WO2022137400A1 - 超硬合金およびそれを基材として含む切削工具 - Google Patents
超硬合金およびそれを基材として含む切削工具 Download PDFInfo
- Publication number
- WO2022137400A1 WO2022137400A1 PCT/JP2020/048248 JP2020048248W WO2022137400A1 WO 2022137400 A1 WO2022137400 A1 WO 2022137400A1 JP 2020048248 W JP2020048248 W JP 2020048248W WO 2022137400 A1 WO2022137400 A1 WO 2022137400A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cemented carbide
- phase
- particles
- elements
- hard phase
- Prior art date
Links
- 238000005520 cutting process Methods 0.000 title claims description 74
- 239000000463 material Substances 0.000 title claims description 46
- 239000002245 particle Substances 0.000 claims abstract description 155
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 68
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 56
- 239000010949 copper Substances 0.000 claims abstract description 52
- 229910052742 iron Inorganic materials 0.000 claims abstract description 38
- 229910052802 copper Inorganic materials 0.000 claims abstract description 37
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 36
- 150000001875 compounds Chemical class 0.000 claims abstract description 18
- 239000000470 constituent Substances 0.000 claims abstract description 17
- 229910052751 metal Inorganic materials 0.000 claims abstract description 17
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 claims abstract description 15
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 14
- 230000000737 periodic effect Effects 0.000 claims abstract description 12
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 7
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 7
- 239000001301 oxygen Substances 0.000 claims abstract description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910017052 cobalt Inorganic materials 0.000 claims abstract description 6
- 239000010941 cobalt Substances 0.000 claims abstract description 6
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims abstract description 6
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000010937 tungsten Substances 0.000 claims abstract description 6
- 229910045601 alloy Inorganic materials 0.000 claims description 46
- 239000000956 alloy Substances 0.000 claims description 46
- 239000011248 coating agent Substances 0.000 claims description 14
- 238000000576 coating method Methods 0.000 claims description 14
- 229910021480 group 4 element Inorganic materials 0.000 claims description 6
- 229910021478 group 5 element Inorganic materials 0.000 claims description 6
- 229910021476 group 6 element Inorganic materials 0.000 claims description 6
- 239000000758 substrate Substances 0.000 claims description 2
- 239000011230 binding agent Substances 0.000 abstract description 4
- 239000012071 phase Substances 0.000 description 182
- 238000000034 method Methods 0.000 description 45
- 239000000523 sample Substances 0.000 description 39
- 239000000843 powder Substances 0.000 description 30
- 239000002994 raw material Substances 0.000 description 29
- 238000002156 mixing Methods 0.000 description 23
- 238000005245 sintering Methods 0.000 description 22
- 239000000203 mixture Substances 0.000 description 21
- 230000008569 process Effects 0.000 description 18
- 239000011651 chromium Substances 0.000 description 17
- 238000009792 diffusion process Methods 0.000 description 16
- 238000010191 image analysis Methods 0.000 description 16
- 238000000465 moulding Methods 0.000 description 10
- 239000012535 impurity Substances 0.000 description 9
- 239000002184 metal Substances 0.000 description 9
- 239000011812 mixed powder Substances 0.000 description 9
- 229910052804 chromium Inorganic materials 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 8
- 238000009616 inductively coupled plasma Methods 0.000 description 8
- 239000010410 layer Substances 0.000 description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 7
- 238000000227 grinding Methods 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- 150000001247 metal acetylides Chemical class 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- 238000013329 compounding Methods 0.000 description 6
- 238000013507 mapping Methods 0.000 description 6
- 238000001000 micrograph Methods 0.000 description 6
- 230000000007 visual effect Effects 0.000 description 6
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 230000009257 reactivity Effects 0.000 description 5
- 239000006104 solid solution Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 239000010936 titanium Substances 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- 238000005299 abrasion Methods 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 239000011324 bead Substances 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- 229910052748 manganese Inorganic materials 0.000 description 4
- 238000005240 physical vapour deposition Methods 0.000 description 4
- 238000001878 scanning electron micrograph Methods 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- 239000013256 coordination polymer Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000004993 emission spectroscopy Methods 0.000 description 3
- 230000001771 impaired effect Effects 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 238000010884 ion-beam technique Methods 0.000 description 3
- 239000007791 liquid phase Substances 0.000 description 3
- 238000000691 measurement method Methods 0.000 description 3
- 229910052720 vanadium Inorganic materials 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- 238000001159 Fisher's combined probability test Methods 0.000 description 2
- 229910010037 TiAlN Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000002612 dispersion medium Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000005469 granulation Methods 0.000 description 2
- 230000003179 granulation Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910000816 inconels 718 Inorganic materials 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 238000010297 mechanical methods and process Methods 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000010955 niobium Substances 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- -1 TaC Chemical class 0.000 description 1
- 229910034327 TiC Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 239000010730 cutting oil Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- SWXVUIWOUIDPGS-UHFFFAOYSA-N diacetone alcohol Natural products CC(=O)CC(C)(C)O SWXVUIWOUIDPGS-UHFFFAOYSA-N 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000007580 dry-mixing Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 229910000856 hastalloy Inorganic materials 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 229910001026 inconel Inorganic materials 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000001226 reprecipitation Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C29/00—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
- C22C29/02—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
- C22C29/06—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
- C22C29/08—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on tungsten carbide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B27/00—Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
- B23B27/14—Cutting tools of which the bits or tips or cutting inserts are of special material
- B23B27/148—Composition of the cutting inserts
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C29/00—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
- C22C29/02—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
- C22C29/06—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
- C22C29/067—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds comprising a particular metallic binder
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C30/00—Alloys containing less than 50% by weight of each constituent
- C22C30/02—Alloys containing less than 50% by weight of each constituent containing copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F5/00—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
- B22F2005/001—Cutting tools, earth boring or grinding tool other than table ware
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2999/00—Aspects linked to processes or compositions used in powder metallurgy
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/05—Mixtures of metal powder with non-metallic powder
- C22C1/051—Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
Definitions
- This disclosure relates to cemented carbide and cutting tools containing it as a base material.
- cemented carbide having a hard phase containing tungsten carbide (WC) as a main component and a bonded phase containing an iron group element (for example, Fe, Co, Ni) as a main component has been used as a material for cutting tools.
- the characteristics required for a cutting tool include strength (for example, bending force), toughness (for example, breaking toughness), hardness (for example, Vickers hardness), plastic deformation resistance, and wear resistance.
- HSA high entropy alloys
- Patent Document 1 describes C, Si, Al, Cr, Co, Cu, Fe, Ni, V, Mn, Ti and the like in Japanese Patent Application Laid-Open No. 2019-516007 (Patent Document 1).
- Document 2 discloses HEA in which Co, Cr, Cu, W, Fe, Ni, Mo, Mn and the like are combined as constituent elements of cemented carbide.
- the cemented carbide according to the present disclosure is A cemented carbide containing a first hard phase and a bonded phase.
- the first hard phase is composed of tungsten carbide particles.
- the bonded phase is composed of cobalt, nickel, iron and copper as constituent elements.
- the average content ratio of each of the constituent elements in the bonded phase is 10 atomic% or more and 30 atomic% or less. It does not contain the second hard phase, or the content of the second hard phase is 2% by mass or less with respect to the total amount of the cemented carbide.
- the second hard phase is one or more metal elements selected from the group consisting of group 4 elements, group 5 elements and group 6 elements excluding tungsten in the periodic table, and one selected from the group consisting of carbon, nitrogen and oxygen. It is composed of the above elements and a compound containing the above elements.
- the cutting tool according to the present disclosure includes the cemented carbide according to the above disclosure as a base material.
- FIG. 1 is a schematic cross-sectional view for explaining the reactivity evaluation of the cemented carbide according to the present embodiment.
- This disclosure has been made in view of the above circumstances, and includes cemented carbide having excellent wear resistance when processing difficult-to-cut materials, especially alloys containing Ni-based alloys, and cutting tools containing the same as a base material.
- the purpose is to provide.
- the cemented carbide according to one aspect of the present disclosure is A cemented carbide containing a first hard phase and a bonded phase.
- the first hard phase is composed of tungsten carbide particles.
- the bonded phase is composed of cobalt, nickel, iron and copper as constituent elements.
- the average content ratio of each of the constituent elements in the bonded phase is 10 atomic% or more and 30 atomic% or less. It does not contain the second hard phase, or the content of the second hard phase is 2% by mass or less with respect to the total amount of the cemented carbide.
- the second hard phase is one or more metal elements selected from the group consisting of group 4 elements, group 5 elements and group 6 elements excluding tungsten in the periodic table, and one selected from the group consisting of carbon, nitrogen and oxygen. It is composed of the above elements and a compound containing the above elements.
- the cemented carbide is less likely to cause mutual diffusion between Ni contained in the Ni-based alloy and WC or Co contained in the cemented carbide. As a result, the cemented carbide becomes a cemented carbide having excellent wear resistance against a work material containing a Ni-based alloy.
- any cross section of the cemented carbide Assuming that a region in which the ratio of the content ratio of at least one of the constituent elements is 85% or less and 115% or more with respect to the average content ratio is an unevenly distributed region, it is assumed. It is preferable that the total area of the unevenly distributed regions in the bonded phase is 6% or less with respect to the total area of the bonded phase.
- the cutting tool according to one aspect of the present disclosure contains the cemented carbide according to any one of the above [1] or [2] as a base material. Since the above-mentioned cutting tool contains a cemented carbide having excellent wear resistance with a Ni-based alloy as a base material, the length of the cutting tool is long even when it is used for cutting a difficult-to-cut material containing a Ni-based alloy. Life can be extended.
- the cutting tool further includes a coating film provided on the base material.
- a coating film provided on the surface of the base material. Therefore, the above-mentioned cutting tool can cope with more severe cutting conditions, further extend the life, and the like.
- the present embodiment an embodiment of the present disclosure (hereinafter referred to as “the present embodiment”) will be described. However, this embodiment is not limited to this.
- the cemented carbide of this embodiment is A cemented carbide containing a first hard phase and a bonded phase.
- the first hard phase is composed of tungsten carbide particles.
- the bonded phase is composed of cobalt, nickel, iron and copper as constituent elements.
- the average content ratio of each of the constituent elements in the bonded phase is 10 atomic% or more and 30 atomic% or less. It does not contain the second hard phase, or the content of the second hard phase is 2% by mass or less with respect to the total amount of the cemented carbide.
- the second hard phase is one or more metal elements selected from the group consisting of group 4 elements, group 5 elements and group 6 elements excluding tungsten in the periodic table, and one selected from the group consisting of carbon, nitrogen and oxygen. It is composed of the above elements and a compound containing the above elements.
- the cemented carbide of the present embodiment is a cemented carbide containing a first hard phase and a bonded phase, and may include a second hard phase. In addition, it may contain an element that does not belong to any of the first hard phase, the bonded phase and the second hard phase.
- the first hard phase is composed of tungsten carbide (hereinafter, may be referred to as “WC”) particles.
- the WC includes not only "pure WC (WC containing no impurity element and WC containing impurity elements below the detection limit)" but also "the inside thereof as long as the effect of the present disclosure is not impaired". Also includes the first hard phase, which intentionally or inevitably contains other impurity elements.
- the concentration of impurities contained in WC is 1% by mass or less with respect to the total amount of the WC and the impurities.
- the average particle size of the WC particles in the cemented carbide is preferably 0.1 ⁇ m or more and 10 ⁇ m or less, and more preferably 0.5 ⁇ m or more and 3 ⁇ m or less.
- the toughness of the cemented carbide tends to be high. Therefore, the cutting tool containing the cemented carbide as a base material can suppress chipping or chipping due to mechanical impact and thermal impact.
- the cutting tool since the cutting tool has improved crack propagation resistance, crack propagation can be suppressed, and chipping or chipping can be suppressed.
- the cutting tool containing the cemented carbide as a base material can suppress deformation during cutting and can suppress wear or chipping.
- the average particle size of the WC particles in the cemented carbide is obtained by mirror-processing an arbitrary surface or an arbitrary cross section of the cemented carbide, photographing the processed surface with a microscope, and analyzing the photographed image. Desired. Specifically, the particle size (Heywood diameter: equivalent area circle diameter) of each WC particle is calculated from the photographed image, and the average value thereof is taken as the average particle size of the WC particles.
- the number of WC particles to be measured is preferably at least 100, and more preferably 200 or more. Further, it is preferable to perform the above image analysis in a plurality of fields in the same cemented carbide and use the average value as the average particle size of the WC particles.
- the number of fields of view for image analysis is preferably 5 or more, more preferably 7 or more, still more preferably 10 or more, and even more preferably 20 or more.
- One field of view may be, for example, a square having a length of 20 ⁇ m and a width of 20 ⁇ m.
- Examples of the mirror surface processing method include a method of polishing with diamond paste, a method of using a focused ion beam device (FIB device), a method of using a cross section polisher device (CP device), and a method of combining these.
- FIB device focused ion beam device
- CP device cross section polisher device
- a method of combining these When the machined surface is photographed with a metallurgical microscope, it is preferable to etch the machined surface with Murakami's reagent.
- each of the WC particles constituting the first hard phase, the bonded phase described later and the second hard phase described later can be identified by the following methods.
- the image analysis type particle size distribution software (“Mac-View” manufactured by Mountech Co., Ltd.) is used as the image analysis software, and the microscope image is binarized. It becomes possible by doing.
- the binarization process refers to a process of converting the density of each pixel into two values of 1 and 0 by a constant reference value (threshold value).
- a discriminant analysis method is used for the binarization process in the present disclosure.
- the area ratio of the first hard phase is preferably 70% or more and 99% or less, and 86% or more and 95%, on any surface or any cross section of the cemented carbide. The following is more preferable.
- the area ratio of the first hard phase is determined, for example, by photographing an arbitrary processed surface of the cemented carbide with a microscope and analyzing the photographed image in the same manner as in the case of obtaining the average particle size of the WC particles described above. Desired. That is, the above microscope image is binarized to recognize WC particles using image analysis type particle size distribution software (“Mac-View” manufactured by Mountech Co., Ltd.) to obtain a binarized image. ..
- the binarization process is performed based on, for example, the brightness of the pixels.
- the lightness threshold value in the binarization process is a value obtained by multiplying a value extracted from an arbitrary point near the center of the first hard phase particle that looks darkest in the image by 0.8.
- the sum of the areas of the WC particles in the microscope image is calculated, and this is divided by the area of the entire visual field (binarized image) to obtain the first hardness in the visual field. It is possible to calculate the area ratio of the phases. Then, in the same cemented carbide, the above image analysis is performed in a plurality of fields of view (for example, three or more fields of view), and the average value is regarded as the area ratio of the first hard phase in the entire surface or cross section of the cemented carbide. Can be done.
- the "predetermined field of view” may be the same as the field of view for determining the average particle size of the WC particles described above.
- the bonded phase includes WC particles constituting the first hard phase, compound particles constituting the second hard phase described later, or WC particles constituting the first hard phase and compound particles constituting the second hard phase. Is the phase that binds.
- the content ratio of the bonded phase is 4% by mass or more and 15% by mass or less based on the cemented carbide.
- the bonded phase is composed of cobalt (Co), nickel (Ni), iron (Fe) and copper (Cu) as constituent elements.
- Cu is used as a constituent element of the bonded phase because the Ni-based alloy contains a large amount of chromium (Cr), and when Cr is contained in the bonded phase, it has abrasion resistance due to mutual diffusion of Cr. Is because it gets worse. Further, since it is difficult to form carbides and nitrides in cemented carbide, Cu is used. Therefore, from the viewpoint of wear resistance with Ni-based alloys, it is optimal in the present disclosure to contain Cu without Cr in the bonded phase.
- Cr chromium
- the average content ratio of each element of Co, Ni, Fe and Cu to the total amount of Co, Ni, Fe and Cu in the above bonded phase is 10 atomic% (hereinafter referred to as “(at%”) 30 at% or less).
- (at%”) 30 at% or less 10 atomic%
- the content ratio of Co and Ni contained in the bonded phase Is preferably 25 at% or more and 30 at% or less
- the content ratio of Fe and Cu contained in the bonded phase is preferably 20 at% or more and 25 at% or less.
- the denseness of the carbide increases and the hardness tends to increase.
- the atomic concentrations of Co, Ni, Fe and Cu contained in the bonded phase are measured using an ICP emission spectroscopic measurement method (Inductively Coupled Plasma emission spectroscopy measurement method) (hereinafter, may be referred to as "ICP measurement method"). can do.
- ICP measurement method Inductively Coupled Plasma emission spectroscopy measurement method
- the present inventors consider that the atomic concentration measured by the ICP measuring method is the atomic concentration obtained by averaging the entire bonded phase.
- a film such as ceramics or diamond-like carbon, it is preferable to remove it by grinding or the like.
- the area ratio of the bonded phase is preferably 1% or more and 30% or less, and more preferably 4% or more and 15% or less. ..
- the area ratio of the bonded phase is preferably 1% or more and 30% or less, and more preferably 4% or more and 15% or less.
- the area ratio of the bonded phase is binarized using image analysis type particle size distribution software (“Mac-View” manufactured by Mountech Co., Ltd.) in the same manner as the measurement of the area ratio of the first hard phase. Obtain a binarized image.
- the lightness threshold in the binarization process is a value obtained by multiplying a value extracted from an arbitrary point that does not overlap with the interface with another phase of the brightest bound phase in the image by 1.2.
- the sum (total area) of the areas of the bonded phases (Co, Ni, Fe and Cu particles) in the microscope image is calculated, and this is calculated as the total area of the visual field (binarized image). By dividing, it is possible to calculate the area ratio of the coupled phase in the field of view.
- the above image analysis can be performed in a plurality of fields (for example, three or more fields), and the average value can be regarded as the area ratio of the bonded phase in the entire surface or cross section of the cemented carbide. ..
- a region in which the ratio of the content ratio of at least one of the constituent elements is 85% or less and 115% or more with respect to the average content ratio is unevenly distributed.
- the total area of the unevenly distributed region in the bonded phase is preferably 6% or less, more preferably 3% or less, based on the total area of the bonded phase. This indicates that the composition bias in the bonded phase in the entire cemented carbide is small. If the above ratio exceeds 6%, the wear resistance with the Ni-based alloy tends to deteriorate.
- the above ratio can be calculated by the following method. That is, an arbitrary cross section obtained by using a focused ion beam device (FIB device), a cross section polisher device (CP device), or the like is imaged with a scanning transmission electron microscope (SEM) at a magnification of 5000, and an arbitrary number of images is taken. (For example, 10 or more) electronic images are obtained.
- FIB device focused ion beam device
- CP device cross section polisher device
- SEM scanning transmission electron microscope
- the electronic image is binarized using, for example, image analysis type particle size distribution software (“Mac-View” manufactured by Mountech Co., Ltd.) to obtain a binarized image.
- the lightness threshold value in the binarization process is a value obtained by multiplying a value extracted from an arbitrary point that does not overlap with the interface with another phase of the brightest bound phase in the image by 1.2.
- the bound phase is detected based on the above binarized image.
- the detected bound phase is subjected to element mapping for a predetermined region (for example, 12 ⁇ m ⁇ 9 ⁇ m) using an electron probe microanalyzer (EPMA) or energy dispersive X-ray spectroscopy (EDS) attached to the SEM. ..
- EPMA electron probe microanalyzer
- EDS energy dispersive X-ray spectroscopy
- the phase containing WC is regarded as the first hard phase
- the phase containing Co, Ni, Fe and Cu is regarded as the bonded phase.
- the first hard phase and the bonded phase have a clear interface and light and dark in the image captured by SEM, and the bright phase can be regarded as the first hard phase and the dark phase can be regarded as the bonded phase.
- the image analysis type particle size distribution software (Co., Ltd.) It is possible to calculate the area of the bonded phase using "Mac-View" manufactured by Mountech Co., Ltd., and to calculate the area ratio to the entire super hard alloy. Then, in the same bonded phase, the above image analysis can be performed in a plurality of fields of view (for example, three or more fields of view), and the average value thereof can be regarded as the area ratio of the bonded phase.
- the cemented carbide according to the present embodiment does not contain the second hard phase, or the content of the second hard phase is 2% by mass or less with respect to the total amount of the cemented carbide, and the second hard phase is described. It is preferable that it does not contain a phase.
- the cemented carbide contains the second hard phase, it is not added to the extent that the effect of the present invention is not impaired, or the second hard phase is added as a raw material, and it is inevitably generated in the manufacturing process. It is considered to be a thing.
- the second hard phase includes "one or more metal elements selected from the group consisting of group 4 elements, group 5 elements and group 6 elements excluding tungsten" in the periodic table, and "carbon (C), nitrogen (N) and oxygen. It is composed of a compound (complex compound) containing "one or more elements selected from the group consisting of (O)".
- Examples of the Group 4 element of the periodic table include titanium (Ti), zirconium (Zr), hafnium (Hf) and the like.
- Examples of the Group 5 element of the periodic table include vanadium (V), niobium (Nb), tantalum (Ta) and the like.
- Examples of the Group 6 element of the periodic table include chromium (Cr) and molybdenum (Mo).
- the compound is mainly a carbide, a nitride, a carbonitride, an oxide or the like of the above-mentioned metal element.
- the second hard phase is a compound phase or a solid solution phase composed of one or more of the above compounds.
- the "compound phase or solid solution phase” indicates that the compounds constituting the phase may form a solid solution or may exist as individual compounds without forming a solid solution.
- the second hard phase include compounds such as TaC, NbC, TiC, TiCN, Cr 3 C 2 , Cr 7 C 3 , Al 2 O 3 and SiO 2 .
- Mass ratio of second hard phase When the cemented carbide contains the second hard phase, the content of the second hard phase is 2% by mass or less with respect to the cemented carbide. When the content of the second hard phase exceeds 2% by mass, the behavior of solid solution reprecipitation in the sintering step changes, and the composition of the cemented carbide tends to be impaired. Further, even if Cr is dissolved in the bonded phase, it is difficult to dissolve in the phase containing Cu, so that the composition of the bonded phase tends to be biased. Further, the wear resistance tends to deteriorate due to mutual diffusion with Cr, which is abundantly contained in the Ni-based alloy.
- the area ratio of the second hard phase is preferably 1.5% or less on any surface or any cross section of the cemented carbide.
- the area ratio of the second hard phase is binarized using image analysis type particle size distribution software (“Mac-View” manufactured by Mountech Co., Ltd.) in the same manner as the measurement of the area ratio of the first hard phase.
- the lightness threshold value in the binarization process is a value obtained by multiplying the value extracted from the particulate phase that was not detected during the binarization process of the first hard phase by 0.8.
- the sum (total area) of the areas of the second hard phase in the microscope image is calculated, and this is divided by the area of the entire visual field (binarized image) to obtain the first value in the visual field. It is possible to calculate the area ratio of the two hard phases.
- the above image analysis is performed in a plurality of fields (for example, 3 fields or more), and the average value is regarded as the area ratio of the second hard phase in the entire surface or cross section of the cemented carbide.
- the predetermined position is, for example, a portion 50% with respect to the thickness of the measurement sample, specifically, a portion 500 ⁇ m from the surface.
- the area ratio of the second hard phase may change on the surface portion of the cemented carbide, it is obvious to those skilled in the art to avoid the surface for measurement.
- the cemented carbide of the present embodiment can be typically produced through a raw material powder preparation step, a mixing step, a molding step, and a sintering step in this order. Hereinafter, each step will be described.
- the preparation step is a step of preparing all the raw material powders of the materials constituting the cemented carbide.
- examples of the raw material powder of the first hard phase include WC particles.
- the raw materials for the bonded phase include (i) particles in which Co, Ni, Fe and Cu are alloyed with a predetermined compounding composition (hereinafter, may be referred to as "CoNiFeCu alloy particles"), and (ii) Co particles.
- Particles in which Ni, Fe and Cu are alloyed with a predetermined compounding composition hereinafter, may be referred to as "NiFeCu alloy particles", or (iii) Co particles, Ni particles, Fe particles and Cu particles are used alone. There are cases where it is used.
- Co, Ni, Fe and Cu which are constituent elements of the bonded phase, are, as raw material powders, (i) CoNiFeCu alloy particles, (ii) Co particles and NiFeCu alloy particles, or (iii) Co particles.
- Ni particles, Fe particles and Cu particles can be used independently, and (i) CoNiFeCu alloy particles are particularly preferable.
- Co, Ni, Fe and Cu are added as single raw material powders, or when Ni, Fe and Cu are added as single raw material powders, diffusion in the liquid phase is insufficient when the sintering temperature is low. Therefore, a concentration difference occurs in the bonded phase, and a dense alloy cannot be obtained. Since Co has good wettability with WC particles in the liquid phase, Co alone may be used as a raw material.
- the WC particles as a raw material are not particularly limited, and WC particles usually used for producing cemented carbide may be used. Commercially available products may be used as the WC particles. Examples of commercially available WC particles include the "uniform-grained tungsten carbide powder" series manufactured by Allied Materials.
- the average particle size of the WC particles as a raw material is preferably 0.1 ⁇ m or more and 10 ⁇ m or less, and more preferably 0.5 ⁇ m or more and 3 ⁇ m or less.
- the toughness tends to be high when a cemented carbide is formed. Therefore, the cutting tool containing the cemented carbide as a base material can suppress chipping and chipping due to mechanical impact and thermal impact. In addition, since the cutting tool has improved crack propagation resistance, crack propagation can be suppressed, and chipping and chipping can be suppressed.
- the cutting tool containing the cemented carbide as a base material can suppress deformation during cutting, and can suppress wear and chipping.
- CoNiFeCu alloy particles Using each of the following particles, particles (CoNiFeCu alloy particles) in which Co, Ni, Fe and Cu are alloyed with a predetermined compounding composition are produced.
- the method for producing CoNiFeCu alloy particles include a mechanical method, a chemical method, an atomizing method, and the like, and it is preferable to use the atomizing method.
- the metal to be alloyed is melted, and the melted metal (molten metal) is scattered and solidified to form a powder.
- An alloy can be obtained by preparing the above powder to a desired particle size and mixing them uniformly.
- the Co particles used as a raw material are not particularly limited, and Co particles usually used for producing cemented carbide may be used.
- Examples of the Co particles include particles composed of a simple substance of Co. Commercially available products may be used as the Co particles.
- Ni particles as a raw material are not particularly limited, and Ni particles usually used for producing cemented carbide may be used.
- Examples of the Ni particles include particles made of Ni alone. Commercially available products may be used as the Ni particles.
- the Fe particles as a raw material are not particularly limited, and Fe particles usually used for producing cemented carbide may be used.
- Fe particles include particles made of Fe alone. Commercially available products may be used as the Fe particles.
- the Cu particles as a raw material are not particularly limited, and Cu particles usually used for producing cemented carbide may be used.
- Examples of the Cu particles include particles made of Cu alone. Commercially available products may be used as the Cu particles.
- the concentration of impurities contained in the Co particles, Ni particles, Fe particles and Cu particles is the total amount of each of the particles and the impurities. It is 2% by mass or less.
- the FSSS particle diameter (average particle diameter measured by the Fisher method) of the CoNiFeCu alloy particles obtained by the above production method is preferably 0.5 ⁇ m or more and 50 ⁇ m or less.
- the Fisher method is a method of measuring the specific surface area of particles using the flow resistance of air to obtain the particle size of the particles.
- the FSSS particle size can be measured using, for example, Fisher Sub-Seve Sizer Model 95 (manufactured by Fisher Scientific).
- NiFeCu alloy particles Using each of the above particles, particles (NiFeCu alloy particles) obtained by alloying Ni, Fe and Cu with a predetermined compounding composition are produced.
- the method for producing NiFeCu alloy particles include the above-mentioned mechanical method, chemical method, atomizing method and the like, and it is preferable to use the atomizing method.
- the FSSS particle size of the NiFeCu alloy particles obtained by the above production method is preferably 0.5 ⁇ m or more and 50 ⁇ m or less.
- the FSSS particle diameter of the Co particles, the Ni particles, the Fe particles, and the Cu particles is preferably 0.5 ⁇ m or more and 50 ⁇ m or less.
- the mixing step is a step of mixing each raw material powder prepared in the preparation step.
- a mixed powder in which each raw material powder is mixed is obtained.
- the mass ratio of the raw material powder (for example, WC particles, CoNiFeCu alloy particles, NiFeCu alloy particles, etc.) at the time of mixing is a ratio corresponding to the area ratio of the first hard phase and the area ratio of the bonded phase described above.
- a known device can be used as the device used in the mixing step. For example, an attritor, a rolling ball mill, a Kalman mixer, a bead mill and the like can be used.
- the mixing time is not particularly limited, and for example, it may be set to 0.1 hours or more and 48 hours or less. From the viewpoint of uniformly mixing the raw material powder, the above-mentioned mixing time is preferably set to 2 hours or more and 15 hours or less.
- the mixing conditions by the attritor may be wet mixing or dry mixing. Further, the mixing may be carried out in a solvent such as water, ethanol, acetone or isopropyl alcohol. The mixing may be carried out with a binder such as polyethylene glycol or paraffin wax.
- the mixed powder may be granulated as needed.
- a known granulation method can be applied to the granulation, and for example, a commercially available granulator such as a spray dryer can be used.
- the molding step is a step of molding the mixed powder obtained in the mixing step into a predetermined shape to obtain a molded product.
- a mixed powder may be placed in a Ta capsule and pressed to obtain a molded product.
- the press pressure at this time may be set to 10 MPa or more and 16 GPa or less.
- the predetermined shape include a cutting tool shape (for example, a shape of a cutting tip with a replaceable cutting edge).
- the sintering step is a step of sintering a molded body obtained in the molding step to obtain a sintered body.
- the sintering temperature is preferably 1400 ° C. or higher and 1600 ° C. or lower.
- the sintering time is preferably 0.5 hours or more and 2 hours or less.
- the atmosphere at the time of sintering is not particularly limited, and examples thereof include an N2 gas atmosphere, an inert gas atmosphere such as Ar, or a hydrogen gas atmosphere.
- the degree of vacuum (pressure) at the time of sintering is preferably 0.1 kPa or more and 10 kPa or less.
- a sintering HIP (sinter hip) treatment that can be pressurized at the time of sintering may be performed.
- the HIP conditions include, for example, a temperature of 1300 ° C. or higher and 1350 ° C. or lower, and a pressure of 5 MPa or higher and 200 MPa or lower in an N2 gas atmosphere or an inert gas atmosphere such as Ar.
- the temperature lowering rate from the maximum temperature to room temperature is preferably 2 ° C./min to 50 ° C./min.
- the temperature lowering rate is 2 ° C./min
- the atmosphere at the time of cooling is not particularly limited, and may be an N2 gas atmosphere or an inert gas atmosphere such as Ar.
- the cooling pressure is not particularly limited and may be pressurized or reduced.
- the pressure at the time of the pressurization is, for example, 400 kPa or more and 500 kPa or less.
- the pressure at the time of the reduced pressure is, for example, 100 kPa or less, preferably 10 kPa or more and 50 kPa or less.
- the cemented carbide of this embodiment has excellent wear resistance as described above, it can be used as a cutting tool and a base material. That is, the cutting tool of the present embodiment contains the above-mentioned cemented carbide as a base material. Further, the cemented carbide of the present embodiment can also be used as an abrasion resistant tool and a grinding tool, and the abrasion resistant tool and the grinding tool include the cemented carbide as a base material.
- the cemented carbide of the present embodiment can be widely applied to conventionally known cutting tools, for example, a cutting tool, a drill, an end mill, a cutting tip with a replaceable cutting edge for milling, a cutting tip with a replaceable cutting edge for turning, a metal saw, and the like. Examples thereof include a gear cutting tool, a reamer, a tap, and the like.
- the cemented carbide of the present embodiment can be widely applied to conventionally known wear-resistant tools and grinding tools. Examples of the wear-resistant tool include a die, a scriber, a scribing wheel, a dresser, and the like, and examples of the grinding tool include a grinding wheel and the like.
- the cemented carbide of this embodiment may constitute the whole of these tools.
- the cemented carbide may form a part of these tools.
- "partially constituting” indicates, for example, in the case of a cutting tool, an embodiment in which the cemented carbide of the present embodiment is brazed to a predetermined position of an arbitrary base material to form a cutting edge portion.
- the cutting tool according to the present embodiment may further include a coating film provided on the base material.
- the wear-resistant tool and the grinding tool according to the present embodiment may further include a coating film provided on the base material.
- the composition of the coating film is one or more elements selected from the group consisting of a metal element of Group 4 of the Periodic Table, a metal element of Group 5 of the Periodic Table, a metal element of Group 6 of the Periodic Table, and aluminum (Al) and silicon (Si). And compounds with one or more elements selected from the group consisting of nitrogen (N), oxygen (O), carbon (C) and boron (B). Examples of the compound include TiCN, Al2O3 , TiAlN, TiN, TiC, AlCrN and the like.
- the coating film may be a simple substance of metal.
- cubic boron nitride (cBN), diamond-like carbon and the like are also suitable as the composition of the coating film.
- a film can be formed by a vapor phase method such as a chemical vapor deposition (CVD) method or a physical vapor deposition (PVD) method.
- CVD chemical vapor deposition
- PVD physical vapor deposition
- the film is formed by the CVD method, it is easy to obtain a film having excellent adhesion to the substrate.
- the CVD method include a thermal CVD method and the like.
- the coating film is formed by the PVD method, compressive residual stress is applied, and it is easy to increase the toughness of a cutting tool or the like.
- the coating film in the cutting tool according to the present embodiment is provided in the vicinity of the cutting edge portion of the base material.
- the coating film may be provided on the entire surface of the base material. Further, the coating film may be a single layer or a multi-layered film.
- the thickness of the coating film may be 1 ⁇ m or more and 20 ⁇ m or less, or 1.5 ⁇ m or more and 15 ⁇ m or less.
- CoNiFeCu alloy powder (hereinafter, may be referred to as “CoNiFeCu alloy powder”), which is a raw material for the bonded phase, was produced by the following method.
- the CoNiFeCu alloy powder corresponds to the above-mentioned "CoNiFeCu alloy particles”.
- the raw material powder was blended with the blending composition shown in Table 1 to prepare a CoNiFeCu alloy by an atomizing method.
- the obtained CoNiFeCu alloy was pulverized by a bead mill under the following conditions.
- the slurry containing the CoNiFeCu alloy obtained by the pulverization treatment was dried in vacuum.
- a CoNiFeCu alloy powder having an FSSS particle size of 1.5 ⁇ m was obtained.
- Beads Particle size 1.0 mm
- Dispersion medium Ethanol or acetone
- Treatment time 8 hours (Preparation of other raw material powder)
- As the raw material powder a powder having the composition shown in Table 1 was prepared.
- sample No. 106 is a HEA powder containing Al, Cr, Cu, Fe, Mn, Ti and V as a bonding phase in a molar ratio of 1: 1: 1: 1: 1: 1 (corresponding to Example 1 of Patent Document 1). ), Sample No. For 107, HEA powder containing Co, Cr, Cu, Fe and Ni in an atomic ratio of 1: 1: 1: 1: 1 (corresponding to Example 2 of Patent Document 2) was used as the bonding phase, respectively. Sample No. Commercially available particles were used for the particles of each element of 106 and 107.
- WC FSSS particle size: 2.0 ⁇ m (Sample No. 9: 0.7 ⁇ m, Sample No. 10: 5.0 ⁇ m)
- Co FSSS particle size: 1.1 ⁇ m
- Ni FSSS particle size: 3.3 ⁇ m
- Fe FSSS particle size: 3.0 ⁇ m
- Cu FSSS particle size: 2.8 ⁇ m
- TaC FSSS particle size: 1.8 ⁇ m
- Each of the prepared raw material powders was added in the blending ratios shown in Table 1 and mixed using an attritor to prepare a mixed powder. The mixing conditions are shown below. After mixing, the obtained slurry was dried in the air to obtain a mixed powder.
- sample No. 1 to 15 cemented carbide and sample No. Cemented carbides of 101 to 107 were prepared. Sample No. 1 to 15 cemented carbides correspond to the examples. Sample No. The cemented carbides 101 to 107 correspond to the comparative examples.
- sample No. 101 and 105 are cemented carbides in which the composition of the bonded phase consists of a simple substance of Co.
- Sample No. Reference numeral 102 is a cemented carbide in which TaC is added to the raw material powder as the second hard phase.
- Sample No. 103 and 104 are cemented carbides in which the composition of the bonded phase consists of Co, Ni, Fe and Cu, but the atomic concentration of each element does not meet the requirements of the present disclosure.
- Sample No. Reference numeral 106 is a cemented carbide containing HEA having a bonded phase composition of Al, Cr, Cu, Fe, Mn, Ti and V, which corresponds to Example 1 of Patent Document 1.
- Sample No. Reference numeral 107 is a cemented carbide containing HEA having a bonded phase composition of Co, Cr, Cu, Fe and Ni, which corresponds to Example 2 of Patent Document 2.
- the mirrored surface of this observation sample was photographed with a scanning transmission electron microscope (SEM) (manufactured by JEOL Ltd.) at a magnification of 2000 times. This imaging was performed for each sample by 10 fields of view on the outside of the mirror-processed surface and the center of the mirror-processed surface.
- SEM scanning transmission electron microscope
- the particle size (Heywood diameter) of each particle was determined using image analysis type particle size distribution software (“Mac-View” manufactured by Mountech Co., Ltd.). The average particle size of the sintered tungsten carbide particles in a total of 10 fields was calculated. As a result, it was found that the average particle size of the tungsten carbide particles after sintering was substantially equal to the average particle size of the WC particles used as the raw material. The results are shown in the column of "Average particle size of the first hard phase" in Table 1. When measuring the particle size, the particles containing W and C were identified as tungsten carbide particles by performing element mapping using an energy dispersive X-ray spectroscopic analysis (EDS) device attached to the SEM.
- EDS energy dispersive X-ray spectroscopic analysis
- ⁇ Area ratio of each element of Co, Ni, Fe and Cu in the bonded phase> First, a cross section obtained by using a cross-section polisher device (CP device) was imaged by SEM at a magnification of 5000 to obtain 10 electronic images. Using the image analysis type particle size distribution software (“Mac-View” manufactured by Mountech Co., Ltd.), the above electronic image is subjected to the above-mentioned “ ⁇ Calculation of area ratio of first hard phase, bonded phase and second hard phase>”. The binarization process was performed under the same conditions as in the above case, and a binarization image was obtained. The bound phase was detected based on the above binarized image.
- CP device cross-section polisher device
- the detected bound phase was subjected to element mapping for a plurality of regions of 12 ⁇ m ⁇ 9 ⁇ m using the energy dispersive X-ray spectroscopy (EDS) attached to the SEM.
- EDS energy dispersive X-ray spectroscopy
- FIG. 1 shows an example of the SEM image taken in this way.
- SEM scanning transmission electron microscope
- the point 4 farthest from the work material 5 and the point 4 drawn vertically toward the contact surface 2.
- the length of the line was defined as the thickness T of the diffusion layer, and the average value of the thickness T of the diffusion layers having three or more visual fields in which the contact surface 2 with the work material 5 was captured was measured.
- the results are shown in the column of "Average thickness of diffusion phase" in Table 1. The smaller the average value of the thickness T of the diffusion layer, the more the cemented carbide 1 can be evaluated as having excellent reactivity resistance with the Ni-based alloy.
- the cemented carbide according to the example does not contain the second hard phase (TaC) as a compounding composition, or the content of TaC is 2% by mass or less with respect to the total amount of the cemented carbide.
- Sample No. containing 4% by mass of TaC It is also suggested that the reaction resistance is superior to that of the cemented carbide according to 102.
- Example No. 1 cutting tool A cutting tool using the cemented carbide of No. 1 as a base material is referred to as "Sample No. 1 cutting tool" or the like. Sample No. The same applies to samples other than 1.
- the cemented carbide according to the example does not contain the second hard phase (TaC) as a compounding composition, or the content of TaC is 2% by mass or less with respect to the total amount of the cemented carbide.
- Sample No. containing 4% by mass of TaC It is also suggested that it is superior in wear resistance and heat resistance to the cemented carbide according to 102.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Powder Metallurgy (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
Abstract
第一硬質相と結合相とを含む超硬合金であって、上記第一硬質相は、炭化タングステン粒子からなり、上記結合相は、構成元素としてコバルト、ニッケル、鉄および銅からなり、上記結合相における、上記構成元素の各々の平均含有比率は、全て10原子%以上30原子%以下であり、第二硬質相を含まないか、または、上記第二硬質相の含有量が上記超硬合金の総量に対して2質量%以下であり、上記第二硬質相は、周期表4族元素、5族元素およびタングステンを除く6族元素からなる群より選択される一種以上の金属元素と、炭素、窒素および酸素からなる群より選択される一種以上の元素と、を含む化合物からなる超硬合金。
Description
本開示は、超硬合金およびそれを基材として含む切削工具に関する。
従来から、炭化タングステン(WC)を主成分とする硬質相と、鉄族元素(例えば、Fe、Co、Ni)を主成分とする結合相とを備える超硬合金が、切削工具の素材に利用されている。切削工具に求められる特性には、強度(例えば、抗折力)、靱性(例えば、破壊靭性)、硬度(例えば、ビッカース硬さ)、耐塑性変形性、耐摩耗性等がある。
また、4種類以上の金属元素からなり、各元素が等量モルずつまたはこれに近い割合で含まれた、高エントロピー合金(High Entropy Alloys:HEA)の研究が行われている。HEAは、無数の金属元素を組み合わせることで、種々の機械特性の向上を示すことが知られている。例えば、特開2009-074173号公報(特許文献1)には、C、Si、Al、Cr、Co、Cu、Fe、Ni、V、Mn、Ti等を、特表2019-516007号公報(特許文献2)には、Co、Cr、Cu、W、Fe、Ni、Mo、Mn等を、超硬合金の構成元素として組み合わせたHEAが開示されている。
本開示に係る超硬合金は、
第一硬質相と結合相とを含む超硬合金であって、
上記第一硬質相は、炭化タングステン粒子からなり、
上記結合相は、構成元素としてコバルト、ニッケル、鉄および銅からなり、
上記結合相における、上記構成元素の各々の平均含有比率は、全て10原子%以上30原子%以下であり、
第二硬質相を含まないか、または、上記第二硬質相の含有量が上記超硬合金の総量に対して2質量%以下であり、
上記第二硬質相は、周期表4族元素、5族元素およびタングステンを除く6族元素からなる群より選択される一種以上の金属元素と、炭素、窒素および酸素からなる群より選択される一種以上の元素と、を含む化合物からなる。
第一硬質相と結合相とを含む超硬合金であって、
上記第一硬質相は、炭化タングステン粒子からなり、
上記結合相は、構成元素としてコバルト、ニッケル、鉄および銅からなり、
上記結合相における、上記構成元素の各々の平均含有比率は、全て10原子%以上30原子%以下であり、
第二硬質相を含まないか、または、上記第二硬質相の含有量が上記超硬合金の総量に対して2質量%以下であり、
上記第二硬質相は、周期表4族元素、5族元素およびタングステンを除く6族元素からなる群より選択される一種以上の金属元素と、炭素、窒素および酸素からなる群より選択される一種以上の元素と、を含む化合物からなる。
本開示に係る切削工具は、上記本開示に係る超硬合金を基材として含む。
[本開示が解決しようとする課題]
近年、インコネル(登録商標)、ハステロイ(登録商標)などのNi基合金に代表される難削材の切削加工における切削効率の向上が望まれている。しかしながら、上述のような難削材に含まれる成分であるNiと、特許文献1および特許文献2に開示されるような従来の超硬工具材料中に含まれる成分であるWCまたはCoとの間で、相互拡散が起こりやすい。相互拡散が起こると、切削工具の耐摩耗性が低下し、切削工具の寿命が短くなる。そのため、鉄系材料(例えば、鋼)を切削加工する場合と比較して、難削材を切削加工する場合は切削工具の寿命が極端に短くなる傾向がある。
近年、インコネル(登録商標)、ハステロイ(登録商標)などのNi基合金に代表される難削材の切削加工における切削効率の向上が望まれている。しかしながら、上述のような難削材に含まれる成分であるNiと、特許文献1および特許文献2に開示されるような従来の超硬工具材料中に含まれる成分であるWCまたはCoとの間で、相互拡散が起こりやすい。相互拡散が起こると、切削工具の耐摩耗性が低下し、切削工具の寿命が短くなる。そのため、鉄系材料(例えば、鋼)を切削加工する場合と比較して、難削材を切削加工する場合は切削工具の寿命が極端に短くなる傾向がある。
本開示は、上記事情に鑑みてなされたものであり、難削材、特にNi基合金を含む合金を加工する際の耐摩耗性に優れた超硬合金およびそれを基材として含む切削工具を提供することを目的とする。
[本開示の効果]
本開示によれば、耐摩耗性に優れた超硬合金およびそれを基材として含む切削工具を提供することが可能になる。
本開示によれば、耐摩耗性に優れた超硬合金およびそれを基材として含む切削工具を提供することが可能になる。
[本開示の実施形態の説明]
最初に本開示の一態様の内容を列記して説明する。
最初に本開示の一態様の内容を列記して説明する。
[1]本開示の一態様に係る超硬合金は、
第一硬質相と結合相とを含む超硬合金であって、
上記第一硬質相は、炭化タングステン粒子からなり、
上記結合相は、構成元素としてコバルト、ニッケル、鉄および銅からなり、
上記結合相における、上記構成元素の各々の平均含有比率は、全て10原子%以上30原子%以下であり、
第二硬質相を含まないか、または、上記第二硬質相の含有量が上記超硬合金の総量に対して2質量%以下であり、
上記第二硬質相は、周期表4族元素、5族元素およびタングステンを除く6族元素からなる群より選択される一種以上の金属元素と、炭素、窒素および酸素からなる群より選択される一種以上の元素と、を含む化合物からなる。
第一硬質相と結合相とを含む超硬合金であって、
上記第一硬質相は、炭化タングステン粒子からなり、
上記結合相は、構成元素としてコバルト、ニッケル、鉄および銅からなり、
上記結合相における、上記構成元素の各々の平均含有比率は、全て10原子%以上30原子%以下であり、
第二硬質相を含まないか、または、上記第二硬質相の含有量が上記超硬合金の総量に対して2質量%以下であり、
上記第二硬質相は、周期表4族元素、5族元素およびタングステンを除く6族元素からなる群より選択される一種以上の金属元素と、炭素、窒素および酸素からなる群より選択される一種以上の元素と、を含む化合物からなる。
上記超硬合金は、上述のような構成を備えることによって、Ni基合金に含まれるNiと超硬合金中に含まれるWCまたはCoとの間での相互拡散を起こしにくい。その結果、上記超硬合金は、Ni基合金を含む被削材に対して耐摩耗性に優れた超硬合金となる。
[2]上記超硬合金の任意の断面において、
上記構成元素のうちの少なくとも1つの含有比率の割合が上記平均含有比率に対して85%以下115%以上である領域を偏在領域とすると、
上記結合相中の上記偏在領域の合計面積が、上記結合相の全体の面積に対して、6%以下であることが好ましい。このように規定することで、上記超硬合金が、Ni基合金との耐摩耗性に更に優れた超硬合金となる。
上記構成元素のうちの少なくとも1つの含有比率の割合が上記平均含有比率に対して85%以下115%以上である領域を偏在領域とすると、
上記結合相中の上記偏在領域の合計面積が、上記結合相の全体の面積に対して、6%以下であることが好ましい。このように規定することで、上記超硬合金が、Ni基合金との耐摩耗性に更に優れた超硬合金となる。
[3]本開示の一態様に係る切削工具は、上記[1]または[2]のいずれかに記載の超硬合金を基材として含む。上記切削工具は、Ni基合金との耐摩耗性に優れた超硬合金を基材として含むため、Ni基合金を含む難削材に対する切削加工に用いられる場合であっても、切削工具の長寿命化等を実現できる。
[4]上記切削工具は、上記基材上に設けられている被膜を更に備えることが好ましい。基材の表面に被膜を備えることで、切削工具の耐摩耗性等を更に改善できる。よって、上記切削工具は、更に厳しい切削条件への対応、更なる長寿命化等を実現できる。
[本開示の実施形態の詳細]
以下、本開示の一実施形態(以下「本実施形態」と記す。)について説明する。ただし、本実施形態はこれに限定されるものではない。
以下、本開示の一実施形態(以下「本実施形態」と記す。)について説明する。ただし、本実施形態はこれに限定されるものではない。
≪超硬合金≫
本実施形態の超硬合金は、
第一硬質相と結合相とを含む超硬合金であって、
上記第一硬質相は、炭化タングステン粒子からなり、
上記結合相は、構成元素としてコバルト、ニッケル、鉄および銅からなり、
上記結合相における、上記構成元素の各々の平均含有比率は、全て10原子%以上30原子%以下であり、
第二硬質相を含まないか、または、上記第二硬質相の含有量が上記超硬合金の総量に対して2質量%以下であり、
上記第二硬質相は、周期表4族元素、5族元素およびタングステンを除く6族元素からなる群より選択される一種以上の金属元素と、炭素、窒素および酸素からなる群より選択される一種以上の元素と、を含む化合物からなる。
本実施形態の超硬合金は、
第一硬質相と結合相とを含む超硬合金であって、
上記第一硬質相は、炭化タングステン粒子からなり、
上記結合相は、構成元素としてコバルト、ニッケル、鉄および銅からなり、
上記結合相における、上記構成元素の各々の平均含有比率は、全て10原子%以上30原子%以下であり、
第二硬質相を含まないか、または、上記第二硬質相の含有量が上記超硬合金の総量に対して2質量%以下であり、
上記第二硬質相は、周期表4族元素、5族元素およびタングステンを除く6族元素からなる群より選択される一種以上の金属元素と、炭素、窒素および酸素からなる群より選択される一種以上の元素と、を含む化合物からなる。
<超硬合金の組成>
本実施形態の超硬合金は、第一硬質相と結合相とを含む超硬合金であり、第二硬質相を含む場合がある。また、第一硬質相、結合相および第二硬質相のいずれにも属さない元素を含む場合がある。
本実施形態の超硬合金は、第一硬質相と結合相とを含む超硬合金であり、第二硬質相を含む場合がある。また、第一硬質相、結合相および第二硬質相のいずれにも属さない元素を含む場合がある。
<第一硬質相>
第一硬質相は、炭化タングステン(以下、「WC」と表記する場合がある。)粒子からなる。ここで、WCには、「純粋なWC(不純物元素が一切含有されないWC、および、検出限界未満の不純物元素を含むWC)」だけではなく、「本開示の効果を損なわない限りにおいて、その内部に他の不純物元素が意図的または不可避的に含有される第一硬質相」も含まれる。WCに含有される不純物の濃度(不純物を構成する元素が二種類以上の場合は、それらの合計濃度)は、上記WCおよび上記不純物の総量に対して1質量%以下である。
第一硬質相は、炭化タングステン(以下、「WC」と表記する場合がある。)粒子からなる。ここで、WCには、「純粋なWC(不純物元素が一切含有されないWC、および、検出限界未満の不純物元素を含むWC)」だけではなく、「本開示の効果を損なわない限りにおいて、その内部に他の不純物元素が意図的または不可避的に含有される第一硬質相」も含まれる。WCに含有される不純物の濃度(不純物を構成する元素が二種類以上の場合は、それらの合計濃度)は、上記WCおよび上記不純物の総量に対して1質量%以下である。
(WC粒子の平均粒径)
超硬合金中における上記WC粒子の平均粒径は、0.1μm以上10μm以下であることが好ましく、0.5μm以上3μm以下であることがより好ましい。超硬合金中における上記WC粒子の平均粒径は、0.1μm以上であることで上記超硬合金の靱性が高くなる傾向がある。そのため、上記超硬合金を基材として含む切削工具は、機械的な衝撃および熱的な衝撃によるチッピングまたは欠損を抑制できる。また、上記切削工具は耐亀裂伝播性が向上することから、亀裂の伝播が抑制され、チッピングまたは欠損を抑制できる。一方、上記平均粒径は、10μm以下であることで上記超硬合金の硬度が高くなる傾向がある。そのため、上記超硬合金を基材として含む切削工具は、切削時の変形が抑制され、摩耗または欠損を抑制できる。
超硬合金中における上記WC粒子の平均粒径は、0.1μm以上10μm以下であることが好ましく、0.5μm以上3μm以下であることがより好ましい。超硬合金中における上記WC粒子の平均粒径は、0.1μm以上であることで上記超硬合金の靱性が高くなる傾向がある。そのため、上記超硬合金を基材として含む切削工具は、機械的な衝撃および熱的な衝撃によるチッピングまたは欠損を抑制できる。また、上記切削工具は耐亀裂伝播性が向上することから、亀裂の伝播が抑制され、チッピングまたは欠損を抑制できる。一方、上記平均粒径は、10μm以下であることで上記超硬合金の硬度が高くなる傾向がある。そのため、上記超硬合金を基材として含む切削工具は、切削時の変形が抑制され、摩耗または欠損を抑制できる。
ここで超硬合金中における上記WC粒子の平均粒径は、超硬合金の任意の表面または任意の断面を鏡面加工し、その加工面を顕微鏡で撮影し、その撮影画像を画像解析することによって求められる。具体的には撮影画像から、個々のWC粒子の粒径(Heywood径:等面積円相当径)を算出し、その平均値をWC粒子の平均粒径とする。測定するWC粒子の数は、少なくとも100個以上とし、更に200個以上とすることが好ましい。また、同一の超硬合金において、複数の視野で上記画像解析を行い、その平均値をWC粒子の平均粒径とすることが好ましい。画像解析を行う視野の数は、5視野以上であることが好ましく、7視野以上であることがより好ましく、10視野以上であることが更に好ましく、20視野以上であることが更により好ましい。1つの視野は、例えば縦20μm×幅20μmの正方形であってもよい。
鏡面加工の方法としては、例えば、ダイヤモンドペーストで研磨する方法、集束イオンビーム装置(FIB装置)を用いる方法、クロスセクションポリッシャー装置(CP装置)を用いる方法、これらを組み合わせる方法等が挙げられる。加工面を金属顕微鏡で撮影する場合には、加工面を村上試薬でエッチングすることが好ましい。
顕微鏡の種類としては、金属顕微鏡、走査型透過電子顕微鏡(SEM)等が挙げられる。顕微鏡で撮影した画像(顕微鏡像)をコンピュータに取り込み、画像解析ソフトウェアを用いて解析して、平均粒径等の各種情報を取得する。このとき、第一硬質相を構成するWC粒子、後述する結合相および後述する第二硬質相のそれぞれは、以下の方法で識別できる。
第一硬質相、結合相および第二硬質相の識別は、画像解析ソフトウェアとして、画像解析式粒度分布ソフトウェア(株式会社マウンテック社製「Mac-View」)を用い、上記顕微鏡像を2値化処理することで可能となる。ここで、2値化処理とは、各画素の濃さを一定の基準値(しきい値)によって1と0の2つの値に変換する処理をいう。本開示における2値化処理には、判別分析法を使用している。
(第一硬質相の面積比率)
本実施形態に係る超硬合金は、上記超硬合金の任意の表面または任意の断面において、上記第一硬質相の面積比率が70%以上99%以下であることが好ましく、86%以上95%以下であることがより好ましい。
本実施形態に係る超硬合金は、上記超硬合金の任意の表面または任意の断面において、上記第一硬質相の面積比率が70%以上99%以下であることが好ましく、86%以上95%以下であることがより好ましい。
上記第一硬質相の面積比率は、例えば、上述したWC粒子の平均粒径を求めるときと同様に、超硬合金の任意の加工面を顕微鏡で撮影し、その撮影画像を画像解析することによって求められる。すなわち、上記顕微鏡像に対して、画像解析式粒度分布ソフトウェア(株式会社マウンテック社製「Mac-View」)を用いて、WC粒子を認識するための2値化処理を行い2値化像を得る。ここで、2値化処理は、例えば、画素の明度に基づいて行われる。2値化処理における明度のしきい値は、画像中の最も暗く見える第一硬質相粒子の中心付近の任意の点から抽出した値に0.8を乗じた数値である。上記2値化像に基づき、上記顕微鏡像中のWC粒子の面積の和(総面積)を算出し、これを視野(2値化像)全体の面積で割ることにより、当該視野における第一硬質相の面積比率を算出することが可能である。そして、同一の超硬合金において、複数の視野(例えば、3視野以上)で上記画像解析を行い、その平均値を超硬合金の表面または断面の全体における第一硬質相の面積比率とみなすことができる。なお、上記「所定の視野」は、上述したWC粒子の平均粒径を求めるときの視野と同じであってもよい。
<結合相>
結合相は、第一硬質相を構成するWC粒子同士、後述する第二硬質相を構成する化合物粒子同士、または第一硬質相を構成するWC粒子と第二硬質相を構成する化合物粒子と、を結合させる相である。上記結合相は、上記超硬合金を基準として、その含有割合が4質量%以上15質量%以下である。上記結合相は、構成元素としてコバルト(Co)、ニッケル(Ni)、鉄(Fe)および銅(Cu)からなる。
結合相は、第一硬質相を構成するWC粒子同士、後述する第二硬質相を構成する化合物粒子同士、または第一硬質相を構成するWC粒子と第二硬質相を構成する化合物粒子と、を結合させる相である。上記結合相は、上記超硬合金を基準として、その含有割合が4質量%以上15質量%以下である。上記結合相は、構成元素としてコバルト(Co)、ニッケル(Ni)、鉄(Fe)および銅(Cu)からなる。
本開示において、結合相の構成元素にCuを用いているのは、Ni基合金にはクロム(Cr)が多く含まれており、結合相にCrを含む場合、Crの相互拡散により耐摩耗性が悪化するためである。また、超硬合金中で炭化物、窒化物を形成しにくいため、Cuを用いている。よって、Ni基合金との耐摩耗性の観点から、本開示では結合相にCrを含まずCuを含むことが最適である。
上記結合相における、Co、Ni、FeおよびCuの総量に対する、Co、Ni、FeおよびCuの各元素の平均含有比率は、全て10原子%(以下「(at%」と記す。)30at%以下である。このようにすることで、異相析出がなく、Ni基合金に対する耐以上摩耗性に優れた超硬合金を得ることができる。また、上記結合相中に含まれるCoおよびNiの含有比率は、25at%以上30at%以下であることが好ましく、上記結合相中に含まれるFeおよびCuの含有比率は、20at%以上25at%以下であることが好ましい。上述の範囲とすることにより、上記超硬合金の緻密性が上昇し、硬度が上昇する傾向がある。
結合相中に含まれるCo、Ni、FeおよびCuの原子濃度は、ICP発光分光測定法(Inductively Coupled Plasma発光分光測定法)(以下、「ICP測定法」という場合がある。)を用いて測定することができる。ICP測定法により測定される上記原子濃度は、結合相全体を平均した原子濃度であると本発明者らは考えている。なお、上記超硬合金の表面がセラミックスやダイヤモンドライクカーボン等の被膜で被覆されている場合は、研削加工等によって除去することが好ましい。
(結合相の面積比率)
本実施形態に係る超硬合金の任意の表面または任意の断面において、上記結合相の面積比率は、1%以上30%以下であることが好ましく、4%以上15%以下であることがより好ましい。上記結合相の面積比率を1%以上30%以下とすることにより、切削工具に利用する際に十分な硬度および緻密性を確保することができる。また、上記結合相の面積比率を4%以上15%以下とすることにより、上記超硬合金の硬度および靱性をさらに確保することができる。
本実施形態に係る超硬合金の任意の表面または任意の断面において、上記結合相の面積比率は、1%以上30%以下であることが好ましく、4%以上15%以下であることがより好ましい。上記結合相の面積比率を1%以上30%以下とすることにより、切削工具に利用する際に十分な硬度および緻密性を確保することができる。また、上記結合相の面積比率を4%以上15%以下とすることにより、上記超硬合金の硬度および靱性をさらに確保することができる。
なお、上記結合相の面積比率は、第一硬質相の面積比率の測定と同様、画像解析式粒度分布ソフトウェア(株式会社マウンテック社製「Mac-View」)を用いて、2値化処理を行い2値化像を得る。2値化処理における明度のしきい値は、画像中の最も明るく見える結合相の、他の相との界面と重複しない任意の点から抽出した値に1.2を乗じた数値である。上記2値化像に基づき、上記顕微鏡像中の結合相(Co、Ni、FeおよびCu粒子)の面積の和(総面積)を算出し、これを視野(2値化像)全体の面積で割ることにより、当該視野における結合相の面積比率を算出することが可能である。そして、同一の超硬合金において、複数の視野(例えば、3視野以上)で上記画像解析を行い、その平均値を超硬合金の表面または断面の全体における結合相の面積比率とみなすことができる。
(結合相中の偏在領域の面積比率)
本実施形態の一側面において、上記超硬合金の任意の断面において、上記構成元素のうちの少なくとも1つの含有比率の割合が上記平均含有比率に対して85%以下115%以上である領域を偏在領域とすると、上記結合相中の上記偏在領域の合計面積が、上記結合相の全体の面積に対して、6%以下であることが好ましく、3%以下であることがより好ましい。これは、上記超硬合金全体における結合相中の組成の偏りが小さいことを示す。上記の比率が6%を超えると、Ni基合金との耐摩耗性が悪化する傾向がある。
本実施形態の一側面において、上記超硬合金の任意の断面において、上記構成元素のうちの少なくとも1つの含有比率の割合が上記平均含有比率に対して85%以下115%以上である領域を偏在領域とすると、上記結合相中の上記偏在領域の合計面積が、上記結合相の全体の面積に対して、6%以下であることが好ましく、3%以下であることがより好ましい。これは、上記超硬合金全体における結合相中の組成の偏りが小さいことを示す。上記の比率が6%を超えると、Ni基合金との耐摩耗性が悪化する傾向がある。
(画像撮影)
上記の比率は、以下の方法により算出することが可能である。すなわち、集束イオンビーム装置(FIB装置)、クロスセクションポリッシャー装置(CP装置)等を用いて得た任意の断面を、走査型透過電子顕微鏡(SEM)にて5000倍で撮像して、任意の枚数(例えば、10枚以上)の電子画像を得る。
上記の比率は、以下の方法により算出することが可能である。すなわち、集束イオンビーム装置(FIB装置)、クロスセクションポリッシャー装置(CP装置)等を用いて得た任意の断面を、走査型透過電子顕微鏡(SEM)にて5000倍で撮像して、任意の枚数(例えば、10枚以上)の電子画像を得る。
(2値化処理)
上記電子画像を、例えば画像解析式粒度分布ソフトウェア(株式会社マウンテック製「Mac-View」)を用いて、2値化処理を行い2値化像を得る。2値化処理における明度のしきい値は、画像中の最も明るく見える結合相の、他の相との界面と重複しない任意の点から抽出した値に1.2を乗じた数値である。上記2値化像に基づき、結合相を検出する。
上記電子画像を、例えば画像解析式粒度分布ソフトウェア(株式会社マウンテック製「Mac-View」)を用いて、2値化処理を行い2値化像を得る。2値化処理における明度のしきい値は、画像中の最も明るく見える結合相の、他の相との界面と重複しない任意の点から抽出した値に1.2を乗じた数値である。上記2値化像に基づき、結合相を検出する。
(濃度算出)
上記検出された結合相について、SEMに付属の電子線マイクロアナライザー(EPMA)またはエネルギー分散型X線分光分析(EDS)を用いて、所定の領域(例えば、12μm×9μm)について、元素マッピングを行う。上記元素マッピングにおいて、WCを含む相を第一硬質相、Co、Ni、FeおよびCuを含む相を結合相とみなす。なお、上記第一硬質相および結合相は、SEMで撮像した画像において明確な界面と明暗を有し、明るい相を第一硬質相、暗い相を結合相とみなすこともできる。
上記検出された結合相について、SEMに付属の電子線マイクロアナライザー(EPMA)またはエネルギー分散型X線分光分析(EDS)を用いて、所定の領域(例えば、12μm×9μm)について、元素マッピングを行う。上記元素マッピングにおいて、WCを含む相を第一硬質相、Co、Ni、FeおよびCuを含む相を結合相とみなす。なお、上記第一硬質相および結合相は、SEMで撮像した画像において明確な界面と明暗を有し、明るい相を第一硬質相、暗い相を結合相とみなすこともできる。
上記元素マッピングにおいて、Co、Ni、FeおよびCuのうちいずれかの元素の含有比率の割合が結合相の他の領域よりも高くまたは低く検出された場合、その結合相の面積中心付近で点分析を行い、Co、Ni、FeおよびCuの測定値についてその合計量を100とした際の各元素の含有比率を算出する。当該含有比率と、上述のICP発光分光測定によって算出した各元素の含有比率とを比較し、両含有比率の差異が85%以下115%以上となる場合は、画像解析式粒度分布ソフトウェア(株式会社マウンテック社製「Mac-View」)を用いて、その結合相の面積を算出し、上記超硬合金全体に占める面積比率を算出することが可能である。そして、同一の結合相において、複数の視野(例えば、3視野以上)で上記画像解析を行い、その平均値を結合相の面積比率とみなすことができる。
<第二硬質相>
本実施形態に係る超硬合金は、第二硬質相を含まないか、または、上記第二硬質相の含有量が上記超硬合金の総量に対して2質量%以下であり、上記第二硬質相を含まないことが好ましい。上記超硬合金が上記第二硬質相を含む場合、本発明の効果を阻害しない範囲で添加したもの、および原料として上記第二硬質相を添加したものではなく、製造工程で不可避的に発生したものであると考えられる。
本実施形態に係る超硬合金は、第二硬質相を含まないか、または、上記第二硬質相の含有量が上記超硬合金の総量に対して2質量%以下であり、上記第二硬質相を含まないことが好ましい。上記超硬合金が上記第二硬質相を含む場合、本発明の効果を阻害しない範囲で添加したもの、および原料として上記第二硬質相を添加したものではなく、製造工程で不可避的に発生したものであると考えられる。
第二硬質相は、「周期表4族元素、5族元素およびタングステンを除く6族元素からなる群より選択される一種以上の金属元素」と、「炭素(C)、窒素(N)および酸素(O)からなる群より選択される一種以上の元素」とを含む化合物(複合化合物)からなる。周期表4族元素としては、チタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)等が挙げられる。周期表5族元素としては、バナジウム(V)、ニオブ(Nb)、タンタル(Ta)等が挙げられる。周期表6族元素としては、クロム(Cr)、モリブデン(Mo)等が挙げられる。化合物とは、主として、上述の金属元素の炭化物、窒化物、炭窒化物、酸化物等である。
第二硬質相は、上記化合物の一種以上からなる化合物相または固溶体相である。ここで、「化合物相または固溶体相」とは、かかる相を構成する化合物が固溶体を形成していてもよいし、固溶体を形成せず個々の化合物として存在していてもよいことを示す。
具体的な第二硬質相としては、例えば、TaC、NbC、TiC、TiCN、Cr3C2、Cr7C3、Al2O3およびSiO2等の化合物が挙げられる。
(第二硬質相の質量比率)
上記超硬合金が上記第二硬質相を含む場合、上記第二硬質相の含有量は、上記超硬合金に対し、2質量%以下である。上記第二硬質相の含有量が2質量%を超えると、焼結工程における固溶再析出の挙動が変化し、上記超硬合金の構成を阻害する傾向がある。また、Crが結合相中に固溶されていたとしても、Cuを含む相に固溶し難いため、結合相の組成に偏りが生じる傾向もある。さらに、Ni基合金に多く含まれるCrとの相互拡散により耐摩耗性が悪化する傾向がある。
上記超硬合金が上記第二硬質相を含む場合、上記第二硬質相の含有量は、上記超硬合金に対し、2質量%以下である。上記第二硬質相の含有量が2質量%を超えると、焼結工程における固溶再析出の挙動が変化し、上記超硬合金の構成を阻害する傾向がある。また、Crが結合相中に固溶されていたとしても、Cuを含む相に固溶し難いため、結合相の組成に偏りが生じる傾向もある。さらに、Ni基合金に多く含まれるCrとの相互拡散により耐摩耗性が悪化する傾向がある。
(第二硬質相の面積比率)
上記超硬合金の任意の表面または任意の断面において、上記第二硬質相の面積比率は、1.5%以下であることが好ましい。
上記超硬合金の任意の表面または任意の断面において、上記第二硬質相の面積比率は、1.5%以下であることが好ましい。
なお、上記第二硬質相の面積比率は、第一硬質相の面積比率の測定と同様、画像解析式粒度分布ソフトウェア(株式会社マウンテック社製「Mac-View」)を用いて、2値化処理を行い2値化像を得る。2値化処理における明度のしきい値は、第一硬質相の2値化処理時に検出対象外となった粒子状の相から抽出した値に0.8を乗じた数値である。上記2値化像に基づき、上記顕微鏡像中の第二硬質相の面積の和(総面積)を算出し、これを視野(2値化像)全体の面積で割ることにより、当該視野における第二硬質相の面積比率を算出することが可能である。そして、同一の超硬合金において、複数の視野(例えば、3視野以上)で上記画像解析を行い、その平均値を超硬合金の表面または断面の全体における第二硬質相の面積比率とみなすことができる。上記測定の際は、上記超硬合金の表面から所定の位置の断面の面積比率を求めることが当業者にとって自明である。上記所定の位置は、例えば測定試料の厚みに対して50%の部分を、具体的には、表面から500μmの部分とすることが好ましい。また、超硬合金の表面部では第二硬質相の面積比率が変化する場合があるため、表面を避けて測定することも当業者にとって自明である。
≪超硬合金の製造方法≫
本実施形態の超硬合金は、代表的には、原料粉末の準備工程、混合工程、成形工程および焼結工程をこの順を経て製造することができる。以下、各工程について説明する。
本実施形態の超硬合金は、代表的には、原料粉末の準備工程、混合工程、成形工程および焼結工程をこの順を経て製造することができる。以下、各工程について説明する。
<準備工程>
準備工程は、超硬合金を構成する材料の全ての原料粉末を準備する工程である。例えば、第一硬質相の原料粉末としては、WC粒子が挙げられる。また、結合相の原料としては、(i)Co、Ni、FeおよびCuを所定の配合組成で合金化した粒子(以下、「CoNiFeCu合金粒子」という場合がある。)、(ii)Co粒子とNi、FeおよびCuを所定の配合組成で合金化した粒子(以下、「NiFeCu合金粒子」という場合がある。)、または、(iii)Co粒子、Ni粒子、Fe粒子およびCu粒子をそれぞれ単独で使用する場合が挙げられる。
準備工程は、超硬合金を構成する材料の全ての原料粉末を準備する工程である。例えば、第一硬質相の原料粉末としては、WC粒子が挙げられる。また、結合相の原料としては、(i)Co、Ni、FeおよびCuを所定の配合組成で合金化した粒子(以下、「CoNiFeCu合金粒子」という場合がある。)、(ii)Co粒子とNi、FeおよびCuを所定の配合組成で合金化した粒子(以下、「NiFeCu合金粒子」という場合がある。)、または、(iii)Co粒子、Ni粒子、Fe粒子およびCu粒子をそれぞれ単独で使用する場合が挙げられる。
上述のように、結合相の構成元素であるCo、Ni、FeおよびCuは、原料粉末として、(i)CoNiFeCu合金粒子、(ii)Co粒子とNiFeCu合金粒子、または、(iii)Co粒子、Ni粒子、Fe粒子およびCu粒子をそれぞれ単独で使用することができ、中でも(i)CoNiFeCu合金粒子を用いることが好ましい。Co、Ni、FeおよびCuをそれぞれ単体の原料粉末として添加した場合、またはNi、FeおよびCuをそれぞれ単体の原料粉末として添加した場合、焼結温度が低いと液相中での拡散が不十分となり、結合相中に濃度差が発生し、緻密な合金を得ることができない。なお、Coは液相時にWC粒子との濡れ性がよいため、Co単体を原料として使用してもよい。
(WC粒子)
原料としての上記WC粒子は、特に制限はなく、超硬合金の製造に通常用いられるWC粒子を用いればよい。上記WC粒子は、市販品を用いてもよい。市販されているWC粒子としては、例えばアライドマテリアル社製の「均粒タングステンカーバイド粉」シリーズ等が挙げられる。
原料としての上記WC粒子は、特に制限はなく、超硬合金の製造に通常用いられるWC粒子を用いればよい。上記WC粒子は、市販品を用いてもよい。市販されているWC粒子としては、例えばアライドマテリアル社製の「均粒タングステンカーバイド粉」シリーズ等が挙げられる。
原料としての上記WC粒子の平均粒径は、0.1μm以上10μm以下であることが好ましく、0.5μm以上3μm以下であることがより好ましい。原料としての上記WC粒子の平均粒径は、0.1μm以上であることで、超硬合金にした際、靱性が高くなる傾向がある。そのため上記超硬合金を基材として含む切削工具は、機械的な衝撃および熱的な衝撃によるチッピングおよび欠損を抑制できる。また、上記切削工具は耐亀裂伝播性が向上することから、亀裂の伝播が抑制され、チッピングおよび欠損を抑制できる。一方、上記平均粒径は、10μm以下であることで、超硬合金にした際、硬度が高くなる傾向がある。そのため上記超硬合金を基材として含む切削工具は、切削時の変形が抑制され、摩耗および欠損を抑制できる。
(CoNiFeCu合金粒子)
以下の各粒子を用いて、Co、Ni、FeおよびCuを所定の配合組成で合金化した粒子(CoNiFeCu合金粒子)を製造する。CoNiFeCu合金粒子の製造方法としては、例えば、機械的方法、化学的方法、アトマイズ法等が挙げられ、アトマイズ法を用いることが好ましい。アトマイズ法では、合金とする金属を溶かし、溶かした金属(溶湯)を飛散および凝固させることで粉末とする。上記粉末を目的とする粒径に調製し、均一に混合することで合金を得ることができる。
以下の各粒子を用いて、Co、Ni、FeおよびCuを所定の配合組成で合金化した粒子(CoNiFeCu合金粒子)を製造する。CoNiFeCu合金粒子の製造方法としては、例えば、機械的方法、化学的方法、アトマイズ法等が挙げられ、アトマイズ法を用いることが好ましい。アトマイズ法では、合金とする金属を溶かし、溶かした金属(溶湯)を飛散および凝固させることで粉末とする。上記粉末を目的とする粒径に調製し、均一に混合することで合金を得ることができる。
原料としての上記Co粒子は、特に制限無く、超硬合金の製造に通常用いられるCo粒子を用いればよい。上記Co粒子としては、例えば、Co単体からなる粒子が挙げられる。上記Co粒子は、市販品を用いてもよい。
原料としてのNi粒子は、特に制限無く、超硬合金の製造に通常用いられるNi粒子を用いればよい。上記Ni粒子としては、例えば、Ni単体からなる粒子、が挙げられる。上記Ni粒子は、市販品を用いてもよい。
原料としてのFe粒子は、特に制限無く、超硬合金の製造に通常用いられるFe粒子を用いればよい。上記Fe粒子としては、例えば、Fe単体からなる粒子、が挙げられる。上記Fe粒子は、市販品を用いてもよい。
原料としてのCu粒子は、特に制限無く、超硬合金の製造に通常用いられるCu粒子を用いればよい。上記Cu粒子としては、例えば、Cu単体からなる粒子、が挙げられる。上記Cu粒子は、市販品を用いてもよい。
上記Co粒子、Ni粒子、Fe粒子およびCu粒子に含有される不純物の濃度(不純物を構成する元素が二種類以上の場合は、それらの合計濃度)は、上記各粒子および上記不純物の総量に対して2質量%以下である。
上記製造方法により得られたCoNiFeCu合金粒子のFSSS粒子径(フィッシャー法により測定した平均粒子径)は、0.5μm以上50μm以下であることが好ましい。ここで、フィッシャー法(Fisher Sub-Sieve Sizer)は、空気の流通抵抗を利用して粒子の比表面積を測定し、当該粒子の粒径を求める方法である。FSSS粒子径は、例えば、Fisher Sub-Sieve Sizer Model 95(Fisher Scientific社製)を用いて測定することができる。
(NiFeCu合金粒子)
上述の各粒子を用いて、Ni、FeおよびCuを所定の配合組成で合金化した粒子(NiFeCu合金粒子)を製造する。NiFeCu合金粒子の製造方法としては、上述の機械的方法、化学的方法、アトマイズ法等が挙げられ、アトマイズ法を用いることが好ましい。
上述の各粒子を用いて、Ni、FeおよびCuを所定の配合組成で合金化した粒子(NiFeCu合金粒子)を製造する。NiFeCu合金粒子の製造方法としては、上述の機械的方法、化学的方法、アトマイズ法等が挙げられ、アトマイズ法を用いることが好ましい。
上記製造方法により得られたNiFeCu合金粒子のFSSS粒子径は、0.5μm以上50μm以下であることが好ましい。また、上記Co粒子、上記Ni粒子、上記Fe粒子および上記Cu粒子のFSSS粒子径は、0.5μm以上50μm以下であることが好ましい。
<混合工程>
混合工程は、準備工程で準備した各原料粉末を混合する工程である。混合工程により、各原料粉末が混合された混合粉末が得られる。なお、混合する際の原料粉末(例えば、WC粒子、CoNiFeCu合金粒子、NiFeCu合金粒子等)の質量比率は、上述した第一硬質相の面積比率および結合相の面積比率に対応する比率となっている。混合工程に用いる装置には公知の装置を用いることができる。例えば、アトライター、転動ボールミル、カルマンミキサおよびビーズミル等を用いることができる。
混合工程は、準備工程で準備した各原料粉末を混合する工程である。混合工程により、各原料粉末が混合された混合粉末が得られる。なお、混合する際の原料粉末(例えば、WC粒子、CoNiFeCu合金粒子、NiFeCu合金粒子等)の質量比率は、上述した第一硬質相の面積比率および結合相の面積比率に対応する比率となっている。混合工程に用いる装置には公知の装置を用いることができる。例えば、アトライター、転動ボールミル、カルマンミキサおよびビーズミル等を用いることができる。
アトライターを用いる場合の混合時間は、特に制限はなく、例えば0.1時間以上48時間以下に設定することが挙げられる。原料粉末を均一に混合する観点において、上述の混合する時間は2時間以上15時間以下に設定することが好ましい。アトライターによる混合条件は、湿式混合であっても乾式混合であってもよい。また、混合は、水、エタノール、アセトン、イソプロピルアルコール等の溶媒中で行ってもよい。混合は、ポリエチレングリコール、パラフィンワックス等のバインダーと共に行ってもよい。
混合工程の後、必要に応じて混合粉末を造粒してもよい。混合粉末を造粒することで、後述する成形工程の際にダイまたは金型へ混合粉末を充填し易い。造粒には、公知の造粒方法が適用でき、例えば、スプレードライヤー等の市販の造粒機を用いることができる。
<成形工程>
成形工程は、混合工程で得られた混合粉末を所定の形状に成形して、成形体を得る工程である。成形工程における成形方法および成形条件は、一般的な方法および条件を採用すればよく、特に問わない。例えば、Taのカプセルに混合粉末を入れ、プレスすることで加圧して成形体を得てもよい。このときのプレスの圧力は10MPa以上16GPa以下に設定してもよい。所定の形状としては、例えば、切削工具形状(例えば、刃先交換型切削チップの形状)とすることが挙げられる。
成形工程は、混合工程で得られた混合粉末を所定の形状に成形して、成形体を得る工程である。成形工程における成形方法および成形条件は、一般的な方法および条件を採用すればよく、特に問わない。例えば、Taのカプセルに混合粉末を入れ、プレスすることで加圧して成形体を得てもよい。このときのプレスの圧力は10MPa以上16GPa以下に設定してもよい。所定の形状としては、例えば、切削工具形状(例えば、刃先交換型切削チップの形状)とすることが挙げられる。
<焼結工程>
焼結工程は、成形工程で得られた成形体を焼結して、焼結体を得る工程である。上記焼結工程では、結合相の液相が出現してから十分な時間をかけて焼結することが好ましい。具体的には、焼結温度は、1400℃以上1600℃以下であることが好ましい。焼結時間は、0.5時間以上2時間以下であることが好ましい。
焼結工程は、成形工程で得られた成形体を焼結して、焼結体を得る工程である。上記焼結工程では、結合相の液相が出現してから十分な時間をかけて焼結することが好ましい。具体的には、焼結温度は、1400℃以上1600℃以下であることが好ましい。焼結時間は、0.5時間以上2時間以下であることが好ましい。
焼結時の雰囲気は、特に限定されず、N2ガス雰囲気、Ar等の不活性ガス雰囲気または水素ガス雰囲気とすることが挙げられる。また、焼結時の真空度(圧力)は、0.1kPa以上10kPa以下とすることが好ましい。
なお、焼結工程では、焼結時に加圧できる焼結HIP(シンターヒップ)処理を行ってもよい。HIP条件は、例えば、N2ガス雰囲気、Ar等の不活性ガス雰囲気中、温度:1300℃以上1350℃以下、圧力:5MPa以上200MPa以下とすることが挙げられる。
最高温度から常温までの間における降温速度は、2℃/分~50℃/分であることが好ましい。ここで、「降温速度が2℃/分である」とは、毎分2℃の速度で温度が低下することを意味する。冷却時の雰囲気は、特に限定されず、N2ガス雰囲気またはAr等の不活性ガス雰囲気とすることが挙げられる。冷却時の圧力については、特に限定されず、加圧してもよいし減圧してもよい。上記加圧のときの圧力は、例えば、400kPa以上500kPa以下である。また、上記減圧のときの圧力は、例えば、100kPa以下とし、好ましくは10kPa以上50kPa以下である。
≪切削工具≫
本実施形態の超硬合金は、前述のように優れた耐摩耗性を有するため、切削工具、基材として利用できる。すなわち、本実施形態の切削工具は、上記超硬合金を基材として含む。また、本実施形態の超硬合金は、耐摩工具および研削工具としても利用でき、耐摩工具および研削工具は、上記超硬合金を基材として含む。
本実施形態の超硬合金は、前述のように優れた耐摩耗性を有するため、切削工具、基材として利用できる。すなわち、本実施形態の切削工具は、上記超硬合金を基材として含む。また、本実施形態の超硬合金は、耐摩工具および研削工具としても利用でき、耐摩工具および研削工具は、上記超硬合金を基材として含む。
本実施形態の超硬合金は、従来公知の切削工具に幅広く適用可能であり、例えば、切削バイト、ドリル、エンドミル、フライス加工用刃先交換型切削チップ、旋削加工用刃先交換型切削チップ、メタルソー、歯切り工具、リーマまたはタップ等を例示できる。また、本実施形態の超硬合金は、従来公知の耐摩工具および研削工具にも幅広く適用可能である。耐摩工具としては、例えば、ダイス、スクライバー、スクライビングホイールまたはドレッサー等を、研削工具としては、例えば研削砥石等を例示できる。
本実施形態の超硬合金は、これらの工具の全体を構成していてもよい。上記超硬合金は、これらの工具の一部を構成していてもよい。ここで「一部を構成する」とは、例えば切削工具の場合に、任意の基材の所定位置に本実施形態の超硬合金をロウ付けして刃先部とする態様等を示している。
<被膜>
本実施形態に係る切削工具は、上記基材上に設けられている被膜を更に備えてもよい。本実施形態に係る耐摩工具および研削工具は、上記基材上に設けられている被膜を更に備えてもよい。上記被膜の組成は、周期表4族の金属元素、周期表5族の金属元素、周期表6族の金属元素、アルミニウム(Al)およびシリコン(Si)からなる群より選択される一種以上の元素と、窒素(N)、酸素(O)、炭素(C)およびホウ素(B)からなる群より選択される一種以上の元素との化合物が挙げられる。上記化合物としては、例えば、TiCN、Al2O3、TiAlN、TiN、TiC、AlCrN等が挙げられる。本実施形態において、上記被膜は金属単体であってもよい。その他、立方晶窒化硼素(cBN)、ダイヤモンドライクカーボン等も、被膜の組成として好適である。このような被膜は、化学的蒸着(CVD)法、物理的蒸着(PVD)法等の気相法により形成することができる。被膜がCVD法により形成されていると、基材との密着性に優れる被膜が得られ易い。CVD法としては、例えば、熱CVD法等が挙げられる。被膜がPVD法により形成されていると、圧縮残留応力が付与され、切削工具等の靱性を高め易い。
本実施形態に係る切削工具は、上記基材上に設けられている被膜を更に備えてもよい。本実施形態に係る耐摩工具および研削工具は、上記基材上に設けられている被膜を更に備えてもよい。上記被膜の組成は、周期表4族の金属元素、周期表5族の金属元素、周期表6族の金属元素、アルミニウム(Al)およびシリコン(Si)からなる群より選択される一種以上の元素と、窒素(N)、酸素(O)、炭素(C)およびホウ素(B)からなる群より選択される一種以上の元素との化合物が挙げられる。上記化合物としては、例えば、TiCN、Al2O3、TiAlN、TiN、TiC、AlCrN等が挙げられる。本実施形態において、上記被膜は金属単体であってもよい。その他、立方晶窒化硼素(cBN)、ダイヤモンドライクカーボン等も、被膜の組成として好適である。このような被膜は、化学的蒸着(CVD)法、物理的蒸着(PVD)法等の気相法により形成することができる。被膜がCVD法により形成されていると、基材との密着性に優れる被膜が得られ易い。CVD法としては、例えば、熱CVD法等が挙げられる。被膜がPVD法により形成されていると、圧縮残留応力が付与され、切削工具等の靱性を高め易い。
本実施形態に係る切削工具における被膜は、基材における刃先となる部分とその近傍に設けられていることが好ましい。上記被膜は、基材の表面全体に設けられていてもよい。また、被膜は、単層でも多層でもよい。被膜の厚みは、1μm以上20μm以下であってもよいし、1.5μm以上15μm以下であってもよい。
以下、実施例を挙げて本発明を詳細に説明するが、本発明はこれらに限定されるものではない。
≪超硬合金の作製≫
<準備工程>
(CoNiFeCu合金粉末の作製)
結合相の原料である、CoNiFeCu合金の粉末(以下、「CoNiFeCu合金粉末」という場合がある。)を以下の方法で作製した。当該CoNiFeCu合金粉末は、上述の「CoNiFeCu合金粒子」に対応する。まず、表1に示す配合組成で原料粉末を配合し、アトマイズ法によってCoNiFeCu合金を作製した。
<準備工程>
(CoNiFeCu合金粉末の作製)
結合相の原料である、CoNiFeCu合金の粉末(以下、「CoNiFeCu合金粉末」という場合がある。)を以下の方法で作製した。当該CoNiFeCu合金粉末は、上述の「CoNiFeCu合金粒子」に対応する。まず、表1に示す配合組成で原料粉末を配合し、アトマイズ法によってCoNiFeCu合金を作製した。
次に、得られたCoNiFeCu合金を、以下の条件でビーズミルによって粉砕した。粉砕処理によって得られたCoNiFeCu合金を含むスラリーを真空中で乾燥させた。以上の手順で、FSSS粒子径が1.5μmのCoNiFeCu合金粉末を得た。
[ビーズミルによる粉砕の条件]
ビーズ :粒径1.0mm
分散媒 :エタノールまたはアセトン
処理時間:8時間
(その他の原料粉末の準備)
原料粉末として、表1に示す組成の粉末を準備した。表1におけるWC、TaCおよび上記CoNiFeCu合金粉末以外の結合相として用いられた原料粉末はそれぞれ以下の粉末を用いた。なお、試料No.106は結合相としてAl、Cr、Cu、Fe、Mn、TiおよびVをモル比率1:1:1:1:1:1:1で配合したHEA粉末を(特許文献1の実施例1に相当)、試料No.107は結合相としてCo、Cr、Cu、FeおよびNiを原子比率1:1:1:1:1で配合したHEA粉末を(特許文献2の実施例2に相当)、それぞれ使用した。試料No.106および107の各元素の粒子は、市販品を使用した。
WC :FSSS粒子径:2.0μm(試料No.9:0.7μm、試料No.10:5.0μm)
Co :FSSS粒子径:1.1μm
Ni :FSSS粒子径:3.3μm
Fe :FSSS粒子径:3.0μm
Cu :FSSS粒子径:2.8μm
TaC:FSSS粒子径:1.8μm
<混合工程>
準備した各原料粉末を表1に記載の配合割合で加えて、アトライターを用いて混合し、混合粉末を作製した。混合条件を以下に示す。混合後、得られたスラリーを大気中で乾燥させ混合粉末を得た。
[アトライターの混合条件]
ボール :超硬合金製、直径3.5mm
分散媒 :エタノール
攪拌子の回転速度:100rpm
処理時間 :12時間
<成形工程>
得られた混合粉末をプレス成形して、型番SNG432(住友電工ハードメタル株式会社製)(刃先交換型切削チップ)の形状の成形体を作製した。
[ビーズミルによる粉砕の条件]
ビーズ :粒径1.0mm
分散媒 :エタノールまたはアセトン
処理時間:8時間
(その他の原料粉末の準備)
原料粉末として、表1に示す組成の粉末を準備した。表1におけるWC、TaCおよび上記CoNiFeCu合金粉末以外の結合相として用いられた原料粉末はそれぞれ以下の粉末を用いた。なお、試料No.106は結合相としてAl、Cr、Cu、Fe、Mn、TiおよびVをモル比率1:1:1:1:1:1:1で配合したHEA粉末を(特許文献1の実施例1に相当)、試料No.107は結合相としてCo、Cr、Cu、FeおよびNiを原子比率1:1:1:1:1で配合したHEA粉末を(特許文献2の実施例2に相当)、それぞれ使用した。試料No.106および107の各元素の粒子は、市販品を使用した。
WC :FSSS粒子径:2.0μm(試料No.9:0.7μm、試料No.10:5.0μm)
Co :FSSS粒子径:1.1μm
Ni :FSSS粒子径:3.3μm
Fe :FSSS粒子径:3.0μm
Cu :FSSS粒子径:2.8μm
TaC:FSSS粒子径:1.8μm
<混合工程>
準備した各原料粉末を表1に記載の配合割合で加えて、アトライターを用いて混合し、混合粉末を作製した。混合条件を以下に示す。混合後、得られたスラリーを大気中で乾燥させ混合粉末を得た。
[アトライターの混合条件]
ボール :超硬合金製、直径3.5mm
分散媒 :エタノール
攪拌子の回転速度:100rpm
処理時間 :12時間
<成形工程>
得られた混合粉末をプレス成形して、型番SNG432(住友電工ハードメタル株式会社製)(刃先交換型切削チップ)の形状の成形体を作製した。
<焼結工程>
得られた成形体を焼結炉に入れ、Arガス雰囲気中(0.5kPa)、表1に記載の焼結温度および焼結時間で焼結した。
得られた成形体を焼結炉に入れ、Arガス雰囲気中(0.5kPa)、表1に記載の焼結温度および焼結時間で焼結した。
焼結完了後、Arガス雰囲気中で常温にまで冷却した。このとき、表1に示す焼結温度から常温までは、20℃/分の降温速度で冷却した。以上より、試料No.1~15の超硬合金および試料No.101~107の超硬合金を作製した。試料No.1~15の超硬合金は、実施例に対応する。試料No.101~107の超硬合金は、比較例に対応する。
比較例について、試料No.101および105は、結合相の組成がCo単体からなる超硬合金である。試料No.102は、第二硬質相としてTaCを原料粉末に添加した超硬合金である。試料No.103および104は、結合相の組成はCo、Ni、FeおよびCuからなるが、各元素の原子濃度が本開示の要件を満たさない超硬合金である。試料No.106は、特許文献1の実施例1に相当し、結合相の組成がAl、Cr、Cu、Fe、Mn、TiおよびVからなるHEAを含む超硬合金である。試料No.107は、特許文献2の実施例2に相当し、結合相の組成がCo、Cr、Cu、FeおよびNiからなるHEAを含む超硬合金である。
≪試料の観察≫
<炭化タングステン粒子の平均粒径の算出>
作製した試料No.1~15および試料No.101~107の超硬合金を辺部から0.1mm以上離れた面で切断して得た切断面を鏡面加工した。その後、鏡面加工した切断面をアルゴンイオンビームによってイオンミリング加工し、これらの断面を顕微鏡用観察試料とした。
<炭化タングステン粒子の平均粒径の算出>
作製した試料No.1~15および試料No.101~107の超硬合金を辺部から0.1mm以上離れた面で切断して得た切断面を鏡面加工した。その後、鏡面加工した切断面をアルゴンイオンビームによってイオンミリング加工し、これらの断面を顕微鏡用観察試料とした。
この観察試料の鏡面加工面を、走査型透過電子顕微鏡(SEM)(日本電子社製)により2000倍の倍率で撮影した。この撮影は、各試料に対して、上記鏡面加工面の外側および上記鏡面加工面の中心のそれぞれを10視野ずつ行った。
各試料において、1視野につき、炭化タングステン粒子300個以上について、画像解析式粒度分布ソフトウェア(株式会社マウンテック社製「Mac-View」)を用いて、個々の粒子の粒径(Heywood径)を求め、計10視野における焼結後の炭化タングステン粒子の平均粒径を算出した。その結果、焼結後の炭化タングステン粒子の平均粒径は、原料として用いたWC粒子の平均粒径にほぼ等しいことが分かった。結果を表1の「第一硬質相の平均粒径」の欄に示す。なお、粒径の測定に際し、SEMに付属のエネルギー分散型X線分光分析(EDS)装置を用いて元素マッピングを行うことで、WとCとを含む粒子を炭化タングステン粒子として特定した。
<第一硬質相、結合相および第二硬質相の面積比率の算出>
画像解析式粒度分布ソフトウェア(株式会社マウンテック社製「Mac-View」)を用いて、以下の条件により2値化処理を行い2値化像を得た。上記2値化像に基づき、上記各試料の鏡面加工面における第一硬質相、結合相および第二硬質相の面積比率を求めた。算出した第二硬質相の面積比率を表1に示す。なお、鏡面加工面は表面から500μmの部分とした。
[2値化処理の条件]
第一硬質相の明度のしきい値:115
結合相の明度のしきい値 :62
第二硬質相の明度のしきい値:88
<結合相の組成分析>
上記各試料の加工面における結合相をICP発光分光測定法(Inductively Coupled Plasma発光分光測定法)によって分析して上記結合相の組成を求めた。その結果、結合相の組成は、原料粉末の配合割合(表1)に対応することがわかった。
画像解析式粒度分布ソフトウェア(株式会社マウンテック社製「Mac-View」)を用いて、以下の条件により2値化処理を行い2値化像を得た。上記2値化像に基づき、上記各試料の鏡面加工面における第一硬質相、結合相および第二硬質相の面積比率を求めた。算出した第二硬質相の面積比率を表1に示す。なお、鏡面加工面は表面から500μmの部分とした。
[2値化処理の条件]
第一硬質相の明度のしきい値:115
結合相の明度のしきい値 :62
第二硬質相の明度のしきい値:88
<結合相の組成分析>
上記各試料の加工面における結合相をICP発光分光測定法(Inductively Coupled Plasma発光分光測定法)によって分析して上記結合相の組成を求めた。その結果、結合相の組成は、原料粉末の配合割合(表1)に対応することがわかった。
<結合相におけるCo、Ni、FeおよびCuの各元素の面積比率>
まず、クロスセクションポリッシャー装置(CP装置)を用いて得た断面を、SEMにて5000倍で撮像して、10枚の電子画像を得た。上記電子画像を、画像解析式粒度分布ソフトウェア(株式会社マウンテック製「Mac-View」)を用いて、上述の「<第一硬質相、結合相および第二硬質相の面積比率の算出>」の際と同様の条件で2値化処理を行い2値化像を得た。上記2値化像に基づき、結合相を検出した。上記検出された結合相について、SEMに付属のエネルギー分散型X線分光分析(EDS)を用いて、12μm×9μmの複数の領域について、元素マッピングを行った。上記元素マッピングにおいて、Co、Ni、FeおよびCuのうちいずれかの元素の含有比率が結合相の他の領域よりも高くまたは低く検出された場合、その結合相の面積中心付近で点分析を行い、Co、Ni、FeおよびCuの測定値についてその合計量を100とした際の各元素の含有比率を算出した。当該含有比率と、上述のICP発光分光測定によって算出した各元素の含有比率とを比較し、両含有比率の差異が85%以下115%以上となる場合は、画像解析式粒度分布ソフトウェア(株式会社マウンテック製「Mac-View」)を用いて、その結合相の面積を測定し、上記超硬合金全体に占める面積比率を算出した。その結果を表1の「結合相中の偏在領域の面積比率」の欄に示す。
まず、クロスセクションポリッシャー装置(CP装置)を用いて得た断面を、SEMにて5000倍で撮像して、10枚の電子画像を得た。上記電子画像を、画像解析式粒度分布ソフトウェア(株式会社マウンテック製「Mac-View」)を用いて、上述の「<第一硬質相、結合相および第二硬質相の面積比率の算出>」の際と同様の条件で2値化処理を行い2値化像を得た。上記2値化像に基づき、結合相を検出した。上記検出された結合相について、SEMに付属のエネルギー分散型X線分光分析(EDS)を用いて、12μm×9μmの複数の領域について、元素マッピングを行った。上記元素マッピングにおいて、Co、Ni、FeおよびCuのうちいずれかの元素の含有比率が結合相の他の領域よりも高くまたは低く検出された場合、その結合相の面積中心付近で点分析を行い、Co、Ni、FeおよびCuの測定値についてその合計量を100とした際の各元素の含有比率を算出した。当該含有比率と、上述のICP発光分光測定によって算出した各元素の含有比率とを比較し、両含有比率の差異が85%以下115%以上となる場合は、画像解析式粒度分布ソフトウェア(株式会社マウンテック製「Mac-View」)を用いて、その結合相の面積を測定し、上記超硬合金全体に占める面積比率を算出した。その結果を表1の「結合相中の偏在領域の面積比率」の欄に示す。
≪評価試験≫
<耐反応性試験>
以下、本実施形態における超硬合金の耐反応性試験について、図1を用いて説明する。上述のようにして作製した試料No.1~15、試料No.101~107の超硬合金1、および、インコネル718(被削材5)を切断して上述の「<結合相におけるCo、Ni、FeおよびCuの各元素の面積比率>」の際と同様の方法で加工した。上記加工した各試料の断面と被削材5の断面とを重ね合わせ、10kPa以上の一定圧力下で保持した状態で真空中900℃で1時間の加熱を行った。加熱処理後の超硬合金1と被削材5との接合物を切断して上述の「<結合相におけるCo、Ni、FeおよびCuの各元素の面積比率>」の際と同様の方法で加工し、上記の接合物接合面と垂直な断面を顕微鏡用観察試料とした。
<耐反応性試験>
以下、本実施形態における超硬合金の耐反応性試験について、図1を用いて説明する。上述のようにして作製した試料No.1~15、試料No.101~107の超硬合金1、および、インコネル718(被削材5)を切断して上述の「<結合相におけるCo、Ni、FeおよびCuの各元素の面積比率>」の際と同様の方法で加工した。上記加工した各試料の断面と被削材5の断面とを重ね合わせ、10kPa以上の一定圧力下で保持した状態で真空中900℃で1時間の加熱を行った。加熱処理後の超硬合金1と被削材5との接合物を切断して上述の「<結合相におけるCo、Ni、FeおよびCuの各元素の面積比率>」の際と同様の方法で加工し、上記の接合物接合面と垂直な断面を顕微鏡用観察試料とした。
上述のようにして作製した観察試料の加工面を、走査型透過電子顕微鏡(SEM)(日本電子社製)により1500倍の倍率で撮影した。このようにして撮影したSEM画像の一例を図1に示す。図1のSEM画像においては、上記の加熱処理により元素の拡散が進行し、超硬合金1と被削材5との接触面2から超硬合金1の内部に向かって一定の範囲でSEM画像におけるコントラストが超硬合金1内で明るくなる層(拡散層3)が観察された。上記SEM画像の視野内で拡散層3と通常の超硬合金組織との界面6のうち、もっとも被削材5から遠くにある点4と、上記点4から接触面2に向かって垂直に引いた線の長さを拡散層の厚みTと定義し、被削材5との接触面2が写る視野3枚以上の拡散層の厚みTの平均値を測定した。その結果を表1の「拡散相の平均厚み」の欄に示す。拡散層の厚みTの平均値が小さい程、Ni基合金との耐反応性に優れる超硬合金1として評価できる。
試料No.1~15の超硬合金(実施例)と、試料No.101~107の超硬合金(比較例)とを比較すると、実施例の方が比較例よりも耐反応性に優れている傾向がみられた。このことは、実施例に係る超硬合金は、結合相における、Co、Ni、FeおよびCuの総量に対する、Co、Ni、FeおよびCuの各元素の平均含有比率が、全て10at%以上30at%以下にすることによって、比較例に係る超硬合金よりも、耐反応性に優れることを示唆している。また、実施例に係る超硬合金は、配合組成として第二硬質相(TaC)を含まないか、または、TaCの含有量が超硬合金の総量に対して2質量%以下であることによって、TaCを4質量%含む試料No.102に係る超硬合金よりも、耐反応性に優れることも示唆している。
<耐摩耗性試験>
各試料の表面に、公知のPVD法の一種であるイオンプレーティング法で硬質膜を形成して切削試験用の切削工具を作製した。硬質膜は、厚さ4.8μmのTiAlN膜とした。以下、試料No.1の超硬合金を基材として用いた切削工具を「試料No.1の切削工具」等と表記する。試料No.1以外の試料についても同様である。
各試料の表面に、公知のPVD法の一種であるイオンプレーティング法で硬質膜を形成して切削試験用の切削工具を作製した。硬質膜は、厚さ4.8μmのTiAlN膜とした。以下、試料No.1の超硬合金を基材として用いた切削工具を「試料No.1の切削工具」等と表記する。試料No.1以外の試料についても同様である。
上述のようにして作製した試料No.1~15および試料No.101~107の切削工具を用いて、以下の切削条件により、逃げ面摩耗量Vbが0.3mmになるまでの切削時間(秒)を測定した。その結果を表1の「切削時間」の欄に示す。切削時間が長い程、耐摩耗性に優れる切削工具として評価できる。また、本試験に用いている被削材は、難削材として知られている超硬合金であり、切削加工時に切削工具の刃先部が高温になっていると考えられる。そのため、切削時間が長いほど、耐熱性に優れる切削工具としても評価できる。
[耐摩耗性試験の条件]
被削材 :インコネル718
切削速度:50m/min
送り量 :0.15mm/rev
切込み量:1.5mm
切削油 :あり
試料No.1~15の切削工具(実施例)と、試料No.101~107の切削工具(比較例)とを比較すると、全体的に実施例の方が比較例よりも耐摩耗性および耐熱性に優れている傾向がみられた。このことは、実施例に係る超硬合金は、結合相における、Co、Ni、FeおよびCuの総量に対する、Co、Ni、FeおよびCuの各元素の平均含有比率が、全て10at%以上30at%以下にすることによって、比較例に係る超硬合金よりも、耐摩耗性および耐熱性に優れることを示唆している。また、実施例に係る超硬合金は、配合組成として第二硬質相(TaC)を含まないか、または、TaCの含有量が超硬合金の総量に対して2質量%以下であることによって、TaCを4質量%含む試料No.102に係る超硬合金よりも、耐摩耗性および耐熱性に優れることも示唆している。
[耐摩耗性試験の条件]
被削材 :インコネル718
切削速度:50m/min
送り量 :0.15mm/rev
切込み量:1.5mm
切削油 :あり
試料No.1~15の切削工具(実施例)と、試料No.101~107の切削工具(比較例)とを比較すると、全体的に実施例の方が比較例よりも耐摩耗性および耐熱性に優れている傾向がみられた。このことは、実施例に係る超硬合金は、結合相における、Co、Ni、FeおよびCuの総量に対する、Co、Ni、FeおよびCuの各元素の平均含有比率が、全て10at%以上30at%以下にすることによって、比較例に係る超硬合金よりも、耐摩耗性および耐熱性に優れることを示唆している。また、実施例に係る超硬合金は、配合組成として第二硬質相(TaC)を含まないか、または、TaCの含有量が超硬合金の総量に対して2質量%以下であることによって、TaCを4質量%含む試料No.102に係る超硬合金よりも、耐摩耗性および耐熱性に優れることも示唆している。
以上のように本発明の実施形態および実施例について説明を行なったが、上述の各実施形態および各実施例の構成を適宜組み合わせることも当初から予定している。
今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態および実施例ではなく請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
1 超硬合金、2 超硬合金と被削材との接触面、3 拡散相、4 拡散層と通常の超硬合金組織との界面のうち、もっとも被削材から遠くにある点、5 被削材、6 通常の超硬合金組織との界面、T 拡散層の厚み。
Claims (4)
- 第一硬質相と結合相とを含む超硬合金であって、
前記第一硬質相は、炭化タングステン粒子からなり、
前記結合相は、構成元素としてコバルト、ニッケル、鉄および銅からなり、
前記結合相における、前記構成元素の各々の平均含有比率は、全て10原子%以上30原子%以下であり、
第二硬質相を含まないか、または、前記第二硬質相の含有量が前記超硬合金の総量に対して2質量%以下であり、
前記第二硬質相は、周期表4族元素、5族元素およびタングステンを除く6族元素からなる群より選択される一種以上の金属元素と、炭素、窒素および酸素からなる群より選択される一種以上の元素と、を含む化合物からなる、超硬合金。 - 前記超硬合金の任意の断面において、
前記構成元素のうちの少なくとも1つの含有比率の割合が前記平均含有比率に対して85%以下115%以上である領域を偏在領域とすると、
前記結合相中の前記偏在領域の合計面積が、前記結合相の全体の面積に対して、6%以下である、請求項1に記載の超硬合金。 - 請求項1または請求項2に記載の超硬合金を基材として含む切削工具。
- 前記基材上に設けられている被膜を更に備える、請求項3に記載の切削工具。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021528975A JP7103565B1 (ja) | 2020-12-23 | 2020-12-23 | 超硬合金およびそれを基材として含む切削工具 |
CN202080104068.8A CN116096931A (zh) | 2020-12-23 | 2020-12-23 | 硬质合金以及包含该硬质合金作为基材的切削工具 |
US17/425,341 US11530467B2 (en) | 2020-12-23 | 2020-12-23 | Cemented carbide and cutting tool containing the same as substrate |
PCT/JP2020/048248 WO2022137400A1 (ja) | 2020-12-23 | 2020-12-23 | 超硬合金およびそれを基材として含む切削工具 |
EP20966891.2A EP4170053B1 (en) | 2020-12-23 | 2020-12-23 | Cemented carbide and cutting tool containing the same as substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/048248 WO2022137400A1 (ja) | 2020-12-23 | 2020-12-23 | 超硬合金およびそれを基材として含む切削工具 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022137400A1 true WO2022137400A1 (ja) | 2022-06-30 |
Family
ID=82022097
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/048248 WO2022137400A1 (ja) | 2020-12-23 | 2020-12-23 | 超硬合金およびそれを基材として含む切削工具 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11530467B2 (ja) |
EP (1) | EP4170053B1 (ja) |
JP (1) | JP7103565B1 (ja) |
CN (1) | CN116096931A (ja) |
WO (1) | WO2022137400A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115354203B (zh) * | 2022-08-02 | 2024-02-06 | 中国矿业大学 | 高耐磨、耐高温高熵基复合材料及其制备方法 |
CN116426860B (zh) * | 2023-06-12 | 2023-09-26 | 四川大学 | 基于hBN的硬密封控制阀用宽温域自润滑涂层制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009074173A (ja) | 2007-09-19 | 2009-04-09 | Ind Technol Res Inst | 超硬複合材料およびその製造方法 |
CN109161773A (zh) * | 2018-09-21 | 2019-01-08 | 成都理工大学 | 一种高熵合金粘结相硬质合金的制备方法 |
JP2019516007A (ja) | 2016-02-29 | 2019-06-13 | サンドビック インテレクチュアル プロパティー アクティエボラーグ | 代替バインダーを含む超硬合金 |
CN110846547A (zh) * | 2019-12-02 | 2020-02-28 | 燕山大学 | 一种高熵合金结合的碳化钨硬质合金及其制备方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU512633B2 (en) * | 1976-12-21 | 1980-10-23 | Sumitomo Electric Industries, Ltd. | Sintered tool |
US6589602B2 (en) * | 2001-04-17 | 2003-07-08 | Toshiba Tungaloy Co., Ltd. | Highly adhesive surface-coated cemented carbide and method for producing the same |
US8440314B2 (en) * | 2009-08-25 | 2013-05-14 | TDY Industries, LLC | Coated cutting tools having a platinum group metal concentration gradient and related processes |
CN109112378B (zh) * | 2018-09-21 | 2020-10-20 | 四川煜兴新型材料科技有限公司 | 一种新粘结相硬质合金材料的制备方法 |
CN109518057A (zh) * | 2018-10-11 | 2019-03-26 | 东莞理工学院 | 一种由高熵合金钴镍铁铝铜粘结的碳化钨材料及其制备方法和应用 |
CN109234599A (zh) * | 2018-11-22 | 2019-01-18 | 江苏苏鑫管夹制造有限公司 | 一种高性能钨合金棒及其制备方法 |
-
2020
- 2020-12-23 JP JP2021528975A patent/JP7103565B1/ja active Active
- 2020-12-23 US US17/425,341 patent/US11530467B2/en active Active
- 2020-12-23 WO PCT/JP2020/048248 patent/WO2022137400A1/ja unknown
- 2020-12-23 CN CN202080104068.8A patent/CN116096931A/zh active Pending
- 2020-12-23 EP EP20966891.2A patent/EP4170053B1/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009074173A (ja) | 2007-09-19 | 2009-04-09 | Ind Technol Res Inst | 超硬複合材料およびその製造方法 |
JP2019516007A (ja) | 2016-02-29 | 2019-06-13 | サンドビック インテレクチュアル プロパティー アクティエボラーグ | 代替バインダーを含む超硬合金 |
CN109161773A (zh) * | 2018-09-21 | 2019-01-08 | 成都理工大学 | 一种高熵合金粘结相硬质合金的制备方法 |
CN110846547A (zh) * | 2019-12-02 | 2020-02-28 | 燕山大学 | 一种高熵合金结合的碳化钨硬质合金及其制备方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4170053A4 |
Also Published As
Publication number | Publication date |
---|---|
EP4170053B1 (en) | 2024-06-05 |
CN116096931A (zh) | 2023-05-09 |
EP4170053A1 (en) | 2023-04-26 |
JP7103565B1 (ja) | 2022-07-20 |
US11530467B2 (en) | 2022-12-20 |
US20220195566A1 (en) | 2022-06-23 |
JPWO2022137400A1 (ja) | 2022-06-30 |
EP4170053A4 (en) | 2023-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6953674B2 (ja) | 超硬合金及び切削工具 | |
KR102437256B1 (ko) | 초경 합금, 그것을 포함하는 절삭 공구 및 초경 합금의 제조 방법 | |
JP2011080153A (ja) | 超硬合金および切削工具 | |
JP7388431B2 (ja) | 超硬合金及びそれを基材として含む切削工具 | |
WO2019116614A1 (ja) | 超硬合金及び切削工具 | |
WO2022137400A1 (ja) | 超硬合金およびそれを基材として含む切削工具 | |
JP7392423B2 (ja) | 超硬合金及びそれを基材として含む切削工具 | |
WO2022137399A1 (ja) | 超硬合金およびそれを基材として含む切削工具 | |
WO2019220533A1 (ja) | サーメット、それを含む切削工具およびサーメットの製造方法 | |
JP7392714B2 (ja) | 超硬合金及びそれを基材として含む切削工具 | |
JP7517483B2 (ja) | 超硬合金及びそれを基材として含む切削工具 | |
JP6843096B2 (ja) | 立方晶窒化硼素焼結体、及び、立方晶窒化硼素焼結体を有する工具 | |
JP2005097646A (ja) | 傾斜組織焼結合金およびその製造方法 | |
JP7494952B2 (ja) | 超硬合金及びそれを基材として含む切削工具 | |
JP6459106B1 (ja) | 超硬合金及び切削工具 | |
JP7346751B1 (ja) | 立方晶窒化硼素焼結体 | |
JP6770692B2 (ja) | 超硬合金及び被覆超硬合金 | |
TW202436639A (zh) | 超硬合金及包含其之工具 | |
JP2022130147A (ja) | 切削工具 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2021528975 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20966891 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020966891 Country of ref document: EP Effective date: 20230117 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |