WO2022137771A1 - 眼鏡レンズの製造方法 - Google Patents

眼鏡レンズの製造方法 Download PDF

Info

Publication number
WO2022137771A1
WO2022137771A1 PCT/JP2021/039207 JP2021039207W WO2022137771A1 WO 2022137771 A1 WO2022137771 A1 WO 2022137771A1 JP 2021039207 W JP2021039207 W JP 2021039207W WO 2022137771 A1 WO2022137771 A1 WO 2022137771A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
semi
shape
mark
marks
Prior art date
Application number
PCT/JP2021/039207
Other languages
English (en)
French (fr)
Inventor
吉洋 菊池
伸一 横山
Original Assignee
ホヤ レンズ タイランド リミテッド
吉洋 菊池
伸一 横山
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021064293A external-priority patent/JP2022101427A/ja
Application filed by ホヤ レンズ タイランド リミテッド, 吉洋 菊池, 伸一 横山 filed Critical ホヤ レンズ タイランド リミテッド
Priority to KR1020237023038A priority Critical patent/KR20230137302A/ko
Priority to US18/269,136 priority patent/US20240126100A1/en
Priority to CN202180087010.1A priority patent/CN116829305A/zh
Priority to EP21909928.0A priority patent/EP4270095A1/en
Publication of WO2022137771A1 publication Critical patent/WO2022137771A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/021Lenses; Lens systems ; Methods of designing lenses with pattern for identification or with cosmetic or therapeutic effects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B13/00Machines or devices designed for grinding or polishing optical surfaces on lenses or surfaces of similar shape on other work; Accessories therefor
    • B24B13/005Blocking means, chucks or the like; Alignment devices
    • B24B13/0055Positioning of lenses; Marking of lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B13/00Machines or devices designed for grinding or polishing optical surfaces on lenses or surfaces of similar shape on other work; Accessories therefor
    • B24B13/06Machines or devices designed for grinding or polishing optical surfaces on lenses or surfaces of similar shape on other work; Accessories therefor grinding of lenses, the tool or work being controlled by information-carrying means, e.g. patterns, punched tapes, magnetic tapes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B9/00Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor
    • B24B9/02Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground
    • B24B9/06Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain
    • B24B9/08Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass
    • B24B9/14Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass of optical work, e.g. lenses, prisms
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/024Methods of designing ophthalmic lenses
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/10Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses
    • G02C7/101Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses having an electro-optical light valve
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C2202/00Generic optical aspects applicable to one or more of the subgroups of G02C7/00
    • G02C2202/16Laminated or compound lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/157Structural association of cells with optical devices, e.g. reflectors or illuminating devices

Definitions

  • the present invention relates to a method for manufacturing a spectacle lens.
  • a spectacle lens according to a prescription using a semi-finished lens in which one surface is an optical surface and the other surface is a non-optical surface.
  • the geometric center is used as a reference point
  • the point specified by a hidden mark is used as a reference point
  • the non-optical surface of the semi-finished lens is processed and processed.
  • the frame shape is laid out for the above, and the lens shape is processed according to the laid out frame shape. This completes a cut lens that can be framed in the frame.
  • a spectacle lens (hereinafter referred to as "EC lens") including an electrochromic film capable of reversibly controlling color generation and decolorization by applying a voltage has been known (see, for example, Patent Document 1).
  • EC lens a spectacle lens
  • an electrochromic film in the shape of a frame is attached to the optical surface.
  • the layout position of the frame is determined after processing the non-optical surface. Therefore, in the processing stage of the non-optical surface, it is not necessary to obtain the position of the eye point with high accuracy with respect to the layout position of the frame shape.
  • the layout position of the frame has already been decided before processing the non-optical surface. Therefore, it is necessary to obtain the position of the eye point with high accuracy with respect to the layout position of the frame shape at the processing stage of the non-optical surface. As a result of processing the non-optical surface, an error occurs in the position of the eye point with respect to the layout position of the frame shape. Since the position of the electrochromic film attached to the surface deviates from the position, a part of the electrochromic film is cut and becomes a defective product, and when performing spherical processing according to the electrochromic film, the position of the eye point. Is not as prescribed.
  • the present invention is used in the case of manufacturing a spectacle lens using a lens in which the layout position of the frame is predetermined before processing the non-optical surface, such as a semi-finished lens for an EC lens. It is an object of the present invention to provide a method for manufacturing a spectacle lens, which can obtain the position of an eye point with high accuracy with respect to the layout position of a shape.
  • the method for manufacturing an optical lens determines the position of each of at least three marks on a semi-finished lens so that the center position of the frame shape can be specified based on at least three marks.
  • the mark position determination step the mark addition step of adding each of at least three marks to each position on the semi-finished lens determined in the mark position determination step, and the non-optical surface of the semi-finished lens.
  • the calculation step of calculating the shape of the non-optical surface based on the center position and the surface shape processing step of processing the non-optical surface into the shape calculated in the calculation step based on the center position. include.
  • At least three marks are a pair of marks located on the first straight line passing through the center position when the semi-finished lens is viewed from the optical axis direction, and a second mark orthogonal to the first straight line and passing through the center position. Includes one mark located on the straight line of.
  • the eye point position may be calculated in consideration of the center position, and the shape of the non-optical surface may be calculated based on the calculated eye point position.
  • At least three marks may be attached to the optical surface of the semi-finished lens in the above mark addition step.
  • the method for manufacturing a spectacle lens according to an embodiment of the present invention further includes a ball-shaped processing step of processing a lens whose non-optical surface has been processed in the surface-shaped processing step into a lens shape with reference to a center position. You may.
  • At least three marks may be attached to the portion to be cut in the bead processing step.
  • the method for manufacturing a spectacle lens according to an embodiment of the present invention is a film in which an electrochromic layer is provided between a pair of electrode layers, and further includes a step of attaching a film in the shape of a frame to a semi-finished lens. It may be a thing.
  • the method for manufacturing a spectacle lens according to an embodiment of the present invention may further include a step of attaching a mark in the shape of a frame to the optical surface of the semi-finished lens.
  • the layout position of the frame shape is used.
  • the position of the eye point can be set with high accuracy.
  • a method for manufacturing a spectacle lens according to an embodiment of the present invention will be described with reference to the drawings.
  • a semi-finished lens for an EC lens and a manufacturing method for manufacturing a spectacle lens using the semi-finished lens will be described as an example.
  • the semi-finished lens and manufacturing method to which the present invention can be applied are not limited to the semi-finished lens for EC lenses and the manufacturing method using the same.
  • Other forms of semi-finished lenses not for EC lenses, in which the layout position of the frame is predetermined before processing the non-optical surface, and a manufacturing method using the same are also within the scope of the present invention.
  • a semi-finished lens having a spherical shape whose convex surface (side surface of an object) is finished as an optical surface and a non-optical surface whose concave surface (side surface of an eyeball) is a non-optical surface is used, and an inner surface progressive refraction having a progressive refraction element as a concave surface is used.
  • a semi-finished lens having a concave surface and a spherical surface and a convex surface having a non-optical surface and a method of manufacturing an outer surface progressive power lens having a progressive refraction element as a convex surface using the same are also within the scope of the present invention.
  • the present invention also relates to a semi-finished lens in which a progressive refraction element in one of the vertical direction and the horizontal direction is added to the optical surface, and a method for manufacturing a double-sided composite progressive power lens using the semi-finished lens. It is a category of. In this case, by processing a non-optical surface and adding a progressive refraction element in the other direction of the vertical and horizontal directions, the progressive refraction force in which the progressive refraction elements in each of the vertical and horizontal directions are distributed to each of the convex and concave surfaces. A lens is obtained.
  • a semi-finished lens in which a part of the progressive refraction element is added to the optical surface and a method for manufacturing a double-sided progressive power lens using the semi-finished lens are also within the scope of the present invention.
  • a progressive power lens in which the progressive refraction element is distributed to each of the convex surface and the concave surface can be obtained.
  • the spectacle lens manufactured by using the semi-finished lens is not limited to the progressive refractive power lens, but is not limited to the progressive refractive power lens, but is multifocal (for example, two) other than the single focus spherical lens, the single focus aspherical lens, and the progressive refractive power lens. It may be another type of spectacle lens, such as a multifocal lens.
  • a spectacle lens may be manufactured by using a lens blank having a non-optical surface on both sides and having one surface finished as an optical surface.
  • FIG. 1 is a front view of a semi-finished lens 1 for an EC lens according to an embodiment of the present invention (front view of the semi-finished lens 1 as viewed from the optical axis direction AX).
  • FIG. 2 is a side view of the semi-finished lens 1.
  • the semi-finished lens 1 has an electrochromic film 20 attached and a mark 30 attached to the optical surface of the semi-finished lens.
  • the former is referred to as "lens base material 10".
  • the latter is referred to as "semi-finished lens 1".
  • the lens base material 10 is made of, for example, an acrylic resin, a thiourethane resin, a thioepoxy resin, a methacrylic resin, an allyl resin, an episulfide resin, a polycarbonate resin, or the like, and the convex surface 12 is finished on an optical surface. It has a spherical shape, and the concave surface 14 is a non-optical surface.
  • the lens base material 10 may be made of glass.
  • the electrochromic film 20 is a film in which an electrochromic layer is provided between a pair of electrode layers.
  • the electrochromic layer includes, for example, a reducing layer that develops color in association with a reduction reaction, an oxide layer that develops color in association with an oxidation reaction, and an electrolyte layer having electronic insulation and ionic conductivity.
  • the electrochromic film 20 has the shape of a frame (hereinafter referred to as "frame shape 20a") in which the final product, the spectacle lens, is framed.
  • the electrochromic film 20 is attached to the convex surface 12 of the lens substrate 10 by, for example, an adhesive.
  • the electrochromic film 20 is attached to the convex surface 12 of the lens base material 10, but the configuration of the present invention is not limited to this.
  • the electrochromic film 20 may be configured to be embedded in the lens base material 10 by sheet insert molding.
  • a mark in the shape of a frame shape 20a is a laser marker or a mark. It is attached to the convex surface 12 using a stamping machine.
  • a mark in the shape of the frame shape 20a may be attached to the convex surface 12 by using a laser marker or an engraving machine instead of the electrochromic film 20.
  • the electrochromic film 20 is attached to the convex surface 12 in a later step (for example, after processing the ball shape).
  • the mark 30 is a mark for specifying the reference position FC of the frame shape 20a formed by the electrochromic film 20.
  • the reference position FC is the center position (frame center) of the frame shape 20a.
  • the center position (reference position FC) of the frame shape 20a is the geometric center of the frame shape 20a, which is different from the geometric center of the lens base material 10. However, the reference position FC may be arranged at a position that coincides with the geometric center of the lens base material 10.
  • the reference position FC is not limited to the geometric center of the frame shape 20a. In another embodiment, the reference position FC may be located at a position different from the geometric center of the frame shape 20a, for example, the position of the center of gravity of the frame shape 20a.
  • FIG. 3A shows a front view of the semi-finished lens 1 in which the reference position FC and the geometric center GC of the lens base material 10 do not match
  • FIG. 3B shows the reference position FC and the geometric center GC of the lens base material 10 coincide with each other.
  • the front view of the semi-finished lens 1 is shown.
  • a circle C having a diameter smaller than that of the semi-finished lens 1 and centered on the geometric center GC of the lens base material 10 is shown by a dotted line.
  • the diameter of the semi-finished lens 1 is reduced to the diameter of the circle C by arranging the reference position FC at a position corresponding to the geometric center GC of the lens base material 10. be able to. By reducing the diameter of the semi-finished lens 1, the manufacturing cost can be suppressed.
  • the reference position FC is a straight line La (the first straight line) connecting the upper and lower line segments when the semi-finished lens 1 is viewed from the optical axis direction AX (in other words, in the front view of the semi-finished lens 1). It is located at the intersection of one of the second straight lines) and the straight line Lb (the other of the first straight line and the second straight line) that connects the right and left line segments and is orthogonal to the straight line La.
  • the mark 30 is attached to the convex surface 12 by using, for example, a laser marker or a stamping machine.
  • the attachment position of the electrochromic film 20 is actually measured.
  • the position of the mark 30 on the convex surface 12 is determined based on the measured value, and the mark 30 is attached to the convex surface 12.
  • the electrochromic film 20 may be attached to the convex surface 12 so that the geometric center of the frame shape 20a comes to the reference position FC pointed to by the mark 30.
  • the mark 30 may be any as long as it can objectively identify the reference position FC, and is not limited to the example shown in FIG. 4A-4F show front views of the semi-finished lens according to another embodiment.
  • a total of three marks 30 may be attached to the outer region 12a of the frame shape 20a.
  • the mark 30 is orthogonal to the straight line Lc and is a reference to the pair of marks 30a located on the straight line Lc (first straight line) passing through the reference position FC in the front view of the semi-finished lens 1.
  • the reference position FC is located at the intersection of the straight line Lc and the straight line Ld. That is, the number of marks 30 may be at least three so that the reference position FC can be objectively specified, and the number is not limited to four.
  • one mark 30b having a shape different from that of the mark 30a is attached to the upper part of the convex surface 12. The operator can grasp the vertical direction of the semi-finished lens 1 by visually recognizing the mark 30b.
  • the semi-finished lens 1 shown in FIG. 4B has a different appearance (here, shape) of a pair of left and right marks 30a located on a straight line Lc from the example of FIG. 4A.
  • a different appearance here, shape
  • the operator can grasp whether the semi-finished lens 1 corresponds to the right lens or the left lens.
  • the color and size of the pair of marks 30a may be different from each other, regardless of the shape. Further, it may be possible to grasp whether the semi-finished lens 1 corresponds to the right lens or the left lens by the mark 30b alone. As an example, by using the mark 30b as an arrow mark pointing to the nose side, the mark 30b can be grasped by itself.
  • the mark 30 includes a pair of marks 30c located on the straight line Lc and a pair of 30d located on the straight line Ld in the front view of the semi-finished lens 1.
  • the pair of marks 30c are, for example, arrow marks pointing to the nose side.
  • One of the pair of marks 30d is an arrow mark pointing above the lens, and the other of the pair of marks 30d is a mark of a short line segment.
  • the operator can grasp the vertical direction of the semi-finished lens 1 by visually recognizing the pair of marks 30b (or the direction of the arrow marks).
  • the position and appearance of the mark 30 in this way, even if the electrochromic film 20 has a shape whose orientation is difficult to understand (for example, a perfect circular shape), the operator can move the semi-finished lens 1 in the vertical and horizontal directions. You can prevent mistakes such as working by mistake.
  • a total of three marks 30 may be attached to the outer region 12a of the frame shape 20a at intervals of 120 degrees.
  • the position where the extension lines of the three marks 30 intersect is the reference position FC.
  • the mark 30 may be attached to the inner region of the frame shape 20a. That is, the mark 30 may be arranged in a region other than the outer region 12a of the frame shape 20a as long as the reference position FC can be objectively specified.
  • the mark 30 may be directly attached to the reference position FC. That is, the mark 30 is not limited to indirectly indicating the reference position FC, but may be directly indicating the reference position FC.
  • the mark 30 is not limited to indirectly indicating the reference position FC, but may be directly indicating the reference position FC.
  • it is necessary to specify the axial direction of the lens.
  • the operator cannot grasp the axial direction of the lens. Therefore, in the example of FIG. 4F, a mark indicating the axial direction of the lens may be separately added.
  • the mark 30 remains on the cut lens after the ball shape processing. Therefore, the mark 30 is thinly carved on the convex surface 12 like the hidden mark, for example.
  • the mark 30 is attached to the convex surface 12, but the configuration of the present invention is not limited to this.
  • the mark 30 may be attached to the electrochromic film 20.
  • the mark 30 may be attached to the electrochromic film 20 in advance before attaching the electrochromic film 20 to the convex surface 12, or is attached to the electrochromic film 20 after attaching the electrochromic film 20 to the convex surface 12. May be good.
  • FIG. 5 is a block diagram showing a configuration of a manufacturing system 100 according to an embodiment of the present invention. As shown in FIG. 1, the manufacturing system 100 has an optician store 200 and a manufacturing factory 300.
  • the optician store 200 orders the spectacle lens according to the prescription for the customer (wearer).
  • the manufacturing factory 300 manufactures a spectacle lens in response to an order from the optician store 200. Orders are placed from the manufacturing plant 300 through a predetermined network such as the Internet or data transmission by FAX or the like.
  • the ordering party may include an ophthalmologist and a general consumer.
  • An over-the-counter computer 210 is installed in the optician store 200.
  • the store computer 210 is, for example, a tablet terminal, a smartphone, a desktop PC (Personal Computer), a notebook PC, or the like, and software for ordering spectacle lenses from the manufacturing plant 300 is installed.
  • the spectacle lens can also be ordered on the Web. In this case, it is not necessary to install the above software on the store computer 210.
  • Lens data and frame data are input to the store computer 210 through operations such as a mouse and a keyboard by the staff of the optician and the wearer himself.
  • the lens data includes, for example, the wearer's prescription information (distance dioptric power, near dioptric power, addition power, progressive zone length, base curve, spherical refraction force, spectacle refraction force, spectacle axis direction, prism refraction force, prism base direction, etc.
  • the wearer's prescription information distance dioptric power, near dioptric power, addition power, progressive zone length, base curve, spherical refraction force, spectacle refraction force, spectacle axis direction, prism refraction force, prism base direction, etc.
  • Interpupillary distance Pupilary Distance
  • spectacle lens wearing conditions distance eye point position, corneal apex distance, anteversion angle, frame tilt angle
  • spectacle lens type single focus spherical surface, single focus non-focus
  • Spherical, multifocal double focus, progressive
  • coating coating
  • layout data according to the wearer's request, presence / absence of dimming / coloring function, etc. included.
  • the frame data includes the shape data of the frame selected by the wearer.
  • the frame data is managed by, for example, a barcode tag, and can be obtained by reading the barcode tag attached to the frame with a barcode reader. Further, the shape data of the frame may be acquired by a frame tracer installed in the optician store 200.
  • the store computer 210 transmits order data (lens data and frame data) to the manufacturing factory 300 via, for example, the Internet.
  • a LAN (Local Area Network) centered on the host computer 310 is constructed in the manufacturing factory 300.
  • the design computer 320 is, for example, a general PC, and a program for designing a spectacle lens is installed.
  • the order data transmitted from the store computer 210 via the Internet is input to the host computer 310.
  • the host computer 310 transmits the input ordering data to the design computer 320.
  • the manufacturing plant 300 divides the power of the entire manufacturing range into a plurality of groups, and has a convex curved shape (for example, a spherical shape, an aspherical shape, etc.) and a lens diameter suitable for the power range of each group.
  • Various lens base materials 10 that is, semi-finished lenses having the above are prepared in advance in preparation for ordering spectacle lenses.
  • FIG. 6 is a flowchart showing a manufacturing method of the semi-finished lens 1.
  • the lens base material 10 suitable for the prescription of the wearer is specified by the design computer 320 from among a plurality of types of lens base materials 10 having different powers and lens diameters. (Step S101).
  • the flat plate-shaped electrochromic film 20 having a shape corresponding to the frame specified in the order data is specified by the design computer 320 (step S102).
  • the operator sets the flat plate-shaped electrochromic film 20 specified in step S102 in the mold and forms it into a curved surface shape (step S103).
  • a mold is selected according to the shape of the convex surface 12 of the lens base material 10 specified in step S101, and the electrochromic film 20 is sandwiched between the convex and concave molds of the selected mold. Heated at temperature. By this thermoforming, an electrochromic film 20 having a curved surface shape can be obtained.
  • step S104 is a step of attaching an electrochromic film 20 (a film having an electrochromic layer between a pair of electrode layers and having a frame shape) to a semi-finished lens (lens base material 10). be.
  • step S104 a lens base material 10 having the electrochromic film 20 attached to the convex surface 12 is obtained.
  • step S104 is replaced with a step of attaching a mark in the shape of a frame to the optical surface of the semi-finished lens.
  • step S105 The sticking position of the electrochromic film 20 stuck on the convex surface 12 is actually measured.
  • the position of the mark 30 is determined based on this actually measured value (step S105). That is, in step S105, the mark position determination that determines the position of each of the at least three marks 30 on the semi-finished lens (lens base material 10) so that the reference position FC can be specified based on the at least three marks 30. It's a step.
  • step S106 is a mark giving step in which at least three marks 30 are attached to each position on the semi-finished lens (lens base material 10) determined in step S105. Through this step, the semi-finished lens 1 shown in FIGS. 1 and 2 is obtained.
  • a hidden mark or other necessary information may be attached to the convex surface 12.
  • the manufacturing efficiency can be improved as compared with the case where the mark 30 and the hidden mark are attached in separate processes.
  • FIG. 7 is a flowchart showing a method of manufacturing a spectacle lens according to a prescription using the semi-finished lens 1 manufactured according to the flowchart of FIG.
  • the concave surface shape is calculated based on the point specified by the hidden mark (the geometric center in the case of a single focus lens), and the concave surface is processed based on this point.
  • the concave shape is calculated and processed based on this point, it is difficult to calculate and process the concave shape in consideration of the layout position of the electrochromic film 20 already attached on the convex surface 12.
  • the concave surface shape is calculated based on the reference position FC of the frame shape 20a formed by the electrochromic film 20, and the concave surface is processed based on the reference position FC. Since the concave shape is calculated and processed in consideration of the layout position of the frame shape 20a, the error of the eye point position with respect to this layout position is suppressed, and the occurrence of the above-mentioned problem is suppressed.
  • step S201 is a calculation step in which the shape of the concave surface 14 when the concave surface 14 of the semi-finished lens 1 is processed according to the prescription is calculated with reference to the reference position FC.
  • the frame shape data is acquired prior to the processing in step S201.
  • the shape data of the frame may be known data or may be measured by the measuring instrument 330.
  • the design computer 320 holds shape data of various frames in advance.
  • the case of acquiring the shape data of the frame measured by the measuring instrument 330 will be described.
  • the stylus of the measuring instrument 330 is brought into contact with the bevel groove of the frame.
  • the detected shape coordinate values (Rn, ⁇ n, Zn) are transferred to the design computer 320.
  • the design computer 320 is, for example, based on the shape coordinate values (Rn, ⁇ n, Zn), the center position (a, b, c) of the virtual sphere, and the radius value of the virtual sphere when the frame is on the virtual sphere.
  • RB, frame PD (Pupillary Distance), frame nose width DBL, frame tilt angle, forward tilt angle, etc. are calculated.
  • step S201 since the concave shape is calculated based on the reference position FC, the eye point position is also calculated based on the reference position FC.
  • a method of calculating the eye point position with respect to the reference position FC will be described with reference to FIGS. 8 and 9.
  • FIG. 8 is a perspective view showing the relationship between each constant of the virtual sphere and the Cartesian coordinate value.
  • FIG. 9 is a perspective view of the left and right spectacle lenses arranged based on the layout position of the frame shape 20a.
  • frame coordinates are defined in which the datum line, which is the horizontal reference axis of the spectacles, is the X axis, the vertical direction of the spectacles is the Y axis, and the front direction of the spectacles is the Z axis. Then, two frame shape coordinate values (Xn, Yn, Zn) with the center position of each of the left and right frames as the reference position FC are defined on the frame coordinates.
  • the two frame shape coordinate values (Xn, Yn, Zn) are set so that the X coordinate values of the points P1 and P2 on the most nose side of the left and right frame shapes 20a are ⁇ HDBL and + HDBL, respectively. ) Is set.
  • HDBL is a value obtained by dividing the frame nose width DBL by 2.
  • the frame shape coordinate value (Xn, Yn, Zn) of one side rotates and moves only by the frame tilt angle about the straight line passing through the point P1 and parallel to the Y axis.
  • the frame shape coordinate value (Xn, Yn, Zn) of the other rotates only by the frame tilt angle about the straight line passing through the point P2 and parallel to the Y axis. Will be moved.
  • one frame shape coordinate value (Xn, Yn, Zn) is rotationally moved by the forward tilt angle about a straight line passing through the point P1 and parallel to the X axis, and a straight line passing through the point P2 and parallel to the X axis.
  • the other frame shape coordinate value (Xn, Yn, Zn) may be rotationally moved by the forward tilt angle about the axis.
  • the positions and orientations of the spectacle lenses with respect to the three-dimensional frame shape defined on the frame coordinates are determined as the eye point positions EP1 and EP2 and the normal directions NL1 and NL2 on the convex surface of the spectacle lens at these eyepoint positions. Identify by doing.
  • the eye point positions EP1 and EP2 are points on the convex surface of the spectacle lens that should be located at the center of the wearer's pupil when wearing the spectacles.
  • the layout information of the eye point positions EP1 and EP2 is included in the lens data acquired by the spectacle store 200, and the horizontal distance HPD from the center line of the wearer's nose to the center of the pupil and the wearing from the datum line. Includes the vertical distance EPHT to the center of the person's pupil.
  • the horizontal distance and the vertical distance of the spectacle lens for the right eye are designated by the reference numerals HPD R and EPHT R , respectively.
  • the horizontal and vertical distances of the spectacle lens for the left eye are designated by the symbols HPD L and EPHT L , respectively.
  • the X and Y coordinates of the eye point position EP1 are determined to be (-HPD R , EPHT R ), and the X and Y coordinates of the eye point position EP2 are determined to be (-HPD L , EPHT L ).
  • the Z coordinate of the eye point position EP1 is determined according to the bevel position (the position where the bevel is provided on the lens edge, for example, a convex surface or a concave surface).
  • the bevel position is included in the lens data acquired by, for example, the optician 200.
  • the eye point positions EP1 and EP2 with respect to the reference position FC (that is, the position of the eye point with respect to the layout position of the electrochromic film 20) are determined.
  • the concave shape and the spherical shape of the semi-finished lens 1 according to the prescription are calculated so that the eye points are laid out at the determined positions EP1 and EP2. That is, in step S201, the eye point positions EP1 and EP2 are calculated in consideration of the reference position FC, and the shape of the concave surface 14 is calculated based on the calculated eye point positions EP1 and EP2. Since the calculation process itself of the concave shape and the spherical shape according to the prescription is well known, the specific description thereof is omitted here.
  • a block jig 342 is attached to the convex surface 12 of the semi-finished lens 1 via a low melting point alloy such as an alloy (step S202). That is, blocking is performed.
  • step S202 the semi-finished lens 1 is photographed by the camera device mounted on the lens blocker 340, and the photographed semi-finished lens 1 is displayed on the display of the lens blocker 340.
  • the mark image is superimposed on the captured image at the position obtained in advance by calculation and displayed on the display.
  • the mark image is, for example, an image of the same short line segment as the mark 30, and a total of four marks are displayed at the upper part, the lower part, the right part, and the left part of the screen.
  • the point that serves as a reference when the block jig 342 holds the semi-finished lens 1 for performing concave surface processing and spherical processing is called a processing origin.
  • the operator fine-tunes the position of the semi-finished lens 1 while checking the four marks 30 and the four mark images attached to the semi-finished lens 1 displayed on the display, and with each of the four marks 30. , The semi-finished lens 1 is blocked at a position where the corresponding mark images match. As a result, the semi-finished lens 1 is held by the block jig 342 so that the reference position FC becomes the machining origin.
  • step S201 The concave shape data calculated in step S201 is transmitted from the design computer 320 to the curve generator 350.
  • the curve generator 350 makes the concave surface 14 of the semi-finished lens 1 held in the block jig 342 into the concave surface shape calculated in step S201 (that is, according to the prescription) based on the concave surface shape data. Grinding (step S203) so that the shape and frequency can be obtained. That is, step S204 is a surface shape processing step of processing the concave surface 14 of the semi-finished lens 1 into the shape calculated in step S201 with reference to the reference position FC.
  • step S201 since the concave shape is calculated in consideration of the eye point position with respect to the reference position FC, the eye point position is obtained with high accuracy with respect to the layout position of the frame shape. Therefore, by performing concave surface processing with the reference position FC as the processing origin, the position of the eye point can be obtained with high accuracy with respect to the layout position of the frame shape.
  • the concave surface 14 is polished by a polishing machine 360 in order to improve the polish of the concave surface 14 and the adhesion of the coating agent (step S204). As a result, the concave surface 14 is formed as an optical surface that satisfies the formulation.
  • the low melting point alloy is melted by hot water, and the semi-finished lens 1 is removed from the block jig 342 (step S205).
  • the semi-finished lens 1 is washed by the washing machine 370 to remove dirt and foreign matter (step S206).
  • the coating device 380 coats the convex surface 12 (and the electrochromic film 20) and the concave surface 14 of the semi-finished lens 1 with a coating (for example, hard coat processing or antireflection processing) (step S207).
  • a coating for example, hard coat processing or antireflection processing
  • the semi-finished lens 1 is attached with an electrochromic film 20 in the shape of a frame shape 20a. Therefore, the operator can easily discriminate between the portion of the semi-finished lens 1 that is finally used as the spectacle lens and the portion that is not used.
  • step S208 The semi-finished lens 1 after the coating treatment is blocked in the same manner as in step S202 (step S208).
  • the semi-finished lens 1 is held by the block jig 342 so that the reference position FC becomes the machining origin.
  • step S201 The ball shape data calculated in step S201 is transmitted from the design computer 320 to the ball shape processing machine 390.
  • the ball shape processing machine 390 processes the semi-finished lens 1 into a ball shape based on the ball shape data (step S209). That is, step S209 is a ball-shaped processing step in which the semi-finished lens 1 on which the concave surface 14 is machined is ball-shaped with reference to the reference position FC.
  • step S201 the spherical shape is calculated based on the reference position FC of the frame shape 20a formed by the electrochromic film 20. Therefore, the deviation between the position of the bead processing and the position of the electrochromic film 20 is suppressed. Therefore, the ball-shaped processing is performed without cutting the electrochromic film 20.
  • the embodiments of the present invention are not limited to those described above, and various modifications can be made within the scope of the technical idea of the present invention.
  • the embodiment of the present application also includes the content of an example or a modification specified exemplarily in the specification or a combination of an obvious example or a modification as appropriate.
  • the concave shape and the spherical shape are calculated and processed based on the reference position FC.
  • a semi-finished lens specifically, a semi-finished lens that is not marked in the shape of the electrochromic film 20 or the frame shape 20a.
  • the configuration in which the electrochromic film 20 is omitted from the semi-finished lens 1 shown in FIG. 1) can also be said to be within the scope of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Eyeglasses (AREA)

Abstract

少なくとも3つのマークに基づいてフレーム形状の中心位置が特定できるように各マークの位置を決定し、決定された各位置に各マークを付け、セミフィニッシュドレンズの非光学面を処方に応じて加工するときの、非光学面の形状を、中心位置を基準に計算し、計算された形状に中心位置を基準に加工する、眼鏡レンズの製造方法を提供する。少なくとも3つのマークは、セミフィニッシュドレンズを光軸方向からみたときに、中心位置を通る第1の直線上に位置する一対のマークと、第1の直線と直交しかつ中心位置を通る第2の直線上に位置する1つのマークを含む。

Description

眼鏡レンズの製造方法
 本発明は眼鏡レンズの製造方法に関する。
 一方の面が光学面であり他方の面が非光学面であるセミフィニッシュドレンズを用いて処方に応じた眼鏡レンズを製造することが知られている。例えば、単焦点レンズであれば幾何中心を基準点として、累進屈折力レンズであれば隠しマークで特定される点を基準点として、セミフィニッシュドレンズの非光学面を加工し、加工されたレンズに対してフレーム形状をレイアウトし、レイアウトされたフレーム形状に沿って玉形加工を行う。これにより、フレームに枠入れ可能なカットレンズが出来上がる。
 近年、電圧の印加によって発消色を可逆的に制御可能なエレクトロクロミックフィルムを備える眼鏡レンズ(以下「ECレンズ」と記す。)が知られている(例えば特許文献1参照)。この種のECレンズ向けのセミフィニッシュドレンズでは、例えばフレーム形状をかたどるエレクトロクロミックフィルムが光学面に取り付けられる。
特開2017-111389号公報
 ECレンズ向けでないセミフィニッシュドレンズでは、フレームのレイアウト位置が非光学面の加工後に決められる。そのため、非光学面の加工段階では、フレーム形状のレイアウト位置に対してアイポイントの位置を高い精度で出す必要がない。
 これに対し、ECレンズ向けのセミフィニッシュドレンズでは、フレームのレイアウト位置が非光学面の加工前に既に決まっている。そのため、非光学面の加工段階で、フレーム形状のレイアウト位置に対してアイポイントの位置を高い精度で出す必要がある。非光学面の加工の結果、フレーム形状のレイアウト位置に対してアイポイントの位置に誤差が生じると、例えば、このアイポイントに合わせて玉形加工を行う場合には、玉形加工の位置と光学面に取り付けられたエレクトロクロミックフィルムの位置とがずれるため、エレクトロクロミックフィルムの一部が切断されて不良品となり、また、エレクトロクロミックフィルムに合わせて玉形加工を行う場合には、アイポイントの位置が処方通りにならないからである。
 ECレンズ向けのセミフィニッシュドレンズにおいて、従来と同様、幾何中心や隠しマークで特定される点を基準に非光学面を加工することが考えられる。しかし、これらの点を加工の基準点とすると、フレーム形状のレイアウト位置を厳密に考慮して非光学面を加工することが難しいため、フレーム形状のレイアウト位置に対してアイポイントの位置を高い精度で出すことが難しい。
 本発明は上記の事情に鑑み、ECレンズ向けのセミフィニッシュドレンズのような、フレームのレイアウト位置が非光学面の加工前に予め決まっているレンズを用いて眼鏡レンズを製造する場合に、フレーム形状のレイアウト位置に対してアイポイントの位置を高い精度で出すことができる、眼鏡レンズの製造方法を提供することを目的とする。
 本発明の一実施形態に係る眼鏡レンズの製造方法は、少なくとも3つのマークに基づいてフレーム形状の中心位置が特定できるように、セミフィニッシュドレンズ上における少なくとも3つのマークのそれぞれの位置を決定するマーク位置決定ステップと、マーク位置決定ステップにて決定されたセミフィニッシュドレンズ上のそれぞれの位置に少なくとも3つのマークのそれぞれを付けるマーク付与ステップと、セミフィニッシュドレンズの非光学面を処方に応じて加工するときの、非光学面の形状を、中心位置を基準に計算する計算ステップと、非光学面を計算ステップにて計算された形状に中心位置を基準に加工する面形状加工ステップとを含む。少なくとも3つのマークは、セミフィニッシュドレンズを光軸方向からみたときに、中心位置を通る第1の直線上に位置する一対のマークと、第1の直線と直交しかつ中心位置を通る第2の直線上に位置する1つのマークを含む。
 上記の計算ステップにて、中心位置を考慮してアイポイント位置を計算し、計算されたアイポイント位置に基づいて非光学面の形状を計算してもよい。
 上記のマーク付与ステップにて、少なくとも3つのマークをセミフィニッシュドレンズの光学面に付けてもよい。
 本発明の一実施形態に係る眼鏡レンズの製造方法は、面形状加工ステップにて非光学面が加工されたレンズを、中心位置を基準に玉形加工する玉形加工ステップを更に含むものであってもよい。
 上記のマーク付与ステップにて、少なくとも3つのマークを、玉形加工ステップでカットされる部分に付けてもよい。
 本発明の一実施形態に係る眼鏡レンズの製造方法は、一対の電極層の間にエレクトロクロミック層を設けたフィルムであって、フレーム形状をかたどるフィルムを、セミフィニッシュドレンズに付けるステップを更に含むものであってもよい。
 本発明の一実施形態に係る眼鏡レンズの製造方法は、フレーム形状をかたどる印をセミフィニッシュドレンズの光学面に付けるステップを更に含むものであってもよい。
 本発明の一実施形態に係る眼鏡レンズの製造方法によれば、フレームのレイアウト位置が非光学面の加工前に予め決まっているレンズを用いて眼鏡レンズを製造する場合に、フレーム形状のレイアウト位置に対してアイポイントの位置を高い精度で出すことができる。
本発明の一実施形態に係るセミフィニッシュドレンズの正面図である。 本発明の一実施形態に係るセミフィニッシュドレンズの側面図である。 本発明の一実施形態に係るセミフィニッシュドレンズのレイアウトに関する図である。 本発明の一実施形態に係るセミフィニッシュドレンズのレイアウトに関する図である。 本発明の別の一実施形態に係るセミフィニッシュドレンズの正面図である。 本発明の別の一実施形態に係るセミフィニッシュドレンズの正面図である。 本発明の別の一実施形態に係るセミフィニッシュドレンズの正面図である。 本発明の別の一実施形態に係るセミフィニッシュドレンズの正面図である。 本発明の別の一実施形態に係るセミフィニッシュドレンズの正面図である。 本発明の別の一実施形態に係るセミフィニッシュドレンズの正面図である。 本発明の一実施形態に係る製造システムの構成を示すブロック図である。 本発明の一実施形態に係るセミフィニッシュドレンズの製造方法を示すフローチャートである。 図6のフローチャートに従って製造されたセミフィニッシュドレンズを用いて処方に応じた眼鏡レンズを製造する方法を示すフローチャートである。 本発明の一実施形態において、フレームの基準位置に対するアイポイントの位置を計算する方法を説明するための図である。 本発明の一実施形態において、フレームの基準位置に対するアイポイントの位置を計算する方法を説明するための図である。
 以下、本発明の一実施形態に係る眼鏡レンズの製造方法について図面を参照しながら説明する。本実施形態においては、ECレンズ向けのセミフィニッシュドレンズ及びこのセミフィニッシュドレンズを用いて眼鏡レンズを製造する製造方法を例に取り説明する。
 なお、本発明を適用し得るセミフィニッシュドレンズ及び製造方法は、ECレンズ向けのセミフィニッシュドレンズ及びこれを用いた製造方法に限らない。フレームのレイアウト位置が非光学面の加工前に予め決まっている、ECレンズ向けでない他の形態のセミフィニッシュドレンズ、及びこれを用いた製造方法も本発明の範疇である。
 本実施形態では、凸面(物体側面)が光学面に仕上げられた球面形状であり凹面(眼球側面)が非光学面であるセミフィニッシュドレンズを用いて、累進屈折要素を凹面にもつ内面累進屈折力レンズを製造する方法を説明するが、本発明を適用し得るセミフィニッシュドレンズ及び製造方法はこれに限らない。例えば、凹面が光学面かつ球面で凸面が非光学面のセミフィニッシュドレンズ、及びこれを用いて累進屈折要素を凸面にもつ外面累進屈折力レンズを製造する方法も本発明の範疇である。
 また、縦方向と横方向のうちの一方の方向の累進屈折要素が光学面に付加されたセミフィニッシュドレンズ、及びこれを用いて両面複合累進型の累進屈折力レンズを製造する方法も本発明の範疇である。この場合、非光学面を加工して縦方向と横方向のうちの他方の方向の累進屈折要素を付加することにより、縦横各方向の累進屈折要素を凸面と凹面のそれぞれに配分した累進屈折力レンズが得られる。
 また、累進屈折要素の一部が光学面に付加されたセミフィニッシュドレンズ、及びこれを用いて両面累進型の累進屈折力レンズを製造する方法も本発明の範疇である。この場合、非光学面を加工して残りの累進屈折要素を付加することにより、累進屈折要素を凸面と凹面のそれぞれに配分した累進屈折力レンズが得られる。
 また、本発明において、セミフィニッシュドレンズを用いて製造される眼鏡レンズは、累進屈折力レンズに限らず、単焦点球面レンズ、単焦点非球面レンズ、累進屈折力レンズ以外の多焦点(例えば二重焦点)レンズなど、他の種類の眼鏡レンズであってもよい。
 また、セミフィニッシュドレンズに代えて、両面が非光学面のレンズブランクスの一方の面を光学面に仕上げたものを用いて眼鏡レンズを製造してもよい。
 図1は、本発明の一実施形態に係るECレンズ向けのセミフィニッシュドレンズ1の正面図(セミフィニッシュドレンズ1を光軸方向AXからみた、正面視図)である。図2は、セミフィニッシュドレンズ1の側面図である。
 図1に示されるように、セミフィニッシュドレンズ1は、セミフィニッシュドレンズの光学面に、エレクトロクロミックフィルム20を取り付け、かつマーク30を付けたものである。
 以下、便宜上、エレクトロクロミックフィルム20及びマーク30を付ける前のセミフィニッシュドレンズと、エレクトロクロミックフィルム20及びマーク30を付けた後のセミフィニッシュドレンズとを区別するため、前者を「レンズ基材10」と記し、後者を「セミフィニッシュドレンズ1」と記す。
 レンズ基材10は、例えば、アクリル樹脂、チオウレタン系樹脂、チオエポキシ系樹脂、メタクリル系樹脂、アリル系樹脂、エピスルフィド系樹脂、ポリカーボネート樹脂等の樹脂製であり、凸面12が光学面に仕上げられた球面形状となっており、凹面14が非光学面となっている。なお、レンズ基材10は、ガラス製であってもよい。
 エレクトロクロミックフィルム20は、一対の電極層の間にエレクトロクロミック層を設けたフィルムである。エレクトロクロミック層は、例えば、還元反応に伴って発色する還元層、酸化反応に伴って発色する酸化層、電子的な絶縁性とイオン導電性を備える電解質層を含む。一対の電極層間に電圧を印加することによって可逆的に酸化還元反応が起きて、エレクトロクロミック層の色が可逆的に変化する。なお、電極層の表面は、プラスチック層やガラス層で保護されている。
 エレクトロクロミックフィルム20は、最終製品である眼鏡レンズを枠入れするフレームの形状(以下「フレーム形状20a」と記す。)をかたどる。エレクトロクロミックフィルム20は、レンズ基材10の凸面12に、例えば接着剤によって取り付けられている。
 本実施形態では、エレクトロクロミックフィルム20は、レンズ基材10の凸面12に取り付けられているが、本発明の構成はこれに限らない。エレクトロクロミックフィルム20は、シートインサート成形によりレンズ基材10内に埋め込まれた構成としてもよい。
 なお、ECレンズ向けでない他の形態のセミフィニッシュドレンズでは、例えば、エレクトロクロミックフィルム20に代えて、フレーム形状20a(言い換えると、玉形加工後のカットレンズの形状)をかたどる印が、レーザマーカや刻印機を用いて凸面12に付けられる。
 また、ECレンズ向けであるセミフィニッシュドレンズ1においても、エレクトロクロミックフィルム20に代えて、フレーム形状20aをかたどる印が、レーザマーカや刻印機を用いて凸面12に付けられてもよい。この場合、エレクトロクロミックフィルム20は、後の工程(例えば玉形加工後)で凸面12に取り付けられる。
 マーク30は、エレクトロクロミックフィルム20がかたどるフレーム形状20aの基準位置FCを特定するためのマークである。本実施形態において、この基準位置FCは、フレーム形状20aの中心位置(フレームセンタ)である。
 フレーム形状20aの中心位置(基準位置FC)は、フレーム形状20aの幾何中心であり、レンズ基材10の幾何中心とは異なる。但し、基準位置FCは、レンズ基材10の幾何中心と一致する位置に配置されてもよい。
 基準位置FCは、フレーム形状20aの幾何中心に限らない。別の実施形態において、基準位置FCは、例えば、フレーム形状20aの重心位置など、フレーム形状20aの幾何中心とは別の位置であってもよい。
 図3Aは、基準位置FCとレンズ基材10の幾何中心GCとが一致しないセミフィニッシュドレンズ1の正面図を示し、図3Bは、基準位置FCとレンズ基材10の幾何中心GCとが一致するセミフィニッシュドレンズ1の正面図を示す。また、これらの各図には、便宜上、セミフィニッシュドレンズ1よりも径の小さい円であって、レンズ基材10の幾何中心GCを中心とする円Cを点線で示す。
 図3Aに示されるように、基準位置FCとレンズ基材10の幾何中心GCとが一致しない場合、エレクトロクロミックフィルム20の一部が円Cの外側に出る。これに対し、図3Bに示されるように、基準位置FCとレンズ基材10の幾何中心GCとが一致する場合、エレクトロクロミックフィルム20の全体が円C内に収まる。図3Aと図3Bとを比較すると判るように、基準位置FCをレンズ基材10の幾何中心GCと一致する位置に配置することにより、セミフィニッシュドレンズ1の径を円Cの径まで小さくすることができる。セミフィニッシュドレンズ1を小径化することにより、製造コストを抑えることができる。
 図1に示されるように、マーク30は、レンズ基材10の凸面12であって、フレーム形状20aの外側の領域12a(言い換えると、玉形加工でカットされる部分)に、合計で4つ付けられている。4つのマーク30は、短い線分のマークであり、それぞれ、凸面12の上部、下部、右部、左部に付けられている。基準位置FCは、セミフィニッシュドレンズ1を光軸方向AXからみたときに(言い換えると、セミフィニッシュドレンズ1の正面視において)、上部と下部の線分をつなぐ直線La(第1の直線と第2の直線の一方)と、右部と左部の線分をつなぎかつ直線Laと直交する直線Lb(第1の直線と第2の直線の他方)との交点に位置する。
 マーク30は、例えばレーザマーカや刻印機を用いて凸面12に付けられる。
 エレクトロクロミックフィルム20を凸面12に取り付けた後、エレクトロクロミックフィルム20の取り付け位置が実測される。マーク30は、この実測値をもとに凸面12上の位置が決められて、凸面12に付けられる。
 なお、マーク30を凸面12に付けた後、マーク30が指す基準位置FCにフレーム形状20aの幾何中心がくるように、エレクトロクロミックフィルム20が凸面12に取り付けられてもよい。
 マーク30は、基準位置FCを客観的に特定できるものであればよく、図1に示される例に限らない。図4A~図4Fに、別の実施形態に係るセミフィニッシュドレンズの正面図を示す。
 図4Aに示されるように、マーク30は、フレーム形状20aの外側の領域12aに、計3つ付けられたものであってもよい。図4Aの例では、マーク30は、セミフィニッシュドレンズ1の正面視において、基準位置FCを通る直線Lc(第1の直線)上に位置する一対のマーク30aと、直線Lcと直交しかつ基準位置FCを通る直線Ld(第2の直線)上に位置する1つのマーク30bを含む。基準位置FCは、直線Lcと直線Ldとの交点に位置する。すなわち、マーク30は、基準位置FCを客観的に特定できるように少なくとも3つあればよく、その数は4つに限らない。
 マーク30aとマーク30bの形状を変えることにより、セミフィニッシュドレンズ1の上下方向を把握しやすくなる。図4Aの例では、マーク30aと形状の異なる1つのマーク30bが凸面12の上部に付けられている。オペレータは、マーク30bを視認することでセミフィニッシュドレンズ1の上下方向を把握することができる。
 図4Bに示されるセミフィニッシュドレンズ1は、図4Aの例に対して、直線Lc上に位置する左右一対のマーク30aの外観(ここでは形状)を互いに異ならせたものとなっている。一対のマーク30aの外観を互いに異ならせることにより、オペレータは、セミフィニッシュドレンズ1が右レンズと左レンズのどちらに対応するものかどうかを把握することができる。
 なお、形状に限らず、一対のマーク30aの色や大きさ等を互いに異ならせてもよい。また、セミフィニッシュドレンズ1が右レンズと左レンズのどちらに対応するものかどうかをマーク30b単独で把握できるようにしてもよい。一例として、マーク30bを、鼻側を指す矢印マークとすることにより、マーク30b単独での把握が可能となる。
 図4Cに示されるように、マーク30は、セミフィニッシュドレンズ1の正面視において、直線Lc上に位置する一対のマーク30cと、直線Ld上に位置する一対の30dとを含む。一対のマーク30cは、例えば鼻側を指す矢印マークである。オペレータは、一対のマーク30bを視認することで、セミフィニッシュドレンズ1が右レンズと左レンズのどちらに対応するものかどうかを把握することができる。
 一対のマーク30dの一方は、レンズ上方を指す矢印マークであり、一対のマーク30dの他方は、短い線分のマークである。オペレータは、一対のマーク30b(又は矢印マークの向き)を視認することで、セミフィニッシュドレンズ1の上下方向を把握することができる。
 このように、マーク30の位置や外観を工夫することにより、エレクトロクロミックフィルム20が向きの分かり難い形状(例えば真円形状)である場合にも、オペレータがセミフィニッシュドレンズ1の上下左右方向を誤って作業するといったミスが防がれる。
 図4Dに示されるように、マーク30は、フレーム形状20aの外側の領域12aに、120度間隔で計3つ付けられたものであってもよい。図4Dの例では、3つのマーク30の延長線が交差する位置が基準位置FCである。
 図4Eに示されるように、マーク30は、フレーム形状20aの内側の領域に付けられてもよい。すなわち、マーク30は、基準位置FCを客観的に特定できるものであればよく、フレーム形状20aの外側の領域12a以外に配置されてもよい。
 図4Fに示されるように、マーク30は、基準位置FCに直接付けられてもよい。すなわち、マーク30は、基準位置FCを間接的に示すものに限らず、基準位置FCを直接的に示すものであってもよい。なお、累進屈折力レンズや乱視度数を持つレンズを製造する場合、レンズの軸方向を規定する必要がある。しかし、図4Fに例示されるマーク30では、オペレータは、レンズの軸方向を把握することができない。そこで、図4Fの例では、レンズの軸方向を示すマークが別途付けられてもよい。
 図4E及び図4Fの例では、玉形加工後のカットレンズにマーク30が残る。そのため、マーク30は、例えば隠しマークと同様に凸面12上に薄く彫られる。
 図4E及び図4Fの例において、マーク30は、凸面12に付けられているが、本発明の構成はこれに限らない。マーク30は、エレクトロクロミックフィルム20に付けられてもよい。この場合、マーク30は、エレクトロクロミックフィルム20を凸面12に付ける前にエレクトロクロミックフィルム20に予め付けられてよく、また、エレクトロクロミックフィルム20を凸面12に付けた後にエレクトロクロミックフィルム20に付けられてもよい。
 図5は、本発明の一実施形態に係る製造システム100の構成を示すブロック図である。図1に示されるように、製造システム100は、眼鏡店200及び製造工場300を有する。
 眼鏡店200は、顧客(装用者)に対する処方に応じた眼鏡レンズを発注する。製造工場300は、眼鏡店200からの発注を受けて眼鏡レンズを製造する。製造工場300への発注は、インターネット等の所定のネットワークやFAX等によるデータ送信を通じて行われる。発注者には眼科医や一般消費者を含めてもよい。
 眼鏡店200には、店頭コンピュータ210が設置されている。店頭コンピュータ210は、例えばタブレット端末やスマートフォン、デスクトップPC(Personal Computer)、ノートPC等であり、製造工場300への眼鏡レンズの発注を行うためのソフトウェアがインストールされている。なお、眼鏡レンズは、Web上で発注することもできる。この場合、店頭コンピュータ210への上記のソフトウェアのインストールは不要である。店頭コンピュータ210には、眼鏡店のスタッフや装用者自身によるマウスやキーボード等の操作を通じてレンズデータ及びフレームデータが入力される。
 レンズデータには、例えば装用者の処方情報(遠用度数、近用度数、加入度数、累進帯長、ベースカーブ、球面屈折力、乱視屈折力、乱視軸方向、プリズム屈折力、プリズム基底方向、瞳孔間距離(PD:Pupillary Distance)等)、眼鏡レンズの装用条件(遠用アイポイントの位置、角膜頂点間距離、前傾角、フレームあおり角)、眼鏡レンズの種類(単焦点球面、単焦点非球面、多焦点(二重焦点、累進)、コーティング(染色加工、ハードコート、反射防止膜、紫外線カット等))、装用者の要望に応じたレイアウトデータ、調光・調色機能の有無等が含まれる。
 フレームデータには、装用者が選択したフレームの形状データが含まれる。フレームデータは、例えば、バーコードタグで管理されており、フレームに貼り付けられたバーコードタグをバーコードリーダで読み取ることによって入手することができる。また、フレームの形状データは、眼鏡店200に設置されたフレームトレーサにより取得されてもよい。
 店頭コンピュータ210は、発注データ(レンズデータ及びフレームデータ)を例えばインターネット経由で製造工場300に送信する。
 製造工場300には、ホストコンピュータ310を中心としたLAN(Local Area Network)が構築されている。ホストコンピュータ310には、眼鏡レンズの製造装置をなす、設計用コンピュータ320をはじめ多数の端末装置が接続されている。
 設計用コンピュータ320は、例えば一般的なPCであり、眼鏡レンズ設計用のプログラムがインストールされている。ホストコンピュータ310には、店頭コンピュータ210からインターネット経由で送信された発注データが入力される。ホストコンピュータ310は、入力された発注データを設計用コンピュータ320に送信する。
 製造工場300には、生産性を向上させるため、全製作範囲の度数を複数のグループに区分し、各グループの度数範囲に適合した凸面カーブ形状(例えば球面形状、非球面形状など)とレンズ径を有する各種のレンズ基材10(すなわちセミフィニッシュドレンズ)が眼鏡レンズの注文に備えて予め用意されている。
 図6は、セミフィニッシュドレンズ1の製造方法を示すフローチャートである。
 本製造方法では、まず、受注データに基づいて、度数やレンズ径の異なる複数種類のレンズ基材10の中から、装用者の処方に適したレンズ基材10が設計用コンピュータ320によって特定される(ステップS101)。
 次いで、受注データで指定されたフレームに対応する形状を持つ平板状のエレクトロクロミックフィルム20が設計用コンピュータ320によって特定される(ステップS102)。
 オペレータは、ステップS102にて特定された平板状のエレクトロクロミックフィルム20を金型にセットして、曲面形状に成形する(ステップS103)。具体的一例として、ステップS101にて特定されたレンズ基材10の凸面12の形状に合わせて金型が選択され、選択された金型の凸型と凹型にエレクトロクロミックフィルム20が挟み込まれて所定温度で加熱される。この熱成形により、曲面形状のエレクトロクロミックフィルム20が得られる。
 曲線形状に成形されたエレクトロクロミックフィルム20は、レンズ基材10の凸面12に合わせられて、接着剤によって凸面12上に貼り付けられる(ステップS104)。すなわち、ステップS104は、エレクトロクロミックフィルム20(一対の電極層の間にエレクトロクロミック層を設けたフィルムであって、フレーム形状をかたどるフィルム)をセミフィニッシュドレンズ(レンズ基材10)に付けるステップである。ステップS104により、エレクトロクロミックフィルム20が凸面12に付いたレンズ基材10が得られる。
 例えば、ECレンズ向けでない他の形態のセミフィニッシュドレンズを製造する場合、ステップS104は、フレーム形状をかたどる印をセミフィニッシュドレンズの光学面に付けるステップに代えられる。
 凸面12上に貼り付けられたエレクトロクロミックフィルム20の貼り付け位置が実測される。この実測値をもとにマーク30の位置が決定される(ステップS105)。すなわち、ステップS105は、少なくとも3つのマーク30に基づいて基準位置FCが特定できるように、セミフィニッシュドレンズ(レンズ基材10)上における少なくとも3つのマーク30のそれぞれの位置を決定するマーク位置決定ステップである。
 レンズ基材10の凸面12であって、フレーム形状20aの外側の領域12aに、レーザマーカや刻印機によって4つのマーク30が付けられる(ステップS106)。すなわち、ステップS106は、ステップS105にて決定されたセミフィニッシュドレンズ(レンズ基材10)上のそれぞれの位置に少なくとも3つのマーク30のそれぞれを付けるマーク付与ステップである。このステップを経て、図1及び図2に示されるセミフィニッシュドレンズ1が得られる。
 なお、マーク30を凸面12に付ける際、隠しマークやその他の必要な情報(例えば品証マークや識別記号等)を凸面12に付けてもよい。この場合、マーク30と隠しマーク等を別々の工程で付ける場合と比べて製造効率を上げることができる。
 図7は、図6のフローチャートに従って製造されたセミフィニッシュドレンズ1を用いて処方に応じた眼鏡レンズを製造する方法を示すフローチャートである。
 ここで、従来は、隠しマークで特定される点(単焦点レンズであれば幾何中心)を基準に凹面形状が計算され、この点を基準に凹面が加工される。しかし、この点を基準に凹面形状の計算及び加工を行っても、凸面12上に既に付けられたエレクトロクロミックフィルム20のレイアウト位置を厳密に考慮した凹面形状の計算及び加工を行うことが難しいため、エレクトロクロミックフィルム20のレイアウト位置に対してアイポイントの位置を高い精度で出すことが難しい。そのため、エレクトロクロミックフィルム20のレイアウト位置に対するアイポイント位置の誤差により、玉形加工時に、エレクトロクロミックフィルム20の一部が切断されたり、アイポイントの位置が処方通りにならなかったりする等の不具合が発生する。
 そこで、図7のフローチャートに示される製造方法では、エレクトロクロミックフィルム20がかたどるフレーム形状20aの基準位置FCを基準に凹面形状が計算され、基準位置FCを基準に凹面が加工される。フレーム形状20aのレイアウト位置を考慮した凹面形状の計算及び加工が行われるため、このレイアウト位置に対するアイポイント位置の誤差が抑えられ、上記の不具合の発生が抑えられる。
 まずは、図7に示されるように、設計用コンピュータ320が受注データに基づいて基準位置FCを基準に凹面形状及び玉形形状を計算する(ステップS201)。すなわち、ステップS201は、セミフィニッシュドレンズ1の凹面14を処方に応じて加工するときの、凹面14の形状を、基準位置FCを基準に計算する、計算ステップである。
 なお、ステップS201の処理に先立ち、フレームの形状データが取得される。フレームの形状データは、既知のデータであってもよく、また、測定器330より測定されるものであってもよい。前者の場合、設計用コンピュータ320は、各種フレームの形状データを予め保持している。
 測定器330により測定されたフレームの形状データを取得する場合を説明する。フレームの形状測定では、測定器330の測定子がフレームのヤゲン溝に接触される。測定器330は、測定子を所定点を中心に回転させて、ヤゲン溝の形状座標値(Rn,θn,Zn)(n=1,2,・・・,N)を検出する。検出された形状座標値(Rn,θn,Zn)は、設計用コンピュータ320に転送される。
 設計用コンピュータ320は、例えば、形状座標値(Rn,θn,Zn)に基づき、仮想球面の中心位置(a,b,c)、フレームが仮想球面上にあるとした場合の仮想球面の半径値RB、フレームPD(Pupillary Distance)、フレーム鼻幅DBL、フレームあおり角、前傾角等を算出する。
 ステップS201では、基準位置FCを基準に凹面形状が計算されることから、アイポイント位置も基準位置FCを基準に計算される。図8及び図9を用いて、基準位置FCに対するアイポイント位置の計算方法を説明する。図8は、仮想球面の各定数と直交座標値との関係を示す斜視図である。図9は、フレーム形状20aのレイアウト位置に基づき配置された左右の眼鏡レンズの斜視図である。
 測定器330により検出された形状座標値(Rn,θn,Zn)がフレーム形状座標値(Xn,Yn,Zn)(n=1,2,・・・,N)に変換される。具体的には、図8に示されるように、フレーム形状座標値(Xn,Yn,Zn)のうち、直交座標値(Xn,Yn)は、極座標値(Rn,θn)を変換することによって得られる。また、Znは、球面上の(Xn,Yn)におけるZ軸座標値として算出される。なお、Z軸方向は、フレームの正面方向である。
 本計算方法では、眼鏡の水平基準軸であるデータムラインをX軸とし、眼鏡の上下方向をY軸とし、眼鏡の正面方向をZ軸とする「フレーム座標」が定められる。そして、このフレーム座標上に、左右夫々のフレームの中心位置を基準位置FCとする2つのフレーム形状座標値(Xn,Yn,Zn)が定義される。
 具体的には、まず、左右の各フレーム形状20aの最も鼻側の点P1、P2のX座標値がそれぞれ、-HDBL,+HDBLとなるように、2つのフレーム形状座標値(Xn,Yn,Zn)が設定される。なお、HDBLは、フレーム鼻幅DBLを2で割った値である。
 また、点P1を通りY軸に平行な直線を軸として、フレームあおり角だけ、一方の(最も鼻側のX座標値が-HDBLの)フレーム形状座標値(Xn,Yn,Zn)が回転移動されるとともに、点P2を通りY軸に平行な直線を軸として、フレームあおり角だけ、他方の(最も鼻側のX座標値が+HDBLの)フレーム形状座標値(Xn,Yn,Zn)が回転移動される。更に、点P1を通りX軸に平行な直線を軸として、前傾角だけ、一方のフレーム形状座標値(Xn,Yn,Zn)が回転移動されるとともに、点P2を通りX軸に平行な直線を軸として、前傾角だけ、他方のフレーム形状座標値(Xn,Yn,Zn)が回転移動されてもよい。
 このように、フレーム座標上に定義された3次元のフレーム形状に対する眼鏡レンズの位置及び向きを、アイポイント位置EP1、EP2及びこれらアイポイント位置における眼鏡レンズ凸面上の法線方向NL1、NL2を決定することにより特定する。
 アイポイント位置EP1、EP2は、眼鏡レンズ凸面における、眼鏡装用時に装用者の瞳の中心に位置すべき点である。アイポイント位置EP1、EP2のレイアウト情報は、眼鏡店200で取得されるレンズデータに含まれるものであり、装用者の鼻の中心線から瞳の中心までの水平方向距離HPDと、データムラインから装用者の瞳の中心までの垂直方向距離EPHTを含む。以下、右眼用の眼鏡レンズの水平方向距離、垂直方向距離に、それぞれ、符号HPD、EPHTを付す。左眼用の眼鏡レンズの水平方向距離、垂直方向距離に、それぞれ、符号HPD、EPHTを付す。
 従って、アイポイント位置EP1のX、Y座標は(-HPD,EPHT)に決定され、アイポイント位置EP2のX、Y座標は(-HPD,EPHT)に決定される。アイポイント位置EP1のZ座標は、ヤゲン位置(レンズコバにおいてヤゲンが設けられる位置であり、例えば凸面ならいや凹面ならい等)に従って決定される。ヤゲン位置は、例えば眼鏡店200で取得されるレンズデータに含まれる。
 このようにして、基準位置FCに対するアイポイント位置EP1、EP2(すなわち、エレクトロクロミックフィルム20のレイアウト位置に対するアイポイントの位置)が決定される。決定された位置EP1、EP2にアイポイントがレイアウトされるように、処方に応じたセミフィニッシュドレンズ1の凹面形状及び玉形形状が計算される。すなわち、ステップS201では、基準位置FCを考慮してアイポイント位置EP1、EP2が計算され、計算されたアイポイント位置EP1、EP2に基づいて凹面14の形状が計算される。なお、処方に応じた凹面形状及び玉形形状の計算処理自体は周知であるため、ここでの具体的な説明は省略する。
 セミフィニッシュドレンズ1の凸面12に、アロイ等の低融点合金を介してブロック治具342が貼り付けられる(ステップS202)。すなわち、ブロッキングが行われる。
 具体的には、ステップS202では、レンズブロッカ340に搭載されたカメラ装置によりセミフィニッシュドレンズ1が撮影され、撮影されたセミフィニッシュドレンズ1がレンズブロッカ340のディスプレイに表示される。ディスプレイには、計算により予め求められた位置にマーク画像が撮影画像に重畳して表示される。マーク画像は、例えばマーク30と同じ短い線分の画像であり、画面の上部、下部、右部、左部に合計で4つ表示される。
 凹面加工及び玉形加工を行うためにブロック治具342がセミフィニッシュドレンズ1を保持する際に基準となる点を加工原点と呼称する。オペレータは、ディスプレイに表示されるセミフィニッシュドレンズ1に付された4つのマーク30と4つのマーク画像を確認しながら、セミフィニッシュドレンズ1の位置を微調整し、4つのマーク30のそれぞれと、対応する各マーク画像とが一致する位置でセミフィニッシュドレンズ1のブロッキングを行う。これにより、基準位置FCが加工原点となるように、セミフィニッシュドレンズ1がブロック治具342に保持された状態となる。
 ステップS201にて計算された凹面形状データは、設計用コンピュータ320からカーブジェネレータ350に送信される。カーブジェネレータ350は、凹面形状データに基づいて、ブロック治具342に保持されたセミフィニッシュドレンズ1の凹面14を、ステップS201にて計算された凹面形状となるように(すなわち、処方に応じた形状と度数が得られるように)研削する(ステップS203)。すなわち、ステップS204は、セミフィニッシュドレンズ1の凹面14をステップS201にて計算された形状に基準位置FCを基準に加工する面形状加工ステップである。
 ステップS201では、基準位置FCに対するアイポイント位置を考慮して凹面形状が計算されているため、フレーム形状のレイアウト位置に対してアイポイントの位置が高い精度で求まっている。そのため、基準位置FCを加工原点として凹面加工を行うことにより、フレーム形状のレイアウト位置に対してアイポイントの位置を高い精度で出すことができる。
 凹面14のつや出しやコーティング剤の密着性を高めるため、凹面14は、研磨機360によって研磨される(ステップS204)。これにより、凹面14が処方を満たす光学面として形成される。
 お湯により低融点合金が溶かされて、セミフィニッシュドレンズ1がブロック治具342から取り外される(ステップS205)。次いで、洗浄機370によりセミフィニッシュドレンズ1が洗浄されて汚れや異物が除去される(ステップS206)。
 コーティング装置380により、セミフィニッシュドレンズ1の凸面12(及びエレクトロクロミックフィルム20)並びに凹面14に、コーティング(例えばハードコート加工や反射防止加工)が施される(ステップS207)。
 ここで、セミフィニッシュドレンズ1には、フレーム形状20aをかたどるエレクトロクロミックフィルム20が取り付けられている。そのため、オペレータは、セミフィニッシュドレンズ1のうち、眼鏡レンズとして最終的に使用する部分と使用しない部分とを簡単に判別することができる。
 例えば、フレーム形状20aの外側の領域12aに不良(傷やコーティング処理時の異物混入等)がある場合を考える。領域12aは玉形加工でカットされる部分であるため、この不良は最終製品である眼鏡レンズには残らない。そのため、このような不良のあるセミフィニッシュドレンズ1であっても良品として使用することができる。従って、歩留まりを向上させることができる。
 コーティング処理後のセミフィニッシュドレンズ1がステップS202と同様にブロッキングされる(ステップS208)。ここでも、基準位置FCが加工原点となるように、セミフィニッシュドレンズ1がブロック治具342に保持された状態となる。
 ステップS201にて計算された玉形形状データは、設計用コンピュータ320から玉形加工機390に送信される。玉形加工機390は、玉形形状データに基づいて、セミフィニッシュドレンズ1を玉形加工する(ステップS209)。すなわち、ステップS209は、凹面14が加工されたセミフィニッシュドレンズ1を、基準位置FCを基準に玉形加工する玉形加工ステップである。
 ステップS201では、エレクトロクロミックフィルム20がかたどるフレーム形状20aの基準位置FCを基準に玉形形状が計算されている。そのため、玉形加工の位置とエレクトロクロミックフィルム20の位置とのずれが抑えられている。そのため、エレクトロクロミックフィルム20が切断されることなく玉形加工が行われる。
 以上が本発明の例示的な実施形態の説明である。本発明の実施形態は、上記に説明したものに限定されず、本発明の技術的思想の範囲において様々な変形が可能である。例えば明細書中に例示的に明示される実施例や変形例又は自明な実施例や変形例を適宜組み合わせた内容も本願の実施形態に含まれる。
 上記の実施形態では、基準位置FCを基準に凹面形状及び玉形形状が計算され加工されている。基準位置FCを基準にこれらの形状の計算及び加工を行うという目的を達成する観点でいくと、エレクトロクロミックフィルム20やフレーム形状20aをかたどる印が付けられていないセミフィニッシュドレンズ(具体的には、図1に示されるセミフィニッシュドレンズ1からエレクトロクロミックフィルム20を省いた構成)も本発明の範疇といえる。

Claims (7)

  1.  少なくとも3つのマークに基づいてフレーム形状の中心位置が特定できるように、セミフィニッシュドレンズ上における前記少なくとも3つのマークのそれぞれの位置を決定するマーク位置決定ステップと、
     前記マーク位置決定ステップにて決定された前記セミフィニッシュドレンズ上のそれぞれの位置に前記少なくとも3つのマークのそれぞれを付けるマーク付与ステップと、
     前記セミフィニッシュドレンズの非光学面を処方に応じて加工するときの、前記非光学面の形状を、前記中心位置を基準に計算する計算ステップと、
     前記非光学面を前記計算ステップにて計算された形状に前記中心位置を基準に加工する面形状加工ステップと、
    を含み、
     前記少なくとも3つのマークは、前記セミフィニッシュドレンズを光軸方向からみたときに、前記中心位置を通る第1の直線上に位置する一対のマークと、前記第1の直線と直交しかつ前記中心位置を通る第2の直線上に位置する1つのマークを含む、
    眼鏡レンズの製造方法。
  2.  前記計算ステップにて、前記中心位置を考慮してアイポイント位置を計算し、計算されたアイポイント位置に基づいて前記非光学面の形状を計算する、
    請求項1に記載の眼鏡レンズの製造方法。
  3.  前記マーク付与ステップにて、前記少なくとも3つのマークを前記セミフィニッシュドレンズの光学面に付ける、
    請求項1又は請求項2に記載の眼鏡レンズの製造方法。
  4.  前記面形状加工ステップにて前記非光学面が加工されたレンズを、前記中心位置を基準に玉形加工する玉形加工ステップ
    を更に含む、
    請求項1から請求項3の何れか一項に記載の眼鏡レンズの製造方法。
  5.  前記マーク付与ステップにて、前記少なくとも3つのマークを、前記玉形加工ステップでカットされる部分に付ける、
    請求項4に記載の眼鏡レンズの製造方法。
  6.  一対の電極層の間にエレクトロクロミック層を設けたフィルムであって、前記フレーム形状をかたどるフィルムを、前記セミフィニッシュドレンズに付けるステップ
    を更に含む、
    請求項1から請求項5の何れか一項に記載の眼鏡レンズの製造方法。
  7.  前記フレーム形状をかたどる印を前記セミフィニッシュドレンズの光学面に付けるステップ
    を更に含む、
    請求項1から請求項5の何れか一項に記載の眼鏡レンズの製造方法。
PCT/JP2021/039207 2020-12-24 2021-10-25 眼鏡レンズの製造方法 WO2022137771A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020237023038A KR20230137302A (ko) 2020-12-24 2021-10-25 안경 렌즈의 제조 방법
US18/269,136 US20240126100A1 (en) 2020-12-24 2021-10-25 Method for producing spectacle lens
CN202180087010.1A CN116829305A (zh) 2020-12-24 2021-10-25 眼镜镜片的制造方法
EP21909928.0A EP4270095A1 (en) 2020-12-24 2021-10-25 Method for producing eyeglass lens

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-215651 2020-12-24
JP2020215651 2020-12-24
JP2021-064293 2021-04-05
JP2021064293A JP2022101427A (ja) 2020-12-24 2021-04-05 眼鏡レンズの製造方法

Publications (1)

Publication Number Publication Date
WO2022137771A1 true WO2022137771A1 (ja) 2022-06-30

Family

ID=82158957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/039207 WO2022137771A1 (ja) 2020-12-24 2021-10-25 眼鏡レンズの製造方法

Country Status (4)

Country Link
US (1) US20240126100A1 (ja)
EP (1) EP4270095A1 (ja)
KR (1) KR20230137302A (ja)
WO (1) WO2022137771A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07168209A (ja) * 1993-12-15 1995-07-04 Nikon Corp 度付きエレクトロクロミック眼鏡レンズの製造方法
JP2000288891A (ja) * 1999-04-01 2000-10-17 Seiko Epson Corp 眼鏡用レンズの製造方法及びレンズ加工装置
WO2006003939A1 (ja) * 2004-06-30 2006-01-12 Hoya Corporation 眼鏡レンズの製造方法
JP2007313633A (ja) * 2006-04-27 2007-12-06 Hoya Corp 眼鏡レンズの製造システム及びマーク検出装置
JP2017111389A (ja) 2015-12-18 2017-06-22 株式会社リコー エレクトロクロミック表示素子及びその製造方法、並びに表示装置、情報機器、及びエレクトロクロミック調光レンズ
JP2018031802A (ja) * 2016-08-22 2018-03-01 株式会社ニコン・エシロール 眼鏡レンズの製造方法、眼鏡レンズ製造システム、及び眼鏡レンズ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07168209A (ja) * 1993-12-15 1995-07-04 Nikon Corp 度付きエレクトロクロミック眼鏡レンズの製造方法
JP2000288891A (ja) * 1999-04-01 2000-10-17 Seiko Epson Corp 眼鏡用レンズの製造方法及びレンズ加工装置
WO2006003939A1 (ja) * 2004-06-30 2006-01-12 Hoya Corporation 眼鏡レンズの製造方法
JP2007313633A (ja) * 2006-04-27 2007-12-06 Hoya Corp 眼鏡レンズの製造システム及びマーク検出装置
JP2017111389A (ja) 2015-12-18 2017-06-22 株式会社リコー エレクトロクロミック表示素子及びその製造方法、並びに表示装置、情報機器、及びエレクトロクロミック調光レンズ
JP2018031802A (ja) * 2016-08-22 2018-03-01 株式会社ニコン・エシロール 眼鏡レンズの製造方法、眼鏡レンズ製造システム、及び眼鏡レンズ

Also Published As

Publication number Publication date
KR20230137302A (ko) 2023-10-04
US20240126100A1 (en) 2024-04-18
EP4270095A1 (en) 2023-11-01

Similar Documents

Publication Publication Date Title
JP4726791B2 (ja) 眼鏡レンズの製造方法
JP4067277B2 (ja) 累進屈折力眼鏡レンズ及びその設計方法
US20030231282A1 (en) Model for representing an ophthalmic lens surface
JP5473939B2 (ja) 眼鏡フレームの形状データを修正する方法
JP4124468B2 (ja) 眼鏡レンズの光学値の決定方法、眼鏡レンズの製造方法、眼鏡レンズ及びその受発注システム
US8381408B2 (en) Method for determining a contour data set of spectacle frame rim
WO2022137772A1 (ja) セミフィニッシュドレンズ
US9952584B2 (en) Modifying a digital ophthalmic lens map to accommodate characteristics of a lens surfacing machine
US20210382330A1 (en) Data record for use in a method for producing a spectacle lens
WO2022137771A1 (ja) 眼鏡レンズの製造方法
JP4537148B2 (ja) 眼鏡レンズへのマーキング方法
JP6543464B2 (ja) 眼鏡レンズ
JP2022101427A (ja) 眼鏡レンズの製造方法
JP2022101428A (ja) セミフィニッシュドレンズ
JP2012215639A (ja) 眼鏡レンズの製造方法
JP2002311396A (ja) 累進多焦点レンズのレイアウトマーク及び累進多焦点レンズのチェック方法
JPWO2018220737A1 (ja) 眼鏡レンズ、眼鏡レンズの製造装置、設計方法及び設計プログラム
CN116829305A (zh) 眼镜镜片的制造方法
CN115867852A (zh) 用于生成数据以生产至少一个眼镜镜片的计算机实施的方法以及用于生产一副眼镜的方法
JP2507643Y2 (ja) 単焦点非球面眼鏡レンズ
US20220011598A1 (en) Lens with marking pattern for characterizing high-order aberrations
KR20240001210U (ko) 그리드가 표시된 데모렌즈 및 이를 이용한 렌즈 가공방법
CN111263912A (zh) 眼科镜片组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21909928

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180087010.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18269136

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021909928

Country of ref document: EP

Effective date: 20230724