WO2022137306A1 - 充電制御方法及び充電制御システム - Google Patents

充電制御方法及び充電制御システム Download PDF

Info

Publication number
WO2022137306A1
WO2022137306A1 PCT/JP2020/047776 JP2020047776W WO2022137306A1 WO 2022137306 A1 WO2022137306 A1 WO 2022137306A1 JP 2020047776 W JP2020047776 W JP 2020047776W WO 2022137306 A1 WO2022137306 A1 WO 2022137306A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage battery
temperature
battery
value
secondary battery
Prior art date
Application number
PCT/JP2020/047776
Other languages
English (en)
French (fr)
Inventor
吉正 土岐
徐斌 周
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to JP2022570791A priority Critical patent/JP7556408B2/ja
Priority to EP20966179.2A priority patent/EP4266448A4/en
Priority to PCT/JP2020/047776 priority patent/WO2022137306A1/ja
Priority to MX2023007392A priority patent/MX2023007392A/es
Priority to US18/268,525 priority patent/US20240039322A1/en
Priority to CN202080108110.3A priority patent/CN116636065A/zh
Publication of WO2022137306A1 publication Critical patent/WO2022137306A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • H02J7/007194Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature of the battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/443Methods for charging or discharging in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/633Control systems characterised by algorithms, flow charts, software details or the like
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/62Monitoring or controlling charging stations in response to charging parameters, e.g. current, voltage or electrical charge
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the secondary battery is charged by the current value determined based on the remaining capacity of the secondary battery.
  • the calorific value of the secondary battery is determined by the current and the internal resistance. Therefore, in order to continuously execute charging, it is important to set an appropriate charging current value in consideration of the amount of heat generated and suppress the temperature rise of the secondary battery during charging.
  • An object of the present invention is to continuously execute charging while suppressing a temperature rise of a secondary battery.
  • FIG. 1 is a block diagram showing a configuration example of a secondary battery control system according to the present embodiment.
  • FIG. 2A is a diagram showing an example of power transition when charging a high voltage battery.
  • FIG. 2B is a diagram showing an example of voltage transition when charging a high voltage battery.
  • FIG. 2C is a diagram showing an example of current transition when charging a high-voltage battery.
  • FIG. 3A is a diagram showing an example of the relationship between the battery temperature and the maximum current during charging.
  • FIG. 3B is a graph showing an example of the relationship between the battery temperature and the maximum current during charging shown in FIG. 3A as a graph.
  • FIG. 4 is a flowchart showing an example of the processing procedure of the charge control processing of the high voltage battery by the VCM.
  • FIG. 4 is a flowchart showing an example of the processing procedure of the charge control processing of the high voltage battery by the VCM.
  • FIG. 11 is a flowchart showing an example of the processing procedure of the charge control processing of the high voltage battery by the VCM.
  • FIG. 12 is a flowchart showing an example of the processing procedure of the charge control processing of the high voltage battery by the VCM.
  • FIG. 13 is a flowchart showing an example of the processing procedure of the charge control processing of the high voltage battery by the VCM.
  • FIG. 14 is a flowchart showing an example of the processing procedure of the charge control processing of the high voltage battery by the VCM.
  • FIG. 15 is a flowchart showing an example of the processing procedure of the charge control processing of the high voltage battery by the VCM.
  • FIG. 16 is a flowchart showing an example of the processing procedure of the charge control processing of the high voltage battery by the VCM.
  • FIG. 1 is a block diagram showing a configuration example of the secondary battery control system 1 according to the present embodiment.
  • the secondary battery control system 1 is a system that controls the charging and discharging of the secondary battery mounted on a vehicle such as an electric vehicle or a hybrid vehicle.
  • the secondary battery supplies electric power to in-vehicle devices such as vehicle drive motors and auxiliary equipment.
  • the secondary battery is also a battery that can be charged by a charger of an in-vehicle device or a charging device outside the vehicle.
  • a lithium ion battery, a lead battery, a nickel hydrogen battery, or the like can be used.
  • the secondary battery mounted on the moving body will be described as an example, but the secondary battery mounted for stationary use can also be applied.
  • SDSW111 is a switch that switches on / off the high-voltage battery 110's high-voltage circuit. That is, by operating the SDSW111 during work or emergency, the circuit can be cut off, and it becomes possible to safely respond to work or emergency.
  • the relay 112 is a relay that switches on / off charging / discharging of the high-voltage battery 110 based on a control signal from the VCM 10 via the signal line 11.
  • temperature sensors 121 to 123 Inside or outside the secondary battery unit 100, temperature sensors 121 to 123, a current sensor 130, a total voltage sensor 140, and cell voltage sensors 151 to 153 are provided.
  • the temperature sensors 121 to 123 are temperature sensors that detect the temperature of the high-voltage battery 110, and output the detection result to the BMS 160.
  • FIG. 1 shows an example in which the secondary battery unit 100 is provided with a plurality of temperature sensors
  • one temperature sensor may be installed in the secondary battery unit 100.
  • it is preferable to install it at a position where the temperature is most likely to rise in the secondary battery unit 100, for example, in the central portion.
  • a plurality of temperature sensors when a plurality of temperature sensors are installed, they may be installed at a position in the secondary battery unit 100 where the temperature is most likely to rise and a position around the temperature.
  • the installation location of the plurality of temperature sensors can be appropriately set depending on the layout and running conditions in the secondary battery unit 100.
  • the current sensor 130 is a current sensor that detects the current of the charge current and the discharge current of the high voltage battery 110, and outputs the detection result to the BMS 160.
  • the total voltage sensor 140 is a voltage sensor that detects the total voltage of the high voltage battery 110, and outputs the detection result to the BMS 160. When the high-voltage battery 110 is charged, the detection value of the charging voltage is obtained based on the detection result.
  • the cell voltage sensors 151 to 153 are cell voltage sensors that detect the voltage of each cell constituting the high-voltage battery 110, and output the detection result to the BMS 160. That is, the cell voltage sensors 151 to 153 are installed in each cell constituting the high voltage battery 110, and the voltage of each cell is detected.
  • the BMS 160 is a control device including an SOC (States Of Charge) calculation unit 161 and a SOH (State of Health) calculation unit 162, and manages the capacity, temperature, voltage, etc. of the high-voltage battery 110.
  • the SOC is a value (0 to 100%) indicating the state of charge of the high-voltage battery 110.
  • SOH is a value (0 to 100%) indicating a deteriorated state of the high-voltage battery 110. Specifically, the smaller the SOH value, the more the deterioration of the high-voltage battery 110 is, and the larger the SOH value, the closer to the state at the time of product shipment (hereinafter, referred to as the initial state).
  • the SOC calculation unit 161 calculates the SOC of the high-voltage battery 110 by a known calculation method, and outputs the calculation result to the VCM 10.
  • the SOH calculation unit 162 calculates the SOH of the high-voltage battery 110 by a known calculation method, and outputs the calculation result to the VCM 10. For example, the SOH calculation unit 162 acquires the internal resistance of the high voltage battery 110 based on the calculation result by the internal resistance calculation unit (not shown). Then, the SOH calculation unit 162 calculates the SOH of the high-voltage battery 110 based on the internal resistance thereof, the internal resistance in the initial state, and the temperature of the high-voltage battery 110 detected by the temperature sensors 121 to 123. Further, for example, the SOH calculation unit 162 may calculate the SOH of the high-voltage battery 110 based on the capacity of the high-voltage battery 110.
  • the VCM 10 is a vehicle control device that controls the entire vehicle, and is a microcomputer equipped with a central processing unit (CPU), a read-only memory (ROM), a random access memory (RAM), and an input / output interface (I / O interface). It is composed. It is also possible to configure the VCM 10 with a plurality of microcomputers.
  • CPU central processing unit
  • ROM read-only memory
  • RAM random access memory
  • I / O interface input / output interface
  • the DC / DC 20 is a DCDC converter that lowers the voltage to a predetermined voltage value when supplying power from the high-voltage battery 110 to a low-voltage battery (not shown) for supplying power to accessories.
  • the AC30 is an air cooling system that cools the interior of the vehicle and each part of the vehicle with a predetermined refrigerant by exchanging heat with air taken in from the outside based on the control of the VCM10.
  • the PTC 40 is a device that increases the resistance and limits the current when an abnormally large current flows through the high voltage battery 110.
  • the PTC 40 may be incorporated inside the high-voltage battery 110, or may be installed outside the high-voltage battery 110.
  • the INV50 is electrically connected to the MOT60 and the high voltage battery 110.
  • the INV 50 is configured to convert the AC power generated by the MOT 60 into DC power and supply it to the high-voltage battery 110, and convert the DC power output from the high-voltage battery 110 into AC power and supply it to the MOT 60.
  • the INV50 functions as an inverter for a drive motor and a power generation motor.
  • the MOT60 is rotationally driven by an alternating current supplied from the INV50 during power running operation to generate a driving force to be supplied to the drive wheels. Further, the MOT 60 generates electric energy recovered by the high voltage battery 110 during the regenerative operation. In this way, the MOT 60 functions as a drive motor and a power generation motor.
  • the Charger 70 is a charging circuit (DCDC converter or inverter) connected to an external charger (including a quick charger), and outputs the power supplied from the charger to the high-pressure battery 110.
  • DCDC converter or inverter connected to an external charger (including a quick charger), and outputs the power supplied from the charger to the high-pressure battery 110.
  • the charging voltage and the charging current are set based on the control of the VCM 10.
  • FIG. 2A is a diagram showing an example of power transition when the high voltage battery 110 is charged.
  • the vertical axis of FIG. 2A shows the electric power when charging the high voltage battery 110.
  • the horizontal axis of FIG. 2A indicates a time axis.
  • the horizontal axis of FIGS. 2B and 2C also indicates the time axis.
  • FIG. 2C is a diagram showing an example of current transition when charging the high voltage battery 110.
  • the vertical axis of FIG. 2B shows the current when the high voltage battery 110 is charged.
  • the calorific value of the high-voltage battery 110 in order to control the calorific value of the high-voltage battery 110 to be constant, an example of executing charge control to keep the current during charging constant is shown. That is, in the present embodiment, an example is shown in which the calorific value of the high-voltage battery 110 is controlled to be constant and the temperature rise of the high-voltage battery 110 during charging is suppressed.
  • charge control in the case of charging from an external charger for example, quick charge (QC) will be described as an example.
  • the charge control in the present embodiment can also be applied to the charge inside the vehicle, for example, the surplus charge while the vehicle is running.
  • FIG. 3A is a diagram showing an example of the relationship between the battery temperature and the charging current during charging.
  • FIG. 3B is a graph showing an example of the relationship between the battery temperature and the charging current during charging shown in FIG. 3A as a graph.
  • the vertical axis shows the charging current at the time of charging
  • the horizontal axis shows the battery temperature at the time of charging.
  • the range of BT1 to BT13 can be in the range of about 45 to 60 ° C.
  • MC1 a value of about 125A can be set.
  • constant current charging is executed with the charging current value MC1 until the battery temperature exceeds the first threshold value BT2 (a value lower than the traveling output limit temperature BT13). Then, when the battery temperature exceeds the first threshold value BT2, the charging current value based on the battery temperature (first limiting current value MC2 smaller than the charging current value MC1) is shifted, and constant current charging is continued. Further, when the nth threshold temperature higher than the n-1th (n is an integer of 2 or more) threshold temperature and lower than the traveling output limit temperature BT13 is exceeded, the nth nth is smaller than the n-1th limit current value. Continue charging at the current limit.
  • the current throttle allowance in the real-time current limitation is larger at the initial stage of the limitation (immediately after the first threshold value BT2 is exceeded) and becomes smaller as the battery temperature rises.
  • > ... can be.
  • the current throttle allowance may be set to a constant value.
  • the current throttle allowance after exceeding the fourth threshold value BT5 can be set to a constant value.
  • the charging current value is set by using other factors (for example, SOH, outside air temperature, calorific value, heat removal amount, cooling state) together with the battery temperature. be able to. In this way, the heat generation amount of the high-voltage battery 110 can be gradually reduced, the heat balance can be adjusted, and the battery temperature can be stabilized.
  • the relationship between the battery temperature and the maximum current during charging can be set by a constant map (temperature-current map).
  • the grid points (white circles, black circles) in the constant map can be referred to as current limit values specified by the temperatures at both ends. Since the current value under discrete temperature conditions of about 1 ° C is specified even on a map with fine temperature conditions, limiting the current during this period by linear approximation, exponential approximation, etc. is defined as the current limit value between predetermined battery temperatures. Can be expressed.
  • the charging current value can be calculated by the predetermined numerical interpolation formula using the current limit value specified by the temperature at both ends.
  • the constant map is a map set in advance for controlling the calorific value or the battery temperature to a predetermined value.
  • FIG. 4 is a flowchart showing an example of the processing procedure of the charge control processing of the high voltage battery 110 by the VCM 10. Note that this processing procedure is executed based on a program stored in a storage device (not shown). Further, this processing procedure is repeatedly executed at predetermined intervals after the charging of the high voltage battery 110 is started.
  • the VCM10 shall acquire various information used for charge control at a predetermined timing.
  • Various information used for charge control includes, for example, detection results output from each sensor (temperature sensor 121 to 123, current sensor 130, total voltage sensor 140, cell voltage sensor 151 to 153) and each calculation unit (SOC calculation unit). 161 This is the calculation result output from the SOH calculation unit 162).
  • the VCM 10 operates the Charger 70 to adjust the charging voltage based on these input values so as to realize a desired charging current. Further, in the temperature range where the battery temperature is less than BT2, the charging current can be set to the maximum value MC1 corresponding to the maximum charging power. Similarly, in the examples shown in FIGS. 5 to 16, various information used for charge control is acquired at a predetermined timing, and the maximum value MC1 is set as the charge current value in the temperature range where the battery temperature is less than BT2. ..
  • step S201 the VCM 10 determines whether or not the temperature of the high voltage battery 110 is lower than BT2. If the temperature of the high voltage battery 110 is lower than BT2, the process proceeds to step S202. On the other hand, when the temperature of the high voltage battery 110 is high, which is BT2 or higher, the process proceeds to step S203.
  • step S203 the VCM 10 determines whether or not the temperature of the high voltage battery 110 is BT2 or higher and lower than BT3. If the temperature of the high-voltage battery 110 is BT2 or higher and lower than BT3, the process proceeds to step S204. On the other hand, if the temperature of the high voltage battery 110 is BT3 or higher, the process proceeds to step S205.
  • step S204 the VCM 10 sets MC2 as the maximum charge current value for the high voltage battery 110.
  • step S205 the VCM 10 determines whether or not the temperature of the high voltage battery 110 is BT3 or higher and lower than BT4. If the temperature of the high-voltage battery 110 is BT3 or higher and lower than BT4, the process proceeds to step S206. On the other hand, if the temperature of the high voltage battery 110 is BT4 or higher, the process proceeds to step S207.
  • step S206 the VCM 10 sets the MC3 as the maximum charge current value for the high voltage battery 110.
  • step S208 the VCM 10 sets the MC4 as the maximum charge current value for the high voltage battery 110.
  • step S209 the VCM 10 determines whether or not the temperature of the high-voltage battery 110 is BT5 or higher and lower than BT6. If the temperature of the high-voltage battery 110 is BT5 or higher and BT6 or higher, the process proceeds to step S210.
  • step S210 the VCM 10 sets the MC5 as the maximum charge current value for the high voltage battery 110.
  • step S209 when the temperature of the high-voltage battery 110 is BT6 or higher, the process based on the example of the relationship between the battery temperature and the maximum current during charging shown in FIG. 3A is performed in the same manner as the processes shown in steps S201 to S210. It is repeated. In FIG. 4, the processing procedure up to step S211 is omitted.
  • step S211 the VCM 10 determines whether the temperature of the high voltage battery 110 is BT12 or higher and lower than BT13. If the temperature of the high-voltage battery 110 is BT12 or higher and lower than BT13, the process proceeds to step S212. On the other hand, if the temperature of the high voltage battery 110 is BT13 or higher, the process proceeds to step S213.
  • step S212 the VCM 10 sets the MC12 as the maximum charge current value for the high voltage battery 110.
  • step S213 the VCM 10 sets 0 as the charging current value of the high voltage battery 110. In this case, charging of the high voltage battery 110 is stopped. That is, energization is prohibited at a predetermined temperature BT13 or higher. When the battery temperature drops, charging can be resumed.
  • step S214 the VCM 10 determines whether or not the temperature of the high-voltage battery 110 is equal to or lower than the predetermined value BT0.
  • This determination process may be executed after a predetermined time has elapsed.
  • the predetermined time is, for example, a time such that after charging with the maximum charge current value set by each of the above-mentioned processes is executed, the effect after setting the maximum charge current value is exhibited.
  • the predetermined value BT0 is a reference value for increasing the charging current again when the battery temperature drops.
  • a value less than BT1 can be used.
  • a predetermined value BT0 a value obtained by subtracting the temperature for hysteresis from BT1 can be set. If the temperature of the high-voltage battery 110 is equal to or lower than the predetermined value BT0, the process returns to step S201. On the other hand, when the temperature of the high-voltage battery 110 is higher than the predetermined value BT0, the operation of the charge control process of the high-voltage battery 110 is terminated.
  • step S214 is executed at a predetermined timing after the maximum charge current value setting process (steps S202, S204, S206, S208, S210, S212) according to the temperature of the high-voltage battery 110. May be good.
  • the predetermined value BT0 the temperature at the start of the processing procedure shown in FIG. 4 or at the time of each determination processing, or a value obtained by subtracting the temperature for a predetermined hysteresis from the temperature may be used.
  • an appropriate charging current value can be set according to the temperature of the high-voltage battery 110. Further, as shown in FIGS. 5 to 16, it is also possible to set the charging current value according to the temperature of the high-voltage battery 110 to be a current value that can be adapted to various conditions such as SOH and outside air temperature. As described above, according to the present embodiment, it is possible to set an appropriate charge current limit according to various conditions.
  • Example of charge control considering deterioration of secondary battery Next, an example of controlling the charging current value in consideration of deterioration of the high-voltage battery 110 will be shown. Specifically, when the temperature of the high-voltage battery 110 tends to rise, for example, when the high-voltage battery 110 is deteriorated and easily generates heat, the high-voltage battery 110 tends to reach a high temperature.
  • the secondary battery control system 1 has a function of stopping charging when the temperature of the high-voltage battery 110 reaches a predetermined value (that is, when the high-voltage battery 110 becomes high temperature of a predetermined value or more).
  • the high-voltage battery 110 can be continuously charged, and the charge amount of the high-voltage battery 110 can be secured. It becomes. Therefore, when the high-voltage battery 110 is deteriorated and easily generates heat, the maximum charge current value is increased as the temperature of the high-voltage battery 110 increases in order to secure the charge amount of the high-voltage battery 110. Further restrictions are set so that the high-voltage battery 110 is continuously charged.
  • FIG. 5 is a flowchart showing an example of the processing procedure of the charge control processing of the high voltage battery 110 by the VCM 10. Note that this processing procedure is executed based on a program stored in a storage device (not shown). Further, this processing procedure is repeatedly executed at predetermined intervals after the charging of the high voltage battery 110 is started.
  • the VCM 10 determines whether or not the SOH of the high voltage battery 110 is equal to or higher than the threshold value TH1.
  • the threshold value TH1 is a reference value for determining the degree of deterioration of the high-voltage battery 110.
  • the threshold value TH1 is a reference value for determining a state in which the degree of deterioration of the high-voltage battery 110 is low, for example, an initial state, and a value of, for example, about 90% can be used. If the SOH of the high-voltage battery 110 is equal to or higher than the threshold value TH1, the process proceeds to step S222. On the other hand, if the SOH of the high voltage battery 110 is less than the threshold value TH1, the process proceeds to step S227.
  • step S223 the VCM 10 sets MC1 as the maximum charge current value for the high voltage battery 110.
  • step S224 the VCM 10 determines whether or not the temperature of the high voltage battery 110 is BT2 or higher and lower than BT4. If the temperature of the high-voltage battery 110 is BT2 or higher and lower than BT4, the process proceeds to step S225. On the other hand, if the temperature of the high voltage battery 110 is BT4 or higher, the process proceeds to step S226.
  • step S2266 the VCM 10 sets 0 as the charging current value of the high-voltage battery 110. In this case, charging of the high voltage battery 110 is stopped.
  • step S229 the VCM 10 sets the MC3 as the maximum charge current value for the high voltage battery 110.
  • step S232 the VCM 10 sets 0 as the charging current value of the high voltage battery 110. In this case, charging of the high voltage battery 110 is stopped.
  • the VCM 10 determines whether or not the SOH of the high-voltage battery 110 is less than the threshold TH2 and equal to or more than the threshold TH3.
  • the threshold value TH3 is a value smaller than the threshold value TH2, and is a reference value for determining the degree of deterioration of the high-voltage battery 110.
  • the threshold value TH3 is a reference value for determining that the degree of deterioration of the high-voltage battery 110 is in the late stage, for example, in the late stage, and a value of, for example, about 70% can be used.
  • the SOH of the high-voltage battery 110 is less than the threshold value TH3
  • a determination process substantially similar to each process of steps S221 and S227 is performed.
  • a value TH4 smaller than TH3 is used as the threshold value.
  • step S233 substantially the same processing as each processing of steps S221 to S226 and S227 to S232 is performed once or a plurality of times.
  • FIG. 5 shows an example in which the maximum charge current value is set using the two battery temperature determination criteria after the SOH determination process.
  • the maximum charge current value may be set using the determination criteria of the battery temperature of 3 or more. Therefore, FIG. 6 shows an example in which the maximum charge current value is set using the determination criteria of the battery temperature of 3 or more after the determination process of SOH.
  • FIG. 6 is a flowchart showing an example of the processing procedure of the charge control processing of the high voltage battery 110 by the VCM 10.
  • the process shown in FIG. 6 is an example in which a part of the process shown in FIG. 5 is modified, and a part of the description thereof will be omitted for the part common to the process shown in FIG.
  • the maximum charging current is used using two determination criteria (BT2 and BT4 after step S221 and BT3 and BT5 after step S227).
  • An example of setting the value is shown.
  • FIG. 6 shows an example in which the maximum charge current value is set by using a plurality of determination criteria (BT2 to BT13) after the SOH determination process (steps S241 and S251).
  • step S246 after the temperature of the high-voltage battery 110 is determined to be BT6 or higher, each process up to step S248 is a determination process based on a predetermined battery temperature, as in the example shown in FIG. , The process of setting the maximum charge current value is repeated.
  • the relationship between the battery temperature used in the determination process in this case and the maximum charge current value set in the setting process can be appropriately set. Note that FIG. 6 omits the illustration of the processing procedure from steps S247 to S248.
  • steps S248 and S258 when it is determined that the temperature of the high-voltage battery 110 is higher than BT12 and lower than BT13, an example of setting the maximum charge current value MC12 of the high-voltage battery 110 is set. Indicated. Further, in steps S248 and S258, an example of setting the charging current value 0 of the high-voltage battery 110 when it is determined that the temperature of the high-voltage battery 110 is higher than that of the BT13 is shown.
  • the reference temperature at which the maximum charge current value MC12 and the charge current value 0 are set may be set to a value lower than that of the BT12. For example, while the vehicle is running, the reference temperature may be set to a low value according to the speed of the vehicle in order to avoid the limitation during the running due to the battery temperature rise due to the heat generated during the running.
  • the determination process based on the predetermined battery temperature and the setting process of the maximum charge current value are performed. It is repeated.
  • the relationship between the battery temperature used in the determination process in this case and the maximum charge current value set in the setting process can be appropriately set.
  • the charging current value can be limited at an early timing by using the relatively low threshold values BT2, BT3, and BT5. Therefore, even when the vehicle is running in which the battery temperature tends to rise, the charge can be maintained and the running performance can be kept constant.
  • the processing load of the VCM 10 can be reduced by using the same threshold values BT2, BT4, and BT5 regardless of the deterioration state of the high voltage battery 110.
  • the charging current value can be limited at an early timing. Therefore, even when the vehicle is running in which the battery temperature tends to rise, the charge can be maintained and the running performance can be kept constant.
  • the battery when it is determined to be in the middle state rather than the threshold value of the battery temperature (thresholds BT2, BT4, BT5) when it is determined to be in the initial state.
  • the temperature threshold value (threshold value BT2, BT3, BT4) is set to a low value is shown.
  • step S363, S365, S367, S373, S375, S377) the same maximum charge current value MC1 is used.
  • MC1A, MC1B are set.
  • the processing load of the VCM 10 can be reduced by using the same maximum charge current values MC1, MC1A, and MC1B regardless of the deterioration state of the high-voltage battery 110.
  • the charging current value can be limited at an early timing. Therefore, even when the vehicle is running in which the battery temperature tends to rise, the charge can be maintained and the running performance can be kept constant.
  • Example of charge control considering temperature Next, an example of controlling the charging current value in consideration of the temperature is shown. Specifically, when the temperature of the high-voltage battery 110 tends to rise, for example, in an environment or condition where the temperature is high, the high-voltage battery 110 tends to reach a high temperature. Therefore, in such an environment and conditions, in order to secure the charge amount of the high-voltage battery 110, the maximum charge current value is further limited according to the high temperature of the high-voltage battery 110.
  • FIG. 11 is a flowchart showing an example of the processing procedure of the charge control processing of the high voltage battery 110 by the VCM 10.
  • the process shown in FIG. 11 is an example in which a part of the process shown in FIG. 5 is modified, and a part of the description thereof will be omitted for the part common to the process shown in FIG.
  • step S401 VCM10 determines whether or not the temperature is equal to or less than the threshold value T1.
  • the threshold value T1 is a reference value for determining whether or not the high-voltage battery 110 has a temperature at which a high temperature tends to be high.
  • the threshold value T1 is a reference value for determining that the temperature is relatively low, and for example, a value of about 20 ° C. can be used. If the air temperature is equal to or lower than the threshold value T1, the process proceeds to step S402. On the other hand, if the air temperature is higher than the threshold value T1, the process proceeds to step S407.
  • the high-voltage battery 110 when the temperature is relatively low, that is, in an environment where the high-voltage battery 110 is unlikely to become hot, the high-voltage battery 110 is less likely to generate heat as compared with the case where the temperature is high, and the temperature of the high-voltage battery 110 rises. It is expected to be relatively gradual. Therefore, when the temperature of the high-voltage battery 110 is lower than BT2, the maximum charge current value is maintained or set to the charge current value MC1 corresponding to the above-mentioned maximum charge power, as in the example shown in FIG. When the temperature of the high-voltage battery 110 is BT2 or higher and lower than BT4, a relatively large value MC4 is set as the maximum charge current value for the high-voltage battery 110.
  • the VCM 10 determines whether or not the temperature is higher than the threshold value T1 and is equal to or lower than the threshold value T2.
  • the threshold value T2 is a value higher than the threshold value T1 and is a reference value for determining whether or not the high-voltage battery 110 tends to have a high temperature.
  • the threshold value T2 is a reference value for determining that the temperature is relatively high, and for example, a value of about 30 ° C. can be used. If the air temperature is higher than the threshold value T1 and is equal to or lower than the threshold value T2, the process proceeds to step S408. On the other hand, if the air temperature is higher than the threshold value T2, the process proceeds to step S413.
  • relatively low values BT3 and BT5 are used as the determination criteria in steps S408 and S410.
  • a relatively small value MC3 is set as the maximum charge current value to the high-voltage battery 110, as in the example shown in FIG.
  • a relatively small value MC5 is set as the maximum charge current value for the high-voltage battery 110.
  • the VCM 10 determines whether or not the temperature is higher than the threshold value T2 and is equal to or lower than the threshold value T3.
  • the threshold value T3 is a value higher than the threshold value T2, and is a reference value for determining whether or not the high-voltage battery 110 tends to have a high temperature.
  • the threshold value T3 is a reference value for determining that the temperature is high, and for example, a value of about 35 ° C. can be used.
  • the air temperature is higher than the threshold value T3
  • a determination process substantially similar to each process of steps S401 and S407 is performed.
  • a value T4 higher than T3 is used as the threshold value.
  • step S413 substantially the same processing as each processing of steps S401 to S406 and S407 to S412 is performed once or a plurality of times.
  • FIG. 12 is a flowchart showing an example of the processing procedure of the charge control processing of the high voltage battery 110 by the VCM 10.
  • the process shown in FIG. 12 is an example in which a part of the process shown in FIG. 5 is modified, and a part of the description thereof will be omitted for the part common to the process shown in FIG.
  • step S501 the VCM 10 determines whether or not the vehicle cooling system can be operated. If the vehicle cooling system is operational, the process proceeds to step S502. On the other hand, if all the vehicle cooling systems are not in operation, the process proceeds to step S507.
  • the vehicle cooling system is AC30.
  • the AC30 distributes and flows the refrigerant to the cooling of the vehicle interior and to each part other than the vehicle interior.
  • the case where the cooling system of the vehicle is not operable means, for example, the case where the AC30 is out of order or the case where the vehicle exists in an environment in which the cooling system cannot be operated. For example, in an environment of about -10 degrees, the refrigerant may freeze and cannot be used, so that the vehicle cooling system cannot operate.
  • the operation of the vehicle cooling system is restricted, it means that the AC30 can be operated, but the supply of the refrigerant to the high voltage battery 110 is restricted for some reason.
  • the refrigerant is supplied to the high-voltage battery 110 as a cooling system. Be restricted. It is also assumed that the AC30 parts do not operate properly in an environment where the outside temperature is low and the temperature is below freezing. In such a case, the supply of the refrigerant to the high voltage battery 110 as a cooling system is limited.
  • the high-voltage battery 110 when the vehicle cooling system is operable, that is, in an environment where the high-voltage battery 110 is unlikely to become hot, the high-voltage battery 110 generates heat as compared with the case where the vehicle cooling system is not operable. It is assumed that the temperature rise of the high voltage battery 110 is relatively slow. Therefore, when the temperature of the high-voltage battery 110 is lower than BT2, the maximum charge current value is maintained or set to the charge current value MC1 corresponding to the above-mentioned maximum charge power, as in the example shown in FIG. When the temperature of the high-voltage battery 110 is BT2 or higher and lower than BT4, a relatively large value MC4 is set as the maximum charge current value for the high-voltage battery 110.
  • step S507 the VCM 10 determines whether or not the operation of the vehicle cooling system is restricted. If the operation of the vehicle cooling system is restricted, the process proceeds to step S508. On the other hand, if the vehicle cooling system is not operable and the operation of the vehicle cooling system is not restricted, that is, if the vehicle cooling system is inoperable, the process proceeds to step S513.
  • relatively high values BT3 and BT5 are used as the determination criteria in steps S508 and S510.
  • a relatively small value MC3 is set as the maximum charge current value for the high-voltage battery 110, as in FIG.
  • a relatively small value MC5 is set as the maximum charge current value for the high-voltage battery 110.
  • step S513 the VCM 10 determines whether the temperature of the high voltage battery 110 is less than BT4. If the temperature of the high voltage battery 110 is lower than BT4, the process proceeds to step S514. On the other hand, if the temperature of the high voltage battery 110 is BT4 or higher, the process proceeds to step S515.
  • step S514 the VCM 10 sets the MC5 as the maximum charge current value for the high voltage battery 110.
  • step S515 the VCM 10 sets the charging current value 0 of the high voltage battery 110.
  • a relatively low value BT4 is used as a determination criterion in the process of step S513.
  • the charging current value 0 of the high-voltage battery 110 can be set earlier. Therefore, for example, it is possible to avoid the limitation during traveling even in an environment where the battery temperature rises due to heat generation during traveling of the vehicle.
  • a battery temperature lower than the initial assumption may be set as the criterion, and the initial assumption is made. It may be controlled so that the calorific value is lower than that.
  • FIG. 12 shows an example in which the maximum charge current value is set using the two battery temperature determination criteria after the cooling system operating state determination process.
  • the maximum charge current value may be set using the determination criteria of the battery temperature of 3 or more after the determination process of the operating state of the cooling system. Therefore, FIG. 13 shows an example in which the maximum charge current value is set using the determination criteria of the battery temperature of 3 or more after the determination process during the operation restriction of the cooling system.
  • FIG. 13 is a flowchart showing an example of the processing procedure of the charge control processing of the high voltage battery 110 by the VCM 10.
  • the process shown in FIG. 13 is an example in which a part of the process shown in FIG. 12 is modified, and a part of the description thereof will be omitted for the part common to the process shown in FIG.
  • Each process of steps S521 to S526 corresponds to each process of steps S501 and S513 to S515 shown in FIG. However, the difference is that the maximum charge current value (MC1, MC5) is set using the two battery temperature determination criteria (BT2, BT3).
  • Each process of steps S527 to S536 corresponds to each process of steps S507 to S512 shown in FIG. However, the difference is that the maximum charge current value (MC1, MC1B, MC1C, ..., MC12) is set using the determination criteria (BT2, BT4, BT6, ..., BT12, BT13) of the battery temperature of 3 or more.
  • Each process of steps S537 to S545 corresponds to each process of steps S502 to S506 shown in FIG. However, the difference is that the maximum charge current value (MC1, MC1A, MC1B, ..., MC12) is set using the determination criteria (BT2, BT4, BT6, ..., BT12, BT13) of the battery temperature of 3 or more.
  • the high-voltage battery 110 is more likely to generate heat and the temperature of the high-voltage battery 110 rises quickly. Therefore, as the set values of steps S530 and S532, values MC1B and MC1C lower than the set values of steps S539 and S541 are used. As a result, the temperature of the high-voltage battery 110 can be set low at an early stage. Therefore, for example, it is possible to avoid the limitation during traveling even in an environment where the battery temperature rises due to heat generated during traveling of the vehicle.
  • FIG. 14 shows an example in which the determination process for determining whether or not the cooling system is under operation restriction is omitted.
  • FIG. 14 is a flowchart showing an example of the processing procedure of the charge control processing of the high voltage battery 110 by the VCM 10.
  • the process shown in FIG. 14 is an example in which a part of the process shown in FIG. 12 is modified, and a part of the description thereof will be omitted for the part common to the process shown in FIG.
  • Each process of steps S551 to S560 corresponds to each process of steps S501 to S506 shown in FIG. However, the difference is that the maximum charge current value (MC1, MC1A, MC1B, ..., MC12) is set using the determination criteria (BT2, BT4, BT6, ..., BT12, BT13) of the battery temperature of 3 or more.
  • Each process of steps S561 to S565 corresponds to each process of steps S513 to S515 shown in FIG. However, the difference is that the maximum charge current value (MC1, MC5) is set using the two battery temperature determination criteria (BT2, BT3).
  • the determination process for determining whether or not the cooling system is under operation restriction is omitted, and the determination standard for the battery temperature when the vehicle cooling system is not operable is set to a relatively low value (BT2, BT3). ..
  • the temperature of the high-voltage battery 110 can be set low at an early stage. Therefore, for example, it is possible to avoid the limitation during traveling even in an environment where the battery temperature rises due to heat generated during traveling of the vehicle.
  • FIGS. 15 and 16 show an example of controlling the charging current value using other information.
  • FIG. 15 shows an example in which the charging current value is controlled by using the calorific value of the high-voltage battery 110 as information regarding the heat of the high-voltage battery 110.
  • FIG. 15 is a flowchart showing an example of the processing procedure of the charge control processing of the high voltage battery 110 by the VCM 10.
  • the process shown in FIG. 15 is an example in which a part of the process shown in FIG. 4 is modified, and a part of the description thereof will be omitted for the part common to the process shown in FIG. Specifically, steps S602, S604, S606, S608, S610, S611 to S614 shown in FIG. 15 correspond to steps S202, S204, S206, S208, S210, S211 to S214 shown in FIG. Is omitted.
  • threshold values A1 to A5 shown in FIG. 15 are reference values used when setting the maximum charging current value.
  • A1 has a value of about 400 (J)
  • A2 has a value of about 800 (J)
  • A3 has a value of about 1200 (J)
  • A4 has a value of about 1500 (J)
  • A5 has a value of 2000 ( It can be a value of about J).
  • step S601 the VCM 10 determines whether or not the calorific value of the high voltage battery 110 is A1 or less.
  • step S603 the VCM 10 determines whether or not the heat generation amount of the high-voltage battery 110 is larger than that of A1 and less than or equal to A2.
  • the process proceeds to step S604.
  • the process proceeds to step S605.
  • step S605 the VCM 10 determines whether or not the heat generation amount of the high-voltage battery 110 is larger than that of A2 and less than or equal to A3. If the heat generation amount of the high-voltage battery 110 is larger than A2 and is A3 or less, the process proceeds to step S606. On the other hand, if the heat generation amount of the high voltage battery 110 is larger than that of A3, the process proceeds to step S607.
  • step S607 the VCM 10 determines whether or not the heat generation amount of the high-voltage battery 110 is larger than that of A3 and less than or equal to A4. If the heat generation amount of the high-voltage battery 110 is larger than that of A3 and is A4 or less, the process proceeds to step S608. On the other hand, if the heat generation amount of the high voltage battery 110 is larger than that of A4, the process proceeds to step S609.
  • step S609 the VCM 10 determines whether or not the heat generation amount of the high-voltage battery 110 is larger than A4 and is A5 or less. If the heat generation amount of the high-voltage battery 110 is larger than that of A4 and is A5 or less, the process proceeds to step S610.
  • step S609 when the heat generation amount of the high-voltage battery 110 is larger than that of A5, although not shown, the heat generation amount of the high-voltage battery 110 and the maximum charge current value are the same as in each process shown in steps S601 to S610. The process based on the relational example is repeated.
  • step S614 instead of determining whether or not the temperature of the high-voltage battery 110 is equal to or less than the predetermined value BT0, it may be determined whether or not the calorific value of the high-voltage battery 110 is equal to or less than the predetermined value A0. good.
  • the predetermined value A0 used in this case for example, a value less than A1 can be used.
  • a value obtained by subtracting the value for hysteresis from A1 can be set.
  • an appropriate charging current value can be set according to the calorific value of the high-voltage battery 110.
  • the charging current value according to the temperature of the high-voltage battery 110 is set to a current value that can be adapted to various conditions such as SOH, outside air temperature, and the operating state of the vehicle cooling system. Is also possible.
  • the processing is performed based on the relationship example between the heat generation amount of the high-voltage battery 110 and the maximum charge current value, the processing load of the VCM 10 can be reduced and the control implementation can be facilitated. can.
  • FIG. 15 shows an example in which the charging current value is controlled by using the calorific value of the high-voltage battery 110 as information regarding the heat of the high-voltage battery 110.
  • the amount of heat generated is larger than the amount of heat removed from the high-voltage battery 110, the temperature of the high-voltage battery 110 will rise. Therefore, it is important to calculate and appropriately control how to cool the heat generation amount of the high-voltage battery 110. Therefore, FIG. 16 shows an example in which the charging current value is controlled by using the amount of heat removed from the high-voltage battery 110 as information regarding the heat of the high-voltage battery 110.
  • FIG. 16 is a flowchart showing an example of the processing procedure of the charge control processing of the high voltage battery 110 by the VCM 10.
  • the process shown in FIG. 16 is an example in which a part of the process shown in FIG. 15 is modified, and a part of the description thereof will be omitted for the part common to the process shown in FIG.
  • the determination is performed using the calorific value, whereas the determination is performed using the calorific value, whereas the determination is performed in steps S621, S623, S625, S627, and S629 shown in FIG.
  • the difference in the determination process is that the determination is made using the amount of heat removed.
  • the heat removal amount [W] of the high-voltage battery 110 can be obtained based on the relationship between the temperature of the high-voltage battery 110 and the temperature of the refrigerant supplied from the AC30.
  • the heat removal amount [W] of the high-voltage battery 110 can be obtained by using the following formula.
  • Heat removal amount [W] (Temperature of high-voltage battery 110 [° C.]-Refrigerant temperature [° C.]) ⁇ Thermal resistance of high-voltage battery 110 [K / W]
  • the thermal resistance of the high-voltage battery 110 is 0.05 K / W
  • the heat removal amount [W] is 1000 W.
  • the temperature of the high-voltage battery 110 rises with the heat amount of 562.5 W.
  • the value of "temperature [° C.]-refrigerant temperature [° C.] of the high-voltage battery 110" increases by that amount, and the amount of heat removed also increases.
  • the battery temperature rises to the point where the amount of heat removed and the amount of heat generated are balanced.
  • threshold values B1 to B5 shown in FIG. 16 are reference values used when setting the maximum charge current value.
  • B1 has a value of about 2000 (J)
  • B2 has a value of about 1500 (J)
  • B3 has a value of about 1200 (J)
  • B4 has a value of about 800 (J)
  • B5 has a value of 400 (J). It can be a value of about J).
  • step S629 when the heat generation amount of the high-voltage battery 110 is smaller than that of B5, although not shown, the heat removal amount and the maximum charge current value of the high-voltage battery 110 are the same as in each process shown in steps S621 to S630. The process based on the relational example is repeated.
  • step S634 instead of determining whether or not the temperature of the high-voltage battery 110 is equal to or less than the predetermined value BT0, it may be determined whether or not the amount of heat removed from the high-voltage battery 110 is equal to or greater than the predetermined value B0. good.
  • the predetermined value B0 used in this case for example, a value larger than B1 can be used.
  • a value obtained by adding the value for hysteresis from B1 can be set.
  • an appropriate charging current value can be set according to the amount of heat removed from the high-voltage battery 110.
  • the charging current value according to the temperature of the high-voltage battery 110 is set to a current value that can be adapted to various conditions such as SOH, outside air temperature, and the operating state of the vehicle cooling system. Is also possible.
  • the processing is performed based on the relationship example between the heat removal amount of the high-voltage battery 110 and the maximum charge current value, the processing load of the VCM 10 can be reduced and the control implementation can be facilitated. can.
  • the determination criteria and the maximum charge current value shown in FIGS. 4 to 16 can be changed as appropriate, and each condition shown in FIGS. 4 to 16 can be used in combination.
  • each condition shown in FIGS. 4 to 16 can be used in combination.
  • the condition with the strictest limit is supported from among the plurality of maximum charge current values corresponding to the satisfied conditions. It is preferable to set the maximum charge current value to be used.
  • the calorific value is used as a criterion. Since this calorific value can be obtained based on the relationship between the internal resistance of the high-voltage battery 110 and the current, the example shown in FIG. 15 can be grasped as an example in which the current is used as a determination criterion. Further, if the electric power and voltage at the time of charging are known, the current at the time of charging can be grasped. Therefore, the example shown in FIG. 15 can be grasped as an example in which a voltage, for example, a total voltage or a cell voltage is used as a determination criterion.
  • the control is not simply to stop charging when the temperature exceeds the threshold temperature and restart charging when the temperature falls below the threshold temperature, but to perform a predetermined battery temperature range (for example, the nth threshold temperature to the traveling output limit temperature). ) Can be controlled so as to keep the charging current value.
  • a predetermined battery temperature range for example, the nth threshold temperature to the traveling output limit temperature.
  • the charging current is set to the charging current value MC1 equivalent to the rated charging power determined according to the design of the external charger and the like, and the charging power is high. Can be secured.
  • the maximum charging current is limited so as to control the calorific value of the secondary battery and the battery temperature to predetermined values. As a result, it is possible to prevent the battery temperature from rising excessively at the end of charging, and to increase the distance that the battery can travel without being limited by the discharge power.
  • the real-time power limit is implemented when the battery temperature becomes high, the current value does not become constant during charging, so that the calorific value cannot be controlled to be constant, and the calorific value of the high-voltage battery 110 is appropriately controlled. Can not.
  • the real-time current limitation when the battery temperature becomes high the current value during charging can be made constant, and the calorific value can be controlled to be constant.
  • the heat generation amount of the high-voltage battery 110 the high-voltage battery 110 can be appropriately charged, and the travelable distance can be increased.
  • the VCM 10 acquires the temperature, current, total voltage, cell voltage, charge state, deterioration state, and cooling state of the high-voltage battery 110. Then, the VCM 10 controls the energization current at the time of charging the high-voltage battery 110 based on their temperature, current, total voltage, cell voltage, charge state, and deterioration state. In this case, the VCM 10 controls the charging current value to a predetermined value, controls the battery temperature to a predetermined value, and controls the heat generation amount of the high voltage battery 110 to a predetermined value. Further, the VCM 10 controls the charging power as variable in order to control the charging current value to a predetermined value. Further, the VCM 10 is controlled so as to further change the current value and the calorific value when the battery temperature exceeds a predetermined value.
  • the VCM 10 determines the heat generation of the high-voltage battery 110 based on at least one of the temperature, current, total voltage, cell voltage, charge state, and cooling state of the high-voltage battery 110, or a plurality of conditions thereof. Control to value.
  • the VCM 10 can control the heat generation of the high-voltage battery 110 to a predetermined value by using a constant map (see FIG. 3B) set in advance for controlling the heat generation amount or the battery temperature to a predetermined value.
  • the VCM 10 has at least one of the temperature, current, total voltage, cell voltage, and charge state of the high-voltage battery 110, or at least one of the high-voltage battery 110, depending on the difference in cooling performance caused by the operating condition of the cooling system of the high-voltage battery 110.
  • the charging current value is controlled to a predetermined value based on a plurality of conditions among them.
  • the VCM 10 changes the target predetermined temperature according to the difference in the heat generation conditions of the high-voltage battery 110 such as deterioration of the high-voltage battery 110 and the operating status of the cooling system of the high-voltage battery 110, and sets a predetermined constant.
  • the temperature of the high voltage battery 110 can be controlled to a predetermined value by using the map (see FIG. 3B). As a result, the battery temperature can be controlled to a predetermined value, and the heat generation amount of the high-voltage battery 110 can be controlled to a predetermined value.
  • the difference in the cooling performance of the cooling system of the high-voltage battery 110 is caused by the difference in the temperature of the external environment and the amount of heat removed from the high-voltage battery 110. Therefore, the VCM 10 controls the charging current value to a predetermined value based on the operating status of the cooling system of the high-voltage battery 110, the temperature of the external environment, and the like. As a result, the battery temperature can be controlled to a predetermined value, and the heat generation amount of the high-voltage battery 110 can be controlled to a predetermined value.
  • the secondary battery charge control method is a charge control method for controlling the charge of the high voltage battery 110 (an example of the secondary battery).
  • This charge control method charges the high-voltage battery 110 so as to control the calorific value of the high-voltage battery 110 to a predetermined value based on the acquisition step of acquiring information on the heat of the high-voltage battery 110 and the information on the heat of the high-voltage battery 110.
  • a control step (each process shown in FIGS. 4 to 16) for setting a current value is provided.
  • an appropriate charge current value can be set in consideration of the heat generation amount of the high voltage battery 110, and the temperature rise of the high voltage battery 110 during charging can be suppressed. As a result, charging can be continuously executed while suppressing the temperature rise of the high-voltage battery 110.
  • the charge power of the high voltage battery 110 is variable so that the charge current value of the high voltage battery 110 is constant.
  • a specific control configuration for adjusting the heat generation amount of the high-voltage battery 110 to a constant level is realized. More specifically, the charging current value directly related to the calorific value of the high-voltage battery 110 is set to a constant value.
  • constant values MC1, MC2, ... MC12
  • BT1 to BT2 BT2 to BT3 ... BT12 to BT13
  • a viable and suitable control configuration will be realized.
  • the VCM 10 acquires various information used for charge control (an example of information regarding the heat of the high voltage battery 110) at a predetermined timing.
  • This predetermined timing can be, for example, the start timing of a processing procedure (processing procedure shown in FIGS. 4 to 16) that is repeatedly executed at predetermined intervals after charging of the high-voltage battery 110 is started.
  • other regular or irregular timing may be set as a predetermined timing.
  • the charging current value of the high-voltage battery 110 is changed based on the change.
  • the predetermined change is detected, for example, in each determination process shown in FIGS. 4 to 16.
  • a predetermined change is made to the battery temperature (an example of information on the heat of the high voltage battery 110). It is detected that there was.
  • the charging current value of the high-voltage battery 110 is changed based on the change. For example, when the battery temperature is BT2 or higher and lower than BT3, the charging current value of the high-voltage battery 110 is changed from MC2 to MC3.
  • the charge current value is changed based on the change, so that the heat generation amount of the high-voltage battery 110 is taken into consideration.
  • the charging current value can be set.
  • the information regarding the heat of the high-pressure battery 110 is obtained from the temperature of the high-pressure battery 110, the heat generation amount of the high-pressure battery 110, and the heat removal amount of the high-pressure battery 110. It can be at least one.
  • information on the heat of the high-voltage battery 110 can be detected or calculated relatively easily, such as the temperature of the high-voltage battery 110, the amount of heat generated by the high-voltage battery 110, and the amount of heat removed from the high-voltage battery 110. Can be quantified by. Therefore, a suitable control configuration for setting the charging current value more appropriately in consideration of the heat generated by the high-voltage battery 110 is realized.
  • the information regarding the heat of the high-pressure battery 110 can include the external environment of the high-pressure battery 110 or the deteriorated state of the high-pressure battery 110.
  • the high-voltage battery 110 is provided with at least one of the temperature of the high-voltage battery 110, the heat generation amount of the high-voltage battery 110, and the heat removal amount of the high-voltage battery 110.
  • the charging current value of the high-voltage battery 110 is set using the external environment of the high-voltage battery 110 or the deterioration state of the high-voltage battery 110.
  • the charging current value can be set.
  • the external environment of the high-pressure battery 110 can be set to the external temperature of the high-pressure battery 110 or the operating state of the cooling system of the high-pressure battery 110.
  • an appropriate charge current value considering the heat generation amount of the high voltage battery 110 is set based on the external temperature of the high voltage battery 110 or the operating state of the cooling system of the high voltage battery 110. Can be done.
  • the secondary battery control system 1 (an example of a secondary battery charge control system) according to the present embodiment includes a high pressure battery 110 (an example of a secondary battery) and a VCM 10 (controller) that controls charging of the high pressure battery 110.
  • a high pressure battery 110 an example of a secondary battery
  • a VCM 10 controller
  • An example is a charge control system.
  • the VCM 10 acquires information on the heat of the high-voltage battery 110, and sets the charging current value of the high-voltage battery 110 so as to control the heat generation of the high-voltage battery 110 to a predetermined value based on the information on the heat of the high-voltage battery 110.
  • an appropriate charging current value can be set in consideration of the heat generation amount of the high-pressure battery 110, and the temperature rise of the high-pressure battery 110 during charging can be suppressed. .. As a result, charging can be continuously executed while suppressing the temperature rise of the high-voltage battery 110.
  • each process shown in this embodiment is executed based on a program for causing a computer to execute each process procedure. Therefore, the present embodiment can also be grasped as an embodiment of a program that realizes a function of executing each of these processes and a recording medium that stores the program.
  • the program can be stored in the vehicle storage device by an update operation for adding a new function to the vehicle. This makes it possible for the updated vehicle to perform each of the processes shown in the present embodiment.
  • the update can be performed, for example, at the time of periodic inspection of the vehicle.
  • the program may be updated by wireless communication.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

二次電池の充電を制御する充電制御方法である。この充電制御方法は、二次電池の熱に関する情報を取得する取得ステップと、二次電池の熱に関する情報に基づいて、二次電池の発熱量を所定値に制御するように二次電池の充電電流値を設定する制御ステップと、を備える。

Description

充電制御方法及び充電制御システム
 本発明は、二次電池の充電を制御する充電制御方法及び充電制御システムに関する。
 従来、リチウムイオン電池等の二次電池を充電する場合にその充電を制御する技術が存在する。例えば、JP2006-197727Aには、二次電池の残容量に基づいて、二次電池を充電する電流値を決定する技術が開示されている。
 上述した従来技術では、二次電池の残容量に基づいて決定された電流値により二次電池が充電される。ここで、二次電池の発熱量は、電流及び内部抵抗で決まる。このため、充電を継続して実行するためには、発熱量を考慮した適切な充電電流値を設定し、充電中の二次電池の温度上昇を抑制することが重要となる。
 本発明は、二次電池の温度上昇を抑制しつつ充電を継続して実行することを目的とする。
 本発明の一態様は、二次電池の充電を制御する充電制御方法である。この充電制御方法は、二次電池の熱に関する情報を取得する取得ステップと、二次電池の熱に関する情報に基づいて、二次電池の発熱量を所定値に制御するように二次電池の充電電流値を設定する制御ステップと、を備える。
図1は、本実施形態における二次電池の制御システムの構成例を示すブロック図である。 図2Aは、高圧バッテリに充電する場合における電力の遷移例を示す図である。 図2Bは、高圧バッテリに充電する場合における電圧の遷移例を示す図である。 図2Cは、高圧バッテリに充電する場合における電流の遷移例を示す図である。 図3Aは、充電時における電池温度と最大電流との関係例を示す図である。 図3Bは、図3Aに示す充電時における電池温度と最大電流との関係例をグラフとして示す図である。 図4は、VCMによる高圧バッテリの充電制御処理の処理手順の一例を示すフローチャートである。 図5は、VCMによる高圧バッテリの充電制御処理の処理手順の一例を示すフローチャートである。 図6は、VCMによる高圧バッテリの充電制御処理の処理手順の一例を示すフローチャートである。 図7は、VCMによる高圧バッテリの充電制御処理の処理手順の一例を示すフローチャートである。 図8は、VCMによる高圧バッテリの充電制御処理の処理手順の一例を示すフローチャートである。 図9は、VCMによる高圧バッテリの充電制御処理の処理手順の一例を示すフローチャートである。 図10は、VCMによる高圧バッテリの充電制御処理の処理手順の一例を示すフローチャートである。 図11は、VCMによる高圧バッテリの充電制御処理の処理手順の一例を示すフローチャートである。 図12は、VCMによる高圧バッテリの充電制御処理の処理手順の一例を示すフローチャートである。 図13は、VCMによる高圧バッテリの充電制御処理の処理手順の一例を示すフローチャートである。 図14は、VCMによる高圧バッテリの充電制御処理の処理手順の一例を示すフローチャートである。 図15は、VCMによる高圧バッテリの充電制御処理の処理手順の一例を示すフローチャートである。 図16は、VCMによる高圧バッテリの充電制御処理の処理手順の一例を示すフローチャートである。
 以下、添付図面を参照しながら本発明の実施形態について説明する。
 [二次電池の制御システムの構成例]
 図1は、本実施形態における二次電池の制御システム1の構成例を示すブロック図である。なお、二次電池の制御システム1は、電気自動車やハイブリッド車等の車両に搭載されている二次電池の充放電を制御するシステムである。その二次電池は、車両の駆動モータや補機類等の車載機器に対して電力を供給する。また、その二次電池は車載器の充電器又は車外の充電装置により充電可能な電池でもある。なお、二次電池として、例えば、リチウムイオン電池、鉛電池,ニッケル水素電池等を用いることができる。また、本実施形態では、移動体に搭載される二次電池を例にして説明するが、定置用に搭載される二次電池についても適用可能である。
 二次電池の制御システム1は、VCM(vehicle control module)10と、DC(Direct Current)/DC20と、AC(Air Conditioner)30と、PTC(Positive Temperature Coefficient)40と、INV(Inverter)50と、MOT(Motor)60と、Charger70と、二次電池ユニット100と、BMS(Battery Management Unit)160とを備える。
 二次電池ユニット100は、高圧バッテリ110と、SDSW(Service Disconnect Switch)111と、リレー112とをバッテリケースに収容して構成される。高圧バッテリ110は、複数の走行用バッテリである。なお、高圧バッテリ110を走行用バッテリと称したのは、高圧バッテリ110の電力が主にMOT60に供給されるからであるが、もちろん、他の電気負荷へも供給される。なお、本実施形態において単に「バッテリ」と称する場合には高圧バッテリ110のことを指す。
 SDSW111は、高圧バッテリ110の強電回路のオン/オフを切り替えるスイッチである。すなわち、作業時や緊急時においてSDSW111が操作されることによって回路を遮断し、安全に作業や緊急時に対応を行うことが可能となる。
 リレー112は、信号線11を介したVCM10からの制御信号に基づいて、高圧バッテリ110の充放電のオン/オフを切り替えるリレーである。
 二次電池ユニット100の内部または外部には、温度センサ121乃至123と、電流センサ130と、総電圧センサ140と、セル電圧センサ151乃至153とが備えられる。
 温度センサ121乃至123は、高圧バッテリ110に関する温度を検出する温度センサであり、検出結果をBMS160に出力する。なお、図1では、二次電池ユニット100に複数の温度センサを備える例を示すが、二次電池ユニット100に1つの温度センサを設置するようにしてもよい。例えば、1つの温度センサを設置する場合には、二次電池ユニット100において温度が最も上がりやすい位置、例えば中央部に設置することが好ましい。また、複数の温度センサを設置する場合には、二次電池ユニット100において温度が最も上がりやすい位置とその周辺の位置に設置するようにしてもよい。このように、複数の温度センサの設置場所は、二次電池ユニット100内のレイアウトや走行条件によって適宜設定可能である。また、二次電池ユニット100に複数の温度センサが設置されている場合には、これらの温度センサにより検出された温度のうちの所定値、例えば最高値を用いて各種演算を実行することができる。なお、本実施形態では、高圧バッテリ110に関する温度を電池温度と称しても説明する。
 電流センサ130は、高圧バッテリ110に関する充電電流や放電電流の電流を検出する電流センサであり、検出結果をBMS160に出力する。
 総電圧センサ140は、高圧バッテリ110の総電圧を検出する電圧センサであり、検出結果をBMS160に出力する。なお、高圧バッテリ110への充電が行われる際には、その検出結果に基づいて充電電圧の検出値が求められる。
 セル電圧センサ151乃至153は、高圧バッテリ110を構成する各セルの電圧を検出するセル電圧センサであり、検出結果をBMS160に出力する。すなわち、セル電圧センサ151乃至153は、高圧バッテリ110を構成する各セルに設置され、セル毎の電圧が検出される。
 BMS160は、SOC(States Of Charge)演算部161及びSOH(State of Health)演算部162を備え、高圧バッテリ110の容量、温度、電圧等の管理を行う制御装置である。なお、SOCは、高圧バッテリ110の充電状態を示す値(0~100%)である。また、SOHは、高圧バッテリ110の劣化状態を示す値(0~100%)である。具体的には、SOHの値が小さいほど、高圧バッテリ110の劣化が進んでいることを示し、SOHの値が大きいほど製品出荷時に近い状態(以下、初期状態と称する)であることを示す。
 SOC演算部161は、公知の演算方法により高圧バッテリ110のSOCを演算するものであり、演算結果をVCM10に出力する。
 SOH演算部162は、公知の演算方法により高圧バッテリ110のSOHを演算するものであり、演算結果をVCM10に出力する。例えば、SOH演算部162は、内部抵抗演算部(図示略)による演算結果に基づいて高圧バッテリ110の内部抵抗を取得する。そして、SOH演算部162は、その内部抵抗と、初期状態の内部抵抗と、温度センサ121乃至123により検出された高圧バッテリ110の温度とに基づいて、高圧バッテリ110のSOHを演算する。また、例えば、SOH演算部162は、高圧バッテリ110の容量に基づいて、高圧バッテリ110のSOHを演算するようにしてもよい。
 VCM10は、車両全体を制御する車両制御装置であり、中央演算装置(CPU)、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)及び入出力インタフェース(I/Oインタフェース)を備えたマイクロコンピュータで構成される。VCM10を複数のマイクロコンピュータで構成することも可能である。
 DC/DC20は、高圧バッテリ110から補機類への電力供給用の低圧バッテリ(図示略)へ電力を供給する際に、電圧を所定の電圧値まで降圧するDCDCコンバータである。
 AC30は、VCM10の制御に基づいて、外部から取り込んだ空気との熱交換により、車室内や車両の各部を所定の冷媒により冷却する空冷システムである。
 PTC40は、高圧バッテリ110に異常な大電流が流れた場合に抵抗を増加させ、電流を制限するデバイスである。なお、PTC40は、高圧バッテリ110の内部に組み込むようにしてもよく、高圧バッテリ110の外部に設置するようにしてもよい。
 INV50は、MOT60、高圧バッテリ110に電気的に接続されている。INV50は、MOT60が発電する交流電力を直流電力に変換して高圧バッテリ110に供給し、高圧バッテリ110から出力される直流電力を交流電力に変換してMOT60に供給するよう構成されている。このように、INV50は、駆動モータ兼発電モータ用インバータとして機能する。
 MOT60は、力行動作時に、INV50から供給される交流電流により回転駆動し、駆動輪に供給する駆動力を生成する。また、MOT60は、回生動作時に、高圧バッテリ110で回収される電気エネルギーを生成する。このようにMOT60は、駆動モータ兼発電モータとして機能する。
 Charger70は、外部充電器(急速充電器を含む)と接続する充電回路(DCDCコンバータ又はインバータ)などであり、充電器から供給された電力を高圧バッテリ110に出力する。なお、外部充電器と接続して車両への充電が行われる場合には、VCM10の制御に基づいて、充電電圧及び充電電流が設定される。
 [電力制御例]
 図2Aは、高圧バッテリ110に充電する場合における電力の遷移例を示す図である。なお、図2Aの縦軸は、高圧バッテリ110に充電する際における電力を示す。また、図2Aの横軸は、時間軸を示す。なお、図2B、図2Cの横軸も時間軸を示す。
 図2Bは、高圧バッテリ110に充電する場合における電圧の遷移例を示す図である。なお、図2Bの縦軸は、高圧バッテリ110に充電する際における電圧を示す。
 図2Cは、高圧バッテリ110に充電する場合における電流の遷移例を示す図である。なお、図2Bの縦軸は、高圧バッテリ110に充電する際における電流を示す。
 図2A乃至図2Cにおいて、線L1乃至L3は、電力値を可変として電流値が一定となるように充電をする場合における遷移を示す。また、点線L11乃至L13は、線L1乃至L3との比較例であり、電力が一定となるように充電をする場合における遷移を示す。
 ここで、電力を一定として充電を行う場合(点線L11に示す)には、充電により電圧が上昇すると(点線L12に示す)、電流値は低下する(点線L13に示す)。このように、電力を一定として充電を行う場合には、電圧の変化に応じて電流値も変化する。ここで、高圧バッテリ110の発熱量は、電流と内部抵抗とで決まり、電力と発熱量との比例関係が成立しない。このため、充電中に電流値が一定とならない場合には、発熱量を一定に制御することができない。すなわち、点線L11乃至L13で示す電力制御方法では、充電中に電流値が一定とならないため、発熱量を一定に制御することができず、高圧バッテリ110の発熱量の変化が予測できない。このため、高圧バッテリ110の充電を適切に行うことが困難であることも想定される。
 また、車両の使用年数と走行距離によって高圧バッテリ110が劣化してしまい、劣化後の内部抵抗とSOCが変化する。このような、高圧バッテリ110の充放電に伴うSOCや内部抵抗の変化によっても、発熱量が変化する。このため、発熱量を一定に制御するためには、これらの変化を考慮することも重要である。
 そこで、本実施形態では、高圧バッテリ110の発熱量を一定に制御するため、充電中の電流を一定とするための充電制御を実行する例を示す。すなわち、本実施形態では、高圧バッテリ110の発熱量を一定に制御し、充電中の高圧バッテリ110の温度上昇を抑える例を示す。なお、本実施形態では、外部充電器、例えばクイックチャージ(QC)から充電する場合の充電制御を例について説明する。ただし、車両内部での充電、例えば車両の走行中における余剰充電についても、本実施形態における充電制御を適用可能である。
 [充電時の電池温度と充電電流との関係例]
 図3Aは、充電時における電池温度と充電電流との関係例を示す図である。図3Bは、図3Aに示す充電時における電池温度と充電電流との関係例をグラフとして示す図である。図3Bに示すグラフにおいて、縦軸は充電時の充電電流を示し、横軸は、充電時の電池温度を示す。なお、BT1乃至BT13の範囲は、45乃至60℃程度の範囲とすることができる。また、MC1としては、125A程度の値を設定可能である。
 本実施形態では、電池温度に応じて充電電流の制限電流値(最大電流)を変更する。より具体的には、電池温度を複数の温度領域(BT1~BT2、BT2~BT3・・・BT12~BT13)に分け、より高い温度領域であるほど高い制限電流値を設定する。なお、最も低い温度領域(BT2未満の温度領域)では、充電電流値は、MC1とする。特に、この充電電流値MC1は、充電電力が外部充電器の設計などにより定まる最大充電電力(定格充電電力)に相当する電流値である。すなわち、電池温度が過度に上昇する可能性の低い低温領域では充電効率を優先して、最大充電電力相当の充電電流値MC1を設定する。なお、この低温領域における充電の具体的なシーンとしては、充電が開始された直後から比較的初期段階、又は高圧バッテリ110に対する冷却機能を十分に確保できる環境下における充電が想定される。
 したがって、電池温度が第1閾値BT2(走行出力制限温度BT13よりも低い値)を超えるまでの間は、充電電流値MC1で定電流充電を実行する。そして、電池温度が第1閾値BT2を超えた場合には、電池温度に基づく充電電流値(充電電流値MC1よりも小さな第1制限電流値MC2)に移行して、定電流充電を継続する。また、第n-1(nは2以上の整数)閾値温度よりも高く走行出力制限温度BT13よりも低い第n閾値温度を超えた場合には、第n-1制限電流値よりも小さな第n制限電流値にて充電を継続する。また、リアルタイム電流制限での電流の絞り代は、制限初期(第1閾値BT2を超えた直後)ほど大きく、電池温度が高くなるのに応じて小さくする。例えば、|初期充電電流値MC1-第1制限電流値MC2|>|第1制限電流値MC2-第2制限電流値MC3|>|第2制限電流値MC3-第3制限電流値MC4|>…とすることができる。ただし、所定の電池温度を超えた場合には、電流の絞り代を一定値とするようにしてもよい。例えば、第4閾値BT5を超えた後における電流の絞り代は、一定値とすることができる。なお、そのように定電流充電を継続して行う場合には、電池温度とともに、他の要素(例えば、SOH、外気温、発熱量、抜熱量、冷却状)を用いて充電電流値を設定することができる。このように、高圧バッテリ110の発熱量を段階的に下げて、熱収支バランスを調整し、電池温度の安定化を図ることができる。
 また、図3Bに示すように、充電時における電池温度と最大電流との関係は、定数マップ(温度-電流マップ)で設定することができる。その定数マップにおける格子点(白抜きの丸、黒塗りの丸)は、両端の温度で指定した電流制限値と称することができる。なお、温度条件が細かいマップでも1℃程度の離散的な温度条件における電流値を指定するため、この間の電流を直線近似、指数近似等で制限することを、所定電池温度間の電流制限値と表現することができる。このように、本実施形態では、両端の温度で指定した電流制限値を用いて、定めた数値補間式で充電電流値を演算することができる。また、その定数マップは、発熱量あるいは電池温度を所定値に制御するために予め設定したマップである。
 [二次電池の充電制御例]
 図4は、VCM10による高圧バッテリ110の充電制御処理の処理手順の一例を示すフローチャートである。なお、この処理手順は、記憶装置(図示省略)に記憶されているプログラムに基づいて実行される。また、この処理手順は、高圧バッテリ110の充電が開始された後に、所定間隔で繰り返し実行される。
 なお、VCM10は、充電制御に用いる各種情報を所定タイミングで取得するものとする。充電制御に用いる各種情報は、例えば、各センサ(温度センサ121乃至123、電流センサ130、総電圧センサ140、セル電圧センサ151乃至153)から出力された検出結果や、各演算部(SOC演算部161、SOH演算部162)から出力された演算結果である。また、VCM10は、これらの入力値に基づいて、所望の充電電流を実現するようにCharger70を操作して充電電圧を調節する。また、電池温度がBT2未満の温度領域では、充電電流を、最大充電電力に相当する最大値MC1に設定することができる。なお、図5乃至図16に示す例も同様に、充電制御に用いる各種情報を所定タイミングで取得し、電池温度がBT2未満の温度領域では、充電電流値として最大値MC1を設定するものとする。
 ステップS201において、VCM10は、高圧バッテリ110の温度がBT2未満であるか否かを判定する。高圧バッテリ110の温度がBT2未満である場合には、ステップS202に進む。一方、高圧バッテリ110の温度がBT2以上である高い場合には、ステップS203に進む。
 ステップS202において、VCM10は、高圧バッテリ110への最大充電電流値としてMC1を設定する。
 ステップS203において、VCM10は、高圧バッテリ110の温度がBT2以上であり、かつ、BT3未満であるか否かを判定する。高圧バッテリ110の温度がBT2以上であり、かつ、BT3未満である場合には、ステップS204に進む。一方、高圧バッテリ110の温度がBT3以上である場合には、ステップS205に進む。
 ステップS204において、VCM10は、高圧バッテリ110への最大充電電流値としてMC2を設定する。
 ステップS205において、VCM10は、高圧バッテリ110の温度がBT3以上であり、かつ、BT4未満であるか否かを判定する。高圧バッテリ110の温度がBT3以上であり、かつ、BT4未満である場合には、ステップS206に進む。一方、高圧バッテリ110の温度がBT4以上である場合には、ステップS207に進む。
 ステップS206において、VCM10は、高圧バッテリ110への最大充電電流値としてMC3を設定する。
 ステップS207において、VCM10は、高圧バッテリ110の温度がBT4以上であり、かつ、BT5未満であるか否かを判定する。高圧バッテリ110の温度がBT4以上であり、かつ、BT5未満である場合には、ステップS208に進む。一方、高圧バッテリ110の温度がBT5以上である場合には、ステップS209に進む。
 ステップS208において、VCM10は、高圧バッテリ110への最大充電電流値としてMC4を設定する。
 ステップS209において、VCM10は、高圧バッテリ110の温度がBT5以上であり、かつ、BT6未満であるか否かを判定する。高圧バッテリ110の温度がBT5以上であり、かつ、BT6以上である場合には、ステップS210に進む。
 ステップS210において、VCM10は、高圧バッテリ110への最大充電電流値としてMC5を設定する。
 ステップS209において、高圧バッテリ110の温度がBT6以上である場合には、ステップS201乃至S210に示す各処理と同様に、図3Aに示す充電時における電池温度と最大電流との関係例に基づく処理が繰り返し行われる。なお、図4では、ステップS211までの処理手順を省略する。
 ステップS211において、VCM10は、高圧バッテリ110の温度がBT12以上であり、かつ、BT13未満であるか否かを判定する。高圧バッテリ110の温度がBT12以上であり、かつ、BT13未満である場合には、ステップS212に進む。一方、高圧バッテリ110の温度がBT13以上である場合には、ステップS213に進む。
 ステップS212において、VCM10は、高圧バッテリ110への最大充電電流値としてMC12を設定する。
 ステップS213において、VCM10は、高圧バッテリ110の充電電流値として0を設定する。この場合には、高圧バッテリ110への充電が停止される。すなわち、所定温度BT13以上で通電を禁止する。なお、電池温度が低下した場合には充電を再開することができる。
 ステップS214において、VCM10は、高圧バッテリ110の温度が所定値BT0以下であるか否かを判定する。この判定処理は、所定時間が経過した後に実行するようにしてもよい。所定時間は、例えば、上述した各処理により設定された最大充電電流値による充電が実行された後に、その最大充電電流値の設定後の効果が発揮される程度の時間である。
 なお、所定値BT0は、電池温度が下がったら、充電電流を再度増やすための基準値である。所定値BT0として、例えば、BT1未満の値を用いることができる。例えば、所定値BT0として、BT1からヒステリシス分の温度を減算した値を設定することができる。高圧バッテリ110の温度が所定値BT0以下である場合には、ステップS201に戻る。一方、高圧バッテリ110の温度が所定値BT0よりも高い場合には、高圧バッテリ110の充電制御処理の動作を終了する。
 なお、ステップS214に示す判定処理は、高圧バッテリ110の温度に応じた最大充電電流値の設定処理(ステップS202、S204、S206、S208、S210、S212)の後の所定タイミングで実行するようにしてもよい。この場合には、所定値BT0として、図4に示す処理手順の開始時または各判定処理時における温度、または、その温度から所定のヒステリシス分の温度を減算した値を用いるようにしてもよい。
 このように、図4に示す例では、リアルタイム電流制限を行うことにより適切な充電制御を実現できる。この場合に設定される充電電流値の変化量は、図3Bに示すように、電池温度が低いほど(設定される最大電流が大きいほど)大きくし、電池温度が高くなるに応じて小さくする。
 このように、図4に示す例では、高圧バッテリ110の温度に応じた適切な充電電流値を設定することができる。また、図5乃至図16に示すように、高圧バッテリ110の温度に応じた充電電流値を各種条件、例えばSOHや外気温に適応できる電流値とすることも可能である。このように、本実施形態によれば、各種条件に応じた適切な充電電流制限を設定することができる。
 また、図4に示す例では、図3Aに示す関係例に基づく処理を行うため、VCM10の処理負荷を軽減することができ、制御実装を容易とすることができる。
 [二次電池の劣化を考慮した充電制御例]
 次に、高圧バッテリ110の劣化を考慮して充電電流値を制御する例を示す。具体的には、高圧バッテリ110の温度が上がり易い条件となっている場合、例えば劣化していて発熱しやすい条件の場合には、高圧バッテリ110が高温になりやすい。ここで、二次電池の制御システム1では、高圧バッテリ110の温度が所定値に達すると(すなわち高圧バッテリ110が所定値以上高温になると)充電を停止する機能が備わっている。ただし、高圧バッテリ110の温度を適正にコントロールすることによって充電が停止することを防止し、高圧バッテリ110への充電を継続して行うことができ、高圧バッテリ110の充電量を確保することが可能となる。そこで、高圧バッテリ110が劣化していて発熱しやすい条件となっている場合には、高圧バッテリ110の充電量を確保するため、高圧バッテリ110の温度が高くなるのに応じて最大充電電流値をさらに制限し、高圧バッテリ110への充電を継続して行う設定とする。
 図5は、VCM10による高圧バッテリ110の充電制御処理の処理手順の一例を示すフローチャートである。なお、この処理手順は、記憶装置(図示省略)に記憶されているプログラムに基づいて実行される。また、この処理手順は、高圧バッテリ110の充電が開始された後に、所定間隔で繰り返し実行される。
 ステップS221において、VCM10は、高圧バッテリ110のSOHが閾値TH1以上であるか否かを判定する。ここで、閾値TH1は、高圧バッテリ110の劣化の程度を判定するための基準値である。具体的には、閾値TH1は、高圧バッテリ110の劣化の程度が低い状態、例えば初期状態であることを判定するための基準値であり、例えば90%程度の値を用いることができる。高圧バッテリ110のSOHが閾値TH1以上である場合には、ステップS222に進む。一方、高圧バッテリ110のSOHが閾値TH1未満である場合には、ステップS227に進む。
 ステップS222において、VCM10は、高圧バッテリ110の温度がBT2未満であるか否かを判定する。高圧バッテリ110の温度がBT2未満である場合には、ステップS223に進む。一方、高圧バッテリ110の温度がBT2以上である高い場合には、ステップS224に進む。
 ステップS223において、VCM10は、高圧バッテリ110への最大充電電流値としてMC1を設定する。
 ステップS224において、VCM10は、高圧バッテリ110の温度がBT2以上であり、かつ、BT4未満であるか否かを判定する。高圧バッテリ110の温度がBT2以上であり、かつ、BT4未満である場合には、ステップS225に進む。一方、高圧バッテリ110の温度がBT4以上である場合には、ステップS226に進む。
 ステップS225において、VCM10は、高圧バッテリ110への最大充電電流値としてMC4を設定する。
 ステップS226において、VCM10は、高圧バッテリ110の充電電流値として0を設定する。この場合には、高圧バッテリ110への充電が停止される。
 このように、SOHの値が比較的高い場合(ステップS221のYesの場合)、すなわち、高圧バッテリ110が初期状態である場合には、劣化状態である場合と比較して高圧バッテリ110が発熱し難く高圧バッテリ110の温度上昇が比較的緩やかであると想定される。このため、高圧バッテリ110の温度がBT2未満である場合には、最大充電電流値を上述の最大充電電力に相当する充電電流値MC1に維持または設定する。一方で、SOHの値が比較的低い場合(ステップS221のNoの場合)には高圧バッテリ110が劣化して温度上昇し易くなっていると考えられる。そのため、たとえ高圧バッテリ110の温度がBT2未満であっても、最大充電電流値をMC1よりも低く設定することを前提とした上で、ステップS227以降の処理を実行する。
 ステップS227において、VCM10は、高圧バッテリ110のSOHが閾値TH1未満であり、かつ、閾値TH2以上であるか否かを判定する。ここで、閾値TH2は、閾値TH1よりも小さい値であり、高圧バッテリ110の劣化の程度を判定するための基準値である。具体的には、閾値TH2は、高圧バッテリ110の劣化の程度が中程度、例えば中期状態であることを判定するための基準値であり、例えば80%程度の値を用いることができる。高圧バッテリ110のSOHが閾値TH1未満であり、かつ、閾値TH2以上である場合には、ステップS228に進む。一方、高圧バッテリ110のSOHが閾値TH2未満である場合には、ステップS233に進む。
 ステップS228において、VCM10は、高圧バッテリ110の温度がBT3未満であるか否かを判定する。高圧バッテリ110の温度がBT3未満である場合には、ステップS229に進む。一方、高圧バッテリ110の温度がBT3以上である高い場合には、ステップS230に進む。
 ステップS229において、VCM10は、高圧バッテリ110への最大充電電流値としてMC3を設定する。
 ステップS230において、VCM10は、高圧バッテリ110の温度がBT3以上であり、かつ、BT5未満であるか否かを判定する。高圧バッテリ110の温度がBT3以上であり、かつ、BT5未満である場合には、ステップS231に進む。一方、高圧バッテリ110の温度がBT5以上である場合には、ステップS232に進む。
 ステップS231において、VCM10は、高圧バッテリ110への最大充電電流値としてMC5を設定する。
 ステップS232において、VCM10は、高圧バッテリ110の充電電流値として0を設定する。この場合には、高圧バッテリ110への充電が停止される。
 このように、SOHの値が中程度である場合、すなわち、高圧バッテリ110が中期状態である場合には、初期状態である場合と比較して高圧バッテリ110が発熱しやすく高圧バッテリ110の温度上昇が比較的早いと想定される。このため、ステップS228、S230における判定基準として比較的高い値BT3、BT5を用いる。また、高圧バッテリ110の温度がBT3未満である場合には、図4に示す例とは異なり、高圧バッテリ110への最大充電電流値として、比較的小さい値MC3を設定する。また、高圧バッテリ110の温度がBT3以上であり、かつ、BT5未満である場合には、高圧バッテリ110への最大充電電流値として、比較的小さい値MC5を設定する。
 ステップS230において、VCM10は、高圧バッテリ110のSOHが閾値TH2未満であり、かつ、閾値TH3以上であるか否かを判定する。ここで、閾値TH3は、閾値TH2よりも小さい値であり、高圧バッテリ110の劣化の程度を判定するための基準値である。具体的には、閾値TH3は、高圧バッテリ110の劣化の程度が後期程度、例えば後期状態であることを判定するための基準値であり、例えば70%程度の値を用いることができる。
 高圧バッテリ110のSOHが閾値TH2未満であり、かつ、閾値TH3以上である場合には、ステップS222乃至S226、S228乃至S232の各処理と略同様の処理を行うが、図示を省略する。なお、ステップS230以降の各処理は、ステップS228乃至S232の各処理で用いた判定条件よりも厳しい条件で行うようにする。
 また、高圧バッテリ110のSOHが閾値TH3未満である場合には、ステップS221、S227の各処理と略同様の判定処理を行う。この場合の判定処理では、閾値としてTH3よりも小さい値TH4を用いるようにする。
 このように、ステップS233以降の処理として、ステップS221乃至S226、S227乃至S232の各処理と略同様の処理を1回、または、複数回行う。
 このように、SOHの値が比較的低い場合、すなわち、高圧バッテリ110が後期状態である場合には、初期状態、中期状態である場合と比較して高圧バッテリ110がさらに発熱しやすく高圧バッテリ110の温度上昇も早いと想定される。このため、ステップS228、S230の処理と同様の処理における判定基準としてさらに高い値を用いる。また、高圧バッテリ110への最大充電電流値として、ステップS221乃至S226、S227乃至S232の各処理よりもさらに小さい値を設定する。
 [二次電池の劣化を考慮した充電制御の変形例]
 図5では、SOHの判定処理後に、2つの電池温度の判定基準を用いて最大充電電流値を設定する例を示した。ただし、SOHの判定処理後に、3以上の電池温度の判定基準を用いて最大充電電流値を設定するようにしてもよい。そこで、図6では、SOHの判定処理後に、3以上の電池温度の判定基準を用いて最大充電電流値を設定する例を示す。
 図6は、VCM10による高圧バッテリ110の充電制御処理の処理手順の一例を示すフローチャートである。なお、図6に示す処理は、図5に示す処理の一部を変形した例であり、図5に示す処理と共通する部分については、その説明の一部を省略する。
 具体的には、図5では、SOHの判定処理(ステップS221、S227)の後には、2つの判定基準(ステップS221後のBT2及びBT4、ステップS227後のBT3及びBT5)を用いて最大充電電流値を設定する例を示す。これに対して、図6では、SOHの判定処理(ステップS241、S251)の後には、複数の判定基準(BT2乃至BT13)を用いて最大充電電流値を設定する例を示す。
 このように、図6では、複数の判定基準(BT2乃至BT13)を用いて最大充電電流値を設定するため、比較的低い電池温度である場合には、最大充電電流値として比較的高い値を設定する。
 具体的には、ステップS241において、高圧バッテリ110のSOHが閾値TH1以上であると判定された後に、ステップS244において、高圧バッテリ110の温度がBT2以上であり、かつ、BT4未満であると判定された場合を想定する。この場合には、ステップS245において、VCM10は、高圧バッテリ110への最大充電電流値としてMC1Aを設定する。ここで、MC1Aは、MC1よりも小さく、MC2よりも大きい値である。MC1Aとして、例えば100A程度の値を用いることができる。
 また、ステップS246において、高圧バッテリ110の温度がBT4以上であり、かつ、BT6未満であると判定された場合を想定する。この場合には、ステップS247において、VCM10は、高圧バッテリ110への最大充電電流値としてMC1Bを設定する。ここで、MC1Bは、MC1Aよりも小さく、MC2よりも大きい値である。MC1Bとして、例えば80A程度の値を用いることができる。
 また、ステップS251において、高圧バッテリ110のSOHが閾値TH1未満であり、かつ、閾値TH2以上であると判定された後に、ステップS254において、高圧バッテリ110の温度がBT3以上であり、かつ、BT5未満であると判定された場合を想定する。この場合には、ステップS255において、VCM10は、高圧バッテリ110への最大充電電流値としてMC1Cを設定する。ここで、MC1Cは、MC1Bよりも小さく、MC2よりも大きい値である。MC1Cとして、例えば60A程度の値を用いることができる。
 また、ステップS246において、高圧バッテリ110の温度がBT6以上であると判定された後から、ステップS248までの各処理については、図4に示す例と同様に、所定の電池温度に基づく判定処理と、最大充電電流値の設定処理が繰り返し行われる。この場合の判定処理に用いられる電池温度と、設定処理において設定される最大充電電流値との関係については、適宜設定可能である。なお、図6では、ステップS247からS248までの処理手順の図示を省略する。
 また、ステップS256において、高圧バッテリ110の温度がBT6以上であると判定された後から、ステップS258までの各処理についても、図4に示す例と同様に、所定の電池温度に基づく判定処理と、最大充電電流値の設定処理が繰り返し行われる。この場合の判定処理に用いられる電池温度と、設定処理において設定される最大充電電流値との関係についても、適宜設定可能である。ただし、ステップS247からS248までの処理において用いられる電池温度と最大充電電流値との関係によりも、最大充電電流値が小さい値となるように設定することが好ましい。なお、図6では、ステップS257からS258までの処理手順の図示を省略する。
 また、図6では、ステップS248、S258において、高圧バッテリ110の温度がBT12よりも大きく、かつ、BT13未満であると判定された場合に、高圧バッテリ110の最大充電電流値MC12を設定する例を示した。また、ステップS248、S258において、高圧バッテリ110の温度がBT13よりも大きいと判定された場合に、高圧バッテリ110の充電電流値0を設定する例を示した。ただし、最大充電電流値MC12や充電電流値0を設定する際の基準温度を、BT12よりも低い値とするようにしてもよい。例えば、車両が走行中には、走行での発熱による電池温度上昇による走行中の制限を回避するため、車両の速度に応じて、その基準温度を低い値に設定するようにしてもよい。
 [走行中の充電を考慮した充電制御の変形例]
 電池温度が上がり易い環境や条件では、車両の走行中も同様に電池温度が上昇しやすいと想定される。このため、電池温度が上がり易い環境や条件において、走行中に充電が行われる場合には、充電電流値を制限するタイミング、すなわち電池温度を低くするタイミングを早めるようにしてもよい。すなわち、電池温度が上がりやすい環境や条件である場合には、その環境や条件に応じて、充電電流値を制限するタイミング、すなわち電池温度を低くするタイミングを早めるようにしてもよい。そこで、図7、図8では、車両の走行中に、充電電流値を制限するタイミングを早め、走行性能を一定とする場合の例を示す。
 図7は、VCM10による高圧バッテリ110の充電制御処理の処理手順の一例を示すフローチャートである。なお、図7に示す処理は、図5に示す処理の一部を変形した例であり、図5に示す処理と共通する部分については、その説明の一部を省略する。
 なお、ステップS272からS276までの各処理、ステップS278からS282までの各処理については、図5に示す例と同様に、所定の電池温度に基づく判定処理と、最大充電電流値の設定処理とが繰り返し行われる。この場合の判定処理に用いられる電池温度と、設定処理において設定される最大充電電流値との関係については、適宜設定可能である。
 例えば、図7では、高圧バッテリ110の劣化が進んでいることを早いタイミング(ステップS271の判定処理)で判定可能である。この場合には、高圧バッテリ110のSOHが閾値TH3以上であると判定された後に、早いタイミングで充電電流値を制限することができる。このため、電池温度が上昇しやすい車両の走行中でも、充電を維持することができ、走行性能を一定とすることができる。
 [中期状態では初期状態よりも低い電池温度の閾値を用いる例]
 図8は、VCM10による高圧バッテリ110の充電制御処理の処理手順の一例を示すフローチャートである。なお、図8に示す処理は、図6に示す処理の一部を変形した例であり、図6に示す処理と共通する部分については、その説明の一部を省略する。
 具体的には、図6では、電池温度の判定処理(ステップS244、S246)では、閾値BT2、BT4、BT6を判定基準として用いる例を示した。これに対して、図8では、電池温度の判定処理(ステップS304、S306)では、比較的高い閾値BT2、BT5、BT6を判定基準として用いる例を示す。
 また、図6では、電池温度の判定処理(ステップS254、S256)では、閾値BT3、BT5、BT6を判定基準として用いる例を示した。これに対して、図8では、電池温度の判定処理(ステップS314、S316)では、比較的低い閾値BT2、BT3、BT5を判定基準として用いる例を示す。また、最大充電電流値の設定処理(ステップS315、S317)では、判定基準となる閾値BT2、BT3、BT5の低さに応じて、大きい値MC1B、MC1Cを設定する例を示す。
 なお、ステップS301からS310までの各処理、ステップS311からS320までの各処理については、図6に示す例と同様に、所定の電池温度に基づく判定処理と、最大充電電流値の設定処理とが繰り返し行われる。
 このように、図8では、高圧バッテリ110の劣化が進んでいる場合には、比較的低い閾値BT2、BT3、BT5を用いることにより、早いタイミングで充電電流値を制限することができる。このため、電池温度が上昇しやすい車両の走行中でも、充電を維持することができ、走行性能を一定とすることができる。
 [初期状態と中期状態で同じ電池温度の閾値を用いる例]
 図9は、VCM10による高圧バッテリ110の充電制御処理の処理手順の一例を示すフローチャートである。なお、図9に示す処理は、図8に示す処理の一部を変形した例であり、図8に示す処理と共通する部分については、その説明の一部を省略する。
 具体的には、図8では、初期状態と判定された場合の電池温度の判定処理(ステップS302、S304、S306)では、閾値BT2、BT5、BT6を判定基準として用いる例を示した。また、図8では、中期状態と判定された場合の電池温度の判定処理(ステップS312、S314、S316)では、閾値BT2、BT3、BT5を判定基準として用いる例を示した。
 これに対して、図9では、初期状態及び中期状態と判定された場合の双方で、電池温度の判定処理(ステップS332、S334、S336、S342、S344、S346)では、同じ閾値BT2、BT4、BT5を判定基準として用いる例を示す。
 このように、図9では、高圧バッテリ110の劣化状態にかかわらず同一の閾値BT2、BT4、BT5を用いることにより、VCM10の処理負荷を軽減することができる。これにより、早いタイミングで充電電流値を制限することができる。このため、電池温度が上昇しやすい車両の走行中でも、充電を維持することができ、走行性能を一定とすることができる。
 [中期状態では初期状態よりも低い電池温度の閾値を用いるが最大充電電流値は同じ値とする例]
 図10は、VCM10による高圧バッテリ110の充電制御処理の処理手順の一例を示すフローチャートである。なお、図10に示す処理は、図8に示す処理の一部を変形した例であり、図8に示す処理と共通する部分については、その説明の一部を省略する。
 具体的には、図10では、図8に示す例と同様に、初期状態と判定された場合の電池温度の閾値(閾値BT2、BT4、BT5)よりも、中期状態と判定された場合の電池温度の閾値(閾値BT2、BT3、BT4)を低い値とする例を示す。
 ただし、図10では、初期状態及び中期状態と判定された場合の双方で、最大充電電流値の設定処理(ステップS363、S365、S367、S373、S375、S377)では、同一の最大充電電流値MC1、MC1A、MC1Bを設定する例を示す。
 このように、図10では、高圧バッテリ110の劣化状態にかかわらず同一の最大充電電流値MC1、MC1A、MC1Bを用いることにより、VCM10の処理負荷を軽減することができる。これにより、早いタイミングで充電電流値を制限することができる。このため、電池温度が上昇しやすい車両の走行中でも、充電を維持することができ、走行性能を一定とすることができる。
 [気温を考慮した充電制御例]
 次に、気温を考慮して充電電流値を制御する例を示す。具体的には、高圧バッテリ110の温度が上がり易い条件となっている場合、例えば気温が高い環境や条件の場合には、高圧バッテリ110が高温になりやすい。そこで、そのような環境や条件となっている場合には、高圧バッテリ110の充電量を確保するため、高圧バッテリ110が高温になるのに応じて最大充電電流値をさらに制限する設定とする。
 図11は、VCM10による高圧バッテリ110の充電制御処理の処理手順の一例を示すフローチャートである。なお、図11に示す処理は、図5に示す処理の一部を変形した例であり、図5に示す処理と共通する部分については、その説明の一部を省略する。
 ステップS401において、VCM10は、気温が閾値T1以下であるか否かを判定する。ここで、閾値T1は、高圧バッテリ110が高温になりやすい気温であるか否かを判定するための基準値である。具体的には、閾値T1は、気温が比較的低い状態であることを判定するための基準値であり、例えば20℃程度の値を用いることができる。気温が閾値T1以下である場合には、ステップS402に進む。一方、気温が閾値T1よりも高い場合には、ステップS407に進む。
 なお、ステップS402乃至S406の各処理は、図5に示すステップS222乃至S226の各処理と同様である。
 このように、気温が比較的低い場合、すなわち、高圧バッテリ110が高温になりにくい環境である場合には、気温が高い場合と比較して高圧バッテリ110が発熱し難く高圧バッテリ110の温度上昇が比較的緩やかであると想定される。このため、高圧バッテリ110の温度がBT2未満である場合には、図5に示す例と同様に、最充電電流値を上述の最大充電電力に相当する充電電流値MC1に維持または設定する。また、高圧バッテリ110の温度がBT2以上であり、かつ、BT4未満である場合には、高圧バッテリ110への最大充電電流値として、比較的大きい値MC4を設定する。
 ステップS407において、VCM10は、気温が閾値T1よりも高く、かつ、閾値T2以下であるか否かを判定する。ここで、閾値T2は、閾値T1よりも高い値であり、高圧バッテリ110が高温になりやすい気温であるか否かを判定するための基準値である。具体的には、閾値T2は、気温が比較的高いことを判定するための基準値であり、例えば30℃程度の値を用いることができる。気温が閾値T1よりも高く、かつ、閾値T2以下である場合には、ステップS408に進む。一方、気温が閾値T2よりも高い場合には、ステップS413に進む。
 なお、ステップS408乃至S412の各処理は、図5に示すステップS228乃至S232の各処理と同様である。
 このように、気温が比較的高い場合には、気温が比較的低い場合と比較して高圧バッテリ110が発熱しやすく高圧バッテリ110の温度上昇が比較的早いと想定される。このため、ステップS408、S410における判定基準として比較的低い値BT3、BT5を用いる。また、高圧バッテリ110の温度がBT3未満である場合には、図5に示す例と同様に、高圧バッテリ110への最大充電電流値として、比較的小さい値MC3を設定する。また、高圧バッテリ110の温度がBT3以上であり、かつ、BT5未満である場合には、高圧バッテリ110への最大充電電流値として、比較的小さい値MC5を設定する。
 ステップS413において、VCM10は、気温が閾値T2よりも高く、かつ、閾値T3以下であるか否かを判定する。ここで、閾値T3は、閾値T2よりも高い値であり、高圧バッテリ110が高温になりやすい気温であるか否かを判定するための基準値である。具体的には、閾値T3は、気温が高いことを判定するための基準値であり、例えば35℃程度の値を用いることができる。
 気温が閾値T2よりも高く、かつ、閾値T3以下である場合には、ステップS402乃至S406、S408乃至S412の各処理と略同様の処理を行うが、図示を省略する。なお、ステップS413以降の各処理は、ステップS408乃至S412の各処理で用いた判定条件よりも厳しい条件で行うようにする。
 また、気温が閾値T3よりも高い場合には、ステップS401、S407の各処理と略同様の判定処理を行う。この場合の判定処理では、閾値としてT3よりも高い値T4を用いるようにする。
 このように、ステップS413以降の処理として、ステップS401乃至S406、S407乃至S412の各処理と略同様の処理を1回、または、複数回行う。
 このように、気温が比較的高い場合には、高圧バッテリ110がさらに発熱しやすく高圧バッテリ110の温度上昇も早いと想定される。このため、ステップS408、S410の処理と同様の処理における判定基準としてさらに低い値を用いる。また、高圧バッテリ110への最大充電電流値として、ステップS403、S405、S409、S411の各処理よりもさらに小さい値を設定する。
 [冷却システムの稼働状態を考慮した充電制御例]
 次に、冷却システムの稼働状態を考慮して充電電流値を制御する例を示す。具体的には、高圧バッテリ110の温度が上がり易い条件となっている場合、例えば冷却システムが稼働していない状態では、車両が停止時の充電または走行時の充電において、高圧バッテリ110が高温になりやすい。そこで、そのような環境や条件となっている場合には、高圧バッテリ110の充電量を確保するため、高圧バッテリ110が高温になるのに応じて最大充電電流値をさらに制限する設定とする。
 図12は、VCM10による高圧バッテリ110の充電制御処理の処理手順の一例を示すフローチャートである。なお、図12に示す処理は、図5に示す処理の一部を変形した例であり、図5に示す処理と共通する部分については、その説明の一部を省略する。
 ステップS501において、VCM10は、車両の冷却システムが稼働可能か否かを判定する。車両の冷却システムが稼働可能である場合には、ステップS502に進む。一方、車両の冷却システムが全て稼働でない場合には、ステップS507に進む。
 ここで、車両の冷却システムは、AC30である。AC30は、VCM10の制御に基づいて、車室内の冷却と車室以外の各部とに冷媒を振り分けて流している。なお、車両の冷却システムが稼働可能でない場合は、例えば、AC30が故障しているような場合や、冷却システムが稼働できない環境に車両が存在する場合を意味する。例えば、-10度程度の環境では、冷媒が凍結してしまい使用できないおそれがあるため、車両の冷却システムが稼働できない状態となる。
 また、車両の冷却システムの稼働が制限される場合は、AC30は稼働可能であるが、何らかの理由により高圧バッテリ110への冷媒の供給が制限される場合を意味する。例えば、車室内が高温となり、車室内を優先的に冷却する必要がある場合には、車室内に優先的に冷媒を供給する必要があるため、冷却システムとして高圧バッテリ110への冷媒の供給が制限される。また、外気温が低く、氷点下となっている環境では、AC30の部品が適切に稼働しないことも想定される。このような場合には、冷却システムとして高圧バッテリ110への冷媒の供給が制限される。
 なお、ステップS502乃至S506の各処理は、図5に示すステップS222乃至S226の各処理と同様である。
 このように、車両の冷却システムが稼働可能である場合、すなわち、高圧バッテリ110が高温になりにくい環境である場合には、車両の冷却システムが稼働可能でない場合と比較して高圧バッテリ110が発熱し難く高圧バッテリ110の温度上昇が比較的緩やかであると想定される。このため、高圧バッテリ110の温度がBT2未満である場合には、図5に示す例と同様に、最大充電電流値を上述の最大充電電力に相当する充電電流値MC1に維持または設定する。また、高圧バッテリ110の温度がBT2以上であり、かつ、BT4未満である場合には、高圧バッテリ110への最大充電電流値として、比較的大きい値MC4を設定する。
 ステップS507において、VCM10は、車両の冷却システムの稼働が制限中であるか否かを判定する。車両の冷却システムの稼働が制限中である場合には、ステップS508に進む。一方、車両の冷却システムが稼働可能ではなく、車両の冷却システムの稼働が制限中でもない場合、すなわち車両の冷却システムが稼働不可能である場合には、ステップS513に進む。
 なお、ステップS508乃至S512の各処理は、図5に示すステップS228乃至S232の各処理と同様である。
 このように、車両の冷却システムの稼働が制限中である場合には、車両の冷却システムが全て稼働可能である場合と比較して高圧バッテリ110が発熱しやすく高圧バッテリ110の温度上昇が比較的早いと想定される。このため、ステップS508、S510における判定基準として比較的高い値BT3、BT5を用いる。また、高圧バッテリ110の温度がBT3未満である場合には、図5と同様に、高圧バッテリ110への最大充電電流値として、比較的小さい値MC3を設定する。また、高圧バッテリ110の温度がBT3以上であり、かつ、BT5未満である場合には、高圧バッテリ110への最大充電電流値として、比較的小さい値MC5を設定する。
 ステップS513において、VCM10は、高圧バッテリ110の温度がBT4未満であるか否かを判定する。高圧バッテリ110の温度がBT4未満である場合には、ステップS514に進む。一方、高圧バッテリ110の温度がBT4以上である場合には、ステップS515に進む。
 ステップS514において、VCM10は、高圧バッテリ110への最大充電電流値としてMC5を設定する。
 ステップS515において、VCM10は、高圧バッテリ110の充電電流値0を設定する。
 このように、車両の冷却システムが稼働不可能である場合には、高圧バッテリ110がさらに発熱しやすく高圧バッテリ110の温度上昇も早いと想定される。このため、ステップS513の処理における判定基準として比較的低い値BT4を用いる。これにより、高圧バッテリ110の充電電流値0を早めに設定することができる。このため、例えば、車両の走行中における発熱により電池温度が上昇するような環境でも走行中の制限を回避することができる。
 なお、車両の冷却システムが稼働している状態で想定される電池温度上昇速度より早いと判定できる場合には、当初想定よりも低い電池温度を判定基準として設定するようにしてもよく、当初想定よりも低い発熱量となるように制御するようにしてもよい。
 [冷却システムの稼働状態を考慮した充電制御の変形例]
 図12では、冷却システムの稼働状態の判定処理後に、2つの電池温度の判定基準を用いて最大充電電流値を設定する例を示した。ただし、冷却システムの稼働状態の判定処理後に、3以上の電池温度の判定基準を用いて最大充電電流値を設定するようにしてもよい。そこで、図13では、冷却システムの稼働制限中の判定処理後に、3以上の電池温度の判定基準を用いて最大充電電流値を設定する例を示す。
 図13は、VCM10による高圧バッテリ110の充電制御処理の処理手順の一例を示すフローチャートである。なお、図13に示す処理は、図12に示す処理の一部を変形した例であり、図12に示す処理と共通する部分については、その説明の一部を省略する。
 ステップS521乃至S526の各処理は、図12に示すステップS501、S513乃至S515の各処理に対応する。ただし、2つの電池温度の判定基準(BT2、BT3)を用いて最大充電電流値(MC1、MC5)を設定する点が異なる。
 ステップS527乃至S536の各処理は、図12に示すステップS507乃至S512の各処理に対応する。ただし、3以上の電池温度の判定基準(BT2、BT4、BT6、…、BT12、BT13)を用いて最大充電電流値(MC1、MC1B、MC1C、…、MC12)を設定する点が異なる。
 ステップS537乃至S545の各処理は、図12に示すステップS502乃至S506の各処理に対応する。ただし、3以上の電池温度の判定基準(BT2、BT4、BT6、…、BT12、BT13)を用いて最大充電電流値(MC1、MC1A、MC1B、…、MC12)を設定する点が異なる。
 このように、車両の冷却システムが稼働制限中である場合には、高圧バッテリ110がさらに発熱しやすく高圧バッテリ110の温度上昇も早いと想定される。このため、ステップS530、S532の設定値として、ステップS539、S541の設定値よりも低い値MC1B、MC1Cを用いる。これにより、高圧バッテリ110の温度を早めに低く設定することができる。このため、例えば、車両の走行中における発熱により電池温度が上昇するような環境でも走行中の制限を回避することができる。
 [冷却システムの稼働状態を考慮した充電制御の変形例]
 図12、図13では、冷却システムが稼働制限中であるか否かを判定する判定処理を実行する例を示した。ただし、冷却システムが稼働制限中であるか否かを判定する判定処理を省略するようにしてもよい。そこで、図14では、冷却システムが稼働制限中であるか否かを判定する判定処理を省略する例を示す。
 図14は、VCM10による高圧バッテリ110の充電制御処理の処理手順の一例を示すフローチャートである。なお、図14に示す処理は、図12に示す処理の一部を変形した例であり、図12に示す処理と共通する部分については、その説明の一部を省略する。
 ステップS551乃至S560の各処理は、図12に示すステップS501乃至S506の各処理に対応する。ただし、3以上の電池温度の判定基準(BT2、BT4、BT6、…、BT12、BT13)を用いて最大充電電流値(MC1、MC1A、MC1B、…、MC12)を設定する点が異なる。
 ステップS561乃至S565の各処理は、図12に示すステップS513乃至S515の各処理に対応する。ただし、2つの電池温度の判定基準(BT2、BT3)を用いて最大充電電流値(MC1、MC5)を設定する点が異なる。
 このように、車両の冷却システムが稼働可能でない場合には、高圧バッテリ110がさらに発熱しやすく高圧バッテリ110の温度上昇も早いと想定される。このため、冷却システムが稼働制限中であるか否かを判定する判定処理を省略し、車両の冷却システムが稼働可能でない場合の電池温度の判定基準を比較的低い値(BT2、BT3)とする。これにより、高圧バッテリ110の温度を早めに低く設定することができる。このため、例えば、車両の走行中における発熱により電池温度が上昇するような環境でも走行中の制限を回避することができる。
 [熱に関する情報を用いた他の充電制御例]
 図4乃至図14では、高圧バッテリ110の熱に関する情報として、高圧バッテリ110の温度、高圧バッテリ110のSOH、外気温、車両の冷却システムの稼働状態を用いて充電電流値を制御する例を示した。ただし、高圧バッテリ110の熱に関する情報として、他の情報を用いて充電電流値を制御することも可能である。そこで、図15、図16では、他の情報を用いて充電電流値を制御する例を示す。
 [発熱量を用いた充電制御例]
 図15では、高圧バッテリ110の熱に関する情報として、高圧バッテリ110の発熱量を用いて充電電流値を制御する例を示す。
 図15は、VCM10による高圧バッテリ110の充電制御処理の処理手順の一例を示すフローチャートである。なお、図15に示す処理は、図4に示す処理の一部を変形した例であり、図4に示す処理と共通する部分については、その説明の一部を省略する。具体的には、図15に示すステップS602、S604、S606、S608、S610、S611乃至S614は、図4に示すステップS202、S204、S206、S208、S210、S211乃至S214に対応するため、その説明を省略する。
 また、図15に示す閾値A1乃至A5は、最大充電電流値を設定する際に用いられる基準値である。例えば、A1は400(J)程度の値とし、A2は800(J)程度の値とし、A3は1200(J)程度の値とし、A4は1500(J)程度の値とし、A5は2000(J)程度の値とすることができる。
 ステップS601において、VCM10は、高圧バッテリ110の発熱量がA1以下であるか否かを判定する。なお、高圧バッテリ110の発熱量[W]は以下の式を用いて求めることができる。
  発熱量[W]=高圧バッテリ110の内部抵抗[Ω]×電流[I]2
 高圧バッテリ110の発熱量がA1以下である場合には、ステップS602に進む。一方、高圧バッテリ110の発熱量がA1よりも大きい場合には、ステップS203に進む。
 ステップS603において、VCM10は、高圧バッテリ110の発熱量がA1よりも大きく、かつ、A2以下であるか否かを判定する。高圧バッテリ110の発熱量がA1よりも大きく、かつ、A2以下である場合には、ステップS604に進む。一方、高圧バッテリ110の発熱量がA2よりも大きい場合には、ステップS605に進む。
 ステップS605において、VCM10は、高圧バッテリ110の発熱量がA2よりも大きく、かつ、A3以下であるか否かを判定する。高圧バッテリ110の発熱量がA2よりも大きく、かつ、A3以下である場合には、ステップS606に進む。一方、高圧バッテリ110の発熱量がA3よりも大きい場合には、ステップS607に進む。
 ステップS607において、VCM10は、高圧バッテリ110の発熱量がA3よりも大きく、かつ、A4以下であるか否かを判定する。高圧バッテリ110の発熱量がA3よりも大きく、かつ、A4以下である場合には、ステップS608に進む。一方、高圧バッテリ110の発熱量がA4よりも大きい場合には、ステップS609に進む。
 ステップS609において、VCM10は、高圧バッテリ110の発熱量がA4よりも大きく、かつ、A5以下であるか否かを判定する。高圧バッテリ110の発熱量がA4よりも大きく、かつ、A5以下である場合には、ステップS610に進む。
 ステップS609において、高圧バッテリ110の発熱量がA5よりも大きい場合には、図示は省略するが、ステップS601乃至S610に示す各処理と同様に、高圧バッテリ110の発熱量と最大充電電流値との関係例に基づく処理が繰り返し行われる。
 なお、ステップS614において、高圧バッテリ110の温度が所定値BT0以下であるか否かを判定する代わりに、高圧バッテリ110の発熱量が所定値A0以下であるか否かを判定するようにしてもよい。この場合に用いられる所定値A0として、例えば、A1未満の値を用いることができる。例えば、所定値A0として、A1からヒステリシス分の値を減算した値を設定することができる。
 このように、図15に示す例では、高圧バッテリ110の発熱量に応じた適切な充電電流値を設定することができる。なお、図5乃至図14で示したように、高圧バッテリ110の温度に応じた充電電流値を各種条件、例えば、SOH、外気温、車両の冷却システムの稼働状態に適応できる電流値とすることも可能である。このように、本実施形態によれば、各種条件に応じた適切な充電電流制限を設定することができる。
 また、図15に示す例では、高圧バッテリ110の発熱量と最大充電電流値との関係例に基づく処理を行うため、VCM10の処理負荷を軽減することができ、制御実装を容易とすることができる。
 [抜熱量を用いた充電制御例]
 図15では、高圧バッテリ110の熱に関する情報として、高圧バッテリ110の発熱量を用いて充電電流値を制御する例を示した。ここで、高圧バッテリ110の抜熱量よりも発熱量が大きい場合には、高圧バッテリ110の温度が上昇してしまうことになる。そこで、高圧バッテリ110の発熱量をどうように冷却するかを計算して適切に制御することが重要となる。そこで、図16では、高圧バッテリ110の熱に関する情報として、高圧バッテリ110の抜熱量を用いて充電電流値を制御する例を示す。
 図16は、VCM10による高圧バッテリ110の充電制御処理の処理手順の一例を示すフローチャートである。なお、図16に示す処理は、図15に示す処理の一部を変形した例であり、図15に示す処理と共通する部分については、その説明の一部を省略する。
 具体的には、図15に示すステップS601、S603、S605、S607、S609の判定処理では、発熱量を用いて判定を行うのに対し、図16に示すステップS621、S623、S625、S627、S629の判定処理では、抜熱量を用いて判定を行う点が異なる。
 なお、高圧バッテリ110の抜熱量[W]は、高圧バッテリ110の温度と、AC30から供給される冷媒温度との関係に基づいて求めることができる。例えば、高圧バッテリ110の抜熱量[W]は、以下の式を用いて求めることができる。
  抜熱量[W]=(高圧バッテリ110の温度[℃]-冷媒温度[℃])÷高圧バッテリ110の熱抵抗[K/W]
 例えば、高圧バッテリ110の温度が55℃で、冷媒温度が5℃の場合には、高圧バッテリ110の温度[℃]-冷媒温度[℃]=50℃となる。この場合に、高圧バッテリ110の熱抵抗が0.05K/Wだとすると、抜熱量[W]は1000Wとなる。例えば、高圧バッテリ110の発熱量が1562.5Wであり、抜熱量が1000Wの場合には、562.5W分の熱量で高圧バッテリ110の温度が上昇する。このように、電池温度が上昇すると、その分だけ「高圧バッテリ110の温度[℃]-冷媒温度[℃]」の値が大きくなり、抜熱量も増加する。この場合には、抜熱量と発熱量がバランスするところまで電池温度が上昇することになる。
 また、図16に示す閾値B1乃至B5は、最大充電電流値を設定する際に用いられる基準値である。例えば、B1は2000(J)程度の値とし、B2は1500(J)程度の値とし、B3は1200(J)程度の値とし、B4は800(J)程度の値とし、B5は400(J)程度の値とすることができる。
 ステップS629において、高圧バッテリ110の発熱量がB5よりも小さい場合には、図示は省略するが、ステップS621乃至S630に示す各処理と同様に、高圧バッテリ110の抜熱量と最大充電電流値との関係例に基づく処理が繰り返し行われる。
 なお、ステップS634において、高圧バッテリ110の温度が所定値BT0以下であるか否かを判定する代わりに、高圧バッテリ110の抜熱量が所定値B0以上であるか否かを判定するようにしてもよい。この場合に用いられる所定値B0として、例えば、B1よりも大きい値を用いることができる。例えば、その所定値B0として、B1からヒステリシス分の値を加算した値を設定することができる。
 このように、図16に示す例では、高圧バッテリ110の抜熱量に応じた適切な充電電流値を設定することができる。なお、図5乃至図14で示したように、高圧バッテリ110の温度に応じた充電電流値を各種条件、例えば、SOH、外気温、車両の冷却システムの稼働状態に適応できる電流値とすることも可能である。このように、本実施形態によれば、各種条件に応じた適切な充電電流制限を設定することができる。
 また、図16に示す例では、高圧バッテリ110の抜熱量と最大充電電流値との関係例に基づく処理を行うため、VCM10の処理負荷を軽減することができ、制御実装を容易とすることができる。
 図4乃至図16に示す判定基準や最大充電電流値については、適宜変更可能であり、図4乃至図16に示す各条件を組み合わせて用いることも可能である。この場合に、例えば、最大充電電流値を設定するための異なる複数の条件が同時に成立した場合には、成立した条件に対応する複数の最大充電電流値のうちから、制限が最も厳しい条件に対応する最大充電電流値を設定することが好ましい。
 また、図15に示す例では、発熱量を判定基準として用いる例を示した。この発熱量は、高圧バッテリ110の内部抵抗と電流との関係に基づいて求めることができるため、図15に示す例は、電流を判定基準として用いる例としても把握できる。また、充電時における電力と電圧が分かれば、充電時における電流を把握することもできる。このため、図15に示す例は、電圧、例えば総電圧またはセル電圧を判定基準として用いる例としても把握できる。
 このように、本実施形態では、単純に、閾値温度を超えたら充電停止、閾値温度を下回ると充電再開とする制御ではなく、所定の電池温度範囲(例えば、第n閾値温度~走行出力制限温度)をキープするように充電電流値を制御することができる。ただし、本実施形態では、電池温度が所定温度以上となった場合には通電を禁止して充電を停止する。なお、電池温度が低下した場合、二次電池の発熱量が低下した場合、冷却性能が向上した場合等には、通電電流を再開して充電を行うことができる。
 以上のように、本実施形態によれば、電池温度が低い低温領域においては、充電電流を外部充電器の設計などに応じて定まる定格充電電力相当の充電電流値MC1に設定して高い充電電力を確保することができる。一方、電池温度が高くなると、二次電池の発熱量及び電池温度を所定値に制御するように最大充電電流を制限する。これにより、充電終了時の電池温度が過度に上昇することを抑制し、放電電力制限を受けずに走行できる距離を大きくすることができる。
 すなわち、電池温度が高くなった場合にリアルタイム電力制限を実施すると、充電中に電流値が一定とならないため、発熱量を一定に制御することができず、高圧バッテリ110の発熱量を適切に制御できない。これに対して、電池温度が高くなった場合にリアルタイム電流制限を実施することにより、充電中の電流値を一定とすることができ、発熱量を一定に制御することができる。このように、高圧バッテリ110の発熱量の適切な制御により、高圧バッテリ110の充電を適切に行うことができ、走行できる距離を大きくすることができる。
 このように、VCM10は、高圧バッテリ110の温度と電流と総電圧とセル電圧と充電状態と劣化状態と冷却状態とを取得する。そして、VCM10は、それらの温度と電流と総電圧とセル電圧と充電状態と劣化状態とに基づいて、高圧バッテリ110の充電時における通電電流を制御する。この場合に、VCM10は、充電電流値を所定値に制御し、電池温度を所定値に制御するとともに、高圧バッテリ110の発熱量を所定値に制御する。また、VCM10は、充電電流値を所定値に制御するために、充電電力を可変として制御する。また、VCM10は、電池温度が所定値を超えた場合には、さらに電流値や発熱量を変更するように制御する。
 また、VCM10は、高圧バッテリ110の温度と電流と総電圧とセル電圧と充電状態と冷却状態との少なくとも1つ、または、それらのうちの複数の条件に基づいて、高圧バッテリ110の発熱を所定値に制御する。この場合に、VCM10は、発熱量あるいは電池温度を所定値に制御するために予め設定した定数マップ(図3B参照)を用いて、高圧バッテリ110の発熱を所定値に制御することができる。
 また、VCM10は、高圧バッテリ110の冷却システムの稼働状況により生じる冷却性能の違いに応じて、高圧バッテリ110の温度と電流と総電圧とセル電圧と充電状態とのうちの少なくとも1つ、または、それらのうちの複数の条件に基づいて、充電電流値を所定値に制御する。この場合に、VCM10は、高圧バッテリ110の劣化等の高圧バッテリ110の発熱条件の違いや、高圧バッテリ110の冷却システムの稼働状況等に応じて目標とする所定温度を変更し、予め設定した定数マップ(図3B参照)を用いて、高圧バッテリ110の温度を所定値に制御することができる。これにより、電池温度を所定値に制御するとともに、高圧バッテリ110の発熱量を所定値に制御することができる。
 なお、高圧バッテリ110の冷却システムの冷却性能の違いは、外部環境の温度や、高圧バッテリ110の抜熱量の違いにより生じる。そこで、VCM10は、高圧バッテリ110の冷却システムの稼働状況や外部環境の温度等に基づいて、充電電流値を所定値に制御する。これにより、電池温度を所定値に制御するとともに、高圧バッテリ110の発熱量を所定値に制御することができる。
 [本実施形態の構成及び効果]
 本実施形態に係る二次電池の充電制御方法は、高圧バッテリ110(二次電池の一例)の充電を制御する充電制御方法である。この充電制御方法は、高圧バッテリ110の熱に関する情報を取得する取得ステップと、高圧バッテリ110の熱に関する情報に基づいて、高圧バッテリ110の発熱量を所定値に制御するように高圧バッテリ110の充電電流値を設定する制御ステップ(図4乃至図16に示す各処理)と、を備える。
 このような充電制御方法によれば、高圧バッテリ110の発熱量を考慮した適切な充電電流値を設定することができ、充電中の高圧バッテリ110の温度上昇を抑制することができる。これにより、高圧バッテリ110の温度上昇を抑制しつつ充電を継続して実行することができる。
 また、本実施形態に係る二次電池の充電制御方法において、制御ステップでは、高圧バッテリ110の充電電流値が一定となるように、高圧バッテリ110の充電電力を可変とする。
 このような充電制御方法によれば、高圧バッテリ110の発熱量を一定に調節するための具体的な制御構成が実現されることとなる。より具体的には、高圧バッテリ110の発熱量に直接的に関連する充電電流値を一定値に設定する。特に少なくとも各温度領域であるBT1~BT2、BT2~BT3・・・BT12~BT13のそれぞれにおいて一定値(MC1、MC2、・・・MC12)に設定することにより、発熱量のばらつきを抑えつつ充電を実行可能な好適な制御構成が実現されることとなる。
 また、本実施形態に係る二次電池の充電制御方法において、取得ステップでは、高圧バッテリ110の熱に関する情報を所定タイミングで取得する。例えば、図4を参照して説明したように、VCM10は、充電制御に用いる各種情報(高圧バッテリ110の熱に関する情報の一例)を所定タイミングで取得する。この所定タイミングは、例えば、高圧バッテリ110の充電が開始された後に、所定間隔で繰り返し実行される処理手順(図4乃至図16に示す処理手順)の開始タイミングとすることができる。なお、他の定期的または不定期なタイミングを所定タイミングとしてもよい。また、制御ステップでは、高圧バッテリ110の熱に関する情報に所定の変化を検知した場合に、その変化に基づいて高圧バッテリ110の充電電流値を変更する。ここで、所定の変化は、例えば、図4乃至図16に示す各判定処理において検知される。例えば、図4に示す例では、BT2未満であった電池温度が、BT2以上となった場合には(ステップS201のNo)、電池温度(高圧バッテリ110の熱に関する情報の一例)に所定の変化があったと検知される。この場合には、その変化に基づいて、高圧バッテリ110の充電電流値が変更される。例えば、電池温度がBT2以上、かつ、BT3未満となった場合には、高圧バッテリ110の充電電流値がMC2からMC3に変更される。
 このような充電制御方法によれば、高圧バッテリ110の熱に関する情報に所定の変化が生じた場合にその変化に基づいて充電電流値を変更するため、高圧バッテリ110の発熱量を考慮した迅速な充電電流値の設定が可能となる。
 また、本実施形態に係る二次電池の充電制御方法では、高圧バッテリ110の熱に関する情報を、高圧バッテリ110の温度と、高圧バッテリ110の発熱量と、高圧バッテリ110の抜熱量とのうちの少なくとも1つとすることができる。
 このような充電制御方法によれば、高圧バッテリ110の熱に関する情報を、高圧バッテリ110の温度、高圧バッテリ110の発熱量、及び高圧バッテリ110の抜熱量といった比較的容易に検出又は演算可能なパラメータにより定量化することができる。このため、高圧バッテリ110の発熱を考慮してより適切に充電電流値を設定するための好適な制御構成が実現される。
 また、本実施形態に係る二次電池の充電制御方法では、高圧バッテリ110の熱に関する情報に、高圧バッテリ110の外部環境または高圧バッテリ110の劣化状態を含めることができる。また、制御ステップ(図5乃至図14に示す各処理)では、高圧バッテリ110の温度と、高圧バッテリ110の発熱量と、高圧バッテリ110の抜熱量とのうちの少なくとも1つとともに、高圧バッテリ110の外部環境または高圧バッテリ110の劣化状態を用いて、高圧バッテリ110の充電電流値を設定する。
 このような充電制御方法によれば、高圧バッテリ110の外部環境または高圧バッテリ110の劣化状態を用いて、高圧バッテリ110の発熱量を考慮した適切な充電電流値を設定することができる。
 また、本実施形態に係る二次電池の充電制御方法において、制御ステップでは、高圧バッテリ110の外部環境または高圧バッテリ110の劣化状態に基づいて、高圧バッテリ110の充電電流値を設定する際の判定基準を変更する。
 このような充電制御方法によれば、高圧バッテリ110の外部環境等に基づいて、高圧バッテリ110の充電電流値を設定する際の判定基準を変更するため、高圧バッテリ110の発熱量を考慮した適切な充電電流値を設定することができる。
 また、本実施形態に係る二次電池の充電制御方法では、高圧バッテリ110の外部環境を、高圧バッテリ110の外部温度、または、高圧バッテリ110の冷却システムの稼働状態とすることができる。
 このような充電制御方法によれば、高圧バッテリ110の外部温度、または、高圧バッテリ110の冷却システムの稼働状態に基づいて、高圧バッテリ110の発熱量を考慮した適切な充電電流値を設定することができる。
 また、本実施形態に係る二次電池の制御システム1(二次電池の充電制御システムの一例)は、高圧バッテリ110(二次電池の一例)と、高圧バッテリ110の充電を制御するVCM10(コントローラの一例)とを備える充電制御システムである。VCM10は、高圧バッテリ110の熱に関する情報を取得し、高圧バッテリ110の熱に関する情報に基づいて、高圧バッテリ110の発熱を所定値に制御するように高圧バッテリ110の充電電流値を設定する。
 このような二次電池の制御システム1によれば、高圧バッテリ110の発熱量を考慮した適切な充電電流値を設定することができ、充電中の高圧バッテリ110の温度上昇を抑制することができる。これにより、高圧バッテリ110の温度上昇を抑制しつつ充電を継続して実行することができる。
 なお、本実施形態で示した各処理は、各処理手順をコンピュータに実行させるためのプログラムに基づいて実行されるものである。このため、本実施形態は、それらの各処理を実行する機能を実現するプログラム、そのプログラムを記憶する記録媒体の実施形態としても把握することができる。例えば、車両に新機能を追加するためのアップデート作業により、そのプログラムを車両の記憶装置に記憶させることができる。これにより、そのアップデートされた車両に本実施形態で示した各処理を実施させることが可能となる。なお、そのアップデートは、例えば、車両の定期点検時等に行うことができる。また、ワイヤレス通信によりそのプログラムをアップデートするようにしてもよい。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。

Claims (8)

  1.  二次電池の充電を制御する充電制御方法であって、
     前記二次電池の熱に関する情報を取得する取得ステップと、
     前記二次電池の熱に関する情報に基づいて、前記二次電池の発熱量を所定値に制御するように前記二次電池の充電電流値を設定する制御ステップと、を備える、
     充電制御方法。
  2.  請求項1に記載の充電制御方法であって、
     前記制御ステップでは、前記充電電流値が一定となるように、充電電力を可変とする、
     充電制御方法。
  3.  請求項1または2に記載の充電制御方法であって、
     前記取得ステップでは、前記熱に関する情報を所定タイミングで取得し、
     前記制御ステップでは、前記熱に関する情報に所定の変化を検知した場合に、当該変化に基づいて前記充電電流値を変更する、
     充電制御方法。
  4.  請求項1から3のいずれかに記載の充電制御方法であって、
     前記熱に関する情報は、前記二次電池の温度と、前記二次電池の発熱量と、前記二次電池の抜熱量とのうちの少なくとも1つである、
     充電制御方法。
  5.  請求項4に記載の充電制御方法であって、
     前記熱に関する情報には、前記二次電池の外部環境または前記二次電池の劣化状態が含まれ、
     前記制御ステップでは、前記二次電池の温度と、前記二次電池の発熱量と、前記二次電池の抜熱量とのうちの少なくとも1つとともに、前記二次電池の外部環境または前記二次電池の劣化状態を用いて前記充電電流値を設定する、
     充電制御方法。
  6.  請求項5に記載の充電制御方法であって、
     前記制御ステップでは、前記二次電池の外部環境または前記二次電池の劣化状態に基づいて、前記充電電流値を設定する際の判定基準を変更する、
     充電制御方法。
  7.  請求項5または6に記載の充電制御方法であって、
     前記二次電池の外部環境は、前記二次電池の外部温度、または、前記二次電池の冷却システムの稼働状態である、
     充電制御方法。
  8.  二次電池と、前記二次電池の充電を制御するコントローラとを備える充電制御システムであって、
     前記コントローラは、前記二次電池の熱に関する情報を取得し、前記二次電池の熱に関する情報に基づいて、前記二次電池の発熱を所定値に制御するように前記二次電池の充電電流値を設定する、
     充電制御システム。
PCT/JP2020/047776 2020-12-21 2020-12-21 充電制御方法及び充電制御システム WO2022137306A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2022570791A JP7556408B2 (ja) 2020-12-21 2020-12-21 充電制御方法及び充電制御システム
EP20966179.2A EP4266448A4 (en) 2020-12-21 2020-12-21 CHARGING CONTROL METHOD AND CHARGING CONTROL SYSTEM
PCT/JP2020/047776 WO2022137306A1 (ja) 2020-12-21 2020-12-21 充電制御方法及び充電制御システム
MX2023007392A MX2023007392A (es) 2020-12-21 2020-12-21 Metodo de control de carga y sistema de control de carga.
US18/268,525 US20240039322A1 (en) 2020-12-21 2020-12-21 Charging Control Method and Charging Control System
CN202080108110.3A CN116636065A (zh) 2020-12-21 2020-12-21 充电控制方法和充电控制系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/047776 WO2022137306A1 (ja) 2020-12-21 2020-12-21 充電制御方法及び充電制御システム

Publications (1)

Publication Number Publication Date
WO2022137306A1 true WO2022137306A1 (ja) 2022-06-30

Family

ID=82159111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/047776 WO2022137306A1 (ja) 2020-12-21 2020-12-21 充電制御方法及び充電制御システム

Country Status (6)

Country Link
US (1) US20240039322A1 (ja)
EP (1) EP4266448A4 (ja)
JP (1) JP7556408B2 (ja)
CN (1) CN116636065A (ja)
MX (1) MX2023007392A (ja)
WO (1) WO2022137306A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0919074A (ja) * 1995-04-27 1997-01-17 Nissan Motor Co Ltd 充電制御システム
JP2006197727A (ja) 2005-01-13 2006-07-27 Sanyo Electric Co Ltd 電池の制限電流制御方法
JP2009207312A (ja) * 2008-02-28 2009-09-10 Sanyo Electric Co Ltd 車両用の電源装置とその電流制御方法
JP2011259672A (ja) * 2010-06-11 2011-12-22 Toyota Motor Corp 車両用制御装置および車両用制御方法
WO2016113925A1 (ja) * 2015-01-16 2016-07-21 三菱電機株式会社 電力管理装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3695266B2 (ja) * 1999-12-03 2005-09-14 日立工機株式会社 満充電判別方法
JP2002343449A (ja) 2001-05-16 2002-11-29 Nissan Motor Co Ltd 冷却装置の故障判断装置
JP4715803B2 (ja) 2007-05-07 2011-07-06 トヨタ自動車株式会社 二次電池冷却装置
JP2013031303A (ja) 2011-07-28 2013-02-07 Sanyo Electric Co Ltd 電池パックの無接点充電方法及び電池パック
WO2013094057A1 (ja) * 2011-12-22 2013-06-27 日立ビークルエナジー株式会社 電池制御装置、電池システム
KR102507229B1 (ko) * 2017-12-05 2023-03-08 현대자동차주식회사 차량용 배터리 냉각시스템 및 제어방법
WO2019244489A1 (ja) 2018-06-22 2019-12-26 パナソニックIpマネジメント株式会社 電池システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0919074A (ja) * 1995-04-27 1997-01-17 Nissan Motor Co Ltd 充電制御システム
JP2006197727A (ja) 2005-01-13 2006-07-27 Sanyo Electric Co Ltd 電池の制限電流制御方法
JP2009207312A (ja) * 2008-02-28 2009-09-10 Sanyo Electric Co Ltd 車両用の電源装置とその電流制御方法
JP2011259672A (ja) * 2010-06-11 2011-12-22 Toyota Motor Corp 車両用制御装置および車両用制御方法
WO2016113925A1 (ja) * 2015-01-16 2016-07-21 三菱電機株式会社 電力管理装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4266448A4

Also Published As

Publication number Publication date
US20240039322A1 (en) 2024-02-01
CN116636065A (zh) 2023-08-22
JPWO2022137306A1 (ja) 2022-06-30
JP7556408B2 (ja) 2024-09-27
EP4266448A1 (en) 2023-10-25
EP4266448A4 (en) 2024-03-13
MX2023007392A (es) 2023-07-05

Similar Documents

Publication Publication Date Title
KR101998069B1 (ko) 전기자동차용 배터리의 열화 발생을 저감하면서 고속충전과 최대방전을 수행하기 위한 방법 및 그 장치
CN106864280B (zh) 在燃料电池车辆的停止模式下控制电压的方法及系统
KR101836651B1 (ko) 연료전지차량의 절연저항 측정 시스템 및 방법
EP2670018B1 (en) Electric vehicle battery system
KR20160121432A (ko) 이차 전지의 냉각 시스템
WO2008111594A1 (ja) 二次電池の制御装置および車両
JP5470829B2 (ja) リチウムイオン電池の状態を判別する判別装置
US10998748B2 (en) Electric power supply system and control method therefor
JP2015076958A (ja) 蓄電システム
JP2008228403A (ja) 車両用電源装置
JP4843921B2 (ja) 組電池の容量調整装置及び組電池の容量調整方法
JPWO2012101667A1 (ja) 蓄電システム
KR20180133984A (ko) 차량용 직류 변환기 제어방법 및 시스템
JP7207817B2 (ja) バッテリー管理方法、バッテリー装置、およびバッテリーを含む自動車
JP6577981B2 (ja) 電源システム
JP2004003460A (ja) 車両の制御装置および制御方法
WO2022137306A1 (ja) 充電制御方法及び充電制御システム
JP5417868B2 (ja) 電動車両の制御装置
JP4645566B2 (ja) 電気車両の容量調整装置
JP2020022268A (ja) 車両の駆動システムの駆動制御装置
CN213228372U (zh) 一种车辆控制系统和车辆
CN114715128A (zh) 混合动力汽车阶梯式过充抑制控制方法及混合动力汽车
CN113400945A (zh) 纯电动汽车能量回收控制方法
JPWO2013031615A1 (ja) ハイブリッドカーのバッテリシステム及びこのバッテリシステムを備えるハイブリッドカー
JP2011116238A (ja) 発電制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20966179

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2023/007392

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2022570791

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18268525

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202080108110.3

Country of ref document: CN

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023012346

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112023012346

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230620

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020966179

Country of ref document: EP

Effective date: 20230721