WO2022137646A1 - 複合基板および弾性表面波素子 - Google Patents

複合基板および弾性表面波素子 Download PDF

Info

Publication number
WO2022137646A1
WO2022137646A1 PCT/JP2021/030894 JP2021030894W WO2022137646A1 WO 2022137646 A1 WO2022137646 A1 WO 2022137646A1 JP 2021030894 W JP2021030894 W JP 2021030894W WO 2022137646 A1 WO2022137646 A1 WO 2022137646A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
composite substrate
high impedance
impedance layer
substrate according
Prior art date
Application number
PCT/JP2021/030894
Other languages
English (en)
French (fr)
Inventor
岳士 山本
雄大 鵜野
弘善 伊奈
圭一郎 浅井
知義 多井
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to CN202180019530.9A priority Critical patent/CN116491070A/zh
Priority to DE112021001587.7T priority patent/DE112021001587T5/de
Priority to KR1020227034396A priority patent/KR20220149737A/ko
Publication of WO2022137646A1 publication Critical patent/WO2022137646A1/ja
Priority to US17/930,743 priority patent/US20230006634A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02574Characteristics of substrate, e.g. cutting angles of combined substrates, multilayered substrates, piezoelectrical layers on not-piezoelectrical substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02559Characteristics of substrate, e.g. cutting angles of lithium niobate or lithium-tantalate substrates
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02637Details concerning reflective or coupling arrays
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • H03H9/02834Means for compensation or elimination of undesirable effects of temperature influence
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves

Definitions

  • the present invention relates to a composite substrate and a surface acoustic wave element.
  • a filter (SAW filter) using a surface acoustic wave is used in order to extract an electric signal of an arbitrary frequency.
  • This SAW filter has a structure in which electrodes and the like are formed on a composite substrate having a piezoelectric layer (see, for example, Patent Document 1).
  • the composite substrate is also required to have heat resistance during processing (for example, in a process in which heat of 200 ° C. or higher is applied).
  • a main object of the present invention is to provide a composite substrate having excellent heat resistance while confining the energy of elastic waves in a piezoelectric layer.
  • the composite substrate according to the embodiment of the present invention has a piezoelectric layer and a reflective layer arranged on the back surface side of the piezoelectric layer, and the reflective layer includes a high impedance layer and a low impedance layer containing silicon oxide.
  • the region of the first structure in the high impedance layer exceeds 70%.
  • the first structure is a columnar or granular structure.
  • the high impedance layer comprises at least one selected from the group consisting of hafnium oxide, tantalum oxide, zirconium oxide and aluminum oxide.
  • the first structure is unevenly distributed from the interface with the adjacent layer or the air layer toward the other interface in the thickness direction of the high impedance layer.
  • the high impedance layer has a second structure, and a boundary between the first structure and the second structure exists in the high impedance layer.
  • the thicknesses of the high impedance layer and the low impedance layer are 0.01 ⁇ m to 1 ⁇ m, respectively.
  • the high impedance layer and the low impedance layer are alternately laminated.
  • the composite substrate has a support substrate arranged on the back surface side of the reflective layer.
  • the composite substrate has a bonding layer disposed between the reflective layer and the support substrate.
  • the surface acoustic wave element according to another embodiment of the present invention includes the above-mentioned composite substrate.
  • the piezoelectric layer by combining the piezoelectric layer and the impedance layer having a predetermined structural state, it is possible to provide a composite substrate having excellent heat resistance while confining the energy of elastic waves in the piezoelectric layer. ..
  • FIG. 3A It is a figure following FIG. 3B. It is a figure following FIG. 3C. It is a cross-sectional SEM observation photograph of the composite substrate (reflection layer) of Example 1-1. It is a cross-sectional SEM observation photograph of the composite substrate (reflection layer) of Comparative Example 1-1. It is a cross-sectional SEM observation photograph of the composite substrate (reflection layer) of Comparative Example 1-1 after heating. It is a cross-sectional SEM observation photograph of Example 2-3.
  • FIG. 1 is a schematic cross-sectional view showing a schematic configuration of a composite substrate according to one embodiment of the present invention.
  • the composite substrate 100 has a piezoelectric layer 10, a reflective layer 20, and a support substrate 30 in this order.
  • the reflective layer 20 includes a high impedance layer having a relatively high acoustic impedance and a low impedance layer having a relatively low acoustic impedance.
  • the reflective layer 20 is a laminated body of a plurality of impedance layers, and for example, high impedance layers and low impedance layers are alternately laminated.
  • the reflective layer 20 includes a low impedance layer 21, a high impedance layer 22, a low impedance layer 23, a high impedance layer 24, a low impedance layer 25, a high impedance layer 26, a low impedance layer 27, and the like.
  • the high impedance layer 28 is provided in this order.
  • the low impedance layer 21 is arranged closest to the piezoelectric layer 10.
  • the reflective layer 20 is a laminated body of four layers of high impedance layers and four low impedance layers in total, but the number of impedance layers included in the reflective layer is not limited to this.
  • the reflective layer may include at least one high-impedance layer and one low-impedance layer having different acoustic impedances.
  • the reflective layer has a multi-layer structure of four or more layers.
  • the composite substrate 100 may further have an arbitrary layer.
  • the types / functions, numbers, combinations, arrangements, etc. of such layers can be appropriately set according to the purpose.
  • the composite substrate 100 may have a bonding layer arranged between the reflective layer 20 and the support substrate 30.
  • the composite substrate 100 can be manufactured in any suitable shape. In one embodiment, it can be manufactured in the form of a so-called wafer.
  • the size of the composite substrate 100 can be appropriately set according to the purpose. For example, the diameter of the wafer is 50 mm to 150 mm.
  • A-1. Piezoelectric layer As the material constituting the piezoelectric layer, any suitable piezoelectric material can be used. As the piezoelectric material, a single crystal having the composition of LiAO 3 is preferably used.
  • A is one or more elements selected from the group consisting of niobium and tantalum.
  • LiAO 3 may be lithium niobate (LiNbO 3 ), lithium tantalate (LiTaO 3 ), or a lithium niobate-lithium tantalate solid solution.
  • the piezoelectric layer is 123 to 133 ° (for example, 128 °) from the Y axis to the Z axis centering on the X axis, which is the propagation direction of the surface acoustic wave, from the viewpoint of reducing the propagation loss. °) It is preferable to use the one in the direction of rotation.
  • the piezoelectric material is lithium niobate, as a piezoelectric layer, from the viewpoint of reducing propagation loss, 86 to 94 ° (for example, 90) from the Y axis to the Z axis centering on the X axis, which is the propagation direction of surface acoustic waves. °) It is preferable to use the one in the direction of rotation.
  • the thickness of the piezoelectric layer is, for example, 0.2 ⁇ m or more and 30 ⁇ m or less.
  • the reflective layer includes a high impedance layer and a low impedance layer having different acoustic impedances.
  • the acoustic impedance of the high impedance layer is relatively higher than the acoustic impedance of the low impedance layer.
  • the acoustic impedance of the material constituting the high impedance layer is higher than the acoustic impedance of the material constituting the low impedance layer.
  • the plurality of high impedance layers included in the reflective layer may each have the same configuration (for example, material, structural state, thickness), or may have different configurations from each other.
  • the plurality of low impedance layers included in the reflective layer may have the same configuration (for example, material, structural state, thickness), or may have different configurations from each other.
  • the material constituting the high impedance layer examples include hafnium oxide, tantalum oxide, zirconium oxide, and aluminum oxide. Among these, hafnium oxide is preferably used. By using hafnium oxide, the energy of elastic waves can be more effectively confined on the piezoelectric layer side. In one embodiment, the content of hafnium oxide contained in the high impedance layer is, for example, 97% by weight or more.
  • the thickness of the high impedance layer is preferably 1 ⁇ m or less, more preferably 500 nm or less, and further preferably 300 nm or less. With such a thickness, it is possible to obtain a composite substrate having better heat resistance. On the other hand, the thickness of the high impedance layer is, for example, 0.01 ⁇ m or more, preferably 20 nm or more, and more preferably 100 nm or more.
  • the high impedance layer has a region of the first structure.
  • the first structure is, for example, a columnar structure or a granular structure.
  • the columnar structure is composed of a structure (columnar body) extending in a direction having an angle with respect to the substrate surface (in-plane direction) of the composite substrate, and the column diameter thereof is, for example, 5 nm or more.
  • the granular structure is composed of a substantially spherical structure. Such a structure can be confirmed, for example, by observation with a scanning electron microscope (SEM). The pillar diameter may not be satisfied at all positions in the film thickness direction of the observed columnar body.
  • the first structure may be scattered or unevenly distributed in the thickness direction of the high impedance layer.
  • the first structure is unevenly distributed from the interface with the adjacent layer or the air layer toward the other interface in the thickness direction of the high impedance layer.
  • the high impedance layer has a region 71 including a first structure located on one interface 51 side and a region 72 including a second structure located on the other interface 52 side.
  • the region 71 and the region 72 are continuously formed, and the boundary (interface) between the region 71 and the region 72 is indicated by a broken line.
  • the second structure has a structure different in shape from the first structure, and is, for example, a granular structure or a columnar structure.
  • the high impedance layer may include other structures.
  • the columnar structure is mainly confirmed in the region 71, and the granular structure is mainly confirmed in the region 72.
  • the region 71 can be said to be a columnar structure composed of a plurality of columnar structures
  • the region 72 can be said to be a granular structure composed of a plurality of granular structures.
  • the problem of peeling / cracking which will be described later, tends to occur.
  • the region of the first structure in the high impedance layer exceeds 70%, preferably 75% or more, more preferably 80% or more, and further preferably 90% or more. According to such a range, a composite substrate having excellent heat resistance can be obtained.
  • the stress generated by heating or the like differs between the first structure and the second structure (for example, tensile stress can be generated in the columnar structure and compressive stress can be generated in the granular structure), and the first structure and the first structure. Mutual stresses can be concentrated at the interface with the second structure.
  • peeling / cracking is likely to occur due to thermal history, but by setting the region of the first structure to the above range, the influence of mutual stress is reduced and the occurrence of peeling / cracking due to thermal history is suppressed. be able to.
  • one of the features of the present invention is to pay attention to the occurrence of peeling / cracking in the layer and the structural state. It is preferable that the region of the first structure exceeds 70% in all the high impedance layers included in the reflective layer. This is because peeling / cracking in the layer can occur regardless of the position on the composite substrate (reflection layer).
  • the region of the second structure in the high impedance layer is preferably less than 30%, more preferably 25% or less, still more preferably 20% or less, and particularly preferably 10% or less.
  • the ratio of the region of the first structure in the high impedance layer can be confirmed by, for example, SEM observation.
  • the maximum and minimum values of the distance (thickness) from one of the interfaces 51 to the region 72 including the second structure are measured, and the average value is taken as the thickness of the region of the first structure. , It can be obtained by calculating the ratio of the thickness to the thickness of the high impedance layer.
  • Silicon oxide is a typical example of the material constituting the low impedance layer.
  • the low impedance layer typically has a region of granular structure.
  • the thickness of the low impedance layer is, for example, 0.01 ⁇ m to 1 ⁇ m, preferably 20 nm to 500 nm, and more preferably 100 nm to 300 nm.
  • the impedance layer can be formed by any suitable method.
  • the film can be formed by physical vapor deposition such as sputtering, ion beam assisted vapor deposition (IAD), chemical vapor deposition, or atomic layer deposition (ALD).
  • physical vapor deposition such as sputtering, ion beam assisted vapor deposition (IAD), chemical vapor deposition, or atomic layer deposition (ALD).
  • the impedance layer is formed by sputtering a target containing the above oxide.
  • the structural state can be controlled, for example, by adjusting the pressure in the space where the impedance layer is formed.
  • the pressure in the space for film formation is set to 0.15 Pa or more and less than 0.30 Pa.
  • the pressure in the space where the film is formed is set to be more than 0.50 Pa and 0.80 Pa or less.
  • the film formation temperature is, for example, between room temperature and 200 ° C.
  • the support substrate 30 any suitable substrate can be used.
  • the support substrate may be composed of a single crystal or a polycrystal.
  • the material constituting the support substrate is preferably selected from the group consisting of silicon, sialon, sapphire, cordierite, mullite, glass, quartz, crystal and alumina.
  • the silicon may be single crystal silicon, polycrystalline silicon, or high resistance silicon.
  • the sialon is a ceramic obtained by sintering a mixture of silicon nitride and alumina, and has a composition shown by, for example, Si 6-w Al w O w N 8 -w .
  • Sialon has a composition in which alumina is mixed in silicon nitride, and w in the formula indicates the mixing ratio of alumina.
  • w is preferably 0.5 or more and 4.0 or less.
  • the sapphire is a single crystal having a composition of Al 2 O 3
  • the alumina is a polycrystal having a composition of Al 2 O 3
  • Alumina is preferably translucent alumina.
  • the corgerite is a ceramic having a composition of 2MgO ⁇ 2Al 2O 3.5SiO 2
  • the mullite is a ceramic having a composition in the range of 3Al 2O 3.2SiO 2 to 2Al 2O3 ⁇ SiO 2 . It is a ceramic having.
  • the coefficient of thermal expansion of the material constituting the support substrate is smaller than the coefficient of thermal expansion of the material constituting the piezoelectric layer. According to such a support substrate, changes in the shape and size of the piezoelectric layer when the temperature changes can be suppressed, and for example, changes in the frequency characteristics of the obtained surface acoustic wave element can be suppressed.
  • the thickness of the support substrate is, for example, 100 ⁇ m to 1000 ⁇ m.
  • the composite substrate may have a bonding layer.
  • the material constituting the bonding layer include silicon oxide, silicon, tantalum oxide, niobium oxide, aluminum oxide, titanium oxide, and hafnium oxide.
  • the junction layer has a different composition than the impedance layer.
  • the thickness of the bonding layer is, for example, 0.005 ⁇ m to 1 ⁇ m.
  • the bonding layer can be formed by any suitable method. Specifically, the film can be formed by the same method as the method for forming the impedance layer.
  • an impedance layer constituting the reflective layer is sequentially formed on the piezoelectric layer or the piezoelectric layer precursor, and the piezoelectric layer or the piezoelectric layer precursor on which the reflective layer is formed and the support substrate are used. Can be obtained by directly joining.
  • FIG. 3A to 3D are diagrams showing an example of a manufacturing process of a composite substrate according to one embodiment.
  • FIG. 3A shows a state in which the film formation of the reflective layer 20 (impedance layers 21 to 28) is completed on the piezoelectric layer precursor 12.
  • the piezoelectric layer precursor 12 has a first main surface 12a and a second main surface 12b, and impedance layers 21 to 28 are sequentially formed on the first main surface 12a side to form a reflective layer 20.
  • FIG. 3B shows a state in which the bonding layer 40 is formed on the reflective layer 20
  • FIG. 3C shows a state in which the piezoelectric layer precursor 12 on which the reflective layer 20 and the bonding layer 40 are formed are directly bonded to the support substrate 30.
  • the process to be performed is shown.
  • the joining surface is activated by any appropriate activation treatment.
  • the activated surface of the bonding layer 40 and the activated surface of the support substrate 30 are brought into contact with each other and directly bonded by pressurizing. do.
  • the composite substrate 110 shown in FIG. 3D is obtained.
  • the second main surface 12b of the piezoelectric layer precursor 12 of the obtained composite substrate 110 is subjected to processing such as grinding and polishing so that the piezoelectric layer has the desired thickness. Be given.
  • the surface of each layer is a flat surface.
  • the surface roughness Ra of the surface of each layer is preferably 1 nm or less, more preferably 0.3 nm or less.
  • Examples of the method for flattening the surface of each layer include mirror polishing, lap polishing, and chemical mechanical polishing (CMP).
  • each layer it is preferable to clean the surface of each layer at the time of forming the film and joining, for example, in order to remove the residue of the abrasive and the work-altered layer.
  • the cleaning method include wet cleaning, dry cleaning, and scrub cleaning.
  • scrub cleaning is preferable because it can be easily and efficiently cleaned.
  • a cleaning agent for example, Sunwash series manufactured by Lion
  • a solvent for example, a mixed solution of acetone and isopropyl alcohol (IPA)
  • IPA isopropyl alcohol
  • the above activation treatment is typically performed by irradiating a neutralized beam.
  • a device such as the device described in Japanese Patent Application Laid-Open No. 2014-086400 is used to generate a neutralized beam, and the activation process is performed by irradiating the beam.
  • a saddle field type high-speed atomic beam source is used as the beam source, an inert gas such as argon or nitrogen is introduced into the chamber, and a high voltage is applied from the DC power source to the electrode.
  • an inert gas such as argon or nitrogen
  • a high voltage is applied from the DC power source to the electrode.
  • the ion beam is neutralized by the grid, so that the beam of neutral atoms is emitted from the high-speed atomic beam source.
  • the voltage during the activation treatment by beam irradiation is preferably 0.5 kV to 2.0 kV, and the current during the activation treatment by beam irradiation is preferably 50 mA to 200 mA.
  • the temperature at this time is typically normal temperature. Specifically, it is preferably 20 ° C. or higher and 40 ° C. or lower, and more preferably 25 ° C. or higher and 30 ° C. or lower.
  • the applied pressure is preferably 100N to 20000N.
  • the surface acoustic wave element according to the present invention includes the above-mentioned composite substrate. Since the composite substrate has excellent heat resistance, for example, a surface acoustic wave element obtained by subjecting the composite substrate to processing (including heat treatment) such as formation and cutting of electrodes and the like may cause peeling and cracking. It is suppressed. Such a surface acoustic wave element is suitably used as a SAW filter in a communication device such as a mobile phone.
  • Example 1-1 A lithium tantalate (LT) substrate with an orientation flat (OF) portion and a diameter of 4 inches and a thickness of 250 ⁇ m (the propagation direction of surface acoustic wave (SAW) is X, and the cutting angle is 128 ° Y, which is a rotating Y-cut plate.
  • An LT substrate for cut X propagation was prepared. The surface of this LT substrate was mirror-polished so that the arithmetic mean roughness Ra was 0.3 nm.
  • the arithmetic mean roughness Ra is a value measured by an atomic force microscope (AFM) in a field of view of 10 ⁇ m ⁇ 10 ⁇ m.
  • AFM atomic force microscope
  • a silicon oxide layer (thickness: 150 nm) and a hafnium oxide layer (thickness: 150 nm) were formed on the polished surface of the LT substrate in this order. Specifically, it is produced by a single-wafer sputtering device (RF magnetron sputtering method) using a ⁇ 10 inch SiO 2 target and an HfO 2 target under the conditions of a power supply of 2 kW, a TS distance of 65 mm, and a pressure of 0.65 Pa. The membrane was made. Then, this film formation was repeated three times to form a reflective layer as shown in FIG.
  • RF magnetron sputtering method RF magnetron sputtering method
  • a silicon oxide layer (thickness: 80 to 190 nm, arithmetic mean roughness Ra: 0.2 to 0.6 nm) was formed on the reflective layer. Specifically, a film was formed using a boron-doped Si target by a DC sputtering method. In addition, oxygen gas was introduced as an oxygen source. At this time, the total pressure and oxygen partial pressure of the atmosphere in the chamber were adjusted by adjusting the amount of oxygen gas introduced. Then, the surface of the silicon oxide layer was subjected to chemical mechanical polishing (CMP) to form a bonded layer (thickness: 50 nm, arithmetic average roughness Ra: 0.08 to 0.4 nm).
  • CMP chemical mechanical polishing
  • a support substrate made of silicon having an OF part, a diameter of 4 inches, and a thickness of 500 ⁇ m was prepared.
  • the surface of this support substrate is subjected to chemical mechanical polishing (CMP), and the arithmetic mean roughness Ra is 0.2 nm.
  • both substrates are put into a vacuum chamber and evacuated to the 10-6 Pa level, and then high speed is applied to the surfaces of both substrates.
  • An atomic beam (acceleration voltage 1 kV, Ar flow rate 27 sccm) was irradiated for 120 seconds. After irradiation, the beam irradiation surfaces of both substrates were overlapped and pressed at 10000 N for 2 minutes to join the two substrates. Then, the obtained bonded body was heated at 100 ° C. for 20 hours.
  • the back surface of the LT substrate of the bonded body was ground and polished from the initial 250 ⁇ m to 1 ⁇ m to obtain a composite substrate.
  • Example 1-1 A composite substrate was obtained in the same manner as in Example 1-1 except that the pressure was changed to 0.40 Pa under the film forming conditions in sputtering. Similar to Example 1-1, SEM observation of the cross section of the obtained composite substrate (reflection layer) was performed. The observation photograph is shown in FIG.
  • Example 2-1 A confirmation sample was obtained in the same manner as in Example 1-1 except that only one hafnium oxide layer was formed in the formation of the reflective layer and no bonding layer was formed.
  • Examples 2-2, 2-3, 2-4 and 2-5 A confirmation sample was obtained in the same manner as in Example 2-1 except that the film forming conditions (pressure) in sputtering were changed.
  • Comparative Example 2-1 A confirmation sample was obtained in the same manner as in Comparative Example 1-1 except that only one hafnium oxide layer was formed in the formation of the reflective layer and no bonding layer was formed.
  • FIG. 7 shows a cross-sectional SEM observation photograph of Example 2-3. The top of the granular growth and the bottom of the granular growth are confirmed with reference to the surface of the LT substrate, and the intermediate position between the two is obtained to obtain the granular structure. The thickness of the area was used.
  • the ratio (%) of the granular structure was determined by calculating the ratio of the thickness d of the granular structure region to the thickness H of the hafnium oxide layer (thickness d of the granular structure region / thickness H of the hafnium oxide layer). As shown in FIG. 7, in all of Examples 2-1 to 2-5 and Comparative Examples 2-1 to 2-3, the boundary between the granular structure and the columnar structure was confirmed, and the columnar structure was confirmed from the above calculation formula. The percentage of the grain structure is 100 minus the percentage of the granular structure. Similar to Evaluation 1, the heat resistance of the obtained confirmation sample was evaluated. Table 1 summarizes the evaluation results of heat resistance (presence or absence of peeling) as well as the proportion of the first structure.
  • the composite substrate according to one embodiment of the present invention can be suitably used for a surface acoustic wave element.
  • Second structure included Area 72 Area containing the second structure 100 Composite board 110 Composite board

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

弾性波のエネルギーを圧電層に閉じ込めながら、耐熱性に優れた複合基板を提供する。本発明の実施形態による複合基板は、圧電層と、前記圧電層の裏面側に配置される反射層と、を有し、前記反射層は、高インピーダンス層と、酸化ケイ素を含む低インピーダンス層と、を含み、前記高インピーダンス層における第一構造の領域は70%を超える。

Description

複合基板および弾性表面波素子
 本発明は、複合基板および弾性表面波素子に関する。
 携帯電話等の通信機器には、任意の周波数の電気信号を取り出すため、例えば、弾性表面波を利用したフィルタ(SAWフィルタ)が用いられている。このSAWフィルタは、圧電層を有する複合基板上に電極等が形成された構造を有する(例えば、特許文献1を参照)。
 ところで、近年、情報通信機器の分野では、高周波数帯での通信への対応が求められており、上記SAWフィルタにおいては、上記圧電層から、弾性波の漏れが発生する場合がある。一方で、上記複合基板には、加工時の(例えば、200℃以上の熱がかかる工程における)耐熱性も求められている。
特開2020-150488号公報
 本発明の主たる目的は、弾性波のエネルギーを圧電層に閉じ込めながら、耐熱性に優れた複合基板を提供することにある。
 本発明の実施形態による複合基板は、圧電層と、前記圧電層の裏面側に配置される反射層と、を有し、前記反射層は、高インピーダンス層と、酸化ケイ素を含む低インピーダンス層と、を含み、前記高インピーダンス層における第一構造の領域は70%を超える。
 1つの実施形態においては、上記第一構造は、柱状構造または粒状構造である。
 1つの実施形態においては、上記高インピーダンス層は、酸化ハフニウム、酸化タンタル、酸化ジルコニウムおよび酸化アルミニウムからなる群から選択される少なくとも1つを含む。
 1つの実施形態においては、上記第一構造は、上記高インピーダンス層の厚み方向において、隣接する層もしくは空気層との界面から他方の界面に向けて偏在している。
 1つの実施形態においては、上記高インピーダンス層は第二構造を有し、上記高インピーダンス層内において、上記第一構造と前記第二構造との境界が存在する。
 1つの実施形態においては、上記高インピーダンス層および上記低インピーダンス層の厚みは、それぞれ0.01μm~1μmである。
 1つの実施形態においては、上記反射層において、上記高インピーダンス層と上記低インピーダンス層とは交互に積層されている。
 1つの実施形態においては、上記複合基板は、上記反射層の裏面側に配置される支持基板を有する。
 1つの実施形態においては、上記複合基板は、上記反射層と上記支持基板との間に配置される接合層を有する。
 本発明の別の実施形態による弾性表面波素子は、上記複合基板を含む。
 本発明の実施形態によれば、圧電層と所定の構造状態を有するインピーダンス層とを組み合わせることにより、弾性波のエネルギーを圧電層に閉じ込めながら、耐熱性に優れた複合基板を提供することができる。
本発明の1つの実施形態に係る複合基板の概略の構成を示す模式的な断面図である。 高インピーダンス層の一例を説明するための断面SEM観察写真である。 1つの実施形態に係る複合基板の製造工程例を示す図である。 図3Aに続く図である。 図3Bに続く図である。 図3Cに続く図である。 実施例1-1の複合基板(反射層)の断面SEM観察写真である。 比較例1-1の複合基板(反射層)の断面SEM観察写真である。 加熱後の比較例1-1の複合基板(反射層)の断面SEM観察写真である。 実施例2-3の断面SEM観察写真である。
 以下、本発明の実施形態について説明するが、本発明はこれらの実施形態には限定されない。
A.複合基板
 図1は、本発明の1つの実施形態に係る複合基板の概略の構成を示す模式的な断面図である。複合基板100は、圧電層10、反射層20および支持基板30をこの順に有する。反射層20は、相対的に音響インピーダンスが高い高インピーダンス層と相対的に音響インピーダンスが低い低インピーダンス層とを含む。反射層20は、複数のインピーダンス層の積層体であり、例えば、高インピーダンス層と低インピーダンス層とは交互に積層されている。図示例では、反射層20は、圧電層10側から、低インピーダンス層21、高インピーダンス層22、低インピーダンス層23、高インピーダンス層24、低インピーダンス層25、高インピーダンス層26、低インピーダンス層27および高インピーダンス層28を、この順に有する。図示例では、反射層20の各層のうち、低インピーダンス層21が、最も圧電層10側に配置されている。このような積層構造の反射層20を配置させることにより、弾性波のエネルギーを圧電層10側に効果的に閉じ込めることができる。
 図示例では、反射層20は4層の高インピーダンス層と4層の低インピーダンス層との計8層の積層体であるが、反射層に含まれるインピーダンス層の数はこれに限定されない。具体的には、反射層は、音響インピーダンスが異なる高インピーダンス層および低インピーダンス層をそれぞれ少なくとも1層ずつ含んでいればよい。好ましくは、反射層は、4層以上の多層構造を有する。
 図示しないが、複合基板100は、任意の層をさらに有していてもよい。このような層の種類・機能、数、組み合わせ、配置等は、目的に応じて適切に設定され得る。例えば、複合基板100は、反射層20と支持基板30との間に配置される接合層を有していてもよい。
 複合基板100は、任意の適切な形状で製造され得る。1つの実施形態においては、いわゆる、ウェハの形態で製造され得る。複合基板100のサイズは、目的に応じて適切に設定され得る。例えば、ウェハの直径は、50mm~150mmである。
A-1.圧電層
 上記圧電層を構成する材料としては、任意の適切な圧電性材料が用いられ得る。圧電性材料としては、好ましくは、LiAOの組成を有する単結晶が用いられる。ここで、Aは、ニオブおよびタンタルからなる群から選択される一種以上の元素である。具体的には、LiAOは、ニオブ酸リチウム(LiNbO)であってもよく、タンタル酸リチウム(LiTaO)であってもよく、ニオブ酸リチウム-タンタル酸リチウム固溶体であってもよい。
 圧電性材料がタンタル酸リチウムである場合、圧電層として、伝搬損失を小さくする観点から、弾性表面波の伝搬方向であるX軸を中心に、Y軸からZ軸に123~133°(例えば128°)回転した方向のものを用いることが好ましい。圧電性材料がニオブ酸リチウムである場合、圧電層として、伝搬損失を小さくする観点から、弾性表面波の伝搬方向であるX軸を中心に、Y軸からZ軸に86~94°(例えば90°)回転した方向のものを用いることが好ましい。
 圧電層の厚みは、例えば0.2μm以上30μm以下である。
A-2.反射層
 上述のとおり、反射層は、音響インピーダンスが異なる高インピーダンス層と低インピーダンス層とを含む。高インピーダンス層の音響インピーダンスは、低インピーダンス層の音響インピーダンスよりも相対的に高い。具体的には、高インピーダンス層を構成する材料の音響インピーダンスは、低インピーダンス層を構成する材料の音響インピーダンスよりも高い。
 反射層に含まれる複数の高インピーダンス層は、それぞれが同一の構成(例えば、材料、構造状態、厚み)であってもよく、互いが異なる構成であってもよい。同様に、反射層に含まれる複数の低インピーダンス層は、それぞれが同一の構成(例えば、材料、構造状態、厚み)であってもよく、互いが異なる構成であってもよい。
 高インピーダンス層を構成する材料としては、例えば、酸化ハフニウム、酸化タンタル、酸化ジルコニウム、酸化アルミニウムが挙げられる。これらの中でも、酸化ハフニウムが好ましく用いられる。酸化ハフニウムを用いることにより、弾性波のエネルギーを圧電層側により効果的に閉じ込めることができる。1つの実施形態においては、高インピーダンス層に含まれる酸化ハフニウムの含有割合は、例えば97重量%以上である。
 高インピーダンス層の厚みは、好ましくは1μm以下であり、より好ましくは500nm以下であり、さらに好ましくは300nm以下である。このような厚みによれば、耐熱性により優れた複合基板を得ることができる。一方、高インピーダンス層の厚みは、例えば0.01μm以上であり、好ましくは20nm以上であり、より好ましくは100nm以上である。
 高インピーダンス層は、第一構造の領域を有する。第一構造は、例えば、柱状構造または粒状構造である。ここで、柱状構造は、複合基板の基板面(面内方向)に対して、角度を有する方向に延びる構造体(柱状体)からなり、その柱径は、例えば5nm以上である。一方、粒状構造は、略球状の構造体からなる。このような構造は、例えば、走査型電子顕微鏡(SEM)観察により確認することができる。なお、上記柱径は、観察される柱状体の膜厚方向の全ての位置において満たしていなくてもよい。
 上記第一構造は、高インピーダンス層の厚み方向において、点在していてもよいし、偏在していてもよい。1つの実施形態においては、第一構造は、高インピーダンス層の厚み方向において、隣接する層もしくは空気層との界面から他方の界面に向けて偏在する。図2に示す例では、高インピーダンス層は、一方の界面51側に位置する第一構造が含まれる領域71と、他方の界面52側に位置する第二構造が含まれる領域72とを有する。領域71と領域72とは連続して形成されており、領域71と領域72との境界(界面)を破線で示している。第二構造は、第一構造とは形状が異なる構造を有しており、例えば、粒状構造または柱状構造である。高インピーダンス層は、他の構造を含んでいてもよい。図2に示す例では、領域71では柱状構造が主に確認され、領域72では粒状構造が主に確認される。具体的には、領域71は、複数の柱状構造体から構成される柱状組織といえ、領域72は、複数の粒状構造体から構成される粒状組織といえる。このような形態においては、後述の剥離・割れの問題が生じやすい傾向にある。
 高インピーダンス層における第一構造の領域は、70%を超え、好ましくは75%以上であり、より好ましくは80%以上であり、さらに好ましくは90%以上である。このような範囲によれば、耐熱性に優れた複合基板を得ることができる。具体的には、第一構造と第二構造とでは加熱等により発生する応力が異なり(例えば、柱状構造では引張応力が発生し得、粒状構造では圧縮応力が発生し得)、第一構造と第二構造との界面では互いの応力が集中し得る。このような界面では熱履歴により剥離・割れが生じやすいが、第一構造の領域を上記範囲とすることにより、互いの応力の影響を小さくして、熱履歴による剥離・割れの発生を抑制することができる。このように、層内における剥離・割れの発生と構造状態に着目したことが本発明の特徴の一つである。なお、反射層に含まれる全ての高インピーダンス層において第一構造の領域が70%を超えることが好ましい。上記層内の剥離・割れは、複合基板(反射層)における位置に関係なく発生し得るからである。
 高インピーダンス層における第二構造の領域は、好ましくは30%未満であり、より好ましくは25%以下であり、さらに好ましくは20%以下、特に好ましくは10%以下である。
 上記高インピーダンス層における第一構造の領域の割合は、例えば、SEM観察により確認することができる。1つの実施形態においては、上記一方の界面51から上記第二構造が含まれる領域72までの距離(厚み)の最大値と最小値を測定してその平均値を第一構造の領域の厚みとし、その厚みと高インピーダンス層の厚みとの比を算出することにより求めることができる。
 上記低インピーダンス層を構成する材料としては、代表的には、酸化ケイ素が挙げられる。低インピーダンス層は、代表的には、粒状構造の領域を有する。
 低インピーダンス層の厚みは、例えば0.01μm~1μmであり、好ましくは20nm~500nmであり、より好ましくは100nm~300nmである。
 上記インピーダンス層は、任意の適切な方法により成膜され得る。例えば、スパッタリング、イオンビームアシスト蒸着(IAD)等の物理蒸着、化学蒸着、原子層堆積(ALD)法により成膜され得る。
 例えば、インピーダンス層は、上記酸化物を含むターゲットをスパッタすることにより成膜される。上記構造状態は、例えば、インピーダンス層を成膜する空間における圧力を調整することによって制御され得る。1つの実施形態においては、成膜する空間における圧力は、0.15Pa以上0.30Pa未満に設定される。別の実施形態においては、成膜する空間における圧力は、0.50Paを超え0.80Pa以下に設定される。成膜温度は、例えば、常温から200℃までの間である。
A-3.支持基板
 支持基板30としては、任意の適切な基板が用いられ得る。支持基板は、単結晶体で構成されてもよく、多結晶体で構成されてもよい。支持基板を構成する材料としては、好ましくは、シリコン、サイアロン、サファイア、コージェライト、ムライト、ガラス、石英、水晶およびアルミナからなる群から選択される。
 上記シリコンは、単結晶シリコンであってもよく、多結晶シリコンであってもよく、高抵抗シリコンであってもよい。
 代表的には、上記サイアロンは、窒化ケイ素とアルミナとの混合物を焼結して得られるセラミックスであり、例えば、Si6-wAl8-wで示される組成を有する。具体的には、サイアロンは、窒化ケイ素中にアルミナが混合された組成を有しており、式中のwはアルミナの混合比率を示している。wは、好ましくは0.5以上4.0以下である。
 代表的には、上記サファイアはAlの組成を有する単結晶体であり、上記アルミナはAlの組成を有する多結晶体である。アルミナは、好ましくは透光性アルミナである。
 代表的には、上記コージェライトは、2MgO・2Al・5SiOの組成を有するセラミックスであり、上記ムライトは、3Al・2SiO~2Al・SiOの範囲の組成を有するセラミックスである。
 支持基板を構成する材料の熱膨張係数は、上記圧電層を構成する材料の熱膨張係数よりも小さいことが好ましい。このような支持基板によれば、温度が変化したときの圧電層の形状・サイズの変化を抑制し、例えば、得られる弾性表面波素子の周波数特性の変化を抑制し得る。
 支持基板の厚みとしては、任意の適切な厚みが採用され得る。支持基板の厚みは、例えば100μm~1000μmである。
A-4.接合層
 上述のとおり、複合基板は、接合層を有し得る。接合層を構成する材料としては、例えば、ケイ素酸化物、シリコン、酸化タンタル、酸化ニオブ、酸化アルミニウム、酸化チタン、酸化ハフニウムが挙げられる。例えば、接合層は、インピーダンス層とは異なる組成を有する。接合層の厚みは、例えば0.005μm~1μmである。
 接合層は、任意の適切な方法により成膜され得る。具体的には、上記インピーダンス層の成膜方法と同様の方法により成膜され得る。
A-5.製造方法
 上記複合基板は、例えば、上記圧電層もしくは圧電層前駆体に上記反射層を構成するインピーダンス層を順次成膜し、反射層が形成された圧電層もしくは圧電層前駆体と上記支持基板とを直接接合することにより得ることができる。
 図3A~図3Dは、1つの実施形態に係る複合基板の製造工程例を示す図である。図3Aは、圧電層前駆体12上に反射層20(インピーダンス層21~28)の成膜が完了した状態を示している。圧電層前駆体12は第一主面12aと第2主面12bとを有し、第一主面12a側にインピーダンス層21~28が順次成膜され、反射層20が形成されている。
 図3Bは、反射層20上に接合層40が成膜された状態を示し、図3Cは、反射層20および接合層40が成膜された圧電層前駆体12と支持基板30とを直接接合する工程を示している。直接接合に際し、接合面は任意の適切な活性化処理により活性化されていることが好ましい。例えば、接合層40の表面40aを活性化し、支持基板30の表面30aを活性化した後、接合層40の活性化面と支持基板30の活性化面とを接触させ、加圧することで直接接合する。こうして、図3Dに示す複合基板110を得る。なお、図示しないが、代表的には、得られた複合基板110の圧電層前駆体12の第二主面12bは、上記所望の厚みの圧電層となるように、研削、研磨等の加工が施される。
 好ましくは、各層(具体的には、圧電層もしくは圧電層前駆体、反射層、支持基板、接合層)の表面は、平坦面とされている。具体的には、各層の表面の表面粗さRaは、好ましくは1nm以下であり、より好ましくは0.3nm以下である。各層の表面を平坦化する方法としては、例えば、鏡面研磨、ラップ(lap)研磨、化学機械研磨加工(CMP)が挙げられる。
 上記成膜、接合に際し、例えば、研磨剤の残渣、加工変質層等の除去のため、各層の表面を洗浄することが好ましい。洗浄方法としては、例えば、ウエット洗浄、ドライ洗浄、スクラブ洗浄が挙げられる。これらの中でも、簡便かつ効率的に洗浄し得ることから、スクラブ洗浄が好ましい。スクラブ洗浄の具体例としては、洗浄剤(例えば、ライオン社製、サンウオッシュシリーズ)を用いた後に、溶剤(例えば、アセトンとイソプロピルアルコール(IPA)との混合溶液)を用いてスクラブ洗浄機にて洗浄する方法が挙げられる。
 上記活性化処理は、代表的には、中性化ビームを照射することにより行う。好ましくは、特開2014-086400号公報に記載の装置のような装置を使用して中性化ビームを発生させ、このビームを照射することにより活性化処理を行う。具体的には、ビーム源として、サドルフィールド型の高速原子ビーム源を使用し、チャンバーにアルゴン、窒素等の不活性ガスを導入し、直流電源から電極へ高電圧を印加する。これにより、電極(正極)と筺体(負極)との間に生じるサドルフィールド型の電界により、電子が運動して、不活性ガスによる原子とイオンのビームが生成される。グリッドに達したビームのうち、イオンビームはグリッドで中和されるので、中性原子のビームが高速原子ビーム源から出射される。ビーム照射による活性化処理時の電圧は0.5kV~2.0kVとすることが好ましく、ビーム照射による活性化処理時の電流は50mA~200mAとすることが好ましい。
 上記接合面の接触および加圧は、真空雰囲気で行うことが好ましい。このときの温度は、代表的には、常温である。具体的には、20℃以上40℃以下が好ましく、より好ましくは25℃以上30℃以下である。加える圧力は、好ましくは100N~20000Nである。
B.弾性表面波素子
 本発明に係る弾性表面波素子は、上記複合基板を含む。上記複合基板は耐熱性に優れることから、例えば、上記複合基板に、電極等の形成、切断等の加工(熱処理を含む)を施して得られる弾性表面波素子は、剥離・割れ等の発生が抑制されている。このような弾性表面波素子は、SAWフィルタとして携帯電話等の通信機器に好適に用いられる。
 以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。
[実施例1-1]
 オリエンテーションフラット(OF)部を有し、直径4インチで厚み250μmのタンタル酸リチウム(LT)基板(弾性表面波(SAW)の伝搬方向をXとし、切り出し角が回転Yカット板である128°YカットX伝搬のLT基板)を用意した。このLT基板の表面を、算術平均粗さRaが0.3nmとなるように鏡面研磨した。ここで、算術平均粗さRaは、原子間力顕微鏡(AFM)によって10μm×10μmの視野で測定した値である。
 次いで、LT基板の研磨面に、酸化ケイ素層(厚み:150nm)および酸化ハフニウム層(厚み:150nm)をこの順に成膜した。具体的には、枚葉式スパッタ装置(RFマグネトロンスパッタ法)にて、φ10インチのSiOターゲットおよびHfOターゲットを用い、電源2kW、T-S距離65mm、圧力0.65Paの条件にて成膜を行った。その後、この成膜を3回繰り返し、図1に示すような反射層を形成した。
 次いで、反射層上に、ケイ素酸化物層(厚み:80~190nm、算術平均粗さRa:0.2~0.6nm)を成膜した。具体的には、直流スパッタリング法にて、ボロンドープのSiターゲットを用いて成膜した。また、酸素源として酸素ガスを導入した。この際、酸素ガス導入量を調節することによって、チャンバー内の雰囲気の全圧と酸素分圧を調節した。その後、ケイ素酸化物層の表面に化学機械研磨加工(CMP)を施し、接合層(厚み:50nm、算術平均粗さRa:0.08~0.4nm)を形成した。
 OF部を有し、直径4インチで厚み500μmのシリコンからなる支持基板を用意した。この支持基板の表面は、化学機械研磨加工(CMP)が施されており、算術平均粗さRaは0.2nmである。
 次いで、LT基板と支持基板とを直接接合した。具体的には、LT基板の表面(接合層側)および支持基板の表面を洗浄した後、両基板を真空チャンバーに投入して10-6Pa台まで真空引きした後、両基板の表面に高速原子ビーム(加速電圧1kV、Ar流量27sccm)を120秒間照射した。照射後、両基板のビーム照射面を重ね合わせ、10000Nで2分間加圧して両基板を接合した。その後、得られた接合体を100℃で20時間加熱した。
 次いで、上記接合体のLT基板の裏面を、当初の250μmから1μmになるように研削および研磨して、複合基板を得た。
 得られた複合基板(反射層)の断面のSEM観察(20万倍)を行った。観察写真を図4に示す。なお、断面SEM観察に際し、得られた複合基板から、破断法にて観察用試料を作製した。
 図4に示すとおり、酸化ハフニウム層では成膜初期(LT基板側)に粒状成長がわずかに確認されるが、成膜初期以降、柱状成長が確認される。具体的には、1つの酸化ハフニウム層内で、構造が変化していることが確認される。
[比較例1-1]
 スパッタリングにおける成膜条件において、圧力を0.40Paに変更したこと以外は実施例1-1と同様にして、複合基板を得た。実施例1-1と同様、得られた複合基板(反射層)の断面のSEM観察を行った。観察写真を図5に示す。
 図5に示すとおり、酸化ハフニウム層では成膜初期から中期にかけて(LT基板側に)粒状成長が、成膜中期以降に柱状成長が確認される。具体的には、1つの酸化ハフニウム層内で、構造が変化していることが明確に確認される。
<評価1>
 実施例1-1および比較例1-1の複合基板について耐熱性の評価を行った。具体的には、得られた複合基板を200℃にて15分加熱し、冷却後、複合基板の断面のSEM観察を行った。
 比較例1-1では図6に示すように酸化ハフニウム層において剥離が確認された。図6から、粒状構造の領域と柱状構造の領域の界面において剥離が発生していることが確認された。これに対し、実施例1-1では剥離は確認されなかった。
[実施例2-1]
 反射層の形成において酸化ハフニウム層を一層のみ成膜したこと、および、接合層を形成しなかったこと、以外は実施例1-1と同様にして、確認用サンプルを得た。
[実施例2-2,2-3,2-4および2-5]
 スパッタリングにおける成膜条件(圧力)を変更したこと以外は実施例2-1と同様にして、確認用サンプルを得た。
[比較例2-1]
 反射層の形成において酸化ハフニウム層を一層のみ成膜したこと、および、接合層を形成しなかったこと、以外は比較例1-1と同様にして、確認用サンプルを得た。
[比較例2-2および2-3]
 スパッタリングにおける成膜条件(圧力)を変更したこと以外は比較例2-1と同様にして、確認用サンプルを得た。
<評価2>
 得られた確認用サンプルの断面をSEM観察(20万倍)し、第一構造(粒状構造または柱状構造)と第二構造(粒状構造または柱状構造)との境界を確認し、第一構造の領域を求めた。例えば、図7に実施例2-3の断面SEM観察写真を示すが、LT基板表面を基準に粒状成長の最上部と粒状成長の最下部を確認し、両者の中間の位置を求め粒状構造の領域の厚みとした。酸化ハフニウム層の厚みHに対する粒状構造の領域の厚みdの比(粒状構造の領域の厚みd/酸化ハフニウム層の厚みH)を算出することにより、粒状構造の占める割合(%)を求めた。
 なお、図7に示すように、実施例2-1から2-5、比較例2-1から2-3全てにおいて、粒状構造と柱状構造との境界が確認され、上記算出式から、柱状構造の占める割合(%)は、100から上記粒状構造の占める割合を引いた値となる。
 評価1と同様に、得られた確認用サンプルについて耐熱性を評価した。第一構造の占める割合とともに耐熱性の評価結果(剥離の発生の有無)を表1にまとめる。
Figure JPOXMLDOC01-appb-T000001
 加熱により、各比較例では酸化ハフニウム層において剥離が確認された。比較例1-1(図5)と同様、粒状構造の領域と柱状構造の領域との境界において剥離が発生していることが確認された。これに対し、各実施例では剥離は確認されなかった。
 本発明の1つの実施形態に係る複合基板は、弾性表面波素子に好適に用いられ得る。
 10   圧電層
 20   反射層
 21   低インピーダンス層
 22   高インピーダンス層
 23   低インピーダンス層
 24   高インピーダンス層
 25   低インピーダンス層
 26   高インピーダンス層
 27   低インピーダンス層
 28   高インピーダンス層
 30   支持基板
 40   接合層
 71   第一構造が含まれる領域
 72   第二構造が含まれる領域
100   複合基板
110   複合基板

Claims (10)

  1.  圧電層と、
     前記圧電層の裏面側に配置される反射層と、を有し、
     前記反射層は、高インピーダンス層と、酸化ケイ素を含む低インピーダンス層と、を含み、
     前記高インピーダンス層における第一構造の領域は70%を超える、
     複合基板。
  2.  前記第一構造が、柱状構造または粒状構造である、請求項1に記載の複合基板。
  3.  前記高インピーダンス層が、酸化ハフニウム、酸化タンタル、酸化ジルコニウムおよび酸化アルミニウムからなる群から選択される少なくとも1つを含む、請求項1または2に記載の複合基板。
  4.  前記第一構造が、前記高インピーダンス層の厚み方向において、隣接する層もしくは空気層との界面から他方の界面に向けて偏在している、請求項1から3のいずれかに記載の複合基板。
  5.  前記高インピーダンス層が第二構造を有し、前記高インピーダンス層内において、前記第一構造と前記第二構造との境界が存在する、請求項4に記載の複合基板。
  6.  前記高インピーダンス層および前記低インピーダンス層の厚みが、それぞれ0.01μm~1μmである、請求項1から5のいずれかに記載の複合基板。
  7.  前記反射層において、前記高インピーダンス層と前記低インピーダンス層とが交互に積層されている、請求項1から6のいずれかに記載の複合基板。
  8.  前記反射層の裏面側に配置される支持基板を有する、請求項1から7のいずれかに記載の複合基板。
  9.  前記反射層と前記支持基板との間に配置される接合層を有する、請求項8に記載の複合基板。
  10.  請求項1から9のいずれかに記載の複合基板を含む、弾性表面波素子。
PCT/JP2021/030894 2020-12-23 2021-08-24 複合基板および弾性表面波素子 WO2022137646A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180019530.9A CN116491070A (zh) 2020-12-23 2021-08-24 复合基板及弹性表面波元件
DE112021001587.7T DE112021001587T5 (de) 2020-12-23 2021-08-24 Verbundsubstrat und akustisches oberflächenwellenelement
KR1020227034396A KR20220149737A (ko) 2020-12-23 2021-08-24 복합 기판 및 탄성 표면파 소자
US17/930,743 US20230006634A1 (en) 2020-12-23 2022-09-09 Composite substrate and surface acoustic wave element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-213689 2020-12-23
JP2020213689A JP6935573B1 (ja) 2020-12-23 2020-12-23 複合基板および弾性表面波素子

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/930,743 Continuation US20230006634A1 (en) 2020-12-23 2022-09-09 Composite substrate and surface acoustic wave element

Publications (1)

Publication Number Publication Date
WO2022137646A1 true WO2022137646A1 (ja) 2022-06-30

Family

ID=77657898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/030894 WO2022137646A1 (ja) 2020-12-23 2021-08-24 複合基板および弾性表面波素子

Country Status (7)

Country Link
US (1) US20230006634A1 (ja)
JP (1) JP6935573B1 (ja)
KR (1) KR20220149737A (ja)
CN (1) CN116491070A (ja)
DE (1) DE112021001587T5 (ja)
TW (1) TW202226907A (ja)
WO (1) WO2022137646A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019054238A1 (ja) * 2017-09-15 2019-03-21 日本碍子株式会社 弾性波素子およびその製造方法
JP2019102883A (ja) * 2017-11-29 2019-06-24 株式会社村田製作所 弾性波装置、高周波フロントエンド回路及び通信装置
WO2020130128A1 (ja) * 2018-12-21 2020-06-25 京セラ株式会社 弾性波装置、分波器および通信装置
JP2020098345A (ja) * 2020-01-20 2020-06-25 日本碍子株式会社 電気光学素子のための複合基板とその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103283147B (zh) * 2010-12-24 2016-09-21 株式会社村田制作所 弹性波装置及其制造方法
JP2014086400A (ja) 2012-10-26 2014-05-12 Mitsubishi Heavy Ind Ltd 高速原子ビーム源およびそれを用いた常温接合装置
JP7279432B2 (ja) 2019-03-15 2023-05-23 日本電気硝子株式会社 複合基板、電子デバイス、複合基板の製造方法及び電子デバイスの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019054238A1 (ja) * 2017-09-15 2019-03-21 日本碍子株式会社 弾性波素子およびその製造方法
JP2019102883A (ja) * 2017-11-29 2019-06-24 株式会社村田製作所 弾性波装置、高周波フロントエンド回路及び通信装置
WO2020130128A1 (ja) * 2018-12-21 2020-06-25 京セラ株式会社 弾性波装置、分波器および通信装置
JP2020098345A (ja) * 2020-01-20 2020-06-25 日本碍子株式会社 電気光学素子のための複合基板とその製造方法

Also Published As

Publication number Publication date
CN116491070A (zh) 2023-07-25
KR20220149737A (ko) 2022-11-08
JP6935573B1 (ja) 2021-09-15
DE112021001587T5 (de) 2022-12-29
TW202226907A (zh) 2022-07-01
JP2022099722A (ja) 2022-07-05
US20230006634A1 (en) 2023-01-05

Similar Documents

Publication Publication Date Title
KR101972728B1 (ko) 접합체 및 탄성파 소자
KR102222096B1 (ko) 탄성파 소자 및 그 제조 방법
US11984870B2 (en) Bonded body and acoustic wave element
TWI772589B (zh) 壓電性材料基板與支持基板的接合體
US11888462B2 (en) Bonded body and acoustic wave element
CN112243568B (zh) 接合体及弹性波元件
TWI762782B (zh) 接合體及彈性波元件
WO2022137646A1 (ja) 複合基板および弾性表面波素子
JP7455205B2 (ja) 複合基板および複合基板の製造方法
TWI821862B (zh) 複合基板、彈性表面波元件及複合基板的製造方法
WO2023189103A1 (ja) 複合基板、弾性表面波素子および複合基板の製造方法
TWI743700B (zh) 4g頻帶用彈性表面波元件
WO2021002046A1 (ja) 接合体および弾性波素子
WO2022259591A1 (ja) 複合基板および複合基板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21909804

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180019530.9

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20227034396

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 21909804

Country of ref document: EP

Kind code of ref document: A1