WO2011061925A1 - キャンバ制御装置 - Google Patents

キャンバ制御装置 Download PDF

Info

Publication number
WO2011061925A1
WO2011061925A1 PCT/JP2010/006722 JP2010006722W WO2011061925A1 WO 2011061925 A1 WO2011061925 A1 WO 2011061925A1 JP 2010006722 W JP2010006722 W JP 2010006722W WO 2011061925 A1 WO2011061925 A1 WO 2011061925A1
Authority
WO
WIPO (PCT)
Prior art keywords
camber
vehicle
downhill
wheels
wheel
Prior art date
Application number
PCT/JP2010/006722
Other languages
English (en)
French (fr)
Inventor
宗久 堀口
晃 水野
Original Assignee
株式会社エクォス・リサーチ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エクォス・リサーチ filed Critical 株式会社エクォス・リサーチ
Publication of WO2011061925A1 publication Critical patent/WO2011061925A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D17/00Means on vehicles for adjusting camber, castor, or toe-in
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/016Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G7/00Pivoted suspension arms; Accessories thereof
    • B60G7/006Attaching arms to sprung or unsprung part of vehicle, characterised by comprising attachment means controlled by an external actuator, e.g. a fluid or electrical motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2200/00Indexing codes relating to suspension types
    • B60G2200/40Indexing codes relating to the wheels in the suspensions
    • B60G2200/46Indexing codes relating to the wheels in the suspensions camber angle

Definitions

  • the present invention relates to a camber control device.
  • the left and right wheel tires can generate canvas lasts in opposite directions, so the vehicle travels straight.
  • Time stability (hereinafter referred to as “running stability”) can be increased.
  • the vehicle is turned by operating the steering wheel, that is, when the vehicle is turned, a centrifugal force is generated in the vehicle, so that the ground contact load of the outer wheel (outer wheel) is increased and the outer wheel is turned.
  • the canvas last generated in the tire is larger than the canvas last generated in the tire on the inner peripheral side wheel (inner ring). Therefore, since sufficient centripetal force can be generated in the vehicle, the stability of the vehicle when turning (hereinafter referred to as “turning stability”) can be increased.
  • the ground load is a load by which the tire presses the road surface.
  • the present invention solves the problems of the conventional vehicle and, when traveling downhill, gives a negative camber to the wheel, thereby reducing the stability of the vehicle during traveling downhill.
  • An object of the present invention is to provide a camber control device that can effectively prevent this.
  • the camber control device is a camber control device for controlling a camber of a predetermined wheel in a vehicle including a body and a plurality of wheels rotatably arranged with respect to the body.
  • a camber variable mechanism that is disposed on a predetermined wheel of the plurality of wheels, and applies a camber to the predetermined wheel; and the camber variable mechanism is operated, and a negative camber is applied to the predetermined wheel.
  • FIG. 2 is a conceptual diagram of the vehicle in the embodiment of the present invention. Note that arrows UD, LR, and FB indicate the up-down direction, left-right direction, and front-rear direction of the vehicle.
  • 10 is a vehicle such as a passenger car, bus or truck
  • 11 is a body which is a main body of the vehicle
  • 12 is an engine as a drive source of the vehicle
  • WLF, WRF, WLB and WRB are These are the left front, right front, left rear, and right rear wheels that are rotatably arranged with respect to the body 11.
  • the vehicle 10 may be a tricycle with two front wheels on the left and right and a single rear wheel, or a tricycle with one front wheel on the left and two rear wheels.
  • the front wheels and the rear wheels are two-wheeled four-wheeled vehicles.
  • the vehicle 10 has a rear-wheel drive structure, and the wheels WLB and WRB function as drive wheels. And the engine 12 and each wheel WLB and WRB are connected via the propeller shaft 17 as the first transmission shaft, the differential 18 and the drive shaft 52 as the second transmission shaft, and drive the engine 12. The rotation generated by is transmitted to the wheels WLB and WRB.
  • the vehicle 10 has a structure of a rear wheel drive system.
  • the vehicle 10 may have a structure of a front wheel drive system in which the front wheels function as drive wheels, or all wheels.
  • an electric motor can be used as a drive source.
  • an in-wheel motor that is an electric motor that can be built in each wheel can be used as a drive source.
  • the propeller shaft 17, the differential device 18, and the drive shaft 52 can be omitted.
  • Reference numeral 13 denotes a steering wheel as an operation unit for steering the vehicle 10 and as a steering member.
  • Reference numeral 14 denotes an operation unit for accelerating the vehicle 10 and as an acceleration operation member.
  • An accelerator pedal 15 is a brake pedal as an operation unit for braking the vehicle 10 and as a braking operation member.
  • Reference numerals 31 and 32 denote actuators as a part of the camber variable mechanism, which are arranged between the body 11 and the wheels WLB and WRB, respectively, and rotate the wheels WLB and WRB, or wheels WLB and WRB. It is a device that gives camber to or cancels camber assignment.
  • the provision of camber means the provision of a negative camber (negative camber) unless otherwise noted.
  • the actuators 31 and 32 are arranged between the body 11 and the wheels WLB and WRB.
  • the actuators are arranged between the body 11 and the wheels WLF and WRF. It is also possible to dispose an actuator, or to dispose an actuator between the body 11 and each wheel WLF, WRF, WLB and WRB.
  • the wheels WLF, WRF, WLB, and WRB include a wheel (not shown) formed of an aluminum alloy or the like, and a tire 36 that is fitted to the outer periphery of the wheel.
  • a low rolling resistance tire in which the rolling resistance generated by deformation of the tire 36 is reduced by reducing the loss tangent is used.
  • the width of the tire 36 is made smaller than that of a normal tire in order to reduce the rolling resistance, but the tread pattern, which is a tread groove pattern, is shaped to reduce the rolling resistance, The material of at least the tread portion can be made to have a low rolling resistance.
  • the loss tangent indicates the degree of energy absorption when the tread is deformed, and can be represented by the ratio of the loss shear elastic modulus to the storage shear modulus. The smaller the loss tangent is, the less energy is absorbed, so the rolling resistance generated in the tire 36 is reduced and the wear generated in the tire 36 is reduced. On the other hand, the greater the loss tangent, the more energy is absorbed, so the rolling resistance increases and the wear generated on the tire 36 increases.
  • the rolling resistance of the tire 36 is reduced, so that the fuel consumption can be improved.
  • FIG. 3 is a view showing a suspension device according to the embodiment of the present invention.
  • reference numeral 40 denotes a suspension device of the vehicle 10, which functions as a so-called suspension for mitigating vibration transmitted from the road surface to the body 11 via wheels, and is configured to be extendable and compatible with each wheel. And each is provided.
  • the suspension device 40 corresponding to the wheel WLB will be described as a representative example. Further, only the portion that functions as the camber variable mechanism will be described, and the portion that functions as the suspension is the same as that of a well-known suspension, and thus the description thereof is omitted. Further, in FIG. 3, illustration of the drive shaft 52 and the like is omitted for easy understanding.
  • the suspension device 40 includes a knuckle 43 as a base member supported by the body 11 via a strut 41 and a lower arm 42, a motor 44 as a drive unit for camber control fixed to the knuckle 43, A worm wheel 45 and an arm 46 for transmitting a driving force; and a movable plate 47 as a movable member that is driven to swing with respect to the knuckle 43 by the driving force of the motor 44 transmitted through the worm wheel 45 and the arm 46.
  • a knuckle 43 as a base member supported by the body 11 via a strut 41 and a lower arm 42
  • a motor 44 as a drive unit for camber control fixed to the knuckle 43
  • a worm wheel 45 and an arm 46 for transmitting a driving force
  • a movable plate 47 as a movable member that is driven to swing with respect to the knuckle 43 by the driving force of the motor 44 transmitted through the worm wheel 45 and the arm 46.
  • the knuckle 43 is a member that supports the wheel WLB, and has an upper end connected to the strut 41 and a lower end connected to the lower arm 42 via a ball joint.
  • the motor 44 is formed of, for example, a DC motor, and a worm gear (not shown) is formed on the output shaft 44a.
  • the worm wheel 45 meshes with a worm gear formed on the output shaft 44a of the motor 44, and forms a staggered shaft gear pair together with the worm gear.
  • the arm 46 is a member that transmits the driving force of the motor 44 transmitted from the worm wheel 45 to the movable plate 47, and one end (right end in the figure) is from the rotation shaft 45 a of the worm wheel 45 via the first connection shaft 48. The other end (the left end in the figure) is connected to the upper end of the movable plate 47 via the second connecting shaft 49.
  • the movable plate 47 is a member that rotatably supports the wheel WLB, and has an upper end coupled to the arm 46 and a lower end pivotally supported by the knuckle 43 via the camber shaft 50.
  • FIG. 4 is a block diagram showing a vehicle control apparatus according to the embodiment of the present invention.
  • reference numeral 16 denotes a control unit having a calculation means such as a CPU and functioning as a kind of computer.
  • Reference numeral 61 denotes a ROM as a first storage unit
  • reference numeral 62 denotes a RAM as a second storage unit.
  • Reference numeral 63 denotes a vehicle speed sensor as a vehicle speed detection unit that detects the vehicle speed that is the traveling speed of the vehicle 10
  • reference numeral 64 denotes a steering sensor as a steering operation amount detection unit that detects a steering angle representing the operation amount of the steering wheel 13.
  • 65a is a yaw rate sensor as a yaw rate detector that detects the yaw rate of the vehicle 10
  • 65b is a pitch rate sensor as a pitch rate detector that detects the pitch rate of the vehicle 10
  • 65c is a roll rate of the vehicle 10. It is a roll rate sensor as a roll rate detection part which detects.
  • the yaw rate sensor 65a, the pitch rate sensor 65b, and the roll rate sensor 65c may be individual sensors, or a posture of a three-axis gyro sensor or the like that can detect the yaw rate, pitch rate, and roll rate alone. It may be a sensor.
  • Reference numeral 66 denotes a lateral G sensor as a first acceleration detection unit that detects lateral G (lateral acceleration), and reference numeral 67 denotes a longitudinal G as a second acceleration detection unit that detects longitudinal G (front-rear acceleration).
  • a sensor 68 is a camber sensor as a camber detection unit that detects camber angles given to the wheels WLB and WRB.
  • Reference numeral 71 denotes an accelerator sensor as an accelerator operation amount detection unit that detects a depression amount representing the operation amount of the accelerator pedal 14, and 72 denotes a brake operation amount detection unit that detects a depression amount representing the operation amount of the brake pedal 15.
  • Brake sensor. 73 is a suspension stroke sensor as a suspension detection unit that detects a stroke of the suspension device 40 that functions as a suspension of the wheels WLB and WRB, and 75 is a load as a load detection unit that detects a load applied to the wheels WLB and WRB.
  • a sensor 76 is a tire crushing margin sensor as a tire crushing margin detecting unit for detecting a crushing margin of the tire 36, that is, a tire crushing margin, and as a tire condition detecting unit. In the present embodiment, the crushing allowance of the tire 36 is represented by the deformation amount of the sidewall of the tire 36.
  • the steering sensor 64 can detect a steering angle, a steering angular speed, and the like representing the operation amount of the steering wheel 13 instead of the steering angle, and the accelerator sensor 71 can detect the depression amount of the accelerator pedal 14.
  • the stepping speed, stepping acceleration, and the like representing the amount of operation of the accelerator pedal 14 can be detected, and the brake sensor 72 replaces the amount of depression of the brake pedal 15 and the stepping speed, stepping acceleration, etc. representing the amount of operation of the brake pedal 15. Can be detected.
  • the suspension stroke sensor 73 is, for example, a height sensor, a magnetic sensor, or the like.
  • the load sensor 75 is, for example, a load cell (strain (strain) sensor) disposed in a suspension device.
  • the sensor 76 is, for example, a load cell (strain sensor) disposed on the sidewall of the tire 36.
  • reference numeral 77 denotes a navigation device mounted on the vehicle 10 as environmental information acquisition means.
  • the navigation device 77 is a kind of computer, a current position detecting unit for detecting the current position of the vehicle 10 by a GPS (Global Positioning System) receiver or the like, a road gradient, a road type, a downhill road, and an uphill road.
  • Data storage unit as a storage medium storing road data, search data, etc.
  • navigation processing unit for performing various arithmetic processing such as navigation processing based on input information, input unit, display unit, voice input An audio output unit, a communication unit, and the like, and is connected to the control unit 16. Then, the navigation device 77 can indicate that the vehicle 10 is traveling downhill based on the current position of the vehicle 10 and the road data.
  • the body 11, wheels WLF, WRF, WLB, WRB, control unit 16, actuators 31 and 32, tire 36, vehicle state detection unit described later, and the like function as at least a part of the camber control device.
  • the actuators 31 and 32 are operated so that the stability of the vehicle 10 can be increased, and cambers are applied to the wheels WLB and WRB.
  • cambers are assigned to the wheels WLB and WRB.
  • camber may be applied to all four wheels or only to the front wheels, but here, for convenience of explanation, only the case of applying to the rear wheels will be described. .
  • FIG. 1 is a flow chart showing the operation of the vehicle in the embodiment of the present invention
  • FIG. 5 is a diagram showing a subroutine of the steering stability camber necessity determination process in the embodiment of the present invention
  • FIG. 6 is in the embodiment of the present invention.
  • FIG. 7 is a diagram showing a downhill determination processing subroutine
  • FIG. 7 is a diagram showing a downhill determination map in the embodiment of the present invention
  • FIG. 8 is a straight-travel stability camber necessity determination subroutine in the embodiment of the present invention.
  • FIG. 9 is a diagram showing a subroutine of ground load determination processing in the embodiment of the present invention.
  • a determination index acquisition processing unit (not shown) of the control unit 16 performs a determination index acquisition process, and a determination index necessary for adding camber to each wheel WLB and WRB and releasing the camber,
  • a vehicle state representing the state of the vehicle 10 and an operation state representing a state of operation of each operation unit by the operator are detected (steps S1 and S2).
  • the determination index acquisition processing means includes the yaw rate sensor 65a, the pitch rate sensor 65b, the roll rate sensor 65c, the lateral G sensor 66, the front and rear G sensor 67, the camber sensor 68, the suspension stroke sensor 73, the load sensor 75, the tire.
  • the sensor output of the collapse allowance sensor 76 or the like is read, and the yaw rate, pitch angle, roll angle, lateral G, front / rear G, camber angle, suspension stroke, load, tire collapse allowance, etc. are acquired as the vehicle state.
  • the determination index acquisition processing unit can also calculate the roll angle based on the suspension stroke.
  • the determination index acquisition processing means reads the sensor outputs of the steering sensor 64, the accelerator sensor 71, the brake sensor 72, and the like, and sets the steering angle, the depression amount of the accelerator pedal 14, the depression amount of the brake pedal 15, and the like as operation states. get. Further, the determination index acquisition processing unit acquires, as an operation state, a steering angular velocity that represents a rate of change of the steering angle and a steering angular acceleration that represents the rate of change of the steering angular velocity based on the steering angle.
  • Each sensor such as the steering sensor 64, the accelerator sensor 71, and the brake sensor 72 functions as an operation state detection unit.
  • the steering stability camber necessity determination processing means as the first camber necessity determination processing means (not shown) of the control unit 16 performs the steering stability camber necessity determination processing as the first camber necessity determination processing, When the vehicle 10 turns, it is determined whether or not camber needs to be applied to the wheels WLB and WRB, that is, whether camber is required (steps S3 and S4).
  • the steering stability camber necessity determination processing means reads the steering angle, and in the present embodiment, the steering angle for the past X seconds is equal to or greater than a threshold value in the predetermined time immediately before reading the steering angle. (Step S3-1), and if the steering angle for the past X seconds is equal to or greater than the threshold, it is determined that the camber grant condition is satisfied, that is, camber grant is necessary (step S3- 2).
  • camber determination processing means (not shown) of the control unit 16 performs camber determination processing, reads the camber angle, and determines whether camber is imparted to each wheel WLB and WRB. That is, it is determined whether or not the camber is negative (step S5).
  • camber determination processing reads the camber angle, and determines whether camber is imparted to each wheel WLB and WRB. That is, it is determined whether or not the camber is negative (step S5).
  • the camber control processing means (not shown) of the control unit 16 performs camber control processing. That is, the camber grant processing means of the camber control processing means performs camber grant processing and actuates the actuators 31 and 32 to give cambers to the wheels WLB and WRB (step S6).
  • the canvas last is generated in a direction opposite to the tires 36 of the wheels WLB and WRB, but the vehicle 10 is turned to the left.
  • the ground contact load of the outer wheel WRB (outer wheel) increases, and the canvas last generated in the tire 36 of the wheel WRB becomes the tire of the inner wheel WLB (inner wheel). It becomes larger than the canvas last generated in 36.
  • the ground contact load of the outer peripheral wheel WLB (outer wheel) increases, and the canvas last generated in the tire 36 of the wheel WLB becomes the inner peripheral wheel WRB (inner wheel). This is larger than the canvas last generated in the tire 36.
  • the control unit 16 is provided as a second camber necessity determination processing means (not shown).
  • the slope determination processing means performs a downhill determination process as a second camber necessity determination process, and whether or not the vehicle 10 is traveling on a downhill with a downward slope of a predetermined value or more, that is, a downhill. Is determined (steps S7 and S8).
  • the downhill determination processing means reads the vehicle speed and determines whether or not the vehicle speed is equal to or higher than a threshold value. If the vehicle speed is equal to or higher than the threshold, the downhill determination processing means determines whether the vehicle is a downhill based on the map as shown in FIG. 7, that is, whether the vehicle is a map downhill ( Step S7-2).
  • the vertical axis represents the torque generated by the engine 12 and the horizontal axis represents the acceleration of the vehicle 10, and shows the relationship between the torque and acceleration and the road gradient. It is stored in a storage unit such as the ROM 61 and the RAM 62.
  • the map can be created based on the relationship between running resistance and other resistances as shown in the following equation (1).
  • R [mu] r * W + (W + Wf ) * a + [mu] a * A * v ⁇ 2 > + W * tan [theta] (1)
  • R running resistance
  • mu r rolling resistance
  • W vehicle weight
  • W f inertial mass
  • a acceleration
  • mu a Air resistance coefficient
  • A front projected area
  • v vehicle speed
  • theta climbing angle It is.
  • a range in which the downward gradient is equal to or greater than a predetermined value indicates that it is a downhill, and if it belongs to the range, it is determined to be a map downhill.
  • the downhill determination processing means determines whether or not the state of the map downhill has continued for a certain period of time, that is, whether or not it is a map downhill determination for the past Y seconds. (Step S7-3), if it is determined that the map is going downhill for the past Y seconds, it is determined that the vehicle 10 is traveling on a downhill with a downward slope equal to or greater than a predetermined value, that is, downhill (Step S7). -8).
  • the downhill determination processing means reads the pitch angle and determines whether the pitch angle is equal to or greater than a threshold value (step S7-4). If it is not a map downhill, it is determined whether or not the pitch angle is greater than or equal to a threshold without determining whether or not the map is downhill for the past Y seconds.
  • the pitch angle is a state in which the front end of the body 11 is displaced downward from the horizontal state, that is, a state in which the body 11 is bent forward is positive, and a state in which the rear end of the body 11 is displaced downward from the horizontal state. In other words, it is assumed that the bottom-down state is negative. Therefore, the larger the pitch angle, the greater the degree of front turning.
  • the downhill determination processing unit determines whether or not the state where the pitch angle is equal to or greater than the threshold continues for a certain period of time, that is, whether the pitch angle is equal to or greater than the threshold for the past Y seconds. (Step S7-5), and if the pitch angle for the past Y seconds is equal to or greater than the threshold value, it is determined that the vehicle 10 is traveling on a downhill with a downward slope equal to or greater than a predetermined value, that is, a downhill. (Step S7-8).
  • the downhill determination processing means reads data from the navigation device 77, and the navigation device 77 is driving the vehicle 10 on a downhill with a downward slope of a predetermined value or more. It is determined whether or not it is present, that is, whether or not it is a navigation downhill (step S7-6). If the pitch angle is not greater than or equal to the threshold, it is determined whether or not it is a navigation downhill without determining whether or not the pitch angle is greater than or equal to the threshold for the past Y seconds.
  • the downhill determination processing means determines whether or not the state of the navigation downhill has continued for a certain period of time, that is, whether or not it is a navigation downhill for the past Y seconds. (Step S7-7) When it is a navigation downhill for the past Y seconds, it is determined that the vehicle 10 is traveling on a downhill with a downward slope of a predetermined value or more, that is, a downhill (Step S7-8). . Further, if it is not a navigation downhill, or even if it is a navigation downhill, if it is not a navigation downhill for the past Y seconds, it is not determined as a downhill.
  • the camber determination processing means performs camber determination processing, reads the camber angle, and determines whether or not the camber is negative (step). S9).
  • the control unit 16 ends the process.
  • the camber giving processing means of the camber control processing means performs camber giving processing, actuates the actuators 31 and 32, and gives camber to each wheel WLB and WRB (step S10).
  • the canvas last is generated in the opposite direction to the tires 36 of the wheels WLB and WRB, so that an external force is applied to the wheels WLB and WRB.
  • the canvas last in the direction opposite to the external force increases. Therefore, the restoring force of the vehicle 10 is increased, and the running stability of the vehicle 10 can be increased.
  • a straight traveling stable camber necessity determination processing unit as a third camber necessity determination processing unit (not shown) of the control unit 16 is a third camber necessity determination process. Is determined whether or not it is necessary to apply camber to the wheels WLB and WRB when the vehicle 10 is traveling straight, that is, whether camber is required (step). S11, S12).
  • the straight traveling stability camber necessity determination processing means reads the vehicle speed, and in the present embodiment, the vehicle speed calculated value based on the vehicle speed for the past Z seconds in the predetermined time immediately before reading the vehicle speed, this embodiment
  • the average vehicle speed is calculated, and it is determined whether the average vehicle speed for the past Z seconds is equal to or greater than a threshold value (step S11-1).
  • the average vehicle speed for the past Z seconds is equal to or greater than the threshold
  • it is further determined whether or not the average value of the steering angle representing the operation amount of the steering wheel 13 for the past Z seconds, that is, whether the average steering angle is equal to or less than the threshold Step S11-2
  • the average steer angle is equal to or smaller than the threshold value, it is determined that the camber provision condition is satisfied, that is, camber provision is necessary (step S11-3).
  • the camber determination processing means performs camber determination processing, reads the camber angle, and determines whether camber is applied to each wheel WLB and WRB, that is, camber. Is negative (step S13).
  • the camber providing process unit performs a camber providing process and operates the actuators 31 and 32 to apply the camber to each wheel WLB and WRB. (Step S14).
  • the canvas last is generated in the opposite direction to the tires 36 of the wheels WLB and WRB, so that an external force is applied to the wheels WLB and WRB.
  • the canvas last in the direction opposite to the external force increases. Therefore, the restoring force of the vehicle 10 is increased, and the running stability of the vehicle 10 can be increased.
  • the ground load determination processing means as the camber release determination processing means (not shown) of the control unit 16 performs the ground load determination processing as the camber release determination processing, and whether or not the camber release condition is satisfied, that is, the camber grant release. Is determined (step S15, S16).
  • the contact load determination processing means uses, as a contact load index, tire collapse allowance, suspension stroke, front / rear G, yaw rate, roll angle, load, brake stroke, accelerator opening, steering angle, steering angular velocity, steering angular acceleration, etc.
  • each ground load index is greater than or equal to the respective threshold (steps S15-1 to S15-11), and if any one of the ground load indices is greater than or equal to the threshold, It is determined that the contact load causes uneven wear in the tire 36, and it is determined that the camber release condition is satisfied, that is, it is necessary to cancel camber application (step S15-12).
  • each contact load condition for determining whether or not the contact load causes uneven wear on the tire 36 is satisfied depending on whether or not each contact load index is equal to or greater than a threshold value. It is determined whether or not.
  • the camber cancellation processing unit of the camber control processing unit performs the camber cancellation process and operates the actuators 31 and 32 to each wheel WLB. And the grant of camber to WRB is canceled (step S17).
  • camber determination processing means reads the camber angle, and currently each wheel WLB It is determined whether or not camber is assigned to WRB, that is, whether or not the camber is negative (step S18).
  • the camber release processing means measures the time by a timer as a time processing unit (not shown) built in the control unit 16.
  • a timer as a time processing unit (not shown) built in the control unit 16.
  • camber is applied to each wheel WLB and WRB, so that the stability of the vehicle 10 is lowered during traveling downhill. Can be prevented.
  • the downhill determination processing means determines that the vehicle 10 is traveling on the downhill when the downhill determination continues for a predetermined time, that is, for Y seconds or more. It does not repeat frequently, and the fall of stability of vehicle 10 by it can be prevented.
  • the determination criteria are not necessarily three types, some of the three types may be omitted, and other types of determination criteria may be added.
  • camber is provided only to the wheels WLB and WRB, that is, the rear wheels
  • camber may be provided only to the front wheels, or camber is provided to all wheels. Also good.
  • the present invention can be applied to a camber control device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Vehicle Body Suspensions (AREA)
  • Body Structure For Vehicles (AREA)

Abstract

 下り坂を走行している場合には車輪に負のキャンバを付与することによって、下り坂を走行中に車両の安定性が低下することを効果的に防止することができるようにする。そのため、ボディと、該ボディに対して回転自在に配設された複数の車輪とを備える車両における所定の車輪のキャンバを制御するためのキャンバ制御装置であって、前記複数の車輪のうちの所定の車輪に配設され、該所定の車輪にキャンバを付与するためのキャンバ可変機構と、該キャンバ可変機構を作動させ、前記所定の車輪に負のキャンバを付与するキャンバ付与処理手段と、前記車両が下り坂を走行中であるか否かを判定する下り坂判定処理手段とを有し、前記車両が下り坂を走行中である場合には、前記キャンバ付与処理手段によって前記所定の車輪に負のキャンバを付与する。

Description

キャンバ制御装置
 本発明は、キャンバ制御装置に関するものである。
 従来、車輪に負のキャンバ(ネガティブキャンバ)を付与することができるようにした車両が提案されている(例えば、特許文献1参照。)。
 この種の車両においては、車両を直進させて走行させる際、すなわち、車両の直進走行時に、左右の車輪のタイヤに、互いに対向する方向にキャンバスラストを発生させることができるので、車両の直進走行時の安定性(以下「走行安定性」という。)を高くすることができる。また、ステアリングホイールを操作して車両を旋回させる際、すなわち、車両の旋回時に、車両に遠心力が発生するので、外周側の車輪(外輪)のタイヤの接地荷重が大きくなり、外周側の車輪のタイヤに発生するキャンバスラストが内周側の車輪(内輪)のタイヤに発生するキャンバスラストより大きくなる。したがって、車両に十分な求心力を発生させることができるので、車両の旋回時の安定性(以下「旋回安定性」という。)を高くすることができる。なお、前記接地荷重は、タイヤが路面を押圧する荷重である。
 ところが、車輪にネガティブキャンバが付与された状態で車両を長期間走行させると、タイヤに偏摩耗が発生し、タイヤの寿命が短くなってしまう。そこで、車両が安定し、ネガティブキャンバを付与する必要性が低い走行状態では、ネガティブキャンバの付与を解除して、タイヤに偏摩耗が発生するのを抑制することも提案されている。
特開昭60-193781号公報
 しかしながら、前記従来の車両においては、ネガティブキャンバを付与する必要性が低い走行状態であっても、車両の安定性が低下すると車輪にネガティブキャンバが付与されるので、例えば、横風を断続的に受けたときのように、車両の安定性が断続的に低下したときには、ネガティブキャンバの付与と解除が頻繁に繰り返されることとなり、かえって、車両の安定性が低下してしまう。
 本発明は、前記従来の車両の問題点を解決して、下り坂を走行している場合には車輪に負のキャンバを付与することによって、下り坂を走行中に車両の安定性が低下することを効果的に防止することができるキャンバ制御装置を提供することを目的とする。
 そのために、本発明のキャンバ制御装置においては、ボディと、該ボディに対して回転自在に配設された複数の車輪とを備える車両における所定の車輪のキャンバを制御するためのキャンバ制御装置であって、前記複数の車輪のうちの所定の車輪に配設され、該所定の車輪にキャンバを付与するためのキャンバ可変機構と、該キャンバ可変機構を作動させ、前記所定の車輪に負のキャンバを付与するキャンバ付与処理手段と、前記車両が下り坂を走行中であるか否かを判定する下り坂判定処理手段とを有し、前記車両が下り坂を走行中である場合には、前記キャンバ付与処理手段によって前記所定の車輪に負のキャンバを付与する。
 請求項1の構成によれば、下り坂を走行している場合には車輪に負のキャンバを付与するので、下り坂を走行中に車両の安定性が低下することを効果的に防止することができる。
 請求項2の構成によれば、車輪に負のキャンバを無用に付与することがないので、タイヤに偏摩耗が発生するのを十分に抑制することができ、タイヤの寿命を長くすることができる。
 請求項3の構成によれば、下り坂では後輪にかかる荷重が低いので、タイヤに偏摩耗が発生することがなく、タイヤの寿命を長くすることができる。
本発明の実施の形態における車両の動作を示すフローチャートである。 本発明の実施の形態における車両の概念図である。 本発明の実施の形態における懸架装置を示す図である。 本発明の実施の形態における車両の制御装置を示すブロック図である。 本発明の実施の形態における操縦安定キャンバ要否判定処理のサブルーチンを示す図である。 本発明の実施の形態における下り坂判定処理のサブルーチンを示す図である。 本発明の実施の形態における下り坂判定用のマップを示す図である。 本発明の実施の形態における直進安定キャンバ要否判定処理のサブルーチンを示す図である。 本発明の実施の形態における接地荷重判定処理のサブルーチンを示す図である。
 以下、本発明の実施の形態について図面を参照しながら詳細に説明する。
 図2は本発明の実施の形態における車両の概念図である。なお、矢印U-D、L-R及びF-Bは、車両の上下方向、左右方向及び前後方向を示している。
 図において、10は乗用車、バス、トラック等の車両であり、11は該車両10の本体であるボディであり、12は車両10の駆動源としてのエンジンであり、WLF、WRF、WLB及びWRBは、前記ボディ11に対して回転自在に配設された左前方、右前方、左後方及び右後方の車輪である。なお、前記車両10は、前輪が左右二輪であって後輪が一輪の三輪車であってもよいし、前輪が一輪であって後輪が左右二輪の三輪車であってもよいが、本実施の形態においては、図に示されるように、前輪及び後輪が左右二輪の四輪車である場合について説明する。
 前記車両10は後輪駆動方式の構造を有し、前記車輪WLB及びWRBが駆動輪として機能する。そして、エンジン12と各車輪WLB及びWRBとが第1の伝動軸としてのプロペラシャフト17、差動装置18及び第2の伝動軸としてのドライブシャフト52を介して連結され、エンジン12を駆動することによって発生させられた回転が各車輪WLB及びWRBに伝達される。本実施の形態において、前記車両10は後輪駆動方式の構造を有するようになっているが、前輪が駆動輪として機能する前輪駆動方式の構造を有するようにすることもできるし、すべての車輪が駆動輪として機能する全輪(四輪)駆動方式の構造を有するようにすることもできる。
 また、エンジン12に代えて、電気モータを駆動源として使用することもできる。さらに、各車輪に内蔵可能な電気モータであるインホイールモータを駆動源として使用することもできる。この場合には、プロペラシャフト17、差動装置18及びドライブシャフト52を省略することができる。
 13は車両10の操舵(だ)を行うための操作部としての、かつ、操舵部材としてのステアリングホイールであり、14は車両10を加速するための操作部としての、かつ、加速操作部材としてのアクセルペダルであり、15は車両10を制動するための操作部としての、かつ、制動操作部材としてのブレーキペダルである。
 そして、31及び32は、キャンバ可変機構の一部としてのアクチュエータであり、それぞれ、ボディ11と各車輪WLB及びWRBとの間に配設され、車輪WLB及びWRBを回転させたり、車輪WLB及びWRBにキャンバを付与したり、キャンバの付与を解除したりする装置である。なお、本実施の形態において、キャンバの付与とは、別段の断りがない限り、負のキャンバ(ネガティブキャンバ)の付与を意味する。
 本実施の形態においては、ボディ11と各車輪WLB及びWRBとの間に各アクチュエータ31及び32が配設されるようになっているが、ボディ11と各車輪WLF及びWRFとの間にアクチュエータを配設したり、ボディ11と各車輪WLF、WRF、WLB及びWRBとの間にアクチュエータを配設したりすることもできる。
 ところで、前記車輪WLF、WRF、WLB及びWRBは、アルミニウム合金等によって形成された図示されないホイール、及び、該ホイールの外周に嵌(かん)合させて配設されたタイヤ36を備える。そして、該タイヤ36として、損失正接を小さくすることにより、タイヤ36の変形によって発生する転がり抵抗が小さくされた低転がり抵抗タイヤが使用される。本実施の形態においては、転がり抵抗を小さくするためにタイヤ36の幅が通常のタイヤより小さくされるが、トレッドの溝のパターンであるトレッドパターンを、転がり抵抗が小さくなるような形状にしたり、少なくともトレッドの部分の材料を、転がり抵抗が小さいものにしたりすることができる。
 なお、前記損失正接は、トレッドが変形する際のエネルギの吸収の度合いを示し、貯蔵剪(せん)断弾性率に対する損失剪断弾性率の比で表すことができる。損失正接が小さいほどエネルギの吸収が少なくなるので、タイヤ36に発生する転がり抵抗が小さくなり、タイヤ36に発生する摩耗が少なくなる。これに対して、損失正接が大きいほどエネルギの吸収が多くなるので、転がり抵抗が大きくなり、タイヤ36に発生する摩耗が多くなる。
 前記構成の車両10においては、タイヤ36の転がり抵抗が小さくされるので、燃費をよくすることができる。
 次に、各車輪WLB及びWRBにキャンバθを付与したり、キャンバθの付与を解除したりするためのアクチュエータ31及び32の構造について詳細に説明する。この場合、各アクチュエータ31及び32の構造は同じであるので、車輪WLB及びアクチュエータ31についてだけ説明する。
 図3は本発明の実施の形態における懸架装置を示す図である。
 図において、40は車両10の懸架装置であり、路面から車輪を介してボディ11に伝わる振動を緩和するための装置、いわゆるサスペンションとして機能するものであり、伸縮可能に構成され、各車輪に対応してそれぞれ設けられている。なお、ここでは、車輪WLBに対応する懸架装置40を代表例として説明する。また、キャンバ可変機構として機能する部分についてのみ説明し、サスペンションとして機能する部分については周知のサスペンションと同様であるので、その説明を省略する。さらに、図3では、理解を容易とするために、ドライブシャフト52等の図示が省略されている。
 懸架装置40は、ストラット41及びロアアーム42を介してボディ11に支持されるベース部材としてのナックル43と、該ナックル43に固定されたキャンバ制御用の駆動部としてのモータ44と、該モータ44の駆動力を伝達するウォームホイール45及びアーム46と、前記ウォームホイール45及びアーム46を介して伝達されるモータ44の駆動力によってナックル43に対して揺動駆動される可動部材としての可動プレート47とを有する。
 ナックル43は、車輪WLBを支持する部材であり、上端がストラット41に連結されるとともに、下端がボールジョイントを介してロアアーム42に連結されている。また、モータ44は、例えば、DCモータから成り、その出力軸44aには図示されないウォームギヤが形成されている。そして、ウォームホイール45は、モータ44の出力軸44aに形成されたウォームギヤに噛(か)み合い、該ウォームギヤとともに食い違い軸歯車対を構成している。
 アーム46は、ウォームホイール45から伝達されるモータ44の駆動力を可動プレート47に伝達する部材であり、一端(図における右端)が第1連結軸48を介してウォームホイール45の回転軸45aから偏心した位置に連結され、他端(図における左端)が第2連結軸49を介して可動プレート47の上端に連結されている。また、可動プレート47は、車輪WLBを回転可能に支持する部材であり、上端がアーム46に連結され、下端がキャンバ軸50を介してナックル43に揺動可能に軸支されている。
 そして、モータ44が作動すると、ウォームホイール45が回転し、該ウォームホイール45の回転運動がアーム46の直線運動に変換される。その結果、アーム46が直線運動することで、可動プレート47がキャンバ軸50を揺動軸として揺動し、車輪WLBのキャンバ角が変化する。
 次に、前記構成の車両10の制御装置について説明する。
 図4は本発明の実施の形態における車両の制御装置を示すブロック図である。
 図において、16はCPU等の演算手段を備え、一種のコンピュータとして機能する制御部である。61は第1の記憶部としてのROMであり、62は第2の記憶部としてのRAMである。63は車両10の走行速度である車速を検出する車速検出部としての車速センサであり、64はステアリングホイール13の操作量を表すステアリング角度を検出するステアリング操作量検出部としてのステアリングセンサである。
 また、65aは車両10のヨーレートを検出するヨーレート検出部としてのヨーレートセンサであり、65bは車両10のピッチレートを検出するピッチレート検出部としてのピッチレートセンサであり、65cは車両10のロールレートを検出するロールレート検出部としてのロールレートセンサである。なお、前記ヨーレートセンサ65a、ピッチレートセンサ65b及びロールレートセンサ65cは、それぞれ、個別のセンサであってもよいし、ヨーレート、ピッチレート及びロールレートを単体で検出可能な三軸ジャイロセンサ等の姿勢センサであってもよい。
 さらに、66は横G(横方向加速度)を検出する第1の加速度検出部としての横Gセンサであり、67は前後G(前後方向加速度)を検出する第2の加速度検出部としての前後Gセンサであり、68は各車輪WLB及びWRBに付与されたキャンバ角を検出するキャンバ検出部としてのキャンバセンサである。
 そして、71はアクセルペダル14の操作量を表す踏込量を検出するアクセル操作量検出部としてのアクセルセンサであり、72はブレーキペダル15の操作量を表す踏込量を検出するブレーキ操作量検出部としてのブレーキセンサである。73は各車輪WLB及びWRBのサスペンションとして機能する懸架装置40のストロークを検出する懸架検出部としてのサスストロークセンサであり、75は各車輪WLB及びWRBに加わる荷重を検出する荷重検出部としての荷重センサであり、76はタイヤ36の潰(つぶ)れ代、すなわち、タイヤ潰れ代を検出するタイヤ潰れ代検出部としての、かつ、タイヤ状態検出部としてのタイヤ潰れ代センサである。本実施の形態において、タイヤ36の潰れ代は、タイヤ36のサイドウォールの変形量によって表される。
 なお、前記ステアリングセンサ64は、ステアリング角度に代えて、ステアリングホイール13の操作量を表す舵角、舵角速度等を検出することができ、アクセルセンサ71は、アクセルペダル14の踏込量に代えて、アクセルペダル14の操作量を表す踏込速度、踏込加速度等を検出することができ、ブレーキセンサ72は、ブレーキペダル15の踏込量に代えて、ブレーキペダル15の操作量を表す踏込速度、踏込加速度等を検出することができる。
 また、前記サスストロークセンサ73は、例えば、ハイトセンサ、磁気センサ等であり、荷重センサ75は、例えば、サスペンション装置に配設されたロードセル(歪(ひず)みセンサ)であり、タイヤ潰れ代センサ76は、例えば、タイヤ36のサイドウォールに配設されたロードセル(歪みセンサ)である。
 さらに、77は車両10に搭載された環境情報取得手段としてのナビゲーション装置である。該ナビゲーション装置77は、一種のコンピュータであり、GPS(Global Positioning System)レシーバ等によって車両10の現在位置を検出する現在位置検出部、道路の勾(こう)配、道路種別、降坂路、登坂路等の道路データ、探索データ等が記憶された記憶媒体としてのデータ記憶部、入力された情報に基づいて、ナビゲーション処理等の各種の演算処理を行うナビゲーション処理部、入力部、表示部、音声入力部、音声出力部、通信部等を有し、前記制御部16に接続されている。そして、ナビゲーション装置77は、車両10の現在位置及び道路データに基づいて、車両10が下り坂を走行中であることを示すことができる。
 前記ボディ11、車輪WLF、WRF、WLB、WRB、制御部16、アクチュエータ31及び32、タイヤ36、後述される車両状態検出部等がキャンバ制御装置の少なくとも一部として機能する。
 ところで、下り坂を走行している場合には、平坦(たん)路を走行している場合と比較して、車両10の安定性が低下する。そこで、本実施の形態においては、下り坂を走行している場合には、車両10の安定性を高くすることができるように、前記アクチュエータ31及び32を作動させ、車輪WLB及びWRBにキャンバを付与する。より具体的には、所定の条件に基づいて下り坂を走行中であるか否かを判断し、下り坂を走行中であると判断した場合には、車輪WLB及びWRBにキャンバを付与する。なお、前述のように、キャンバの付与は、四輪すべてであってもよいし、前輪のみであってもよいが、ここでは、説明の都合上、後輪のみに付与する場合についてのみ説明する。
 次に、前記構成の車両10の動作について説明する。ここでは、車輪WLB及びWRBにキャンバを付与したり、キャンバの付与を解除したりする動作についてのみ説明する。
 図1は本発明の実施の形態における車両の動作を示すフローチャート、図5は本発明の実施の形態における操縦安定キャンバ要否判定処理のサブルーチンを示す図、図6は本発明の実施の形態における下り坂判定処理のサブルーチンを示す図、図7は本発明の実施の形態における下り坂判定用のマップを示す図、図8は本発明の実施の形態における直進安定キャンバ要否判定処理のサブルーチンを示す図、図9は本発明の実施の形態における接地荷重判定処理のサブルーチンを示す図である。
 まず、制御部16の図示されない判定指標取得処理手段は、判定指標取得処理を行い、各車輪WLB及びWRBにキャンバを付与したり、キャンバの付与を解除したりするために必要な判定指標、本実施の形態においては、車両10の状態を表す車両状態、及び、操作者による各操作部の操作の状態を表す操作状態を検出する(ステップS1、S2)。
 そのために、前記判定指標取得処理手段は、前記ヨーレートセンサ65a、ピッチレートセンサ65b、ロールレートセンサ65c、横Gセンサ66、前後Gセンサ67、キャンバセンサ68、サスストロークセンサ73、荷重センサ75、タイヤ潰れ代センサ76等のセンサ出力を読み込み、車両状態として、ヨーレート、ピッチ角、ロール角、横G、前後G、キャンバの角度、サスストローク、荷重、タイヤ潰れ代等を取得する。なお、前記判定指標取得処理手段は、サスストロークに基づいてロール角を算出することもできる。
 そして、前記判定指標取得処理手段は、ステアリングセンサ64、アクセルセンサ71、ブレーキセンサ72等のセンサ出力を読み込み、操作状態として、ステアリング角度、アクセルペダル14の踏込量、ブレーキペダル15の踏込量等を取得する。また、前記判定指標取得処理手段は、ステアリング角度に基づいて、ステアリング角度の変化率を表すステアリング角速度、及び、該ステアリング角速度の変化率を表すステアリング角加速度を操作状態として取得する。
 なお、前記ヨーレートセンサ65a、ピッチレートセンサ65b、ロールレートセンサ65c、横Gセンサ66、前後Gセンサ67、キャンバセンサ68、サスストロークセンサ73、荷重センサ75、タイヤ潰れ代センサ76等の各センサは車両状態検出部として機能し、ステアリングセンサ64、アクセルセンサ71、ブレーキセンサ72等の各センサは操作状態検出部として機能する。
 次に、制御部16の図示されない第1のキャンバ要否判定処理手段としての操縦安定キャンバ要否判定処理手段は、第1のキャンバ要否判定処理としての操縦安定キャンバ要否判定処理を行い、車両10の旋回時に、車輪WLB及びWRBにキャンバを付与する必要があるか否か、すなわち、キャンバ付与が必要であるか否かを判断する(ステップS3、S4)。
 そのために、前記操縦安定キャンバ要否判定処理手段は、ステアリング角度を読み込み、ステアリング角度を読み込む直前の所定の時間、本実施の形態においては、過去X秒間のステアリング角度が閾(しきい)値以上であるか否かを判断し(ステップS3-1)、過去X秒間のステアリング角度が閾値以上である場合、キャンバ付与条件が成立した、すなわち、キャンバ付与が必要であると判断する(ステップS3-2)。
 そして、キャンバ付与が必要であると判断した場合、制御部16の図示されないキャンバ判定処理手段は、キャンバ判定処理を行い、キャンバの角度を読み込み、各車輪WLB及びWRBにキャンバが付与されているか否か、すなわち、キャンバがネガティブであるか否かを判断する(ステップS5)。各車輪WLB及びWRBにキャンバが付与されている場合、すなわち、キャンバがネガティブである場合、制御部16は処理を終了する。
 また、キャンバが付与されていない場合、すなわち、キャンバがネガティブでない場合、制御部16の図示されないキャンバ制御処理手段は、キャンバ制御処理を行う。すなわち、前記キャンバ制御処理手段のキャンバ付与処理手段は、キャンバ付与処理を行い、前記アクチュエータ31及び32を作動させて各車輪WLB及びWRBにキャンバを付与する(ステップS6)。
 このとき、各車輪WLB及びWRBにキャンバが付与されるのに伴って、各車輪WLB及びWRBのタイヤ36に互いに対向する方向にキャンバスラストが発生するが、車両10を左方に向けて旋回させる場合は、車両10に遠心力が発生するので、外周側の車輪WRB(外輪)の接地荷重が大きくなり、車輪WRBのタイヤ36に発生するキャンバスラストが内周側の車輪WLB(内輪)のタイヤ36に発生するキャンバスラストより大きくなる。また、車両10を右方に向けて旋回させる場合は、外周側の車輪WLB(外輪)の接地荷重が大きくなり、車輪WLBのタイヤ36に発生するキャンバスラストが内周側の車輪WRB(内輪)のタイヤ36に発生するキャンバスラストより大きくなる。
 したがって、車両10に十分な求心力を発生させることができるので、車両10の旋回安定性を高くすることができる。
 一方、操縦安定キャンバ要否判定処理を行い、キャンバ付与が必要であるか否かを判断してキャンバ付与が必要でない場合、制御部16の図示されない第2のキャンバ要否判定処理手段としての下り坂判定処理手段は、第2のキャンバ要否判定処理としての下り坂判定処理を行い、車両10が下り勾配が所定値以上の下り坂を走行中であるか否か、すなわち、下り坂であるか否かを判断する(ステップS7、S8)。
 そのために、前記下り坂判定処理手段は、車速を読み込み、車速が閾値以上であるか否かを判断し、閾値以上でない場合には下り坂と判断しない(ステップS7-1)。また、車速が閾値以上である場合、前記下り坂判定処理手段は、図7に示されるようなマップに基づく下り坂であるか否か、すなわち、マップ下り坂であるか否かを判断する(ステップS7-2)。
 なお、前記マップは、縦軸にエンジン12の発生するトルク、横軸に車両10の加速度が採ってあり、トルク及び加速度と道路勾配との関係を示すものであり、あらかじめ車速別に複数作成され、ROM61、RAM62等の記憶部に格納されている。前記マップは、次の式(1)に示されるような走行抵抗と他の抵抗との関係に基づいて作成することができる。
R=μ・W+(W+W)・a+μ・A・v+W・tan θ ・・・式(1)
ここで、R:走行抵抗、μ:転がり抵抗、W:車重、W:慣性質量、a:加速度、μ:空気抵抗係数、A:前面投影面積、v:車速、θ:登坂角である。
 前記マップにおいては、下り勾配が所定値(例えば、x〔%〕)以上である範囲が下り坂であることを示し、前記範囲に属するとマップ下り坂であると判断される。
 そして、マップ下り坂である場合、前記下り坂判定処理手段は、マップ下り坂の状態がある程度の時間継続しているか否か、すなわち、過去Y秒間マップ下り坂の判断であるか否かを判断し(ステップS7-3)、過去Y秒間マップ下り坂の判断である場合、車両10が下り勾配が所定値以上の下り坂を走行中である、すなわち、下り坂であると判断する(ステップS7-8)。
 また、過去Y秒間マップ下り坂の判断でない場合、前記下り坂判定処理手段は、ピッチ角を読み込み、ピッチ角が閾値以上であるか否かを判断する(ステップS7-4)。なお、マップ下り坂でない場合には、過去Y秒間マップ下り坂の判断であるか否かを判断することなく、ピッチ角が閾値以上であるか否かを判断する。ここで、ピッチ角は、水平状態よりもボディ11の前端が下方に変位した状態、すなわち、前のめりになった状態を正であるとし、水平状態よりもボディ11の後端が下方に変位した状態、すなわち、尻下がりになった状態を負であるとする。したがって、ピッチ角が大きいほど、前のめりになっている度合いが大きいことを意味する。
 車両10が加減速をしないとき、ピッチ角はほぼ路面勾配に等しいと考えられる。そこで、ピッチ角が閾値以上である場合、前記下り坂判定処理手段は、ピッチ角が閾値以上の状態がある程度の時間継続しているか否か、すなわち、過去Y秒間ピッチ角が閾値以上であるか否かを判断し(ステップS7-5)、過去Y秒間ピッチ角が閾値以上である場合、車両10が下り勾配が所定値以上の下り坂を走行中である、すなわち、下り坂であると判断する(ステップS7-8)。
 また、過去Y秒間ピッチ角が閾値以上でない場合、前記下り坂判定処理手段は、ナビゲーション装置77からのデータを読み込み、ナビゲーション装置77は車両10が下り勾配が所定値以上の下り坂を走行中であることを示しているか否か、すなわち、ナビ下り坂であるか否かを判断する(ステップS7-6)。なお、ピッチ角が閾値以上でない場合には、過去Y秒間ピッチ角が閾値以上であるか否かを判断することなく、ナビ下り坂であるか否かを判断する。
 そして、ナビ下り坂である場合、前記下り坂判定処理手段は、ナビ下り坂である状態がある程度の時間継続しているか否か、すなわち、過去Y秒間ナビ下り坂であるか否かを判断し(ステップS7-7)、過去Y秒間ナビ下り坂である場合、車両10が下り勾配が所定値以上の下り坂を走行中である、すなわち、下り坂であると判断する(ステップS7-8)。また、ナビ下り坂でない場合、又は、ナビ下り坂であっても、過去Y秒間ナビ下り坂でない場合には、下り坂と判断しない。
 このようにして、下り坂判定処理手段が下り坂であると判断すると、キャンバ判定処理手段は、キャンバ判定処理を行い、キャンバの角度を読み込み、キャンバがネガティブであるか否かを判断する(ステップS9)。そして、キャンバがネガティブである場合、制御部16は処理を終了する。また、キャンバがネガティブでない場合、前記キャンバ制御処理手段のキャンバ付与処理手段は、キャンバ付与処理を行い、前記アクチュエータ31及び32を作動させて各車輪WLB及びWRBにキャンバを付与する(ステップS10)。
 このとき、各車輪WLB及びWRBにキャンバを付与するのに伴って、各車輪WLB及びWRBのタイヤ36に互いに対向する方向にキャンバスラストが発生するので、各車輪WLB及びWRBに外力が加わった場合は、外力と逆方向のキャンバスラストが大きくなる。したがって、車両10の復元力が大きくなり、車両10の走行安定性を高くすることができる。
 一方、下り坂判定処理を行い、下り坂でない場合、制御部16の図示されない第3のキャンバ要否判定処理手段としての直進安定キャンバ要否判定処理手段は、第3のキャンバ要否判定処理としての直進安定キャンバ要否判定処理を行い、車両10の直進走行時に、車輪WLB及びWRBにキャンバを付与する必要があるか否か、すなわち、キャンバ付与が必要であるか否かを判断する(ステップS11、S12)。
 そのために、前記直進安定キャンバ要否判定処理手段は、車速を読み込み、車速を読み込む直前の所定の時間、本実施の形態においては、過去Z秒間の車速に基づいて車速算出値、本実施の形態においては、平均車速を算出するとともに、過去Z秒間の平均車速が閾値以上であるか否かを判断する(ステップS11-1)。過去Z秒間の平均車速が閾値以上である場合、さらに、過去Z秒間におけるステアリングホイール13の操作量を表すステアリング角度の平均値、すなわち、平均ステア角が閾値以下であるか否かを判断する(ステップS11-2)。平均ステア角が閾値以下である場合、キャンバ付与条件が成立した、すなわち、キャンバ付与が必要であると判断する(ステップS11-3)。
 そして、キャンバ付与が必要であると判断した場合、前記キャンバ判定処理手段は、キャンバ判定処理を行い、キャンバの角度を読み込み、各車輪WLB及びWRBにキャンバが付与されているか否か、すなわち、キャンバがネガティブであるか否かを判断する(ステップS13)。キャンバが付与されていない場合、すなわち、キャンバがネガティブでない場合には、前記キャンバ付与処理手段は、キャンバ付与処理を行い、前記アクチュエータ31及び32を作動させて各車輪WLB及びWRBにキャンバを付与する(ステップS14)。
 このとき、各車輪WLB及びWRBにキャンバを付与するのに伴って、各車輪WLB及びWRBのタイヤ36に互いに対向する方向にキャンバスラストが発生するので、各車輪WLB及びWRBに外力が加わった場合は、外力と逆方向のキャンバスラストが大きくなる。したがって、車両10の復元力が大きくなり、車両10の走行安定性を高くすることができる。
 ところで、前述したように、各車輪WLB及びWRBにキャンバが付与された状態で車両10を長時間走行させるのに伴ってタイヤ36に偏摩耗が発生すると、タイヤ36の寿命が短くなってしまう。
 そこで、制御部16の図示されないキャンバ解除判定処理手段としての接地荷重判定処理手段は、キャンバ解除判定処理としての接地荷重判定処理を行い、キャンバ解除条件が成立したか否か、すなわち、キャンバ付与解除が必要であるか否かを判断する(ステップS15、S16)。そのために、前記接地荷重判定処理手段は、接地荷重指標として、タイヤ潰れ代、サスストローク、前後G、ヨーレート、ロール角、荷重、ブレーキストローク、アクセル開度、ステアリング角度、ステアリング角速度、ステアリング角加速度等を読み込み、各接地荷重指標が、それぞれの閾値以上であるか否かを判断し(ステップS15-1~S15-11)、各接地荷重指標のうちのいずれか一つが閾値以上である場合に、接地荷重がタイヤ36に偏摩耗を発生させると判断し、キャンバ解除条件が成立した、すなわち、キャンバ付与解除が必要であると判断する(ステップS15-12)。なお、前記接地荷重判定処理において、各接地荷重指標がそれぞれの閾値以上であるか否かによって、接地荷重がタイヤ36に偏摩耗を発生させるか否かを判断するための各接地荷重条件が成立したか否かが判断される。
 そして、前記接地荷重判定処理において、キャンバ付与解除が必要であると判断した場合、前記キャンバ制御処理手段のキャンバ解除処理手段は、キャンバ解除処理を行い、アクチュエータ31及び32を作動させて各車輪WLB及びWRBへのキャンバの付与を解除する(ステップS17)。
 一方、直進安定キャンバ要否判定処理を行い、キャンバ付与が必要であるか否かを判断してキャンバ付与が必要でない場合、前記キャンバ判定処理手段は、キャンバの角度を読み込み、現在、各車輪WLB及びWRBにキャンバが付与されているか否か、すなわち、キャンバがネガティブであるか否かを判断する(ステップS18)。
 そして、各車輪WLB及びWRBにキャンバが付与されている場合、すなわち、キャンバがネガティブである場合、前記キャンバ解除処理手段は、制御部16に内蔵された図示されない計時処理部としてのタイマによる計時を開始し、所定の時間が経過すると(ステップS19)、アクチュエータ31及び32を作動させて各車輪WLB及びWRBへのキャンバの付与を解除する(ステップS20)。
 このように、本実施の形態においては、下り坂を走行している場合には各車輪WLB及びWRBにキャンバを付与するので、下り坂を走行中に車両10の安定性が低下することを効果的に防止することができる。
 この場合、下り坂判定処理手段は、所定の時間、すなわち、Y秒間以上下り坂の判断が継続したときに車両10が下り坂を走行中であると判断するので、キャンバの付与と解除とを頻繁に繰り返すことがなく、それによる車両10の安定性の低下を防止することができる。
 また、トルク及び加速度と道路勾配との関係、車両10のピッチ角、並びに、ナビゲーション装置77のデータの3種類、すなわち、複数の判定基準に基づいて車両10が下り坂を走行中であるか否かを判定するので、下り坂の判定精度が高く、キャンバの付与を正確に行うことができる。なお、前記判定基準は、必ずしも3種類である必要はなく、前記3種類のうちのいくつかを省略してもよいし、他の種類の判定基準を付加してもよい。
 さらに、本実施の形態においては、車輪WLB及びWRB、すなわち、後輪にのみキャンバを付与する例について説明したが、前輪にのみキャンバを付与してもよいし、全輪にキャンバを付与してもよい。
 なお、本発明は前記実施の形態に限定されるものではなく、本発明の趣旨に基づいて種々変形させることが可能であり、それらを本発明の範囲から排除するものではない。
 本発明は、キャンバ制御装置に適用することができる。
10  車両
11  ボディ
16  制御部
31、32  アクチュエータ
36  タイヤ
WLF、WRF、WLB、WRB  車輪

Claims (3)

  1.  ボディと、該ボディに対して回転自在に配設された複数の車輪とを備える車両における所定の車輪のキャンバを制御するためのキャンバ制御装置であって、
     前記複数の車輪のうちの所定の車輪に配設され、該所定の車輪にキャンバを付与するためのキャンバ可変機構と、
     該キャンバ可変機構を作動させ、前記所定の車輪に負のキャンバを付与するキャンバ付与処理手段と、
     前記車両が下り坂を走行中であるか否かを判定する下り坂判定処理手段とを有し、
     前記車両が下り坂を走行中である場合には、前記キャンバ付与処理手段によって前記所定の車輪に負のキャンバを付与することを特徴とするキャンバ制御装置。
  2.  前記下り坂判定処理手段は、下り勾配が所定値以上であると前記車両が下り坂を走行中であると判定する請求項1に記載のキャンバ制御装置。
  3.  前記所定の車輪は後輪である請求項1又は2に記載のキャンバ制御装置。
PCT/JP2010/006722 2009-11-19 2010-11-16 キャンバ制御装置 WO2011061925A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-263692 2009-11-19
JP2009263692A JP2011105201A (ja) 2009-11-19 2009-11-19 キャンバ制御装置

Publications (1)

Publication Number Publication Date
WO2011061925A1 true WO2011061925A1 (ja) 2011-05-26

Family

ID=44059412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/006722 WO2011061925A1 (ja) 2009-11-19 2010-11-16 キャンバ制御装置

Country Status (2)

Country Link
JP (1) JP2011105201A (ja)
WO (1) WO2011061925A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60193781A (ja) * 1984-03-15 1985-10-02 Honda Motor Co Ltd 車両のキヤンバ可変装置
JP2008285006A (ja) * 2007-05-17 2008-11-27 Advics:Kk 車両駆動輪荷重制御装置
JP2009241918A (ja) * 2008-03-10 2009-10-22 Equos Research Co Ltd タイヤ

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3804120B2 (ja) * 1996-09-21 2006-08-02 マツダ株式会社 自動変速機の制御装置
JP3481906B2 (ja) * 2000-08-07 2003-12-22 日野自動車株式会社 自動変速制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60193781A (ja) * 1984-03-15 1985-10-02 Honda Motor Co Ltd 車両のキヤンバ可変装置
JP2008285006A (ja) * 2007-05-17 2008-11-27 Advics:Kk 車両駆動輪荷重制御装置
JP2009241918A (ja) * 2008-03-10 2009-10-22 Equos Research Co Ltd タイヤ

Also Published As

Publication number Publication date
JP2011105201A (ja) 2011-06-02

Similar Documents

Publication Publication Date Title
JP4887771B2 (ja) 走行装置
RU2421354C2 (ru) Приводное устройство транспортного средства
JP5720187B2 (ja) 車両用制御装置
JP2008012972A (ja) 走行装置及び車両姿勢制御装置
EP2484543B1 (en) Control device for vehicle
WO2011061925A1 (ja) キャンバ制御装置
JP5273018B2 (ja) キャンバ制御装置
JP2008154346A (ja) 車両姿勢制御装置及び走行装置
US11643143B2 (en) Spherical wheel leaning systems for vehicles
JP5263127B2 (ja) キャンバ制御装置
JP2011105202A (ja) キャンバ制御装置
JP2013006577A (ja) キャンバ制御装置
JP2005306249A (ja) 車両操舵制御装置
WO2011052078A1 (ja) 車両運動制御システム
JP5609314B2 (ja) キャンバ制御装置
JP5764923B2 (ja) キャンバ制御装置
JP2012076500A (ja) キャンバ角制御装置
JP2009107459A (ja) タイヤ位置可変車両およびタイヤ力変化抑制方法
JP5527021B2 (ja) キャンバ制御装置
JP5729089B2 (ja) キャンバ制御装置
WO2011052077A1 (ja) 車両運動制御システム
JP2011068209A (ja) キャンバ制御装置
JP5152146B2 (ja) キャンバ制御装置
JP5375635B2 (ja) キャンバ制御装置
CN113060210A (zh) 基于四轮独立驱动及后轮转向提升汽车机动性的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10831324

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10831324

Country of ref document: EP

Kind code of ref document: A1