the round tread surface rear tire swing control device controls a round tread surface rear tire swing actuator.
  • the driving source applies a driving force to the round tread surface front tire or the round tread surface rear tire.
  • the motorcycle has a loading platform for placing a seat or a load on which an occupant sits.
  • the seat or carrier is supported by the intermediate frame or the rear frame.
  • the middle frame, front frame, rear frame, round tread surface front tire, round tread surface rear tire, round tread surface rear tire swing actuator, and round tread surface rear tire swing control device are formed to meet the following two conditions Or are arranged.
  • the first condition is that the vehicle is in a state where it can stand straight ahead and viewed in the left direction or the right direction of the vehicle, and the round tread surface rear tire swing axis line is the center of gravity and seat of the vehicle in a state where no load is applied from the outside. Or to pass between the loading platform.
  • the second condition is that the center of gravity of a vehicle including an occupant or a load placed on a seat or bed approaches the round tread surface rear tire swing axis as the load on the seat or bed increases from zero.
  • the center of gravity of the vehicle including the occupant or the luggage moves so as to approach the round tread surface rear tire swing axis.
  • the center of gravity of the vehicle including the occupant or the like may eventually exceed the round tread surface rear tire swing axis.
  • the on-board load does not become extremely large, even if the center of gravity of the vehicle including the passenger etc. exceeds the round tread surface rear tire rocking axis, it is ultimately extreme from the round tread surface rear tire rocking axis never leave.
  • the vehicle does not receive any load from the round tread surface rear tire swing axis, and the vehicle is on the vehicle.
  • the center of gravity of the vehicle including the occupant and the like is closer to the round tread surface rear tire swing axis compared with the case of being separated in the direction. As described above, since the center of gravity of the vehicle including the occupant or the luggage is close to the round tread surface rear tire swing axis, the controllability of the swing control of the round tread surface rear tire with respect to the change of the load on the motorcycle can be improved.
  • the motorcycle of the present invention preferably has the following configuration.
  • the intersection of the round tread surface rear tire rocking axis and the road surface passes the front end of the round tread surface rear tire and is parallel to the vertical direction of the vehicle when the vehicle in a state in which it can stand straight ahead is viewed leftward or rightward. It is between a straight line and a straight line passing through the rear end of the round tread surface rear tire and parallel to the vertical direction of the vehicle.
  • the round tread surface is compared with the case where the intersection point of the round tread surface rear tire rocking axis and the road surface is separated from the straight line parallel to the vehicle vertical direction through the front end of the round tread surface rear tire.
  • the moment required to swing the rear tire is small.
  • the round tread surface rear tire is compared with the case where the intersection point of the round tread surface rear tire rocking axis and the road surface is separated from the straight line parallel to the vehicle vertical direction through the rear end of the round tread surface rear tire.
  • the moment required to swing is small. Therefore, the controllability of the swing control of the round tread surface rear tire can be improved. Therefore, the controllability of the swing control of the round tread surface rear tire with respect to the change of the load on the motorcycle can be further improved.
  • the motorcycle of the present invention preferably has the following configuration.
  • the drive source includes an electric motor.
  • the motorcycle according to the present invention includes a power storage device for storing the power supplied to the electric motor. When the vehicle in the state of being upright so as to be able to go straight is seen in the vehicle left direction or the vehicle right direction, at least a part of the power storage device is away from the round tread surface rear tire swing axis in the vehicle downward direction.
  • the power storage device having a relatively large weight is separated from the round tread surface rear tire swing axis in the vehicle downward direction. Therefore, it is possible to easily realize a layout in which the round tread surface rear tire rocking axis is positioned between the center of gravity of the vehicle in a state where no load is applied to the seat or the like and the seat or the like.
  • the motorcycle of the present invention preferably has the following configuration.
  • the motorcycle according to the present invention pivots the round tread surface front tire on the round tread surface front tire rocking axis by rocking the front frame with respect to the intermediate frame about the round tread surface front tire rocking axis.
  • a round tread surface front tire swing actuator that swings with respect to the intermediate frame, and a round tread surface front tire swing control device that controls the round tread surface front tire swing actuator.
  • the motorcycle of the present invention preferably has the following configuration.
  • at least a part of the round tread surface front tire swing actuator is away from the round tread surface rear tire swing axis in the vehicle downward direction There is.
  • the round tread surface front tire swing actuator having a relatively large weight is separated from the round tread surface rear tire swing axis in the vehicle downward direction. Therefore, it is possible to easily realize a layout in which the round tread surface rear tire rocking axis is positioned between the center of gravity of the vehicle in a state where no load is applied to the seat or the like and the seat or the like.
  • the motorcycle of the present invention preferably has the following configuration.
  • the rear frame includes a rear suspension unit that rotatably supports the round tread surface rear tire about the rear axle line and absorbs vertical vibration of the vehicle received by the round tread surface rear tire.
  • a part of the rear suspension unit is separated from the round tread surface rear tire swing axis in the vehicle downward direction.
  • the motorcycle of the present invention preferably has the following configuration.
  • the motorcycle according to the present invention includes a hydraulic brake that applies a braking force to the round tread surface front tire or the round tread surface rear tire, and a hydraulic unit that controls the hydraulic pressure of the hydraulic brake.
  • a hydraulic brake that applies a braking force to the round tread surface front tire or the round tread surface rear tire
  • a hydraulic unit that controls the hydraulic pressure of the hydraulic brake.
  • the motorcycle of the present invention preferably has the following configuration.
  • the motorcycle according to the present invention is provided with an inclination detection device which is installed in the intermediate frame and detects a physical quantity related to the inclination of the intermediate frame in the lateral direction of the vehicle with respect to the vertical direction of the vehicle.
  • the inclination detection device is installed in the rear frame, in order to detect the inclination of the intermediate frame from the detection result of the inclination detection device, it is necessary to perform correction taking into consideration the swing angle etc. with respect to the intermediate frame of the rear frame .
  • the tilt detection device By installing the tilt detection device in the intermediate frame, it becomes easy to control the swing of the round tread surface rear tire so that the desired behavior of the vehicle can be obtained. Therefore, the controllability of the swing control of the round tread surface rear tire with respect to the change of the load on the motorcycle can be further improved.
  • the motorcycle of the present invention preferably has the following configuration.
  • at least a part of the round tread surface rear tire rocking actuator is positioned below the upper end of at least one of the round tread surface rear tire and the round tread surface front tire.
  • the round tread surface rear tire swing actuator having a relatively large weight is disposed at a relatively low position of the vehicle. Therefore, it is possible to easily realize a layout in which the round tread surface rear tire rocking axis is positioned between the center of gravity of the vehicle in a state where no load is applied to the seat or the like and the seat or the like.
  • the motorcycle of the present invention preferably has the following configuration.
  • the vehicle in the state of being upright so as to be able to go straight is seen in the left direction or the right direction of the vehicle, at least a part of the drive source is spaced downward from the round tread surface rear tire swing axis.
  • the motorcycle of the present invention preferably has the following configuration.
  • the drive source includes an engine unit.
  • the motorcycle according to the present invention includes a fuel tank for storing the fuel supplied to the engine unit.
  • the fuel tank overlaps with the round tread surface rear tire rocking axis when the vehicle in the state of being upright so as to be able to go straight is seen in the vehicle downward direction.
  • the motorcycle of the present invention preferably has the following configuration.
  • the intermediate frame includes a seat frame that supports the sheet.
  • the rear frame is not subjected to the load of the occupant seated on the seat or the load placed on the bed since the seat or the bed is supported by the intermediate frame. Therefore, compared with the case where the rear frame supports the seat or the platform, the weight of the object to be rocked by the round tread surface rear tire rocking actuator is smaller. Therefore, the controllability of the swing control of the round tread surface rear tire can be improved. Therefore, the controllability of the swing control of the round tread surface rear tire with respect to the change of the load on the motorcycle can be further improved.
  • the weight of the occupant or luggage varies depending on the occupant or luggage.
  • the weight of an object to be rocked by the round tread surface rear tire rocking actuator changes depending on the occupant or the load.
  • the swing control of the round tread surface rear tire becomes complicated and difficult. Control at low speeds is especially difficult.
  • the seat or the cargo bed is supported by the intermediate frame, even if the weight of the occupant or the load changes, the weight of the object to be rocked by the round tread surface rear tire rocking actuator does not change. Therefore, the controllability of the swing control of the round tread surface rear tire can be improved. Therefore, the controllability of the swing control of the round tread surface rear tire with respect to the change of the load on the motorcycle can be further improved.
  • the occupant may move the center of gravity.
  • the center of gravity of the object to be rocked by the round tread surface rear tire rocking actuator changes.
  • the swing control of the round tread surface rear tire becomes complicated and difficult. Control at low speeds is especially difficult.
  • the center of gravity of the object to be rocked by the round tread surface rear tire rocking actuator does not change even if the occupant moves the barycenter. Therefore, the controllability of the swing control of the round tread surface rear tire can be improved. Therefore, the controllability of the swing control of the round tread surface rear tire with respect to the change of the load on the motorcycle can be further improved.
  • the motorcycle of the present invention preferably has the following configuration.
  • the rear frame includes a seat frame that supports the seat.
  • the motorcycle of the present invention preferably has the following configuration.
  • the motorcycle according to the present invention is provided with a side stand which is connected to the intermediate frame and can be in contact with the road surface so that the vehicle can stand in a state of being inclined in the lateral direction of the vehicle with respect to the vertical direction.
  • the motorcycle of the present invention preferably has the following configuration in addition to the configuration of the above (14).
  • An object to be rocked with respect to the intermediate frame about the round tread surface rear tire rocking axis by the round tread surface rear tire rocking actuator when the vehicle in a state in which it can stand straight ahead is viewed in the vehicle left direction or vehicle right direction
  • the rear rocking center of gravity which is the center of gravity of the whole, is spaced downward from the round tread surface rear tire rocking axis.
  • the rear tread swing control device swings the rear swing center of gravity in the right direction of the vehicle in order to raise the vehicle when the vehicle stands independently in a state of being inclined in the left direction of the vehicle by the side stand.
  • the round tread surface rear tire rocking actuator is controlled so as to rock in the left direction of the vehicle.
  • the rear tread swing control device swings the rear swing center of gravity in the left direction of the vehicle in order to raise the vehicle when the vehicle stands independently in a state where the vehicle is inclined in the right direction of the vehicle by the side stand.
  • the round tread surface rear tire rocking actuator is controlled so as to rock in the right direction of the vehicle.
  • the center of gravity of an object to be swung around the round tread surface rear tire swing axis line by the round tread surface rear tire swing actuator is taken as a rear swing center of gravity.
  • the rear swing center of gravity is away from the round tread surface rear tire swing axis in the vehicle downward direction.
  • the rear tread swing control device swings the rear swing center of gravity in the vehicle right direction and then swings in the vehicle left direction, when the vehicle is standing by itself with the side stand inclined in the left direction of the vehicle.
  • the round tread surface rear tire swing actuator is controlled.
  • the vehicle can rise by reaction of the swing of the rear frame in the left direction of the vehicle.
  • the rear tread swing control device swings in the right direction of the vehicle after the rear swing center of gravity swings in the left direction of the vehicle when the vehicle is standing by itself with the side stand inclined in the right direction of the vehicle.
  • the round tread surface rear tire swing actuator is controlled.
  • the motorcycle of the present invention preferably has the following configuration.
  • the front frame includes a front suspension unit that rotatably supports the round tread surface front tire about the front axle line and absorbs vertical vibration of the vehicle received by the round tread surface front tire.
  • a front suspension unit that rotatably supports the round tread surface front tire about the front axle line and absorbs vertical vibration of the vehicle received by the round tread surface front tire.
  • the front suspension unit having a relatively large weight is separated from the round tread surface rear tire swing axis in the downward direction of the vehicle. Therefore, it is possible to easily realize a layout in which the round tread surface rear tire rocking axis is positioned between the center of gravity of the vehicle in a state where no load is applied to the seat or the like and the seat or the like.
  • the "intermediate frame”, the "front frame” and the “rear frame” are members that mainly receive stress in the vehicle.
  • the rear frame may be a combination of a plurality of parts or may be integrally formed.
  • the front frame and the middle frame are also similar to the rear frame.
  • the rear frame may be a monocoque frame, a semi-monocoque frame, or a frame of any other frame structure.
  • the front frame and the middle frame are also similar to the rear frame.
  • the “tread surface” is a surface of the tire in contact with the road surface.
  • the "passenger" may or may not be a driver.
  • the passenger who is not the driver may be a passenger of a motorcycle that is autonomously operated, or may be a passenger who gets on the motorcycle with the driver.
  • the "package" is intended to be transported by a motorcycle.
  • the “seat for the occupant to sit on” means a seat installed at a place where the occupant was supposed to be seated when the motorcycle was manufactured.
  • the seat of the present invention may be a seat installed at the time of manufacture of a motorcycle, or may be a replaced seat.
  • the seat of the present invention may be a seat for two or more occupants to sit on.
  • the "loading platform for placing a load” refers to a loading platform installed at a place where loading of a load was assumed at the time of manufacture of a motorcycle.
  • the loading platform of the present invention may be a loading platform installed at the time of manufacture of the motorcycle, or may be a replaced loading platform.
  • the loading platform of the present invention may not be installed at the time of manufacture of the motorcycle, but may be a loading platform attached later.
  • the loading platform of the present invention may be in the form of a box having a lid, or may be in the form of a box having no lid.
  • the luggage carrier according to the present invention may be a pedestal on which a load is bound by a rope or the like.
  • the phrase "provided with a seat or bed” does not mean that the motorcycle includes only one of a seat and a bed.
  • the motorcycle of the present invention may have both a seat that meets the requirements of claim 1 and a platform that meets the requirements of claim 1.
  • the motorcycle of the present invention may have only a seat that satisfies the requirements of claim 1 and may have only a loading platform that satisfies the requirements of claim 1.
  • the motorcycle of the present invention may have a plurality of seats satisfying the requirements of claim 1.
  • the motorcycle of the present invention may have a plurality of loading platforms which satisfy the requirements of claim 1.
  • the motorcycle may have a seat that does not meet the requirements of claim 1.
  • the motorcycle may have a loading platform not meeting the requirements of claim 1 in addition to a seat or loading platform not satisfying the requirements of claim 1.
  • a state in which no load is applied from the outside is a state in which no load is applied to a sheet or a bed that satisfies the requirements of claim 1. Also, if the motorcycle has at least one seat and / or at least one platform in addition to the seats or platforms that meet the requirements of claim 1, the load on all the seats and all platforms is It says the state which does not hang.
  • the center of gravity of a vehicle including an occupant or a load is the center of gravity of an object including an occupant or both a load and a vehicle.
  • the center of gravity of the vehicle including the occupant or load placed on the seat or bed approaches the swing axis of the round tread surface rear tire means that the center of gravity It means that the center of gravity approaches the round tread surface rear tire rocking axis during at least a part of the entire moving period.
  • the center of gravity does not have to move immediately after the load starts to increase from zero.
  • the center of gravity may begin to move when the load exceeds a predetermined value.
  • the final center of gravity may be at a position away from the round tread surface rear tire swing axis in the vehicle upward direction.
  • the distance between the final center of gravity and the round tread surface rear tire swing axis may be the same as the distance between the center of gravity at zero load and the round tread surface rear tire swing axis, or may be shorter or longer than that. May be
  • the intermediate frame when it is described as “supported” by the intermediate frame rather than “supported by the intermediate frame”, it is basically supported to rock integrally with the intermediate frame.
  • the rear frame when it is described that the rear frame is supported by the rear frame instead of being supported by the rear frame, basically, it is supported so as to integrally swing with the rear frame.
  • a state in which the vehicle can go straight forward means that the front axle line and the rear axle line are parallel to the left-right direction of the vehicle.
  • inclination of the intermediate frame in the vehicle left-right direction with respect to the vehicle vertical direction means that the intermediate frame swings around an axis along the vehicle longitudinal direction.
  • the vehicle vertical direction is a direction perpendicular to the road surface when the vehicle is disposed on a horizontal road surface.
  • the left-right direction of the vehicle is the left-right direction as viewed from the driver riding on the vehicle when the vehicle is disposed on a horizontal road surface.
  • the vehicle front-rear direction is the front-rear direction as viewed from the driver riding on the vehicle when the vehicle is disposed on a horizontal road surface.
  • the inclination angle of the straight line A with respect to the straight line B is the smaller one of the angles formed by the straight line A and the straight line B. This definition applies not only to "straight line” but also to "direction”.
  • the backward slanting direction is a direction from the point P1 to the point P2. That is, it is a direction which goes downward as it goes back.
  • the rear diagonal downward direction does not include the direction parallel to the rear direction and the direction parallel to the lower direction.
  • the same definition applies to expressions using other directions such as forward and downward. Not limited to.
  • the upper end of a part means the end of the part located at the most upward direction.
  • the definitions of the lower end, the front end, the rear end, the left end, and the right end are the same as the definition of the upper end.
  • the upper edge of a part when the part is viewed in the X direction is the edge between the front end and the rear end including the upper end.
  • the definitions of the lower edge, the front edge, the rear edge, the left edge, and the right edge are the same as the definition of the upper edge.
  • the end of a part means a part of the end of the part and the vicinity thereof.
  • element A is separated from element B in the X direction is parallel to the X direction and on all straight lines passing through both elements A and B.
  • the element A is, for example, a device, a part, a part of a device or a part, a line segment, an infinite straight line, a plane or the like.
  • element B When the element A is apart from the element B in the X direction as viewed in the Y direction crossing the X direction, it is viewed on the all straight lines parallel to the X direction and passing through both the elements A and B as viewed in the Y direction.
  • Element A is separated from element B in the X direction.
  • a straight line parallel to the X direction and passing through the element A in three dimensions may or may not pass through the element B.
  • that element A is positioned above element B means that element A has a portion spaced upward from the plane perpendicular to the vertical direction through the upper end of element B, It means that it does not have the part which was separated downward from the plane.
  • the element A may have a portion included in a plane passing through the upper end of the element B and orthogonal to the up and down direction.
  • the element A is, for example, a device, a part, a part of the device or part, a line segment, or the like. The same applies to element B. That the upper end of the part A is located above the part B is synonymous with the part A located above the part B.
  • being rotatable means capable of 360 ° rotation unless otherwise specified.
  • swingable means that it can be rotated less than 360 ° unless otherwise specified.
  • rotation includes both rotation by 360 ° and rotation by less than 360 °.
  • the terms mounted, connected, coupled and supported are used broadly. Specifically, it includes not only direct attachment, connection, coupling and support but also indirect attachment, connection, coupling and support. Furthermore, connected and coupled are not limited to physical or mechanical connection / coupling. They also include direct or indirect electrical connections / couplings.
  • the present invention may have a plurality of the components. Also, the present invention may have only one such component.
  • the term “preferred” is non-exclusive. “Preferred” means “preferably but not limited to”. In the present specification, the configuration described as “preferred” exhibits at least the above-described effect obtained by the configuration of claim 1. Also, as used herein, the term “may” is non-exclusive. “May” means “may but not limited to”. In the present specification, the configuration described as “may” has at least the above-described effect obtained by the configuration of claim 1.
  • the present invention does not limit the combination of the preferred configurations described above.
  • the present invention is not limited to the details of construction and arrangement of components set forth in the following description or illustrated in the drawings.
  • the present invention is also possible in embodiments other than the embodiments described later.
  • the present invention is also possible in an embodiment in which various modifications are made to the embodiments described later. Further, the present invention can be implemented by appropriately combining the modifications described later.
  • the rear wheel swings with respect to a change in the mounted weight. Controllability of control can be improved.
  • FIG. 1 is a left side view and a plan view of a motorcycle according to a first embodiment of the present invention.
  • FIG. 1 is a left side view of a motorcycle according to a specific example 1 of the first embodiment of the present invention. It is an example of the behavior of the vehicle when the round tread surface rear tire swings. It is another example of the behavior of the vehicle when the round tread surface rear tire swings. It is a left view of the two-wheeled motor vehicle of the example 2 of 1st Embodiment of this invention. It is a left view of the two-wheeled motor vehicle of the example 3 of 1st Embodiment of this invention.
  • Fig. 6 is a left side view of a motorcycle according to a second embodiment of the present invention.
  • FIG. 11 is a left side view of the motorcycle shown in FIG. 10;
  • FIG. 11 is a left side view of the motorcycle shown in FIG. 10;
  • FIG. 11 is a rear view of the left grip of the motorcycle shown in FIG. 10;
  • FIG. 11 is a partial front view of the motorcycle shown in FIG. FIG.
  • FIG. 11 is a rear view of a front portion of the motorcycle shown in FIG. 10; FIG. 11 is a front view of the motorcycle shown in FIG. 10 in a state of being supported by a side stand.
  • FIG. 10 is a left side view of a motorcycle according to another modification of the embodiment of the present invention.
  • FIG. 10 is a left side view of a motorcycle according to another modification of the embodiment of the present invention.
  • FIG. 10 is a left side view of a motorcycle according to another modification of the embodiment of the present invention.
  • FIG. 10 is a left side view of a motorcycle according to another modification of the embodiment of the present invention.
  • FIG. 10 is a left side view of a motorcycle according to another modification of the embodiment of the present invention.
  • FIG. 10 is a left side view of a motorcycle according to another modification of the embodiment of the present invention.
  • FIG. 10 is a left side view of a motorcycle according to another modification of the embodiment of the present invention.
  • FIG. 1 shows a state in which the motorcycle 1 is erected to be able to go straight on a horizontal road surface RS.
  • the road surfaces RS shown in the drawings of the present application are all horizontal.
  • the motorcycle 1 includes a round tread surface front tire 2, a round tread surface rear tire 4, an intermediate frame 30, a front frame 20, a rear frame 40, a round tread surface rear tire swing actuator 60, and a round tread surface rear tire rocking
  • a motion control device 80 and a drive source 70 are provided.
  • the round tread surface front tire 2 has a tread surface 2 a that is arc-shaped as viewed in the front direction or the rear direction in a state where the vehicle 1 is upright so as to allow straight travel. Thereby, the round tread surface front tire 2 can be inclined in the lateral direction with respect to the vertical direction.
  • the round tread surface rear tire 4 is separated from the round tread surface front tire 2 in the rear direction.
  • the round tread surface rear tire 4 has a tread surface 4 a that is arc-shaped when viewed in the front direction or the rear direction in a state where the vehicle 1 is upright so as to be able to travel straight. Thereby, the round tread surface rear tire 4 can be inclined in the left and right direction with respect to the up and down direction.
  • the front frame 20 supports the round tread surface front tire 2 rotatably around a front axle line A1.
  • the front axle line A1 is an axis passing through the center of the round tread surface front tire 2.
  • the front frame 20 swings around the round tread surface front tire swing axis A2 so that the round tread surface front tire 2 can swing with respect to the intermediate frame 30 around the round tread surface front tire swing axis A2. It is supported by the intermediate frame 30 as possible.
  • the round tread surface front tire rocking axis A2 has an inclination toward the upper side as it goes to the rear side.
  • the rear frame 40 supports the round tread surface rear tire 4 rotatably around a rear axle line A3.
  • the rear axle line A3 is an axis passing through the center of the round tread surface front tire 2.
  • the rear frame 40 is pivotable about the round tread surface rear tire swing axis A4 so that the round tread surface rear tire 4 can swing with respect to the intermediate frame 30 about the round tread surface rear tire swing axis A4. It is supported by the frame 30.
  • the round tread surface rear tire 4 has a tilt toward the lower direction as the rear tread rocking axis A4 of the round tread surface rear tire 4 goes to the rear direction.
  • the round tread surface rear tire rocking actuator 60 swings the rear frame 40 with respect to the intermediate frame 30 around the round tread surface rear tire rocking axis A4, whereby the round tread surface rear tire 4 is rotated on the round tread surface rear tire rocking axis A4. It is rocked with respect to the intermediate frame 30 around.
  • the round tread surface rear tire swing control device 80 controls the round tread surface rear tire swing actuator 60.
  • the drive source 70 applies a driving force to the round tread surface front tire 2 or the round tread surface rear tire 4.
  • the motorcycle 1 has a seat 10 on which a passenger O is seated.
  • the seat 10 is supported by the rear frame 40.
  • the sheet 10 may be supported by the intermediate frame 30.
  • the motorcycle 1 may have a loading platform for placing luggage.
  • the loading platform is supported by the intermediate frame 30 or the rear frame 40.
  • the vehicle 1 in the state of being upright so as to be able to go straight on, in the left direction or the right direction, at least a part of the bed is separated upward from the round tread surface rear tire swing axis.
  • the middle frame 30, the front frame 20, the rear frame 40, the round tread surface front tire 2, the round tread surface rear tire 4, the round tread surface rear tire rocking actuator 60, and the round tread surface rear tire rocking control device 80 Formed or arranged to meet the requirements.
  • the first condition is that when the vehicle 1 in the state of being upright so as to be able to go straight is seen leftward or rightward, the round tread surface rear tire rocking axis A4 is the gravity G0 of the vehicle 1 in a state where no load is applied from the outside. And between the seat 10 or the loading platform.
  • the center of gravity G0 of the vehicle 1 in the state where no load is applied from the outside is not limited to the position shown in FIG.
  • the second condition is that as the load applied to the seat 10 or the cargo bed increases from zero, the center of gravity of the vehicle 1 including the occupant O or luggage mounted on the seat 10 or the cargo bed is the round tread surface rear tire swing axis A4. It is approaching. As the load applied to the seat 10 or the cargo bed increases from zero, the center of gravity of the vehicle 1 including the occupant O or luggage moves from the center of gravity G0 shown in FIG. 1 in the arrow direction, for example.
  • the center of gravity G1 indicated by a two-dot chain line in FIG. 1 is an example of the center of gravity of the vehicle 1 including the occupant O seated on the seat 10 or a luggage.
  • the center of gravity G0 of the vehicle 1 including the occupant O or the luggage approaches the round tread surface rear tire swing axis A4.
  • the center of gravity for example, the center of gravity G1
  • the round tread surface rear tire swing is finally performed. There is no extreme departure from the axis A4.
  • the vehicle 1 including the occupant O and the like even when the center of gravity of the vehicle 1 including the occupant O and the like finally exceeds the round tread surface rear tire rocking axis A4, the vehicle 1 in a state where no load is applied to the round tread surface rear tire rocking axis A4.
  • the center of gravity of the vehicle 1 including the occupant O and the like is closer to the round tread surface rear tire rocking axis A4 as compared with the case where the center of gravity G0 is away from the center of gravity G0 in the upward direction.
  • the center of gravity (for example, the center of gravity G1) of the vehicle 1 including the occupant O or the luggage is close to the round tread surface rear tire swing axis line A4, the swing of the round tread surface rear tire 4 with respect to the change of the load on the motorcycle 1 Controllability of control can be improved.
  • the round tread surface rear tire swing actuator is said to improve the controllability of the swing control of the round tread surface rear tire 4 with respect to the change in the load on the motorcycle 1.
  • the torque required to swing the rear frame 40 may be reduced.
  • the round tread surface rear tire rocking actuator 60 can be miniaturized by suppressing the torque required for rocking. Thereby, the motorcycle 1 can be miniaturized.
  • the round tread surface rear tire is said to have improved controllability of the swing control of the round tread surface rear tire 4 with respect to changes in the load on the motorcycle 1.
  • the response of the swing control of 4 may be increased.
  • the improvement of the controllability of the swing control of the round tread surface rear tire 4 with respect to the change of the load on the motorcycle 1 may be, for example, simplification of the control logic for the swing control. Specifically, for example, the number of parameters used for control is reduced, and arithmetic processing is simplified.
  • Example 1 of the first embodiment of the present invention has all the features of the first embodiment of the present invention. The description of the same portions as the first embodiment of the present invention will be omitted. Hereinafter, configurations that are not described in the first embodiment of the present invention will be described.
  • the motorcycle 1A has a front frame 20, an intermediate frame 30, and a rear frame 40.
  • the main material of the front frame 20 is a metal such as aluminum or iron, a resin such as CFRP, or a combination thereof.
  • the main materials of the intermediate frame 30 and the rear frame 40 are the same.
  • the materials of the front frame 20, the intermediate frame 30, and the rear frame 40 may be different from one another.
  • the front frame 20 has a pair of left and right front suspension units 21.
  • the front suspension unit 21 is a so-called front fork.
  • the front suspension unit 21 is, for example, a telescopic front fork.
  • the telescopic front fork has a spring and a hydraulic damper.
  • the lower end portion of the front suspension unit 21 rotatably supports the round tread surface front tire 2.
  • the front suspension unit 21 is configured to absorb vertical vibration that the round tread surface front tire 2 receives.
  • the round tread surface front tire 2 is installed on the outer peripheral portion of the front wheel 3.
  • the front suspension unit 21 supports a front axle (not shown) which is inserted into the central hole of the front wheel 3.
  • the front suspension unit 21 supports the round tread surface front tire 2 rotatably around the front axle line A1.
  • the front axle line A1 is a central axis of the front axle. When the motorcycle 1A is upright so as to be able to travel straight, the front axle line A1 is parallel to the left-right direction.
  • a front brake (not shown) is installed on the front wheel 3.
  • the front brake is configured to be able to apply a braking force to the round tread surface front tire 2.
  • the type of front brake may be hydraulic, mechanical or electrical.
  • the front brake may be, for example, a hydraulic disc brake or a drum brake which is a type of mechanical brake.
  • the front frame 20 has a steering shaft 22 in addition to the front suspension unit 21.
  • the lower portion of the steering shaft 22 is fixed to the upper portion of the front suspension unit 21.
  • the upper portion of the steering shaft 22 is fixed to the handle unit 50.
  • the middle frame 30 has a head pipe portion 31 at its front.
  • the head pipe portion 31 has a cylindrical hole.
  • the steering shaft 22 is inserted into the head pipe portion 31.
  • a bearing (not shown) is disposed between the steering shaft 22 and the head pipe portion 31.
  • the steering shaft 22 is supported by the head pipe portion 31 rotatably around a central axis of the steering shaft 22.
  • the front frame 20 is supported by the intermediate frame 30 so as to be pivotable about the central axis of the steering shaft 22.
  • the central axis of the inner peripheral surface of the head pipe portion 31 is coaxial with the central axis of the steering shaft 22.
  • the central axis of the steering shaft 22 and the central axis of the inner circumferential surface of the head pipe portion 31 constitute a round tread surface front tire swing axis A2.
  • the round tread surface front tire rocking axis A2 is a straight line that extends infinitely.
  • the front frame 20 is supported by the intermediate frame 30 so as to be able to swing about the round tread surface front tire swing axis A2, so that the round tread surface front tire 2 is intermediate about the round tread surface front tire swing axis A2. It can swing with respect to the frame 30.
  • the round tread surface front tire rocking axis A2 has an inclination toward the upper side as it goes to the rear side. In other words, when the first point on the round tread surface front tire swing axis A2 is moved backward along the round tread surface front tire swing axis A2 as the second point, the second point Is higher than the first point.
  • the inclination angle of the round tread surface front tire rocking axis A2 with respect to the vertical direction be less than 45 ° when the vehicle 1A in the upright state is allowed to go straight.
  • the intersection point of the round tread surface front tire swing axis A2 and the road surface RS passes through the front end of the round tread surface front tire 2 and is parallel in the vertical direction Between the straight line L1 1A and the straight line L2 1A which passes through the rear end of the round tread surface front tire 2 and is parallel to the vertical direction.
  • the intersection between the round tread surface front tire swing axis line A2 and the road surface RS is slightly away from the point of contact between the round tread surface front tire 2 and the road surface RS in the forward direction.
  • intersection point of the round tread surface front tire rocking axis A2 and the road surface RS may be the same as or substantially the same as the contact point of the round tread surface front tire 2 and the road surface RS.
  • Round tread surface intersection of the front tire pivot axis A2 and the road surface RS, if between the straight line L1 1A and the straight line L2 1A, may be located in the rear direction than the contact.
  • the middle frame 30 has a rear rocking shaft 32 at its rear portion.
  • the rear rocking shaft 32 projects rearward and obliquely downward.
  • the head pipe portion 31 and the rear rocking shaft portion 32 are integrally formed.
  • the intermediate frame 30 is integrally formed.
  • the outer shape of the rear rocking shaft portion 32 is substantially cylindrical.
  • the rocking lever 33 is fixed to the rear end of the rear rocking shaft 32.
  • the rocking lever 33 protrudes radially outward from the outer peripheral surface of the rear rocking shaft portion 32. In FIG. 2, the rocking lever 33 protrudes downward from the rear rocking shaft portion 32, but the protruding direction is not limited to this.
  • the rocking lever 33 may protrude upward, rightward, or leftward from the rear rocking shaft portion 32.
  • the rear frame 40 has a rear main frame 41 and a rear suspension unit 42.
  • the rear suspension unit 42 is connected to the rear of the rear main frame 41.
  • the rear suspension unit 42 has a pair of left and right swing arms 43 and 43, one rear suspension 44, and a link mechanism 45.
  • the number of rear suspensions 44 included in the rear suspension unit 42 may be two.
  • the front portion of the swing arm 43 is supported at the rear of the rear main frame 41 so as to be pivotable about an axis parallel to the left-right direction.
  • the rear portion of the swing arm 43 supports the round tread surface rear tire 4.
  • the rear suspension 44 has a spring and a hydraulic damper. One end of the rear suspension 44 is connected to the rear main frame 41.
  • the link mechanism 45 is connected to the rear main frame 41, the other end of the rear suspension 44, and the swing arm 43 so as to be pivotable about axes parallel to the left-right direction.
  • the specific configuration of the link mechanism 45 is not particularly limited.
  • the rear suspension unit 42 is configured to absorb vertical vibration that the round tread surface rear tire 4 receives.
  • the round tread surface rear tire 4 is installed on the outer peripheral portion of the rear wheel 5.
  • the swing arm 43 supports a rear axle (not shown) inserted into the central hole of the rear wheel 5.
  • the rear suspension unit 42 supports the round tread surface rear tire 4 rotatably around the rear axle line A3.
  • the rear axle line A3 is a central axis of the rear axle. When the motorcycle 1A is upright so as to be able to travel straight, the rear axle line A3 is parallel to the left-right direction.
  • the rear wheel 5 is provided with a rear brake (not shown).
  • the rear brake is configured to be able to apply a braking force to the round tread surface rear tire 4.
  • the type of rear brake may be hydraulic, mechanical or electrical.
  • the rear brake may be, for example, a hydraulic disc brake or a drum brake which is a type of mechanical brake.
  • the type of rear brake may be the same as or different from the type of front brake.
  • the rear main frame 41 has a boss 41a at its front.
  • the boss portion 41a has a cylindrical hole.
  • the rear rocking shaft portion 32 of the intermediate frame 30 is inserted into the boss portion 41 a.
  • a bearing (not shown) is disposed between the rear rocking shaft 32 and the boss 41 a.
  • the boss portion 41 a is supported by the rear rocking shaft portion 32 so as to be rotatable around the central axis of the inner peripheral surface of the boss portion 41 a.
  • the rear frame 40 is supported by the intermediate frame 30 so as to be pivotable about the central axis of the boss 41 a.
  • the central axis of the outer peripheral surface of the rear rocking shaft portion 32 is coaxial with the central axis of the inner peripheral surface of the boss portion 41a.
  • the center axis of the central axis and the rear swing shaft 32 of the inner peripheral surface of the boss portion 41a constitutes a round tread surface rear tire swing axis A4 1A.
  • Round tread surface rear tire pivot axis A4 1A is an example of a round tread surface rear tire swing axis A4 of the first embodiment.
  • Round tread surface rear tire pivot axis A4 1A is infinitely extending line. Since the rear frame 40 is supported by the intermediate frame 30 so as to be able to swing about the round tread surface rear tire swing axis A4 1A , the round tread surface rear tire 4 is an intermediate frame around the round tread surface rear tire swing axis A4 1A. It is rockable with respect to 30.
  • Round tread surface rear tire pivot axis A4 1A has an inclination toward the downward direction increases toward the rear direction. That is, when the point is moved backward along the first point on the round tread surface rear tire swing axis A4 1A round tread surface rear tire swing axis A4 1A and the second point, the second point Is lower than the first point. Angle of inclination with respect to the vertical direction of the round tread surface rear tire swing axis A4 1A when the vehicle 1A in a state of straight enable upright seen to the left or right direction is not particularly limited.
  • the inclination angle with respect to the vertical direction of the rectilinear capable vehicle 1A upright state as seen in the left or right, round tread surface rear tire pivot axis A4 1A is preferably greater than 45 °.
  • the vehicle 1A in a state of straight enable upright when viewed in the left or right, round tread surface rear tire intersection between the swing axis A4 1A and the road surface RS is parallel to the front end of the round tread surface rear tire 4 as a vertical direction It is between the straight line L3 1A and the straight line L4 1A which passes through the rear end of the round tread surface rear tire 4 and is parallel to the vertical direction.
  • the round tread surface rear tire intersection between the swing axis A4 1A and the road surface RS is located in the rear direction than the contact round tread surface rear tire 4 and the road surface RS.
  • the rear frame 40 supports the hydraulic cylinder 60 and the hydraulic pump 61.
  • the hydraulic cylinder 60 and the hydraulic pump 61 rock integrally with the rear frame 40.
  • the hydraulic cylinder 60 is disposed in the vicinity of the tip (lower end in FIG. 2) of the swing lever 33 of the intermediate frame 30.
  • the hydraulic cylinder 60 is an example of the round tread surface rear tire rocking actuator 60 of the first embodiment.
  • the hydraulic cylinder 60 is connected to the hydraulic pump 61.
  • the oil pressurized by the hydraulic pump 61 is supplied to the hydraulic cylinder 60.
  • the hydraulic cylinder 60 has a piston rod (not shown) that reciprocates linearly in accordance with the hydraulic pressure.
  • the piston rod of the hydraulic cylinder 60 is connected to the tip of the rocking lever 33.
  • the movement of the piston rod in the linear direction causes the rocking lever 33 to rock in the circumferential direction of the outer peripheral surface of the rear rocking shaft portion 32.
  • the hydraulic cylinder 60 swings relative to the intermediate frame 30 and rear frame 40 to the A4 1A around round tread surface rear tire swing axis.
  • the round tread surface rear tire 4 swings against the round tread surface rear tire swing axis A4 1A intermediate frame 30 around.
  • the hydraulic cylinder 60 (round tread surface rear tire swing actuator) is swinging relative to the intermediate frame 30 round tread surface rear tires 4 to A4 1A around round tread surface rear tire swing axis.
  • the rear frame 40 has a seat frame 46 in addition to the rear main frame 41 and the rear suspension unit 42.
  • the seat frame 46 is fixed to the rear main frame 41.
  • the seat frame 46 supports a seat 10 for a driver (seat occupant) to sit on and a tandem seat 11 for a passenger (seat occupant) to sit on. That is, the seat 10 and the tandem seat 11 are supported by the rear frame 40.
  • the tandem seat 11 is located rearward of the rear end of the seat 10.
  • the riding capacity of the motorcycle 1A is two people.
  • the tandem seat 11 may not be present.
  • FIG. 2 the boundary of the seat 10 other than the upper edge of the seat 10 when the vehicle 1A is viewed in the right direction is not displayed. Further, FIG.
  • the rear end of the seat 10 is at substantially the same position as the front end of the tandem seat 11.
  • the vehicle 1A in a state of straight enable upright when viewed in the left or right, the whole sheet 10 is spaced upward from the round tread surface rear tire swing axis A4 1A.
  • the vehicle 1A in a state of straight enable upright when viewed in the left or right, the whole tandem seat 11 are separated upward from the round tread surface rear tire swing axis A4 1A.
  • the rear frame 40 supports the engine unit 70.
  • the engine unit 70 is an example of the drive source 70 of the first embodiment.
  • the engine unit 70 is configured to be able to apply a driving force to the round tread surface rear tire 4.
  • the output (driving force) of the engine unit 70 is transmitted to the round tread surface rear tire 4 via a chain or a belt.
  • Engine unit 70 includes a clutch mechanism.
  • the engine unit 70 may or may not include a transmission. If the engine unit 70 does not include a transmission, the rear wheel 5 supports the transmission.
  • the output (driving force) of the engine unit 70 is transmitted to the round tread surface rear tire 4 via the transmission.
  • the transmission is configured to be able to change the ratio of the rotational speed of the output shaft of the engine unit 70 and the rotational speed of the round tread surface rear tire 4.
  • the engine unit 70 may be a four-stroke engine or a two-stroke engine.
  • the engine unit 70 may be a single cylinder engine or a multi-cylinder engine. When the engine unit 70 unit is a multi-cylinder engine, the engine unit 70 is preferably an independent throttle type.
  • the engine unit 70 may be a water-cooled engine, a forced air-cooling engine, or a natural air-cooling engine.
  • the engine unit 70 may be a supercharged engine equipped with a supercharger.
  • a supercharger is a device that compresses air supplied to the combustion chamber.
  • the supercharger may be a mechanical supercharger or an exhaust turbine supercharger (so-called turbocharger).
  • the engine unit 70 may be a gasoline engine or a diesel engine.
  • the engine unit 70 may be a hydrogen rotary engine.
  • the rear frame 40 supports the fuel tank 71.
  • the fuel tank 71 stores the fuel supplied to the engine unit 70.
  • the fuel tank 71 is located forward of the front end of the seat 10.
  • the fuel tank 71 is disposed on the engine unit 70.
  • the fuel tank 71 is at the central portion in the left-right direction of the motorcycle 1A. That is, when the vehicle 1A in a state of straight enable upright viewed downward, the fuel tank 71 overlaps the round tread surface rear tire swing axis A4 1A.
  • the motorcycle 1A has a battery (not shown).
  • the battery supplies power to various electrical devices.
  • the various electric devices include a control device 80 and various sensors described later.
  • the motorcycle 1A has the handle unit 50.
  • the handle unit 50 has a left grip 51 and a right grip (not shown).
  • the left grip 51 and the right grip are gripped by the driver (passenger) hand.
  • the handle unit 50 is fixed to the steering shaft 22.
  • the driver holding the left and right grips performs an operation of rotating the steering wheel unit 50
  • the steering shaft 22 swings with respect to the intermediate frame 30 around the round tread surface front tire swing axis line A2.
  • the round tread surface front tire 2 is steered. That is, the round tread surface front tire 2 swings with respect to the intermediate frame 30 around the round tread surface front tire swing axis line A2 by the operation of the driver.
  • the right grip is the accelerator grip.
  • the driver operates the accelerator grip to adjust the output of the engine unit 70 (drive source).
  • the opening degree of the throttle valve (not shown) of the engine unit 70 is adjusted in accordance with the operation amount of the accelerator grip.
  • the amount of air supplied to the combustion chamber changes in accordance with the degree of opening of the throttle valve.
  • the throttle valve is controlled by a throttle by wire system.
  • the engine unit 70 is controlled by an accelerator by wire system.
  • the throttle valve is connected to the controller 80.
  • Control device 80 controls the opening degree of the throttle valve in accordance with the detection result of an accelerator sensor (not shown) that detects the operation amount of the accelerator grip. That is, the control device 80 controls the output of the engine unit 70 according to the operation amount of the accelerator grip.
  • the controller 80 may change the opening degree of the throttle valve regardless of the operation of the accelerator grip.
  • the throttle valve may be connected to the accelerator grip via a throttle wire.
  • a front brake lever (not shown) is provided on the right side of the handle unit 50.
  • a rear brake lever (not shown) is provided on the left side of the handle unit 50.
  • the front brake When the driver operates the front brake lever so as to pull the front brake lever with the finger of the right grip, the front brake is activated to apply a braking force to the round tread surface front tire 2.
  • the rear brake When the driver pulls the rear brake lever with the finger of the hand holding the left grip 51, the rear brake is actuated to apply a braking force to the round tread surface rear tire 4.
  • the front brake and the rear brake are controlled by a brake by wire system.
  • the front brake and the rear brake are connected to the controller 80.
  • Control device 80 actuates the front brake in accordance with the detection result of a front brake sensor (not shown) that detects the amount of operation of the front brake lever.
  • Control device 80 actuates the rear brake in accordance with the detection result of a rear brake sensor (not shown) that detects an operation amount of the rear brake lever.
  • the controller 80 may operate the brake regardless of the operation of the brake lever.
  • the front brake lever may be mechanically connected to the front brake.
  • the rear brake lever may be mechanically connected to the rear brake.
  • a brake pedal may be provided instead of the front brake lever or the rear brake lever. The brake pedal is operated by the driver's foot.
  • the motorcycle 1A has a vehicle body cover 12.
  • a part of the vehicle body cover 12 is indicated by a two-dot chain line.
  • the body cover 12 is composed of a plurality of parts.
  • the body cover 12 covers at least a portion of the front frame 20, the intermediate frame 30, and at least a portion of the rear frame 40. At least a portion of the vehicle body cover 12 is supported by the rear frame 40.
  • Body cover 12 includes a front cowl (not shown). The front cowl covers the head pipe portion 31 from the front.
  • the motorcycle 1A has a wheel speed sensor (not shown) that detects the rotational speed of the round tread surface front tire 2 or the round tread surface rear tire 4.
  • the motorcycle 1A may have two wheel speed sensors that detect the rotational speeds of the round tread surface front tire 2 and the round tread surface rear tire 4, respectively.
  • the control device 80 is based on the rotational speed of the round tread surface front tire 2 or the round tread surface rear tire 4 detected by the wheel speed sensor and the diameter of the round tread surface front tire 2 or the round tread surface rear tire 4. Calculate the vehicle speed of
  • the motorcycle 1A has a steering angle sensor (not shown) for detecting the steering angle of the steering wheel unit 50.
  • the steering angle of the steering wheel unit 50 is a rotation angle of the steering shaft 22.
  • the motorcycle 1A has a tilt detection device 81 that detects a physical quantity related to the tilt of the intermediate frame 30 in the left-right direction with respect to the vertical direction.
  • the tilt detection device 81 is supported by the intermediate frame 30.
  • the inclination of the intermediate frame 30 in the lateral direction with respect to the vertical direction means that the intermediate frame 30 swings around the roll axis of the motorcycle 1A.
  • the roll axis is an axis parallel to the front-rear direction.
  • the physical quantity detected by the tilt detection device 81 includes at least one of the roll angle, the roll rate, and the roll angular acceleration of the intermediate frame 30.
  • the tilt detection device 81 may be a sensor (gyro sensor) that detects at least one of roll angle, roll rate, and roll angular acceleration.
  • the inclination detection device 81 may include an arithmetic processing unit that performs arithmetic processing based on the detection result of the gyro sensor. For example, the inclination detection device 81 may calculate the roll angle by integrating the roll rate detected by the gyro sensor. The tilt detection device 81 may calculate the roll rate by integrating the roll angular acceleration detected by the sensor. The tilt detection device 81 may calculate the roll rate by differentiating the roll angle detected by the gyro sensor. The tilt detection device 81 may calculate the roll angular acceleration by differentiating the roll rate detected by the gyro sensor.
  • the inclination detection device 81 may be an arithmetic processing unit that performs arithmetic processing based on a detection result of a steering wheel angle sensor or the like.
  • the tilt detection device 81 may calculate the roll angle of the intermediate frame 30 based on the steering angle of the steering wheel unit 50 or the like.
  • the inclination detection device 81 may include both a sensor and an arithmetic processing unit.
  • the inclination detection device 81 may not include a sensor, and may be configured only by an arithmetic processing unit.
  • the arithmetic processing unit may be included in a control device 80 described later.
  • the motorcycle 1A includes a detection device (not shown) that detects a physical quantity related to the inclination of the intermediate frame 30 in the left-right direction with respect to the front-rear direction.
  • the inclination of the intermediate frame 30 in the left-right direction with respect to the front-rear direction means that the intermediate frame 30 swings around the yaw axis of the motorcycle 1A.
  • the yaw axis is an axis parallel to the vertical direction.
  • the physical quantity detected by the detection device includes at least one of the yaw angle, the yaw rate, and the yaw angular acceleration of the intermediate frame 30.
  • the motorcycle 1 ⁇ / b> A includes a detection device that detects a physical quantity related to the inclination of the intermediate frame 30 in the vertical direction with respect to the front-rear direction.
  • the inclination of the intermediate frame 30 in the vertical direction with respect to the front-rear direction means that the intermediate frame 30 swings around the pitch axis of the motorcycle 1A.
  • the pitch axis is an axis parallel to the left and right direction.
  • the physical quantity detected by the detection device includes at least one of the pitch angle, pitch rate, and pitch angular acceleration of the intermediate frame 30.
  • the motorcycle 1A has a control device 80.
  • the control device 80 is configured of, for example, a central processing unit (CPU), a read only memory (ROM), a random access memory (RAM), and the like.
  • the CPU executes information processing based on programs and various data stored in the ROM and RAM.
  • the control device 80 may be supported by the intermediate frame 30 and may be supported by the rear frame 40.
  • the position of the control device 80 is not limited to the position shown in FIG.
  • the control device 80 is connected to various sensors such as an accelerator sensor, a front brake sensor, a rear brake sensor, a wheel speed sensor, a steering wheel angle sensor, and an inclination detection device 81.
  • the controller 80 receives signals from these sensors.
  • the arithmetic processing unit of the inclination detection device 81 may be included in the control device 80.
  • the control device 80 is connected to an engine control actuator such as a fuel supply device and a throttle valve.
  • the controller 80 is connected to actuators for the front brake and the rear brake.
  • the controller 80 is connected to the hydraulic pump 61.
  • the control device 80 controls these connected devices.
  • Control device 80 controls hydraulic cylinder 60 (round tread surface rear tire swing actuator) via hydraulic pump 61.
  • the control device 80 controls the swing of the round tread surface rear tire 4 by controlling the hydraulic cylinder 60.
  • the control device 80 includes the round tread surface rear tire swing actuator control device of the present invention. The swing control of the round tread surface rear tire 4 by the control device 80 will be described later.
  • the middle frame 30, the front frame 20, the rear frame 40, the round tread surface front tire 2, the round tread surface rear tire 4, the hydraulic cylinder 60 (round tread surface rear tire swing actuator), and the control device 80 have the following two conditions Formed or placed to fill.
  • the first condition is a vehicle 1A in a state of straight enable upright when viewed in the left or right, round tread surface rear tire swing axis A4 1A is, the center of gravity of the vehicle 1A in a state where no load is applied from the outside it is to pass between the G0 1A and the sheet 10.
  • Centroid G0 1A of the vehicle 1A in a state where an external no load is applied is not limited to the position shown in FIG.
  • the second condition as the load applied to the seat 10 is increased from zero, the center of gravity of the vehicle 1A including the driver seated on the seat 10 (the occupant) is to approach the round tread surface rear tire swing axis A4 1A .
  • the center of gravity of the vehicle 1A including the driver for example, to move from the center of gravity G0 1A shown in FIG. 2 in the direction of an arrow.
  • Centroid G1 1A indicated by the two-dot chain line in FIG. 2 is an example of a center of gravity of the vehicle 1A including the driver seated on the seat 10 (the occupant).
  • Centroid G1 1A of the vehicle 1A including the driver seated on the seat 10 may exceed the round tread surface rear tire swing axis A4 1A, it may not exceed. If the occupant respectively to the seat 10 and a tandem seat 11 is seated, the center of gravity of the vehicle 1A including the occupant 2 persons may exceed the round tread surface rear tire swing axis A4 1A, it may not exceed. If exceed the extreme upper limit of the recommended nono load, the center of gravity of the vehicle 1A including all of the load the vehicle 1A is received from the outside is not to leave extremely from round tread surface rear tire swing axis A4 1A. According to this configuration, the same effects as the effects described in the first embodiment can be obtained.
  • the hydraulic cylinder 60 (round tread surface rear tire rocking actuator) is positioned above the upper ends of both the round tread surface rear tire 4 and the round tread surface front tire 2.
  • the entire hydraulic cylinder 60 (round tread surface rear tire rocking actuator) is viewed downward from the round tread surface rear tire rocking axis line A4 1A when the vehicle 1A in a straight up possible state is viewed left or right. Away from.
  • the vehicle 1A in a state of straight enable upright when viewed in the left or right, at least a portion of the rear suspension unit 42 is spaced downwardly from the round tread surface rear tire swing axis A4 1A.
  • a portion of the rear suspension unit 42 is spaced downwardly from the round tread surface rear tire swing axis A4 1A, other parts of the rear suspension unit 42, a round tread surface rear tire swing axis A4 1A Upward away.
  • the behavior of the vehicle 1A when the round tread surface rear tire 4 is swung will be described.
  • the fact that the round tread surface rear tire 4 is inclined in the left direction with respect to the upper direction means that the upper end of the round tread surface rear tire 4 moves in the left direction relative to the lower end.
  • the same definition applies to the vehicle 1A and the round tread surface front tire 2.
  • the fact that the round tread surface rear tire 4 is inclined to the left with respect to the front direction means that the front end of the round tread surface rear tire 4 has moved relative to the rear end in the left direction.
  • steering the round tread surface front tire 2 in the left direction means that the round tread surface front tire 2 is inclined in the left direction with respect to the front direction.
  • FIG. 3A shows a state in which the vehicle 1A is erected to be able to go straight on the horizontal road surface RS.
  • the center of gravity G0 1A of the vehicle 1A in a state where no load is applied from the outside, in the middle of the right and left direction of the motorcycle 1A.
  • the round tread surface rear tire 4 swings in the direction of arrow X shown in FIG. 3 (a) from the state of FIG. 3 (a), as shown in FIG. 3 (b), the round tread surface rear tire 4 is directed upward. It leans to the left, and leans to the right with respect to the front.
  • the direction of the arrow X is a clockwise direction as viewed backward.
  • FIG. 4A shows a state in which the vehicle 1A is inclined in the left direction with respect to the upper direction.
  • the vehicle 1A as viewed downward, the center of gravity G0 1A of the vehicle 1A is spaced leftward from the round tread surface rear tire swing axis A4 1A.
  • the round tread surface rear tire 4 swings in the direction of arrow Y shown in FIG. 4A, as shown in FIG. While tilting in the direction, it tilts in the right direction with respect to the forward direction.
  • the direction of arrow X is opposite to the direction of arrow Y described above.
  • the center of gravity G0 1A of the vehicle 1A is moved to the right.
  • the vehicle 1A rises.
  • the control device 80 controls the hydraulic cylinder 60 based on the physical quantity related to the inclination of the intermediate frame 30 in the left-right direction with respect to the vertical direction detected by the inclination detection device 81.
  • the control device 80 may change the swing control of the round tread surface rear tire 4 based on other parameters in addition to the detection result of the tilt detection device 81. For example, it may be based on the detection result of the wheel speed sensor. For example, it may be based on the detection result of the steering wheel angle sensor. Also, for example, it may be based on map information. Also, it may be based on information of weather such as rain. Also, for example, it may be based on the driver's skill. The driver's skill may be input by the driver or may be determined by the control device from the traveling situation. Further, the swing control of the round tread surface rear tire 4 and the round tread surface front tire 2 may be changed depending on the vehicle type.
  • the control device 80 swings the round tread surface rear tire 4 in order to assist the steering of the steering wheel unit 50 by the driver. Specifically, for example, when the driver steers the steering wheel unit 50 in the left direction, the control device 80 swings the round tread surface rear tire 4 so that the vehicle 1A tilts in the left direction with respect to the upper direction. You may Further, for example, when the vehicle 1A is turning left, the control device 80 may swing the round tread surface rear tire 4 so that the inclination in the left direction with respect to the upper direction of the vehicle 1A is large. Thereby, the turnability can be improved. That is, the turning radius can be reduced. Further, for example, when the driver steers the steering wheel unit 50 to the right while the vehicle 1A is turning left, the control device 80 causes the round tread surface rear tire 4 to swing so that the vehicle 1A rises. May be
  • Control device 80 may swing round tread surface rear tire 4 when vehicle 1A is inclined in response to a crosswind. For example, when the vehicle 1A receives a wind from the right and inclines in the left direction, even if the round tread surface rear tire 4 swings in a direction in which the round tread surface rear tire 4 inclines in the left direction with respect to the upper direction. Good.
  • the motorcycle 1A may have, as an operation mode, a tilt reduction mode for reducing the tilt in the left-right direction with respect to the vertical direction of the vehicle 1A.
  • Control device 80 causes round tread surface rear tire 4 to rock when vehicle 1A is inclined in the left-right direction with respect to the upper direction during the inclination reduction mode.
  • the vehicle 1A is easily inclined in the lateral direction with respect to the vertical direction.
  • the swing control of the round tread surface rear tire 4 in the slope reduction mode may be performed only at low speed travel.
  • the control device 80 when traveling at a low speed of 6 km / h or less, or while stopping, the control device 80 alternately swings the round tread surface rear tire 4 in both directions so that the vehicle 1A can maintain a self-supporting state. It is also good. For example, when a person presses and walks the vehicle 1A, this control may be performed.
  • the specific example 1 of the first embodiment has the following effects in addition to the effects of the above-described embodiment of the present invention.
  • the intersection of the round tread surface rear tire pivot axis A4 1A and the road surface RS is, as compared with the case where apart rearwardly from the straight line parallel to L4 1A the rear end of the round tread surface rear tire 4 as a vertical direction, Round The moment required to swing the tread surface rear tire 4 is small. Therefore, the controllability of the swing control of the round tread surface rear tire 4 can be improved. Therefore, the controllability of the swing control of the round tread surface rear tire 4 with respect to the change of the load on the motorcycle 1A can be further improved.
  • the vehicle 1A in a state of straight enable upright when viewed in the left or right, at least a portion of the front suspension unit 21 having a relatively large weight, apart downwardly from the round tread surface rear tire swing axis A4 1A There is. Therefore, the layout round tread surface rear tire swing axis A4 1A is located between the center of gravity G0 1A and seat 10 of a vehicle 1A in a state where no load is applied to the sheet 10 can be easily realized.
  • the layout round tread surface rear tire swing axis A4 1A is located between the center of gravity G0 1A and seat 10 of a vehicle 1A in a state where no load is applied to the sheet 10 can be easily realized.
  • the vehicle 1A in a state of straight enable upright as viewed downward, a portion of the fuel tank 71 overlaps the round tread surface rear tire swing axis A4 1A. Thereby, also the weight of the fuel in the fuel tank 71 is changed, a small change in the position of the center of gravity G0 1A of the vehicle 1A. Therefore, it is possible to suppress a decrease in controllability of the rocking control of the round tread surface rear tire 4.
  • the inclination detecting device 81 is installed on the rear frame 40, in order to detect the inclination of the intermediate frame 30 from the detection result of the inclination detecting device 81, the swing angle of the rear frame 40 with respect to the intermediate frame 30 is taken into consideration. It is necessary to make corrections.
  • the inclination detection device 81 By installing the inclination detection device 81 in the intermediate frame 30, it becomes easy to control the swing of the round tread surface rear tire 4 so that the desired behavior of the vehicle 1A can be obtained. Therefore, the controllability of the swing control of the round tread surface rear tire 4 with respect to the change of the load on the motorcycle 1A can be further improved.
  • Example 2 of the first embodiment of the present invention has all the features of the first embodiment of the present invention.
  • the description of the same portions as the first embodiment of the present invention and the specific example 1 thereof will be omitted.
  • configurations different from the specific example 1 of the first embodiment of the present invention will be described.
  • Hydraulic cylinder 60 swings relative to the intermediate frame 30 and rear frame 40 to the A4 1B around round tread surface rear tire swing axis.
  • the round tread surface rear tire swing axis line A41 B is an example of the round tread surface rear tire swing axis line A4 of the first embodiment.
  • Round tread surface rear tire pivot axis A4 1B has an inclination toward the downward direction increases toward the rear direction. Looking at the vehicle 1B in an upright state so that it can go straight ahead, in the left or right direction, the intersection point of the round tread surface rear tire rocking axis A41 B and the road surface RS is the same as or substantially the same as the contact point of the round tread surface rear tire 4 and the road surface RS. It is the same.
  • the torque for swinging the rear frame 40 is smaller than that of the first example of the first embodiment. Therefore, the controllability of the swing control of the round tread surface rear tire 4 can be improved. Therefore, the controllability of the swing control of the round tread surface rear tire 4 with respect to the change of the load on the motorcycle 1B can be further improved.
  • the intermediate frame 30, the front frame 20, the rear frame 40, the round tread surface front tire 2, the round tread surface rear tire 4, the hydraulic cylinder 60 (round tread surface rear tire swing actuator), and the control device 80 It is formed or arranged to satisfy the following two conditions.
  • the first condition is a vehicle 1B in a state of straight enable upright when viewed in the left or right, round tread surface rear tire swing axis A4 1B is, the center of gravity of the vehicle 1B in a state where no load is applied from the outside it is to pass between the G0 1B and the sheet 10.
  • Centroid G0 1B of the vehicle 1B in a state where an external no load is applied is not limited to the position shown in FIG.
  • the second condition as the load applied to the seat 10 is increased from zero, the center of gravity of the vehicle 1B including the driver seated on the seat 10 (the occupant) is closer to the A4 1B round tread surface rear tire swing axis .
  • the center of gravity of the vehicle 1B including the driver for example, to move from the center of gravity G0 1B shown in FIG. 5 in the direction of the arrow.
  • Centroid G1 1B indicated by the two-dot chain line in FIG. 5 is an example of the center of gravity G1 1B of the vehicle 1B including the driver seated on the seat 10 (the occupant).
  • Centroid G1 1B of the vehicle 1B including the driver seated on the seat 10 may exceed the round tread surface rear tire swing axis A4 1B, it may not exceed. If the occupant respectively to the seat 10 and a tandem seat 11 is seated, the center of gravity of the vehicle 1B including occupant Two may exceed the round tread surface rear tire swing axis A4 1B, it may not exceed.
  • Example 3 of the first embodiment of the present invention has all the features of the first embodiment of the present invention.
  • the description of the same portions as the first embodiment of the present invention and the specific example 1 thereof will be omitted.
  • configurations different from the specific example 1 of the first embodiment of the present invention will be described.
  • Hydraulic cylinder 60 swings relative to the intermediate frame 30 and rear frame 40 to the A4 1C around round tread surface rear tire swing axis.
  • the round tread surface rear tire rocking axis A41C is an example of the round tread surface rear tire rocking axis A4 of the first embodiment.
  • the round tread surface rear tire rocking axis A41C has a downward inclination toward the rear. Looking at the vehicle 1C in a straightly upright state in the left or right direction, the intersection point between the round tread surface rear tire swing axis A41 C and the road surface RS is in the forward direction relative to the contact point of the round tread surface rear tire 4 and the road surface RS.
  • the intersection point of the round tread surface rear tire rocking axis A41C and the road surface RS is a straight line L3 1C parallel to the vertical direction passing through the front end of the round tread surface rear tire 4 and the round tread surface rear tire 4 Between the rear end and a straight line L4 1C parallel to the vertical direction.
  • the intermediate frame 30, the front frame 20, the rear frame 40, the round tread surface front tire 2, the round tread surface rear tire 4, the hydraulic cylinder 60 (round tread surface rear tire swing actuator), and the control device 80 It is formed or arranged to satisfy the following two conditions.
  • the first condition is that when the vehicle 1C in the upright state capable of traveling straight is viewed leftward or rightward, the round tread surface rear tire rocking axis A41C is the center of gravity of the vehicle 1C in a state where no load is applied from the outside It is passing between G01C and the sheet 10. Centroid G0 1C vehicle 1C in a state in which an external no load is applied is not limited to the position shown in FIG.
  • the second condition as the load applied to the seat 10 is increased from zero, the center of gravity of the vehicle 1C, including the driver seated on the seat 10 (the occupant) is to approach the round tread surface rear tire swing axis A4 1C .
  • the center of gravity of the vehicle 1C including the driver (the passenger), for example, to move from the center of gravity G0 1C shown in FIG. 6 in the direction of the arrow.
  • the center of gravity G11 C indicated by a two-dot chain line in FIG. 6 is an example of the center of gravity G11 C of the vehicle 1C including the driver (passenger) seated on the seat 10.
  • Centroid G1 1C of the vehicle 1C including the driver seated on the seat 10 (the occupant) may exceed the round tread surface rear tire swing axis A4 1C, may not exceed. If the occupant respectively to the seat 10 and a tandem seat 11 is seated, the center of gravity of the vehicle 1C including an occupant of 2 persons may exceed the round tread surface rear tire swing axis A4 1C, may not exceed.
  • the second embodiment of the present invention has all the features described in the description of the first embodiment of the present invention.
  • the description of the same portions as the first embodiment of the present invention and the specific example 1 thereof will be omitted.
  • configurations different from the first embodiment of the present invention and its specific example 1 will be described.
  • the motorcycle 100A includes a front frame 120, an intermediate frame 130, and a rear frame 140.
  • the main material of the front frame 120 is a metal such as aluminum or iron, a resin such as CFRP, or a combination thereof.
  • the main materials of the intermediate frame 130 and the rear frame 140 are the same.
  • the materials of the front frame 120, the intermediate frame 130, and the rear frame 140 may be different from one another.
  • the front frame 120 has a pair of left and right front suspension units 21 and 21 and a front swing shaft portion 122.
  • the front rocking shaft portion 122 is fixed to the upper portion of the front suspension unit 21.
  • a front brake 106 is installed on the front wheel 3.
  • the front brake 106 is configured to be able to apply a braking force to the round tread surface front tire 2.
  • the front brake 106 is a hydraulic disc brake.
  • the front brake 106 is connected to the front hydraulic unit 107 via a brake hose.
  • the front hydraulic unit 107 is supported by the intermediate frame 130.
  • the front brake 106 operates with the pressure of the brake fluid supplied from the front hydraulic unit 107.
  • the front hydraulic unit 107 controls the brake fluid pressure of the front brake 106.
  • the front hydraulic unit 107 includes a hydraulic pressure adjustment motor and a hydraulic pressure adjustment valve.
  • the intermediate frame 130 has an intermediate main frame 131.
  • the intermediate main frame 131 is connected to the handle unit 50.
  • the handle unit 50 can not swing with respect to the intermediate frame 130.
  • the middle main frame 131 supports the front electric motor 162.
  • the front electric motor 162 is accommodated at the front of the middle main frame 131.
  • the front electric motor 162 is fixed to the intermediate frame 130.
  • the front electric motor 162 is an electric motor whose output shaft can rotate in both directions.
  • the front electric motor 162 may be a motor with a reduction gear.
  • the output shaft of the front electric motor 162 protrudes forward and downward.
  • the output shaft of the front electric motor 162 is fixed to the front swing shaft portion 122 of the front frame 120.
  • the front electric motor 162 may be supported by the front swing shaft portion 122, and the output shaft of the front electric motor 162 may be fixed to the intermediate main frame 131.
  • the rotation of the output shaft of the front electric motor 162 causes the front frame 120 to swing around the central axis of the output shaft of the front electric motor 162 with respect to the intermediate frame 130.
  • the front electric motor 162 corresponds to the round tread surface front tire swing actuator of the present invention.
  • the output shaft of the front electric motor 162 constitutes a round tread surface front tire swing axis A2. That is, the front electric motor 162 (round tread surface front tire swing actuator) swings the front frame 120 with respect to the intermediate frame 130 around the round tread surface front tire swing axis A2.
  • the round tread surface front tire rocking axis A2 is a straight line that extends infinitely.
  • the front frame 120 is supported by the intermediate frame 130 via a front electric motor 162.
  • the front frame 120 is supported by the intermediate frame 130 so as to be pivotable about the central axis of the output shaft of the front electric motor 162.
  • the front frame 120 is supported by the intermediate frame 130 so as to be able to swing about the round tread surface front tire swing axis A2, so that the round tread surface front tire 2 is intermediate about the round tread surface front tire swing axis A2. It can swing with respect to the frame 130.
  • the round tread surface front tire rocking axis A2 has an inclination toward the upper side as it goes to the rear side. In other words, when the first point on the round tread surface front tire swing axis A2 is moved backward along the round tread surface front tire swing axis A2 as the second point, the second point Is higher than the first point.
  • the inclination angle of the round tread surface front tire rocking axis line A2 with respect to the vertical direction be less than 45 ° when the vehicle 100A in the upright state is allowed to go straight.
  • the intersection point of the round tread surface front tire swing axis A2 and the road surface RS is parallel to the vertical direction through the front end of the round tread surface front tire 2 Between the straight line L1 100A and the straight line L2 100A which passes through the rear end of the round tread surface front tire 2 and is parallel to the vertical direction.
  • the intersection of the round tread surface front tire rocking axis line A2 and the road surface RS is slightly away from the point of contact between the round tread surface front tire 2 and the road surface RS in the forward direction.
  • intersection point of the round tread surface front tire rocking axis A2 and the road surface RS may be the same as or substantially the same as the contact point of the round tread surface front tire 2 and the road surface RS.
  • the intersection point of the round tread surface front tire rocking axis line A2 and the road surface RS may be located rearward of the contact point as long as it is between the straight line L1 100A and the straight line L2 100A .
  • the intermediate frame 130 has a seat frame 132 in addition to the intermediate main frame 131.
  • the seat frame 132 is fixed to the intermediate main frame 131.
  • the seat frame 132 supports a seat 10 for a driver (seat occupant) to sit on and a tandem seat 11 for a passenger (seat occupant) to sit on. That is, the seat 10 and the tandem seat 11 are supported by the intermediate frame 130.
  • the tandem seat 11 is located rearward of the rear end of the seat 10.
  • the riding capacity of the motorcycle 100A is two people.
  • the tandem seat 11 may not be present.
  • FIG. 7 the boundary of the seat 10 other than the upper edge of the seat 10 when the vehicle 100A is viewed in the right direction is not displayed. Further, FIG.
  • the rear end of the seat 10 is at substantially the same position as the front end of the tandem seat 11.
  • the entire seat 10 is separated upward from the round tread surface rear tire rocking axis A4 100A .
  • the tandem seat 11 as a whole is separated upward from the round tread surface rear tire rocking axis A4 100A when the vehicle 100A in the upright state is allowed to go straight.
  • the rear frame 140 has a rear rocking shaft portion 141 and a rear suspension unit 42.
  • the rear suspension unit 42 is connected to the rear of the rear rocking shaft portion 141.
  • the front portion of the swing arm 43 of the rear suspension unit 42 is supported at the rear of the rear rocking shaft portion 141 so as to be pivotable about an axis parallel to the left-right direction.
  • One end of the rear suspension 44 of the rear suspension unit 42 is connected to the rear of the rear rocking shaft portion 141.
  • the link mechanism 45 is connected to the rear portion of the rear rocking shaft portion 141, the other end of the rear suspension 44, and the swing arm 43 so as to be rockable around an axis parallel to the left-right direction.
  • the rear wheel 5 is provided with an in-wheel motor 170 and a rear brake 108 (not shown).
  • the in-wheel motor 170 corresponds to the drive source of the present invention.
  • the in-wheel motor 170 is an electric motor.
  • the in-wheel motor 170 is configured to be able to apply a driving force to the round tread surface rear tire 4.
  • In-wheel motor 170 may or may not include a transmission. If the in-wheel motor 170 does not include a transmission, the rear wheel 5 may support the transmission.
  • the output (driving force) of the in-wheel motor 170 is transmitted to the round tread surface rear tire 4 via the transmission.
  • the transmission is configured to be able to change the ratio of the rotational speed of the output shaft of the in-wheel motor 170 and the rotational speed of the round tread surface rear tire 4. Also, the transmission may not be provided.
  • the rear brake 108 is configured to be able to apply a braking force to the round tread surface rear tire 4.
  • the rear brake 108 is a drum brake. Drum brakes are mechanical brakes that use frictional force.
  • the rear rocking shaft portion 141 is substantially cylindrical.
  • the rear rocking shaft portion 141 supports the rear electric motor 160.
  • the rear electric motor 160 is disposed inside the front portion of the rear rocking shaft portion 141.
  • the rear electric motor 160 is fixed to the rear frame 140.
  • the rear electric motor 160 is located rearward of the rear end of the front electric motor 162.
  • the rear electric motor 160 is an electric motor whose output shaft can rotate in both directions.
  • the rear electric motor 160 may be a motor with a reduction gear.
  • the output shaft of the rear electric motor 160 projects obliquely upward and forward.
  • the output shaft of the rear electric motor 160 is fixed to the intermediate main frame 131.
  • the rear electric motor 160 may be supported by the middle main frame 131, and the output shaft of the rear electric motor 160 may be fixed to the rear rocking shaft portion 141.
  • the rotation of the output shaft of the rear electric motor 160 causes the rear frame 140 to swing relative to the intermediate frame 130 about the central axis of the output shaft of the rear electric motor 160.
  • the rear electric motor 160 swings the rear frame 140 relative to the intermediate frame 130 about the central axis of the output shaft.
  • the rear electric motor 160 corresponds to the round tread surface rear tire rocking actuator of the present invention.
  • the output shaft of the rear electric motor 160 constitutes a round tread surface rear tire rocking axis A4 100A .
  • the round tread surface rear tire rocking axis A4 100A is a straight line extending infinitely.
  • the front end portion of the rear rocking shaft portion 141 is supported by the intermediate main frame 131 via the rear electric motor 160. Further, the rear portion of the rear rocking shaft portion 141 is supported by the intermediate main frame 131 so as to be rockable around the central axis of the output shaft of the rear electric motor 160.
  • the rear frame 140 is supported by the intermediate frame 130 so as to be pivotable about the central axis of the output shaft of the rear electric motor 160. Since the rear frame 140 is supported by the intermediate frame 130 so as to be able to swing about the round tread surface rear tire swing axis A4 100A , the round tread surface rear tire 4 is an intermediate frame around the round tread surface rear tire swing axis A4 100A. It is rockable with respect to 130.
  • the round tread surface rear tire rocking axis A4 100A has a downward inclination toward the rear. That is, when the point is moved backward along the first point on the round tread surface rear tire swing axis A4 100A round tread surface rear tire swing axis A4 100A and the second point, the second point Is lower than the first point.
  • the inclination angle of the round tread surface rear tire rocking axis A4 100A with respect to the vertical direction exceeds 45 ° when the vehicle 100A in the upright state is allowed to go straight.
  • the intersection point of the round tread surface rear tire rocking axis A4 100A and the road surface RS passes the front end of the round tread surface rear tire 4 and is parallel to the vertical direction It is between the straight line L3 100A and the straight line L4 100A which passes through the rear end of the round tread surface rear tire 4 and is parallel to the vertical direction.
  • the intersection of the round tread surface rear tire rocking axis A4 100A and the road surface RS is the same as or substantially the same as the contact point of the round tread surface rear tire 4 and the road surface RS.
  • the rear frame 140 has a battery support 146 in addition to the rear rocking shaft 141 and the rear suspension unit 42.
  • the battery support 146 is fixed to the lower surface of the rear rocking shaft 141.
  • the battery support 146 supports the power storage device 171.
  • Power storage device 171 is configured of at least one battery (secondary battery).
  • the power storage device 171 supplies power to various electric devices.
  • the various electric devices include an in-wheel motor 170, a front electric motor 162, a rear electric motor 160, various sensors, and a controller 80.
  • the total capacity of the power storage device 171 of the second embodiment is larger than the total capacity of the battery (not shown) of the specific example 1 of the first embodiment.
  • the battery may be, for example, a lead storage battery or a lithium storage battery.
  • a weight may be installed on the battery support 146.
  • the weight may be provided at a location other than the battery support 146.
  • the weight is preferably disposed at a position spaced downward from the round tread surface rear tire swing axis A4 100A .
  • the weight may be provided on the rear frame 140 or on the intermediate frame 130.
  • the motorcycle 100A has the handle unit 50.
  • the handle unit 50 has a left grip 51 and a right grip (not shown).
  • the left grip 51 and the right grip are gripped by the driver (passenger) hand.
  • the left grip 51 and the right grip are each pivotable about the central axis of the grip.
  • the handle unit 50 is fixed to the intermediate frame 130.
  • the left grip 51 and the right grip can not move in the left-right direction with respect to the intermediate frame 130. Therefore, the steering wheel unit 50 is not operated by the driver as in the first embodiment. That is, the round tread surface front tire 2 is not steered by the handle unit 50.
  • a steering switch (not shown) is provided on the left grip 51 or the right grip.
  • the steering switch may be configured to be rotatable less than 360 degrees, or may be configured to be capable of rotating 360 degrees.
  • the steering switch is operated by the finger of the hand holding the grip.
  • the driver turning the steering switch at least one of the round tread surface front tire 2 and the round tread surface rear tire 4 swings with respect to the intermediate frame 130, and the vehicle 100A is steered. That is, the steering of the round tread surface front tire 2 and the round tread surface rear tire 4 is controlled by a steer-by-wire method.
  • Control device 80 operates at least one of front electric motor 162 and rear electric motor 160 according to the operation amount of the steering switch. Depending on the situation, the controller 80 operates at least one of the front electric motor 162 and the rear electric motor 160 regardless of the operation of the steering switch.
  • the right grip is the accelerator grip.
  • the driver operates the accelerator grip to adjust the output of the in-wheel motor 170 (drive source). Since the drive source is an electric motor (in-wheel motor 170), the drive source is controlled in an accelerator-by-wire manner.
  • the output of in-wheel motor 170 is controlled by control device 80.
  • Control device 80 controls the output of in-wheel motor 170 according to the detection result of an accelerator sensor (not shown) that detects the operation amount of the accelerator grip. Depending on the situation, the controller 80 may change the output of the in-wheel motor 170 regardless of the operation of the accelerator grip.
  • a front brake lever (not shown) is provided on the right side of the handle unit 50.
  • the front brake 106 When the driver operates the front brake lever so as to pull the front brake lever with the finger of the right grip, the front brake 106 is actuated to apply a braking force to the round tread surface front tire 2.
  • the front brake 106 is controlled by a brake-by-wire method.
  • Front brake 106 is connected to control device 80.
  • the front brake 106 is a hydraulic disc brake and is connected to the front hydraulic unit 107.
  • the controller 80 adjusts the hydraulic pressure supplied from the front hydraulic unit 107 to the front brake 106 in accordance with the detection result of a front brake sensor (not shown) that detects the operation amount of the front brake lever.
  • control device 80 actuates front brake 106 in accordance with the amount of operation of the front brake lever.
  • the controller 80 may actuate the front brake 106 regardless of the operation of the front brake lever.
  • the front brake lever may be connected to the front hydraulic unit 107 via a brake hose.
  • a brake pedal may be provided. The brake pedal is operated by the driver's foot.
  • a rear brake lever (not shown) is provided on the left side of the handle unit 50.
  • the rear brake 108 is actuated to apply a braking force to the round tread surface rear tire 4.
  • the rear brake 108 is controlled by a brake-by-wire method.
  • Rear brake 108 is connected to control device 80.
  • the rear brake 108 is a drum brake.
  • Control device 80 actuates rear brake 108 in accordance with the detection result of a rear brake sensor (not shown) that detects the amount of operation of the rear brake lever.
  • the controller 80 may actuate the rear brake 108 regardless of the operation of the rear brake lever.
  • the rear brake lever may be mechanically connected to the rear brake 108.
  • a brake pedal may be provided. The brake pedal is operated by the driver's foot.
  • the motorcycle 100A has a vehicle body cover 112.
  • a part of the vehicle body cover 112 is indicated by a two-dot chain line.
  • the body cover 112 is composed of a plurality of parts.
  • Body cover 112 covers at least a portion of front frame 120, intermediate frame 130, and at least a portion of rear frame 140. At least a portion of the vehicle body cover 112 is supported by the rear frame 140.
  • Body cover 112 includes a front cowl (not shown). The front cowl covers the front of the middle main frame 131 from the front.
  • the motorcycle 100A includes the tilt detection device 81 as in the first specific example of the first embodiment.
  • the tilt detection device 81 is supported by the intermediate frame 130.
  • the motorcycle 100A has an autonomous operation mode and a manual operation mode as operation modes.
  • the motorcycle 100A automatically travels to the target position even if the driver does not drive.
  • control may be performed to actively assist the driver.
  • the motorcycle 100A has a control device 80.
  • the controller 80 may be supported by the intermediate frame 130 and may be supported by the rear frame 140.
  • the position of the control device 80 is not limited to the position shown in FIG.
  • the control device 80 is connected to various sensors such as an accelerator sensor, a front brake sensor, a rear brake sensor, a wheel speed sensor, a steering wheel angle sensor, and an inclination detection device 81.
  • the controller 80 receives signals from these sensors.
  • the inclination detection device 81 includes an arithmetic processing unit
  • the arithmetic processing unit of the inclination detection device 81 may be included in the control device 80.
  • Control device 80 is connected to in-wheel motor 170.
  • the controller 80 is connected to actuators for the front brake and the rear brake.
  • the controller 80 is connected to the rear electric motor 160 and the front electric motor 162.
  • the control device 80 controls these connected devices.
  • the control device 80 controls the swing of the round tread surface rear tire 4 and the round tread surface front tire 2 by controlling the rear electric motor 160 and the front electric motor 162.
  • the control device 80 includes the round tread surface rear tire swing actuator control device and the round tread surface front tire swing control device of the present invention. Details of control of the rear electric motor 160 and the front electric motor 162 by the controller 80 will be described later.
  • the intermediate frame 130, the front frame 120, the rear frame 140, the round tread surface front tire 2, the round tread surface rear tire 4, the rear electric motor 160 (round tread surface rear tire swing actuator), and the control device 80 have the following two conditions. It is formed or arranged to satisfy The first condition is that when the vehicle 100A in a straight-up upright state is viewed leftward or rightward, the round tread surface rear tire rocking axis A4 100A is the center of gravity of the vehicle 100A with no external load applied. It is passing between G0 100A and the sheet 10.
  • the center of gravity G0 100A of the vehicle 100A in a state where no load is applied from the outside is not limited to the position shown in FIG.
  • the second condition is that, as the load applied to the seat 10 increases from zero, the center of gravity of the vehicle 100A including the driver (passenger) seated on the seat 10 approaches the round tread surface rear tire swing axis A4 100A. .
  • the center of gravity of the vehicle 100A including the driver (passenger) moves, for example, from the center of gravity G0 100A shown in FIG. 7 in the arrow direction.
  • the center of gravity G1 100A indicated by a two-dot chain line in FIG. 7 is an example of the center of gravity G1 100A of the vehicle 100A including the driver (passenger) seated on the seat 10.
  • the center of gravity G1 100A of the vehicle 100A including the driver (passenger) seated on the seat 10 may or may not exceed the round tread surface rear tire rocking axis A4 100A .
  • the center of gravity of the vehicle 100A including two occupants may or may not exceed the round tread surface rear tire swing axis A4 100A .
  • the center of gravity of the vehicle 100A including all the loads that the vehicle 100A receives from the outside does not deviate extremely from the round tread surface rear tire swing axis A4 100A unless the recommended upper limit value of the load is extremely exceeded. According to this configuration, the same effects as the effects described in the embodiment can be obtained.
  • the rear electric motor 160 (round tread surface rear tire rocking actuator) is positioned above the upper ends of both the round tread surface rear tire 4 and the round tread surface front tire 2 in a state where the vehicle 100A is upright so as to be able to travel straight.
  • the round tread surface rear tire rocking axis A4 100A passes through the rear electric motor 160 (round tread surface rear tire rocking actuator). Looking at the vehicle 100A in an upright state so that it can go straight forward, at least a part of the front electric motor 162 (round tread surface front tire swing actuator) is lower than the round tread surface rear tire swing axis A4 100A. Away in the direction. In FIG. 7, the entire front electric motor 162 is spaced downward from the round tread surface rear tire swing axis A4 100A .
  • the vehicle 100A in an upright state so as to be able to go straight on, in the left or right direction at least a part of the storage device 171 is separated downward from the round tread surface rear tire swing axis A4 100A .
  • the entire power storage device 171 is separated downward from the round tread surface rear tire rocking axis A4 100A .
  • the vehicle 100A in an upright state so as to go straight forward at least a part of the front hydraulic unit 107 is spaced downward from the round tread surface rear tire swing axis A4 100A .
  • the entire front hydraulic unit 107 is spaced downward from the round tread surface rear tire rocking axis A4 100A .
  • the vehicle 100A in an upright state so that it can go straight forward at least a part of the front suspension unit 21 is separated downward from the round tread surface rear tire swing axis A4 100A .
  • the entire front suspension unit 21 is spaced downward from the round tread surface rear tire rocking axis A4 100A .
  • the vehicle 100A in an upright state so as to be able to go straight on in the left or right direction, at least a part of the rear suspension unit 42 is spaced downward from the round tread surface rear tire swing axis A4 100A .
  • a part of the rear suspension unit 42 is spaced downward from the round tread surface rear tire swing axis A4 100A
  • the other portion of the rear suspension unit 42 is from the round tread surface rear tire swing axis A4 100A. Upward away.
  • the control device 80 controls the rear electric motor 160 and the front electric motor 162 based on the physical quantity related to the inclination of the middle frame 130 in the lateral direction with respect to the vertical direction detected by the inclination detection device 81.
  • the control device 80 may change the swing control of the round tread surface rear tire 4 and the round tread surface front tire 2 based on other parameters in addition to the detection result of the tilt detection device 81. For example, it may be based on the detection result of the wheel speed sensor. For example, it may be based on the detection result of the steering wheel angle sensor. Also, for example, it may be based on map information.
  • the round tread surface rear tire 4 and the round tread surface front tire 2 may be changed depending on the vehicle type.
  • the control device 80 causes one of the round tread surface front tire 2 and the round tread surface rear tire 4 to swing. Specifically, for example, when it is desired to steer the vehicle 100A in the left direction, the control device 80 performs any of the following control.
  • the control device 80 may swing the round tread surface front tire 2 so that the round tread surface front tire 2 is inclined leftward with respect to the front direction.
  • the round tread surface front tire 2 is in the left direction with respect to the front direction.
  • the round tread surface front tire 2 may be rocked so as to tilt.
  • the control device 80 may swing the round tread surface rear tire 4 so that the round tread surface rear tire 4 is inclined leftward with respect to the upper direction.
  • the control device 80 may swing both the round tread surface front tire 2 and the round tread surface rear tire 4 as described above.
  • the control device 80 may swing the round tread surface rear tire 4 so that the vehicle 100A gets up.
  • the control device 80 may swing the round tread surface front tire 2 such that the round tread surface front tire 2 is inclined to the right with respect to the front direction.
  • the control device 80 may swing both the round tread surface front tire 2 and the round tread surface rear tire 4 as described above.
  • the control device 80 may swing the round tread surface rear tire 4 such that the inclination in the left-right direction with respect to the upper direction of the vehicle 100A is large while the vehicle 100A is turning. Thereby, the turnability can be improved. That is, the turning radius can be reduced.
  • the control device 80 may swing the round tread surface rear tire 4 when the vehicle 100A is inclined in response to a crosswind. For example, when the vehicle 100A receives a wind from the right and inclines in the left direction, even if the round tread surface rear tire 4 swings in a direction in which the round tread surface rear tire 4 inclines in the left direction with respect to the upper direction. Good. Furthermore, the control device 80 may also swing the round tread surface front tire 2.
  • the motorcycle 100A may be capable of selecting the inclination reduction mode for reducing the inclination in the left-right direction with respect to the vertical direction of the vehicle 100A during the manual operation mode.
  • the control device 80 causes at least one of the round tread surface rear tire 4 and the round tread surface front tire 2 to rock when the vehicle 100A is inclined in the left and right direction with respect to the upper direction during the inclination reduction mode.
  • the vehicle 100A is easily inclined in the lateral direction with respect to the vertical direction.
  • the swing control of the round tread surface rear tire 4 in the slope reduction mode may be performed only at low speed travel.
  • the control device 80 swings at least one of the round tread surface rear tire 4 and the round tread surface front tire 2 when the vehicle 100A is inclined in the lateral direction with respect to the upper direction while traveling straight in the autonomous operation mode. It is also good.
  • the control device 80 alternately swings the round tread surface rear tire 4 in both directions so that the vehicle 100A can maintain a self-supporting state when traveling at a low speed of 6 km / h or less, for example, or while stopping. Good.
  • the round tread surface front tire 2 may be alternately rocked in both directions. Both the round tread surface rear tire 4 and the round tread surface front tire 2 may be swung. For example, when a person pushes and walks the vehicle 100A, this control may be performed.
  • the second embodiment achieves the same effects as the first embodiment and the configuration similar to the first example of the first embodiment.
  • the second embodiment further achieves the following effects.
  • the controller 80 controls the swing of the round tread surface front tire 2 around the round tread surface front tire swing axis line A2. Therefore, the swing of the round tread surface rear tire 4 and the swing of the round tread surface front tire 2 can be interlocked with each other. Therefore, the controllability of the swing control of the round tread surface rear tire 4 can be improved. Therefore, the controllability of the swing control of the round tread surface rear tire 4 with respect to the change of the load on the motorcycle 100A can be further improved.
  • the handle connected to the front frame 120 may not be provided.
  • the degree of freedom of the layout of the vehicle 100A can be improved. Therefore, it is possible to easily realize a layout in which the round tread surface rear tire rocking axis A4 100A is positioned between the center of gravity G0 100A of the vehicle 100A and the seat 10 in a state where no load is applied to the seat 10.
  • the reverse steering (brute steering) of the round tread surface front tire 2 can be performed by the control of the control device 80. That is, unlike the case where the round tread surface front tire 2 is steered by the steering wheel, the control device 80 grasps whether all steering of the round tread surface front tire 2 is reverse steering or forward steering. There is. Therefore, the interlocking
  • the vehicle 100A in an upright state so that it can go straight ahead, at least a portion of the front hydraulic unit 107 having a relatively large weight deviates downward from the round tread surface rear tire swing axis A4 100A ing. Therefore, it is possible to easily realize a layout in which the round tread surface rear tire rocking axis A4 100A is positioned between the center of gravity G0 100A of the vehicle 100A and the seat 10 in a state where no load is applied to the seat 10.
  • the in-wheel motor 170 drive source
  • the round tread surface rear tire swing axis A4 100A Away in the direction. Therefore, it is possible to easily realize a layout in which the round tread surface rear tire rocking axis A4 100A is positioned between the center of gravity G0 100A of the vehicle 100A and the seat 10 in a state where no load is applied to the seat 10.
  • the vehicle 100A in an upright state so that it can go straight ahead, at least a portion of the front electric motor 162 (round tread surface front tire swing actuator) having a relatively large weight swings the round tread surface rear tire. It is away from the motion axis A4 100A in the downward direction. Therefore, it is possible to easily realize a layout in which the round tread surface rear tire rocking axis A4 100A is positioned between the center of gravity G0 100A of the vehicle 100A and the seat 10 in a state where no load is applied to the seat 10.
  • the front electric motor 162 round tread surface front tire swing actuator
  • the vehicle 100A in an upright state so that it can go straight ahead, at least a part of the power storage device 171 having a relatively large weight is separated downward from the round tread surface rear tire swing axis A4 100A . Therefore, it is possible to easily realize a layout in which the round tread surface rear tire rocking axis A4 100A is positioned between the center of gravity G0 100A of the vehicle 100A and the seat 10 in a state where no load is applied to the seat 10.
  • the sheet 10 is supported by the intermediate frame 130. Therefore, the rear frame 140 does not receive the load of the occupant seated on the seat 10. Therefore, compared with the case where the rear frame 140 supports the seat 10, the weight of the target to which the rear electric motor 160 (round tread surface rear tire swing actuator) is caused to swing is smaller. Therefore, the controllability of the swing control of the round tread surface rear tire 4 can be improved. Therefore, the controllability of the swing control of the round tread surface rear tire 4 with respect to the change of the load on the motorcycle 100A can be further improved.
  • the weight of the occupant varies depending on the occupant.
  • the weight of the object to which the rear electric motor 160 round tread surface rear tire rocking actuator
  • the swing control of the round tread surface rear tire 4 becomes complicated and difficult. Control at low speeds is especially difficult.
  • the weight of the object to which the rear electric motor 160 (round tread surface rear tire rocking actuator) swings does not change even if the weight of the occupant changes. Therefore, the controllability of the swing control of the round tread surface rear tire 4 can be improved. Therefore, the controllability of the swing control of the round tread surface rear tire 4 with respect to the change of the load on the motorcycle 100A can be further improved.
  • the occupant may operate to move the center of gravity.
  • the motorcycle 100A turns, the occupant may move the center of gravity in the lateral direction.
  • the rear frame 140 supports the seat 10
  • the center of gravity of the target to which the rear electric motor 160 (round tread surface rear tire swing actuator) swings changes.
  • the swing control of the round tread surface rear tire 4 becomes complicated and difficult. Control at low speeds is especially difficult.
  • the center of gravity of the target to which the rear electric motor 160 (round tread surface rear tire swing actuator) swings changes even if the occupant moves the center do not do. Therefore, the controllability of the swing control of the round tread surface rear tire 4 can be improved. Therefore, the controllability of the swing control of the round tread surface rear tire 4 with respect to the change of the load on the motorcycle 100A can be further improved.
  • the intermediate frame 130 changes in posture less than the rear frame 140.
  • the sheet 10 is supported by the intermediate frame 130. Therefore, compared with the case where the seat 10 is supported by the rear frame 140, the posture of the occupant can be stabilized.
  • the front hydraulic unit 107 having a relatively large weight is supported by the intermediate frame 130. Therefore, compared with the case where the rear frame 140 supports the hydraulic unit, the weight of the target to which the rear electric motor 160 (round tread surface rear tire swing actuator) is caused to swing is smaller. Therefore, the controllability of the swing control of the round tread surface rear tire 4 can be improved. Therefore, the controllability of the swing control of the round tread surface rear tire 4 with respect to the change of the load on the motorcycle 100A can be further improved.
  • the in-wheel motor 170 (drive source) having a relatively large weight is supported by the intermediate frame 130. Therefore, compared with the case where the rear frame 140 supports the drive source, the weight of the target to which the rear electric motor 160 (round tread surface rear tire rocking actuator) swings is smaller. Therefore, the controllability of the swing control of the round tread surface rear tire 4 can be improved. Therefore, the controllability of the swing control of the round tread surface rear tire 4 with respect to the change of the load on the motorcycle 100A can be further improved.
  • the storage device 171 having a relatively large weight is supported by the intermediate frame 130. Therefore, compared with the case where the rear frame 140 supports the power storage device 171, the weight of the target to which the rear electric motor 160 (round tread surface rear tire swing actuator) swings is smaller. Therefore, the controllability of the swing control of the round tread surface rear tire 4 can be improved. Therefore, the controllability of the swing control of the round tread surface rear tire 4 with respect to the change of the load on the motorcycle 100A can be further improved.
  • the rear electric motor 160 swings the rear frame 140 with respect to the intermediate frame 130 about the round tread surface rear tire swing axis A4 100B .
  • the round tread surface rear tire rocking axis A4 100B has a downward inclination toward the rear. Looking at the vehicle 100B in an upright state so that it can go straight ahead, the intersection point of the round tread surface rear tire rocking axis A4 100B and the road surface RS is in the rearward direction of the contact point of the round tread surface rear tire 4 and the road surface RS.
  • the intersection of the round tread surface rear tire rocking axis A4 100B and the road surface RS is a straight line L3 100B parallel to the vertical direction through the front end of the round tread surface rear tire 4 and the round tread surface rear tire 4 Between the straight line L4 100B parallel to the vertical direction through the rear end of the.
  • the intermediate frame 130, the front frame 120, the rear frame 140, the round tread surface front tire 2, the round tread surface rear tire 4, the rear electric motor 160 (round tread surface rear tire swing actuator), and the control device 80 have the following two conditions. It is formed or arranged to satisfy The first condition is that when the vehicle 100B in a straight-up upright state is viewed leftward or rightward, the round tread surface rear tire rocking axis A4 100B is the center of gravity of the vehicle 100B with no external load applied. It is passing between G0 100 B and the sheet 10.
  • the center of gravity G0 100B of the vehicle 100B in a state in which no load is applied from the outside is not limited to the position shown in FIG.
  • the second condition is that, as the load applied to the seat 10 increases from zero, the center of gravity of the vehicle 100B including the driver (passenger) seated on the seat 10 approaches the round tread surface rear tire swing axis A4 100B. .
  • the center of gravity of the vehicle 100B including the driver (passenger) moves, for example, from the center of gravity G0 100B shown in FIG. 8 in the arrow direction.
  • the center of gravity G1 100B indicated by a two-dot chain line in FIG. 8 is an example of the center of gravity of the vehicle 100B including the driver (passenger) seated on the seat 10.
  • the center of gravity G1 100B of the vehicle 100B including the driver (passenger) seated on the seat 10 may or may not exceed the round tread surface rear tire rocking axis A4 100B .
  • the center of gravity of the vehicle 100B including two occupants may or may not exceed the round tread surface rear tire rocking axis A4 100B .
  • the rear electric motor 160 swings the rear frame 140 with respect to the intermediate frame 130 about the round tread surface rear tire swing axis A4 100C .
  • the round tread surface rear tire rocking axis A4 100C has a downward inclination toward the rear. Looking at the vehicle 100C in an upright state so that it can go straight ahead, the intersection point of the round tread surface rear tire rocking axis A4 100C and the road surface RS is in the forward direction relative to the contact point of the round tread surface rear tire 4 and the road surface RS.
  • intersection point of the round tread surface rear tire rocking axis A4 100C and the road surface RS is a straight line L3 100C parallel to the vertical direction through the front end of the round tread surface rear tire 4 and the round tread surface rear tire 4 Between the straight line L4 100C parallel to the vertical direction through the rear end of the.
  • the intermediate frame 130, the front frame 120, the rear frame 140, the round tread surface front tire 2, the round tread surface rear tire 4, the rear electric motor 160 (round tread surface rear tire swing actuator), and the control device 80 are formed or arranged to satisfy the following two conditions.
  • the first condition is that the vehicle 100C in an upright state capable of traveling straight is viewed leftward or rightward, and the round tread surface rear tire rocking axis A4 100C is the center of gravity of the vehicle 100C in a state where no external load is applied. It is passing between G0 100C and the sheet 10.
  • the center of gravity G0 100C of the vehicle 100C in a state where no load is applied from the outside is not limited to the position shown in FIG.
  • the second condition is that, as the load applied to the seat 10 increases from zero, the center of gravity of the vehicle 100C including the driver (passenger) seated on the seat 10 approaches the round tread surface rear tire swing axis A4 100C. .
  • the center of gravity of the vehicle 100C including the driver (passenger) moves, for example, from the center of gravity G0 100C shown in FIG. 9 in the arrow direction.
  • the center of gravity G1 100C indicated by a two-dot chain line in FIG. 9 is an example of the center of gravity G1 100C of the vehicle 100C including the driver (passenger) seated on the seat 10.
  • the center of gravity G1 100C of the vehicle 100C including the driver (passenger) seated on the seat 10 may or may not exceed the round tread surface rear tire rocking axis A4 100C .
  • the center of gravity of the vehicle 100C including two occupants may or may not exceed the round tread surface rear tire swing axis A4 100C .
  • the motorcycle 100D has a front frame 120, an intermediate frame 230, and a rear frame 140. Similar to the motorcycle 100A, the front frame 120 has a pair of left and right front suspension units 21 and 21 and a front swing shaft portion 122.
  • the intermediate frame 230 includes an intermediate main frame 131, a seat frame 132, and a movable back frame 233.
  • the rear frame 140 has a rear rocking shaft portion 141, a rear suspension unit 42, and a battery support portion 146, as with the motorcycle 100A.
  • the front frame 120 is supported by the intermediate frame 230 via a front electric motor 162. Similar to the motorcycle 100A, the front frame 120 and the round tread surface front tire 2 are rocked relative to the middle frame 230 about the rocking tire front tire rocking axis A2 by the front electric motor 162. Similar to the motorcycle 100A, the rear frame 140 is supported by the intermediate frame 230 via the rear electric motor 160. Similar to the motorcycle 100A, the rear frame 140 and the round tread surface rear tire 4 are rocked with respect to the intermediate frame 230 around the round tread surface rear tire rocking axis A4 100A by the rear electric motor 160.
  • a cross section orthogonal to the longitudinal direction of the front suspension unit 21 of the front frame 120 is a substantially elliptical shape elongated in the front-rear direction.
  • a front fender 213 is attached to the front of the front frame 120.
  • the front fender 213 is not included in the front frame 120.
  • the front fender 213 covers the tread surface 2 a of the upper portion of the round tread surface front tire 2.
  • Power storage device 171 supported by battery support portion 146 of rear frame 140 is configured of six batteries. Six batteries are arranged three each on the left and right. Further, a weight (not shown) is installed on the battery support 146. The weight is disposed below the battery support 146. The weight may not be installed on the battery support 146.
  • the middle main frame 131 covers the upper portion of the outer peripheral surface of the rear swing shaft portion 141 of the rear frame 140.
  • the middle main frame 131 covers the front and the rear of the rear rocking shaft portion 141 over one turn.
  • the middle main frame 131 is a body frame having a monocoque structure.
  • the seat frame 132 of the intermediate frame 230 is fixed to the intermediate main frame 131.
  • An upper portion of the seat frame 132 is covered with a seat frame cover 214.
  • a seat 210 for seating the driver O is installed on the upper surface of the rear of the seat frame cover 214. That is, the seat frame 132 supports the seat 210.
  • the sheet 210 is a sheet-like member having elasticity.
  • the movable back frame 233 of the intermediate frame 230 is connected to the rear end of the seat frame 132.
  • the movable back frame 233 is connected to the seat frame 132 so as to be pivotable about an axis parallel to the left and right direction.
  • the movable back frame 233 is disposed at the position shown by solid lines in FIGS. 11 and 12.
  • the movable back frame 233 is disposed at a position indicated by a two-dot chain line in FIG. 12 only when the driver O (passenger) gets on and off.
  • the movable back frame 233 has a substantially V-shaped portion.
  • the torso of the driver O is disposed between the V-shaped portions.
  • the riding capacity of the motorcycle 100D is one person.
  • the head portion 235 is connected to the upper portion of the intermediate main frame 131.
  • the head portion 235 is not included in the intermediate frame 230.
  • the head portion 235 has a head bottom portion 236 and a head cover 237.
  • the head cover 237 covers the top surface of the head bottom 236.
  • a cushioning material 216 is installed on the upper surface of the rear of the head cover 237.
  • the cushion material 216 is a sheet-like member having elasticity. Depending on the posture of the driver O seated on the seat 210, the front surface of the driver O's body contacts the cushion material 216.
  • the head bottom 236 is connected to the intermediate frame 230 by three arms 234a, 234a, 234c.
  • the head portion 235 is connected to the intermediate main frame 131 so as to be movable in the front-rear direction.
  • a switch (not shown)
  • the head bottom 236 is moved back and forth by, for example, an electric motor.
  • the position of the head portion 235 can be adjusted to a position that matches the physique of the driver O.
  • the position of the center of gravity G0 100D of the vehicle 100D can be adjusted.
  • the head portion 235 has a left grip 251 and a right grip 252. As shown in FIG. 11, the left grip 251 and the right grip 252 protrude from the side of the head bottom 236.
  • the right grip 252 and the left grip 251 are fixed to the head portion 235.
  • the right grip 252 and the left grip 251 are non-rotatable (not rockable).
  • the right grip 252 and the left grip 251 are gripped by the hand of the driver O (passenger).
  • a steering switch 253 is provided on the rear surface of the left grip 251.
  • the steering switch 253 may be configured to be able to rotate less than 360 degrees, and may be configured to be capable of rotating 360 degrees.
  • the steering switch 253 has a circular or circular operation surface.
  • the rotation axis of the steering switch 253 is substantially parallel to the longitudinal direction of the left grip 251.
  • the steering switch 253 may be rotated 360 degrees or more, and may have a disk-like operation surface.
  • the steering switch 253 is operated by the finger of the hand holding the left grip 251. As with the motorcycle 100A, when the driver O operates the steering switch 253 to rotate, at least one of the round tread surface front tire 2 and the round tread surface rear tire 4 swings with respect to the intermediate frame 230.
  • the control device (not shown) operates at least one of the front electric motor 162 and the rear electric motor 160 in accordance with the operation amount of the steering switch 253. Depending on the situation, the control device operates at least one of the front electric motor 162 and the rear electric motor 160 regardless of the operation of the steering switch 253.
  • an acceleration lever 254 is provided on the front surface of the right grip 252.
  • the output of the in-wheel motor 170 (drive source) is adjusted.
  • the control device adjusts the output of the in-wheel motor 170 according to the detection result of an accelerator sensor (not shown) that detects the amount of operation of the accelerator lever 254. Depending on the situation, the control device may change the output of the in-wheel motor 170 regardless of the operation of the accelerator lever 254.
  • the left grip 251 is provided with a brake lever 255.
  • the driver O operates the brake lever 255 so that the finger of the hand holding the left grip 251 pulls the brake lever 255, at least one of the front brake 106 and the rear brake 108 is actuated. Thereby, a braking force is applied to at least one of the round tread surface front tire 2 and the round tread surface rear tire 4.
  • the front brake 106 and the rear brake 108 are operated by one brake lever 255.
  • the motorcycle 100D may have two brake operation parts for operating the front brake 106 and the rear brake 108 independently.
  • the control device actuates at least one of the front brake 106 and the rear brake 108 in accordance with a detection result of a brake sensor (not shown) that detects an operation amount of the brake lever 255.
  • the controller may activate at least one of the front brake 106 and the rear brake 108 regardless of the operation of the brake lever 255.
  • the front portion of the head portion 235 is bifurcated.
  • projectors 256a and 256b are provided on the front left portion and the front right portion of the head portion 235, respectively.
  • the projectors 256a, 256b project an image on the visor of the driver O's helmet.
  • the visor on which the image is projected may be an inner visor located inside the shield of the helmet or an outer visor located outside the shield.
  • the radiation angle of the light emitted from the projectors 256a and 256b may be adjustable by a switch or the like.
  • FIG. 16 shows an example of an image projected on a visor.
  • the projection image includes, for example, information such as vehicle speed, traveling distance, remaining amount of power storage device, warning, driving mode, time, map, navigation instruction and the like.
  • the number of projectors 256a and 256b may be only one. In that case, the projectors 256a and 256b may be provided on either the left or the right, or may be provided at the center.
  • two cameras 257 a and 257 b are provided at the center of the front of the head portion 235.
  • the cameras 257a and 257b capture the front of the motorcycle 100D.
  • One of the camera 257a and the camera 257a is a wide-angle camera having a wide-angle lens, and the other is a telephoto camera having a telephoto lens.
  • a pair of left and right footrest arms 217, 217 is connected to the rear of the intermediate main frame 131.
  • the tip of the footrest arm 217 constitutes a footrest on which the driver O's foot is placed.
  • a side stand 219 is connected to the rear left portion of the intermediate main frame 131.
  • the side stand 219 can be switched between a stored state shown by a solid line in FIG. 11 and an upright state shown by a two-dot chain line in FIG.
  • the side stand 219 is grounded to the road surface in an upright state.
  • the motorcycle 100D is self-supporting in a state of being inclined leftward with respect to the vertical direction by the side stand 219 in an upright state.
  • Reference sign Gre shown in FIG. 11 is the center of gravity of the entire object which is rocked relative to the intermediate frame 230 around the round tread surface rear tire rocking axis A4 100A by the rear electric motor 160.
  • the center of gravity Gre is referred to as a rear swinging center of gravity Gre.
  • the rear swing center of gravity Gre is separated downward from the round tread surface rear tire swing axis line A4 100A when the vehicle 100D in a state of being able to go straight forward is viewed in the left or right direction.
  • the rear swing center of gravity Gre is positioned lower than the center of gravity G0 100D of the motorcycle 100D in a state where no load is applied from the outside, when the vehicle 100D in a state in which it can stand straight ahead is viewed left or right.
  • the rear swing center of gravity Gre is positioned rearward of the center of gravity G0 100D of the motorcycle 100D in a state in which no load is applied from the outside, when the vehicle 100D in a state in which it can stand straight ahead is viewed left
  • the intermediate frame 230, the front frame 120, the rear frame 140, the round tread surface front tire 2, the round tread surface rear tire 4, the rear electric motor 160 (round tread surface rear tire swing actuator) as in the first specific example of the first embodiment And a controller (not shown) are formed or arranged to satisfy the following two conditions.
  • the first condition is that when the vehicle 100D in a straight-up upright state is viewed leftward or rightward, the round tread surface rear tire rocking axis A4 100A is the center of gravity of the vehicle 100D when no load is applied from the outside It is passing between G0 100D and the sheet 210.
  • the center of gravity G0 100D of the vehicle 100D in a state where no load is applied from the outside is not limited to the position shown in FIG.
  • the second condition is that, as the load applied to the seat 210 increases from zero, the center of gravity of the vehicle 100D including the driver O seated on the seat 210 approaches the round tread surface rear tire swing axis A4 100A .
  • the center of gravity of the vehicle 100D including the driver O moves in the direction of the arrow from the center of gravity G0 100D shown in FIG. 11, for example.
  • the center of gravity of the vehicle 100D including the driver O seated on the seat 210 may or may not exceed the round tread surface rear tire swing axis A4 100A .
  • the control device has substantially the same configuration as the control device 80 of the motorcycle 100A.
  • a controller (not shown) may be supported by the intermediate frame 230 and may be supported by the rear frame 140.
  • the control device is connected to various sensors and various actuators similarly to the control device 80. Further, the control device is connected to the projectors 256a and 256b and the cameras 257a and 257b.
  • the motorcycle 100D is supported by the side stand 219 while being inclined leftward (see FIG. 17).
  • the control device controls the rear electric motor 160 so that the motorcycle 100D can stand upright in an upright state without using the side stand 219.
  • This control is preferably performed in a state where the driver O is not on the motorcycle 100D. This control may be performed while the driver O is in the vehicle.
  • the control device uses the reaction reaction of the swing of the rear frame 140 to raise the motorcycle 100D. A more detailed description will be given below.
  • the rear electric motor 160 is controlled such that the rear rocking center of gravity Gre once swings rightward and then swings leftward.
  • the rear rocking gravity center Gre is the gravity center of the entire object rocked relative to the intermediate frame 230 around the round tread surface rear tire rocking axis A4 100A by the rear electric motor 160.
  • the rotation angle around the round tread surface rear tire rocking axis A4 100A when rocking the rear rocking gravity center Gre in the right direction is not particularly limited as long as it can raise the motorcycle 100D.
  • the rotation angle around the round tread surface rear tire rocking axis A4 100A by the rear electric motor 160 when rocking the rear rocking gravity center Gre in the right direction is the rear electric when rocking the rear rocking gravity center Gre in the left direction
  • the rotation angle about the round tread surface rear tire rocking axis A4 100A by the motor 160 may be the same or may be larger than that.
  • the speed at which the rear rocking gravity center Gre is rocked to the right is not particularly limited.
  • the speed at which the rear rocking center of gravity Gre is rocked to the left needs to be a certain speed.
  • the side stand 219 is supported by the intermediate frame 130, the side stand 219 does not prevent the swing of the rear frame 140.
  • the control device switches the side stand 219 from the standing state to the stored state.
  • the switching from the standing state of the side stand 219 to the stored state may be performed by the operation of the foot. Further, the switching from the retracted state to the upright state of the side stand 219 may be performed by the control device, may be performed by the operation of the foot, or both may be possible.
  • the control device has a face recognition unit and a gesture recognition unit.
  • the face recognition unit and the gesture recognition unit are functional units that are realized by execution of programs stored in the RAM and the ROM by the CPU.
  • the face recognition unit collates the face of the image captured by at least one of the camera 257a and the camera 257b with the face of the image registered in advance to determine whether or not they match. By registering a picture of the driver's face, the face recognition unit can recognize the driver. If faces of a plurality of people are registered, the face recognition unit can recognize faces of the plurality of people.
  • the gesture recognition unit determines whether or not the gesture of the moving image captured by at least one of the camera 257a and the camera 257b matches the gesture of the moving image registered in advance.
  • the gesture may be, for example, a beckoning action. If a plurality of gestures are registered, the gesture recognition unit can recognize a plurality of gestures.
  • the face recognition unit and the gesture recognition unit use known face recognition technology and gesture recognition technology.
  • the face recognition unit and the gesture recognition unit can recognize, for example, the face and gesture of a person about 10 m away.
  • the face recognition unit and the gesture recognition unit are used when the driver O gets on the motorcycle 100D. Specifically, first, the driver stands in front of the motorcycle 100D which is standing by the side stand 219. When the face recognition unit recognizes the driver's face, the control device controls the rear electric motor 160 as described above to cause the motorcycle 100D to rise and stand up. Thereafter, the driver makes a first gesture. When the gesture recognition unit recognizes the first gesture, the control device autonomously operates the motorcycle 100D at low speed. Then, when the distance between the motorcycle 100D and the driver O becomes equal to or less than a predetermined distance, the control device stops the motorcycle 100D. The driver may perform the second gesture before the distance between the motorcycle 100D and the driver O becomes equal to or less than a predetermined distance. When the gesture recognition unit recognizes the second gesture, the control device stops the motorcycle 100D. The control device controls the rear electric motor 160 and the front electric motor 162 so as to maintain the self-supporting state after stopping the motorcycle 100D.
  • the motorcycle 100D according to the third modification of the second embodiment of the present invention exhibits the same effects as the motorcycle 100A in the same configuration as the motorcycle 100A according to the second embodiment of the present invention described above.
  • the head portion 235 may be fixed to the intermediate main frame 131.
  • the movable back frame 233 may not be provided.
  • the side stand 219 may be capable of being grounded to the road surface so that the vehicle 100D can stand in a state of being inclined to the right with respect to the vertical direction.
  • the side stand 219 is connected to the rear right portion of the intermediate main frame 131.
  • the rear electric motor 160 is controlled so that the rear rocking gravity center Gre swings to the left once and then to the right.
  • the side stand 219 may be connected to the rear frame 140.
  • the front frame 120 When the vehicle 100D is stopped, instead of swinging the rear frame 140, the front frame 120 may be swung to raise the vehicle 100D. In that case, it is preferable that the front frame 120 be provided with a weight.
  • the present invention is not limited to the first embodiment, the first to third specific examples of the first embodiment, the second embodiment, and the first to third modifications of the second embodiment, and the invention is limited to the scope of the claims.
  • Various changes are possible.
  • modifications of the embodiment of the present invention will be described.
  • the description is suitably abbreviate
  • the motorcycle may be capable of driving support control for supporting the driver's driving.
  • the driving support control may be adaptive cruise control (ACC: Adaptive Cruise Control) that maintains the distance between the preceding vehicle and the host vehicle at a predetermined distance.
  • Adaptive cruise control is driving support control.
  • Adaptive cruise control is also called auto cruise control (Auto Cruise Control) or active cruise control (Active Cruise Control).
  • the driving support control may be lane keeping assist control that causes the motorcycle to travel along a lane.
  • the driving support control may be an automatic brake control that detects an obstacle or a person and operates the brake.
  • the driving support control may be cruise control that maintains the vehicle speed constant.
  • the motorcycle may perform swing control of the round tread surface rear tire when performing the driving support control.
  • the motorcycle may perform swing control of the round tread surface rear tire and the round tread surface front tire when performing the driving support control.
  • the motorcycle may have a loading platform for placing a load.
  • the motorcycles 100E and 100F shown in FIGS. 18 and 19 are an example thereof.
  • a motorcycle 100E shown in FIG. 18 has both a seat 10 and a loading platform 311.
  • the loading platform 311 is located rearward of the rear end of the seat 10.
  • the seat 10 and the loading platform 311 are supported by the intermediate frame 130.
  • the loading platform 311 may be detachably provided to the motorcycle 100E.
  • the entire load carrier 311 is separated upward from the round tread surface rear tire rocking axis A4 100A .
  • the intermediate frame 430 has a loading frame 432 instead of the seat frame.
  • the loading platform 411 is supported by the loading platform frame 432.
  • the first condition is that when the vehicle 100E, 100F in a state of being able to go straight forward is viewed in the left or right direction, the vehicle 100E in a state in which the round tread surface rear tire swing axis A4 100A is not externally loaded , The center of gravity G0 100E of the 100F , passing between the G0 100F and the loading platform 311,411.
  • the center of gravity G0 100E , G0 100F of the vehicle 100E, 100F in a state where no load is applied from the outside is not limited to the position shown in FIGS.
  • the second condition is that, as the load applied to the loading platforms 311 and 411 increases from zero, the center of gravity of the vehicles 100E and 100F including the load placed on the loading platforms 311 and 411 is the round tread surface rear tire swing axis A4 100A . It is approaching. As the load applied to the loading platforms 311 and 411 increases from zero, the centers of gravity of the vehicles 100E and 100F including the load move in the arrow direction from the centers of gravity G0 100E and G0 100F shown in FIGS. 18 and 19, for example.
  • the loading platform is not necessarily supported by the intermediate frame.
  • the loading platform when the motorcycle does not have a seat, the loading platform may be supported by the rear frame.
  • both the seat and the loading platform may be supported by the rear frame.
  • the seat may be supported by the intermediate frame and the loading platform may be supported by the rear frame.
  • the seat may be supported by the rear frame, and the loading platform may be supported by the intermediate frame.
  • the loading platform when the motorcycle has both the seat and the loading platform, the loading platform may be positioned forward of the front end of the seat. Alternatively, the loading platform may be disposed below the seat.
  • the motorcycle when the seat is supported by the intermediate frame, the motorcycle may not have the round tread surface front tire swing actuator for swinging the round tread surface front tire.
  • the motorcycle 100G shown in FIG. 20 is an example thereof.
  • the motorcycle 100 ⁇ / b> G includes a seat 10 supported by the intermediate frame 530.
  • a front frame 520 of the motorcycle 100G has a steering shaft 22.
  • the steering shaft 22 is rotatably supported at the front of the middle main frame 531 of the middle frame 530.
  • the steering shaft 22 is fixed to the handle unit 50.
  • the front frame 520 swings with respect to the intermediate frame 530 about the round tread surface front tire swing axis line A2. Thereby, the round tread surface front tire 2 is steered.
  • the round tread surface front tire 2 swings with respect to the intermediate frame 530 around the round tread surface front tire swing axis line A2 by the operation of the driver.
  • the middle frame 530, the front frame 520, the rear frame 140, the round tread surface front tire 2, the round tread surface rear tire 4, the round tread surface rear tire swing actuator 160, and the control device It is formed or arranged to satisfy two conditions.
  • the first condition is that when the vehicle 100G in a straight-up upright state is viewed leftward or rightward, the round tread surface rear tire rocking axis A4 100A is the center of gravity of the vehicle 100G in a state where no external load is applied. It is passing between G0 100G and the sheet 10.
  • the center of gravity G0 100G of the vehicle 100G in a state where no load is applied from the outside is not limited to the position shown in FIG.
  • the second condition is that as the load applied to the seat 10 increases from zero, the center of gravity of the vehicle 100G including the occupant seated on the seat 10 approaches the round tread surface rear tire swing axis A4 100A . As the load applied to the seat 10 increases from zero, the center of gravity of the vehicle 100G including the occupant moves from the center of gravity G0 100G shown in FIG. 21 in the arrow direction, for example.
  • the motorcycle when the seat or bed is supported by the rear frame, the motorcycle may have a round tread surface front tire swing actuator that swings the round tread surface front tire.
  • the motorcycle further includes a round tread surface front tire swing control device that controls a round tread surface front tire swing actuator.
  • the round tread surface front tire rocking actuator rocks the round tread surface front tire rocking actuator with respect to the intermediate frame by rocking the front frame with respect to the intermediate frame.
  • the motorcycle when the seat is supported by the rear frame and a round tread surface front tire swing actuator is provided, the motorcycle may have a handle that swings integrally with the front frame. In this case, the round tread surface front tire swing actuator assists the driver in steering the steering wheel. Depending on the situation, the round tread surface front tire swing actuator may swing the front frame relative to the intermediate frame regardless of the driver's operation.
  • the motorcycle when the seat is supported by the rear frame and the round tread surface front tire swing actuator is provided, the motorcycle may have a handle (grip) fixed to the intermediate frame or the rear frame.
  • the motorcycle when the loading platform is supported by the rear frame and the round tread surface front tire swing actuator is provided, the motorcycle may have a handle (grip) fixed to the intermediate frame or the rear frame.
  • the motorcycle when the seat is supported by the intermediate frame or rear frame and the round tread surface front tire swing actuator is not provided, the motorcycle has a handle (grip) that swings integrally with the front frame. You do not have to.
  • the motorcycle may have a handle (grip) fixed to the intermediate frame or the rear frame.
  • the motorcycle may or may not be autonomously drivable. If autonomous operation is not possible, the motorcycle has a handle (grip) provided with a switch for steering the round tread surface rear tire.
  • the vehicle supported by the intermediate frame or the rear frame is generally separated upward from the round tread surface rear tire swing axis when the vehicle in a straightly upright state is viewed in the vehicle left direction or the vehicle right direction. Not necessarily. In the present invention, the vehicle supported by the intermediate frame or the rear frame is only partially upward from the round tread surface rear tire rocking axis when the vehicle in a straightly upright state is viewed in the left or right direction of the vehicle. You may be away.
  • the vehicle supported by the intermediate frame or the rear frame is generally separated upward from the round tread surface rear tire rocking axis when the vehicle in a straightly upright state is viewed leftward or rightward of the vehicle. It may be In the present invention, when the vehicle in a straightly upright state is viewed in the left or right direction of the vehicle, only a part of the bed supported by the intermediate frame or the rear frame is upward from the round tread surface rear tire swing axis You may be away.
  • the drive source for applying driving force to the round tread surface rear tire may be an electric motor disposed at a position other than the inner side of the round tread surface rear tire.
  • the electric motor 670 of the motorcycle 100H shown in FIG. 21 is an example thereof.
  • the electric motor 670 is supported by the rear frame 640.
  • the electric motor 670 is positioned below the upper end of the round tread surface rear tire 4 as a whole when the vehicle 100H in an upright state is allowed to go straight.
  • the center of gravity G0 100H illustrated in FIG. 21 is an example of the center of gravity of the vehicle 100H in a state in which no load is applied from the outside.
  • the driving source for applying the driving force to the round tread surface rear tire may be an engine unit.
  • the motorcycle 100I shown in FIG. 22 is an example thereof.
  • the engine unit 70 of the motorcycle 100I is supported by the rear frame 740.
  • the engine unit 70 is entirely positioned lower than the round tread surface rear tire 4.
  • the motorcycle 100I has a fuel tank 71 for storing the fuel supplied to the engine unit 70.
  • the fuel tank 71 is supported by the intermediate frame 130.
  • the fuel tank 71 is located forward of the front end of the seat 10.
  • the fuel tank 71 is at the center of the motorcycle 100I in the left-right direction. That is, when viewed downward, the fuel tank 71 overlaps the round tread surface rear tire swing axis A4 100A .
  • the center of gravity G0 100I shown in FIG. 22 is an example of the center of gravity of the vehicle 100I in a state where no load is applied from the outside.
  • the drive source for applying the driving force to the round tread surface rear tire may be an electric motor.
  • the electric motor may be an in-wheel motor or may be an electric motor disposed at a position not inside the round tread surface rear tire.
  • the electric motor may be an in-wheel motor or may be an electric motor disposed at a position not inside the round tread surface rear tire.
  • the drive source for applying the driving force to the round tread surface rear tire may be both an electric motor and an engine unit.
  • the electric motor may be an in-wheel motor or an electric motor disposed at a position not inside the round tread surface rear tire.
  • the motorcycle of the present invention may have both a drive source for applying a driving force to the round tread surface front tire and a drive source for applying a driving force to the round tread surface rear tire. That is, in addition to the drive source satisfying the configuration of claim 1, the motorcycle according to the present invention may have another drive source.
  • the motorcycle of the present invention may have a drive source for applying a driving force to the round tread surface front tire without having a drive source for applying a driving force to the round tread surface rear tire.
  • the drive source for applying the driving force to the round tread surface front tire may be an electric motor, an engine unit, or both.
  • the electric motor may be an in-wheel motor or an electric motor disposed at a position not inside the round tread surface front tire.
  • the drive source for applying the driving force to the round tread surface rear tire is not limited to being supported by the rear frame.
  • the drive source for applying the driving force to the round tread surface rear tire may be supported by the intermediate frame.
  • the drive source for applying the driving force to the round tread surface rear tire is an engine unit and an electric motor, the drive source may be supported by both the intermediate frame and the rear frame.
  • a drive source for applying a driving force to the round tread surface front tire may be supported by the front frame.
  • the drive source for applying the driving force to the round tread surface front tire may be supported by the intermediate frame.
  • the driving source for applying driving force to the round tread surface front tire is an engine unit and an electric motor, the driving source may be supported by both the front frame and the intermediate frame.
  • the drive source for applying the driving force to the round tread surface rear tire is viewed from below the vehicle on the whole of the rear tire rocking axis of the round tread surface, looking at the vehicle in the upright state. It is not always separated in the direction.
  • only a part of the drive source for applying the driving force to the round tread surface rear tire is viewed from the swing axis of the round tread surface rear tire, when the vehicle in a straightly upright state is viewed in the vehicle left direction or vehicle right direction. It may be separated in the vehicle downward direction.
  • this configuration may be used in the case of an electric motor or an engine unit in which the drive source is disposed at a position not inside the round tread surface rear tire.
  • the drive source for applying the driving force to the round tread surface rear tire is entirely on the vehicle from the round tread surface rear tire swing axis. It may be separated in the direction.
  • this configuration may be employed.
  • At least a part of the drive source for applying a driving force to the round tread surface front tire is a round tread surface rear tire rocking axis, when the vehicle in a straight up possible state is viewed in the vehicle left direction or vehicle right direction. From the lower side of the vehicle. More specifically, looking at the vehicle in a state where it can stand straight ahead in the vehicle left direction or the vehicle right direction, the drive source for applying the driving force to the round tread surface front tire is generally from the round tread surface rear tire swing axis It may be separated in the vehicle downward direction.
  • the drive source for applying the driving force to the round tread surface front tire as viewed from the vehicle in the vehicle left direction or the vehicle right direction in an upright state capable of going straight is the whole round tread surface rear tire rocking axis It may be separated from the vehicle upward.
  • the fuel tank when the seat or the cargo bed is supported by the intermediate frame and the drive source is the engine unit, the fuel tank may be supported by the intermediate frame and may be supported by the rear frame.
  • the fuel tank when the seat or the cargo bed is supported by the rear frame and the drive source is an engine unit, the fuel tank may be supported by the rear frame or may be supported by the intermediate frame.
  • the drive source may apply a driving force to the round tread surface rear tire or may apply a driving force to the round tread surface front tire.
  • the power storage device when the seat or the cargo bed is supported by the intermediate frame and the drive source is an electric motor, the power storage device is not necessarily supported by the rear frame. In the present invention, when the sheet or the cargo bed is supported by the intermediate frame and the drive source is an electric motor, the power storage device may be supported by the intermediate frame.
  • the motorcycle 100J shown in FIG. 23 is an example thereof.
  • the storage device 171 of the motorcycle 100J is supported by the middle main frame 831 of the middle frame 830.
  • the center of gravity G0 100J shown in FIG. 23 is an example of the center of gravity of the vehicle 100J in a state where no load is applied from the outside.
  • the power storage device may be supported by the rear frame or may be supported by the intermediate frame.
  • the drive source may apply a driving force to the round tread surface rear tire or may apply a driving force to the round tread surface front tire.
  • the drive source when the drive source is an electric motor, looking at the vehicle in a state where it can stand straight ahead in the vehicle left direction or vehicle right direction, the entire power storage device is from the round tread surface rear tire swing axis to the vehicle downward direction. It is not always away.
  • the vehicle in a straightly upright state when the vehicle in a straightly upright state is viewed in the left direction or the right direction of the vehicle, only a part of the power storage device may be away from the round tread surface rear tire swing axis in the vehicle downward direction.
  • the vehicle may be entirely separated from the round tread surface rear tire rocking axis in the upward direction of the vehicle when the vehicle in a straightly upright state is viewed in the vehicle left direction or the vehicle right direction.
  • the drive source may apply a driving force to the round tread surface rear tire or may apply a driving force to the round tread surface front tire.
  • the power storage device may be other than a battery (secondary battery).
  • the power storage device may be, for example, a super capacitor or an ultra capacitor.
  • only part of the round tread surface rear tire rocking actuator may be located in the vehicle upper direction than the upper end of at least one of the round tread surface rear tire and the round tread surface front tire.
  • at least a part of the round tread surface rear tire rocking actuator may be located in the vehicle lower direction than the upper end of at least one of the round tread surface rear tire and the round tread surface front tire.
  • a round tread surface rear tire swing actuator having a relatively large weight is disposed at a relatively low position of the vehicle. Therefore, it is possible to easily realize a layout in which the round tread surface rear tire rocking axis is positioned between the seat and the center of gravity of the vehicle in a state where no load is applied to the seat.
  • the round tread surface rear tire swing axis does not necessarily pass through the round tread surface rear tire swing actuator.
  • the round tread surface rear tire rocking actuator is entirely separated from the round tread surface rear tire rocking axis downward or upward It may be
  • the round tread surface front tire swing actuator when the motorcycle has a round tread surface front tire swing actuator, the round tread surface front tire swing actuator is viewed from the vehicle left upright or straight in the vehicle so as to be able to go straight. The whole is not necessarily separated from the round tread surface rear tire swing axis in the downward direction of the vehicle.
  • the round tread surface front tire swing actuator looking at the vehicle in the state of being able to go straight forward and standing upright in the vehicle left direction or the vehicle right direction, the round tread surface front tire swing actuator is only partially in the vehicle downward direction from the round tread surface rear tire swing axis. It may be separated.
  • the whole of the round tread surface front tire rocking actuator is separated from the round tread surface rear tire rocking axis in the vehicle upward direction. May be
  • the round tread surface rear tire swing actuator when the seat is supported by the rear frame, the round tread surface rear tire swing actuator is not limited to the hydraulic cylinder, and may be, for example, an electric motor. In the present invention, when the seat is supported by the intermediate frame, the round tread surface rear tire swing actuator is not limited to the electric motor, and may be, for example, a hydraulic cylinder. In the present invention, the round tread surface front tire swing actuator is not limited to the electric motor, and may be, for example, a hydraulic cylinder.
  • the type of front brake for applying the braking force to the round tread surface front tire may be either hydraulic, mechanical or electrical.
  • the front brake applying braking force to the round tread surface front tire is a hydraulic brake, looking at the vehicle in a state where it can stand straight ahead and looking straight in the vehicle left direction or vehicle right direction
  • the front hydraulic unit to be controlled is not necessarily separated from the round tread surface rear tire swing axis in the downward direction of the vehicle.
  • the front hydraulic unit when the vehicle in the state of being able to go straight forward is viewed in the left direction or the right direction of the vehicle, the front hydraulic unit is partially separated from the round tread surface rear tire swing axis in the vehicle downward direction.
  • the vehicle may be entirely separated from the round tread surface rear tire swing axis in the upward direction of the vehicle from the round tread surface rear tire swing axis when the vehicle in a straightly upright state is viewed in the vehicle left direction or vehicle right direction.
  • the front hydraulic unit that controls the fluid pressure of the front brake is not necessarily supported by the intermediate frame.
  • the front hydraulic unit may be supported by the front frame and may be supported by the rear frame.
  • the front brake applying braking force to the round tread surface front tire is a hydraulic brake, looking at the vehicle in a state where it can stand straight ahead and looking straight in the vehicle left direction or vehicle right direction
  • the front hydraulic unit to be controlled is not necessarily separated from the round tread surface rear tire swing axis in the downward direction of the vehicle.
  • the front hydraulic unit when the vehicle in the state of being able to go straight forward is viewed in the left direction or the right direction of the vehicle, the front hydraulic unit is partially separated from the round tread surface rear tire swing axis in the vehicle downward direction.
  • the vehicle may be entirely separated from the round tread surface rear tire swing axis in the upward direction of the vehicle from the round tread surface rear tire swing axis when the vehicle in a straightly upright state is viewed in the vehicle left direction or vehicle right direction.
  • the type of brake for applying the braking force to the round tread surface rear tire may be either hydraulic, mechanical or electrical.
  • the rear hydraulic unit that controls the hydraulic pressure of the rear brake may be supported by the rear frame.
  • a rear hydraulic unit 609 shown by a two-dot chain line is an example.
  • the rear hydraulic unit that controls the hydraulic pressure of the rear brake may be supported by the intermediate frame.
  • a rear hydraulic unit 609 shown by a solid line is an example thereof.
  • the rear hydraulic unit 609 which is indicated by a solid line and a two-dot chain line, looking in a left direction or a right direction, looks straight forward and allows the vehicle to stand straight. ing.
  • the hydraulic pressure of the rear brake is viewed by looking at the vehicle left upright or rightward. At least a portion of the rear hydraulic unit that controls the rear hydraulic unit may be spaced downward from the round tread surface rear tire swing axis.
  • the entire rear hydraulic unit may be spaced downward from the round tread surface rear tire swing axis.
  • the rear hydraulic unit may be slightly separated from the round tread surface rear tire swing axis in the downward direction of the vehicle when the vehicle in a state in which it can stand straight ahead is viewed in the left direction or the right direction of the vehicle.
  • the front suspension unit is not entirely separated from the round tread surface rear tire swing axis in the downward direction of the vehicle when the vehicle in a straightly upright state is viewed leftward or rightward of the vehicle. .
  • the front suspension unit when the vehicle in a straightly upright state is viewed in the left direction or the right direction of the vehicle, only a part of the front suspension unit may be spaced upward from the round tread surface rear tire swing axis. .
  • the rear suspension unit when the vehicle in a straight-up upright state is viewed in the left direction or the right direction of the vehicle, the rear suspension unit may be separated from the round tread surface tire swing axis in the downward direction of the vehicle. Not exclusively. In the present invention, the rear suspension unit may be entirely separated from the round tread surface swing axis in the downward direction of the vehicle when the vehicle in a straightly upright state is viewed in the left direction or the right direction of the vehicle. In the present invention, the rear suspension unit may be entirely separated in the vehicle upward direction from the round tread surface tire swing axis when the vehicle in a straightly upright state is viewed in the left direction or the right direction of the vehicle.
  • the tilt detection device when the two-wheeled motor vehicle is provided with a tilt detection device for detecting a physical quantity related to the tilt of the middle frame in the vehicle left-right direction with respect to the vehicle vertical direction, the tilt detection device is not necessarily installed at the middle frame. .
  • the tilt detection device may be installed on the rear frame.
  • the direction of the rear frame parallel to the vertical direction of the vehicle in a state in which the two-wheeled motor vehicle stands upright on a horizontal road surface is referred to as the vertical direction of the rear frame.
  • the direction of the rear frame parallel to the lateral direction of the vehicle in a state in which the motorcycle stands upright on a horizontal road surface is referred to as the lateral direction of the rear frame.
  • the tilt detection device detects an angle, an angular velocity, or an angular acceleration of the tilt of the rear frame in the left-right direction with respect to the rear frame vertical direction.
  • the inclination detection device detects a physical quantity related to the inclination in the vehicle left-right direction with respect to the vehicle vertical direction of the intermediate frame based on the physical quantity related to the inclination of the rear frame and the swing angle with respect to the intermediate frame of the rear frame.
  • the tilt detection device is directed in the lateral direction of the vehicle relative to the vehicle vertical direction of the intermediate frame based on the physical quantities relating to the inclination of the rear frame, the swing angle of the rear frame relative to the intermediate frame, and the swing angle of the front frame relative to the intermediate frame.
  • the physical quantity associated with the slope of may be detected.
  • the side stand when the seat or the cargo bed is supported by the rear frame, the side stand may be connected to the rear frame or to the intermediate frame.
  • the motorcycle of the present invention may be any of a sport type, an on-road type, an off-road type, and a scooter type.
  • the motorcycle of the present invention may be a motorbike or a moped.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Axle Suspensions And Sidecars For Cycles (AREA)
  • Tires In General (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)
  • Automatic Cycles, And Cycles In General (AREA)
  • Motorcycle And Bicycle Frame (AREA)

Abstract

車両左方向または車両右方向に見て、ラウンドトレッド面リヤタイヤ揺動軸線(A4)が、外部から荷重がかかっていない状態の車両(1)の重心(G0)とシート(10)または荷台との間を通るように、かつ、シート(10)または荷台にかかる荷重がゼロから増大するにつれて、シート(10)または荷台に乗載された乗員(O)または荷物を含む車両の重心がラウンドトレッド面リヤタイヤ揺動軸線(A4)に近づくように、中間フレーム(30)、フロントフレーム(20)、リヤフレーム(40)、ラウンドトレッド面フロントタイヤ(2)、ラウンドトレッド面リヤタイヤ(4)、ラウンドトレッド面リヤタイヤ揺動アクチュエータ(60)、およびラウンドトレッド面リヤタイヤ揺動制御装置(80)が形成または配置されている。

Description

自動二輪車
 本発明は、後輪を支持するリヤフレームが中間フレームに対して揺動する構成の自動二輪車に関する。
 例えば特許文献1に記載の自動二輪車は、前輪を回転可能に支持するフロントフレームと、後輪を回転可能に支持するリヤフレームが、それぞれ、中間フレームに揺動可能に支持された構成を有する。中間フレームに対する後輪の揺動によって、後輪が操舵される。特許文献1の自動二輪車は、リヤフレームを中間フレームに対して相対的に揺動させるアクチュエータを備えている。さらに、特許文献1の自動二輪車は、このアクチュエータを制御する制御装置を備えている。
米国特許第7497294号公報
 特許文献1の自動二輪車は、乗員が着座するためのシートを有する。自動二輪車は、荷物を載置するための荷台を有する場合がある。乗員の重量の違い、乗員人数の違い、荷物の違いなどによって、自動二輪車の乗載荷重は異なる。特許文献1のように後輪を支持するリヤフレームが中間フレームに対して揺動する構成の自動二輪車は、乗載荷重の変化に対する後輪の揺動制御の制御性を高めることが求められている。
 本発明は、乗員および荷物の少なくとも一方を乗載可能で、後輪を支持するリヤフレームが中間フレームに対して揺動する構成の自動二輪車において、乗載重量の変化に対する後輪の揺動制御の制御性を向上させることを目的とする。
 本願発明者らは、特許文献1の自動二輪車の乗載荷重を変えて、後輪の揺動制御を行った。その結果、乗載荷重が変わると、求める車両の挙動が得られるように後輪の揺動制御を行うことが難しいことがわかった。具体的には、例えば、乗載荷重が変わると、後輪を同じ角度だけ揺動させるのに必要なトルクの大きさが変わる場合がある。本願発明者らは、後輪の揺動中心軸線の位置を検討する中で、後輪の揺動中心軸線の位置と、後輪の揺動制御の制御性との関係について検討してみた。試行錯誤する中で、乗員等を含めた車両の重心の位置が後輪の揺動中心軸線から遠いほど、後輪の揺動制御の制御性が低くなることに気付いた。さらなる検討の結果、後輪の揺動中心軸線の位置と、乗員等を含めた車両の重心の位置と、乗員等が乗載されるシートまたは荷台の位置との関係を工夫することで、乗載重量の変化に対する後輪の揺動制御の制御性を向上できることに気付いた。具体的には、本願発明者らは、車両単体の重心と乗員等が乗載されるシート等との間に、後輪の揺動中心軸線を配置した。そうすることで、乗載荷重がゼロから増加するにつれて、乗員等を含めた車両の重心が後輪の揺動中心軸線に近づく。その結果、乗載重量の変化に対する後輪の揺動制御の制御性を高めることができる。
 (1)本発明の自動二輪車は、中間フレームと、車両が直進可能に直立した状態で車両前方向または車両後方向に見て円弧状であるトレッド面を有するラウンドトレッド面フロントタイヤと、前記ラウンドトレッド面フロントタイヤから車両後方向に離れており、車両が直進可能に直立した状態で車両前方向または車両後方向に見て円弧状であるトレッド面を有するラウンドトレッド面リヤタイヤと、(a-1)前記ラウンドトレッド面フロントタイヤをその中心を通るフロント車軸線回りに回転可能に支持すると共に、(a-2)車両後方向に向かうほど車両上方向に向かう傾きを持つラウンドトレッド面フロントタイヤ揺動軸線回りに前記ラウンドトレッド面フロントタイヤが前記中間フレームに対して揺動可能となるように、前記ラウンドトレッド面フロントタイヤ揺動軸線回りに揺動可能に前記中間フレームに支持されるフロントフレームと、(b-1)前記ラウンドトレッド面リヤタイヤをその中心を通るリヤ車軸線回りに回転可能に支持すると共に、(b-2)車両後方向に向かうほど車両下方向に向かう傾きを持つラウンドトレッド面リヤタイヤ揺動軸線回りに前記ラウンドトレッド面リヤタイヤが前記中間フレームに対して揺動可能となるように、前記ラウンドトレッド面リヤタイヤ揺動軸線回りに揺動可能に前記中間フレームに支持されるリヤフレームと、前記中間フレームまたは前記リヤフレームに支持されており、直進可能に直立した状態の車両を車両左方向または車両右方向に見て少なくとも一部が前記ラウンドトレッド面リヤタイヤ揺動軸線から車両上方向に離れており、乗員が着座するためのシートまたは荷物を載置するための荷台と、前記リヤフレームを前記ラウンドトレッド面リヤタイヤ揺動軸線回りに前記中間フレームに対して揺動させることで、前記ラウンドトレッド面リヤタイヤを前記ラウンドトレッド面リヤタイヤ揺動軸線回りに前記中間フレームに対して揺動させるラウンドトレッド面リヤタイヤ揺動アクチュエータと、前記ラウンドトレッド面リヤタイヤ揺動アクチュエータを制御するラウンドトレッド面リヤタイヤ揺動制御装置と、前記ラウンドトレッド面フロントタイヤまたは前記ラウンドトレッド面リヤタイヤに駆動力を付与する駆動源と、を備える。直進可能に直立した状態の車両を車両左方向または車両右方向に見て、前記ラウンドトレッド面リヤタイヤ揺動軸線が、外部から荷重がかかっていない状態の車両の重心と前記シートまたは前記荷台との間を通るように、かつ、前記シートまたは前記荷台にかかる荷重がゼロから増大するにつれて、前記シートまたは前記荷台に乗載された前記乗員または前記荷物を含む車両の重心が前記ラウンドトレッド面リヤタイヤ揺動軸線に近づくように、前記中間フレーム、前記フロントフレーム、前記リヤフレーム、前記ラウンドトレッド面フロントタイヤ、前記ラウンドトレッド面リヤタイヤ、前記ラウンドトレッド面リヤタイヤ揺動アクチュエータ、および前記ラウンドトレッド面リヤタイヤ揺動制御装置が形成または配置されている。
 自動二輪車は、ラウンドトレッド面フロントタイヤと、ラウンドトレッド面リヤタイヤと、中間フレームと、フロントフレームと、リヤフレームと、ラウンドトレッド面リヤタイヤ揺動アクチュエータと、ラウンドトレッド面リヤタイヤ揺動制御装置と、駆動源とを備える。ラウンドトレッド面フロントタイヤは、車両1が直進可能に直立した状態で車両前方向または車両後方向に見て円弧状であるトレッド面を有する。それにより、ラウンドトレッド面フロントタイヤは、車両上下方向に対して車両左右方向に傾斜することができる。ラウンドトレッド面リヤタイヤは、ラウンドトレッド面フロントタイヤから車両後方向に離れている。ラウンドトレッド面リヤタイヤは、車両1が直進可能に直立した状態で車両前方向または車両後方向に見て円弧状であるトレッド面を有する。それにより、ラウンドトレッド面リヤタイヤは、車両上下方向に対して車両左右方向に傾斜することができる。フロントフレームは、ラウンドトレッド面フロントタイヤをフロント車軸線回りに回転可能に支持する。フロント車軸線は、ラウンドトレッド面フロントタイヤの中心を通る軸線である。フロントフレームは、ラウンドトレッド面フロントタイヤがラウンドトレッド面フロントタイヤ揺動軸線回りに中間フレームに対して揺動可能となるように、ラウンドトレッド面フロントタイヤ揺動軸線回りに揺動可能に中間フレームに支持される。ラウンドトレッド面フロントタイヤ揺動軸線は、車両後方向に向かうほど車両上方向に向かう傾きを持つ。リヤフレームは、ラウンドトレッド面リヤタイヤをリヤ車軸線回りに回転可能に支持する。リヤ車軸線は、ラウンドトレッド面フロントタイヤの中心を通る軸線である。リヤフレームは、ラウンドトレッド面リヤタイヤがラウンドトレッド面リヤタイヤ揺動軸線回りに中間フレームに対して揺動可能となるように、ラウンドトレッド面リヤタイヤ揺動軸線回りに揺動可能に中間フレームに支持される。ラウンドトレッド面リヤタイヤ揺動軸線は、車両後方向に向かうほど車両下方向に向かう傾きを持つ。ラウンドトレッド面リヤタイヤ揺動アクチュエータは、リヤフレームをラウンドトレッド面リヤタイヤ揺動軸線回りに中間フレームに対して揺動させることで、ラウンドトレッド面リヤタイヤをラウンドトレッド面リヤタイヤ揺動軸線回りに中間フレームに対して揺動させる。ラウンドトレッド面リヤタイヤ揺動制御装置は、ラウンドトレッド面リヤタイヤ揺動アクチュエータを制御する。駆動源は、ラウンドトレッド面フロントタイヤまたはラウンドトレッド面リヤタイヤに駆動力を付与する。また、自動二輪車は、乗員が着座するためのシートまたは荷物を載置するための荷台を有する。シートまたは荷台は、中間フレームまたはリヤフレームに支持される。直進可能に直立した状態の車両を車両左方向または車両右方向に見て、シートまたは荷台の少なくとも一部は、ラウンドトレッド面リヤタイヤ揺動軸線から車両上方向に離れている。中間フレーム、フロントフレーム、リヤフレーム、ラウンドトレッド面フロントタイヤ、ラウンドトレッド面リヤタイヤ、ラウンドトレッド面リヤタイヤ揺動アクチュエータ、およびラウンドトレッド面リヤタイヤ揺動制御装置は、以下の2つの条件を満たすように、形成または配置されている。1つ目の条件は、直進可能に直立した状態の車両を車両左方向または車両右方向に見て、ラウンドトレッド面リヤタイヤ揺動軸線が、外部から荷重がかかっていない状態の車両の重心とシートまたは荷台との間を通ることである。2つ目の条件は、シートまたは荷台にかかる荷重がゼロから増大するにつれて、シートまたは荷台に乗載された乗員または荷物を含む車両の重心がラウンドトレッド面リヤタイヤ揺動軸線に近づくことである。
 この構成によると、自動二輪車のシートまたは荷台に乗員または荷物が乗載されたとき、乗員または荷物を含む車両の重心が、ラウンドトレッド面リヤタイヤ揺動軸線に近づくように移動する。乗載荷重の大きさによっては、乗員等を含む車両の重心が最終的にラウンドトレッド面リヤタイヤ揺動軸線を越えることがある。しかし、乗載荷重が極端に大きくなることはないので、たとえ乗員等を含む車両の重心が、ラウンドトレッド面リヤタイヤ揺動軸線を越えたとしても、最終的にラウンドトレッド面リヤタイヤ揺動軸線から極端に離れることはない。また、乗員等を含む車両の重心が最終的にラウンドトレッド面リヤタイヤ揺動軸線を越える場合であっても、ラウンドトレッド面リヤタイヤ揺動軸線が、荷重がかかっていない状態の車両の重心から車両上方向に離れている場合に比べると、乗員等を含む車両の重心はラウンドトレッド面リヤタイヤ揺動軸線に近くなる。このように、乗員または荷物を含む車両の重心がラウンドトレッド面リヤタイヤ揺動軸線に近いため、自動二輪車の乗載荷重の変化に対するラウンドトレッド面リヤタイヤの揺動制御の制御性を向上できる。
(2)本発明の1つ観点によると、本発明の自動二輪車は、以下の構成を有することが好ましい。
 直進可能に直立した状態の車両を車両左方向または車両右方向に見て、前記ラウンドトレッド面リヤタイヤ揺動軸線と路面との交点が、前記ラウンドトレッド面リヤタイヤの前端を通り車両上下方向に平行な直線と、前記ラウンドトレッド面リヤタイヤの後端を通り車両上下方向に平行な直線との間にある。
 この構成によると、ラウンドトレッド面リヤタイヤ揺動軸線と路面との交点が、ラウンドトレッド面リヤタイヤの前端を通り車両上下方向に平行な直線から車両前方向に離れている場合に比べて、ラウンドトレッド面リヤタイヤを揺動させるために必要なモーメントが小さい。また、ラウンドトレッド面リヤタイヤ揺動軸線と路面との交点が、ラウンドトレッド面リヤタイヤの後端を通り車両上下方向に平行な直線から車両後方向に離れている場合に比べて、ラウンドトレッド面リヤタイヤを揺動させるために必要なモーメントが小さい。そのため、ラウンドトレッド面リヤタイヤの揺動制御の制御性を向上できる。よって、自動二輪車の乗載荷重の変化に対するラウンドトレッド面リヤタイヤの揺動制御の制御性をより向上できる。
 (3)本発明の1つ観点によると、本発明の自動二輪車は、以下の構成を有することが好ましい。
 前記駆動源が電気モータを含む。本発明の自動二輪車は、前記電気モータに供給される電力を蓄える蓄電装置を備える。直進可能に直立した状態の車両を車両左方向または車両右方向に見て、前記蓄電装置の少なくとも一部が、前記ラウンドトレッド面リヤタイヤ揺動軸線から車両下方向に離れている。
 この構成によると、比較的大きい重量を有する蓄電装置の少なくとも一部が、ラウンドトレッド面リヤタイヤ揺動軸線から車両下方向に離れている。そのため、シート等に荷重がかかっていない状態の車両の重心とシート等との間にラウンドトレッド面リヤタイヤ揺動軸線が位置するレイアウトを、容易に実現できる。
 (4)本発明の1つ観点によると、本発明の自動二輪車は、以下の構成を有することが好ましい。
 本発明の自動二輪車は、前記フロントフレームを前記ラウンドトレッド面フロントタイヤ揺動軸線回りに前記中間フレームに対して揺動させることで、前記ラウンドトレッド面フロントタイヤを前記ラウンドトレッド面フロントタイヤ揺動軸線回りに前記中間フレームに対して揺動させるラウンドトレッド面フロントタイヤ揺動アクチュエータと、前記ラウンドトレッド面フロントタイヤ揺動アクチュエータを制御するラウンドトレッド面フロントタイヤ揺動制御装置と、を備える。
 この構成によると、ラウンドトレッド面フロントタイヤのラウンドトレッド面フロントタイヤ揺動軸線回りの揺動が、ラウンドトレッド面フロントタイヤ揺動制御装置によって制御される。したがって、ラウンドトレッド面リヤタイヤの揺動と、ラウンドトレッド面フロントタイヤの揺動とを連動させて行うことができる。そのため、ラウンドトレッド面リヤタイヤの揺動制御の制御性を向上できる。よって、自動二輪車の乗載荷重の変化に対するラウンドトレッド面リヤタイヤの揺動制御の制御性をより向上できる。
 (5)本発明の1つ観点によると、本発明の自動二輪車は、以下の構成を有することが好ましい。
 直進可能に直立した状態の車両を車両左方向または車両右方向に見て、前記ラウンドトレッド面フロントタイヤ揺動アクチュエータの少なくとも一部が、前記ラウンドトレッド面リヤタイヤ揺動軸線から車両下方向に離れている。
 この構成によると、比較的大きい重量を有するラウンドトレッド面フロントタイヤ揺動アクチュエータの少なくとも一部が、ラウンドトレッド面リヤタイヤ揺動軸線から車両下方向に離れている。そのため、シート等に荷重がかかっていない状態の車両の重心とシート等との間にラウンドトレッド面リヤタイヤ揺動軸線が位置するレイアウトを、容易に実現できる。
 (6)本発明の1つ観点によると、本発明の自動二輪車は、以下の構成を有することが好ましい。
 前記リヤフレームは、前記ラウンドトレッド面リヤタイヤを前記リヤ車軸線回りに回転可能に支持すると共に、前記ラウンドトレッド面リヤタイヤが受ける車両上下方向の振動を吸収するリヤサスペンションユニットを含む。直進可能に直立した状態の車両を車両左方向または車両右方向に見て、前記リヤサスペンションユニットの一部が、前記ラウンドトレッド面リヤタイヤ揺動軸線から車両下方向に離れている。
 この構成によると、比較的大きい重量を有するリヤサスペンションユニットの一部が、ラウンドトレッド面リヤタイヤ揺動軸線から車両下方向に離れている。そのため、シート等に荷重がかかっていない状態の車両の重心とシート等との間にラウンドトレッド面リヤタイヤ揺動軸線が位置するレイアウトを、容易に実現できる。
 (7)本発明の1つ観点によると、本発明の自動二輪車は、以下の構成を有することが好ましい。
 本発明の自動二輪車は、前記ラウンドトレッド面フロントタイヤまたは前記ラウンドトレッド面リヤタイヤに制動力を付与する液圧式ブレーキと、前記液圧式ブレーキの液圧を制御するハイドロリックユニットと、を備える。直進可能に直立した状態の車両を車両左方向または車両右方向に見て、前記ハイドロリックユニットの少なくとも一部が、前記ラウンドトレッド面リヤタイヤ揺動軸線から車両下方向に離れている。
 この構成によると、比較的大きい重量を有するハイドロリックユニットの少なくとも一部が、ラウンドトレッド面リヤタイヤ揺動軸線から車両下方向に離れている。そのため、シート等に荷重がかかっていない状態の車両の重心とシート等との間にラウンドトレッド面リヤタイヤ揺動軸線が位置するレイアウトを、容易に実現できる。
 (8)本発明の1つ観点によると、本発明の自動二輪車は、以下の構成を有することが好ましい。
 本発明の自動二輪車は、前記中間フレームに設置され、前記中間フレームの車両上下方向に対する車両左右方向への傾きに関連する物理量を検出する傾斜検出装置を備える。
 仮に、傾斜検出装置がリヤフレームに設置される場合、傾斜検出装置の検出結果から中間フレームの傾きを検出するには、リヤフレームの中間フレームに対する揺動角度等を考慮した補正を行う必要がある。傾斜検出装置が中間フレームに設置されていることにより、求める車両の挙動が得られるようにラウンドトレッド面リヤタイヤの揺動制御を行うことが容易になる。よって、自動二輪車の乗載荷重の変化に対するラウンドトレッド面リヤタイヤの揺動制御の制御性をより向上できる。
 (9)本発明の1つ観点によると、本発明の自動二輪車は、以下の構成を有することが好ましい。
 車両が直進可能に直立した状態において、前記ラウンドトレッド面リヤタイヤ揺動アクチュエータの少なくとも一部が、前記ラウンドトレッド面リヤタイヤおよび前記ラウンドトレッド面フロントタイヤの少なくとも一方の上端よりも車両下方向に位置する。
 この構成によると、比較的大きい重量を有するラウンドトレッド面リヤタイヤ揺動アクチュエータが、車両の比較的低い位置に配置される。そのため、シート等に荷重がかかっていない状態の車両の重心とシート等との間にラウンドトレッド面リヤタイヤ揺動軸線が位置するレイアウトを、容易に実現できる。
 (10)本発明の1つ観点によると、本発明の自動二輪車は、以下の構成を有することが好ましい。
 直進可能に直立した状態の車両を車両左方向または車両右方向に見て、前記駆動源の少なくとも一部が、前記ラウンドトレッド面リヤタイヤ揺動軸線から車両下方向に離れている。
 この構成によると、比較的大きい重量を有する駆動源の少なくとも一部が、ラウンドトレッド面リヤタイヤ揺動軸線から車両下方向に離れている。そのため、シート等に荷重がかかっていない状態の車両の重心とシート等との間にラウンドトレッド面リヤタイヤ揺動軸線が位置するレイアウトを、容易に実現できる。
 (11)本発明の1つ観点によると、本発明の自動二輪車は、以下の構成を有することが好ましい。
 前記駆動源がエンジンユニットを含む。本発明の自動二輪車は、前記エンジンユニットに供給される燃料を貯留する燃料タンクを備える。直進可能に直立した状態の車両を車両下方向に見て、前記燃料タンクが、前記ラウンドトレッド面リヤタイヤ揺動軸線と重なる。
 この構成によると、直進可能に直立した状態の車両を車両下方向に見て、燃料タンクの一部は、ラウンドトレッド面リヤタイヤ揺動軸線と重なる。それにより、燃料タンク内の燃料の重量が変化しても、車両の重心の位置の変化が少ない。そのため、ラウンドトレッド面リヤタイヤの揺動制御の制御性の低下を抑えることができる。
 (12)本発明の1つ観点によると、本発明の自動二輪車は、以下の構成を有することが好ましい。
 前記中間フレームが、前記シートを支持するシートフレームを含む。
 この構成によると、シートまたは荷台は中間フレームに支持されるため、リヤフレームは、シートに着座した乗員または荷台に載置された荷物の荷重を受けない。よって、リヤフレームがシートまたは荷台を支持する場合に比べて、ラウンドトレッド面リヤタイヤ揺動アクチュエータが揺動させる対象の重量が小さい。そのため、ラウンドトレッド面リヤタイヤの揺動制御の制御性を向上できる。よって、自動二輪車の乗載荷重の変化に対するラウンドトレッド面リヤタイヤの揺動制御の制御性をより向上できる。
 乗員または荷物によって、乗員または荷物の重量は異なる。リヤフレームがシートまたは荷台を支持する場合、乗員または荷物によって、ラウンドトレッド面リヤタイヤ揺動アクチュエータが揺動させる対象の重量が変化する。それにより、ラウンドトレッド面リヤタイヤの揺動制御が複雑になり難しくなる。特に低速走行時の制御が難しい。
 一方、シートまたは荷台が中間フレームに支持される場合、乗員または荷物の重量が変化しても、ラウンドトレッド面リヤタイヤ揺動アクチュエータが揺動させる対象の重量は変化しない。そのため、ラウンドトレッド面リヤタイヤの揺動制御の制御性を向上できる。よって、自動二輪車の乗載荷重の変化に対するラウンドトレッド面リヤタイヤの揺動制御の制御性をより向上できる。
 自動二輪車の走行中、乗員は重心を移動させる動作をする場合がある。特に、自動二輪車の旋回時に、乗員は重心を車両左方向または車両右方向に移動させる動作をする場合がある。リヤフレームがシートを支持する場合、乗員が重心を移動させる動作を行うと、ラウンドトレッド面リヤタイヤ揺動アクチュエータが揺動させる対象の重心が変化する。それにより、ラウンドトレッド面リヤタイヤの揺動制御が複雑になり難しくなる。特に低速走行時の制御が難しい。
 一方、シートまたは荷台が中間フレームに支持される場合、乗員が重心を移動させる動作を行っても、ラウンドトレッド面リヤタイヤ揺動アクチュエータが揺動させる対象の重心は変化しない。そのため、ラウンドトレッド面リヤタイヤの揺動制御の制御性を向上できる。よって、自動二輪車の乗載荷重の変化に対するラウンドトレッド面リヤタイヤの揺動制御の制御性をより向上できる。
 (13)本発明の1つ観点によると、本発明の自動二輪車は、以下の構成を有することが好ましい。
 前記リヤフレームが、前記シートを支持するシートフレームを含む。
 (14)本発明の1つ観点によると、本発明の自動二輪車は、以下の構成を有することが好ましい。
 本発明の自動二輪車が、前記中間フレームに接続され、車両上下方向に対して車両左右方向に傾いた状態で車両が自立するように路面に接地可能なサイドスタンドを備える。
 (15)本発明の1つ観点によると、本発明の自動二輪車は、上記(14)の構成に加えて、以下の構成を有することが好ましい。
 直進可能に直立した状態の車両を車両左方向または車両右方向に見て、前記ラウンドトレッド面リヤタイヤ揺動アクチュエータによって前記ラウンドトレッド面リヤタイヤ揺動軸線回りに前記中間フレームに対して揺動される対象全体の重心であるリヤ揺動重心が、前記ラウンドトレッド面リヤタイヤ揺動軸線から車両下方向に離れている。前記ラウンドトレッド面リヤタイヤ揺動制御装置は、前記サイドスタンドによって車両左方向に傾斜した状態で車両が自立している場合に、車両を起き上がらせるために、前記リヤ揺動重心が車両右方向に揺動してから車両左方向に揺動するように前記ラウンドトレッド面リヤタイヤ揺動アクチュエータを制御する。前記ラウンドトレッド面リヤタイヤ揺動制御装置は、前記サイドスタンドによって車両右方向に傾斜した状態で車両が自立している場合に、車両を起き上がらせるために、前記リヤ揺動重心が車両左方向に揺動してから車両右方向に揺動するように前記ラウンドトレッド面リヤタイヤ揺動アクチュエータを制御する。
 ラウンドトレッド面リヤタイヤ揺動アクチュエータによってラウンドトレッド面リヤタイヤ揺動軸線回りに揺動される対象の重心をリヤ揺動重心とする。リヤ揺動重心は、ラウンドトレッド面リヤタイヤ揺動軸線から車両下方向に離れている。ラウンドトレッド面リヤタイヤ揺動制御装置は、サイドスタンドによって車両左方向に傾斜した状態で車両が自立している場合に、リヤ揺動重心が車両右方向に揺動してから車両左方向に揺動するようにラウンドトレッド面リヤタイヤ揺動アクチュエータを制御する。リヤフレームの車両左方向への揺動の反動により、車両は起き上がることができる。ラウンドトレッド面リヤタイヤ揺動制御装置は、サイドスタンドによって車両右方向に傾斜した状態で車両が自立している場合に、リヤ揺動重心が車両左方向に揺動してから車両右方向に揺動するようにラウンドトレッド面リヤタイヤ揺動アクチュエータを制御する。リヤフレームの車両右方向への揺動の反動により、車両は起き上がることができる。このように、人が車両を支えなくても車両を起き上がらせることができるため、自動二輪車の利便性を向上できる。サイドスタンドは中間フレームに接続されるため、リヤフレームの揺動をサイドスタンドが妨げない。
 (16)本発明の1つ観点によると、本発明の自動二輪車は、以下の構成を有することが好ましい。
 前記フロントフレームは、前記ラウンドトレッド面フロントタイヤを前記フロント車軸線回りに回転可能に支持すると共に、前記ラウンドトレッド面フロントタイヤが受ける車両上下方向の振動を吸収するフロントサスペンションユニットを含む。直進可能に直立した状態の車両を車両左方向または車両右方向に見て、前記フロントサスペンションユニットの少なくとも一部が、前記ラウンドトレッド面リヤタイヤ揺動軸線から車両下方向に離れている。
 この構成によると、比較的大きい重量を有するフロントサスペンションユニットの少なくとも一部が、ラウンドトレッド面リヤタイヤ揺動軸線から車両下方向に離れている。そのため、シート等に荷重がかかっていない状態の車両の重心とシート等との間にラウンドトレッド面リヤタイヤ揺動軸線が位置するレイアウトを、容易に実現できる。
 <用語の定義>
 本発明において、「中間フレーム」、「フロントフレーム」および「リヤフレーム」は、車両において応力を主に受ける部材である。リヤフレームは、複数の部品を組み合わせたものであってもよく、一体成型されていてもよい。フロントフレームおよび中間フレームもリヤフレームと同様である。リヤフレームは、モノコック構造のフレームであってもよく、セミモノコック構造のフレームであってもよく、これら以外のフレーム構造ののフレームであってもよい。フロントフレームおよび中間フレームもリヤフレームと同様である。
 本発明において、「トレッド面」とは、タイヤにおける路面と接する面である。
 本発明において、「乗員」は、運転者であってもよいし、運転者でなくてもよい。運転者ではない乗員とは、自律運転される自動二輪車の乗員であってもよく、運転者と共に自動二輪車に乗車する乗員であってもよい。
 本発明において、「荷物」とは、自動二輪車によって運搬することを目的とした物である。
 本発明において、「乗員が着座するためのシート」とは、自動二輪車の製造時に乗員の着座が想定されていた箇所に設置されているシートをいう。本発明のシートは、自動二輪車の製造時に設置されていたシートでもよいし、交換されたシートであってもよい。本発明のシートは、2人以上の乗員が着座するためのシートであってもよい。
 本発明において、「荷物を載置するための荷台」とは、自動二輪車の製造時に荷物の載置が想定されていた箇所に設置されている荷台をいう。本発明の荷台は、自動二輪車の製造時に設置されていた荷台でもよいし、交換された荷台でもよい。また、本発明の荷台は、自動二輪車の製造時に設置されておらず、後付けされた荷台であってもよい。本発明の荷台は、蓋を有する箱状であってもよく、蓋を有さない箱状であってもよい。また、本発明の荷台は、ロープ等で荷物が括り付けられる台座であってもよい。
 請求項1において、自動二輪車が「シートまたは荷台を備える」とは、自動二輪車がシートと荷台のうちの一方だけを備えるという意味ではない。本発明の自動二輪車は、請求項1の要件を満たすシートと請求項1の要件を満たす荷台の両方を有していてもよい。本発明の自動二輪車は、請求項1の要件を満たすシートだけを有していいてもよく、請求項1の要件を満たす荷台だけを有していてもよい。本発明の自動二輪車は、請求項1の要件を満たす複数のシートを有していてもよい。本発明の自動二輪車は、請求項1の要件を満たす複数の荷台を有していてもよい。また、自動二輪車は、請求項1の要件を満たさないシートまたは荷台に加えて、請求項1の要件を満たさないシートを有していてもよい。自動二輪車は、請求項1の要件を満たさないシートまたは荷台に加えて、請求項1の要件を満たさない荷台を有していてもよい。
 本発明において、「外部から荷重がかかっていない状態」とは、請求項1の要件を満たすシートまたは荷台に荷重がかかっていない状態である。また、自動二輪車が、請求項1の要件を満たすシートまたは荷台に加えて、少なくとも1つのシートおよび/または少なくとも1つの荷台を有している場合には、全てのシートおよび全ての荷台に荷重がかかっていない状態をいう。
 本発明において、「乗員または荷物を含む車両の重心」とは、乗員または荷物と車両の両方を含む対象の重心である。
 本発明において、「シートまたは荷台にかかる荷重がゼロから増大するにつれて、シートまたは荷台に乗載された乗員または荷物を含む車両の重心がラウンドトレッド面リヤタイヤ揺動軸線に近づく」とは、重心が移動する全期間のうちの少なくとも一部の期間において、重心がラウンドトレッド面リヤタイヤ揺動軸線に近づくことをいう。荷重がゼロより増大し始めた直後は、重心が移動しなくてもよい。荷重が所定値を超えた時に、重心が移動し始めてもよい。最終的な重心は、ラウンドトレッド面リヤタイヤ揺動軸線から車両上方向に離れた位置にあってもよい。最終的な重心とラウンドトレッド面リヤタイヤ揺動軸線との距離は、荷重がゼロのときの重心とラウンドトレッド面リヤタイヤ揺動軸線との距離と同じでもよく、それより短くてもよく、それより長くてもよい。
 本発明において、中間フレームに「揺動可能に支持される」ではなく、中間フレームに単に「支持される」と記載した場合、基本的に、中間フレームと一体的に揺動するように支持されることをいう。また、リヤフレームに「揺動可能に支持される」ではなく、リヤフレームに「支持される」と記載した場合、基本的に、リヤフレームと一体的に揺動するように支持されることをいう。
 本発明において、「直進可能に直立した状態」とは、フロント車軸線とリヤ車軸線が車両左右方向に平行な状態である。
 本発明において、「中間フレームの車両上下方向に対する車両左右方向への傾き」とは、車両前後方向に沿った軸線回りに中間フレームが揺動することである。
 本発明において、車両上下方向とは、車両を水平な路面上に配置した場合に、路面に垂直な方向である。車両左右方向とは、車両を水平な路面に配置した場合に、車両に乗車する運転者から見た左右方向である。車両前後方向とは、車両を水平な路面に配置した場合に、車両に乗車する運転者から見た前後方向である。
 本明細書において、特に限定しない限り、直線Aの直線Bに対する傾斜角度とは、直線Aと直線Bのなす角度のうち、小さい方の角度である。この定義は、「直線」に限らず「方向」にも適用される。
 本明細書において、後斜め下向きとは、点P1を後方向と下方向に移動させた点を点P2とした場合に、点P1から点P2に向かう方向である。つまり、後方向に向かうほど下方向に向かう方向である。後斜め下向きは、後方向に平行な方向と、下方向に平行な方向は含まない。前斜め下向きなどの他の方向を使った表現にも、同様の定義が適用される。
に限らない。
 本発明および本明細書において、ある部品の上端とは、その部品において最も上方向に位置する端を意味する。下端、前端、後端、左端、および右端の定義も上端の定義と同様である。本明細書において、ある部品をX方向(上下方向以外の方向)に見たときのその部品の上縁とは、上端を含む前端と後端との間の縁である。下縁、前縁、後縁、左縁、および右縁の定義も上縁の定義と同様である。本明細書において、ある部品の端部とは、部品の端とその近傍部とを合わせた部分を意味する。
 本発明および本明細書において、要素Aが要素BからX方向に離れているとは、X方向に平行で要素AとBの両方を通る全ての直線上において、要素Aが要素BからX方向に離れていることをいう。要素Aは、例えば、装置、部品、装置または部品の一部、線分、無限直線、平面等である。要素Bも同様である。X方向と交差するY方向に見て、要素Aが要素BからX方向に離れているとは、Y方向に見て、X方向に平行で要素AとBの両方を通る全ての直線上において、要素Aが要素BからX方向に離れていることをいう。3次元において、X方向に平行で要素Aを通る直線は、要素Bを通ってもよく、通らなくてもよい。
 本発明および本明細書において、要素Aが要素Bよりも上方向に位置するとは、要素Aが、要素Bの上端を通り上下方向に直交する平面から上方向に離れた部分を有し、この平面から下方向に離れた部分を有さないことをいう。要素Aは、要素Bの上端を通り上下方向に直交する平面に含まれる部分を有していてもよい。要素Aは、例えば、装置、部品、装置または部品の一部、線分等である。要素Bも同様である。部品Aの上端が部品Bよりも上方向に位置するとは、部品Aが部品Bよりも上方向に位置すると同義である。「要素Aが要素Bよりも下方向に位置する」、「要素Aが要素Bよりも前方向に位置する」、「要素Aが要素Bよりも後方向に位置する」、「要素Aが要素Bよりも左方向に位置する」、「要素Aが要素Bよりも右方向に位置する」の定義も、「要素Aが要素Bよりも上方向に位置する」の定義と同様である。
 本発明および本明細書において、回転可能であるとは、特に限定しない限り360°回転可能なことを意味する。また、揺動可能であるとは、特に限定しない限り360°未満回転可能なことを意味する。但し、回転するとは、360°回転する場合と360°未満しか回転しない場合の両方を含む。
 本発明において、含む(including)、有する(comprising)、備える(having)およびこれらの派生語は、列挙されたアイテム及びその等価物に加えて追加的アイテも包含することが意図されて用いられている。
 本発明において、取り付けられた(mounted)、接続された(connected)、結合された(coupled)、支持された(supported)という用語は、広義に用いられている。具体的には、直接的な取付、接続、結合、支持だけでなく、間接的な取付、接続、結合および支持も含む。さらに、接続された(connected)および結合された(coupled)は、物理的又は機械的な接続/結合に限られない。それらは、直接的なまたは間接的な電気的接続/結合も含む。
 請求の範囲において、ある構成要素の数を明確に特定しておらず、英語に翻訳された場合に単数で表示される場合、本発明は、この構成要素を、複数有していてもよい。また本発明は、この構成要素を1つだけ有していてもよい。
 他に定義されない限り、本明細書で使用される全ての用語(技術用語および科学用語を含む)は、本発明が属する当業者によって一般的に理解されるのと同じ意味を有する。一般的に使用される辞書に定義された用語のような用語は、関連する技術および本開示の文脈における意味と一致する意味を有すると解釈されるべきであり、理想化されたまたは過度に形式的な意味で解釈されることはない。
 本明細書において、「好ましい」という用語は非排他的なものである。「好ましい」は、「好ましいがこれに限らない」ということを意味する。本明細書において、「好ましい」と記載された構成は、少なくとも、請求項1の構成により得られる上記効果を奏する。また、本明細書において、「してもよい」という用語は非排他的なものである。「してもよい」は、「してもよいがこれに限らない」という意味である。本明細書において、「してもよい」と記載された構成は、少なくとも、請求項1の構成により得られる上記効果を奏する。
 本発明では、上述した好ましい構成を互いに組み合わせることを制限しない。本発明の実施形態を詳細に説明する前に、本発明は、以下の説明に記載されたまたは図面に図示された構成要素の構成および配置の詳細に制限されないことが理解されるべきである。本発明は、後述する実施形態以外の実施形態でも可能である。本発明は、後述する実施形態に様々な変更を加えた実施形態でも可能である。また、本発明は、後述する変更例を適宜組み合わせて実施することができる。
 本発明によると、乗員および荷物の少なくとも一方を乗載可能で、後輪を支持するリヤフレームが中間フレームに対して揺動する構成の自動二輪車において、乗載重量の変化に対する後輪の揺動制御の制御性を向上できる。
本発明の第1実施形態の自動二輪車の左側面および平面図である。 本発明の第1実施形態の具体例1の自動二輪車の左側面図である。 ラウンドトレッド面リヤタイヤが揺動するときの車両の挙動の一例である。 ラウンドトレッド面リヤタイヤが揺動するときの車両の挙動の他の例である。 本発明の第1実施形態の具体例2の自動二輪車の左側面図である。 本発明の第1実施形態の具体例3の自動二輪車の左側面図である。 本発明の第2実施形態の自動二輪車の左側面図である。 本発明の第2実施形態の変更例1の自動二輪車の左側面図である。 本発明の第2実施形態の変更例2の自動二輪車の左側面図である。 本発明の第2実施形態の変更例3の自動二輪車の斜視図である。 図10に示す自動二輪車の左側面図である。 図10に示す自動二輪車の左側面図である。 図10に示す自動二輪車の平面図である。 図10に示す自動二輪車の左グリップを後ろから見た図である。 図10に示す自動二輪車の部分正面図である。 図10に示す自動二輪車の前部を後ろから見た図である。 サイドスタンドによって自立した状態の図10に示す自動二輪車の正面図である。 本発明の実施形態の他の変更例の自動二輪車の左側面図である。 本発明の実施形態の他の変更例の自動二輪車の左側面図である。 本発明の実施形態の他の変更例の自動二輪車の左側面図である。 本発明の実施形態の他の変更例の自動二輪車の左側面図である。 本発明の実施形態の他の変更例の自動二輪車の左側面図である。 本発明の実施形態の他の変更例の自動二輪車の左側面図である。
 <本発明の第1実施形態>
 以下、本発明の第1実施形態の自動二輪車1について、図1を用いて説明する。
 以下の説明における前後方向は、特に限定しない限り、車両前後方向である。以下の説明における左右方向は、特に限定しない限り、車両左右方向である。以下の説明における上下方向は、特に限定しない限り、車両上下方向である。本願の各図面に示す矢印F、矢印Re、矢印U、矢印D、矢印L、矢印Riは、それぞれ、前方向、後方向、上方向、下方向、左方向、右方向を表す。図1は、水平な路面RSに自動二輪車1が直進可能に直立した状態を示している。本願の図面に示す路面RSは全て水平である。
 自動二輪車1は、ラウンドトレッド面フロントタイヤ2と、ラウンドトレッド面リヤタイヤ4と、中間フレーム30と、フロントフレーム20と、リヤフレーム40と、ラウンドトレッド面リヤタイヤ揺動アクチュエータ60と、ラウンドトレッド面リヤタイヤ揺動制御装置80と、駆動源70とを備える。
 ラウンドトレッド面フロントタイヤ2は、車両1が直進可能に直立した状態で前方向または後方向に見て円弧状であるトレッド面2aを有する。それにより、ラウンドトレッド面フロントタイヤ2は、上下方向に対して左右方向に傾斜することができる。ラウンドトレッド面リヤタイヤ4は、ラウンドトレッド面フロントタイヤ2から後方向に離れている。ラウンドトレッド面リヤタイヤ4は、車両1が直進可能に直立した状態で前方向または後方向に見て円弧状であるトレッド面4aを有する。それにより、ラウンドトレッド面リヤタイヤ4は、上下方向に対して左右方向に傾斜することができる。
 フロントフレーム20は、ラウンドトレッド面フロントタイヤ2をフロント車軸線A1回りに回転可能に支持する。フロント車軸線A1は、ラウンドトレッド面フロントタイヤ2の中心を通る軸線である。フロントフレーム20は、ラウンドトレッド面フロントタイヤ2がラウンドトレッド面フロントタイヤ揺動軸線A2回りに中間フレーム30に対して揺動可能となるように、ラウンドトレッド面フロントタイヤ揺動軸線A2回りに揺動可能に中間フレーム30に支持される。ラウンドトレッド面フロントタイヤ揺動軸線A2は、後方向に向かうほど上方向に向かう傾きを持つ。
 リヤフレーム40は、ラウンドトレッド面リヤタイヤ4をリヤ車軸線A3回りに回転可能に支持する。リヤ車軸線A3は、ラウンドトレッド面フロントタイヤ2の中心を通る軸線である。リヤフレーム40は、ラウンドトレッド面リヤタイヤ4がラウンドトレッド面リヤタイヤ揺動軸線A4回りに中間フレーム30に対して揺動可能となるように、ラウンドトレッド面リヤタイヤ揺動軸線A4回りに揺動可能に中間フレーム30に支持される。ラウンドトレッド面リヤタイヤ4がラウンドトレッド面リヤタイヤ揺動軸線A4は、後方向に向かうほど下方向に向かう傾きを持つ。
 ラウンドトレッド面リヤタイヤ揺動アクチュエータ60は、リヤフレーム40をラウンドトレッド面リヤタイヤ揺動軸線A4回りに中間フレーム30に対して揺動させることで、ラウンドトレッド面リヤタイヤ4をラウンドトレッド面リヤタイヤ揺動軸線A4回りに中間フレーム30に対して揺動させる。ラウンドトレッド面リヤタイヤ揺動制御装置80は、ラウンドトレッド面リヤタイヤ揺動アクチュエータ60を制御する。駆動源70は、ラウンドトレッド面フロントタイヤ2またはラウンドトレッド面リヤタイヤ4に駆動力を付与する。
 自動二輪車1は、乗員Oが着座するためのシート10を有する。シート10は、リヤフレーム40に支持される。シート10は、中間フレーム30に支持されてもよい。直進可能に直立した状態の車両1を左方向または右方向に見て、シート10の少なくとも一部は、ラウンドトレッド面リヤタイヤ揺動軸線から上方向に離れている。自動二輪車1は、シート10を有する代わりに、もしくは、シート10に加えて、荷物を載置するための荷台を有してもよい。荷台は、中間フレーム30またはリヤフレーム40に支持される。直進可能に直立した状態の車両1を左方向または右方向に見て、荷台の少なくとも一部は、ラウンドトレッド面リヤタイヤ揺動軸線から上方向に離れている。
 中間フレーム30、フロントフレーム20、リヤフレーム40、ラウンドトレッド面フロントタイヤ2、ラウンドトレッド面リヤタイヤ4、ラウンドトレッド面リヤタイヤ揺動アクチュエータ60、およびラウンドトレッド面リヤタイヤ揺動制御装置80は、以下の2つの条件を満たすように、形成または配置される。1つ目の条件は、直進可能に直立した状態の車両1を左方向または右方向に見て、ラウンドトレッド面リヤタイヤ揺動軸線A4が、外部から荷重がかかっていない状態の車両1の重心G0とシート10または荷台との間を通ることである。外部から荷重がかかっていない状態の車両1の重心G0は、図1に示す位置に限らない。2つ目の条件は、シート10または荷台にかかる荷重がゼロから増大するにつれて、シート10または荷台に乗載された乗員Oまたは荷物を含む車両1の重心がラウンドトレッド面リヤタイヤ揺動軸線A4に近づくことである。シート10または荷台にかかる荷重がゼロから増大するにつれて、乗員Oまたは荷物を含む車両1の重心は、例えば、図1に示す重心G0から矢印方向に移動する。図1に二点鎖線で示す重心G1は、シート10に着座する乗員Oまたは荷物を含む車両1の重心の一例である。
 この構成によると、自動二輪車1のシート10または荷台に乗員Oまたは荷物が乗載されたとき、乗員Oまたは荷物を含む車両1の重心G0が、ラウンドトレッド面リヤタイヤ揺動軸線A4に近づくように移動する。乗載荷重の大きさによっては、乗員O等を含む車両1の重心(例えば重心G1)が最終的にラウンドトレッド面リヤタイヤ揺動軸線A4を越えることがある。しかし、乗載荷重が極端に大きくなることはないので、たとえ乗員O等を含む車両1の重心が、ラウンドトレッド面リヤタイヤ揺動軸線A4を越えたとしても、最終的にラウンドトレッド面リヤタイヤ揺動軸線A4から極端に離れることはない。また、乗員O等を含む車両1の重心が最終的にラウンドトレッド面リヤタイヤ揺動軸線A4を越える場合であっても、ラウンドトレッド面リヤタイヤ揺動軸線A4が、荷重がかかっていない状態の車両1の重心G0から上方向に離れている場合に比べると、乗員O等を含む車両1の重心をラウンドトレッド面リヤタイヤ揺動軸線A4に近くなる。
 このように、乗員Oまたは荷物を含む車両1の重心(例えば重心G1)がラウンドトレッド面リヤタイヤ揺動軸線A4に近いため、自動二輪車1の乗載荷重の変化に対するラウンドトレッド面リヤタイヤ4の揺動制御の制御性を向上できる。
 自動二輪車1の乗載荷重の変化に対するラウンドトレッド面リヤタイヤ4の揺動制御の制御性が向上するとは、例えば、自動二輪車1の乗載荷重が同じであっても、ラウンドトレッド面リヤタイヤ揺動アクチュエータ60がリヤフレーム40を揺動させるために必要なトルクが抑制されることであってもよい。それにより、自動二輪車1の乗載荷重が増加しても、揺動に必要なトルクの増加を抑えることができる。揺動に必要なトルクが小さいほど、揺動制御が行いやすくなる。また、揺動に必要なトルクを抑えることで、ラウンドトレッド面リヤタイヤ揺動アクチュエータ60を小型化できる。それにより、自動二輪車1を小型化できる。
 自動二輪車1の乗載荷重の変化に対するラウンドトレッド面リヤタイヤ4の揺動制御の制御性が向上するとは、例えば、ラウンドトレッド面リヤタイヤ揺動アクチュエータ60の性能が同じであっても、ラウンドトレッド面リヤタイヤ4の揺動制御の応答性が高くなることであってもよい。
 自動二輪車1の乗載荷重の変化に対するラウンドトレッド面リヤタイヤ4の揺動制御の制御性が向上するとは、例えば、揺動制御のための制御ロジックを簡素化することであってもよい。具体的には例えば、制御に使用するパラメータが少なくなり、演算処理が簡素化することである。
 <本発明の第1実施形態の具体例1>
 次に、本発明の第1実施形態の具体例1の自動二輪車1Aについて、図2を用いて説明する。基本的に、本発明の第1実施形態の具体例1は、本発明の第1実施形態の特徴を全て有している。本発明の第1実施形態と同じ部位についての説明は省略する。以下、本発明の第1実施形態で説明していない構成について説明する。
 自動二輪車1Aは、フロントフレーム20と、中間フレーム30と、リヤフレーム40を有する。フロントフレーム20の主な材質は、アルミニウムや鉄などの金属、CFRPなどの樹脂、または、それらの組み合わせである。中間フレーム30およびリヤフレーム40の主な材質も、同様である。フロントフレーム20、中間フレーム30、およびリヤフレーム40の材質は互いに異なっていてもよい。
 まず、フロントフレーム20について説明する。フロントフレーム20は、左右一対のフロントサスペンションユニット21、21を有する。フロントサスペンションユニット21は、いわゆるフロントフォークである。フロントサスペンションユニット21は、例えば、テレスコピック式のフロントフォークである。テレスコピック式のフロントフォークは、スプリングと油圧ダンパーを有する。フロントサスペンションユニット21の下端部は、ラウンドトレッド面フロントタイヤ2を回転可能に支持する。フロントサスペンションユニット21は、ラウンドトレッド面フロントタイヤ2が受ける上下方向の振動を吸収するように構成される。
 ラウンドトレッド面フロントタイヤ2は、フロントホイール3の外周部に設置されている。フロントサスペンションユニット21は、フロントホイール3の中央の孔に挿入されるフロント車軸(図示せず)を支持する。それにより、フロントサスペンションユニット21は、ラウンドトレッド面フロントタイヤ2をフロント車軸線A1回りに回転可能に支持する。フロント車軸線A1は、フロント車軸の中心軸線である。自動二輪車1Aが直進可能に直立しているとき、フロント車軸線A1は、左右方向に平行である。
 フロントホイール3には、図示しないフロントブレーキが設置されている。フロントブレーキは、ラウンドトレッド面フロントタイヤ2に制動力を付与可能に構成されている。フロントブレーキの形式は、液圧式、機械式、電気式のいずれであってもよい。フロントブレーキは、例えば、液圧式ディスクブレーキであってもよく、機械式ブレーキの一種であるドラムブレーキであってもよい。
 フロントフレーム20は、フロントサスペンションユニット21に加えて、ステアリングシャフト22を有する。ステアリングシャフト22の下部は、フロントサスペンションユニット21の上部に固定されている。ステアリングシャフト22の上部は、ハンドルユニット50に固定されている。
 次に、中間フレーム30について説明する。中間フレーム30は、その前部に、ヘッドパイプ部31を有する。ヘッドパイプ部31は、円柱状の孔を有する。ステアリングシャフト22は、ヘッドパイプ部31に挿通されている。ステアリングシャフト22とヘッドパイプ部31との間には、図示しない軸受が配置されている。ステアリングシャフト22は、ステアリングシャフト22の中心軸線回りに回転可能にヘッドパイプ部31に支持される。それにより、フロントフレーム20は、ステアリングシャフト22の中心軸線回りに揺動可能に中間フレーム30に支持される。ヘッドパイプ部31の内周面の中心軸線は、ステアリングシャフト22の中心軸線と同軸である。ステアリングシャフト22の中心軸線およびヘッドパイプ部31の内周面の中心軸線が、ラウンドトレッド面フロントタイヤ揺動軸線A2を構成する。ラウンドトレッド面フロントタイヤ揺動軸線A2は、無限に延びる直線である。フロントフレーム20がラウンドトレッド面フロントタイヤ揺動軸線A2回りに揺動可能に中間フレーム30に支持されていることで、ラウンドトレッド面フロントタイヤ2は、ラウンドトレッド面フロントタイヤ揺動軸線A2回りに中間フレーム30に対して揺動可能である。
 ラウンドトレッド面フロントタイヤ揺動軸線A2は、後方向に向かうほど上方向に向かう傾きを持つ。つまり、ラウンドトレッド面フロントタイヤ揺動軸線A2にある第1の点をラウンドトレッド面フロントタイヤ揺動軸線A2に沿って後方向に移動させた点を第2の点とした場合、第2の点は第1の点より高い位置にある。直進可能に直立した状態の車両1Aを左方向または右方向に見た場合のラウンドトレッド面フロントタイヤ揺動軸線A2の上下方向に対する傾斜角度は、特に限定されない。但し、直進可能に直立した状態の車両1Aを左方向または右方向に見て、ラウンドトレッド面フロントタイヤ揺動軸線A2の上下方向に対する傾斜角度は、45°未満が好ましい。直進可能に直立した状態の車両1Aを左方向または右方向に見て、ラウンドトレッド面フロントタイヤ揺動軸線A2と路面RSとの交点は、ラウンドトレッド面フロントタイヤ2の前端を通り上下方向に平行な直線L11Aと、ラウンドトレッド面フロントタイヤ2の後端を通り上下方向に平行な直線L21Aとの間にある。図2では、ラウンドトレッド面フロントタイヤ揺動軸線A2と路面RSとの交点は、ラウンドトレッド面フロントタイヤ2と路面RSの接点から前方向に若干離れている。ラウンドトレッド面フロントタイヤ揺動軸線A2と路面RSとの交点は、ラウンドトレッド面フロントタイヤ2と路面RSの接点と同じかほぼ同じであってもよい。ラウンドトレッド面フロントタイヤ揺動軸線A2と路面RSとの交点は、直線L11Aと直線L21Aの間であれば、接点よりも後方向に位置していてもよい。
 中間フレーム30は、その後部に、リヤ揺動軸部32を有する。リヤ揺動軸部32は、後斜め下向きに突出している。ヘッドパイプ部31とリヤ揺動軸部32は、一体的に形成されている。中間フレーム30は、一体成形されている。リヤ揺動軸部32の外形は、略円柱状である。リヤ揺動軸部32の後端部に、揺動レバー33が固定されている。揺動レバー33は、リヤ揺動軸部32の外周面から径方向外側に突出する。図2では、揺動レバー33は、リヤ揺動軸部32から下方向に突出しているが、突出方向はこれに限定されない。揺動レバー33は、リヤ揺動軸部32から上方向、右方向、または左方向に突出していてもよい。
 次に、リヤフレーム40について説明する。リヤフレーム40は、リヤメインフレーム41と、リヤサスペンションユニット42を有する。リヤサスペンションユニット42は、リヤメインフレーム41の後部に接続されている。リヤサスペンションユニット42は、左右一対のスイングアーム43、43と、1つのリヤサスペンション44と、リンク機構45を有する。なお、リヤサスペンションユニット42が有するリヤサスペンション44の数は2つでもよい。スイングアーム43の前部は、左右方向に平行な軸線回りに揺動可能にリヤメインフレーム41の後部に支持される。スイングアーム43の後部は、ラウンドトレッド面リヤタイヤ4を支持する。リヤサスペンション44は、スプリングと油圧ダンパーを有する。リヤサスペンション44の一端は、リヤメインフレーム41に接続されている。リンク機構45は、リヤメインフレーム41と、リヤサスペンション44の他端と、スイングアーム43にそれぞれ、左右方向に平行な軸線回りに揺動可能に接続されている。リンク機構45の具体的な構成は特に限定されない。リヤサスペンションユニット42は、ラウンドトレッド面リヤタイヤ4が受ける上下方向の振動を吸収するように構成される。
 ラウンドトレッド面リヤタイヤ4は、リヤホイール5の外周部に設置されている。スイングアーム43は、リヤホイール5の中央の孔に挿入されるリヤ車軸(図示せず)を支持する。それにより、リヤサスペンションユニット42は、ラウンドトレッド面リヤタイヤ4をリヤ車軸線A3回りに回転可能に支持する。リヤ車軸線A3は、リヤ車軸の中心軸線である。自動二輪車1Aが直進可能に直立しているとき、リヤ車軸線A3は、左右方向に平行である。
 リヤホイール5には、図示しないリヤブレーキが設置されている。リヤブレーキは、ラウンドトレッド面リヤタイヤ4に制動力を付与可能に構成されている。リヤブレーキの形式は、液圧式、機械式、電気式のいずれであってもよい。リヤブレーキは、例えば、液圧式ディスクブレーキであってもよく、機械式ブレーキの一種であるドラムブレーキであってもよい。リヤブレーキの形式は、フロントブレーキの形式と同じであってもよく、異なっていてもよい。
 リヤメインフレーム41は、その前部に、ボス部41aを有する。ボス部41aは、円柱状の孔を有する。中間フレーム30のリヤ揺動軸部32は、ボス部41aに挿通されている。リヤ揺動軸部32とボス部41aとの間には、図示しない軸受が配置されている。ボス部41aは、ボス部41aの内周面の中心軸線回りに回転可能にリヤ揺動軸部32に支持される。それにより、リヤフレーム40は、ボス部41aの中心軸線回りに揺動可能に中間フレーム30に支持される。リヤ揺動軸部32の外周面の中心軸線は、ボス部41aの内周面の中心軸線と同軸である。ボス部41aの内周面の中心軸線およびリヤ揺動軸部32の中心軸線が、ラウンドトレッド面リヤタイヤ揺動軸線A41Aを構成する。ラウンドトレッド面リヤタイヤ揺動軸線A41Aは、第1実施形態のラウンドトレッド面リヤタイヤ揺動軸線A4の一例である。ラウンドトレッド面リヤタイヤ揺動軸線A41Aは、無限に延びる直線である。リヤフレーム40がラウンドトレッド面リヤタイヤ揺動軸線A41A回りに揺動可能に中間フレーム30に支持されていることで、ラウンドトレッド面リヤタイヤ4は、ラウンドトレッド面リヤタイヤ揺動軸線A41A回りに中間フレーム30に対して揺動可能である。
 ラウンドトレッド面リヤタイヤ揺動軸線A41Aは、後方向に向かうほど下方向に向かう傾きを持つ。つまり、ラウンドトレッド面リヤタイヤ揺動軸線A41Aにある第1の点をラウンドトレッド面リヤタイヤ揺動軸線A41Aに沿って後方向に移動させた点を第2の点とした場合、第2の点は第1の点より低い位置にある。直進可能に直立した状態の車両1Aを左方向または右方向に見た場合のラウンドトレッド面リヤタイヤ揺動軸線A41Aの上下方向に対する傾斜角度は、特に限定されない。但し、直進可能に直立した状態の車両1Aを左方向または右方向に見て、ラウンドトレッド面リヤタイヤ揺動軸線A41Aの上下方向に対する傾斜角度は、45°を超えることが好ましい。直進可能に直立した状態の車両1Aを左方向または右方向に見て、ラウンドトレッド面リヤタイヤ揺動軸線A41Aと路面RSとの交点は、ラウンドトレッド面リヤタイヤ4の前端を通り上下方向に平行な直線L31Aと、ラウンドトレッド面リヤタイヤ4の後端を通り上下方向に平行な直線L41Aとの間にある。図2では、ラウンドトレッド面リヤタイヤ揺動軸線A41Aと路面RSとの交点は、ラウンドトレッド面リヤタイヤ4と路面RSの接点よりも後方向に位置する。
 リヤフレーム40は、油圧シリンダ60および油圧ポンプ61を支持する。油圧シリンダ60および油圧ポンプ61は、リヤフレーム40と一体的に揺動する。油圧シリンダ60は、中間フレーム30の揺動レバー33の先端部(図2中、下端部)の近傍に配置されている。油圧シリンダ60は、第1実施形態のラウンドトレッド面リヤタイヤ揺動アクチュエータ60の一例である。油圧シリンダ60は、油圧ポンプ61に接続されている。油圧ポンプ61によって加圧されたオイルが、油圧シリンダ60に供給される。油圧シリンダ60は、油圧に応じて直線方向に往復移動するピストンロッド(図示せず)を有する。油圧シリンダ60のピストンロッドは、揺動レバー33の先端部に接続されている。
 ピストンロッドが直線方向に移動することで、揺動レバー33は、リヤ揺動軸部32の外周面の周方向に揺動する。このように、油圧シリンダ60は、リヤフレーム40をラウンドトレッド面リヤタイヤ揺動軸線A41A回りに中間フレーム30に対して揺動させる。それにより、ラウンドトレッド面リヤタイヤ4が、ラウンドトレッド面リヤタイヤ揺動軸線A41A回りに中間フレーム30に対して揺動する。つまり、油圧シリンダ60(ラウンドトレッド面リヤタイヤ揺動アクチュエータ)は、ラウンドトレッド面リヤタイヤ4をラウンドトレッド面リヤタイヤ揺動軸線A41A回りに中間フレーム30に対して揺動させる。
 リヤフレーム40は、リヤメインフレーム41とリヤサスペンションユニット42に加えて、シートフレーム46を有する。シートフレーム46は、リヤメインフレーム41に固定される。シートフレーム46は、運転者(乗員)が着座するためのシート10と、同乗者(乗員)が着座するためのタンデムシート11を支持する。つまり、シート10およびタンデムシート11は、リヤフレーム40に支持される。タンデムシート11は、シート10の後端よりも後方向に位置する。自動二輪車1Aの乗車定員は、2名である。タンデムシート11は無くてもよい。なお、図2には、車両1Aを右方向に見た場合のシート10の上縁以外のシート10の境界線は表示していない。また、図2には、車両1Aを右方向に見た場合のタンデムシート11の上縁以外のタンデムシート11の境界線は表示していない。シート10の後端は、タンデムシート11の前端とほぼ同じ位置である。直進可能に直立した状態の車両1Aを左方向または右方向に見て、シート10全体が、ラウンドトレッド面リヤタイヤ揺動軸線A41Aから上方向に離れている。直進可能に直立した状態の車両1Aを左方向または右方向に見て、タンデムシート11全体が、ラウンドトレッド面リヤタイヤ揺動軸線A41Aから上方向に離れている。
 リヤフレーム40は、エンジンユニット70を支持する。エンジンユニット70は、第1実施形態の駆動源70の一例である。エンジンユニット70は、ラウンドトレッド面リヤタイヤ4に駆動力を付与可能に構成されている。エンジンユニット70の出力(駆動力)は、チェーンまたはベルトを介して、ラウンドトレッド面リヤタイヤ4に伝達される。エンジンユニット70は、クラッチ機構を含む。エンジンユニット70は、変速機を含んでいてもよく、含んでいなくてもよい。エンジンユニット70が変速機を含んでいない場合、リヤホイール5が変速機を支持する。エンジンユニット70の出力(駆動力)は、変速機を介して、ラウンドトレッド面リヤタイヤ4に伝達される。変速機は、エンジンユニット70の出力軸の回転速度とラウンドトレッド面リヤタイヤ4の回転速度の比を変更できるように構成されている。エンジンユニット70は、4ストロークエンジンでもよく、2ストロークエンジンでもよい。エンジンユニット70は、単気筒エンジンであってもよく、多気筒エンジンであってもよい。エンジンユニット70ユニットが多気筒エンジンの場合、エンジンユニット70は独立スロットル式であることが好ましい。エンジンユニット70は、水冷式エンジンでもよく、強制空冷式エンジンであってもよく、自然空冷式エンジンであってもよい。エンジンユニット70は、過給機を備えた過給エンジンであってもよい。過給機は、燃焼室に供給される空気を圧縮する装置である。過給機は、機械式過給機であってもよく、排気タービン式過給機(いわゆるターボチャージャ)であってもよい。エンジンユニット70は、ガソリンエンジンであってもよく、ディーゼルエンジンであってもよい。エンジンユニット70は、水素ロータリーエンジンであってもよい。
 リヤフレーム40は、燃料タンク71を支持する。燃料タンク71は、エンジンユニット70に供給される燃料を貯留する。燃料タンク71は、シート10の前端よりも前方向に位置する。燃料タンク71は、エンジンユニット70の上に配置される。燃料タンク71は、自動二輪車1Aの左右方向の中央部にある。つまり、直進可能に直立した状態の車両1Aを下方向に見た場合に、燃料タンク71は、ラウンドトレッド面リヤタイヤ揺動軸線A41Aと重なる。
 自動二輪車1Aは、図示しないバッテリを有する。バッテリは、各種の電気機器に電力を供給する。各種の電気機器は、後述する制御装置80および各種センサを含む。
 上述したように、自動二輪車1Aは、ハンドルユニット50を有する。ハンドルユニット50は、左グリップ51および右グリップ(図示せず)を有する。左グリップ51および右グリップは、運転者(乗員)の手に把持される。上述したように、ハンドルユニット50は、ステアリングシャフト22に固定される。左右のグリップを把持した運転者がハンドルユニット50を回転させる操作を行うことで、ステアリングシャフト22がラウンドトレッド面フロントタイヤ揺動軸線A2回りに中間フレーム30に対して揺動する。それにより、ラウンドトレッド面フロントタイヤ2は操舵される。つまり、運転者の操作によって、ラウンドトレッド面フロントタイヤ2はラウンドトレッド面フロントタイヤ揺動軸線A2回りに中間フレーム30に対して揺動する。
 右グリップは、アクセルグリップである。運転者がアクセルグリップを回すように操作することで、エンジンユニット70(駆動源)の出力が調整される。具体的には、アクセルグリップの操作量に応じて、エンジンユニット70が有するスロットルバルブ(図示せず)の開度が調整される。スロットルバルブの開度に応じて、燃焼室に供給される空気量が変化する。スロットルバルブは、スロットル・バイ・ワイヤ方式で制御される。エンジンユニット70は、アクセル・バイ・ワイヤ方式で制御される。スロットルバルブは、制御装置80に接続される。制御装置80は、アクセルグリップの操作量を検出するアクセルセンサ(図示せず)の検出結果に応じて、スロットルバルブの開度を制御する。つまり、制御装置80は、アクセルグリップの操作量に応じて、エンジンユニット70の出力を制御する。状況によっては、制御装置80は、アクセルグリップの操作に関わらず、スロットルバルブの開度を変更してもよい。なお、スロットルバルブは、スロットルワイヤを介してアクセルグリップに接続されてもよい。
 ハンドルユニット50の右部には、フロントブレーキレバー(図示せず)が設けられている。ハンドルユニット50の左部には、リヤブレーキレバー(図示せず)が設けられている。運転者が右グリップを握った手の指でフロントブレーキレバーを引くように操作することで、フロントブレーキが作動して、ラウンドトレッド面フロントタイヤ2に制動力が付与される。運転者が左グリップ51を握った手の指でリヤブレーキレバーを引くように操作することで、リヤブレーキが作動して、ラウンドトレッド面リヤタイヤ4に制動力が付与される。フロントブレーキおよびリヤブレーキは、ブレーキ・バイ・ワイヤ方式で制御される。フロントブレーキおよびリヤブレーキは、制御装置80に接続される。制御装置80は、フロントブレーキレバーの操作量を検出するフロントブレーキセンサ(図示せず)の検出結果に応じて、フロントブレーキを作動させる。制御装置80は、リヤブレーキレバーの操作量を検出するリヤブレーキセンサ(図示せず)の検出結果に応じて、リヤブレーキを作動させる。状況によっては、制御装置80は、ブレーキレバーの操作に関わらず、ブレーキを作動させてもよい。フロントブレーキレバーは、フロントブレーキと機械的に接続されてもよい。リヤブレーキレバーは、リヤブレーキと機械的に接続されてもよい。フロントブレーキレバーまたはリヤブレーキレバーの代わりに、ブレーキペダルを設けてもよい。ブレーキペダルは、運転者の足で操作される。
 自動二輪車1Aは、車体カバー12を有する。図2には、車体カバー12の一部を二点鎖線で表示している。車体カバー12は、複数の部品で構成される。車体カバー12は、フロントフレーム20の少なくとも一部と、中間フレーム30と、リヤフレーム40の少なくとも一部を覆う。車体カバー12の少なくとも一部は、リヤフレーム40に支持される。車体カバー12は、図示しないフロントカウルを含む。フロントカウルは、ヘッドパイプ部31を前から覆う。
 自動二輪車1Aは、ラウンドトレッド面フロントタイヤ2またはラウンドトレッド面リヤタイヤ4の回転速度を検出する車輪速センサ(図示せず)を有する。自動二輪車1Aは、ラウンドトレッド面フロントタイヤ2およびラウンドトレッド面リヤタイヤ4の回転速度をそれぞれ検出する2つの車輪速センサを有していてもよい。制御装置80は、車輪速センサにより検出されたラウンドトレッド面フロントタイヤ2またはラウンドトレッド面リヤタイヤ4の回転速度と、ラウンドトレッド面フロントタイヤ2またはラウンドトレッド面リヤタイヤ4の径に基づいて、自動二輪車1Aの車速を算出する。
 自動二輪車1Aは、ハンドルユニット50の操舵角を検出するハンドル舵角センサ(図示せず)を有する。ハンドルユニット50の操舵角とは、ステアリングシャフト22の回転角である。
 自動二輪車1Aは、中間フレーム30の上下方向に対する左右方向への傾きに関連する物理量を検出する傾斜検出装置81を有する。傾斜検出装置81は、中間フレーム30に支持される。中間フレーム30の上下方向に対する左右方向への傾きとは、中間フレーム30が自動二輪車1Aのロール軸回りに揺動することである。ロール軸は、前後方向に平行な軸線である。傾斜検出装置81が検出する上記物理量は、中間フレーム30のロール角、ロールレート、およびロール角加速度の少なくとも1つを含む。傾斜検出装置81は、ロール角、ロールレート、ロール角加速度の少なくとも1つを検出するセンサ(ジャイロセンサ)であってもよい。傾斜検出装置81は、ジャイロセンサの検出結果に基づいて演算処理を行う演算処理部を含んでいてもよい。例えば、傾斜検出装置81は、ジャイロセンサで検出されたロールレートを積分することで、ロール角を算出してもよい。傾斜検出装置81は、センサで検出されたロール角加速度を積分することで、ロールレートを算出してもよい。傾斜検出装置81は、ジャイロセンサで検出されたロール角を微分することで、ロールレートを算出してもよい。傾斜検出装置81は、ジャイロセンサで検出されたロールレートを微分することで、ロール角加速度を算出してもよい。傾斜検出装置81は、ハンドル舵角センサの検出結果などに基づいて演算処理を行う演算処理部であってもよい。傾斜検出装置81は、ハンドルユニット50の操舵角などに基づいて、中間フレーム30のロール角を算出してもよい。傾斜検出装置81は、センサと演算処理部の両方を含んでいてもよい。傾斜検出装置81は、センサを含まず、演算処理部だけで構成されていてもよい。演算処理部は、後述する制御装置80に含まれてもよい。
 自動二輪車1Aは、中間フレーム30の前後方向に対する左右方向への傾きに関連する物理量を検出する検出装置(図示せず)を有する。中間フレーム30の前後方向に対する左右方向への傾きとは、中間フレーム30が自動二輪車1Aのヨー軸回りに揺動することである。ヨー軸は、上下方向に平行な軸線である。この検出装置が検出する上記物理量は、中間フレーム30のヨー角、ヨーレート、およびヨー角加速度の少なくとも1つを含む。自動二輪車1Aは、中間フレーム30の前後方向に対する上下方向への傾きに関連する物理量を検出する検出装置を有する。中間フレーム30の前後方向に対する上下方向への傾きとは、中間フレーム30が自動二輪車1Aのピッチ軸回りに揺動することである。ピッチ軸は、左右方向に平行な軸線である。この検出装置が検出する上記物理量は、中間フレーム30のピッチ角、ピッチレート、およびピッチ角加速度の少なくとも1つを含む。
 自動二輪車1Aは、制御装置80を有する。制御装置80は、例えば、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)などで構成されている。CPUは、ROMやRAMに記憶されたプログラムや各種データに基づいて情報処理を実行する。制御装置80は、中間フレーム30に支持されてもよく、リヤフレーム40に支持されてもよい。制御装置80の位置は、図2に示す位置に限定されない。制御装置80は、アクセルセンサ、フロントブレーキセンサ、リヤブレーキセンサ、車輪速センサ、ハンドル舵角センサ、および傾斜検出装置81などの各種センサに接続される。制御装置80は、これらのセンサから信号を受信する。上述したように、傾斜検出装置81が演算処理部を含む場合は、傾斜検出装置81の演算処理部は制御装置80に含まれてもよい。制御装置80は、燃料供給装置およびスロットルバルブなどのエンジン制御アクチュエータに接続される。制御装置80は、フロントブレーキおよびリヤブレーキのアクチュエータに接続される。制御装置80は、油圧ポンプ61に接続される。制御装置80は、接続されたこれらの機器を制御する。制御装置80は、油圧ポンプ61を介して油圧シリンダ60(ラウンドトレッド面リヤタイヤ揺動アクチュエータ)を制御する。制御装置80は、油圧シリンダ60を制御することで、ラウンドトレッド面リヤタイヤ4の揺動を制御する。制御装置80は、本発明のラウンドトレッド面リヤタイヤ揺動アクチュエータ制御装置を含む。制御装置80によるラウンドトレッド面リヤタイヤ4の揺動制御については後述する。
 中間フレーム30、フロントフレーム20、リヤフレーム40、ラウンドトレッド面フロントタイヤ2、ラウンドトレッド面リヤタイヤ4、油圧シリンダ60(ラウンドトレッド面リヤタイヤ揺動アクチュエータ)、および制御装置80は、以下の2つの条件を満たすように、形成または配置される。1つ目の条件は、直進可能に直立した状態の車両1Aを左方向または右方向に見て、ラウンドトレッド面リヤタイヤ揺動軸線A41Aが、外部から荷重がかかっていない状態の車両1Aの重心G01Aとシート10との間を通ることである。外部から荷重がかかっていない状態の車両1Aの重心G01Aは、図2に示す位置に限らない。2つ目の条件は、シート10にかかる荷重がゼロから増大するにつれて、シート10に着座する運転者(乗員)を含む車両1Aの重心がラウンドトレッド面リヤタイヤ揺動軸線A41Aに近づくことである。シート10にかかる荷重がゼロから増大するにつれて、運転者(乗員)を含む車両1Aの重心は、例えば、図2に示す重心G01Aから矢印方向に移動する。図2に二点鎖線で示す重心G11Aは、シート10に着座する運転者(乗員)を含む車両1Aの重心の一例である。シート10に着座する運転者(乗員)を含む車両1Aの重心G11Aは、ラウンドトレッド面リヤタイヤ揺動軸線A41Aを越えてもよく、越えなくてもよい。シート10およびタンデムシート11にそれぞれ乗員が着座した場合、2名の乗員を含む車両1Aの重心は、ラウンドトレッド面リヤタイヤ揺動軸線A41Aを越えてもよく、越えなくてもよい。推奨される乗載荷重の上限値を極端に上回らなければ、車両1Aが外部から受ける全ての荷重を含む車両1Aの重心は、ラウンドトレッド面リヤタイヤ揺動軸線A41Aから極端に離れることはない。この構成によると、第1実施形態で述べた効果と同様の効果が得られる。
 車両1Aが直進可能に直立した状態において、油圧シリンダ60(ラウンドトレッド面リヤタイヤ揺動アクチュエータ)は、ラウンドトレッド面リヤタイヤ4およびラウンドトレッド面フロントタイヤ2の両方の上端よりも上方向に位置する。直進可能に直立した状態の車両1Aを左方向または右方向に見て、油圧シリンダ60(ラウンドトレッド面リヤタイヤ揺動アクチュエータ)は、ラウンドトレッド面リヤタイヤ揺動軸線A41Aと重ならない。図2では、直進可能に直立した状態の車両1Aを左方向または右方向に見て、油圧シリンダ60(ラウンドトレッド面リヤタイヤ揺動アクチュエータ)全体が、ラウンドトレッド面リヤタイヤ揺動軸線A41Aから下方向に離れている。
 直進可能に直立した状態の車両1Aを左方向または右方向に見て、エンジンユニット70(駆動源)の少なくとも一部は、ラウンドトレッド面リヤタイヤ揺動軸線A41Aから下方向に離れている。図2では、エンジンユニット70(駆動源)全体が、ラウンドトレッド面リヤタイヤ揺動軸線A41Aから下方向に離れている。直進可能に直立した状態の車両1Aを左方向または右方向に見て、フロントサスペンションユニット21の少なくとも一部は、ラウンドトレッド面リヤタイヤ揺動軸線A41Aから下方向に離れている。図2では、フロントサスペンションユニット21全体が、ラウンドトレッド面リヤタイヤ揺動軸線A41Aから下方向に離れている。直進可能に直立した状態の車両1Aを左方向または右方向に見て、リヤサスペンションユニット42の少なくとも一部は、ラウンドトレッド面リヤタイヤ揺動軸線A41Aから下方向に離れている。図2では、リヤサスペンションユニット42の一部が、ラウンドトレッド面リヤタイヤ揺動軸線A41Aから下方向に離れており、リヤサスペンションユニット42の他の部分は、ラウンドトレッド面リヤタイヤ揺動軸線A41Aから上方向に離れている。
 ここで、ラウンドトレッド面リヤタイヤ4を揺動させた時の車両1Aの挙動について説明する。以下の説明において、ラウンドトレッド面リヤタイヤ4が上方向に対して左方向に傾くとは、ラウンドトレッド面リヤタイヤ4の上端が下端に対して相対的に左方向に移動することをいう。車両1Aおよびラウンドトレッド面フロントタイヤ2についても同様の定義が適用される。ラウンドトレッド面リヤタイヤ4が前方向に対して左方向に傾くとは、ラウンドトレッド面リヤタイヤ4の前端が後端に対して相対的に左方向に移動した状態をいう。ラウンドトレッド面フロントタイヤ2についても同様の定義が適用される。また、ラウンドトレッド面フロントタイヤ2が左方向に操舵されるとは、ラウンドトレッド面フロントタイヤ2が前方向に対して左方向に傾くことである。
 図3(a)は、車両1Aが水平な路面RSに直進可能に直立している状態を示す。この状態において、外部から荷重がかかっていない状態の車両1Aの重心G01Aは、自動二輪車1Aの左右方向の中央にある。図3(a)の状態から、ラウンドトレッド面リヤタイヤ4が図3(a)に示す矢印Xの方向に揺動すると、図3(b)に示すように、ラウンドトレッド面リヤタイヤ4は、上方向に対して左方向に傾くと共に、前方向に対して右方向に傾く。矢印Xの方向は、後方向に見て時計回りの方向である。ラウンドトレッド面リヤタイヤ4が上方向に対して左方向に傾くことにより、その後、図3(c)に示すように、車両1Aが上方向に対して左方向に傾く。そのため、車両1Aを下方向に見て、車両1Aの重心G01Aは、ラウンドトレッド面リヤタイヤ揺動軸線A41Aから左方向に離れる。これにより、キャンバースラストが発生する。それに加えて、ラウンドトレッド面リヤタイヤ4が前方向に対して右方向に傾くことで、車両1Aが左旋回する。
 図4(a)は、車両1Aが上方向に対して左方向に傾いている状態を示す。車両1Aを下方向に見て、車両1Aの重心G01Aは、ラウンドトレッド面リヤタイヤ揺動軸線A41Aから左方向に離れている。この状態から、ラウンドトレッド面リヤタイヤ4が、図4(a)に示す矢印Yの方向に揺動すると、図4(b)に示すように、ラウンドトレッド面リヤタイヤ4は、上方向に対して右方向に傾くと共に、前方向に対して右方向に傾く。矢印Xの方向は、上述の矢印Yの方向と逆方向である。それにより、ラウンドトレッド面フロントタイヤ2とラウンドトレッド面リヤタイヤ4の上方向に対する左右方向の傾きが逆になる。また、車両1Aの重心G01Aは右方向に移動する。その結果、図4(c)に示すように、車両1Aが起き上がる。
 次に、制御装置80によるラウンドトレッド面リヤタイヤ4の揺動制御について説明する。
 制御装置80は、傾斜検出装置81で検出された中間フレーム30の上下方向に対する左右方向への傾きに関連する物理量に基づいて、油圧シリンダ60を制御する。制御装置80は、傾斜検出装置81の検出結果に加えて、他のパラメータに基づいて、ラウンドトレッド面リヤタイヤ4の揺動制御を変更してもよい。例えば、車輪速センサの検出結果に基づいてもよい。例えばハンドル舵角センサの検出結果に基づいてもよい。また、例えば、地図情報に基づいてもよい。また、雨などの天候の情報に基づいてもよい。また、例えば、運転者の技量に基づいてもよい。運転者の技量は、運転者が入力するものであっても、走行状況から制御装置が判定したものであってもよい。また、車種によって、ラウンドトレッド面リヤタイヤ4およびラウンドトレッド面フロントタイヤ2の揺動制御は変更されてもよい。
 制御装置80は、運転者によるハンドルユニット50の操舵をアシストするために、ラウンドトレッド面リヤタイヤ4を揺動させる。具体的には、例えば、運転者がハンドルユニット50を左方向に操舵したときに、制御装置80は、車両1Aが上方向に対して左方向に傾くように、ラウンドトレッド面リヤタイヤ4を揺動させてもよい。また、例えば、車両1Aが左旋回しているときに、制御装置80は、車両1Aの上方向に対する左方向の傾きが大きくなるように、ラウンドトレッド面リヤタイヤ4を揺動させてもよい。それにより、旋回性を向上できる。つまり、旋回半径を小さくすることができる。また、例えば、車両1Aが左旋回しているときに運転者がハンドルユニット50を右方向に操舵した場合に、制御装置80は、車両1Aが起き上るように、ラウンドトレッド面リヤタイヤ4を揺動させてもよい。
 制御装置80は、車両1Aが横風を受けて傾いている場合に、ラウンドトレッド面リヤタイヤ4を揺動させてもよい。例えば、車両1Aが右から風を受けて左方向に傾斜している場合に、ラウンドトレッド面リヤタイヤ4が上方向に対して左方向に傾く方向に、ラウンドトレッド面リヤタイヤ4を揺動させてもよい。
 自動二輪車1Aは、運転モードとして、車両1Aの上下方向に対する左右方向の傾きを軽減する傾斜軽減モードを有してもよい。制御装置80は、傾斜軽減モード中に車両1Aが上方向に対して左右方向に傾いた場合に、ラウンドトレッド面リヤタイヤ4を揺動させる。特に低速走行時は、車両1Aが上下方向に対して左右方向に傾きやすい。傾斜軽減モード中のラウンドトレッド面リヤタイヤ4の揺動制御は、低速走行時に限ってもよい。
 制御装置80は、例えば6km/時以下の低速走行行する際、または、停止中に、車両1Aが自立した状態を維持できるように、ラウンドトレッド面リヤタイヤ4を双方向に交互に揺動させてもよい。例えば、人が車両1Aを押して歩く際に、この制御を行ってもよい。
 第1実施形態の具体例1は、上述した本発明の実施形態の効果に加えて、以下の効果を奏する。
 直進可能に直立した状態の車両1Aを左方向または右方向に見て、ラウンドトレッド面リヤタイヤ揺動軸線A41Aと路面RSとの交点が、ラウンドトレッド面リヤタイヤ4の前端を通り上下方向に平行な直線L31Aと、ラウンドトレッド面リヤタイヤ4の後端を通り上下方向に平行な直線L41Aとの間にある。それにより、ラウンドトレッド面リヤタイヤ揺動軸線A41Aと路面RSとの交点が、ラウンドトレッド面リヤタイヤ4の前端を通り上下方向に平行な直線L31Aから前方向に離れている場合に比べて、ラウンドトレッド面リヤタイヤ4を揺動させるために必要なモーメントが小さい。また、ラウンドトレッド面リヤタイヤ揺動軸線A41Aと路面RSとの交点が、ラウンドトレッド面リヤタイヤ4の後端を通り上下方向に平行な直線L41Aから後方向に離れている場合に比べて、ラウンドトレッド面リヤタイヤ4を揺動させるために必要なモーメントが小さい。そのため、ラウンドトレッド面リヤタイヤ4の揺動制御の制御性を向上できる。よって、自動二輪車1Aの乗載荷重の変化に対するラウンドトレッド面リヤタイヤ4の揺動制御の制御性をより向上できる。
 直進可能に直立した状態の車両1Aを左方向または右方向に見て、比較的大きい重量を有するエンジンユニット70(駆動源)の少なくとも一部が、ラウンドトレッド面リヤタイヤ揺動軸線A41Aから下方向に離れている。そのため、シート10に荷重がかかっていない状態の車両1Aの重心G01Aとシート10との間にラウンドトレッド面リヤタイヤ揺動軸線A41Aが位置するレイアウトを、容易に実現できる。
 直進可能に直立した状態の車両1Aを左方向または右方向に見て、比較的大きい重量を有するフロントサスペンションユニット21の少なくとも一部が、ラウンドトレッド面リヤタイヤ揺動軸線A41Aから下方向に離れている。そのため、シート10に荷重がかかっていない状態の車両1Aの重心G01Aとシート10との間にラウンドトレッド面リヤタイヤ揺動軸線A41Aが位置するレイアウトを、容易に実現できる。
 直進可能に直立した状態の車両1Aを方向または右方向に見て、比較的大きい重量を有するリヤサスペンションユニット42の一部が、ラウンドトレッド面リヤタイヤ揺動軸線A41Aから下方向に離れている。そのため、シート10に荷重がかかっていない状態の車両1Aの重心G01Aとシート10との間にラウンドトレッド面リヤタイヤ揺動軸線A41Aが位置するレイアウトを、容易に実現できる。
 直進可能に直立した状態の車両1Aを下方向に見て、燃料タンク71の一部は、ラウンドトレッド面リヤタイヤ揺動軸線A41Aと重なる。それにより、燃料タンク71内の燃料の重量が変化しても、車両1Aの重心G01Aの位置の変化が少ない。そのため、ラウンドトレッド面リヤタイヤ4の揺動制御の制御性の低下を抑えることができる。
 仮に、傾斜検出装置81がリヤフレーム40に設置される場合、傾斜検出装置81の検出結果から中間フレーム30の傾きを検出するには、リヤフレーム40の中間フレーム30に対する揺動角度等を考慮した補正を行う必要がある。傾斜検出装置81が中間フレーム30に設置されていることにより、求める車両1Aの挙動が得られるようにラウンドトレッド面リヤタイヤ4の揺動制御を行うことが容易になる。よって、自動二輪車1Aの乗載荷重の変化に対するラウンドトレッド面リヤタイヤ4の揺動制御の制御性をより向上できる。
 <本発明の第1実施形態の具体例2>
 次に、本発明の第1実施形態の具体例2の自動二輪車1Bについて、図5を用いて説明する。基本的に、本発明の第1実施形態の具体例2は、本発明の第1実施形態の特徴を全て有している。本発明の第1実施形態およびその具体例1と同じ部位についての説明は省略する。以下、本発明の第1実施形態の具体例1と異なる構成について説明する。
 油圧シリンダ60は、リヤフレーム40をラウンドトレッド面リヤタイヤ揺動軸線A41B回りに中間フレーム30に対して揺動させる。ラウンドトレッド面リヤタイヤ揺動軸線A41Bは、第1実施形態のラウンドトレッド面リヤタイヤ揺動軸線A4の一例である。ラウンドトレッド面リヤタイヤ揺動軸線A41Bは、後方向に向かうほど下方向に向かう傾きを持つ。直進可能に直立した状態の車両1Bを左方向または右方向に見て、ラウンドトレッド面リヤタイヤ揺動軸線A41Bと路面RSとの交点は、ラウンドトレッド面リヤタイヤ4と路面RSの接点と同じかほぼ同じである。それにより、第1実施形態の具体例1に比べて、リヤフレーム40を揺動させるトルクがより小さい。そのため、ラウンドトレッド面リヤタイヤ4の揺動制御の制御性を向上できる。よって、自動二輪車1Bの乗載荷重の変化に対するラウンドトレッド面リヤタイヤ4の揺動制御の制御性をより向上できる。
 具体例1と同じく、中間フレーム30、フロントフレーム20、リヤフレーム40、ラウンドトレッド面フロントタイヤ2、ラウンドトレッド面リヤタイヤ4、油圧シリンダ60(ラウンドトレッド面リヤタイヤ揺動アクチュエータ)、および制御装置80は、以下の2つの条件を満たすように、形成または配置される。1つ目の条件は、直進可能に直立した状態の車両1Bを左方向または右方向に見て、ラウンドトレッド面リヤタイヤ揺動軸線A41Bが、外部から荷重がかかっていない状態の車両1Bの重心G01Bとシート10との間を通ることである。外部から荷重がかかっていない状態の車両1Bの重心G01Bは、図5に示す位置に限らない。2つ目の条件は、シート10にかかる荷重がゼロから増大するにつれて、シート10に着座する運転者(乗員)を含む車両1Bの重心がラウンドトレッド面リヤタイヤ揺動軸線A41Bに近づくことである。シート10にかかる荷重がゼロから増大するにつれて、運転者(乗員)を含む車両1Bの重心は、例えば、図5に示す重心G01Bから矢印方向に移動する。図5に二点鎖線で示す重心G11Bは、シート10に着座する運転者(乗員)を含む車両1Bの重心G11Bの一例である。シート10に着座する運転者(乗員)を含む車両1Bの重心G11Bは、ラウンドトレッド面リヤタイヤ揺動軸線A41Bを越えてもよく、越えなくてもよい。シート10およびタンデムシート11にそれぞれ乗員が着座した場合、2名の乗員を含む車両1Bの重心は、ラウンドトレッド面リヤタイヤ揺動軸線A41Bを越えてもよく、越えなくてもよい。
 <本発明の第1実施形態の具体例3>
 次に、本発明の第1実施形態の具体例3の自動二輪車1Cについて、図6を用いて説明する。基本的に、本発明の第1実施形態の具体例3は、本発明の第1実施形態の特徴を全て有している。本発明の第1実施形態およびその具体例1と同じ部位についての説明は省略する。以下、本発明の第1実施形態の具体例1と異なる構成について説明する。
 油圧シリンダ60は、リヤフレーム40をラウンドトレッド面リヤタイヤ揺動軸線A41C回りに中間フレーム30に対して揺動させる。ラウンドトレッド面リヤタイヤ揺動軸線A41Cは、第1実施形態のラウンドトレッド面リヤタイヤ揺動軸線A4の一例である。ラウンドトレッド面リヤタイヤ揺動軸線A41Cは、後方向に向かうほど下方向に向かう傾きを持つ。直進可能に直立した状態の車両1Cを左方向または右方向に見て、ラウンドトレッド面リヤタイヤ揺動軸線A41Cと路面RSとの交点は、ラウンドトレッド面リヤタイヤ4と路面RSの接点よりも前方向に位置する。但し、具体例1と同じく、ラウンドトレッド面リヤタイヤ揺動軸線A41Cと路面RSとの交点は、ラウンドトレッド面リヤタイヤ4の前端を通り上下方向に平行な直線L31Cと、ラウンドトレッド面リヤタイヤ4の後端を通り上下方向に平行な直線L41Cとの間にある。
 具体例1と同じく、中間フレーム30、フロントフレーム20、リヤフレーム40、ラウンドトレッド面フロントタイヤ2、ラウンドトレッド面リヤタイヤ4、油圧シリンダ60(ラウンドトレッド面リヤタイヤ揺動アクチュエータ)、および制御装置80は、以下の2つの条件を満たすように、形成または配置される。1つ目の条件は、直進可能に直立した状態の車両1Cを左方向または右方向に見て、ラウンドトレッド面リヤタイヤ揺動軸線A41Cが、外部から荷重がかかっていない状態の車両1Cの重心G01Cとシート10との間を通ることである。外部から荷重がかかっていない状態の車両1Cの重心G01Cは、図6に示す位置に限らない。2つ目の条件は、シート10にかかる荷重がゼロから増大するにつれて、シート10に着座する運転者(乗員)を含む車両1Cの重心がラウンドトレッド面リヤタイヤ揺動軸線A41Cに近づくことである。シート10にかかる荷重がゼロから増大するにつれて、運転者(乗員)を含む車両1Cの重心は、例えば、図6に示す重心G01Cから矢印方向に移動する。図6に二点鎖線で示す重心G11Cは、シート10に着座する運転者(乗員)を含む車両1Cの重心G11Cの一例である。シート10に着座する運転者(乗員)を含む車両1Cの重心G11Cは、ラウンドトレッド面リヤタイヤ揺動軸線A41Cを越えてもよく、越えなくてもよい。シート10およびタンデムシート11にそれぞれ乗員が着座した場合、2名の乗員を含む車両1Cの重心は、ラウンドトレッド面リヤタイヤ揺動軸線A41Cを越えてもよく、越えなくてもよい。
 <本発明の第2実施形態>
 次に、本発明の第2実施形態の自動二輪車100Aについて、図7を用いて説明する。基本的に、本発明の第2実施形態は、本発明の第1実施形態の説明で述べた特徴を全て有している。本発明の第1実施形態およびその具体例1と同じ部位についての説明は省略する。以下、本発明の第1実施形態およびその具体例1と異なる構成について説明する。
 自動二輪車100Aは、フロントフレーム120と、中間フレーム130と、リヤフレーム140を有する。フロントフレーム120の主な材質は、アルミニウムや鉄などの金属、CFRPなどの樹脂、または、それらの組み合わせである。中間フレーム130およびリヤフレーム140の主な材質も、同様である。フロントフレーム120、中間フレーム130、およびリヤフレーム140の材質は互いに異なっていてもよい。
 まず、フロントフレーム120について説明する。フロントフレーム120は、左右一対のフロントサスペンションユニット21、21と、フロント揺動軸部122を有する。フロント揺動軸部122は、フロントサスペンションユニット21の上部に固定されている。フロントホイール3には、フロントブレーキ106が設置されている。フロントブレーキ106は、ラウンドトレッド面フロントタイヤ2に制動力を付与可能に構成されている。フロントブレーキ106は、液圧式ディスクブレーキである。フロントブレーキ106は、ブレーキホースを介して、フロントハイドロリックユニット107に接続されている。フロントハイドロリックユニット107は、中間フレーム130に支持される。フロントブレーキ106は、フロントハイドロリックユニット107から供給されるブレーキフルードの圧力で作動する。フロントハイドロリックユニット107は、フロントブレーキ106のブレーキ液圧を制御する。フロントハイドロリックユニット107は、液圧調整モータと液圧調整弁を含む。
 次に、中間フレーム130について説明する。中間フレーム130は、中間メインフレーム131を有する。中間メインフレーム131は、ハンドルユニット50と接続されている。ハンドルユニット50は、中間フレーム130に対して揺動不能である。
 中間メインフレーム131は、フロント電気モータ162を支持する。フロント電気モータ162は、中間メインフレーム131の前部に収容されている。フロント電気モータ162は、中間フレーム130に固定されている。フロント電気モータ162は、出力軸が双方向に回転可能な電気モータである。フロント電気モータ162は、減速機付モータであってもよい。フロント電気モータ162の出力軸は、前斜め下向きに突出している。フロント電気モータ162の出力軸は、フロントフレーム120のフロント揺動軸部122に固定されている。なお、フロント電気モータ162がフロント揺動軸部122に支持され、フロント電気モータ162の出力軸が中間メインフレーム131に固定されてもよい。
 フロント電気モータ162の出力軸が回転することで、フロントフレーム120がフロント電気モータ162の出力軸の中心軸線回りに中間フレーム130に対して揺動する。フロント電気モータ162は、本発明のラウンドトレッド面フロントタイヤ揺動アクチュエータに相当する。フロント電気モータ162の出力軸が、ラウンドトレッド面フロントタイヤ揺動軸線A2を構成する。つまり、フロント電気モータ162(ラウンドトレッド面フロントタイヤ揺動アクチュエータ)は、フロントフレーム120をラウンドトレッド面フロントタイヤ揺動軸線A2回りに中間フレーム130に対して揺動させる。ラウンドトレッド面フロントタイヤ揺動軸線A2は、無限に延びる直線である。
 フロントフレーム120は、フロント電気モータ162を介して、中間フレーム130に支持される。フロントフレーム120は、フロント電気モータ162の出力軸の中心軸線回りに揺動可能に、中間フレーム130に支持される。フロントフレーム120がラウンドトレッド面フロントタイヤ揺動軸線A2回りに揺動可能に中間フレーム130に支持されていることで、ラウンドトレッド面フロントタイヤ2は、ラウンドトレッド面フロントタイヤ揺動軸線A2回りに中間フレーム130に対して揺動可能である。
 ラウンドトレッド面フロントタイヤ揺動軸線A2は、後方向に向かうほど上方向に向かう傾きを持つ。つまり、ラウンドトレッド面フロントタイヤ揺動軸線A2にある第1の点をラウンドトレッド面フロントタイヤ揺動軸線A2に沿って後方向に移動させた点を第2の点とした場合、第2の点は第1の点より高い位置にある。直進可能に直立した状態の車両100Aを左方向または右方向に見た場合のラウンドトレッド面フロントタイヤ揺動軸線A2の上下方向に対する傾斜角度は、特に限定されない。但し、直進可能に直立した状態の車両100Aを左方向または右方向に見て、ラウンドトレッド面フロントタイヤ揺動軸線A2の上下方向に対する傾斜角度は、45°未満が好ましい。直進可能に直立した状態の車両100Aを左方向または右方向に見て、ラウンドトレッド面フロントタイヤ揺動軸線A2と路面RSとの交点は、ラウンドトレッド面フロントタイヤ2の前端を通り上下方向に平行な直線L1100Aと、ラウンドトレッド面フロントタイヤ2の後端を通り上下方向に平行な直線L2100Aとの間にある。図7では、ラウンドトレッド面フロントタイヤ揺動軸線A2と路面RSとの交点は、ラウンドトレッド面フロントタイヤ2と路面RSの接点から前方向に若干離れている。ラウンドトレッド面フロントタイヤ揺動軸線A2と路面RSとの交点は、ラウンドトレッド面フロントタイヤ2と路面RSの接点と同じかほぼ同じであってもよい。ラウンドトレッド面フロントタイヤ揺動軸線A2と路面RSとの交点は、直線L1100Aと直線L2100Aの間であれば、接点よりも後方向に位置していてもよい。
 中間フレーム130は、中間メインフレーム131に加えて、シートフレーム132を有する。シートフレーム132は、中間メインフレーム131に固定される。シートフレーム132は、運転者(乗員)が着座するためのシート10と、同乗者(乗員)が着座するためのタンデムシート11を支持する。つまり、シート10およびタンデムシート11は、中間フレーム130に支持される。タンデムシート11は、シート10の後端よりも後方向に位置する。自動二輪車100Aの乗車定員は、2名である。タンデムシート11は無くてもよい。なお、図7には、車両100Aを右方向に見た場合のシート10の上縁以外のシート10の境界線は表示していない。また、図2には、車両100Aを右方向に見た場合のタンデムシート11の上縁以外のタンデムシート11の境界線は表示していない。シート10の後端は、タンデムシート11の前端とほぼ同じ位置である。直進可能に直立した状態の車両100Aを左方向または右方向に見て、シート10全体が、ラウンドトレッド面リヤタイヤ揺動軸線A4100Aから上方向に離れている。直進可能に直立した状態の車両100Aを左方向または右方向に見て、タンデムシート11全体が、ラウンドトレッド面リヤタイヤ揺動軸線A4100Aから上方向に離れている。
 次に、リヤフレーム140について説明する。リヤフレーム140は、リヤ揺動軸部141と、リヤサスペンションユニット42を有する。リヤサスペンションユニット42は、リヤ揺動軸部141の後部に接続されている。リヤサスペンションユニット42のスイングアーム43の前部は、左右方向に平行な軸線回りに揺動可能にリヤ揺動軸部141の後部に支持される。リヤサスペンションユニット42のリヤサスペンション44の一端は、リヤ揺動軸部141の後部に接続されている。リンク機構45は、リヤ揺動軸部141の後部と、リヤサスペンション44の他端と、スイングアーム43にそれぞれ、左右方向に平行な軸線回りに揺動可能に接続されている。
 リヤホイール5には、インホイールモータ170とリヤブレーキ108(図示せず)が設置されている。インホイールモータ170は、本発明の駆動源に相当する。インホイールモータ170は、電気モータである。インホイールモータ170は、ラウンドトレッド面リヤタイヤ4に駆動力を付与可能に構成されている。インホイールモータ170は、変速機を含んでいてもよく、含んでいなくてもよい。インホイールモータ170が変速機を含んでいない場合、リヤホイール5が変速機を支持していてもよい。インホイールモータ170の出力(駆動力)は、変速機を介して、ラウンドトレッド面リヤタイヤ4に伝達される。変速機は、インホイールモータ170の出力軸の回転速度とラウンドトレッド面リヤタイヤ4の回転速度の比を変更できるように構成されている。また、変速機は設けられなくてもよい。リヤブレーキ108は、ラウンドトレッド面リヤタイヤ4に制動力を付与可能に構成されている。リヤブレーキ108は、ドラムブレーキである。ドラムブレーキは、摩擦力を利用した機械的ブレーキである。
 リヤ揺動軸部141は、略円筒状である。リヤ揺動軸部141は、リヤ電気モータ160を支持する。リヤ電気モータ160は、リヤ揺動軸部141の前部の内側に配置されている。リヤ電気モータ160は、リヤフレーム140に固定されている。リヤ電気モータ160は、フロント電気モータ162の後端よりも後方向に位置する。リヤ電気モータ160は、出力軸が双方向に回転可能な電気モータである。リヤ電気モータ160は、減速機付モータであってもよい。リヤ電気モータ160の出力軸は、前斜め上向きに突出している。リヤ電気モータ160の出力軸は、中間メインフレーム131に固定されている。なお、リヤ電気モータ160が中間メインフレーム131に支持され、リヤ電気モータ160の出力軸がリヤ揺動軸部141に固定されてもよい。
 リヤ電気モータ160の出力軸が回転することで、リヤフレーム140がリヤ電気モータ160の出力軸の中心軸線回りに中間フレーム130に対して揺動する。言い換えると、リヤ電気モータ160は、出力軸の中心軸線回りにリヤフレーム140を中間フレーム130に対して揺動させる。リヤ電気モータ160は、本発明のラウンドトレッド面リヤタイヤ揺動アクチュエータに相当する。リヤ電気モータ160の出力軸が、ラウンドトレッド面リヤタイヤ揺動軸線A4100Aを構成する。ラウンドトレッド面リヤタイヤ揺動軸線A4100Aは、無限に延びる直線である。
 リヤ揺動軸部141の前端部は、リヤ電気モータ160を介して、中間メインフレーム131に支持される。さらに、リヤ揺動軸部141の後部は、リヤ電気モータ160の出力軸の中心軸線回りに揺動可能に中間メインフレーム131に支持される。このように、リヤフレーム140は、リヤ電気モータ160の出力軸の中心軸線回りに揺動可能に、中間フレーム130に支持される。リヤフレーム140がラウンドトレッド面リヤタイヤ揺動軸線A4100A回りに揺動可能に中間フレーム130に支持されていることで、ラウンドトレッド面リヤタイヤ4は、ラウンドトレッド面リヤタイヤ揺動軸線A4100A回りに中間フレーム130に対して揺動可能である。
 ラウンドトレッド面リヤタイヤ揺動軸線A4100Aは、後方向に向かうほど下方向に向かう傾きを持つ。つまり、ラウンドトレッド面リヤタイヤ揺動軸線A4100Aにある第1の点をラウンドトレッド面リヤタイヤ揺動軸線A4100Aに沿って後方向に移動させた点を第2の点とした場合、第2の点は第1の点より低い位置にある。直進可能に直立した状態の車両100Aを左方向または右方向に見た場合のラウンドトレッド面リヤタイヤ揺動軸線A4100Aの上下方向に対する傾斜角度は、特に限定されない。但し、直進可能に直立した状態の車両100Aを左方向または右方向に見て、ラウンドトレッド面リヤタイヤ揺動軸線A4100Aの上下方向に対する傾斜角度は、45°を超えることが好ましい。直進可能に直立した状態の車両100Aを左方向または右方向に見て、ラウンドトレッド面リヤタイヤ揺動軸線A4100Aと路面RSとの交点は、ラウンドトレッド面リヤタイヤ4の前端を通り上下方向に平行な直線L3100Aと、ラウンドトレッド面リヤタイヤ4の後端を通り上下方向に平行な直線L4100Aとの間にある。図7では、ラウンドトレッド面リヤタイヤ揺動軸線A4100Aと路面RSとの交点は、ラウンドトレッド面リヤタイヤ4と路面RSの接点と同じかほぼ同じである。
 リヤフレーム140は、リヤ揺動軸部141およびリヤサスペンションユニット42に加えて、バッテリ支持部146を有する。バッテリ支持部146は、リヤ揺動軸部141の下面に固定されている、バッテリ支持部146は、蓄電装置171を支持する。蓄電装置171は、少なくとも1つのバッテリ(二次電池)で構成される。蓄電装置171は、各種の電気機器に電力を供給する。各種の電気機器は、インホイールモータ170、フロント電気モータ162、リヤ電気モータ160、各種センサ、および制御装置80を含む。第2実施形態の蓄電装置171の合計容量は、第1実施形態の具体例1のバッテリ(図示せず)の合計容量よりも大きい。バッテリは、例えば、鉛蓄電池であってもよく、リチウム蓄電池であってもよい。バッテリ支持部146には、錘が設置されていてもよい。錘は、バッテリ支持部146以外の箇所に設けてもよい。錘は、ラウンドトレッド面リヤタイヤ揺動軸線A4100Aから下方向に離れた位置に配置することが好ましい。錘は、リヤフレーム140に設けてもよく、中間フレーム130に設けてもよい。
 上述したように、自動二輪車100Aは、ハンドルユニット50を有する。ハンドルユニット50は、左グリップ51および右グリップ(図示せず)を有する。左グリップ51および右グリップは、運転者(乗員)の手に把持される。左グリップ51および右グリップは、それぞれ、グリップの中心軸線回りに揺動可能である。ハンドルユニット50は、中間フレーム130に固定されている。左グリップ51および右グリップは、中間フレーム130に対して左右方向に移動不能である。そのため、ハンドルユニット50は、第1実施形態のように運転者によって操作されない。つまり、ラウンドトレッド面フロントタイヤ2は、ハンドルユニット50によって操舵されない。
 左グリップ51または右グリップには、ステアリングスイッチ(図示せず)が設けられている。ステアリングスイッチは、360°未満回転可能に構成されていてもよく、360°回転可能に構成されていてもよい。ステアリングスイッチは、グリップを把持した手の指で操作される。運転者がステアリングスイッチを回すように操作することで、ラウンドトレッド面フロントタイヤ2およびラウンドトレッド面リヤタイヤ4の少なくとも一方が中間フレーム130に対して揺動して、車両100Aが操舵される。つまり、ラウンドトレッド面フロントタイヤ2およびラウンドトレッド面リヤタイヤ4の操舵は、ステア・バイ・ワイヤ方式で制御される。制御装置80は、ステアリングスイッチの操作量に応じて、フロント電気モータ162およびリヤ電気モータ160の少なくとも一方を作動させる。状況によっては、制御装置80は、ステアリングスイッチの操作に関わらず、フロント電気モータ162およびリヤ電気モータ160の少なくとも一方を作動させる。
 右グリップは、アクセルグリップである。運転者がアクセルグリップを回すように操作することで、インホイールモータ170(駆動源)の出力が調整される。駆動源が電気モータ(インホイールモータ170)であるため、駆動源は、アクセル・バイ・ワイヤ方式で制御される。インホイールモータ170の出力は、制御装置80によって制御される。制御装置80は、アクセルグリップの操作量を検出するアクセルセンサ(図示せず)の検出結果に応じて、インホイールモータ170の出力を制御する。状況によっては、制御装置80は、アクセルグリップの操作に関わらず、インホイールモータ170の出力を変更してもよい。
 ハンドルユニット50の右部には、フロントブレーキレバー(図示せず)が設けられている。運転者が右グリップを握った手の指でフロントブレーキレバーを引くように操作することで、フロントブレーキ106が作動して、ラウンドトレッド面フロントタイヤ2に制動力が付与される。フロントブレーキ106は、ブレーキ・バイ・ワイヤ方式で制御される。フロントブレーキ106は、制御装置80に接続される。上述したように、フロントブレーキ106は、液圧式ディスクブレーキであって、フロントハイドロリックユニット107に接続される。制御装置80は、フロントブレーキレバーの操作量を検出するフロントブレーキセンサ(図示せず)の検出結果に応じて、フロントハイドロリックユニット107からフロントブレーキ106に供給する液圧を調整する。つまり、制御装置80は、フロントブレーキレバーの操作量に応じて、フロントブレーキ106を作動させる。状況によっては、制御装置80は、フロントブレーキレバーの操作に関わらず、フロントブレーキ106を作動させてもよい。なお、フロントブレーキレバーは、ブレーキホースを介して、フロントハイドロリックユニット107と接続されてもよい。フロントブレーキレバーの代わりに、ブレーキペダルを設けてもよい。ブレーキペダルは、運転者の足で操作される。
 ハンドルユニット50の左部には、リヤブレーキレバー(図示せず)が設けられている。運転者が左グリップ51を握った手の指でリヤブレーキレバーを引くように操作することで、リヤブレーキ108が作動して、ラウンドトレッド面リヤタイヤ4に制動力が付与される。リヤブレーキ108は、ブレーキ・バイ・ワイヤ方式で制御される。リヤブレーキ108は、制御装置80に接続される。上述したように、リヤブレーキ108は、ドラムブレーキである。制御装置80は、リヤブレーキレバーの操作量を検出するリヤブレーキセンサ(図示せず)の検出結果に応じて、リヤブレーキ108を作動させる。状況によっては、制御装置80は、リヤブレーキレバーの操作に関わらず、リヤブレーキ108を作動させてもよい。なお、リヤブレーキレバーは、リヤブレーキ108と機械的に接続されてもよい。リヤブレーキレバーの代わりに、ブレーキペダルを設けてもよい。ブレーキペダルは、運転者の足で操作される。
 自動二輪車100Aは、車体カバー112を有する。図7には、車体カバー112の一部を二点鎖線で表示している。車体カバー112は、複数の部品で構成される。車体カバー112は、フロントフレーム120の少なくとも一部と、中間フレーム130と、リヤフレーム140の少なくとも一部を覆う。車体カバー112の少なくとも一部は、リヤフレーム140に支持される。車体カバー112は、図示しないフロントカウルを含む。フロントカウルは、中間メインフレーム131の前面を前から覆う。
 自動二輪車100Aは、第1実施形態の具体例1と同じく、傾斜検出装置81を有する。傾斜検出装置81は、中間フレーム130に支持される。
 自動二輪車1Aと異なり、自動二輪車100Aは、運転モードとして、自律運転モードと、手動運転モードを有する。自律運転モードでは、運転者が運転しなくても自動二輪車100Aが目的位置まで自動的に走行する。手動運転モードでは、運転者を能動的に支援する制御が行われてもよい。
 自動二輪車100Aは、制御装置80を有する。制御装置80は、中間フレーム130に支持されてもよく、リヤフレーム140に支持されてもよい。制御装置80の位置は、図7に示す位置に限定されない。制御装置80は、アクセルセンサ、フロントブレーキセンサ、リヤブレーキセンサ、車輪速センサ、ハンドル舵角センサ、および傾斜検出装置81などの各種センサに接続される。制御装置80は、これらのセンサから信号を受信する。上述したように、傾斜検出装置81が演算処理部を含む場合は、傾斜検出装置81の演算処理部は制御装置80に含まれてもよい。制御装置80は、インホイールモータ170に接続される。制御装置80は、フロントブレーキおよびリヤブレーキのアクチュエータに接続される。制御装置80は、リヤ電気モータ160およびフロント電気モータ162に接続される。制御装置80は、接続されたこれらの機器を制御する。制御装置80は、リヤ電気モータ160およびフロント電気モータ162を制御することで、ラウンドトレッド面リヤタイヤ4およびラウンドトレッド面フロントタイヤ2の揺動を制御する。制御装置80は、本発明のラウンドトレッド面リヤタイヤ揺動アクチュエータ制御装置およびラウンドトレッド面フロントタイヤ揺動制御装置を含む。制御装置80によるリヤ電気モータ160およびフロント電気モータ162の制御の詳細は後述する。
 中間フレーム130、フロントフレーム120、リヤフレーム140、ラウンドトレッド面フロントタイヤ2、ラウンドトレッド面リヤタイヤ4、リヤ電気モータ160(ラウンドトレッド面リヤタイヤ揺動アクチュエータ)、および制御装置80は、以下の2つの条件を満たすように、形成または配置される。1つ目の条件は、直進可能に直立した状態の車両100Aを左方向または右方向に見て、ラウンドトレッド面リヤタイヤ揺動軸線A4100Aが、外部から荷重がかかっていない状態の車両100Aの重心G0100Aとシート10との間を通ることである。外部から荷重がかかっていない状態の車両100Aの重心G0100Aは、図7に示す位置に限らない。2つ目の条件は、シート10にかかる荷重がゼロから増大するにつれて、シート10に着座する運転者(乗員)を含む車両100Aの重心がラウンドトレッド面リヤタイヤ揺動軸線A4100Aに近づくことである。シート10にかかる荷重がゼロから増大するにつれて、運転者(乗員)を含む車両100Aの重心は、例えば、図7に示す重心G0100Aから矢印方向に移動する。図7に二点鎖線で示す重心G1100Aは、シート10に着座する運転者(乗員)を含む車両100Aの重心G1100Aの一例である。シート10に着座する運転者(乗員)を含む車両100Aの重心G1100Aは、ラウンドトレッド面リヤタイヤ揺動軸線A4100Aを越えてもよく、越えなくてもよい。シート10およびタンデムシート11にそれぞれ乗員が着座した場合、2名の乗員を含む車両100Aの重心は、ラウンドトレッド面リヤタイヤ揺動軸線A4100Aを越えてもよく、越えなくてもよい。推奨される乗載荷重の上限値を極端に上回らなければ、車両100Aが外部から受ける全ての荷重を含む車両100Aの重心は、ラウンドトレッド面リヤタイヤ揺動軸線A4100Aから極端に離れることはない。この構成によると、実施形態で述べた効果と同様の効果が得られる。
 車両100Aが直進可能に直立した状態において、リヤ電気モータ160(ラウンドトレッド面リヤタイヤ揺動アクチュエータ)は、ラウンドトレッド面リヤタイヤ4およびラウンドトレッド面フロントタイヤ2の両方の上端よりも上方向に位置する。ラウンドトレッド面リヤタイヤ揺動軸線A4100Aは、リヤ電気モータ160(ラウンドトレッド面リヤタイヤ揺動アクチュエータ)を通る。直進可能に直立した状態の車両100Aを左方向または右方向に見て、フロント電気モータ162(ラウンドトレッド面フロントタイヤ揺動アクチュエータ)の少なくとも一部は、ラウンドトレッド面リヤタイヤ揺動軸線A4100Aから下方向に離れている。図7では、フロント電気モータ162全体が、ラウンドトレッド面リヤタイヤ揺動軸線A4100Aから下方向に離れている。
 直進可能に直立した状態の車両100Aを左方向または右方向に見て、蓄電装置171の少なくとも一部は、ラウンドトレッド面リヤタイヤ揺動軸線A4100Aから下方向に離れている。図7では、蓄電装置171全体が、ラウンドトレッド面リヤタイヤ揺動軸線A4100Aから下方向に離れている。直進可能に直立した状態の車両100Aを左方向または右方向に見て、フロントハイドロリックユニット107の少なくとも一部は、ラウンドトレッド面リヤタイヤ揺動軸線A4100Aから下方向に離れている。図7では、フロントハイドロリックユニット107全体が、ラウンドトレッド面リヤタイヤ揺動軸線A4100Aから下方向に離れている。直進可能に直立した状態の車両100Aを左方向または右方向に見て、フロントサスペンションユニット21の少なくとも一部が、ラウンドトレッド面リヤタイヤ揺動軸線A4100Aから下方向に離れている。図7では、フロントサスペンションユニット21全体が、ラウンドトレッド面リヤタイヤ揺動軸線A4100Aから下方向に離れている。直進可能に直立した状態の車両100Aを左方向または右方向に見て、リヤサスペンションユニット42の少なくとも一部は、ラウンドトレッド面リヤタイヤ揺動軸線A4100Aから下方向に離れている。図7では、リヤサスペンションユニット42の一部が、ラウンドトレッド面リヤタイヤ揺動軸線A4100Aから下方向に離れており、リヤサスペンションユニット42の他の部分は、ラウンドトレッド面リヤタイヤ揺動軸線A4100Aから上方向に離れている。
 次に、制御装置80によるラウンドトレッド面リヤタイヤ4およびラウンドトレッド面フロントタイヤ2の揺動制御について説明する。
 制御装置80は、傾斜検出装置81で検出された中間フレーム130の上下方向に対する左右方向への傾きに関連する物理量に基づいて、リヤ電気モータ160とフロント電気モータ162を制御する。制御装置80は、傾斜検出装置81の検出結果に加えて、他のパラメータに基づいて、ラウンドトレッド面リヤタイヤ4およびラウンドトレッド面フロントタイヤ2の揺動制御を変更してもよい。例えば、車輪速センサの検出結果に基づいてもよい。例えばハンドル舵角センサの検出結果に基づいてもよい。また、例えば、地図情報に基づいてもよい。また、雨などの天候の情報に基づいてもよい。また、例えば、運転者の技量に基づいてもよい。運転者の技量は、運転者が入力するものであっても、走行状況から制御装置が判定したものであってもよい。また、車種によって、ラウンドトレッド面リヤタイヤ4およびラウンドトレッド面フロントタイヤ2の揺動制御は変更されてもよい。
 制御装置80は、ステアリングスイッチが操作された場合、または、自律運転モード中に車両100Aを操舵させる場合に、ラウンドトレッド面フロントタイヤ2およびラウンドトレッド面リヤタイヤ4の一方を揺動させる。
 具体的には、例えば、車両100Aを左方向に操舵させたい場合、制御装置80は、以下のいずれかの制御を行う。制御装置80は、ラウンドトレッド面フロントタイヤ2が前方向に対して左方向に傾くように、ラウンドトレッド面フロントタイヤ2を揺動させてもよい。制御装置80は、ラウンドトレッド面フロントタイヤ2が前方向に対して右方向に傾くようにラウンドトレッド面フロントタイヤ2を揺動させてから、ラウンドトレッド面フロントタイヤ2が前方向に対して左方向に傾くようにラウンドトレッド面フロントタイヤ2を揺動させてもよい。つまり、いわゆる逆操舵(当て舵)を行ってもよい。制御装置80は、ラウンドトレッド面リヤタイヤ4が上方向に対して左方向に傾くように、ラウンドトレッド面リヤタイヤ4を揺動させてもよい。制御装置80は、ラウンドトレッド面フロントタイヤ2とラウンドトレッド面リヤタイヤ4の両方を上述したように揺動させてもよい。
 また、例えば、車両100Aが左旋回している状態から車両100Aを右方向に操舵させたい場合、以下のいずれかの制御を行う。制御装置80は、車両100Aが起き上るように、ラウンドトレッド面リヤタイヤ4を揺動させてもよい。制御装置80は、ラウンドトレッド面フロントタイヤ2が前方向に対して右方向に傾くように、ラウンドトレッド面フロントタイヤ2を揺動させてもよい。制御装置80は、ラウンドトレッド面フロントタイヤ2とラウンドトレッド面リヤタイヤ4の両方を上述したように揺動させてもよい。
 制御装置80は、車両100Aの旋回中に、車両100Aの上方向に対する左右方向の傾きが大きくなるように、ラウンドトレッド面リヤタイヤ4を揺動させてもよい。それにより、旋回性を向上できる。つまり、旋回半径を小さくできる。
 制御装置80は、車両100Aが横風を受けて傾いている場合に、ラウンドトレッド面リヤタイヤ4を揺動させてもよい。例えば、車両100Aが右から風を受けて左方向に傾斜している場合に、ラウンドトレッド面リヤタイヤ4が上方向に対して左方向に傾く方向に、ラウンドトレッド面リヤタイヤ4を揺動させてもよい。さらに、制御装置80は、ラウンドトレッド面フロントタイヤ2も揺動させてもよい。
 自動二輪車100Aは、手動運転モード中に、車両100Aの上下方向に対する左右方向の傾きを軽減する傾斜軽減モードを選択可能でもよい。制御装置80は、傾斜軽減モード中に車両100Aが上方向に対して左右方向に傾いた場合に、ラウンドトレッド面リヤタイヤ4およびラウンドトレッド面フロントタイヤ2の少なくとも一方を揺動させる。特に低速走行時は、車両100Aが上下方向に対して左右方向に傾きやすい。傾斜軽減モード中のラウンドトレッド面リヤタイヤ4の揺動制御は、低速走行時に限ってもよい。制御装置80は、自律運転モードで直進走行中に、車両100Aが上方向に対して左右方向に傾いた場合に、ラウンドトレッド面リヤタイヤ4とラウンドトレッド面フロントタイヤ2の少なくとも一方を揺動させてもよい。
 制御装置80は、例えば6km/時以下の低速走行する際、または、停止中に、車両100Aが自立した状態を維持できるように、ラウンドトレッド面リヤタイヤ4を双方向に交互に揺動させてもよい。また、ラウンドトレッド面フロントタイヤ2を双方向に交互に揺動させてもよい。ラウンドトレッド面リヤタイヤ4とラウンドトレッド面フロントタイヤ2の両方を揺動させてもよい。例えば、人が車両100Aを押して歩く際に、この制御を行ってもよい。
 第2実施形態は、第1実施形態および第1実施形態の具体例1と同様の構成については、それぞれ同様の効果を奏する。第2実施形態は、さらに以下の効果を奏する。
 ラウンドトレッド面フロントタイヤ2のラウンドトレッド面フロントタイヤ揺動軸線A2回りの揺動が、制御装置80によって制御される。したがって、ラウンドトレッド面リヤタイヤ4の揺動と、ラウンドトレッド面フロントタイヤ2の揺動を連動させて行うことができる。そのため、ラウンドトレッド面リヤタイヤ4の揺動制御の制御性を向上できる。よって、自動二輪車100Aの乗載荷重の変化に対するラウンドトレッド面リヤタイヤ4の揺動制御の制御性をより向上できる。
 ラウンドトレッド面フロントタイヤ2の揺動が制御装置80によって制御されるため、フロントフレーム120に接続されたハンドルを設けなくてよい。この場合、車両100Aのレイアウトの自由度を向上できる。そのため、シート10に荷重がかかっていない状態の車両100Aの重心G0100Aとシート10との間にラウンドトレッド面リヤタイヤ揺動軸線A4100Aが位置するレイアウトを、容易に実現できる。
 ラウンドトレッド面フロントタイヤ2の揺動が制御装置80によって制御されるため、ラウンドトレッド面フロントタイヤ2の逆操舵(当て舵)を、制御装置80の制御によって行うことができる。つまり、ラウンドトレッド面フロントタイヤ2がハンドルにより操舵される場合とは異なり、制御装置80は、ラウンドトレッド面フロントタイヤ2の全ての操舵が、逆操舵と順操舵のどちらであるかを把握している。よって、ラウンドトレッド面リヤタイヤ4の揺動と、ラウンドトレッド面フロントタイヤ2の揺動の連動性を高めることができる。
 直進可能に直立した状態の車両100Aを左方向または右方向に見て、比較的大きい重量を有するフロントハイドロリックユニット107の少なくとも一部が、ラウンドトレッド面リヤタイヤ揺動軸線A4100Aから下方向に離れている。そのため、シート10に荷重がかかっていない状態の車両100Aの重心G0100Aとシート10との間にラウンドトレッド面リヤタイヤ揺動軸線A4100Aが位置するレイアウトを、容易に実現できる。
 直進可能に直立した状態の車両100Aを左方向または右方向に見て、比較的大きい重量を有するインホイールモータ170(駆動源)の少なくとも一部が、ラウンドトレッド面リヤタイヤ揺動軸線A4100Aから下方向に離れている。そのため、シート10に荷重がかかっていない状態の車両100Aの重心G0100Aとシート10との間にラウンドトレッド面リヤタイヤ揺動軸線A4100Aが位置するレイアウトを、容易に実現できる。
 直進可能に直立した状態の車両100Aを左方向または右方向に見て、比較的大きい重量を有するフロント電気モータ162(ラウンドトレッド面フロントタイヤ揺動アクチュエータ)の少なくとも一部が、ラウンドトレッド面リヤタイヤ揺動軸線A4100Aから下方向に離れている。そのため、シート10に荷重がかかっていない状態の車両100Aの重心G0100Aとシート10との間にラウンドトレッド面リヤタイヤ揺動軸線A4100Aが位置するレイアウトを、容易に実現できる。
 直進可能に直立した状態の車両100Aを左方向または右方向に見て、比較的大きい重量を有する蓄電装置171の少なくとも一部が、ラウンドトレッド面リヤタイヤ揺動軸線A4100Aから下方向に離れている。そのため、シート10に荷重がかかっていない状態の車両100Aの重心G0100Aとシート10との間にラウンドトレッド面リヤタイヤ揺動軸線A4100Aが位置するレイアウトを、容易に実現できる。
 シート10は中間フレーム130に支持される。そのため、リヤフレーム140は、シート10に着座する乗員の荷重を受けない。よって、リヤフレーム140がシート10を支持する場合に比べて、リヤ電気モータ160(ラウンドトレッド面リヤタイヤ揺動アクチュエータ)が揺動させる対象の重量が小さい。そのため、ラウンドトレッド面リヤタイヤ4の揺動制御の制御性を向上できる。よって、自動二輪車100Aの乗載荷重の変化に対するラウンドトレッド面リヤタイヤ4の揺動制御の制御性をより向上できる。
 乗員によって、乗員の重量は異なる。リヤフレーム140がシート10を支持する場合、乗員によって、リヤ電気モータ160(ラウンドトレッド面リヤタイヤ揺動アクチュエータ)が揺動させる対象の重量が変化する。それにより、ラウンドトレッド面リヤタイヤ4の揺動制御が複雑になり難しくなる。特に低速走行時の制御が難しい。
 一方、シート10が中間フレーム130に支持される場合、乗員の重量が変化しても、リヤ電気モータ160(ラウンドトレッド面リヤタイヤ揺動アクチュエータ)が揺動させる対象の重量は変化しない。そのため、ラウンドトレッド面リヤタイヤ4の揺動制御の制御性を向上できる。よって、自動二輪車100Aの乗載荷重の変化に対するラウンドトレッド面リヤタイヤ4の揺動制御の制御性をより向上できる。
 自動二輪車100Aの走行中、乗員は重心を移動させる動作をする場合がある。特に、自動二輪車100Aの旋回時に、乗員は重心を左右方向に移動させる動作をする場合がある。リヤフレーム140がシート10を支持する場合、乗員が重心を移動させる動作を行うと、リヤ電気モータ160(ラウンドトレッド面リヤタイヤ揺動アクチュエータ)が揺動させる対象の重心が変化する。それにより、ラウンドトレッド面リヤタイヤ4の揺動制御が複雑になり難しくなる。特に低速走行時の制御が難しい。
 一方、シート10または荷台が中間フレーム130に支持される場合、乗員が重心を移動させる動作を行っても、リヤ電気モータ160(ラウンドトレッド面リヤタイヤ揺動アクチュエータ)が揺動させる対象の重心は変化しない。そのため、ラウンドトレッド面リヤタイヤ4の揺動制御の制御性を向上できる。よって、自動二輪車100Aの乗載荷重の変化に対するラウンドトレッド面リヤタイヤ4の揺動制御の制御性をより向上できる。
 リヤフレーム140が中間フレーム130に対して揺動するとき、中間フレーム130はリヤフレーム140よりも姿勢の変化が少ない。シート10は中間フレーム130に支持される。そのため、シート10がリヤフレーム140に支持される場合に比べて、乗員の姿勢を安定させることができる。
 比較的大きい重量を有するフロントハイドロリックユニット107が中間フレーム130に支持される。よって、リヤフレーム140がハイドロリックユニットを支持する場合に比べて、リヤ電気モータ160(ラウンドトレッド面リヤタイヤ揺動アクチュエータ)が揺動させる対象の重量が小さい。そのため、ラウンドトレッド面リヤタイヤ4の揺動制御の制御性を向上できる。よって、自動二輪車100Aの乗載荷重の変化に対するラウンドトレッド面リヤタイヤ4の揺動制御の制御性をより向上できる。
 比較的大きい重量を有するインホイールモータ170(駆動源)が中間フレーム130に支持される。よって、リヤフレーム140が駆動源を支持する場合に比べて、リヤ電気モータ160(ラウンドトレッド面リヤタイヤ揺動アクチュエータ)が揺動させる対象の重量が小さい。そのため、ラウンドトレッド面リヤタイヤ4の揺動制御の制御性を向上できる。よって、自動二輪車100Aの乗載荷重の変化に対するラウンドトレッド面リヤタイヤ4の揺動制御の制御性をより向上できる。
 比較的大きい重量を有する蓄電装置171が中間フレーム130に支持される。よって、リヤフレーム140が蓄電装置171を支持する場合に比べて、リヤ電気モータ160(ラウンドトレッド面リヤタイヤ揺動アクチュエータ)が揺動させる対象の重量が小さい。そのため、ラウンドトレッド面リヤタイヤ4の揺動制御の制御性を向上できる。よって、自動二輪車100Aの乗載荷重の変化に対するラウンドトレッド面リヤタイヤ4の揺動制御の制御性をより向上できる。
 <本発明の第2実施形態の変更例1>
 次に、本発明の第2実施形態の変更例1の自動二輪車100Bについて、図8を用いて説明する。基本的に、本発明の第2実施形態の変更例1は、本発明の第1実施形態の説明で述べた特徴を全て有している。本発明の第1実施形態、第1実施形態の具体例1、および、第2実施形態と同じ部位についての説明は省略する。以下、第2実施形態と異なる構成について説明する。
 リヤ電気モータ160は、リヤフレーム140をラウンドトレッド面リヤタイヤ揺動軸線A4100B回りに中間フレーム130に対して揺動させる。ラウンドトレッド面リヤタイヤ揺動軸線A4100Bは、後方向に向かうほど下方向に向かう傾きを持つ。直進可能に直立した状態の車両100Bを左方向または右方向に見て、ラウンドトレッド面リヤタイヤ揺動軸線A4100Bと路面RSとの交点は、ラウンドトレッド面リヤタイヤ4と路面RSの接点よりも後方向に位置する。但し、第2実施形態と同じく、ラウンドトレッド面リヤタイヤ揺動軸線A4100Bと路面RSとの交点は、ラウンドトレッド面リヤタイヤ4の前端を通り上下方向に平行な直線L3100Bと、ラウンドトレッド面リヤタイヤ4の後端を通り上下方向に平行な直線L4100Bとの間にある。
 中間フレーム130、フロントフレーム120、リヤフレーム140、ラウンドトレッド面フロントタイヤ2、ラウンドトレッド面リヤタイヤ4、リヤ電気モータ160(ラウンドトレッド面リヤタイヤ揺動アクチュエータ)、および制御装置80は、以下の2つの条件を満たすように、形成または配置される。1つ目の条件は、直進可能に直立した状態の車両100Bを左方向または右方向に見て、ラウンドトレッド面リヤタイヤ揺動軸線A4100Bが、外部から荷重がかかっていない状態の車両100Bの重心G0100Bとシート10との間を通ることである。外部から荷重がかかっていない状態の車両100Bの重心G0100Bは、図8に示す位置に限らない。2つ目の条件は、シート10にかかる荷重がゼロから増大するにつれて、シート10に着座する運転者(乗員)を含む車両100Bの重心がラウンドトレッド面リヤタイヤ揺動軸線A4100Bに近づくことである。シート10にかかる荷重がゼロから増大するにつれて、運転者(乗員)を含む車両100Bの重心は、例えば、図8に示す重心G0100Bから矢印方向に移動する。図8に二点鎖線で示す重心G1100Bは、シート10に着座する運転者(乗員)を含む車両100Bの重心の一例である。シート10に着座する運転者(乗員)を含む車両100Bの重心G1100Bは、ラウンドトレッド面リヤタイヤ揺動軸線A4100Bを越えてもよく、越えなくてもよい。シート10およびタンデムシート11にそれぞれ乗員が着座した場合、2名の乗員を含む車両100Bの重心は、ラウンドトレッド面リヤタイヤ揺動軸線A4100Bを越えてもよく、越えなくてもよい。
 <本発明の第2実施形態の変更例2>
 次に、本発明の第2実施形態の変更例2の自動二輪車100Cについて、図9を用いて説明する。基本的に、本発明の第2実施形態の変更例2は、本発明の第1実施形態の説明で述べた特徴を全て有している。本発明の第1実施形態、第1実施形態の具体例1、および、第2実施形態と同じ部位についての説明は省略する。以下、第2実施形態と異なる構成について説明する。
 リヤ電気モータ160は、リヤフレーム140をラウンドトレッド面リヤタイヤ揺動軸線A4100C回りに中間フレーム130に対して揺動させる。ラウンドトレッド面リヤタイヤ揺動軸線A4100Cは、後方向に向かうほど下方向に向かう傾きを持つ。直進可能に直立した状態の車両100Cを左方向または右方向に見て、ラウンドトレッド面リヤタイヤ揺動軸線A4100Cと路面RSとの交点は、ラウンドトレッド面リヤタイヤ4と路面RSの接点よりも前方向に位置する。但し、第2実施形態と同じく、ラウンドトレッド面リヤタイヤ揺動軸線A4100Cと路面RSとの交点は、ラウンドトレッド面リヤタイヤ4の前端を通り上下方向に平行な直線L3100Cと、ラウンドトレッド面リヤタイヤ4の後端を通り上下方向に平行な直線L4100Cとの間にある。
 第2実施形態と同じく、中間フレーム130、フロントフレーム120、リヤフレーム140、ラウンドトレッド面フロントタイヤ2、ラウンドトレッド面リヤタイヤ4、リヤ電気モータ160(ラウンドトレッド面リヤタイヤ揺動アクチュエータ)、および制御装置80は、以下の2つの条件を満たすように、形成または配置される。1つ目の条件は、直進可能に直立した状態の車両100Cを左方向または右方向に見て、ラウンドトレッド面リヤタイヤ揺動軸線A4100Cが、外部から荷重がかかっていない状態の車両100Cの重心G0100Cとシート10との間を通ることである。外部から荷重がかかっていない状態の車両100Cの重心G0100Cは、図9に示す位置に限らない。2つ目の条件は、シート10にかかる荷重がゼロから増大するにつれて、シート10に着座する運転者(乗員)を含む車両100Cの重心がラウンドトレッド面リヤタイヤ揺動軸線A4100Cに近づくことである。シート10にかかる荷重がゼロから増大するにつれて、運転者(乗員)を含む車両100Cの重心は、例えば、図9に示す重心G0100Cから矢印方向に移動する。図9に二点鎖線で示す重心G1100Cは、シート10に着座する運転者(乗員)を含む車両100Cの重心G1100Cの一例である。シート10に着座する運転者(乗員)を含む車両100Cの重心G1100Cは、ラウンドトレッド面リヤタイヤ揺動軸線A4100Cを越えてもよく、越えなくてもよい。シート10およびタンデムシート11にそれぞれ乗員が着座した場合、2名の乗員を含む車両100Cの重心は、ラウンドトレッド面リヤタイヤ揺動軸線A4100Cを越えてもよく、越えなくてもよい。
 <本発明の第2実施形態の変更例3>
 次に、本発明の第2実施形態の変更例3の自動二輪車100Dについて、図10~図17を用いて説明する。基本的に、本発明の第2実施形態の変更例3は、本発明の第1実施形態の説明で述べた特徴を全て有している。本発明の第1実施形態、第1実施形態の具体例1、および、第2実施形態と同じ部位についての説明は省略する。以下、第2実施形態と異なる構成について説明する。なお、図10、図11および図12のフロントホイール3およびリヤホイール5は、スポーク等の形状を省略して表示している。
 図10、図11および図13に示すように、自動二輪車100Dは、フロントフレーム120、中間フレーム230、リヤフレーム140を有する。フロントフレーム120は、自動二輪車100Aと同じく、左右一対のフロントサスペンションユニット21、21と、フロント揺動軸部122を有する。中間フレーム230は、中間メインフレーム131と、シートフレーム132と、可動バックフレーム233を有する。リヤフレーム140は、自動二輪車100Aと同じく、リヤ揺動軸部141と、リヤサスペンションユニット42と、バッテリ支持部146を有する。
 自動二輪車100Aと同じく、フロントフレーム120は、フロント電気モータ162を介して中間フレーム230に支持される。自動二輪車100Aと同じく、フロント電気モータ162によって、フロントフレーム120およびラウンドトレッド面フロントタイヤ2は、ラウンドトレッド面フロントタイヤ揺動軸線A2回りに中間フレーム230に対して揺動される。自動二輪車100Aと同じく、リヤフレーム140は、リヤ電気モータ160を介して中間フレーム230に支持される。自動二輪車100Aと同じく、リヤ電気モータ160によって、リヤフレーム140およびラウンドトレッド面リヤタイヤ4は、ラウンドトレッド面リヤタイヤ揺動軸線A4100A回りに中間フレーム230に対して揺動される。
 フロントフレーム120のフロントサスペンションユニット21の長手方向に直交する断面は、前後方向に細長い略楕円状である。フロントフレーム120の前部には、フロントフェンダー213が取り付けられている。フロントフェンダー213は、フロントフレーム120には含まれない。フロントフェンダー213は、ラウンドトレッド面フロントタイヤ2の上部のトレッド面2aを覆っている。
 リヤフレーム140のバッテリ支持部146に支持される蓄電装置171は、6つのバッテリで構成される。6つのバッテリは、左右に3つずつ配置されている。また、バッテリ支持部146には錘(図示せず)が設置されている。錘は、バッテリ支持部146の下部に配置される。なお、錘はバッテリ支持部146に設置されなくてもよい。
 中間メインフレーム131は、リヤフレーム140のリヤ揺動軸部141の外周面の上部を覆う。中間メインフレーム131は、リヤ揺動軸部141の前部と後部をそれぞれ1周にわたって覆う。中間メインフレーム131は、モノコック構造の車体フレームである。
 図12に示すように、中間フレーム230のシートフレーム132は、中間メインフレーム131に固定されている。シートフレーム132の上部は、シートフレームカバー214で覆われている。シートフレームカバー214の後部の上面には、運転者Oが着座するためのシート210が設置されている。つまり、シートフレーム132は、シート210を支持する。シート210は、弾性を有するシート状の部材である。
 図11および図12に示すように、中間フレーム230の可動バックフレーム233は、シートフレーム132の後端部に接続されている。可動バックフレーム233は、左右方向に平行な軸線回りに揺動可能にシートフレーム132に接続されている。運転中を含む通常時、可動バックフレーム233は図11および図12に実線で示す位置に配置される。運転者O(乗員)が乗り降りする際にのみ、可動バックフレーム233は図12に二点鎖線で示す位置に配置される。図10および図13に示すように、可動バックフレーム233は、略V字状の部分を有する。このV字状の部分の間に運転者Oの胴体が配置される。自動二輪車100Dの乗車定員は、1名である。
 図11に示すように、ヘッド部235が中間メインフレーム131の上部に接続されている。ヘッド部235は、中間フレーム230に含まれない。図10に示すように、ヘッド部235は、ヘッド底部236と、ヘッドカバー237を有する。ヘッドカバー237は、ヘッド底部236の上面を覆っている。ヘッド底部236とヘッドカバー237との間には、機器等が配置される空間が形成されている。ヘッドカバー237の後部の上面には、クッション材216が設置されている。クッション材216は、弾性を有するシート状の部材である。シート210に着座する運転者Oの姿勢によっては、運転者Oの胴体の前面がクッション材216に接触する。ヘッド底部236は、3つのアーム234a、234a、234cによって中間フレーム230に接続されている。ヘッド部235は、前後方向に移動可能に中間メインフレーム131に接続されている。図示しないスイッチを操作することで、ヘッド底部236は、例えば電気モータ等で前後方向に移動される。この構成により、ヘッド部235の位置を、運転者Oの体格に合わせた位置に調整できる。また、ヘッド部235の位置を変更することで、車両100Dの重心G0100Dの位置を調整できる。
 図13に示すように、ヘッド部235は、左グリップ251と右グリップ252を有する。図11に示すように、左グリップ251および右グリップ252は、ヘッド底部236の側部から突出している。右グリップ252および左グリップ251は、ヘッド部235に固定されている。右グリップ252および左グリップ251は、回転不能(揺動不能)である。右グリップ252および左グリップ251は、運転者O(乗員)の手に把持される。
 図14に示すように、左グリップ251の後面には、ステアリングスイッチ253が設けられている。ステアリングスイッチ253は、360°未満回転可能に構成されていてもよく、360°回転可能に構成されていてもよい。ステアリングスイッチ253は、円弧状または円形状の操作面を有する。ステアリングスイッチ253の回転軸線は、左グリップ251の長手方向と略平行である。なお、ステアリングスイッチ253は、360度以上回転可能であって、円盤状の操作面を有していてもよい。ステアリングスイッチ253は、左グリップ251を把持した手の指で操作される。自動二輪車100Aと同じく、運転者Oがステアリングスイッチ253を回すように操作することで、ラウンドトレッド面フロントタイヤ2およびラウンドトレッド面リヤタイヤ4の少なくとも一方が中間フレーム230に対して揺動する。制御装置(図示せず)は、ステアリングスイッチ253の操作量に応じて、フロント電気モータ162およびリヤ電気モータ160の少なくとも一方を作動させる。状況によっては、制御装置は、ステアリングスイッチ253の操作に関わらず、フロント電気モータ162およびリヤ電気モータ160の少なくとも一方を作動させる。
 図15に示すように、右グリップ252の前面には、アクセルレバー254が設けられている。運転者Oがアクセルレバー254を引くように操作することで、インホイールモータ170(駆動源)の出力が調整される。制御装置は、アクセルレバー254の操作量を検出するアクセルセンサ(図示せず)の検出結果に応じて、インホイールモータ170の出力を調整する。状況によっては、制御装置は、アクセルレバー254の操作に関わらず、インホイールモータ170の出力を変更してもよい。
 図15に示すように、左グリップ251には、ブレーキレバー255が設けられている。運転者Oが左グリップ251を握った手の指でブレーキレバー255を引くように操作することで、フロントブレーキ106とリヤブレーキ108の少なくとも一方が作動する。それにより、ラウンドトレッド面フロントタイヤ2およびラウンドトレッド面リヤタイヤ4の少なくとも一方に制動力が付与される。自動二輪車100Aと異なり、フロントブレーキ106とリヤブレーキ108は、1つのブレーキレバー255で操作される。なお、自動二輪車100Dは、フロントブレーキ106とリヤブレーキ108を独立して操作するための2つのブレーキ操作部を有していてもよい。制御装置は、ブレーキレバー255の操作量を検出するブレーキセンサ(図示せず)の検出結果に応じて、フロントブレーキ106およびリヤブレーキ108の少なくとも一方を作動させる。状況によっては、制御装置は、ブレーキレバー255の操作に関わらず、フロントブレーキ106およびリヤブレーキ108の少なくとも一方を作動させてもよい。
 図10および図13に示すように、ヘッド部235の前部は、二股状である。図15に示すように、ヘッド部235の前左部と前右部に、それぞれ、プロジェクター256a、256bが設けられている。図12に示すように、プロジェクター256a、256bは、運転者Oのヘルメットのバイザーに画像を投影する。画像が投影されるバイザーは、ヘルメットのシールドの内側に配置されるインナーバイザーであってもよく、シールドの外側に配置されるアウターバイザーであってもよい。プロジェクター256a、256bから放射される光の放射角度は、スイッチ等で調整可能となっていてもよい。図16は、バイザーに投影される画像の一例を示している。投影画像は、例えば、車速、走行距離、蓄電装置の残量、警告、運転モード、時刻、地図、ナビゲーションの指示などの情報を含む。なお、プロジェクター256a、256bの数は1つだけでもよい。その場合、プロジェクター256a、256bは、左右どちらかに設けられてもよく、中央に設けられてもよい。
 図15に示すように、ヘッド部235の前部の中央には、2つのカメラ257a、257bが設けられている。カメラ257a、257bは、自動二輪車100Dの前を撮影する。カメラ257aとカメラ257aの一方は、広角レンズを有する広角カメラであり、他方は、望遠レンズを有する望遠カメラである。
 図10、図11および図13に示すように、中間メインフレーム131の後部に、左右一対のフットレストアーム217、217が接続されている。フットレストアーム217の先端部が、運転者Oの足を載せるためのフットレストを構成している。
 図10および図11に示すように、中間メインフレーム131の後左部に、サイドスタンド219が接続されている。サイドスタンド219は、図11に実線で示す格納状態と、図11に二点鎖線で示す起立状態に切り換え可能である。自動二輪車100Dの駐車時、サイドスタンド219は起立状態で路面に接地される。図17に示すように、起立状態のサイドスタンド219によって、自動二輪車100Dは上下方向に対して左方向に傾いた状態で自立する。
 図11に示す符号Greは、リヤ電気モータ160によってラウンドトレッド面リヤタイヤ揺動軸線A4100A回りに中間フレーム230に対して揺動される対象全体の重心である。この重心Greを、リヤ揺動重心Greと称する。直進可能に直立した状態の車両100Dを左方向または右方向に見て、リヤ揺動重心Greは、ラウンドトレッド面リヤタイヤ揺動軸線A4100Aから下方向に離れている。直進可能に直立した状態の車両100Dを左方向または右方向に見て、リヤ揺動重心Greは、外部から荷重がかかっていない状態の自動二輪車100Dの重心G0100Dよりも下方向に位置する。直進可能に直立した状態の車両100Dを左方向または右方向に見て、リヤ揺動重心Greは、外部から荷重がかかっていない状態の自動二輪車100Dの重心G0100Dよりも後方向に位置する。
 第1実施形態の具体例1と同じく、中間フレーム230、フロントフレーム120、リヤフレーム140、ラウンドトレッド面フロントタイヤ2、ラウンドトレッド面リヤタイヤ4、リヤ電気モータ160(ラウンドトレッド面リヤタイヤ揺動アクチュエータ)、および制御装置(図示せず)は、以下の2つの条件を満たすように、形成または配置される。1つ目の条件は、直進可能に直立した状態の車両100Dを左方向または右方向に見て、ラウンドトレッド面リヤタイヤ揺動軸線A4100Aが、外部から荷重がかかっていない状態の車両100Dの重心G0100Dとシート210との間を通ることである。外部から荷重がかかっていない状態の車両100Dの重心G0100Dは、図11に示す位置に限らない。2つ目の条件は、シート210にかかる荷重がゼロから増大するにつれて、シート210に着座する運転者Oを含む車両100Dの重心がラウンドトレッド面リヤタイヤ揺動軸線A4100Aに近づくことである。シート210にかかる荷重がゼロから増大するにつれて、運転者Oを含む車両100Dの重心は、例えば、図11に示す重心G0100Dから矢印方向に移動する。シート210に着座する運転者Oを含む車両100Dの重心は、ラウンドトレッド面リヤタイヤ揺動軸線A4100Aを越えてもよく、越えなくてもよい。
 制御装置は、自動二輪車100Aの制御装置80とほぼ同じ構成である。制御装置(図示せず)は、中間フレーム230に支持されてもよく、リヤフレーム140に支持されてもよい。制御装置は、制御装置80と同様に、各種センサおよび各種アクチュエータに接続される。さらに、制御装置は、プロジェクター256a、256bおよびカメラ257a、257bに接続される。
 上述したように、サイドスタンド219によって自動二輪車100Dは左方向に傾斜した状態で自立する(図17参照)。制御装置は、この状態から、サイドスタンド219によらずに自動二輪車100Dを直立状態で自立させるように、リヤ電気モータ160を制御する。この制御は、運転者Oが自動二輪車100Dに乗車していない状態で行うことが好ましい。この制御は、運転者Oが乗車している状態で行ってもよい。制御装置は、リヤフレーム140の揺動の反動を利用して、自動二輪車100Dを起き上がらせる。以下、より詳細に説明する。
 リヤ電気モータ160は、リヤ揺動重心Greが一旦右方向に揺動してから左方向に揺動するように制御される。上述したように、リヤ揺動重心Greは、リヤ電気モータ160によってラウンドトレッド面リヤタイヤ揺動軸線A4100A回りに中間フレーム230に対して揺動される対象全体の重心である。リヤ揺動重心Greを右方向に揺動させるときのラウンドトレッド面リヤタイヤ揺動軸線A4100A回りの回転角度は、自動二輪車100Dを起き上がらせることができる角度であれば、特に限定されない。リヤ揺動重心Greを右方向に揺動させるときのリヤ電気モータ160によるラウンドトレッド面リヤタイヤ揺動軸線A4100A回りの回転角度は、リヤ揺動重心Greを左方向に揺動させるときのリヤ電気モータ160によるラウンドトレッド面リヤタイヤ揺動軸線A4100A回りの回転角度と同じであってもよく、それより大きくてもよい。リヤ揺動重心Greを右方向に揺動させる速度は、特に限定されない。一方、自動二輪車100Dを起き上がらせるためには、リヤ揺動重心Greを左方向に揺動させる速度はある程度の速さが必要である。このように、乗員が車両100Dを支えなくても車両100Dを起き上がらせることができるため、自動二輪車100Dの利便性を向上できる。また、サイドスタンド219は中間フレーム130に支持されるため、リヤフレーム140の揺動をサイドスタンド219が妨げない。
 制御装置は、自動二輪車100Dを起き上がらせた後、サイドスタンド219を起立状態から格納状態に切り換える。なお、サイドスタンド219の起立状態から格納状態への切り換えは、足の操作でも行うことができてよい。また、サイドスタンド219の格納状態から起立状態への切り換えは、制御装置によって行われてもよく、足の操作で行われてもよく、その両方が可能であってもよい。
 制御装置は、顔認識部とジェスチャー認識部を有する。顔認識部およびジェスチャー認識部は、RAMやROMに格納されたプログラムがCPUで実行されることにより実現される機能部である。顔認識部は、カメラ257aおよびカメラ257bの少なくとも一方で撮影された画像の顔を、予め登録された画像の顔と照合して一致するかどうか判断する。運転者の顔の写真を登録しておくことで、顔認識部は運転者を認識できる。複数人の顔を登録しておけば、顔認識部は、複数人の顔を認識できる。ジェスチャー認識部は、カメラ257aおよびカメラ257bの少なくとも一方で撮影された動画画像のジェスチャーを、予め登録された動画画像のジェスチャーを照合して、一致するかどうか判断する。ジェスチャーは、例えば、手招きする動作などでよい。複数のジェスチャーを登録しておけば、ジェスチャー認識部は、複数のジェスチャーを認識できる。顔認識部およびジェスチャー認識部には、公知の顔認識技術およびジェスチャー認識技術が使用される。顔認識部およびジェスチャー認識部は、例えば、10m程度離れた人の顔とジェスチャーを認識できる。
 顔認識部およびジェスチャー認識部は、運転者Oが自動二輪車100Dに乗車する際に使用される。具体的には、まず、サイドスタンド219により自立した自動二輪車100Dの前に、運転者が立つ。顔認識部が運転者の顔を認識すると、制御装置は、上述したようにリヤ電気モータ160を制御して自動二輪車100Dを起き上がらせて自立させる。その後、運転者は、第1のジェスチャーを行う。ジェスチャー認識部が第1のジェスチャーを認識すると、制御装置は、自動二輪車100Dを低速で自律運転させる。そして、制御装置は、自動二輪車100Dと運転者Oとの距離が所定距離以下になると、自動二輪車100Dを停止させる。自動二輪車100Dと運転者Oとの距離が所定距離以下になる前に、運転者が第2のジェスチャーを行ってもよい。ジェスチャー認識部が第2のジェスチャーを認識すると、制御装置は、自動二輪車100Dを停止させる。制御装置は、自動二輪車100Dを停止させた後、自立状態を維持できるように、リヤ電気モータ160とフロント電気モータ162を制御する。
 本発明の第2実施形態の変更例3の自動二輪車100Dは、上述した本発明の第2実施形態の自動二輪車100Aと同様に構成について、自動二輪車100Aと同様の効果を奏する。
 なお、ヘッド部235は、中間メインフレーム131に固定されていてもよい。可動バックフレーム233は設けなくてもよい。
 サイドスタンド219は、上下方向に対して右方向に傾いた状態で車両100Dが自立するように路面に接地可能であってもよい。このサイドスタンド219は、中間メインフレーム131の後右部に接続される。この場合、車両100Dを起き上がらせるために、リヤ電気モータ160は、リヤ揺動重心Greが一旦左方向に揺動してから右方向に揺動するように制御される。
 車両100Dを起き上がらせるためのリヤフレーム140の揺動制御を行わない場合、サイドスタンド219は、リヤフレーム140に接続されていてもよい。
 車両100Dの停車時に、リヤフレーム140を揺動させる代わりに、フロントフレーム120を揺動させて、車両100Dを起き上がらせてもよい。その場合、フロントフレーム120には、錘が設置されることが好ましい。
 本発明は、第1実施形態、第1実施形態の具体例1~3、第2実施形態、第2実施形態の変更例1~3に限られるものではなく、請求の範囲に記載した限りにおいて様々な変更が可能である。以下、本発明の実施形態の変更例について説明する。なお、上述した構成と同じ構成を有するものについては、同じ符号を用いて適宜その説明を省略する。後述する変更例は、適宜組み合わせて実施可能である。
 本発明において、自動二輪車は、運転者の運転を支援する運転支援制御が可能であってもよい。運転支援制御は、先行車両と自車との間の距離を所定の距離に維持させるアダプティブクルーズコントロール(ACC:Adaptive Cruise Control)でもよい。アダプティブクルーズコントロールは、運転支援制御である。なお、アダプティブクルーズコントロールは、オートクルーズコントロール(Auto Cruise Control)またはアクティブクルーズコントロール(Active Cruise Control)とも呼ばれる。運転支援制御は、自動二輪車をレーンに沿って走行させる車線逸脱防止制御(Lane Keeping Assist Control)でもよい。運転支援制御は、障害物や人を検出してブレーキを作動させる自動ブレーキ制御でもよい。運転支援制御は、車速を一定に維持するクルーズコントロールでもよい。自動二輪車は、これらの運転支援制御を行う際に、ラウンドトレッド面リヤタイヤの揺動制御を行ってもよい。自動二輪車は、これらの運転支援制御を行う際に、ラウンドトレッド面リヤタイヤとラウンドトレッド面フロントタイヤの揺動制御を行ってもよい。
 本発明において、自動二輪車は、荷物を載置するための荷台を有してもよい。図18および図19に示す自動二輪車100E、100Fは、その一例である。
 図18に示す自動二輪車100Eは、シート10と荷台311の両方を有する。荷台311は、シート10の後端よりも後方向に位置する。シート10と荷台311は、中間フレーム130に支持される。荷台311は、着脱可能に自動二輪車100Eに設けられてもよい。直進可能に直立した状態の車両100Fを左方向または右方向に見て、荷台311は、全体がラウンドトレッド面リヤタイヤ揺動軸線A4100Aから上方向に離れている。
 図19に示す自動二輪車100Fは、荷台411を有し、シートを有さない。中間フレーム430は、シートフレームの代わりに、荷台フレーム432を有する。荷台411は、荷台フレーム432に支持される。直進可能に直立した状態の車両100Eを左方向または右方向に見て、荷台411は、全体がラウンドトレッド面リヤタイヤ揺動軸線A4100Aから上方向に離れている。自動二輪車100Fは、自律運転される。自動二輪車100Fは、運転者を乗せることなく、目的位置まで自動的に走行可能である。自動二輪車100Fは、ハンドル(グリップ)を有さない。本発明において、自動二輪車がシートを有さず、荷台だけを有する場合、ハンドル(グリップ)は設けられなくてよい。
 図18および図19において、中間フレーム130、430、フロントフレーム120、リヤフレーム140、ラウンドトレッド面フロントタイヤ2、ラウンドトレッド面リヤタイヤ4、ラウンドトレッド面リヤタイヤ揺動アクチュエータ160、および制御装置(図示せず)は、以下の2つの条件を満たすように、形成または配置されている。1つ目の条件は、直進可能に直立した状態の車両100E、100Fを左方向または右方向に見て、ラウンドトレッド面リヤタイヤ揺動軸線A4100Aが、外部から荷重がかかっていない状態の車両100E、100Fの重心G0100E、G0100Fと荷台311、411との間を通ることである。外部から荷重がかかっていない状態の車両100E、100Fの重心G0100E、G0100Fは、図18および図19に示す位置に限らない。2つ目の条件は、荷台311、411にかかる荷重がゼロから増大するにつれて、荷台311、411に載置される荷物を含む車両100E、100Fの重心がラウンドトレッド面リヤタイヤ揺動軸線A4100Aに近づくことである。荷台311、411にかかる荷重がゼロから増大するにつれて、荷物を含む車両100E、100Fの重心は、例えば、図18および図19に示す重心G0100E、G0100Fから矢印方向に移動する。
 本発明において、荷台は、中間フレームに支持されるとは限らない。本発明において、自動二輪車がシートを有さない場合に、荷台がリヤフレームに支持されてもよい。本発明において、自動二輪車がシートと荷台の両方を有する場合、シートと荷台の両方が、リヤフレームに支持されてもよい。もしくは、シートが中間フレームに支持され、荷台がリヤフレームに支持されてもよい。もしくは、シートがリヤフレームに支持され、荷台が中間フレームに支持されてもよい。
 本発明において、自動二輪車がシートと荷台の両方を有する場合、荷台は、シートの前端よりも前方向に位置していてもよい。もしくは、荷台は、シートの下に配置されていてもよい。
 本発明において、シートが中間フレームに支持される場合、自動二輪車はラウンドトレッド面フロントタイヤを揺動させるラウンドトレッド面フロントタイヤ揺動アクチュエータを有さなくてもよい。
 図20に示す自動二輪車100Gは、その一例である。自動二輪車100Gは、中間フレーム530に支持されるシート10を有する。自動二輪車100Gのフロントフレーム520は、ステアリングシャフト22を有する。ステアリングシャフト22は、中間フレーム530の中間メインフレーム531の前部に回転可能に支持される。ステアリングシャフト22は、ハンドルユニット50に固定される。運転者がハンドルユニット50を回転させる操作を行うことで、フロントフレーム520がラウンドトレッド面フロントタイヤ揺動軸線A2回りに中間フレーム530に対して揺動する。それにより、ラウンドトレッド面フロントタイヤ2は操舵される。つまり、運転者の操作によって、ラウンドトレッド面フロントタイヤ2はラウンドトレッド面フロントタイヤ揺動軸線A2回りに中間フレーム530に対して揺動する。
 図20において、中間フレーム530、フロントフレーム520、リヤフレーム140、ラウンドトレッド面フロントタイヤ2、ラウンドトレッド面リヤタイヤ4、ラウンドトレッド面リヤタイヤ揺動アクチュエータ160、および制御装置(図示せず)は、以下の2つの条件を満たすように、形成または配置されている。1つ目の条件は、直進可能に直立した状態の車両100Gを左方向または右方向に見て、ラウンドトレッド面リヤタイヤ揺動軸線A4100Aが、外部から荷重がかかっていない状態の車両100Gの重心G0100Gとシート10との間を通ることである。外部から荷重がかかっていない状態の車両100Gの重心G0100Gは、図21に示す位置に限らない。2つ目の条件は、シート10にかかる荷重がゼロから増大するにつれて、シート10に着座する乗員を含む車両100Gの重心がラウンドトレッド面リヤタイヤ揺動軸線A4100Aに近づくことである。シート10にかかる荷重がゼロから増大するにつれて、乗員を含む車両100Gの重心は、例えば、図21に示す重心G0100Gから矢印方向に移動する。
 本発明において、シートまたは荷台がリヤフレームに支持される場合、自動二輪車はラウンドトレッド面フロントタイヤを揺動させるラウンドトレッド面フロントタイヤ揺動アクチュエータを有してもよい。この場合、自動二輪車は、ラウンドトレッド面フロントタイヤ揺動アクチュエータを制御するラウンドトレッド面フロントタイヤ揺動制御装置をさらに有する。ラウンドトレッド面フロントタイヤ揺動アクチュータは、フロントフレームを中間フレームに対して揺動させることで、ラウンドトレッド面フロントタイヤ揺動アクチュエータを中間フレームに対して揺動させる。
 本発明において、シートがリヤフレームに支持され、ラウンドトレッド面フロントタイヤ揺動アクチュエータが設けられる場合、自動二輪車は、フロントフレームと一体的に揺動するハンドルを有してもよい。この場合、ラウンドトレッド面フロントタイヤ揺動アクチュエータは、運転者によるハンドルの操舵をアシストする。状況によっては、ラウンドトレッド面フロントタイヤ揺動アクチュエータは、運転者の操作に関わらず、フロントフレームを中間フレームに対して揺動させてもよい。本発明において、シートがリヤフレームに支持され、ラウンドトレッド面フロントタイヤ揺動アクチュエータが設けられる場合、自動二輪車は、中間フレームまたはリヤフレームに固定されたハンドル(グリップ)を有してもよい。本発明において、荷台がリヤフレームに支持され、ラウンドトレッド面フロントタイヤ揺動アクチュエータが設けられる場合、自動二輪車は、中間フレームまたはリヤフレームに固定されたハンドル(グリップ)を有してもよい。
 本発明において、シートが中間フレームまたはリヤフレームに支持され、かつ、ラウンドトレッド面フロントタイヤ揺動アクチュエータが設けられない場合、自動二輪車は、フロントフレームと一体的に揺動するハンドル(グリップ)を有さなくてもよい。ラウンドトレッド面リヤタイヤ揺動アクチュエータによってラウンドトレッド面リヤタイヤが揺動することで、中間フレームの姿勢が変化する。それにより、ラウンドトレッド面フロントタイヤが左右方向に傾く。この変更例において、自動二輪車は、中間フレームまたはリヤフレームに固定されたハンドル(グリップ)を有してもよい。また、この変更例において、自動二輪車は、自律運転可能であってもよく、自律運転可能でなくてもよい。自律運転可能でない場合、自動二輪車は、ラウンドトレッド面リヤタイヤを操舵するスイッチが設けられたハンドル(グリップ)を有する。
 本発明において、直進可能に直立した状態の車両を車両左方向または車両右方向に見て、中間フレームまたはリヤフレームに支持されるシートは、全体がラウンドトレッド面リヤタイヤ揺動軸線から上方向に離れているとは限らない。本発明において、直進可能に直立した状態の車両を車両左方向または車両右方向に見て、中間フレームまたはリヤフレームに支持されるシートは、一部だけがラウンドトレッド面リヤタイヤ揺動軸線から上方向に離れていてもよい。
 本発明において、直進可能に直立した状態の車両を車両左方向または車両右方向に見て、中間フレームまたはリヤフレームに支持される荷台は、全体がラウンドトレッド面リヤタイヤ揺動軸線から上方向に離れていてもよい。本発明において、直進可能に直立した状態の車両を車両左方向または車両右方向に見て、中間フレームまたはリヤフレームに支持される荷台は、一部だけがラウンドトレッド面リヤタイヤ揺動軸線から上方向に離れていてもよい。
 本発明において、ラウンドトレッド面リヤタイヤに駆動力を付与する駆動源は、ラウンドトレッド面リヤタイヤの内側ではない位置に配置される電気モータでもよい。図21に示す自動二輪車100Hの電気モータ670は、その一例である。電気モータ670は、リヤフレーム640に支持される。直進可能に直立した状態の車両100Hを左方向または右方向に見て、電気モータ670は、全体がラウンドトレッド面リヤタイヤ4の上端よりも下方向に位置する。図21に示す重心G0100Hは、外部から荷重がかかっていない状態の車両100Hの重心の一例である。
 本発明において、シートまたは荷台が中間フレームに支持される場合、ラウンドトレッド面リヤタイヤに駆動力を付与する駆動源は、エンジンユニットでもよい。図22に示す自動二輪車100Iは、その一例である。自動二輪車100Iのエンジンユニット70は、リヤフレーム740に支持される。直進可能に直立した状態の車両100Iを左方向または右方向に見て、エンジンユニット70は、全体がラウンドトレッド面リヤタイヤ4よりも下方向に位置する。自動二輪車100Iは、エンジンユニット70に供給される燃料を貯留する燃料タンク71を有する。燃料タンク71は、中間フレーム130に支持される。燃料タンク71は、シート10の前端よりも前方向に位置する。燃料タンク71は、自動二輪車100Iの左右方向の中央部にある。つまり、下方向に見た場合に、燃料タンク71は、ラウンドトレッド面リヤタイヤ揺動軸線A4100Aと重なる。図22に示す重心G0100Iは、外部から荷重がかかっていない状態の車両100Iの重心の一例である。
 本発明において、シートまたは荷台がリヤフレームに支持される場合、ラウンドトレッド面リヤタイヤに駆動力を付与する駆動源は、電気モータでもよい。電気モータは、インホイールモータであってもよく、ラウンドトレッド面リヤタイヤの内側ではない位置に配置される電気モータでもよい。電気モータは、インホイールモータであってもよく、ラウンドトレッド面リヤタイヤの内側ではない位置に配置される電気モータでもよい。
 本発明において、ラウンドトレッド面リヤタイヤに駆動力を付与する駆動源は、電気モータとエンジンユニットの両方でもよい。この場合、電気モータは、インホイールモータであってもよく、ラウンドトレッド面リヤタイヤの内側ではない位置に配置される電気モータでもよい。
 本発明の自動二輪車は、ラウンドトレッド面フロントタイヤに駆動力を付与する駆動源と、ラウンドトレッド面リヤタイヤに駆動力を付与する駆動源の両方を有してもよい。つまり、本発明の自動二輪車は請求項1の構成を満たす駆動源に加えて、さらに別の駆動源を有してもよい。本発明の自動二輪車は、ラウンドトレッド面リヤタイヤに駆動力を付与する駆動源を有さずに、ラウンドトレッド面フロントタイヤに駆動力を付与する駆動源を有してもよい。本発明において、ラウンドトレッド面フロントタイヤに駆動力を付与する駆動源は、電気モータであってもよく、エンジンユニットであってもよく、その両方でもよい。電気モータは、インホイールモータであってもよく、ラウンドトレッド面フロントタイヤの内側ではない位置に配置される電気モータでもよい。
 本発明において、ラウンドトレッド面リヤタイヤに駆動力を付与する駆動源は、リヤフレームに支持されるとは限らない。本発明において、ラウンドトレッド面リヤタイヤに駆動力を付与する駆動源は、中間フレームに支持されてもよい。本発明において、ラウンドトレッド面リヤタイヤに駆動力を付与する駆動源がエンジンユニットと電気モータの場合、駆動源は、中間フレームとリヤフレームの両方に支持されてもよい。
 本発明において、ラウンドトレッド面フロントタイヤに駆動力を付与する駆動源は、フロントフレームに支持されてもよい。本発明において、ラウンドトレッド面フロントタイヤに駆動力を付与する駆動源は、中間フレームに支持されてもよい。本発明において、ラウンドトレッド面フロントタイヤに駆動力を付与する駆動源がエンジンユニットと電気モータの場合、駆動源は、フロントフレームと中間フレームの両方に支持されてもよい。
 本発明において、直進可能に直立した状態の車両を車両左方向または車両右方向に見て、ラウンドトレッド面リヤタイヤに駆動力を付与する駆動源は、全体がラウンドトレッド面リヤタイヤ揺動軸線から車両下方向に離れているとは限らない。本発明において、直進可能に直立した状態の車両を車両左方向または車両右方向に見て、ラウンドトレッド面リヤタイヤに駆動力を付与する駆動源は、一部だけがラウンドトレッド面リヤタイヤ揺動軸線から車両下方向に離れていてもよい。例えば、駆動源がラウンドトレッド面リヤタイヤの内側ではない位置に配置される電気モータかエンジンユニットの場合、この構成であってもよい。本発明において、直進可能に直立した状態の車両を車両左方向または車両右方向に見て、ラウンドトレッド面リヤタイヤに駆動力を付与する駆動源は、全体がラウンドトレッド面リヤタイヤ揺動軸線から車両上方向に離れていてもよい。例えば、駆動源がラウンドトレッド面リヤタイヤの内側ではない位置に配置される電気モータの場合、この構成であってもよい。
 本発明において、直進可能に直立した状態の車両を車両左方向または車両右方向に見て、ラウンドトレッド面フロントタイヤに駆動力を付与する駆動源の少なくとも一部は、ラウンドトレッド面リヤタイヤ揺動軸線から車両下方向に離れていてもよい。より詳細には、直進可能に直立した状態の車両を車両左方向または車両右方向に見て、ラウンドトレッド面フロントタイヤに駆動力を付与する駆動源は、全体がラウンドトレッド面リヤタイヤ揺動軸線から車両下方向に離れていてもよい。直進可能に直立した状態の車両を車両左方向または車両右方向に見て、ラウンドトレッド面フロントタイヤに駆動力を付与する駆動源は、一部だけがラウンドトレッド面リヤタイヤ揺動軸線から車両下方向に離れていてもよい。また、本発明において、直進可能に直立した状態の車両を車両左方向または車両右方向に見て、ラウンドトレッド面フロントタイヤに駆動力を付与する駆動源は、全体がラウンドトレッド面リヤタイヤ揺動軸線から車両上方向に離れていてもよい。
 本発明において、シートまたは荷台が中間フレームに支持され、かつ、駆動源がエンジンユニットの場合、燃料タンクは、中間フレームに支持されてもよく、リヤフレームに支持されてもよい。本発明において、シートまたは荷台がリヤフレームに支持され、かつ、駆動源がエンジンユニットの場合、燃料タンクは、リヤフレームに支持されてもよく、中間フレームに支持されてもよい。燃料タンクが中間フレームに支持される場合、燃料タンク内の燃料の重量が変化しても、ラウンドトレッド面リヤタイヤ揺動アクチュエータが揺動させる対象の重量は変化しない。そのため、ラウンドトレッド面リヤタイヤの揺動制御の制御性を向上できる。よって、自動二輪車の乗載荷重の変化に対するラウンドトレッド面リヤタイヤの揺動制御の制御性をより向上できる。なお、本段落において、駆動源は、ラウンドトレッド面リヤタイヤに駆動力を付与するものであってもよく、ラウンドトレッド面フロントタイヤに駆動力を付与するものであってもよい。
 本発明において、シートまたは荷台が中間フレームに支持され、かつ、駆動源が電気モータの場合、蓄電装置は、リヤフレームに支持されるとは限らない。本発明において、シートまたは荷台が中間フレームに支持され、かつ、駆動源が電気モータの場合、蓄電装置は、中間フレームに支持されてもよい。図23に示す自動二輪車100Jは、その一例である。自動二輪車100Jの蓄電装置171は、中間フレーム830の中間メインフレーム831に支持される。図23に示す重心G0100Jは、外部から荷重がかかっていない状態の車両100Jの重心の一例である。また、本発明において、シートまたは荷台がリヤフレームに支持され、駆動源が電気モータの場合、蓄電装置は、リヤフレームに支持されてもよく、中間フレームに支持されてもよい。なお、本段落において、駆動源は、ラウンドトレッド面リヤタイヤに駆動力を付与するものであってもよく、ラウンドトレッド面フロントタイヤに駆動力を付与するものであってもよい。
 本発明において、駆動源が電気モータの場合、直進可能に直立した状態の車両を車両左方向または車両右方向に見て、蓄電装置は、全体がラウンドトレッド面リヤタイヤ揺動軸線から車両下方向に離れているとは限らない。本発明において、直進可能に直立した状態の車両を車両左方向または車両右方向に見て、蓄電装置は、一部だけがラウンドトレッド面リヤタイヤ揺動軸線から車両下方向に離れていてもよい。本発明において、直進可能に直立した状態の車両を車両左方向または車両右方向に見て、蓄電装置は、全体がラウンドトレッド面リヤタイヤ揺動軸線から車両上方向に離れていてもよい。なお、本段落において、駆動源は、ラウンドトレッド面リヤタイヤに駆動力を付与するものであってもよく、ラウンドトレッド面フロントタイヤに駆動力を付与するものであってもよい。
 本発明において、蓄電装置は、バッテリ(二次電池)以外でもよい。蓄電装置は、例えば、スーパーキャパシタ、または、ウルトラキャパシタでもよい。
 本発明において、ラウンドトレッド面リヤタイヤ揺動アクチュエータは、一部だけがラウンドトレッド面リヤタイヤおよびラウンドトレッド面フロントタイヤの少なくとも一方の上端よりも車両上方向に位置していてもよい。本発明において、ラウンドトレッド面リヤタイヤ揺動アクチュエータは、少なくとも一部がラウンドトレッド面リヤタイヤおよびラウンドトレッド面フロントタイヤの少なくとも一方の上端よりも車両下方向に位置していてもよい。この場合、例えば比較的大きい重量を有するラウンドトレッド面リヤタイヤ揺動アクチュエータが、車両の比較的低い位置に配置される。そのため、シートに荷重がかかっていない状態の車両の重心とシートとの間にラウンドトレッド面リヤタイヤ揺動軸線が位置するレイアウトを、容易に実現できる。
 本発明において、ラウンドトレッド面リヤタイヤ揺動軸線がラウンドトレッド面リヤタイヤ揺動アクチュエータを通るとは限らない。本発明において、直進可能に直立した状態の車両を車両左方向または車両右方向に見て、ラウンドトレッド面リヤタイヤ揺動アクチュエータは、全体がラウンドトレッド面リヤタイヤ揺動軸線から下方向または上方向に離れていてもよい。
 本発明において、自動二輪車が、ラウンドトレッド面フロントタイヤ揺動アクチュエータを有する場合、直進可能に直立した状態の車両を車両左方向または車両右方向に見て、ラウンドトレッド面フロントタイヤ揺動アクチュエータは、全体がラウンドトレッド面リヤタイヤ揺動軸線から車両下方向に離れているとは限らない。本発明において、直進可能に直立した状態の車両を車両左方向または車両右方向に見て、ラウンドトレッド面フロントタイヤ揺動アクチュエータは、一部だけがラウンドトレッド面リヤタイヤ揺動軸線から車両下方向に離れていてもよい。本発明において、直進可能に直立した状態の車両を車両左方向または車両右方向に見て、ラウンドトレッド面フロントタイヤ揺動アクチュエータは、全体がラウンドトレッド面リヤタイヤ揺動軸線から車両上方向に離れていてもよい。
 本発明において、シートがリヤフレームに支持される場合、ラウンドトレッド面リヤタイヤ揺動アクチュエータは、油圧シリンダに限らず、例えば電気モータでもよい。本発明において、シートが中間フレームに支持される場合、ラウンドトレッド面リヤタイヤ揺動アクチュエータは、電気モータに限らず、例えば油圧シリンダでもよい。本発明において、ラウンドトレッド面フロントタイヤ揺動アクチュエータは、電気モータに限らず、例えば油圧シリンダでもよい。
 本発明において、ラウンドトレッド面フロントタイヤに制動力を付与するフロントブレーキの形式は、液圧式、機械式、電気式のいずれであってもよい。
 本発明において、ラウンドトレッド面フロントタイヤに制動力を付与するフロントブレーキが液圧式ブレーキの場合、直進可能に直立した状態の車両を車両左方向または車両右方向に見て、フロントブレーキの液圧を制御するフロントハイドロリックユニットは、全体がラウンドトレッド面リヤタイヤ揺動軸線から車両下方向に離れているとは限らない。本発明において、直進可能に直立した状態の車両を車両左方向または車両右方向に見て、フロントハイドロリックユニットは、一部だけがラウンドトレッド面リヤタイヤ揺動軸線から車両下方向に離れていてもよい。本発明において、直進可能に直立した状態の車両を車両左方向または車両右方向に見て、フロントハイドロリックユニットは、全体がラウンドトレッド面リヤタイヤ揺動軸線から車両上方向に離れていてもよい。
 本発明において、ラウンドトレッド面フロントタイヤに制動力を付与するフロントブレーキが液圧式ブレーキの場合、フロントブレーキの液圧を制御するフロントハイドロリックユニットは、中間フレームに支持されるとは限らない。本発明において、フロントハイドロリックユニットは、フロントフレームに支持されてもよく、リヤフレームに支持されてもよい。
 本発明において、ラウンドトレッド面フロントタイヤに制動力を付与するフロントブレーキが液圧式ブレーキの場合、直進可能に直立した状態の車両を車両左方向または車両右方向に見て、フロントブレーキの液圧を制御するフロントハイドロリックユニットは、全体がラウンドトレッド面リヤタイヤ揺動軸線から車両下方向に離れているとは限らない。本発明において、直進可能に直立した状態の車両を車両左方向または車両右方向に見て、フロントハイドロリックユニットは、一部だけがラウンドトレッド面リヤタイヤ揺動軸線から車両下方向に離れていてもよい。本発明において、直進可能に直立した状態の車両を車両左方向または車両右方向に見て、フロントハイドロリックユニットは、全体がラウンドトレッド面リヤタイヤ揺動軸線から車両上方向に離れていてもよい。
 本発明において、ラウンドトレッド面リヤタイヤに制動力を付与するブレーキの形式は、液圧式、機械式、電気式のいずれであってもよい。
 本発明において、ラウンドトレッド面リヤタイヤに制動力を付与するリヤブレーキが液圧式ブレーキの場合、リヤブレーキの液圧を制御するリヤハイドロリックユニットは、リヤフレームに支持されてもよい。例えば図21に示す自動二輪車100Hにおいて、二点鎖線で示すリヤハイドロリックユニット609はその一例である。
 本発明において、ラウンドトレッド面リヤタイヤに制動力を付与するリヤブレーキが液圧式ブレーキの場合、リヤブレーキの液圧を制御するリヤハイドロリックユニットは、中間フレームに支持されてもよい。例えば図21に示す自動二輪車100Hにおいて、実線で示すリヤハイドロリックユニット609はその一例である。
 図21では、直進可能に直立した状態の車両を左方向または右方向に見て、実線および二点鎖線で示すリヤハイドロリックユニット609は、全体がラウンドトレッド面リヤタイヤ揺動軸線から上方向に離れている。しかし、本発明において、ラウンドトレッド面リヤタイヤに制動力を付与するリヤブレーキが液圧式ブレーキの場合、直進可能に直立した状態の車両を車両左方向または車両右方向に見て、リヤブレーキの液圧を制御するリヤハイドロリックユニットは、少なくとも一部がラウンドトレッド面リヤタイヤ揺動軸線から車両下方向に離れていてもよい。より詳細には、直進可能に直立した状態の車両を車両左方向または車両右方向に見て、リヤハイドロリックユニットは、全体がラウンドトレッド面リヤタイヤ揺動軸線から車両下方向に離れていてもよい。直進可能に直立した状態の車両を車両左方向または車両右方向に見て、リヤハイドロリックユニットは、一部だけがラウンドトレッド面リヤタイヤ揺動軸線から車両下方向に離れていてもよい。
 本発明において、直進可能に直立した状態の車両を車両左方向または車両右方向に見て、フロントサスペンションユニットは、全体がラウンドトレッド面リヤタイヤ揺動軸線から車両下方向に離れているとは限らない。本発明において、直進可能に直立した状態の車両を車両左方向または車両右方向に見て、フロントサスペンションユニットは、一部だけがラウンドトレッド面リヤタイヤ揺動軸線から車両上方向に離れていてもよい。
 本発明において、直進可能に直立した状態の車両を車両左方向または車両右方向に見て、リヤサスペンションユニットは、一部だけがラウンドトレッド面タイヤ揺動軸線から車両下方向に離れているとは限らない。本発明において、直進可能に直立した状態の車両を車両左方向または車両右方向に見て、リヤサスペンションユニットは、全体がラウンドトレッド面タイヤ揺動軸線から車両下方向に離れていてもよい。本発明において、直進可能に直立した状態の車両を車両左方向または車両右方向に見て、リヤサスペンションユニットは、全体がラウンドトレッド面タイヤ揺動軸線から車両上方向に離れていてもよい。
 本発明において、自動二輪車が、中間フレームの車両上下方向に対する車両左右方向への傾きに関連する物理量を検出する傾斜検出装置を備える場合、傾斜検出装置は、中間フレームに設置されるとは限らない。本発明において、傾斜検出装置は、リヤフレームに設置されてもよい。自動二輪車が水平な路面に直進可能に直立した状態において車両上下方向と平行なリヤフレームの方向を、リヤフレーム上下方向という。自動二輪車が水平な路面に直進可能に直立した状態において車両左右方向と平行なリヤフレームの方向を、リヤフレーム左右方向という。傾斜検出装置がリヤフレームに支持される場合、傾斜検出装置は、リヤフレームのリヤフレーム上下方向に対するリヤフレーム左右方向への傾きの角度、角速度、または角加速度を検出する。傾斜検出装置は、これらのリヤフレームの傾きに関する物理量と、リヤフレームの中間フレームに対する揺動角度に基づいて、中間フレームの車両上下方向に対する車両左右方向への傾きに関連する物理量を検出する。傾斜検出装置は、これらのリヤフレームの傾きに関する物理量と、リヤフレームの中間フレームに対する揺動角度と、フロントフレームの中間フレームに対する揺動角度に基づいて、中間フレームの車両上下方向に対する車両左右方向への傾きに関連する物理量を検出してもよい。
 本発明において、シートまたは荷台がリヤフレームに支持される場合、サイドスタンドはリヤフレームに接続されていてもよく、中間フレームに接続されていてもよい。
 本発明の自動二輪車は、スポーツタイプ、オンロードタイプ、オフロードタイプ、およびスクータタイプのいずれであってもよい。本発明の自動二輪車は、原動機付き自転車、または、モペットであってもよい。
 1、1A、1B、1C、100A、100B、100C、100D、100E、100F、100G、100H、100I、100J 自動二輪車
 2 ラウンドトレッド面フロントタイヤ
 2a トレッド面
 4 ラウンドトレッド面リヤタイヤ
 4a トレッド面
 10、210 シート
 20、120、520 フロントフレーム
 21 フロントサスペンションユニット
 30、130、430、530、830 中間フレーム
 40、140、640、740 リヤフレーム
 42 リヤサスペンションユニット
 46 シートフレーム
 60 油圧シリンダ(ラウンドトレッド面リヤタイヤ揺動アクチュエータ)
 70 エンジンユニット(駆動源)
 71 燃料タンク
 80 制御装置(ラウンドトレッド面リヤタイヤ揺動制御装置、ラウンドトレッド面フロントタイヤ揺動制御装置)
 81 傾斜検出装置
 106 フロントブレーキ(油圧式ブレーキ)
 107 フロントハイドロリックユニット
 132 シートフレーム
 160 リヤ電気モータ(ラウンドトレッド面リヤタイヤ揺動アクチュエータ)
 162 フロント電気モータ(ラウンドトレッド面フロントタイヤ揺動アクチュエータ)
 170 インホイールモータ(駆動源)
 171 蓄電装置
 311、411 荷台
 609 リヤハイドロリックユニット
 670 電気モータ(駆動源)
 A1 フロント車軸線
 A2 ラウンドトレッド面フロントタイヤ揺動軸線
 A3 リヤ車軸線
 A4、A41A、A41B、A41C、A4100A、A4100B、A4100C ラウンドトレッド面リヤタイヤ揺動軸線
 G0、G01A、G01B、G01C、G0100A、G0100B、G0100C、G0100D、G0100E、G0100F、G0100G、G0100H、G0100I、G0100J 外部から荷重がかかっていない状態の車両の重心
 G1、G11A、G11B、G11C、G1100A、G1100B、G1100C 乗員または荷物を含む車両の重心
 Gre リヤ揺動重心

Claims (15)

  1.  中間フレームと、
     車両が直進可能に直立した状態で車両前方向または車両後方向に見て円弧状であるトレッド面を有するラウンドトレッド面フロントタイヤと、
     前記ラウンドトレッド面フロントタイヤから車両後方向に離れており、車両が直進可能に直立した状態で車両前方向または車両後方向に見て円弧状であるトレッド面を有するラウンドトレッド面リヤタイヤと、
     (a-1)前記ラウンドトレッド面フロントタイヤをその中心を通るフロント車軸線回りに回転可能に支持すると共に、(a-2)車両後方向に向かうほど車両上方向に向かう傾きを持つラウンドトレッド面フロントタイヤ揺動軸線回りに前記ラウンドトレッド面フロントタイヤが前記中間フレームに対して揺動可能となるように、前記ラウンドトレッド面フロントタイヤ揺動軸線回りに揺動可能に前記中間フレームに支持されるフロントフレームと、
     (b-1)前記ラウンドトレッド面リヤタイヤをその中心を通るリヤ車軸線回りに回転可能に支持すると共に、(b-2)車両後方向に向かうほど車両下方向に向かう傾きを持つラウンドトレッド面リヤタイヤ揺動軸線回りに前記ラウンドトレッド面リヤタイヤが前記中間フレームに対して揺動可能となるように、前記ラウンドトレッド面リヤタイヤ揺動軸線回りに揺動可能に前記中間フレームに支持されるリヤフレームと、
     前記中間フレームまたは前記リヤフレームに支持されており、直進可能に直立した状態の車両を車両左方向または車両右方向に見て少なくとも一部が前記ラウンドトレッド面リヤタイヤ揺動軸線から車両上方向に離れており、乗員が着座するためのシートまたは荷物を載置するための荷台と、
     前記リヤフレームを前記ラウンドトレッド面リヤタイヤ揺動軸線回りに前記中間フレームに対して揺動させることで、前記ラウンドトレッド面リヤタイヤを前記ラウンドトレッド面リヤタイヤ揺動軸線回りに前記中間フレームに対して揺動させるラウンドトレッド面リヤタイヤ揺動アクチュエータと、
     前記ラウンドトレッド面リヤタイヤ揺動アクチュエータを制御するラウンドトレッド面リヤタイヤ揺動制御装置と、
     前記ラウンドトレッド面フロントタイヤまたは前記ラウンドトレッド面リヤタイヤに駆動力を付与する駆動源と、を備え、
     直進可能に直立した状態の車両を車両左方向または車両右方向に見て、前記ラウンドトレッド面リヤタイヤ揺動軸線が、外部から荷重がかかっていない状態の車両の重心と前記シートまたは前記荷台との間を通るように、かつ、前記シートまたは前記荷台にかかる荷重がゼロから増大するにつれて、前記シートまたは前記荷台に乗載された前記乗員または前記荷物を含む車両の重心が前記ラウンドトレッド面リヤタイヤ揺動軸線に近づくように、前記中間フレーム、前記フロントフレーム、前記リヤフレーム、前記ラウンドトレッド面フロントタイヤ、前記ラウンドトレッド面リヤタイヤ、前記ラウンドトレッド面リヤタイヤ揺動アクチュエータ、および前記ラウンドトレッド面リヤタイヤ揺動制御装置が形成または配置されていることを特徴とする自動二輪車。
  2.  直進可能に直立した状態の車両を車両左方向または車両右方向に見て、前記ラウンドトレッド面リヤタイヤ揺動軸線と路面との交点が、前記ラウンドトレッド面リヤタイヤの前端を通り車両上下方向に平行な直線と、前記ラウンドトレッド面リヤタイヤの後端を通り車両上下方向に平行な直線との間にあることを特徴とする請求項1に記載の自動二輪車。
  3.  前記駆動源が電気モータを含み、
     前記電気モータに供給される電力を蓄える蓄電装置を備え、
     直進可能に直立した状態の車両を車両左方向または車両右方向に見て、前記蓄電装置の少なくとも一部が、前記ラウンドトレッド面リヤタイヤ揺動軸線から車両下方向に離れていることを特徴とする請求項1または2に記載の自動二輪車。
  4.  前記フロントフレームを前記ラウンドトレッド面フロントタイヤ揺動軸線回りに前記中間フレームに対して揺動させることで、前記ラウンドトレッド面フロントタイヤを前記ラウンドトレッド面フロントタイヤ揺動軸線回りに前記中間フレームに対して揺動させるラウンドトレッド面フロントタイヤ揺動アクチュエータと、
     前記ラウンドトレッド面フロントタイヤ揺動アクチュエータを制御するラウンドトレッド面フロントタイヤ揺動制御装置と、を備えることを特徴とする請求項1~3のいずれか1項に記載の自動二輪車。
  5.  直進可能に直立した状態の車両を車両左方向または車両右方向に見て、前記ラウンドトレッド面フロントタイヤ揺動アクチュエータの少なくとも一部が、前記ラウンドトレッド面リヤタイヤ揺動軸線から車両下方向に離れていることを特徴とする請求項4に記載の自動二輪車。
  6.  前記リヤフレームは、前記ラウンドトレッド面リヤタイヤを前記リヤ車軸線回りに回転可能に支持すると共に、前記ラウンドトレッド面リヤタイヤが受ける車両上下方向の振動を吸収するリヤサスペンションユニットを含み、
     直進可能に直立した状態の車両を車両左方向または車両右方向に見て、前記リヤサスペンションユニットの一部が、前記ラウンドトレッド面リヤタイヤ揺動軸線から車両下方向に離れていることを特徴とする請求項1~5のいずれか1項に記載の自動二輪車。
  7.  前記ラウンドトレッド面フロントタイヤまたは前記ラウンドトレッド面リヤタイヤに制動力を付与する液圧式ブレーキと、
     前記液圧式ブレーキの液圧を制御するハイドロリックユニットと、を備え、
     直進可能に直立した状態の車両を車両左方向または車両右方向に見て、前記ハイドロリックユニットの少なくとも一部が、前記ラウンドトレッド面リヤタイヤ揺動軸線から車両下方向に離れていることを特徴とする請求項1~6のいずれか1項に記載の自動二輪車。
  8.  前記中間フレームに設置され、前記中間フレームの車両上下方向に対する車両左右方向への傾きに関連する物理量を検出する傾斜検出装置を備えることを特徴とする請求項1~7のいずれか1項に記載の自動二輪車。
  9.  車両が直進可能に直立した状態において、前記ラウンドトレッド面リヤタイヤ揺動アクチュエータの少なくとも一部が、前記ラウンドトレッド面リヤタイヤおよび前記ラウンドトレッド面フロントタイヤの少なくとも一方の上端よりも車両下方向に位置することを特徴とする請求項1~8のいずれか1項に記載の自動二輪車。
  10.  直進可能に直立した状態の車両を車両左方向または車両右方向に見て、前記駆動源の少なくとも一部が、前記ラウンドトレッド面リヤタイヤ揺動軸線から車両下方向に離れていることを特徴とする請求項1~9のいずれか1項に記載の自動二輪車。
  11.  前記駆動源がエンジンユニットを含み、
     前記エンジンユニットに供給される燃料を貯留する燃料タンクを備え、
     直進可能に直立した状態の車両を車両下方向に見て、前記燃料タンクが、前記ラウンドトレッド面リヤタイヤ揺動軸線と重なることを特徴とする請求項1~10のいずれか1項に記載の自動二輪車。
  12.  前記中間フレームが、前記シートを支持するシートフレームを含むことを特徴とする請求項1~11のいずれか1項に記載の自動二輪車。
  13.  前記リヤフレームが、前記シートを支持するシートフレームを含むことを特徴とする請求項1~11のいずれか1項に記載の自動二輪車。
  14.  前記中間フレームに接続され、車両上下方向に対して車両左右方向に傾いた状態で車両が自立するように路面に接地可能なサイドスタンドを備えることを特徴とする請求項1~13のいずれか1項に記載の自動二輪車。
  15.  直進可能に直立した状態の車両を車両左方向または車両右方向に見て、前記ラウンドトレッド面リヤタイヤ揺動アクチュエータによって前記ラウンドトレッド面リヤタイヤ揺動軸線回りに前記中間フレームに対して揺動される対象全体の重心であるリヤ揺動重心が、前記ラウンドトレッド面リヤタイヤ揺動軸線から車両下方向に離れており、
     前記ラウンドトレッド面リヤタイヤ揺動制御装置は、
     前記サイドスタンドによって車両左方向に傾斜した状態で車両が自立している場合に、車両を起き上がらせるために、前記リヤ揺動重心が車両右方向に揺動してから車両左方向に揺動するように前記ラウンドトレッド面リヤタイヤ揺動アクチュエータを制御し、
     前記サイドスタンドによって車両右方向に傾斜した状態で車両が自立している場合に、車両を起き上がらせるために、前記リヤ揺動重心が車両左方向に揺動してから車両右方向に揺動するように前記ラウンドトレッド面リヤタイヤ揺動アクチュエータを制御することを特徴とする請求項14に記載の自動二輪車。
PCT/JP2018/034970 2017-09-25 2018-09-21 自動二輪車 WO2019059333A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019543723A JP6694117B2 (ja) 2017-09-25 2018-09-21 自動二輪車
TW107133622A TW201919935A (zh) 2017-09-25 2018-09-25 機車

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017183538 2017-09-25
JP2017-183538 2017-09-25

Publications (1)

Publication Number Publication Date
WO2019059333A1 true WO2019059333A1 (ja) 2019-03-28

Family

ID=65810907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/034970 WO2019059333A1 (ja) 2017-09-25 2018-09-21 自動二輪車

Country Status (3)

Country Link
JP (1) JP6694117B2 (ja)
TW (1) TW201919935A (ja)
WO (1) WO2019059333A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004114809A (ja) * 2002-09-25 2004-04-15 Honda Motor Co Ltd 揺動機構を有する自動二輪車
JP2006182091A (ja) * 2004-12-27 2006-07-13 Yamaha Motor Co Ltd 車両
JP2008105455A (ja) * 2006-10-23 2008-05-08 Yamaha Motor Co Ltd 車両
JP2010254164A (ja) * 2009-04-27 2010-11-11 Honda Motor Co Ltd 揺動式鞍乗型車両
JP2011168170A (ja) * 2010-02-18 2011-09-01 Honda Motor Co Ltd 小型車両
JP2015112923A (ja) * 2013-12-09 2015-06-22 本田技研工業株式会社 移動車両

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004114809A (ja) * 2002-09-25 2004-04-15 Honda Motor Co Ltd 揺動機構を有する自動二輪車
JP2006182091A (ja) * 2004-12-27 2006-07-13 Yamaha Motor Co Ltd 車両
JP2008105455A (ja) * 2006-10-23 2008-05-08 Yamaha Motor Co Ltd 車両
JP2010254164A (ja) * 2009-04-27 2010-11-11 Honda Motor Co Ltd 揺動式鞍乗型車両
JP2011168170A (ja) * 2010-02-18 2011-09-01 Honda Motor Co Ltd 小型車両
JP2015112923A (ja) * 2013-12-09 2015-06-22 本田技研工業株式会社 移動車両

Also Published As

Publication number Publication date
JP6694117B2 (ja) 2020-05-13
JPWO2019059333A1 (ja) 2019-11-14
TW201919935A (zh) 2019-06-01

Similar Documents

Publication Publication Date Title
CN102470909B (zh) 用于倾斜车辆的控制系统
US8662228B2 (en) Free-to-lean three-wheeled passenger vehicle, power plant controller and body therefor
US10875597B2 (en) Vehicle with lean mechanism
US8640809B2 (en) Flywheel assemblies and vehicles including same
CN107531305B (zh) 车辆
CN102874344B (zh) 骑乘型车辆
WO2015064656A1 (ja) ブレーキシステムおよび車両
JP2015155300A (ja) 水陸両用車における又は関する改良
JP2016068769A (ja) 鞍乗り型車両
JP4712528B2 (ja) 車両
JP2006182091A (ja) 車両
JP4894589B2 (ja) 車両
JP7170149B2 (ja) 鞍乗り型車両の操舵アシスト装置
JP7262603B2 (ja) 鞍乗り型車両の操舵アシスト装置
JP6737963B2 (ja) 自動二輪車
JP6694117B2 (ja) 自動二輪車
TWI832423B (zh) 傾斜控制裝置及傾斜車輛
WO2024117185A1 (ja) 車両
WO2024048534A1 (ja) リーン車両
WO2022137819A1 (ja) 車両
JP2011105202A (ja) キャンバ制御装置
JP2007261493A (ja) 車両の操縦機構
WO2011061925A1 (ja) キャンバ制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18859053

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019543723

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18859053

Country of ref document: EP

Kind code of ref document: A1