WO2022135129A1 - 无线通信系统、方法、设备以及芯片 - Google Patents

无线通信系统、方法、设备以及芯片 Download PDF

Info

Publication number
WO2022135129A1
WO2022135129A1 PCT/CN2021/135830 CN2021135830W WO2022135129A1 WO 2022135129 A1 WO2022135129 A1 WO 2022135129A1 CN 2021135830 W CN2021135830 W CN 2021135830W WO 2022135129 A1 WO2022135129 A1 WO 2022135129A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio frequency
signal
frequency signal
frequency band
frequency
Prior art date
Application number
PCT/CN2021/135830
Other languages
English (en)
French (fr)
Inventor
张子炎
Original Assignee
荣耀终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荣耀终端有限公司 filed Critical 荣耀终端有限公司
Priority to CN202180079864.5A priority Critical patent/CN116601874A/zh
Priority to EP21909126.1A priority patent/EP4175188A4/en
Priority to MX2023003444A priority patent/MX2023003444A/es
Priority to US18/019,127 priority patent/US20230299798A1/en
Publication of WO2022135129A1 publication Critical patent/WO2022135129A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0064Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with separate antennas for the more than one band
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/401Circuits for selecting or indicating operating mode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0067Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with one or more circuit blocks in common for different bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to radio frequency electronic technology, and in particular, to a wireless communication system, method, device, and chip.
  • Non-Standalone refers to the coexistence of 4G base stations and 5G base stations on the radio access network side, and the core network adopts the networking architecture of 4G core network or 5G core network.
  • NSA requires 4G networks and 5G networks to work together, and Dual Connectivity (DC) is the technical basis for network collaboration.
  • DC Dual Connectivity
  • the present application provides a wireless communication system, method, device, and chip, which can reduce the space occupied by the radio frequency front-end module, thereby reasonably setting the radio frequency front-end module.
  • an embodiment of the present application provides a wireless communication system, which may include: a first power amplifier, a second power amplifier, a frequency band selection circuit, a first front-end circuit, and an antenna module.
  • the first power amplifier and the second power amplifier are respectively coupled to the frequency band selection circuit, and the first front-end circuit is respectively coupled to the frequency band selection circuit and the antenna selection circuit.
  • the first power amplifier is configured to perform power amplification on the first radio frequency signal and output the amplified first radio frequency signal to the frequency band selection circuit
  • the second power amplifier is configured to perform power amplification on the second radio frequency signal.
  • the power is amplified, and the amplified second radio frequency signal is output to the frequency band selection circuit.
  • the frequency band selection circuit is configured to route the amplified first radio frequency signal to the first front-end circuit when the first radio frequency signal satisfies the first frequency band, and when the second radio frequency signal satisfies the second radio frequency signal When the frequency band is selected, the amplified second radio frequency signal is routed to the first front-end circuit, and the first front-end circuit supports both the first frequency band and the second frequency band.
  • the first front-end circuit is configured to filter and/or combine at least one of the amplified first radio frequency signal or the amplified second radio frequency signal to obtain a first transmit signal.
  • the antenna module is used for transmitting the first transmission signal.
  • the frequency band selection circuit can route the first radio frequency signal and the second radio frequency signal to the first front-end circuit respectively, and the first front-end circuit can process the first radio frequency signal and the second radio frequency signal.
  • the path used for sending the first radio frequency signal can be understood as the first radio frequency front-end path
  • the path used for sending the second radio frequency signal can be understood as the second radio frequency front-end path.
  • the first radio frequency front-end path and the The second RF front-end can share front-end circuits such as filter circuits, thereby reducing front-end circuits such as filters and duplexers in the RF front-end, thereby reducing the space occupied by the RF front-end module, and at the same time ensuring the first RF signal and the second RF signal.
  • the signals do not conflict with each other.
  • an embodiment of the present application provides a wireless communication method, which may include: using a first power amplifier to power amplify a first radio frequency signal, and using a second power amplifier to power amplify a second radio frequency signal.
  • a frequency band selection circuit when the first radio frequency signal satisfies the first frequency band, the amplified first radio frequency signal is routed to the first front-end circuit, and when the second radio frequency signal satisfies the second frequency band, The amplified second radio frequency signal is routed to the first front-end circuit, and the first front-end circuit supports both the first frequency band and the second frequency band.
  • Using the first front-end circuit to filter and/or combine at least one of the amplified first radio frequency signal or the amplified second radio frequency signal to obtain a first transmission signal.
  • the first transmit signal is transmitted using an antenna module.
  • an embodiment of the present application provides a terminal device, including a processor, multiple antennas, and the wireless communication system according to the first aspect.
  • the wireless communication system is coupled to the processor and the plurality of antennas, respectively, and the wireless communication system receives the first radio frequency signal and the second radio frequency signal from the processor.
  • an embodiment of the present application provides a processor, where the processor is configured to control a wireless communication system to execute the method according to the second aspect.
  • an embodiment of the present application provides a chip, including a processor and a memory, where the memory is used to store computer instructions, and the processor is used to call and run the computer instructions stored in the memory to control a wireless communication system The method as described in the second aspect is performed.
  • FIG. 1 is a schematic diagram of a communication system according to an embodiment of the application.
  • FIG. 2 is a schematic diagram of a terminal device according to an embodiment of the application.
  • FIG. 3 is a schematic diagram of another terminal device according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of another terminal device according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a radio frequency front-end module according to an embodiment of the application.
  • FIG. 6 is a schematic diagram of another radio frequency front-end module according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of another radio frequency front-end module according to an embodiment of the application.
  • FIG. 8 is a schematic diagram of another radio frequency front-end module according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a radio frequency front-end module and an antenna module in a scenario according to an embodiment of the application.
  • 10A is a schematic diagram of a radio frequency front-end module and an antenna module in another scenario according to an embodiment of the application;
  • 10B is a schematic diagram of a radio frequency front-end module and an antenna module in another scenario according to an embodiment of the application;
  • 10C is a schematic diagram of a radio frequency front-end module and an antenna module in another scenario according to an embodiment of the application;
  • 10D is a schematic diagram of a radio frequency front-end module and an antenna module in another scenario according to an embodiment of the application;
  • 10E is a schematic diagram of a radio frequency front-end module and an antenna module in another scenario according to an embodiment of the application;
  • 10F is a schematic diagram of a radio frequency front-end module and an antenna module in another scenario according to an embodiment of the application;
  • 10G is a schematic diagram of a radio frequency front-end module and an antenna module in another scenario according to an embodiment of the application;
  • 10H is a schematic diagram of a radio frequency front-end module and an antenna module in another scenario according to an embodiment of the application;
  • FIG. 11 is a schematic diagram of a radio frequency front-end module and an antenna module in another scenario according to an embodiment of the application;
  • FIG. 12 is a schematic diagram of a radio frequency front-end module and an antenna module in another scenario according to an embodiment of the application;
  • FIG. 13 is a schematic diagram of a radio frequency front-end module and an antenna module in another scenario according to an embodiment of the application;
  • FIG. 14 is a schematic diagram of a radio frequency front-end module and an antenna module in another scenario according to an embodiment of the application;
  • 15 is a schematic diagram of a radio frequency front-end module and an antenna module in another scenario according to an embodiment of the application;
  • 16 is a schematic diagram of a radio frequency front-end module and an antenna module in another scenario according to an embodiment of the application;
  • 17 is a schematic diagram of a radio frequency front-end module and an antenna module in another scenario according to an embodiment of the application;
  • FIG. 18 is a schematic diagram of a radio frequency front-end module and an antenna module in another scenario according to an embodiment of the application;
  • 19 is a schematic diagram of a radio frequency front-end module and an antenna module in another scenario according to an embodiment of the application;
  • 20 is a schematic diagram of a radio frequency front-end module and an antenna module in another scenario according to an embodiment of the application;
  • 21 is a schematic diagram of a radio frequency front-end module and an antenna module in another scenario according to an embodiment of the application;
  • FIG. 22 is a schematic diagram of a radio frequency front-end module and an antenna module in another scenario according to an embodiment of the present application.
  • At least one (item) refers to one or more, and "a plurality” refers to two or more.
  • “And/or” is used to describe the relationship between related objects, indicating that there can be three kinds of relationships, for example, “A and/or B” can mean: only A, only B, and both A and B exist , where A and B can be singular or plural.
  • the character “/” generally indicates that the associated objects are an “or” relationship.
  • At least one item(s) below” or similar expressions thereof refer to any combination of these items, including any combination of single item(s) or plural items(s).
  • At least one (a) of a, b or c can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c" ", where a, b, c can be single or multiple.
  • the terminal device can set the 4G RF front-end channel and the 5G RF front-end channel respectively.
  • the 4G RF front-end path includes multiple RF front-end devices, such as multiplexers or filters.
  • the 5G RF front-end path includes multiple RF front-end devices, such as multiplexers or filters.
  • the 4G RF front-end channel and the 5G RF front-end channel are independent of each other to support the transmission of 4G RF signals in different frequency bands and 5G RF signals in different frequency bands.
  • the radio frequency front-end module provided by the embodiment of the present application is provided with a frequency band selection circuit.
  • the RF signal and the second RF signal are routed to the same filter and/or multiplexer, so that the first RF front-end path and the second RF front-end path share the filter and/or multiplexer to reduce the number of filters in the RF front-end , multiplexers and other devices, thereby reducing the space occupied by the RF front-end module.
  • the multiplexer may include a duplexer, a triplexer, or a quadplexer, etc.
  • the first radio frequency signal and the second radio frequency signal involved in the embodiment of the present application may be radio frequency signals of different formats.
  • the first radio frequency signal is a 4G radio frequency signal
  • the second radio frequency signal is a 5G radio frequency signal.
  • the first radio frequency signal and the second radio frequency signal may also be radio frequency signals of the same standard but different frequency bands.
  • the first radio frequency signal and the second radio frequency signal may also be radio frequency signals used by the terminal device to communicate with the access network device using different SIMs.
  • the frequency band of the 5G radio frequency signal in this embodiment of the present application may be Sub6G, that is, a frequency band below 7.2 GHz.
  • the frequency band of the 4G radio frequency signal in this embodiment of the present application may be Sub3G, that is, a frequency band below 3 GHz. It can be seen that the frequency band of the 5G radio frequency signal overlaps with the frequency band of the 4G radio frequency signal, that is, the frequency band below 3GHz overlaps.
  • the frequency band below 3 GHz may include a low frequency band (LB), a middle frequency band (MB), and a high frequency band (HB).
  • LB is the frequency band below 1000Mhz
  • MB is the frequency band of 1.7-2.3Ghz
  • HB is the frequency band of 2.3-2.7Ghz.
  • LB and MB can form LMB
  • MB and HB can form MHB.
  • 2.7 GHz to 7.2 GHz is referred to as a 5G high frequency frequency band in this embodiment of the present application.
  • the 5G frequency range is divided into different frequency bands, and different frequency bands correspond to different frequency band numbers, such as N41, N7, etc.
  • the 4G frequency range is divided into different frequency bands, and different frequency bands correspond to different frequency band numbers, for example, B41, B7, etc.
  • the corresponding frequency ranges of N41 and B41 are the same.
  • the above-mentioned LB may include N28A, B28A, N28B, B28B, N20, B20, N8, B8, and the like.
  • the above-mentioned MBs may include N1, B1, N3, B3, and the like.
  • the above-mentioned HB may include N41, B41, N40, B40, N7, B7, and the like.
  • the radio frequency front-end module provided in the embodiment of the present application may be applied to the terminal device 3 in the communication system shown in FIG. 1 , and the communication system may be a dual-connection communication system deployed in the NSA mode, Dual connection for NR.
  • Dual connectivity for LTE-NR can include EN-DC (E-UTRA-NR Dual Connectivity), NGEN-DC (NG-RAN E-UTRA-NR Dual Connectivity), or NE-DC (NR-E-UTRA Dual Connectivity) .
  • EN-DC refers to the access of the core network to the 4G core network (Evolved Packet Core, EPC), the 4G base station as the master base station (Master eNB, MeNB), and the 5G base station as the secondary base station (Secondary eNB, SeNB).
  • EPC Evolved Packet Core
  • MeNB Master eNB
  • SeNB secondary base station
  • NGEN-DC refers to the access of the core network to the 5G core network (5G Core, 5GC), the 4G base station is used as the MeNB, and the 5G base station is used as the SeNB.
  • NE-DC refers to the core network access 5GC, 5G base station as MeNB, 4G base station as SeNB.
  • the dual connectivity deployed in the NSA mode can also be other dual connectivity forms, for example, dual connectivity between NR and future next-generation communication technologies (eg, 6G), or 4G and In the future, the dual connectivity of the next generation communication technology (for example, 6G), etc., the embodiments of the present application do not limit the dual connectivity of LTE-NR.
  • the radio frequency front-end module of the embodiment of the present application can be applied to a terminal device that communicates with access network devices of different standards at the same time.
  • radio frequency front-end module in this embodiment of the present application can also be applied to a terminal device that simultaneously communicates with different access network devices of the same standard.
  • the communication system may include: a terminal device 3 , an access network device 1 and an access network device 2 .
  • the terminal device 3 in FIG. 1 refers to a terminal device with dual connection capability, which is mainly used to connect to at least one access network device deployed by an operator through an air interface to receive network services. It is easy to understand that a terminal device capable of supporting dual connections usually needs to be provided with two radio frequency transceiver paths that support communication with two access network devices of the same or different standards.
  • Access network equipment is mainly used to implement functions of radio protocol stack, resource scheduling and radio resource management, radio access control and mobility management functions.
  • the non-standalone networking mode of 5G NR is often selected, such as the EN-DC communication system based on option3x or option3 architecture.
  • the access network device 1 may be an evolved node (evolved Node B, eNB) in a long term evolution (long term evolution, LTE) system, and the access network device 2 may be an NR.
  • eNB evolved Node B
  • LTE long term evolution
  • terminal equipment can communicate with eNB and gNB at the same time.
  • the above-mentioned access network device may be an access network device with wireless transceiver function or a chip provided in the access network device.
  • the access network equipment includes but is not limited to: evolved Node B (evolved Node B, eNB), radio network controller (radio network controller, RNC), Node B (Node B, NB), base station controller (base station controller, BSC), base transceiver station (base transceiver station, BTS), home base station (for example, homeevolved NodeB, or home Node B, HNB), baseband unit (baseband unit, BBU), wireless fidelity (wireless fidelity, WIFI) system
  • the access point (AP), wireless relay node, wireless backhaul node, transmission point (transmission and reception point, TRP or transmission point, TP), etc. can also be 5G, such as NR, in the system gNB, or, transmission point (TRP or TP), one or a group (including multiple antenna panels) antenna panels of a base station in a
  • the above-mentioned terminal equipment may also be referred to as user equipment (user equipment, UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, User Agent or User Device.
  • user equipment user equipment
  • UE user equipment
  • access terminal subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, User Agent or User Device.
  • the terminal in the embodiment of the present application may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (virtual reality, VR) terminal, an augmented reality (augmented reality, AR) terminal, industrial control Wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, wireless terminals in transportation safety Terminals, wireless terminals in smart cities, wireless terminals in smart homes, smart watches, smart bracelets, smart glasses, and other sports accessories or wearable devices, etc.
  • the embodiments of the present application do not limit application scenarios.
  • FIG. 1 is only an exemplary architecture diagram, in addition to the functional units shown in FIG. 1 , the communication system may further include other functional units, which are not limited in this embodiment of the present application.
  • the radio frequency front-end module provided in this embodiment of the present application can also be applied to terminal equipment that communicates with different cells in the same access network equipment, in other words, can be applied to the connection with the carrier aggregation (Carrier Aggregation, CA) technology.
  • the terminal equipment that the network access equipment communicates with may be an LTE CA, a 5G CA, or a CA of other standards, which is not limited in this embodiment of the present application.
  • the radio frequency front-end module provided in this embodiment of the present application can also be applied to a multi-card terminal device, for example, a dual-sim dual-standby (Dual Sim Dual Standby, DSDS) terminal device, or a dual-sim dual-pass (Dual Sim Dual active) terminal device. , DSDA) terminal equipment.
  • a multi-card terminal device for example, a dual-sim dual-standby (Dual Sim Dual Standby, DSDS) terminal device, or a dual-sim dual-pass (Dual Sim Dual active) terminal device. , DSDA) terminal equipment.
  • the DSDS terminal device can be set with two subscriber identification module (SIM) cards, and the two SIM cards are both in the standby state, and the user can use the two SIM cards to make calls and answer calls. Operations such as making calls, sending and receiving text messages, and accessing various applications (eg, video playback applications, instant messaging applications, and game applications).
  • SIM subscriber identification module
  • any SIM card can also be replaced with an embedded SIM (Embedded-SIM, eSIM) card.
  • a user can use one SIM card to communicate with the eNB of the LTE system, and use another SIM card to communicate with the gNB of the NR system.
  • the terminal device receives a voice service request from another SIM card.
  • the game application of the terminal device The program interrupts the connection to the server.
  • the game application of the terminal device will not interrupt the connection with the server, and the user can use two SIM cards to play games and perform voice services at the same time.
  • FIG. 2 is a schematic structural diagram of a terminal device 200 provided by an embodiment of the application.
  • the terminal device 200 may include a processor 210, a radio frequency front end module (Radio Frequency Front End Module, RFFEM) 220 , the RF front-end power supply module 230 and the antenna module 240 .
  • RFFEM Radio Frequency Front End Module
  • the processor 210 may include one or more processing units, for example, the processor 210 may include an application processor (application processor, AP), a modem processor, a graphics processor (graphics processing unit, GPU), an image signal processor (image signal processor, ISP), controller, video codec, digital signal processor (DSP), baseband, RF transceiver, and/or neural-network processing unit (NPU) Wait.
  • the controller can generate an operation control signal according to the instruction operation code and timing signal, and complete the control of fetching and executing instructions.
  • a memory may be provided in the processor 210 for storing instructions and data.
  • the memory in the processor 210 includes cache memory.
  • the memory may hold instructions or data that have just been used or recycled by the processor 210 . If the processor 210 needs to use the instruction or data again, it can be called directly from the memory. Repeated accesses are avoided, and the waiting time of the processor 210 is reduced, thereby improving the efficiency of the system.
  • Baseband is used to synthesize the baseband signal to be transmitted, or/and to decode the received baseband signal. Specifically, when transmitting, the baseband encodes a voice or other data signal into a baseband signal (baseband code) for transmission; when receiving, decodes the received baseband signal (baseband code) into a voice or other data signal.
  • the baseband may include components such as encoders, decoders, and baseband processors.
  • the encoder is used to synthesize the baseband signal to be transmitted, and the decoder is used to decode the received baseband signal.
  • the baseband processor can be a microprocessor (MCU), and the baseband processor can be used to control the encoder and the decoder, for example, the baseband processor can be used to complete the scheduling of encoding and decoding, the communication between the encoder and the decoder, And peripheral drivers (you can enable components other than baseband by sending enable signals to components other than baseband) and so on.
  • MCU microprocessor
  • the modem processor may include a modulator and a demodulator.
  • the modulator is used to modulate the baseband signal to be sent into a baseband modulated signal.
  • the demodulator is used to demodulate the received baseband modulated signal into a baseband signal.
  • the demodulator then transmits the demodulated baseband signal to baseband processing.
  • the baseband signal is passed to the application processor.
  • the application processor outputs sound signals through audio devices (not limited to speakers, receivers, etc.), or displays images or videos through the display screen 194 .
  • the modem processor may be a stand-alone device.
  • the modulation and demodulation processor may be independent of the processor 210, and may be provided in the same device as the radio frequency front-end module 220 or other functional modules.
  • the radio frequency transceiver is used for up-converting the baseband modulated signal output by the modem into a radio frequency (Radio Frequency, RF) signal, and outputting the RF signal to the radio frequency front-end module 220 for later transmission by one or more antennas in the antenna module 240.
  • the RF transceiver is also used to down-convert the RF signal received through the antenna module 240 and the RF front-end module 220 into a baseband modulated signal for subsequent processing by the modem and the baseband.
  • the radio frequency transceiver may be a stand-alone device. In other embodiments, the radio frequency transceiver may be independent of the processor 210, and be provided in the same device as the radio frequency front-end module 220 or other functional modules.
  • the processor 210 may frequency modulate the signal according to a mobile communication technology or a wireless communication technology.
  • Mobile communication technologies may include global system for mobile communications (GSM), general packet radio service (GPRS), code division multiple access (CDMA), bandwidth code division Multiple access (wideband code division multiple access, WCDMA), time division code division multiple access (time-division code division multiple access, TD-SCDMA), long term evolution (long term evolution, LTE), emerging wireless communication technology (also known as It is the fifth generation mobile communication technology, English: 5th generation mobile networks or 5th generation wireless systems, 5th-Generation, 5th-Generation New Radio, referred to as 5G, 5G technology or 5G NR) and so on.
  • GSM global system for mobile communications
  • GPRS general packet radio service
  • CDMA code division multiple access
  • WCDMA bandwidth code division Multiple access
  • WCDMA wideband code division multiple access
  • TD-SCDMA time division code division multiple access
  • long term evolution long term evolution
  • LTE long term evolution
  • Wireless communication technologies may include wireless local area networks (WLAN) (eg, wireless fidelity (Wi-Fi) networks), bluetooth (BT), global navigation satellite system (GNSS) , frequency modulation (frequency modulation, FM), near field communication technology (near field communication, NFC), infrared technology (infrared, IR) and so on.
  • WLAN wireless local area networks
  • Wi-Fi wireless fidelity
  • BT Bluetooth
  • GNSS global navigation satellite system
  • FM frequency modulation
  • FM frequency modulation
  • NFC near field communication technology
  • infrared technology infrared, IR
  • different processing units may be independent devices, or may be integrated in one or more integrated circuits.
  • the RF front-end module 220 is used for receiving and transmitting RF signals through the antenna module 240 .
  • the RF front-end module 220 may perform processing such as amplifying, filtering, and/or transmitting the RF signal.
  • the antenna module 240 is used to transmit and receive radio frequency signals in the form of electromagnetic waves.
  • the antenna module 240 may include multiple antennas or multiple groups of antennas (the multiple groups of antennas include more than two antennas), and each antenna or multiple groups of antennas may be used to cover a single or multiple communication frequency bands.
  • the plurality of antennas may be one or more of multi-frequency antennas, array antennas or on-chip antennas.
  • the processor 210 is coupled to the antenna module 240 to implement various functions associated with transmitting and receiving radio frequency signals. For example, when the terminal device 200 transmits a signal, the baseband synthesizes the data (digital signal) to be transmitted into the baseband signal to be transmitted, the baseband signal is modulated by the modem into a baseband modulated signal, and the baseband modulated signal is converted by the radio frequency transceiver into a transmit signal (radio frequency). signal), the transmitted signal is processed by the radio frequency front-end module 220, and then transmitted to the antenna module 240, and then transmitted through the antenna module 240.
  • the path through which the transmit signal is sent by the processor 210 to the antenna module 240 is a transmit link (or referred to as a transmit path).
  • the antenna module 240 sends the received signal (radio frequency signal) to the radio frequency front-end module 220.
  • the radio frequency front-end module processes the radio frequency signal, it sends the radio frequency signal to the radio frequency transceiver, and the radio frequency transceiver transmits the radio frequency signal to the radio frequency transceiver.
  • the signal is processed into a baseband modulated signal, and the baseband modulated signal is transmitted to the modem.
  • the modem converts the baseband modulated signal into a baseband signal and transmits it to the baseband. After the baseband converts the baseband signal into data, it is sent to the corresponding application processor.
  • the path of the radio frequency signal sent by the antenna module 240 to the processor 210 is a receive link (or referred to as a receive path).
  • the RF front-end power supply module 230 is configured to receive input from the battery and/or the charging management module, and supply power to the RF front-end module 220 .
  • power amplifiers in the RF front-end module 220 are powered.
  • the RF front-end power supply module 230 may also be provided in the processor 210 .
  • the processor 210 may further provide the control signal CON to the radio frequency front-end power supply module 230 , and provide the radio frequency front-end module 220 with the first radio frequency signal TX1 and the second radio frequency signal TX2 .
  • the RF front-end power supply module 230 may further include a first power supply terminal Vpa11 and a second power supply terminal Vpa12.
  • the first power supply terminal Vpa11 of the RF front-end power supply module 230 is coupled with the first power supply terminal Vpa11 of the RF front-end module 220
  • the second power supply terminal Vpa12 of the RF front-end power supply module 230 is coupled with the second power supply terminal Vpa12 of the RF front-end module 220 .
  • the RF front-end power supply module 230 may further include and a third power supply terminal Vpa13, and the third power supply terminal Vpa13 of the RF front-end power supply module 230 is coupled to the third power supply terminal Vpa13 of the RF front-end module 220.
  • the number of power supply terminals included in the RF front-end power supply module 230 is related to the number of power amplifiers included in the RF front-end module 220, which can be reasonably set according to requirements.
  • the power supply voltages of the two power amplifiers included in the RF front-end module 220 are different, and the RF front-end power supply module 230 may include two power supply terminals to supply power to the two power amplifiers respectively.
  • the radio frequency front-end module 220 may further include a first radio frequency signal terminal RF21, a second radio frequency signal terminal RF22, . . . , and an Nth radio frequency signal terminal RF2N.
  • N takes any positive integer.
  • the first radio frequency signal terminal RF21 of the radio frequency front-end module 220 is coupled to the first radio frequency signal terminal RF21 of the antenna module 240 .
  • the second radio frequency signal terminal RF22 of the radio frequency front-end module 220 is coupled to the second radio frequency signal terminal RF22 of the antenna module 240 .
  • the Nth radio frequency signal terminal RF2N of the radio frequency front-end module 220 is coupled to the Nth radio frequency signal terminal RF2N of the antenna module 240 .
  • the processor 210 provides a power supply control signal to the RF front-end power supply module 230 , and the power supply control signal acts on the RF front-end power supply module 230 , so that the RF front-end power supply module 230 supplies power to the RF front-end module 220 .
  • the processor 210 outputs the first radio frequency signal TX1 to the radio frequency front-end module 220 , and the processor 210 outputs the second radio frequency signal TX2 to the radio frequency front-end module 220 .
  • the radio frequency front-end module 220 is used to amplify, filter and/or transmit the first radio frequency signal and the second radio frequency signal, and pass the first radio frequency signal terminal RF21, the second radio frequency signal terminal RF22, . . . , or the Nth radio frequency Either one or both of the signal terminals RF2N are output to the antenna module 240, and the antenna module 240 is used for transmitting the first radio frequency signal and the second radio frequency signal in the form of electromagnetic waves.
  • the first radio frequency signal and the second radio frequency signal in this embodiment of the present application may be radio frequency signals that the terminal device 200 communicates with access network devices of different standards at the same time.
  • the first radio frequency signal may be the radio frequency signal used by the terminal device 200 to communicate with the 4G base station
  • the second radio frequency signal may be the radio frequency signal used by the terminal device 200 to communicate with the 5G base station.
  • the first radio frequency signal and the second radio frequency signal in this embodiment of the present application may also be radio frequency signals of different carriers in the same access network device.
  • the first radio frequency signal and the second radio frequency signal in this embodiment of the present application may also be radio frequency signals used by the terminal device 200 to communicate with the access network device using different SIM cards.
  • the RF front-end module 220 in this embodiment of the present application adopts a simplified RF link, and supports the transmission of the first RF signal and the second RF signal in any of the above examples, so as to reasonably utilize the limited layout space of the RF device of the terminal device 200 and ensure that the Use performance of the terminal device 200 in different application scenarios.
  • the radio frequency front-end module 220 and the radio frequency signal processing method reference may be made to the explanations of the following embodiments.
  • the structure illustrated in this embodiment does not constitute a specific limitation on the terminal device 200 .
  • the terminal device 200 may include more or less components than those shown in the drawings, or combine some components, or separate some components, or arrange different components.
  • the illustrated components may be implemented in hardware, software, or a combination of software and hardware.
  • FIG. 3 shows a schematic structural diagram of a terminal device 200 (eg, a mobile phone). This embodiment is exemplified by taking the antenna module 240 of the terminal device 200 including the antenna 1 and the antenna 2 as an example.
  • the terminal device 200 may include a processor 110, an external memory interface 120, an internal memory 121, a universal serial bus (USB) interface 130, a charging management module 140, a power management module 141, a battery 142, an antenna 1, an antenna 2 , mobile communication module 150, wireless communication module 160, audio module 170, speaker 170A, receiver 170B, microphone 170C, headphone jack 170D, sensor 180, key 190, motor 191, indicator 192, camera 193, display screen 194, and user Identity module (subscriber identification module, SIM) card interface 195 and so on.
  • SIM subscriber identification module
  • processor 110 For the explanation of the processor 110, reference may be made to the explanation of the processor 210 in the embodiment shown in FIG. 2, and details are not repeated here.
  • the processor 110 may include one or more interfaces.
  • the interface may include an integrated circuit (inter-integrated circuit, I2C) interface, an integrated circuit built-in audio (inter-integrated circuit sound, I2S) interface, a pulse code modulation (pulse code modulation, PCM) interface, a universal asynchronous transceiver (universal asynchronous transmitter) receiver/transmitter, UART) interface, mobile industry processor interface (MIPI), general-purpose input/output (GPIO) interface, subscriber identity module (SIM) interface, and / or universal serial bus (universal serial bus, USB) interface, etc.
  • I2C integrated circuit
  • I2S integrated circuit built-in audio
  • PCM pulse code modulation
  • PCM pulse code modulation
  • UART universal asynchronous transceiver
  • MIPI mobile industry processor interface
  • GPIO general-purpose input/output
  • SIM subscriber identity module
  • USB universal serial bus
  • the USB interface 130 is an interface that conforms to the USB standard specification, and may specifically be a Mini USB interface, a Micro USB interface, a USB Type C interface, and the like.
  • the USB interface 130 can be used to connect a charger to charge the terminal device 200, and can also be used to transmit data between the terminal device 200 and peripheral devices. It can also be used to connect headphones to play audio through the headphones.
  • the interface connection relationship between the modules illustrated in the embodiments of the present application is only a schematic illustration, and does not constitute a structural limitation of the terminal device 200 .
  • the terminal device 200 may also adopt different interface connection manners in the foregoing embodiments, or a combination of multiple interface connection manners.
  • the charging management module 140 is used to receive charging input from the charger.
  • the charger may be a wireless charger or a wired charger.
  • the charging management module 140 may receive charging input from the wired charger through the USB interface 130 .
  • the charging management module 140 may receive wireless charging input through the wireless charging coil of the terminal device 200 . While the charging management module 140 charges the battery 142 , the terminal device 200 can also be powered by the power management module 141 .
  • the power management module 141 is used for connecting the battery 142 , the charging management module 140 and the processor 110 .
  • the power management module 141 receives input from the battery 142 and/or the charging management module 140, and supplies power to the processor 110, the internal memory 121, the display screen 194, the camera 193, and the wireless communication module 160.
  • the power management module 141 can also be used to monitor parameters such as battery capacity, battery cycle times, battery health status (leakage, impedance).
  • the power management module 141 may also be provided in the processor 110 .
  • the power management module 141 and the charging management module 140 may also be provided in the same device.
  • the above-mentioned RF front-end power supply module 230 may be a functional sub-module in the power management module 141 for implementing power supply to the RF front-end module.
  • the wireless communication function of the terminal device 200 may be implemented by the antenna 1, the antenna 2, the mobile communication module 150, the wireless communication module 160, the modulation and demodulation processor, the baseband processor, and the like.
  • Antenna 1 and Antenna 2 are used to transmit and receive electromagnetic wave signals.
  • Each antenna in terminal device 200 may be used to cover a single or multiple communication frequency bands. Different antennas can also be reused to improve antenna utilization.
  • the antenna 1 can be multiplexed as a diversity antenna of the wireless local area network.
  • the mobile communication module 150 may provide a wireless communication solution including 2G/3G/4G/5G and the like applied on the terminal device 200 .
  • the mobile communication module 150 may include at least one filter, switch, power amplifier, low noise amplifier, and the like.
  • the mobile communication module 150 may be the radio frequency front-end module 220 shown in FIG. 2 .
  • the mobile communication module 150 can receive electromagnetic waves from the antenna 1, and perform filtering, amplification and other processing on the received electromagnetic waves.
  • the mobile communication module 150 can also amplify the RF signal, and then convert it into electromagnetic wave through the antenna 1 and radiate it out.
  • at least part of the functional modules of the mobile communication module 150 may be provided in the processor 110 .
  • at least part of the functional modules of the mobile communication module 150 may be provided in the same device as at least part of the modules of the processor 110 .
  • the wireless communication module 160 may provide a wireless communication solution including WLAN, Bluetooth, GNSS, FM, NFC, IR, etc. applied on the terminal device 200 .
  • the wireless communication module 160 may be one or more devices integrating at least one communication processing module.
  • the wireless communication module 160 receives electromagnetic waves via the antenna 2 , frequency modulates and filters the electromagnetic wave signals, and sends the processed signals to the processor 110 .
  • the wireless communication module 160 can also receive the signal to be sent from the processor 110 , perform frequency modulation on it, amplify it, and convert it into electromagnetic waves for radiation through the antenna 2 .
  • the antenna 1 of the terminal device 200 is coupled with the mobile communication module 150, and the antenna 2 is coupled with the wireless communication module 160, so that the terminal device 200 can communicate with the network and other devices through mobile communication technology or wireless communication technology.
  • the terminal device 200 can implement the display function through the GPU, the display screen 194, and the application processor.
  • the GPU is a microprocessor for image processing, and is connected to the display screen 194 and the application processor.
  • the GPU is used to perform mathematical and geometric calculations for graphics rendering.
  • Processor 110 may include one or more GPUs that execute instructions to generate or change display information.
  • Display screen 194 is used to display images, videos, and the like.
  • Display screen 194 includes a display panel.
  • the display panel can be a liquid crystal display (LCD), an organic light-emitting diode (OLED), an active-matrix organic light-emitting diode or an active-matrix organic light-emitting diode (active-matrix organic light).
  • emitting diode, AMOLED organic light-emitting diode
  • flexible light-emitting diode flexible light-emitting diode (flex light-emitting diode, FLED), Miniled, MicroLed, Micro-oLed, quantum dot light-emitting diode (quantum dot light emitting diodes, QLED) and so on.
  • the terminal device 200 may include one or N display screens 194 , where N is a positive integer greater than one.
  • the terminal device 200 may implement a shooting function through an ISP, one or more cameras 193, a video codec, a GPU, one or more display screens 194, an application processor, and the like.
  • the external memory interface 120 can be used to connect an external memory card, such as a Micro SD card, to expand the storage capacity of the terminal device 200 .
  • the external memory card communicates with the processor 110 through the external memory interface 120 to realize the data storage function. For example, data files such as music, photos, videos, etc. are saved in an external memory card.
  • Internal memory 121 may be used to store one or more computer programs including instructions.
  • the processor 110 can execute the above-mentioned instructions stored in the internal memory 121, as well as various functional applications, data processing, and the like.
  • the internal memory 121 may include a storage program area and a storage data area.
  • the stored program area may store the operating system; the stored program area may also store one or more application programs (such as gallery, contacts, etc.) and the like.
  • the storage data area may store data (such as photos, contacts, etc.) created during the use of the terminal device 200 and the like.
  • the internal memory 121 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, universal flash storage (UFS), and the like.
  • the terminal device 200 may implement audio functions through the audio module 170, the speaker 170A, the receiver 170B, the microphone 170C, the headphone interface 170D, and the application processor. Such as music playback, recording, etc.
  • the audio module 170 is used for converting digital audio information into analog audio signal output, and also for converting analog audio input into digital audio signal. Audio module 170 may also be used to encode and decode audio signals. In some embodiments, the audio module 170 may be provided in the processor 110 , or some functional modules of the audio module 170 may be provided in the processor 110 .
  • Speaker 170A also referred to as a "speaker" is used to convert audio electrical signals into sound signals.
  • the terminal device 200 can listen to music through the speaker 170A, or listen to a hands-free call.
  • Receiver 170B also referred to as "earpiece” is used to convert audio electrical signals into sound signals.
  • the microphone 170C also called “microphone” or “microphone”, is used to convert sound signals into electrical signals.
  • the user can make a sound by approaching the microphone 170C through a human mouth, and input the sound signal into the microphone 170C.
  • the terminal device 200 may be provided with at least one microphone 170C.
  • the terminal device 200 may be provided with two microphones 170C, which may implement a noise reduction function in addition to collecting sound signals. In other embodiments, the terminal device 200 may further be provided with three, four or more microphones 170C to collect sound signals, reduce noise, identify sound sources, and implement directional recording functions.
  • the earphone jack 170D is used to connect wired earphones.
  • the earphone port 170D may be the USB port 130, or may be a 3.5mm open mobile terminal platform (open mobile terminal platform, OMTP) standard port, or may be the cellular telecommunications industry association of the USA (CTIA) Standard interface.
  • the sensors 180 may include a pressure sensor 180A, a gyro sensor 180B, an air pressure sensor 180C, a magnetic sensor 180D, an acceleration sensor 180E, a distance sensor 180F, a proximity light sensor 180G, a fingerprint sensor 180H, a temperature sensor 180J, a touch sensor 180K, and an ambient light sensor 180L , Bone conduction sensor 180M and so on.
  • the keys 190 include a power-on key, a volume key, and the like.
  • the key 190 may be a mechanical key or a touch key.
  • the terminal device 200 may receive key input and generate key signal input related to user settings and function control of the terminal device 200 .
  • the SIM card interface 195 is used to connect a SIM card.
  • the SIM card can be contacted and separated from the terminal device 200 by inserting into the SIM card interface 195 or pulling out from the SIM card interface 195 .
  • the terminal device 200 may support 1 or N SIM card interfaces, where N is a positive integer greater than 1.
  • the SIM card interface 195 can support Nano SIM card, Micro SIM card, SIM card and so on. Multiple cards can be inserted into the same SIM card interface 195 at the same time. The types of the plurality of cards may be the same or different.
  • the SIM card interface 195 can also be compatible with different types of SIM cards.
  • the SIM card interface 195 is also compatible with external memory cards.
  • the terminal device 200 interacts with the network through the SIM card to realize functions such as call and data communication.
  • the terminal device 200 employs an eSIM, ie an embedded SIM card.
  • the eSIM card can be embedded in the terminal device 200 and cannot be separated from the terminal device 200 .
  • FIG. 4 is a schematic structural diagram of another terminal device provided by an embodiment of the present application.
  • the RF front-end module 220 may include a power amplifier circuit 10 , a frequency band selection circuit 20 and a front-end circuit 50 .
  • the front-end circuit 50 may include a first front-end circuit 51 .
  • the power amplifier circuit 10 is configured to perform power amplification on the first radio frequency signal and the second radio frequency signal output by the processor 210 , and then output the amplified radio frequency signal to the frequency band selection circuit 20 .
  • the power amplification circuit 10 may include a first power amplifier 11 and a second power amplifier 12 .
  • the first power amplifier 11 is configured to perform power amplification on the first radio frequency signal, and output the amplified first radio frequency signal to the frequency band selection circuit 20 .
  • the second power amplifier 12 is configured to perform power amplification on the second radio frequency signal, and output the amplified second radio frequency signal to the frequency band selection circuit 20 .
  • the frequency band selection circuit 20 is configured to route the amplified first radio frequency signal to the first front-end circuit 51 when the first radio frequency signal meets the first frequency band, and to route the amplified first radio frequency signal to the first front-end circuit 51 when the second radio frequency signal meets the second frequency band.
  • the two radio frequency signals are routed to the first front-end circuit 51, and the first front-end circuit 51 supports both the first frequency band and the second frequency band.
  • the first front-end circuit 51 is configured to filter and/or combine at least one of the amplified first radio frequency signal or the amplified second radio frequency signal to obtain the first transmission signal.
  • the antenna module 240 is used for transmitting the first transmission signal.
  • the above-mentioned first frequency band and second frequency band belong to the first frequency range.
  • the first frequency range includes the frequency range of HB or the frequency range of MB or the frequency range of LB.
  • the first frequency range is the frequency range of HB
  • the first frequency band may include one or more of 5G high-frequency frequency bands such as N41, N7, or N40
  • the second frequency band may include 4G high-frequency frequency bands such as B41, B7, or B40. one or more.
  • the first frequency range is the frequency range of HB
  • the first frequency band may include one or more of 5G high-frequency frequency bands such as N41, N7, or N40
  • the second frequency band may include 5G high-frequency frequency bands such as N41, N7, or N40.
  • the first frequency range is the frequency range of HB
  • the first frequency band may include one or more of 4G high frequency bands such as B41, B7 or B40
  • the second frequency band may include 4G high frequency frequency bands such as B41, B7 or B40 one or more of these.
  • the frequency band selection circuit 20 may include n signal terminals of the first sub-band, the signal terminals of the n first sub-bands are respectively coupled to the first front-end circuit 51, and n is a positive integer.
  • the frequency band selection circuit 20 is configured to, when the first radio frequency signal satisfies the first frequency band and satisfies one of the n first sub-frequency bands, the amplified first sub-frequency band through the signal terminal of the corresponding first sub-frequency band The radio frequency signal is output to the first front-end circuit 51.
  • the signal terminal of the corresponding first sub-frequency band When the second radio frequency signal satisfies the second frequency band and satisfies one of the n first sub-frequency bands, the signal terminal of the corresponding first sub-frequency band will amplify the The second radio frequency signal is output to the first front-end circuit 51, and the n first sub-bands belong to the first frequency range.
  • the three first sub-bands may include the frequency range of a first sub-band corresponding to B41 and N41, and the frequency range of a first sub-band corresponding to B7 and N7.
  • the frequency range, and the frequency range of a first sub-band corresponding to B40 and N40 Correspondingly, a signal terminal of a first sub-band of the frequency band selection circuit 20 is used to output a first radio frequency signal and/or a second radio frequency signal whose frequency belongs to the first sub-band.
  • the first radio frequency signal is a radio frequency signal of N41
  • the second radio frequency signal is a radio frequency signal of B41
  • the first radio frequency signal satisfies the frequency range of the first sub-band corresponding to B41 and N41
  • the frequency band selection circuit 20 passes B41 and N41
  • the signal terminal of the corresponding first sub-band outputs the amplified first radio frequency signal to the first front-end circuit 51
  • the second radio frequency signal satisfies the frequency range of the first sub-band corresponding to B41 and N41
  • the frequency band selection circuit 20 passes B41 and N41.
  • the signal terminal of the first sub-band corresponding to N41 outputs the amplified second radio frequency signal to the first front-end circuit 51 .
  • the front-end circuit 50 may further include a second front-end circuit 52, and the frequency band selection circuit 20 is further configured to route the amplified first radio frequency signal to the second front-end circuit 52 when the first radio frequency signal satisfies the third frequency band.
  • the second radio frequency signal satisfies the fourth frequency band
  • the amplified second radio frequency signal is routed to the second front-end circuit 52, and the second front-end circuit 52 supports both the third frequency band and the fourth frequency band.
  • the second front-end circuit 52 is configured to filter and/or combine at least one of the amplified first radio frequency signal or the amplified second radio frequency signal to obtain a second transmission signal.
  • the antenna module 240 is also used for transmitting the second transmission signal.
  • the above-mentioned third frequency band and fourth frequency band belong to the second frequency range.
  • the second frequency range and the first frequency range include any two of the frequency range of HB or the frequency range of MB or the frequency range of LB.
  • the first frequency range is the frequency range of HB
  • the second frequency range is the frequency range of MB
  • the third frequency band may include one or more of 5G intermediate frequency bands such as N1 or N3
  • the fourth frequency band may include B1 or B3
  • the first frequency range is the frequency range of HB
  • the second frequency range is the frequency range of MB
  • the third frequency band may include one or more of 5G intermediate frequency bands such as N1 or N3
  • the fourth frequency band may include N1 or N3.
  • the first frequency range is the frequency range of HB
  • the second frequency range is the frequency range of MB
  • the third frequency band may include one or more of 4G intermediate frequency bands such as B1 or B3
  • the fourth frequency band may include B1 or One or more of the 4G intermediate frequency bands such as B3.
  • the frequency band selection circuit 20 may further include m signal terminals of the second sub-band, and the m signal terminals of the first sub-band are respectively coupled to the second front-end circuit 52, where m is a positive integer.
  • the frequency band selection circuit 20 is configured to, when the first radio frequency signal satisfies the third frequency band and satisfies one second sub-frequency band in the m second sub-frequency bands, the amplified first frequency band through the signal terminal of the corresponding second sub-frequency band The radio frequency signal is output to the second front-end circuit 52.
  • the signal terminal of the corresponding second sub-frequency band will amplify the The second radio frequency signal is output to the second front-end circuit 52, and the m second sub-bands belong to the second frequency range.
  • the two first sub-bands may include a frequency range of a second sub-band corresponding to B1 and N1, and a second sub-band corresponding to B3 and N3 frequency range.
  • a signal terminal of a second sub-band of the frequency band selection circuit 20 is used for outputting the first radio frequency signal and/or the second radio frequency signal whose frequency belongs to the second sub-band.
  • the first radio frequency signal is the radio frequency signal of N1
  • the second radio frequency signal is the radio frequency signal of B1
  • the first radio frequency signal satisfies the frequency range of the second sub-band corresponding to B1 and N1
  • the frequency band selection circuit 20 passes B1 and N1
  • the signal terminal of the corresponding second sub-band outputs the amplified first radio frequency signal to the second front-end circuit 52
  • the second radio frequency signal satisfies the frequency range of the second sub-band corresponding to B1 and N1
  • the frequency band selection circuit 20 passes B1 and N1.
  • the signal end of the second sub-band corresponding to N1 outputs the amplified second radio frequency signal to the second front-end circuit 52 .
  • the front-end circuit 50 may further include a third front-end circuit 53, and the frequency band selection circuit 20 is further configured to route the amplified first radio frequency signal to the third front-end circuit 53 when the first radio frequency signal satisfies the fifth frequency band.
  • the second radio frequency signal satisfies the sixth frequency band
  • the amplified second radio frequency signal is routed to the third front-end circuit 53, and the third front-end circuit 53 supports both the fifth frequency band and the sixth frequency band.
  • the third front-end circuit 53 is configured to filter and/or combine at least one of the amplified first radio frequency signal or the amplified second radio frequency signal to obtain a third transmission signal.
  • the antenna module 240 is also used for transmitting the third transmission signal.
  • the fifth frequency band and the sixth frequency band mentioned above belong to the third frequency range.
  • the third frequency range, the second frequency range and the first frequency range include any three of the frequency range of HB or the frequency range of MB or the frequency range of LB, and the first frequency range, the second frequency range and the third frequency range The frequency ranges of any two of the two are different.
  • the first frequency range is the frequency range of HB
  • the second frequency range is the frequency range of MB
  • the third frequency range is the frequency range of LB
  • the fifth frequency band may include one of 5G low-frequency frequency bands such as N28A, N28B, N20, or N8.
  • the sixth frequency band may include one or more items of 4G low-frequency frequency bands such as B28A, B28B, B20, or B8.
  • the first frequency range is the frequency range of HB
  • the second frequency range is the frequency range of MB
  • the third frequency range is the frequency range of LB
  • the fifth frequency band may include 5G low-frequency frequency bands such as N28A, N28B, N20, or N8.
  • the sixth frequency band may include one or more items of 5G low-frequency frequency bands such as N28A, N28B, N20, or N8.
  • the first frequency range is the frequency range of HB
  • the second frequency range is the frequency range of MB
  • the third frequency range is the frequency range of LB
  • the fifth frequency band may include 4G low-frequency frequency bands such as B28A, B28B, B20 or B8
  • the sixth frequency band may include one or more items of 4G low frequency frequency bands such as B28A, B28B, B20 or B8.
  • the frequency band selection circuit 20 may further include k signal terminals of the third sub-bands, the signal terminals of the k third sub-bands are respectively coupled to the third front-end circuit 53 , and k is a positive integer.
  • the frequency band selection circuit 20 is configured to, when the first radio frequency signal satisfies the fifth frequency band and satisfies a third sub-frequency band in the k third sub-frequency bands, the amplified first The radio frequency signal is output to the third front-end circuit 53.
  • the signal terminal of the corresponding third sub-frequency band will amplify the
  • the second radio frequency signal is output to the third front-end circuit 53, and the k third sub-bands belong to the third frequency range.
  • the four third sub-bands may include the frequency range of a third sub-band corresponding to B28A and N28A, and the frequency range of a third sub-band corresponding to B20 and N20.
  • a signal terminal of a third sub-band of the frequency band selection circuit 20 is used to output the first radio frequency signal and/or the second radio frequency signal whose frequency belongs to the third sub-band.
  • the first radio frequency signal is the radio frequency signal of N8
  • the second radio frequency signal is the radio frequency signal of B8
  • the first radio frequency signal satisfies the frequency range of the third sub-band corresponding to B8 and N8
  • the frequency band selection circuit 20 passes B8 and N8
  • the signal terminal of the corresponding third sub-band outputs the amplified first radio frequency signal to the third front-end circuit 53
  • the second radio frequency signal satisfies the frequency range of the third sub-band corresponding to B8 and N8
  • the frequency band selection circuit 20 passes B8 and N8.
  • the signal terminal of the third sub-band corresponding to N8 outputs the amplified second radio frequency signal to the third front-end circuit 53 .
  • the radio frequency signal can be crossed between the output of the power amplifier circuit and the antenna module through the frequency band selection circuit, so as to route the radio frequency signal to the antenna of the corresponding frequency, so that the radio frequency front-end module of this embodiment can complete the first step without relying on the processor.
  • Exchange routing of a radio frequency signal and a second radio frequency signal can be crossed between the output of the power amplifier circuit and the antenna module through the frequency band selection circuit, so as to route the radio frequency signal to the antenna of the corresponding frequency, so that the radio frequency front-end module of this embodiment can complete the first step without relying on the processor.
  • the output terminals of the first power amplifier 11 may include a first HB output terminal HB1, a first MB output terminal MB1 and a first LB output terminal LB1.
  • the first power amplifier 11 is used for power amplifying the first radio frequency signal, and outputting the amplified first radio frequency signal to the frequency band selection through the first HB output terminal HB1, the first MB output terminal MB1 or the first LB output terminal LB1 circuit 20.
  • the first radio frequency signal is an HB radio frequency signal
  • the first power amplifier 11 outputs the amplified first radio frequency signal to the frequency band selection circuit 20 through the first HB output terminal HB1 after power amplifying the first radio frequency signal. .
  • the first power amplifier 11 When the first radio frequency signal is the radio frequency signal of MB, the first power amplifier 11 outputs the amplified first radio frequency signal to the frequency band selection circuit 20 through the first MB output terminal MB1 after power amplifying the first radio frequency signal. .
  • the first power amplifier 11 When the first radio frequency signal is the radio frequency signal of LB, the first power amplifier 11 outputs the amplified first radio frequency signal to the frequency band selection circuit 20 through the first LB output terminal LB1 after power amplifying the first radio frequency signal.
  • the output end of the second power amplifier 12 includes a second HB output end HB2, a second MB output end MB2 and a second LB output end LB2.
  • the second power amplifier 12 is used for power amplifying the second radio frequency signal, and the amplified The second radio frequency signal is output to the frequency band selection circuit 20 through the second HB output terminal HB2, the second MB output terminal MB2 or the second LB output terminal LB2.
  • the second radio frequency signal is the radio frequency signal of HB
  • the second power amplifier 12 outputs the amplified second radio frequency signal to the frequency band selection circuit 20 through the second HB output terminal HB2 after power amplifying the second radio frequency signal.
  • the second radio frequency signal is an MB radio frequency signal
  • the second power amplifier 12 outputs the amplified second radio frequency signal to the frequency band selection circuit 20 through the second MB output terminal MB2 after power amplifying the second radio frequency signal.
  • the second radio frequency signal is the radio frequency signal of the LB
  • the second power amplifier 12 outputs the amplified second radio frequency signal to the frequency band selection circuit 20 through the second LB output terminal LB2 after power amplifying the second radio frequency signal.
  • the antenna module 240 may include one or more first antennas and one or more second antennas.
  • one or more first antennas can support high frequency band and/or 5G high frequency band
  • one or more second antennas can support intermediate frequency band, medium and low frequency band, medium and high frequency band or low frequency band
  • the specific settings can be Reasonable settings are made according to the frequencies of the first radio frequency signal and the second radio frequency signal.
  • the value of n is related to the number of HB frequency bands supported by the terminal device
  • the value of m is related to the number of MB frequency bands supported by the terminal device
  • the value of k is related to the LB frequency band supported by the terminal device. number related. For example, if the end device supports N41 and N7, then n is equal to 2.
  • the control signal of the active device in the radio frequency front-end module 220 in this embodiment of the present application may be provided by the processor 210 .
  • the enable signals of the first power amplifier 11 and the second power amplifier 12 in the radio frequency front-end module 220 may be provided through the enable terminals PA11_EN, PA12_EN, and PA13_EN.
  • the control signals of other active devices in the radio frequency front-end module 220 may also be provided by the processor 210, which are not shown one by one in the embodiments of the present application.
  • the processor 210 may also provide a control signal to the RF front-end power supply module 230 , so that the RF front-end power supply module 230 provides a corresponding power supply voltage to the RF front-end module 220 .
  • the RF front-end power supply module 230 may include a power supply circuit 231 and a power supply circuit 232 , and the power supply circuit 231 is configured to provide a power supply voltage to the first power amplifier 11 .
  • the power supply circuit 232 is used to provide a power supply voltage to the second power amplifier 12 .
  • the power supply voltage terminal of the first power amplifier 11 is Vpa11 shown in FIG. 4
  • the power supply voltage terminal of the second power amplifier 12 is Vpa12 shown in FIG. 4 .
  • the frequency band selection circuit can route the first radio frequency signal and the second radio frequency signal to the first front-end circuit, the second front-end circuit or the third front-end circuit respectively, the first front-end circuit, the second The front-end circuit or the third front-end circuit may filter and/or combine the first radio frequency signal and the second radio frequency signal.
  • the first RF front-end channel for sending the first RF signal and the second RF front-end channel for sending the second RF signal can share a filter circuit, so that the filters, duplexers and other components of the RF front-end can be reduced, and further Reduce the space occupied by RF front-end modules.
  • first radio frequency front-end channel and the second radio frequency front-end channel may share an antenna, thereby reducing the number of antennas.
  • Different antennas can support the transmission of radio frequency signals in different frequency bands, thereby reducing the frequency range that the antenna needs to support.
  • the first radio frequency front-end path involved in the embodiments of the present application refers to a path composed of various devices that the first radio frequency signal passes through from the processor to the antenna module
  • the second radio frequency front-end path refers to the second radio frequency. The path of the various devices through which the signal travels from the processor to the antenna module.
  • FIG. 5 is a schematic structural diagram of a radio frequency front-end module 220 according to an embodiment of the present application.
  • the radio frequency front-end module 220 may further include an antenna selection circuit 60 .
  • the antenna module 240 in this embodiment may include r first antennas and N ⁇ r+1 second antennas.
  • the r first antennas may include antennas 241, . . . , and antennas 24r.
  • the N-r+1 second antennas may include antennas 24(N-r+1), . . . , and 24N.
  • the input terminal of the antenna selection circuit 60 is respectively coupled to the output terminal of the first front-end circuit 51 , the output terminal of the second front-end circuit 52 and the output terminal of the third front-end circuit 53 .
  • the output of the antenna selection circuit 60 is coupled to the antenna module 240 .
  • the antenna selection circuit 60 is configured to output the first transmit signal to r first antennas, output the second transmit signal to one or more of the N ⁇ r+1 second antennas, and output the third transmit signal to one or more of the N-r+1 second antennas.
  • the antenna selection circuit 60 is configured to route at least one of the first transmission signal, the second transmission signal or the third transmission signal to the corresponding antenna, and transmit the signal through the antenna.
  • the radio frequency front-end module 220 may further include a first radio frequency signal terminal RF21,..., an rth radio frequency signal terminal RF2r, an (N-r+1)th radio frequency signal terminal RF2(N-r+1)..., and an Nth radio frequency Signal terminal RF2N.
  • r can be a positive integer greater than 1.
  • the first radio frequency signal terminal RF21 of the radio frequency front-end module 220 is connected to the antenna 241
  • the rth radio frequency signal terminal RF2r of the radio frequency front-end module 220 is connected to the antenna 24r
  • the (N-r+1)th radio frequency signal terminal RF2 ( N-r+1) is connected to the antenna 24 (N-r+1)
  • the Nth radio frequency signal terminal RF2N of the radio frequency front-end module 220 is connected to the antenna 24N.
  • the antenna module 240 may include 4 antennas.
  • the antenna module 240 may include two high frequency antennas and two medium and low frequency antennas.
  • the high-frequency antenna is used to support the transmission of radio frequency signals in the 5G high-frequency band or HB.
  • the mid- and low-frequency antennas are used to support the transmission of LMB radio frequency signals.
  • the two high frequency antennas are the antenna 241 and the antenna 242 respectively.
  • the two mid-low frequency antennas are the antenna 243 and the antenna 244 .
  • r may be 4, N may be 7, and the antenna module 240 may include 4 high frequency antennas, 2 medium and high frequency antennas and 1 low frequency antenna.
  • the high-frequency antenna is used to support the transmission of radio frequency signals in the 5G high-frequency band or HB.
  • the medium and high frequency antenna is used to support the transmission of MHB radio frequency signals.
  • the low frequency antenna is used to support the transmission of radio frequency signals of the LB.
  • the four high frequency antennas are antenna 241 , antenna 242 , antenna 243 and antenna 244 respectively.
  • the two medium and high frequency antennas are the antenna 245 and the antenna 246 respectively.
  • One low frequency antenna is antenna 247 .
  • the antenna selection circuit 60 is configured to transmit the first transmit signal output by the first front-end circuit.
  • the signal is routed to the high-frequency antenna, the second transmission signal output by the second front-end circuit is routed to the intermediate-frequency antenna, and the third transmission signal output by the third front-end circuit is routed to the low-frequency antenna.
  • the above-mentioned RF front-end module 220 may further include a third power amplifier 13 and a fourth front-end circuit 54 .
  • the supply voltage terminal of the third power amplifier 13 is Vpa13 as shown in FIG. 5 .
  • the third power amplifier 13 is configured to perform power amplification on the first radio frequency signal when the frequency of the first radio frequency signal belongs to the fourth frequency range, and output the amplified first radio frequency signal to the frequency band selection circuit 20, and the first power
  • the amplifier 11 is configured to perform power amplification on the first radio frequency signal when the frequency of the first radio frequency signal belongs to the first frequency range, the second frequency range or the third frequency range, and output the amplified first radio frequency signal to the frequency band Selection circuit 20.
  • the frequency band selection circuit 20 is further configured to route the amplified first radio frequency signal to the fourth front-end circuit 54 when the frequency of the first radio frequency signal belongs to the fourth frequency range.
  • the fourth front-end circuit 54 is configured to filter the amplified first radio frequency signal to obtain the fourth transmission signal, or use the amplified first radio frequency signal as the fourth transmission signal.
  • the antenna module 240 is also used for transmitting the fourth transmission signal.
  • the fourth frequency range may be the frequency range of the 5G high frequency band.
  • the antenna selection circuit 60 is further configured to output the fourth transmission signal to the r first antennas when the frequency of the first radio frequency signal belongs to the 5G high frequency band and the frequency of the second radio frequency signal belongs to the frequency range of HB.
  • One or more antennas in the N-r+1 second antennas output the first transmission signal to one or more antennas.
  • the first antenna supports the 5G high frequency band or the HB frequency range
  • the second antenna supports the MHB frequency range.
  • the terminal device provided with the radio frequency front-end module of the embodiment of the present application can support simultaneous sending of the first radio frequency signal of any frequency band and the second radio frequency signal of any frequency band.
  • the first radio frequency signal and the second radio frequency signal may be in different formats.
  • the terminal device can support dual connectivity of LTE-NR, for example, DC_LB_MHB, DC_LB_5G high frequency band, DC_MHB_LB, DC_MB_MB, DC_HB_MB, DC_MB_HB, DC_LB_MB, DC_MB_LB, DC_MB_5G high frequency band, DC_HB_HB, DC_LB_HB, DC_HB_LB, DC_HB_5G high frequency band, DC_LB_LB Wait.
  • DC_LB_LB when the NSA combination of DC_LB_LB is supported, one low-frequency antenna can be reduced to reduce the difficulty of antenna implementation.
  • the frequency band selection circuit can route the first radio frequency signal and the second radio frequency signal to the first front-end circuit, the second front-end circuit or the third front-end circuit respectively, the first front-end circuit, the second The front-end circuit or the third front-end circuit may filter and/or combine the first radio frequency signal and the second radio frequency signal.
  • the first RF front-end channel for sending the first RF signal and the second RF front-end channel for sending the second RF signal can share a filter circuit, so that the filters, duplexers and other components of the RF front-end can be reduced, and further Reduce the space occupied by RF front-end modules.
  • first radio frequency front-end channel and the second radio frequency front-end channel may share an antenna, thereby reducing the number of antennas.
  • Different antennas can support the transmission of radio frequency signals in different frequency bands, thereby reducing the frequency range that the antenna needs to support.
  • the transmit signals of different frequencies can be routed to the corresponding antennas for transmission.
  • the RF front-end module of this embodiment can support the simultaneous transmission and reception of the NR frequency band and the 5G high-frequency frequency band in a dual-card scenario, thereby improving the dual-card communication of the terminal equipment on which the RF front-end module is installed. Specification.
  • FIG. 6 is a schematic structural diagram of another radio frequency front-end module provided by an embodiment of the application.
  • the first front-end circuit 51 supports the frequency range of HB in this embodiment.
  • the second front-end circuit 52 supports the frequency range of MB
  • the third front-end circuit 53 supports the frequency range of LB
  • the fourth front-end circuit 54 supports the frequency range of 5G high frequency band as an example to illustrate the specific structure of the RF front-end module.
  • the signal terminals of the n first sub-bands are n HB signal terminals (311,..., 31n), and the signal terminals of the m second sub-bands are m MB signal terminals (321,..., 32m), k
  • the signal terminals of the third sub-bands are k LB signal terminals (331, . . . , 33k).
  • the output terminals of the frequency band selection circuit 20 may include n HB signal terminals (311,..., 31n), m MB signal terminals (321,..., 32m) and k LB signal terminals (331,..., 33k) .
  • Each signal end corresponds to the same frequency band.
  • the HB signal terminal 311 corresponds to N41 and B41.
  • n is related to the number of HB frequency bands supported by the terminal device
  • the value of m is related to the number of MB frequency bands supported by the terminal device
  • the value of k is related to the number of LB frequency bands supported by the terminal device. related. For example, if the terminal device supports N41 and N7, then n is equal to 2.
  • the frequency band selection circuit 20 is used for routing the amplified first radio frequency signal and the amplified second radio frequency signal to the n HB signal terminals (311,..., 31n) and the m MB signal terminals (321,..., 32m) ) or any one or two ports of the k LB signal terminals (331, . . . , 33k) are output.
  • the frequency band of the first radio frequency signal is N41
  • the frequency band selection circuit 20 routes the amplified first radio frequency signal to the signal terminal corresponding to N41 among the n HB signal terminals (311, . . . , 31n) for output.
  • the frequency band of the second radio frequency signal is N3, and the frequency band selection circuit 20 routes the amplified second radio frequency signal to the signal terminal corresponding to N3 among the m MB signal terminals (321, . . . , 32m) for output.
  • the frequency band selection circuit 20 may include a first frequency band selection switch 21 , a second frequency band selection switch 22 and a third frequency band selection switch 23 .
  • the input end of the first frequency band selection switch 21 is connected to the first HB output end HB1 of the first power amplifier 11 and the second HB output end HB2 of the second power amplifier 12 .
  • the output terminals of the first frequency band selection switch 21 are respectively connected to the n HB signal terminals (311, . . . , 31n).
  • the input end of the second frequency band selection switch 22 is connected to the first MB output end MB1 of the first power amplifier 11 and the second MB output end MB2 of the second power amplifier 12 .
  • the output terminals of the second frequency band selection switch 22 are respectively connected to the m MB signal terminals (321, . . . , 32m).
  • the input terminal of the third frequency band selection switch 23 is connected to the first LB output terminal LB1 of the first power amplifier 11 and the second LB output terminal LB2 of the second power amplifier 12 .
  • the output terminals of the third frequency band selection switch 23 are respectively connected to the k LB signal terminals (331, . . . , 33k).
  • the first front-end circuit 51 may include input terminals respectively corresponding to the n HB signal terminals ( 311 , . . . , 31 n ) of the frequency band selection circuit 20 .
  • the second front-end circuit 52 may include input terminals respectively corresponding to the m MB signal terminals ( 321 , . . . , 32m ) of the frequency band selection circuit 20 .
  • the third front-end circuit 53 may include input terminals respectively corresponding to the k LB signal terminals ( 331 , . . . , 33k ) of the frequency band selection circuit 20 .
  • the first front-end circuit 51 may include the HB filter circuit 31
  • the second front-end circuit 52 may include the MB filter circuit 32
  • the third front-end circuit 53 may include the LB filter circuit 33 .
  • the input terminal of the HB filter circuit 31 is connected to n HB signal terminals (311, . . . , 31n).
  • the input terminal of the MB filter circuit 32 is connected to m MB signal terminals (321, . . . , 32m).
  • the input terminal of the LB filter circuit 33 is connected to k LB signal terminals (331, . . . , 33k).
  • the HB filter circuit 31 is used for filtering the first radio frequency signal of the HB and/or the second radio frequency signal of the HB.
  • the MB filter circuit 32 is configured to filter the first radio frequency signal of the MB and/or the second radio frequency signal of the MB.
  • the LB filter circuit 33 is used for filtering the first radio frequency signal of the LB and/or the second radio frequency signal of the LB.
  • the above-mentioned HB filter circuit 31, MB filter circuit 32 and LB filter circuit 33 can respectively filter each frequency band, and can also filter multiple frequency bands belonging to the same larger frequency band. Therefore, the HB filter circuit 31, The number of the respective output terminals of the MB filter circuit 32 and the LB filter circuit 33 may be less than or equal to the number of the respective input terminals.
  • the output terminal of the HB filter circuit 31 may include n' HB signal terminals (1,...,n')
  • the output terminal of the MB filter circuit 32 may include m' MB signal terminals (1,...,m')
  • the output terminal of the LB filter circuit 33 may include k' LB signal terminals (1, . . . , k'), where 1 ⁇ n' ⁇ n, 1 ⁇ m' ⁇ m, 1 ⁇ k' ⁇ k.
  • the second front-end circuit 52 may further include the MB combiner circuit 43 .
  • the input terminals of the MB combining circuit 43 are connected to m' MB signal terminals (1, . . . , m').
  • the MB combining circuit 43 is configured to combine the filtered first radio frequency signal and/or the filtered second radio frequency signal output by the MB filter circuit 32 , and output the combined radio frequency signal to the antenna selection circuit 60 .
  • the antenna selection circuit 60 is used for selecting the corresponding radio frequency signal terminal to output to the antenna in the antenna module.
  • the third front-end circuit 63 may further include the LB combiner circuit 46 .
  • the input terminal of the LB combining circuit 46 is connected to k' LB signal terminals (1, . . . , k').
  • the LB combining circuit 46 is used to combine the filtered first radio frequency signal and/or the filtered second radio frequency signal output by the LB filter circuit 33 , and output the combined radio frequency signal to the antenna selection circuit 60 .
  • the antenna selection circuit 60 is used for selecting the corresponding radio frequency signal terminal to output to the antenna in the antenna module.
  • the fourth front-end circuit 54 may include wires connecting the output of the third power amplifier 13 to the input of the antenna selection circuit 60 .
  • the fourth front-end circuit 54 may also include a filter in the 5G high-frequency band.
  • the antenna selection circuit 60 may include an antenna selection switch 41 , an antenna selection switch 42 , an MHB combining circuit 44 and an antenna selection module 45 .
  • the input terminals of the antenna selection switch 41 are respectively connected to the output terminals of the HB filter circuit 31 .
  • the input terminals of the antenna selection switch 42 are respectively connected to the output terminal of the third power amplifier 13 and one output terminal of the antenna selection switch 41 .
  • the output terminals of the antenna selection switch 42 are respectively connected to the first radio frequency signal terminals RF21, . . . , and the rth radio frequency signal terminal RF2r.
  • the input terminal of the MB combiner circuit 43 is connected to the output terminal of the MB filter circuit 32 .
  • the input terminals of the MHB combining circuit 44 are respectively connected to the output terminal of the MB combining circuit 43 and one output terminal of the antenna selection switch 41 .
  • the input terminals of the LB combining circuit 46 are respectively connected to the output terminals of the LB filter circuit 33 .
  • the input terminal of the antenna selection module 45 is respectively connected to the output terminal of the MHB combining circuit 44 , an output terminal of the antenna selection switch 41 and the output terminal of the LB combining circuit 46 .
  • the output terminals of the antenna selection module 45 are respectively connected to the (N-r+1)th radio frequency signal terminals RF2(N-r+1),..., the Nth radio frequency signal terminals RF2N.
  • the modules included in the first front-end circuit, the second front-end circuit, the third front-end circuit, and the antenna selection circuit may also be implemented in other ways.
  • the first front-end circuit may also include a HB combiner circuit, or an MB combiner circuit.
  • the circuit 43, the MHB combining circuit 44, and the LB combining circuit 46 may be combined and provided.
  • the frequency band selection circuit can route the first radio frequency signal and the second radio frequency signal to the HB signal end, the MB signal end or the LB signal end respectively, and the HB filter circuit can detect the radio frequency signal at the HB signal end.
  • the MB filtering circuit can perform filtering processing on the radio frequency signal at the MB signal end
  • the LB filtering circuit can perform filtering processing on the radio frequency signal at the LB signal end.
  • the first RF front-end channel for sending the first RF signal and the second RF front-end channel for sending the second RF signal can share a filter circuit, so that the filters, duplexers and other components of the RF front-end can be reduced, and further Reduce the space occupied by RF front-end modules.
  • first radio frequency front-end channel and the second radio frequency front-end channel may share an antenna, thereby reducing the number of antennas.
  • Different antennas can support the transmission of radio frequency signals in different frequency bands, thereby reducing the frequency range that the antenna needs to support.
  • the antenna module 240 includes four high frequency antennas, two medium and high frequency antennas and one low frequency antenna.
  • the high-frequency antenna is used to support the transmission of radio frequency signals in the 5G high-frequency band or HB.
  • the medium and high frequency antenna is used to support the transmission of MHB radio frequency signals.
  • the low frequency antenna is used to support the transmission of radio frequency signals of the LB.
  • the four high frequency antennas are antenna 241 , antenna 242 , antenna 243 and antenna 244 respectively.
  • the two medium and high frequency antennas are the antenna 245 and the antenna 246 respectively.
  • One low frequency antenna is antenna 247 .
  • FIG. 7 is a schematic structural diagram of a radio frequency front-end module 220 according to an embodiment of the present application.
  • the HB filter circuit, the MB filter circuit and the LB filter circuit of the RF front-end module respectively include multiple filters and/or multiplexers.
  • the two input terminals of the quadplexer are connected to the MB signal terminal 321 and the MB signal terminal 322 , and the output terminal of the quadplexer is connected to the input terminal of the MB combining circuit 43 . Since the link between the quadplexer and the MB combining circuit 43 can be used as a receiving link, a quadplexer is set here so as to realize synchronization of transmission and reception.
  • the two input terminals of the triplexer are connected to the LB signal terminal 332 and the LB signal terminal 333 , and the output terminal of the triplexer is connected to one input terminal of the LB combining circuit 46 .
  • One input terminal of the duplexer is connected to the LB signal terminal 331 , and the output terminal of the duplexer is connected to the other input terminal of the LB combining circuit 46 . Since the link between the LB filtering circuit 33 and the LB combining circuit 46 can be used as a receiving link, a quadplexer and a duplexer are set here to realize synchronization of transmission and reception.
  • one filter of the HB filter circuit 31 can be used to filter the radio frequency signals of N41 and B41, and another filter of the HB filter circuit 31 can be used to filter the radio frequency signals of N40 and B40.
  • the duplexer of the HB filter circuit 31 can be used to filter the radio frequency signals of N7 and B7.
  • the RF front-end module 220 can route the first RF signal of the HB and the second RF signal of the HB to the HB filter circuit 31 through the frequency band selection circuit 20, so that the two RF front-end channels can share the HB filter circuit.
  • a quad duplexer of the MB filter circuit 32 can be used to filter the radio frequency signals of N1 and B1 and N3 and B3.
  • the radio frequency front-end module 220 can use the frequency band selection circuit 20 to convert the first radio frequency signal of the MB and the second radio frequency signal of the MB.
  • the RF signal is routed to the MB filter circuit 32 so that the two RF front-end paths can share the MB filter circuit.
  • the triplexer of the LB filter circuit 33 can be used to filter the radio frequency signals of N28A and B28A, as well as the N20 and B20, and the duplexer of the LB filter circuit 31 can be used to filter the radio frequency signals of N28B and B28B.
  • the RF front-end module 220 can route the first RF signal of the LB and the second RF signal of the LB to the LB filter circuit 33 through the frequency band selection circuit 20, so that the two RF front-end paths can share the LB filter circuit.
  • a first RF front-end path for sending a first RF signal and a second RF front-end path for sending a second RF signal can be implemented Share filters and/or multiplexers of different frequency bands, so that terminal equipment can transmit radio frequency signals of different standards in support of dual-connection application scenarios, or RF signal transmission in carrier aggregation application scenarios, or dual-card dual-standby or dual-card dual-pass While transmitting the RF signal in the application scenario, the filters, duplexers and other components of the RF front-end can be reduced, thereby reducing the space occupied by the RF front-end module.
  • the antenna module 240 includes four high frequency antennas, two medium and high frequency antennas and two low frequency antennas.
  • the high-frequency antenna is used to support the transmission of radio frequency signals in the 5G high-frequency band or HB.
  • the medium and high frequency antenna is used to support the transmission of MHB radio frequency signals.
  • the low frequency antenna is used to support the transmission of radio frequency signals of the LB.
  • the four high frequency antennas are antenna 241 , antenna 242 , antenna 243 and antenna 244 respectively.
  • the two medium and high frequency antennas are the antenna 245 and the antenna 246 respectively.
  • the two low frequency antennas are antenna 247 and antenna 248 .
  • FIG. 8 is a schematic structural diagram of another radio frequency front-end module 220 and an antenna module 240 according to an embodiment of the present application.
  • the output end of the second power amplifier 12 may further include a third MB output end MB3 and a third LB output end LB3 .
  • the MB combining circuit 43 may also include another input terminal, which is connected to the third MB output terminal MB3.
  • the LB combining circuit 46 may also include another input terminal that is connected to the third LB output terminal LB3.
  • the second radio frequency signal of the non-overlapping frequency band may pass through the third MB
  • the output terminal MB3 is output to the MB combining circuit 43 or to the LB combining circuit 46 through the third LB output terminal LB3.
  • the second power amplifier 12 is configured to perform power amplification on the second radio frequency signal, and output the amplified second radio frequency signal to the MB combining circuit 43 through the third MB output terminal MB3, or perform power amplification on the second radio frequency signal. Amplify, and output the amplified second radio frequency signal to the LB combining circuit 46 through the third LB output terminal LB3.
  • the LB signal terminal 334 may be connected to an input terminal of the LB combining circuit 46 through the LB filter circuit.
  • the RF front-end module may also include a main set receiving circuit and a plurality of diversity receiving circuits.
  • the main set receiving circuit may be HBNR_MPRX as shown in FIG. 8, and the plurality of diversity receiving circuits may include a first diversity receiving circuit HBNR_DRX, a second diversity receiving circuit The receiving circuit HBNR_MDRX, the third diversity receiving circuit MB_DRX, and the fourth diversity receiving circuit LB_DRX.
  • the antenna selection circuit may also include switch 471 , switch 472 , switch 473 , and switch 474 .
  • the switch 471 is used to selectively turn on the antenna 242 and one output end of the antenna selection switch 42, or turn on the antenna 242 and the input end of the first diversity receiving circuit HBNR_DRX.
  • the switch 472 is used to selectively turn on the antenna 243 and one output end of the antenna selection switch 42, or turn on the antenna 243 and the input end of the main set receiving circuit HBNR_MPRX.
  • the switch 473 is used to selectively turn on the antenna 244 and one output end of the antenna selection switch 42, or turn on the antenna 244 and the input end of the second diversity receiving circuit HBNR_MDRX.
  • the antenna selection switch 45 may also include a port, which is connected to the input terminal of the third diversity receiving circuit MB_DRX, and the antenna selection switch 45 is also used to conduct the antenna 245 or the antenna 246 with the input terminal of the third diversity receiving circuit MB_DRX .
  • the switch 474 is used to selectively turn on the antenna 247 and one output end of the LB combining circuit 46, and turn on the antenna 248 and the input end of the fourth diversity receiving circuit LB_DRX.
  • the radio frequency front-end module and the antenna module in this embodiment can support the sending and receiving of the first radio frequency signal and the second radio frequency signal.
  • the terminal device in the above embodiments of the present application may support simultaneous transmission of a first radio frequency signal in any frequency band and a second radio frequency signal in any frequency band.
  • the first radio frequency signal and the second radio frequency signal may be in different formats.
  • the terminal device can support dual connectivity of LTE-NR, for example, DC_LB_MHB, DC_LB_5G high frequency band, DC_MHB_LB, DC_MB_MB, DC_HB_MB, DC_MB_HB, DC_LB_MB, DC_MB_LB, DC_MB_5G high frequency band, DC_HB_HB, DC_LB_HB, DC_HB_LB, DC_HB_5G high frequency band, DC_LB_LB Wait.
  • the following uses several specific application scenarios to explain the radio frequency front-end modules of terminal equipment supporting different LTE-NR dual-connection application scenarios.
  • FIG. 9 is a schematic structural diagram of another radio frequency front-end module 220 and an antenna module 240 according to an embodiment of the present application.
  • the lines involved in scenario 1 are marked in the form of bold and dashed lines.
  • the terminal device may include the devices and ports involved in the marked lines shown in FIG. 9 , and may not include other only unmarked the devices and ports involved in the line.
  • the terminal device in this embodiment may support DC_LB_LB.
  • the terminal device can support the LB's 5G radio frequency signal and send it simultaneously with the LB's 4G radio frequency signal.
  • the 5G radio frequency signal of the LB can be used as the first radio frequency signal TX1.
  • the processor When the first radio frequency signal meets the frequency range of the LB, the processor outputs the first radio frequency signal to the first power amplifier 11, and the first power amplifier 11 performs After the power is amplified, it is output to the third frequency band selection switch 23 . Since the first radio frequency signal satisfies the frequency range of LB, the third frequency band selection switch 23 routes the first radio frequency signal to the LB filter circuit 33 , and then outputs the first radio frequency signal to the antenna 247 through the switch 474 . The third frequency band selection switch 23 can output the first radio frequency signal from the LB signal terminal 331 or the LB signal terminal 332 or the LB signal terminal 333 or the LB signal terminal 333 to the LB filter circuit 33 .
  • the LB signal terminal 331 , the LB signal terminal 332 , the LB signal terminal 333 and the LB signal terminal 333 respectively correspond to a sub-band within the frequency range of the LB. From which LB signal terminal of the third frequency band selection switch 23 the first radio frequency signal is output may be determined based on the sub-band to which the first radio frequency signal belongs.
  • the 4G radio frequency signal of the LB can be used as the second radio frequency signal TX2.
  • the processor outputs the second radio frequency signal to the second power amplifier 12, and the second power amplifier 12 performs power amplification after power amplification. , output to the third frequency band selection switch 23 .
  • the third frequency band selection switch 23 routes the second radio frequency signal to the LB filter circuit 33 , and then outputs the second radio frequency signal to the antenna 247 through the switch 474 .
  • the third frequency band selection switch 23 can output the second radio frequency signal to the LB filter circuit 33 from the LB signal terminal 331 or the LB signal terminal 332 or the LB signal terminal 333 or the LB signal terminal 333. From which LB signal terminal of the third frequency band selection switch 23 the second radio frequency signal is output may be determined based on the sub-band to which the second radio frequency signal belongs.
  • the RF front-end module of this embodiment of the present application may support the LB and LB NSA combination, and the first RF front-end channel for sending the first RF signal and the second RF front-end channel for sending the second RF signal
  • a low-frequency antenna can be shared, thereby reducing the difficulty of antenna implementation.
  • radio frequency front-end module 220 and antenna module 240 may also support carrier aggregation of frequency bands involved in scenario 1, that is, carrier aggregation of LB and LB, and the implementation principles thereof are similar.
  • DC_LB_LB may include DC_20A_N28A, DC_28A_N20, DC_8A_N20A, DC_20A_N8A, DC_8A_N28A, DC_28A_N8A, DC_8A_N28B, or DC_28B_N8A, and the like.
  • the DC_LB_LB in scenario 1 is schematically illustrated as an example.
  • each module of the terminal device can adopt the states shown in Table 1.
  • FIG. 10A is a schematic structural diagram of a radio frequency front-end module implementing DC_20A_N28A according to an embodiment of the present application. As shown in FIG. 10A , after being amplified by the first power amplifier 11 , the first radio frequency signal is output to the third frequency band selection switch 23 through the first LB output terminal LB1 .
  • the processor 210 controls the input port E and the output port 2 of the third frequency band selection switch 23 to conduct, and the third frequency band selection switch 23 converts the amplified first radio frequency
  • the signal is output to the LB filter circuit 33 through the output port 2 (ie, the LB signal terminal 332 ).
  • the second radio frequency signal is output to the third frequency band selection switch 23 through the second LB output terminal LB2 .
  • the processor 210 controls the input port F and the output port 3 (ie, the LB signal terminal 333 ) of the third frequency band selection switch 23 to conduct, and the third frequency band selection switch 23
  • the amplified second radio frequency signal is output to the LB filter circuit 33 through the output port 3 (ie, the LB signal terminal 333 ).
  • a duplexer in the LB filter circuit 33 processes the first radio frequency signal and the second radio frequency signal, and outputs it to the LB combiner circuit 46 , and the LB combiner circuit 46 processes and outputs it to the switch 474 .
  • FIG. 10B is a schematic structural diagram of a radio frequency front-end module implementing DC_28A_N20 according to an embodiment of the present application. As shown in FIG. 10B , after being amplified by the first power amplifier 11, the first radio frequency signal is output to the third frequency band selection switch 23 through the first LB output terminal LB1.
  • the processor 210 controls the input port E and the output port 3 of the third frequency band selection switch 23 to conduct, and the third frequency band selection switch 23 converts the amplified first radio frequency
  • the signal is output to the LB filter circuit 33 through the output port 3 (ie, the LB signal terminal 333 ).
  • the second radio frequency signal is output to the third frequency band selection switch 23 through the second LB output terminal LB2 .
  • the processor 210 controls the input port F and the output port 2 (ie, the LB signal terminal 332 ) of the third frequency band selection switch 23 to conduct, and the third frequency band selection switch 23
  • the amplified second radio frequency signal is output to the LB filter circuit 33 through the output port 2 (ie, the LB signal terminal 332 ).
  • a duplexer in the LB filter circuit 33 processes the first radio frequency signal and the second radio frequency signal, and outputs it to the LB combiner circuit 46 , and the LB combiner circuit 46 processes and outputs it to the switch 474 .
  • CA_20_28A When CA_20_28A is implemented, its implementation is similar to that of DC_20A_N28A, the difference is that TX2 is not used in the uplink process.
  • CA_28A_20 When CA_28A_20 is implemented, its implementation is similar to that of DC_28A_N20, the difference is that TX2 is not used in the uplink process.
  • each module of the terminal device can adopt the states shown in Table 2.
  • FIG. 10C is a schematic structural diagram of a radio frequency front-end module implementing DC_8A_N20A according to an embodiment of the present application. As shown in FIG. 10C , after being amplified by the first power amplifier 11 , the first radio frequency signal is output to the third frequency band selection switch 23 through the first LB output terminal LB1 .
  • the processor 210 controls the input port E and the output port 3 of the third frequency band selection switch 23 to conduct, and the third frequency band selection switch 23 converts the amplified first radio frequency
  • the signal is output to the LB filter circuit 33 through the output port 3 (ie, the LB signal terminal 333 ).
  • One of the duplexers in the LB filter circuit 33 processes the first radio frequency signal and outputs it to the LB combiner circuit 46 .
  • the second radio frequency signal is output to the third frequency band selection switch 23 through the second LB output terminal LB2 .
  • the processor 210 controls the input port F and the output port 4 (ie, the LB signal terminal 334 ) of the third frequency band selection switch 23 to conduct, and the third frequency band selection switch 23
  • the amplified second radio frequency signal is output to the LB filter circuit 33 through the output port 4 (ie, the LB signal terminal 334 ).
  • the second radio frequency signal is output to the LB combining circuit 46 through a wire in the LB filter circuit 33 .
  • the LB combining circuit 46 processes the first radio frequency signal and the second radio frequency signal and outputs the signal to the switch 474 .
  • FIG. 10D is a schematic structural diagram of a radio frequency front-end module implementing DC_20A_N8A according to an embodiment of the present application. As shown in FIG. 10D , after being amplified by the first power amplifier 11 , the first radio frequency signal is output to the third frequency band selection switch 23 through the first LB output terminal LB1 .
  • the processor 210 controls the input port E and the output port 4 of the third frequency band selection switch 23 to conduct, and the third frequency band selection switch 23 converts the amplified first radio frequency
  • the signal is output to the LB filter circuit 33 through the output port 4 (ie, the LB signal terminal 334 ).
  • the second radio frequency signal is output to the LB combining circuit 46 through a wire in the LB filter circuit 33 .
  • the second radio frequency signal is output to the third frequency band selection switch 23 through the second LB output terminal LB2 .
  • the processor 210 controls the input port F and the output port 3 of the third frequency band selection switch 23 to conduct, and the third frequency band selection switch 23 converts the amplified first radio frequency
  • the signal is output to the LB filter circuit 33 through the output port 3 (ie, the LB signal terminal 333 ).
  • One of the duplexers in the LB filter circuit 33 processes the second radio frequency signal, and outputs it to the LB combiner circuit 46 .
  • the LB combining circuit 46 processes the first radio frequency signal and the second radio frequency signal and outputs the signal to the switch 474 .
  • each module of the terminal device can adopt the states shown in Table 3.
  • FIG. 10E is a schematic structural diagram of a radio frequency front-end module implementing DC_8A_N28A according to an embodiment of the present application. As shown in FIG. 10E , after being amplified by the first power amplifier 11 , the first radio frequency signal is output to the third frequency band selection switch 23 through the first LB output terminal LB1 .
  • the processor 210 controls the input port E and the output port 2 of the third frequency band selection switch 23 to conduct, and the third frequency band selection switch 23 converts the amplified first radio frequency
  • the signal is output to the LB filter circuit 33 through the output port 2 (ie, the LB signal terminal 332 ).
  • One of the duplexers in the LB filter circuit 33 processes the first radio frequency signal and outputs it to the LB combiner circuit 46 .
  • the second radio frequency signal is output to the third frequency band selection switch 23 through the second LB output terminal LB2 .
  • the processor 210 controls the input port F and the output port 4 (ie, the LB signal terminal 334 ) of the third frequency band selection switch 23 to conduct, and the third frequency band selection switch 23
  • the amplified second radio frequency signal is output to the LB filter circuit 33 through the output port 4 (ie, the LB signal terminal 334 ).
  • the second radio frequency signal is output to the LB combining circuit 46 through a wire in the LB filter circuit 33 .
  • the LB combining circuit 46 processes the first radio frequency signal and the second radio frequency signal and outputs the signal to the switch 474 .
  • FIG. 10F is a schematic structural diagram of a radio frequency front-end module implementing DC_28A_N8A according to an embodiment of the present application. As shown in FIG. 10F , after being amplified by the first power amplifier 11 , the first radio frequency signal is output to the third frequency band selection switch 23 through the first LB output terminal LB1 .
  • the processor 210 controls the input port E and the output port 4 (ie, the LB signal terminal 334 ) of the third frequency band selection switch 23 to conduct, and the third frequency band selection switch 23
  • the amplified first radio frequency signal is output to the LB filter circuit 33 through the output port 4 (ie, the LB signal terminal 334 ).
  • the first radio frequency signal is output to the LB combining circuit 46 through a wire in the LB filter circuit 33 .
  • the second radio frequency signal is output to the third frequency band selection switch 23 through the second LB output terminal LB2 .
  • the processor 210 controls the input port F and the output port 2 of the third frequency band selection switch 23 to conduct, and the third frequency band selection switch 23 converts the amplified second radio frequency
  • the signal is output to the LB filter circuit 33 through the output port 2 (ie, the LB signal terminal 332 ).
  • One of the duplexers in the LB filter circuit 33 processes the second radio frequency signal, and outputs it to the LB combiner circuit 46 .
  • the LB combining circuit 46 processes the first radio frequency signal and the second radio frequency signal and outputs the signal to the switch 474 .
  • each module of the terminal device can adopt the states shown in Table 4.
  • FIG. 10G is a schematic structural diagram of a radio frequency front-end module implementing DC_8A_N28B according to an embodiment of the present application. As shown in FIG. 10G , after being amplified by the first power amplifier 11 , the first radio frequency signal is output to the third frequency band selection switch 23 through the first LB output terminal LB1 .
  • the processor 210 controls the input port E and the output port 1 of the third frequency band selection switch 23 to conduct, and the third frequency band selection switch 23 converts the amplified first radio frequency
  • the signal is output to the LB filter circuit 33 through the output port 1 (ie, the LB signal terminal 331 ).
  • One of the duplexers in the LB filter circuit 33 processes the first radio frequency signal and outputs it to the LB combiner circuit 46 .
  • the second radio frequency signal is output to the third frequency band selection switch 23 through the second LB output terminal LB2 .
  • the processor 210 controls the input port F and the output port 4 (ie, the LB signal terminal 334 ) of the third frequency band selection switch 23 to conduct, and the third frequency band selection switch 23
  • the amplified second radio frequency signal is output to the LB filter circuit 33 through the output port 4 (ie, the LB signal terminal 334 ).
  • the second radio frequency signal is output to the LB combining circuit 46 through a wire in the LB filter circuit 33 .
  • the LB combining circuit 46 processes the first radio frequency signal and the second radio frequency signal and outputs the signal to the switch 474 .
  • FIG. 10H is a schematic structural diagram of a radio frequency front-end module implementing DC_28B_N8A according to an embodiment of the present application. As shown in FIG. 10H , after being amplified by the first power amplifier 11 , the first radio frequency signal is output to the third frequency band selection switch 23 through the first LB output terminal LB1 .
  • the processor 210 controls the input port E and the output port 4 of the third frequency band selection switch 23 to conduct, and the third frequency band selection switch 23 converts the amplified first radio frequency
  • the signal is output to the LB filter circuit 33 through the output port 4 (ie, the LB signal terminal 334 ).
  • the second radio frequency signal is output to the LB combining circuit 46 through a wire in the LB filter circuit 33 .
  • the second radio frequency signal is output to the third frequency band selection switch 23 through the second LB output terminal LB2 .
  • the processor 210 controls the input port F and the output port 1 (ie, the LB signal terminal 331 ) of the third frequency band selection switch 23 to conduct, and the third frequency band selection switch 23
  • the amplified second radio frequency signal is output to the LB filter circuit 33 through the output port 1 (ie, the LB signal terminal 331 ).
  • One of the duplexers in the LB filter circuit 33 processes the first radio frequency signal and outputs it to the LB combiner circuit 46 .
  • the LB combining circuit 46 processes the first radio frequency signal and the second radio frequency signal and outputs the signal to the switch 474 .
  • FIG. 11 is a schematic structural diagram of another radio frequency front-end module 220 and an antenna module 240 according to an embodiment of the present application.
  • the terminal device may include the devices and ports involved in the marked lines shown in Figure 11, but may not include other only unmarked lines involved. devices and ports.
  • the terminal device in this embodiment may support DC_LB_MHB and DC_LB_5G high frequency bands.
  • the terminal device can support 5G radio frequency signals in the MHB or 5G high-frequency band, and transmit at the same time as LB's 4G radio frequency signals.
  • the 5G radio frequency signal of the MHB or the 5G radio frequency signal of the G high frequency band can be used as the first radio frequency signal TX1.
  • the processor When the first radio frequency signal meets the frequency range of the MB or the frequency range of the HB, the processor outputs the first radio frequency signal. To the first power amplifier 11 , after the power amplification is performed by the first power amplifier 11 , the output is output to the first frequency band selection switch 21 or the second frequency band selection switch 22 . For example, when the first radio frequency signal meets the frequency range of HB, the processor outputs the first radio frequency signal to the first power amplifier 11 , and outputs the first radio frequency signal to the first frequency band selection switch 21 after power amplification by the first power amplifier 11 .
  • the first frequency band selection switch 21 routes the first radio frequency signal to the HB filter circuit 31 , and then outputs the first radio frequency signal to the antenna 245 through the antenna selection switch 41 .
  • the first frequency band selection switch 21 can output the first radio frequency signal from the HB signal terminal 311 or the HB signal terminal 312 or the HB signal terminal 313 to the HB filter circuit 31 .
  • the HB signal terminal 311 , the HB signal terminal 312 and the HB signal terminal 313 respectively correspond to a sub-band within the frequency range of the HB. From which HB signal terminal of the first frequency band selection switch 21 the first radio frequency signal is output may be determined based on the sub-band to which the first radio frequency signal belongs.
  • the processor When the first radio frequency signal satisfies the frequency range of MB, the processor outputs the first radio frequency signal to the first power amplifier 11 , and outputs the first radio frequency signal to the second frequency band selection switch 22 after power amplification by the first power amplifier 11 . Since the first radio frequency signal satisfies the frequency range of MB, the second frequency band selection switch 22 routes the first radio frequency signal to the MB filter circuit 32 , and then passes the MB combiner circuit 43 , the MHB combiner circuit 44 and the antenna selection switch 45 to output to antenna 245. The second frequency band selection switch 22 can output the first radio frequency signal from the MB signal terminal 321 or the MB signal terminal 322 to the MB filter circuit 32 .
  • the MB signal terminal 321 and the MB signal terminal 322 respectively correspond to a sub-band within the frequency range of the MB. From which MB signal terminal of the second frequency band selection switch 22 the first radio frequency signal is output may be determined based on the sub-band to which the first radio frequency signal belongs.
  • the processor When the first radio frequency signal satisfies the frequency range of the 5G high frequency band, the processor outputs the first radio frequency signal to the third power amplifier 13, and after power amplification is performed by the third power amplifier 13, the output is output to the antenna selection switch 42, and through the antenna The selection switch 42 is output to the antenna 241 .
  • the 4G radio frequency signal of the LB can be used as the second radio frequency signal TX2.
  • the processor When the second radio frequency signal meets the frequency range of the LB, the processor outputs the second radio frequency signal to the second power amplifier 12, and the second power amplifier 12 performs power amplification after power amplification. , output to the third frequency band selection switch 23 or the LB combining circuit 46 , routed to the LB combining circuit 46 through the third frequency band selecting switch 23 , and then output to the antenna 247 through the LB combining circuit 46 .
  • the third frequency band selection switch 23 can output the second radio frequency signal from the LB signal terminal 331 or the LB signal terminal 332 or the LB signal terminal 333 or the LB signal terminal 334 to the LB filter circuit 33 .
  • the LB signal terminal 331 , the LB signal terminal 332 , the output of the LB signal terminal 333 and the LB signal terminal 334 respectively correspond to a sub-band within the frequency range of the LB. From which LB signal terminal of the third frequency band selection switch 31 the second radio frequency signal is outputted may be determined based on the sub-band to which the second radio frequency signal belongs.
  • FIG. 12 is a schematic structural diagram of another radio frequency front-end module 220 and an antenna module 240 according to an embodiment of the present application.
  • the lines involved in scenario 3 are marked in bold.
  • the terminal device may include the devices and ports involved in the marked lines shown in Figure 11, but may not include other only unmarked lines involved. devices and ports.
  • the terminal device in this embodiment may support DC_MHB_LB. In other words, the terminal device can support MHB's 4G radio frequency signal and send it at the same time as LB's 5G radio frequency signal.
  • the 5G radio frequency signal of the LB can be used as the first radio frequency signal TX1 and output to the first power amplifier 11, and after power amplification is performed by the first power amplifier 11, it is output to the third frequency band selection switch 23, and the third frequency band selection switch is passed through the third frequency band selection switch. 23 is routed to the LB filter circuit 33 , then filtered by the LB filter circuit, and then output to the LB combiner circuit 46 , and then output to the antenna 247 .
  • the 4G radio frequency signal of the MHB can be used as the second radio frequency signal TX2 and output to the second power amplifier 12. After power amplification by the second power amplifier 12, it is output to the first frequency band selection switch 21 or the second frequency band selection switch 22.
  • a frequency band selection switch 21 is routed to the HB filter circuit 31, then routed to the MHB combining circuit 44 or the antenna selection switch 45 through the antenna selection switch 41, and finally output to the antenna 245 through the antenna selection switch 45, or, through the second frequency band selection switch 22 is routed to the MB filter circuit 32 , and then output to the antenna 245 through the MB combiner circuit 43 , the MHB combiner circuit 44 and the antenna selection switch 45 .
  • FIG. 13 is a schematic structural diagram of another radio frequency front-end module 220 and an antenna module 240 according to an embodiment of the present application.
  • the lines involved in scenario 4 are marked in bold.
  • the terminal equipment may include the devices and ports involved in the marked lines shown in Figure 13, but may not include other only unmarked lines involved. devices and ports.
  • the terminal device in this embodiment may support DC_MB_MB. In other words, the terminal device can support the MB's 5G radio frequency signal and send it simultaneously with the MB's 4G radio frequency signal.
  • the 5G radio frequency signal of the MB can be used as the first radio frequency signal TX1 and output to the first power amplifier 11, and after power amplification is performed by the first power amplifier 11, it is output to the second frequency band selection switch 22, and the second frequency band selection switch is passed through the second frequency band selection switch. 22 is routed to the MB filter circuit 32, and then output to the antenna 245 through the MB combiner circuit 43.
  • the 4G radio frequency signal of the MB can be used as the second radio frequency signal TX2 and output to the second power amplifier 12 , and after power amplification by the second power amplifier 12 , output to the second frequency band selection switch 22 , and routed through the second frequency band selection switch 22 to the second power amplifier 12 .
  • the MB filter circuit 32 is then output to the antenna 245 through the MB combiner circuit 43 .
  • the radio frequency front-end module of the embodiment of the present application can support the NSA combination of MB and MB, and can share the antenna 245 during the simultaneous transmission of the 5G radio frequency signal of the MB and the 4G radio frequency signal of the MB, thereby reducing the implementation of the antenna. difficulty.
  • FIG. 14 is a schematic structural diagram of another radio frequency front-end module 220 and an antenna module 240 according to an embodiment of the present application.
  • the lines involved in scenario 5 are marked in bold.
  • the terminal equipment may include the devices and ports involved in the marked lines shown in FIG. 14 , and may not include only other unmarked lines involved devices and ports.
  • the terminal device of this embodiment may support DC_HB_MB. In other words, the terminal device can support MB's 5G radio frequency signal and send it at the same time as HB's 4G radio frequency signal.
  • the 5G radio frequency signal of the MB can be used as the first radio frequency terminal TX1 and output to the first power amplifier 11, and after power amplification is performed by the first power amplifier 11, it is output to the second frequency band selection switch 22, and the second frequency band selection switch is passed through the second frequency band selection switch. 22 is routed to the MB filter circuit 32 , and then output to the antenna 245 through the MB combiner circuit 43 , the MHB combiner circuit 44 and the antenna selection switch 45 .
  • the 4G radio frequency signal of the HB can be used as the second radio frequency signal TX2 and output to the second power amplifier 12. After power amplification by the second power amplifier 12, it is output to the first frequency band selection switch 21, and routed to the first frequency band selection switch 21.
  • HB filter circuit 31 After power amplification by the second power amplifier 12, it is output to the first frequency band selection switch 21, and routed to the first frequency band selection switch 21.
  • HB filter circuit 31 After power amplification by the second power amplifier 12, it is output to the first frequency band selection switch 21,
  • FIG. 15 is a schematic structural diagram of another radio frequency front-end module 220 and an antenna module 240 according to an embodiment of the present application.
  • the lines involved in scenario 6 are marked in bold.
  • the terminal equipment may include the devices and ports involved in the marked lines shown in Figure 15, and may not include other only unmarked lines involved. devices and ports.
  • the terminal device in this embodiment may support DC_MB_HB. In other words, the terminal device can support HB's 5G radio frequency signal and send it at the same time as MB's 4G radio frequency signal.
  • the 5G radio frequency signal of the HB can be used as the first radio frequency signal TX1, and output to the first power amplifier 11, and after power amplification is performed by the first power amplifier 11, it is output to the first frequency band selection switch 21, and the first frequency band selection switch is passed through the first frequency band selection switch.
  • 21 is routed to the HB filter circuit 31, and then output to the antenna 241 through the antenna selection switch 41, or output to the antenna 245 through the antenna selection switch 41 and the MHB combining circuit 44.
  • the 4G radio frequency signal of the MB can be used as the second radio frequency signal TX2 and output to the second power amplifier 12 , and after power amplification by the second power amplifier 12 , output to the second frequency band selection switch 22 , and routed through the second frequency band selection switch 22 to the second power amplifier 12 .
  • the MB filter circuit 32 is then output to the antenna 245 through the MB combining circuit 43 and the MHB combining circuit 44 .
  • FIG. 16 is a schematic structural diagram of another radio frequency front-end module 220 and an antenna module 240 according to an embodiment of the present application.
  • the lines involved in scenario 7 are marked in bold.
  • the terminal equipment may include the devices and ports involved in the marked lines shown in Figure 16, but may not include other only unmarked lines involved. devices and ports.
  • the terminal device in this embodiment may support DC_LB_MB. In other words, the terminal device can support the 5G radio frequency signal of the MB and send it at the same time as the 4G radio frequency signal of the LB.
  • the 5G radio frequency signal of the MB can be used as the first radio frequency signal TX1 and output to the first power amplifier 11, and after power amplification is performed by the first power amplifier 11, it is output to the second frequency band selection switch 22, and the second frequency band selection switch is passed through the second frequency band selection switch. 22 is routed to the MB filter circuit 32, and then output to the antenna 245 through the MB combiner circuit 43.
  • the LB 4G radio frequency signal can be output to the second power amplifier 12 as the second radio frequency signal TX2 , and then output to the third frequency band selection switch 23 or directly to the LB combining circuit 46 after power amplification by the second power amplifier 12 . It is routed to the LB filter circuit 33 through the third frequency band selection switch 23 , and then output to the antenna 247 through the LB combiner circuit 46 .
  • FIG. 17 is a schematic structural diagram of another radio frequency front-end module 220 and an antenna module 240 according to an embodiment of the present application.
  • the lines involved in scenario 8 are marked in bold.
  • the terminal device may include the devices and ports involved in the marked lines shown in Figure 17, but may not include other only unmarked lines involved. devices and ports.
  • the terminal device in this embodiment may support DC_MB_LB. In other words, the terminal device can support the LB's 5G radio frequency signal and send it simultaneously with the MB's 4G radio frequency signal.
  • the 5G radio frequency signal of the LB can be used as the first radio frequency signal TX1 and output to the first power amplifier 11, and after power amplification is performed by the first power amplifier 11, it is output to the third frequency band selection switch 23, and the third frequency band selection switch is passed through the third frequency band selection switch. 23 is routed to the LB filter circuit 33, and then output to the antenna 247 through the LB combiner circuit 46.
  • the 4G radio frequency signal of the MB can be output to the second power amplifier 12 as the second radio frequency signal TX2, and after power amplification is performed by the second power amplifier 12, it is output to the second frequency band selection switch 22 or the MB combining circuit 43, and is passed through the second power amplifier 12.
  • the frequency band selection switch 22 is routed to the MB filter circuit 32 and then output to the antenna 245 through the MB combiner circuit 43 .
  • FIG. 18 is a schematic structural diagram of another radio frequency front-end module 220 and an antenna module 240 according to an embodiment of the present application.
  • the lines involved in scenario 9 are marked in bold.
  • the terminal device may include the devices and ports involved in the marked lines shown in Figure 18, but may not include other only unmarked lines.
  • the terminal device in this embodiment may support the DC_MB_5G high frequency band. In other words, the terminal device can support the 5G radio frequency signal in the 5G high-frequency band and send it at the same time as the MB's 4G radio frequency signal.
  • the 5G radio frequency signal in the 5G high-frequency band can be used as the first radio frequency signal TX1 and output to the third power amplifier 13 , and after power amplification by the third power amplifier 13 , output to the antenna selection switch 42 , and through the antenna selection switch 42 output to the antenna 241 .
  • the 4G radio frequency signal of the MB can be output to the second power amplifier 12 as the second radio frequency signal TX2, and after power amplification is performed by the second power amplifier 12, it is output to the second frequency band selection switch 22 or the MB combining circuit 43, and is passed through the second power amplifier 12.
  • the frequency band selection switch 22 is routed to the MB filter circuit 32 and then output to the antenna 245 through the MB combiner circuit 43 .
  • FIG. 19 is a schematic structural diagram of another radio frequency front-end module 220 and an antenna module 240 according to an embodiment of the present application.
  • the terminal device may include the devices and ports involved in the marked lines shown in Figure 19, but may not include other unmarked lines.
  • the terminal device in this embodiment may support DC_HB_HB.
  • the terminal device can support HB's 5G radio frequency signal and send it at the same time as HB's 4G radio frequency signal.
  • the 5G radio frequency signal of the HB can be used as the first radio frequency signal TX1, and output to the first power amplifier 11, and after power amplification is performed by the first power amplifier 11, it is output to the first frequency band selection switch 21, and the first frequency band selection switch is passed through the first frequency band selection switch.
  • 21 is routed to the HB filter circuit 31, and then output to the antenna 241 or the antenna 245 through the antenna selection switch 41.
  • the 4G radio frequency signal of the HB can be used as the second radio frequency signal TX2 and output to the second power amplifier 12. After power amplification by the second power amplifier 12, it is output to the first frequency band selection switch 21, and routed to the first frequency band selection switch 21.
  • the HB filter circuit 31 is then output to the antenna 241 or to the antenna 245 through the antenna selection switch 41 .
  • FIG. 20 is a schematic structural diagram of another radio frequency front-end module 220 and an antenna module 240 according to an embodiment of the present application.
  • the lines involved in scenario 11 are marked in bold.
  • the terminal device may include the devices and ports involved in the marked lines shown in FIG. 20 , and may not include other only unmarked ones.
  • the terminal device in this embodiment may support DC_LB_HB. In other words, the terminal device can support HB's 5G radio frequency signal and send it at the same time as LB's 4G radio frequency signal.
  • the 5G radio frequency signal of the HB can be used as the first radio frequency signal TX1, and output to the first power amplifier 11, and after power amplification is performed by the first power amplifier 11, it is output to the first frequency band selection switch 21, and the first frequency band selection switch is passed through the first frequency band selection switch.
  • 21 is routed to the HB filter circuit 31, and then output to the antenna 241 or the antenna 245 through the antenna selection switch 41.
  • the LB 4G radio frequency signal can be used as the second radio frequency signal TX2 and output to the second power amplifier 12, and after power amplification by the second power amplifier 12, it is output to the third frequency band selection switch 23 or the LB combining circuit 46,
  • the frequency band selection switch 23 is routed to the LB filter circuit 33 , and then output to the antenna 247 through the LB combiner circuit 46 .
  • FIG. 21 is a schematic structural diagram of another radio frequency front-end module 220 and an antenna module 240 according to an embodiment of the present application.
  • the lines involved in scenario 12 are marked in bold.
  • the terminal device may include the devices and ports involved in the marked lines shown in FIG. 21 , and may not include other only unmarked ones.
  • the terminal device in this embodiment may support DC_HB_LB. In other words, the terminal device can support the LB's 5G radio frequency signal and send it simultaneously with the HB's 4G radio frequency signal.
  • the 5G radio frequency signal of the LB can be used as the first radio frequency signal TX1 and output to the first power amplifier 11, and after power amplification is performed by the first power amplifier 11, it is output to the third frequency band selection switch 23, and the third frequency band selection switch is passed through the third frequency band selection switch. 23 is routed to the LB filter circuit 33, and then output to the antenna 247 through the LB combiner circuit 46.
  • the 4G radio frequency signal of the HB can be used as the second radio frequency signal TX2 and output to the second power amplifier 12. After power amplification by the second power amplifier 12, it is output to the first frequency band selection switch 21, and routed to the first frequency band selection switch 21.
  • the HB filter circuit 31 is then output to the antenna 245 or the antenna 241 through the antenna selection switch 41 .
  • FIG. 22 is a schematic structural diagram of another radio frequency front-end module 220 and an antenna module 240 according to an embodiment of the present application.
  • the lines involved in scenario 12 are marked in bold.
  • the terminal equipment may include the devices and ports involved in the marked lines shown in Figure 22, and may not include other only unmarked The devices and ports involved in the line.
  • the terminal device in this embodiment may support the DC_HB_5G high frequency band. In other words, the terminal device can support the 5G radio frequency signal in the 5G high-frequency band and send it at the same time as the 4G radio frequency signal of the HB.
  • the 5G radio frequency signal in the 5G high-frequency band can be used as the first radio frequency signal TX1 and output to the third power amplifier 13 , and then output to the antenna selection switch 42 after power amplification by the third power amplifier 13 , and then output to the antenna 241 .
  • the 4G radio frequency signal of the HB can be used as the second radio frequency signal TX2 and output to the second power amplifier 12. After power amplification by the second power amplifier 12, it is output to the first frequency band selection switch 21, and routed to the first frequency band selection switch 21.
  • the HB filter circuit 31 is then output to the antenna 245 through the antenna selection switch 41 .
  • the RF front-end module 220 and the antenna module 240 in any of the above scenarios can also support carrier aggregation of the frequency bands involved in the respective scenarios, and the implementation principles are similar, and the steps are repeated here.
  • the radio frequency front-end module of the embodiment of the present application can enable the terminal device to support the DC or CA of each of the above application scenarios, so as to improve the use performance of the terminal device.
  • the RF front-end module provided in the embodiment of the present application can also be applied to a multi-card terminal device.
  • the multi-card terminal device can support DSDA, so that a user can use two SIM cards to perform services at the same time.
  • the implementation principle is similar to the above DC, but the difference is In that, the first radio frequency signal and the second radio frequency signal are radio frequency signals of different SIM cards, for example, the first radio frequency signal is the radio frequency signal of the first SIM card, and the second radio frequency signal is the radio frequency signal of the second SIM card, or, The first radio frequency signal is the radio frequency signal of the second SIM card, and the second radio frequency signal is the radio frequency signal of the first SIM card.
  • the radio frequency signal of the first SIM card can be sent as the second radio frequency signal
  • the radio frequency signal of the second SIM card can be sent as the first radio frequency signal.
  • the radio frequency signal is sent to realize DSDA, and the implementation principle can be referred to the specific implementation manner of the above scenario 1, which will not be repeated here.
  • SIM cards supporting different formats and different frequency bands can implement DSDA through the RF front-end module of the embodiment of the present application.
  • DSDA RF front-end module
  • the radio frequency front-end module of the embodiment of the present application may also support two SIM cards of the same standard and different frequency bands to implement DSDA.
  • both the power supply circuit 231 and the power supply circuit 232 can support two different power supply systems, and the first amplifier 11 and the second amplifier 12 can support two different standards.
  • LTE and 5G are supported.
  • An embodiment of the present application further provides a wireless communication method.
  • the execution body of this embodiment may be the above-mentioned terminal device or an internal processor or chip of the terminal device, and the wireless communication method includes:
  • Step 101 Use a first power amplifier to power amplify the first radio frequency signal, and use a second power amplifier to power amplify the second radio frequency signal.
  • Step 102 using a frequency band selection circuit, when the first radio frequency signal satisfies the first frequency band, route the amplified first radio frequency signal to the first front-end circuit, and when the second radio frequency signal satisfies the second frequency band, the amplified first radio frequency signal
  • the two radio frequency signals are routed to the first front-end circuit, and the first front-end circuit supports both the first frequency band and the second frequency band.
  • Step 103 Use the first front-end circuit to filter and/or combine at least one of the amplified first radio frequency signal or the amplified second radio frequency signal to obtain a first transmission signal.
  • Step 104 using the antenna module to transmit the first transmission signal.
  • the method may further include: using a frequency band selection circuit, when the first radio frequency signal satisfies the third frequency band, routing the amplified first radio frequency signal to the second front-end circuit, and when the second radio frequency signal satisfies the third frequency band
  • the amplified second radio frequency signal is routed to the second front-end circuit, and the second front-end circuit supports both the third frequency band and the fourth frequency band.
  • the second front-end circuit is used to filter and/or combine at least one of the amplified first radio frequency signal or the amplified second radio frequency signal to obtain a second transmission signal.
  • a second transmit signal is transmitted using the antenna module.
  • the method may further include: using a frequency band selection circuit, when the first radio frequency signal satisfies the fifth frequency band, routing the amplified first radio frequency signal to the third front-end circuit, and when the second radio frequency signal satisfies the fifth frequency band
  • the amplified second radio frequency signal is routed to the third front-end circuit, and the third front-end circuit supports both the fifth frequency band and the sixth frequency band.
  • Using the third front-end circuit to filter and/or combine at least one of the amplified first radio frequency signal or the amplified second radio frequency signal to obtain a third transmission signal.
  • a third transmit signal is transmitted using the antenna module.
  • using the first power amplifier to perform power amplification on the first radio frequency signal may specifically include: using a third power amplifier to perform power amplification on the first radio frequency signal when the frequency of the first radio frequency signal belongs to the fourth frequency range. amplifying power, and outputting the amplified first radio frequency signal to the frequency band selection circuit, using the first power amplifier when the frequency of the first radio frequency signal belongs to the first frequency range or the second frequency range or the third frequency range, to the first frequency range The radio frequency signal is power amplified, and the amplified first radio frequency signal is output to the frequency band selection circuit.
  • the frequency band selection circuit when the frequency of the first radio frequency signal belongs to the fourth frequency range, the amplified first radio frequency signal is routed to the fourth front-end circuit.
  • the fourth front-end circuit is used to filter the amplified first radio frequency signal to obtain the fourth transmission signal, or the amplified first radio frequency signal is used as the fourth transmission signal.
  • a fourth transmit signal is transmitted using the antenna module.
  • using the antenna module to transmit the fourth transmission signal may specifically include: using an antenna selection circuit, when the frequency of the first radio frequency signal belongs to the 5G high frequency band and the second radio frequency signal belongs to the frequency range of HB, the The fourth transmission signal is output to one or more of the r first antennas, and the first transmission signal is output to one or more of the N-r+1 second antennas.
  • the first antenna supports the 5G high frequency band
  • the second antenna supports the HB frequency range.
  • An embodiment of the present application further provides a terminal device, where the terminal device may include a processor, multiple antennas, and the radio frequency front-end module as involved in any of the foregoing embodiments.
  • the radio frequency front-end module is respectively coupled to the processor and the plurality of antennas, and the radio frequency front-end module receives the first radio frequency signal and the second radio frequency signal from the processor.
  • the embodiment of the present application further provides a processor, where the processor is configured to control the radio frequency front-end module to execute the above-mentioned wireless communication method.
  • Embodiments of the present application further provide a chip, including a processor and a memory, where the memory is used to store computer instructions, and the processor is used to call and run the computer instructions stored in the memory to control the radio frequency front-end module to execute the above wireless communication method.
  • the processor mentioned in the above embodiments may be an integrated circuit chip, which has signal processing capability.
  • each step of the above method embodiments may be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the processor may be a general-purpose processor, a digital signal processor (DSP), an application-specific integrated circuit (ASIC), a field programmable gate array (FPGA), or other Programming logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the methods disclosed in the embodiments of the present application may be directly embodied as executed by a hardware coding processor, or executed by a combination of hardware and software modules in the coding processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory mentioned in the above embodiments may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically programmable Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM), which acts as an external cache.
  • RAM random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous DRAM
  • SDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous link dynamic random access memory
  • direct rambus RAM direct rambus RAM
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution, and the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (personal computer, server, or network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program codes .
  • Embodiment 1 a wireless communication system, comprising:
  • a first power amplifier a second power amplifier, a frequency band selection circuit, a first front-end circuit and an antenna module;
  • the first power amplifier and the second power amplifier are respectively coupled to the frequency band selection circuit, and the first front-end circuit is respectively coupled to the frequency band selection circuit and the antenna module;
  • the first power amplifier is configured to perform power amplification on the first radio frequency signal and output the amplified first radio frequency signal to the frequency band selection circuit
  • the second power amplifier is configured to perform power amplification on the second radio frequency signal. amplifying power, and outputting the amplified second radio frequency signal to the frequency band selection circuit
  • the frequency band selection circuit is configured to, when the first radio frequency signal satisfies the first frequency band, route the amplified first radio frequency signal to the first front-end circuit; when the second radio frequency signal satisfies the first frequency band; In the case of two frequency bands, the amplified second radio frequency signal is routed to the first front-end circuit, and the first front-end circuit supports both the first frequency band and the second frequency band;
  • the first front-end circuit is configured to filter and/or combine at least one of the amplified first radio frequency signal or the amplified second radio frequency signal to obtain a first transmission signal;
  • the antenna module is used for transmitting the first transmission signal.
  • Embodiment 2 The system according to Embodiment 1, wherein the first frequency band and the second frequency band belong to a first frequency range.
  • Embodiment 3 The system according to Embodiment 2, wherein the first frequency range includes the frequency range of the high frequency band HB, the frequency range of the middle frequency band MB, or the frequency range of the low frequency band LB.
  • Embodiment 4 The system according to any one of Embodiments 1 to 3, wherein the frequency band selection circuit includes n signal terminals of the first sub-band, and the signal terminals of the n first sub-bands are respectively connected to the first sub-band. a front-end circuit coupling, n is a positive integer;
  • the frequency band selection circuit is configured to, when the first radio frequency signal satisfies the first frequency band and satisfies one of the n first sub-frequency bands, pass the signal terminal of the first sub-frequency band outputting the amplified first radio frequency signal to the first front-end circuit; when the second radio frequency signal satisfies the second frequency band and satisfies one of the n first sub-frequency bands, The amplified second radio frequency signal is output to the first front-end circuit through the signal terminal of the first sub-band, and the n first sub-bands belong to a first frequency range.
  • Embodiment 5 The system according to any one of Embodiments 1 to 4, wherein the antenna module includes r first antennas, and r is an integer greater than 1;
  • the r first antennas are used for transmitting the first transmit signal output by the first front-end circuit.
  • Embodiment 6 The system according to any one of Embodiments 2 to 5, further comprising a second front-end circuit;
  • the frequency band selection circuit is further configured to, when the first radio frequency signal satisfies the third frequency band, route the amplified first radio frequency signal to the second front-end circuit; when the second radio frequency signal satisfies the third frequency band In the fourth frequency band, the amplified second radio frequency signal is routed to the second front-end circuit, and the second front-end circuit supports both the third frequency band and the fourth frequency band;
  • the second front-end circuit is configured to filter and/or combine at least one of the amplified first radio frequency signal or the amplified second radio frequency signal to obtain a second transmission signal;
  • the antenna module is also used for transmitting the second transmission signal.
  • Embodiment 7 The system according to Embodiment 6, wherein the third frequency band and the fourth frequency band belong to a second frequency range.
  • Embodiment 8 The system according to Embodiment 7, wherein the first frequency range and the second frequency range include any two of the frequency range of the high frequency band HB, the frequency range of the middle frequency band MB, or the frequency range of the low frequency band LB. item.
  • Embodiment 9 The system according to any one of Embodiments 6 to 8, wherein the frequency band selection circuit further includes m signal terminals of the second sub-band, and the signal terminals of the m second sub-bands are respectively connected to the signal terminals of the m second sub-bands.
  • the second front-end circuit is coupled, and m is a positive integer;
  • the frequency band selection circuit is further configured to, when the first radio frequency signal satisfies the third frequency band and satisfies one second sub-frequency band in the m second sub-frequency bands, pass the signal of the second sub-frequency band
  • the terminal outputs the amplified first radio frequency signal to the second front-end circuit; when the second radio frequency signal satisfies the fourth frequency band and satisfies one of the m second sub-frequency bands , the amplified second radio frequency signal is output to the second front-end circuit through the signal terminal of the second sub-band, and the m second sub-bands belong to the second frequency range.
  • Embodiment 10 The system according to any one of Embodiments 6 to 9, wherein the antenna module further includes N ⁇ r+1 second antennas, where N is an integer greater than 2;
  • the N-r+1 second antennas are used to transmit the second transmission signal output by the second front-end circuit.
  • Embodiment 11 The system according to Embodiment 10, further comprising an antenna selection circuit, the input end of the antenna selection circuit is respectively connected with the output end of the first front-end circuit and the output of the second front-end circuit.
  • the output end of the antenna selection circuit is coupled with the antenna module, and the antenna selection circuit is configured to output the first transmission signal to r first antennas or N-r+1 second antennas
  • One or more antennas in the N-r+1 second antennas output the second transmission signal to one or more antennas in the N-r+1 second antennas.
  • Embodiment 12 The system according to any one of Embodiments 7 to 11, further comprising a third front-end circuit;
  • the frequency band selection circuit is further configured to route the amplified first radio frequency signal to the third front-end circuit when the first radio frequency signal satisfies the fifth frequency band, and to route the amplified first radio frequency signal to the third front-end circuit when the second radio frequency signal satisfies the fifth frequency band.
  • the amplified second radio frequency signal is routed to the third front-end circuit, and the third front-end circuit supports both the fifth frequency band and the sixth frequency band;
  • the third front-end circuit is configured to process at least one of the amplified first radio frequency signal or the amplified second radio frequency signal to obtain a third transmission signal; wherein, in some embodiments, the processing includes filtering and/or combining;
  • the antenna module is further configured to transmit the third transmission signal.
  • Embodiment 13 The system according to Embodiment 12, wherein the fifth frequency band and the sixth frequency band belong to a third frequency range.
  • Embodiment 14 The system according to Embodiment 13, wherein the first frequency range, the second frequency range, and the third frequency range are the frequency range of the high frequency band HB, the frequency range of the middle frequency band MB, and the low frequency range, respectively.
  • One of the frequency ranges of the frequency band LB, and the frequency ranges of any two of the first frequency range, the second frequency range and the third frequency range are different.
  • Embodiment 15 The system according to any one of Embodiments 12 to 14, wherein the frequency band selection circuit further includes k signal terminals of third sub-bands, and the signal terminals of the k third sub-bands are respectively connected to the signal terminals of the k third sub-bands.
  • the third front-end circuit is coupled, and k is a positive integer;
  • the frequency band selection circuit is further configured to, when the first radio frequency signal satisfies the fifth frequency band and satisfies one third sub-frequency band in the k third sub-frequency bands, pass the signal of the third sub-frequency band
  • the terminal outputs the amplified first radio frequency signal to the third front-end circuit; when the second radio frequency signal satisfies the sixth frequency band and satisfies one of the k third sub-frequency bands , the amplified second radio frequency signal is output to the third front-end circuit through the signal terminal of the third sub-band, and the k third sub-bands belong to a third frequency range.
  • Embodiment 16 The system according to any one of Embodiments 12 to 15, further comprising an antenna selection circuit, wherein the input end of the antenna selection circuit is respectively connected to the output end of the first front-end circuit, the first The output of the second front-end circuit is coupled to the output of the third front-end circuit, the output of the antenna selection circuit is coupled to the antenna module, and the antenna selection circuit is configured to output the first transmit signal to r first antennas, outputting the second transmission signal to one or more of the N-r+1 second antennas, and outputting the third transmission signal to the N-r+1 one or more of the second antennas.
  • Embodiment 17 The system according to Embodiment 3 or 8 or 14, wherein the frequency range of the high frequency band HB includes frequencies between 2.3Ghz and 2.7Ghz, and the frequency range of the middle frequency band MB includes 1.7Ghz to 2.3Ghz
  • the frequency range of the low frequency band LB includes frequencies below 1000Mhz.
  • Embodiment 18 The system according to any one of Embodiments 1 to 17, wherein the formats of the first radio frequency signal and the second radio frequency signal are different.
  • Embodiment 19 The system according to any one of Embodiments 1 to 17, wherein the first radio frequency signal is a 5G radio frequency signal, and the second radio frequency signal is a 4G radio frequency signal.
  • Embodiment 20 The system according to any one of Embodiments 1 to 17, wherein the first radio frequency signal and the second radio frequency signal have the same format and different carrier waves.
  • Embodiment 21 The system according to any one of Embodiments 1 to 20, wherein the SIM cards corresponding to the first radio frequency signal and the second radio frequency signal are different.
  • Embodiment 22 The system according to Embodiment 21, wherein the carrier waves of the first radio frequency signal and the second radio frequency signal are the same.
  • Embodiment 23 The system according to any one of Embodiments 1 to 22, wherein respective services corresponding to the first radio frequency signal and the second radio frequency signal are different.
  • Embodiment 24 The system according to Embodiment 23, wherein the service includes a voice call service or a data service.
  • Embodiment 25 The system according to any one of Embodiments 1 to 24, further comprising a third power amplifier and a fourth front-end circuit;
  • the third power amplifier is configured to, when the frequency of the first radio frequency signal belongs to a fourth frequency range, perform power amplification on the first radio frequency signal, and output the amplified first radio frequency signal to the frequency band selection a circuit, the first power amplifier is configured to perform power amplification on the first radio frequency signal when the frequency of the first radio frequency signal belongs to the first frequency range or the second frequency range or the third frequency range, and to outputting the amplified first radio frequency signal to the frequency band selection circuit;
  • the frequency band selection circuit is further configured to route the amplified first radio frequency signal to the fourth front-end circuit when the frequency of the first radio frequency signal belongs to a fourth frequency range;
  • the fourth front-end circuit is configured to filter the amplified first radio frequency signal to obtain a fourth transmission signal, or use the amplified first radio frequency signal as the fourth transmission signal;
  • the antenna module is further configured to transmit the fourth transmission signal.
  • Embodiment 26 The system according to Embodiment 25, wherein the fourth frequency range includes a 5G high frequency band.
  • Embodiment 27 The system according to Embodiment 26, wherein the frequency range of the 5G high-frequency band includes frequencies between 2.7Ghz and 7.2Ghz.
  • Embodiment 28 The system according to any one of Embodiments 25 to 27, further comprising an antenna selection circuit, the antenna selection circuit being configured to, when the frequency of the first radio frequency signal belongs to a 5G high frequency band, When the frequency of the second radio frequency signal belongs to the frequency range of HB, the fourth transmission signal is output to one or more of the r first antennas, and the first transmission signal is output to N-r+ one or more of the 1 second antenna;
  • the first antenna supports the 5G high frequency band, and the second antenna supports the HB frequency range.
  • Embodiment 29 a wireless communication method, comprising:
  • the first power amplifier performs power amplification on the first radio frequency signal
  • the second power amplifier performs power amplification on the second radio frequency signal
  • the frequency band selection circuit routes the amplified first radio frequency signal to the first front-end circuit;
  • the frequency band selection circuit routes the amplified second radio frequency signal to the first front-end circuit, and the first front-end circuit supports the first frequency band at the same time and the second frequency band;
  • the first front-end circuit filters and/or combines at least one of the amplified first radio frequency signal or the amplified second radio frequency signal to obtain a first transmission signal;
  • the antenna module transmits the first transmit signal.
  • Embodiment 30 The method according to Embodiment 29, wherein the first frequency band and the second frequency band belong to a first frequency range.
  • Embodiment 31 The method according to Embodiment 31, wherein the first frequency range includes the frequency range of the high frequency band HB, the frequency range of the middle frequency band MB, or the frequency range of the low frequency band LB.
  • Embodiment 32 The method according to Embodiment 30 or 31, further comprising:
  • the frequency band selection circuit routes the amplified first radio frequency signal to the second front-end circuit;
  • the frequency band selection circuit routes the amplified second radio frequency signal to the second front-end circuit, and the second front-end circuit simultaneously supports the third frequency band and the fourth frequency band;
  • the second front-end circuit filters and/or combines at least one of the amplified first radio frequency signal or the amplified second radio frequency signal to obtain a second transmission signal;
  • the antenna module transmits the second transmit signal.
  • Embodiment 33 The method according to Embodiment 32, wherein the third frequency band and the fourth frequency band belong to a second frequency range.
  • Embodiment 34 The method according to Embodiment 33, wherein the first frequency range and the second frequency range include any two of the frequency range of the high frequency band HB, the frequency range of the middle frequency band MB, or the frequency range of the low frequency band LB. item.
  • Embodiment 35 The method of any one of Embodiments 30 to 34, further comprising:
  • the frequency band selection circuit when the first radio frequency signal satisfies the fifth frequency band, the amplified first radio frequency signal is routed to the third front-end circuit, and when the second radio frequency signal satisfies the sixth frequency band when the amplified second radio frequency signal is routed to the third front-end circuit, and the third front-end circuit supports the fifth frequency band and the sixth frequency band at the same time;
  • the third front-end circuit to filter and/or combine at least one of the amplified first radio frequency signal or the amplified second radio frequency signal to obtain a third transmission signal
  • the third transmit signal is transmitted using the antenna module.
  • Embodiment 36 The method according to Embodiment 35, wherein the fifth frequency band and the sixth frequency band belong to a third frequency range.
  • Embodiment 37 The method according to Embodiment 36, wherein the first frequency range, the second frequency range, and the third frequency range are the frequency range of the high frequency band HB, the frequency range of the middle frequency band MB, and the low frequency range, respectively.
  • One of the frequency ranges of the frequency band LB, and the frequency ranges of any two of the first frequency range, the second frequency range and the third frequency range are different.
  • Embodiment 38 The method according to Embodiment 31 or 32 or 37, wherein the frequency range of the high frequency band HB includes frequencies between 2.3Ghz and 2.7Ghz, and the frequency range of the middle frequency band MB includes 1.7Ghz to 2.3Ghz
  • the frequency range of the low frequency band LB includes frequencies below 1000Mhz.
  • Embodiment 39 The method according to any one of Embodiments 29 to 38, wherein the formats of the first radio frequency signal and the second radio frequency signal are different.
  • Embodiment 40 The method according to any one of Embodiments 29 to 38, wherein the first radio frequency signal is a 5G radio frequency signal, and the second radio frequency signal is a 4G radio frequency signal.
  • Embodiment 41 The method according to any one of Embodiments 29 to 38, wherein the format of the first radio frequency signal and the second radio frequency signal are the same and the carriers are different.
  • Embodiment 42 The method according to any one of Embodiments 29 to 41, wherein the SIM cards corresponding to the first radio frequency signal and the second radio frequency signal are different.
  • Embodiment 43 The method according to Embodiment 42, wherein carriers of the first radio frequency signal and the second radio frequency signal are the same.
  • Embodiment 44 The method according to any one of Embodiments 29 to 43, wherein services corresponding to the first radio frequency signal and the second radio frequency signal are different.
  • Embodiment 45 The method according to Embodiment 44, wherein the service includes a voice call service or a data service.
  • Embodiment 46 The method according to any one of Embodiments 29 to 45, wherein the first power amplifier performs power amplification on the first radio frequency signal, including:
  • the third power amplifier When the frequency of the first radio frequency signal belongs to the fourth frequency range, the third power amplifier performs power amplification on the first radio frequency signal, and outputs the amplified first radio frequency signal to the frequency band selection circuit, using the first radio frequency signal
  • a power amplifier performs power amplification on the first radio frequency signal, and outputs the amplified first radio frequency signal to the frequency band selection circuit
  • the frequency band selection circuit routes the amplified first radio frequency signal to the fourth front-end circuit;
  • the fourth front-end circuit filters the amplified first radio frequency signal to obtain a fourth transmission signal, or uses the amplified first radio frequency signal as the fourth transmission signal;
  • the fourth transmit signal is transmitted using the antenna module.
  • Embodiment 47 The method according to Embodiment 46, wherein the fourth frequency range includes a 5G high frequency band.
  • Embodiment 48 The method according to Embodiment 47, wherein the frequency range of the 5G high frequency band includes frequencies between 2.7Ghz and 7.2Ghz.
  • Embodiment 49 The method according to any one of Embodiments 29 to 48, wherein the transmitting the fourth transmission signal by using the antenna module includes:
  • the fourth transmission signal is output to one of the r first antennas or multiple antennas, outputting the first transmission signal to one or more of the N ⁇ r+1 second antennas;
  • the first antenna supports the 5G high frequency band, and the second antenna supports the HB frequency range.
  • Embodiment 50 a terminal device, comprising a processor, multiple antennas, and the wireless communication system according to any one of Embodiments 1 to 28;
  • the wireless communication system is coupled to the processor and the plurality of antennas, respectively, and the wireless communication system receives the first radio frequency signal and the second radio frequency signal from the processor.
  • Embodiment 51 A processor configured to control a wireless communication system to perform the method of any of Embodiments 29-49.
  • Embodiment 52 A chip, comprising a processor and a memory, wherein the memory is used to store computer instructions, and the processor is used to invoke and execute the computer instructions stored in the memory to control a wireless communication system to perform as in Embodiment 29 The method of any one of -49.
  • Embodiment 53 A computer-readable storage medium storing computer instructions that, when executed by a computer, cause the computer to perform the method of any one of Embodiments 29-49 .
  • Embodiment 54 A computer program product, comprising a computer program or instructions that, when executed by a processor, implement the method of any one of Embodiments 29-49.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transceivers (AREA)

Abstract

本申请实施例提供一种无线通信系统、方法、设备以及芯片,通过设置频段选择电路,该频段选择电路可以将第一射频信号和第二射频信号分别路由至第一前端电路、第二前端电路或第三前端电路,第一前端电路、第二前端电路或第三前端电路可以对第一射频信号和第二射频信号进行滤波和/合路。其中,用于发送第一射频信号的第一射频前端通路和用于发送第二射频信号的第二射频前端通路可以共用滤波电路,从而可以减少射频前端的滤波器、双工器等器件,进而减少射频前端模块所占用的空间。

Description

无线通信系统、方法、设备以及芯片
本申请要求于2020年12月21日提交中国国家知识产权局、申请号为202011524419.9、申请名称为“无线通信系统、方法、设备以及芯片”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及射频电子技术,尤其涉及一种无线通信系统、方法、设备以及芯片。
背景技术
非独立组网(Non-Standalone,NSA)是指无线接入网侧4G基站和5G基站并存,核心网采用4G核心网或5G核心网的组网架构。NSA需要4G网络和5G网络协同工作,双连接(Dual Connectivity,DC)则是实现网络协同的技术基础。通过DC可以提升无线资源利用率,降低切换时延。对于终端设备而言需要支持4G和5G双制式同时收发。
对于一个支持4G和5G双制式同时收发的终端设备来说,需要保证4G与5G通路上的射频器件可以同时工作,且在各种天线切换场景或主副卡工作场景中需要保证通道开关无冲突。
然而,由于终端设备的尺寸大小限制,所以如何利用有限的射频器件的布局空间合理设置射频前端模块,以保证4G与5G通路可以同时工作,成为一个亟需解决的技术问题。
发明内容
本申请提供一种无线通信系统、方法、设备以及芯片,可以减少射频前端模块所占用的空间,从而合理设置射频前端模块。
第一方面,本申请实施例提供一种无线通信系统,该系统可以包括:第一功率放大器、第二功率放大器、频段选择电路、第一前端电路以及天线模块。所述第一功率放大器和所述第二功率放大器分别与所述频段选择电路耦合,所述第一前端电路分别与所述频段选择电路和所述天线选择电路耦合。所述第一功率放大器被配置为对第一射频信号进行功率放大,并将放大后的第一射频信号输出至所述频段选择电路,所述第二功率放大器被配置为对第二射频信号进行功率放大,并将放大后的第二射频信号输出至所述频段选择电路。所述频段选择电路被配置为当所述第一射频信号满足第一频段时,将所述放大后的第一射频信号路由至所述第一前端电路,当所述第二射频信号满足第二频段时,将所述放大后的第二射频信号路由至所述第一前端电路,所述第一前端电路同时支持所述第一频段和所述第二频段。所述第一前端电路被配置为对所述放大后的第一射频信号或所述放大后的第二射频信号中至少一项进行滤波和/或合路,得到第一发送信号。所述天线模块用于发射所述第一发送信号。
通过设置频段选择电路,该频段选择电路可以将第一射频信号和第二射频信号分别路由至第一前端电路,第一前端电路可以对第一射频信号和第二射频信号进行处理。其中,用于发送第一射频信号的通路可以被理解为第一射频前端通路,用于发送第二射频信号的通路可以被理解为第二射频前端通路,在系统中,第一射频前端通路和第二射频前端可以 共用滤波电路等前端电路,从而可以减少射频前端的滤波器、双工器等前端电路,进而减少射频前端模块所占用的空间,同时还可以保证第一射频信号和第二射频信号互不冲突。
第二方面,本申请实施例提供一种无线通信方法,该方法可以包括:使用第一功率放大器对第一射频信号进行功率放大,使用第二功率放大器对第二射频信号进行功率放大。使用频段选择电路,当所述第一射频信号满足第一频段时,将所述放大后的第一射频信号路由至所述第一前端电路,当所述第二射频信号满足第二频段时,将所述放大后的第二射频信号路由至所述第一前端电路,所述第一前端电路同时支持所述第一频段和所述第二频段。使用所述第一前端电路对所述放大后的第一射频信号或所述放大后的第二射频信号中至少一项进行滤波和/或合路,得到第一发送信号。使用天线模块发射所述第一发送信号。
第三方面,本申请实施例提供一种终端设备,包括处理器、多个天线、以及如第一方面所述的无线通信系统。所述无线通信系统分别与所述处理器和所述多个天线耦合,所述无线通信系统从所述处理器接收所述第一射频信号和所述第二射频信号。
第四方面,本申请实施例提供一种处理器,所述处理器被配置为控制无线通信系统执行如第二方面所述的方法。
第五方面,本申请实施例提供一种芯片,包括处理器和存储器,所述存储器用于存储计算机指令,所述处理器用于调用并运行所述存储器中存储的计算机指令,以控制无线通信系统执行如第二方面所述的方法。
附图说明
图1为本申请实施例的一种通信系统的示意图;
图2为本申请实施例的一种终端设备的示意图;
图3为本申请实施例的另一种终端设备的示意图;
图4为本申请实施例的另一种终端设备的示意图;
图5为本申请实施例的一种射频前端模块的示意图;
图6为本申请实施例的另一种射频前端模块的示意图;
图7为本申请实施例的另一种射频前端模块的示意图;
图8为本申请实施例的另一种射频前端模块的示意图;
图9为本申请实施例的一种场景的射频前端模块和天线模块的示意图;
图10A为本申请实施例的另一种场景的射频前端模块和天线模块的示意图;
图10B为本申请实施例的另一种场景的射频前端模块和天线模块的示意图;
图10C为本申请实施例的另一种场景的射频前端模块和天线模块的示意图;
图10D为本申请实施例的另一种场景的射频前端模块和天线模块的示意图;
图10E为本申请实施例的另一种场景的射频前端模块和天线模块的示意图;
图10F为本申请实施例的另一种场景的射频前端模块和天线模块的示意图;
图10G为本申请实施例的另一种场景的射频前端模块和天线模块的示意图;
图10H为本申请实施例的另一种场景的射频前端模块和天线模块的示意图;
图11为本申请实施例的另一种场景的射频前端模块和天线模块的示意图;
图12为本申请实施例的另一种场景的射频前端模块和天线模块的示意图;
图13为本申请实施例的另一种场景的射频前端模块和天线模块的示意图;
图14为本申请实施例的另一种场景的射频前端模块和天线模块的示意图;
图15为本申请实施例的另一种场景的射频前端模块和天线模块的示意图;
图16为本申请实施例的另一种场景的射频前端模块和天线模块的示意图;
图17为本申请实施例的另一种场景的射频前端模块和天线模块的示意图;
图18为本申请实施例的另一种场景的射频前端模块和天线模块的示意图;
图19为本申请实施例的另一种场景的射频前端模块和天线模块的示意图;
图20为本申请实施例的另一种场景的射频前端模块和天线模块的示意图;
图21为本申请实施例的另一种场景的射频前端模块和天线模块的示意图;
图22为本申请实施例的另一种场景的射频前端模块和天线模块的示意图。
具体实施方式
本申请实施例涉及的术语“第一”、“第二”等仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元。方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
应当理解,在本申请中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。
对于一个支持4G和5G双制式同时收发的终端设备来说,为了保证4G与5G通路上的射频器件可以同时工作,终端设备可以分别设置4G射频前端通路和5G射频前端通路。4G射频前端通路包括多个射频前端器件,例如多工器或滤波器等。5G射频前端通路包括多个射频前端器件,例如多工器或滤波器等。4G射频前端通路和5G射频前端通路相互独立,以支持不同频段的4G射频信号和不同频段的5G射频信号的发送。与分别设置4G射频前端通路的射频前端器件和5G射频前端通路的射频前端器件不同,本申请实施例提供的射频前端模块中设置有频段选择电路,通过该频段选择电路可以将相同频段的第一射频信号和第二射频信号路由至相同的滤波器和/或多工器,从而实现第一射频前端通路和第二射频前端通路共用滤波器和/或多工器,以减少射频前端的滤波器、多工器等器件,进而减少射频前端模块所占用的空间。其中,多工器可以包括双工器、三工器、或四工器等,本申请实施例的射频前端模块的具体结构可以参见下述实施例的解释说明。
本申请实施例所涉及的第一射频信号和第二射频信号可以是不同制式的射频信号,例如,第一射频信号为4G射频信号,第二射频信号为5G射频信号。第一射频信号和第二射频信号也可以是相同制式但频段不同的射频信号。第一射频信号和第二射频信号还可以是终端设备使用不同SIM与接入网设备通信的射频信号。
本申请实施例的5G射频信号的频段可以是Sub6G,即7.2GHz以下的频段。本申请 实施例的4G射频信号的频段可以是Sub3G,即3GHz以下的频段。由此可见,5G射频信号的频段和4G射频信号的频段存在重叠,即3GHz以下的频段重叠。3GHz以下的频段可以包括低频频段(low frequency band,LB)、中频频段(middle frequency band,MB)和高频频段(high frequency band,HB)。其中,LB为1000Mhz以下的频段,MB为1.7~2.3Ghz的频段,HB为2.3~2.7Ghz的频段。LB和MB可以构成LMB,MB和HB可以构成MHB。
为了方便描述,本申请实施例将2.7Ghz~7.2GHz称为5G高频频段。
5G频率范围被划分为不同频段,不同频段对应不同的频段号,例如,N41、N7等。4G频率范围被划分为不同频段,不同频段对应不同的频段号,例如,B41、B7等。N41和B41对应的频率范围相同。
上述LB可以包括N28A、B28A、N28B、B28B、N20、B20、N8、B8等。上述MB可以包括N1、B1、N3、B3等。上述HB可以包括N41、B41、N40、B40、N7、B7等。
一种示例,本申请实施例提供的射频前端模块可以应用于图1所示的通信系统中的终端设备3中,该通信系统可以为采用NSA模式部署的双连接的通信系统,例如,LTE-NR的双连接。LTE-NR的双连接可以包括EN-DC(E-UTRA-NR Dual Connectivity)、NGEN-DC(NG-RAN E-UTRA-NR Dual Connectivity)、或NE-DC(NR-E-UTRA Dual Connectivity)。
其中,EN-DC指核心网接入4G核心网(Evolved Packet Core,EPC),4G基站作为主基站(Master eNB,MeNB),5G基站作为辅基站(Secondary eNB,SeNB)。NGEN-DC指核心网接入5G核心网(5G Core,5GC),4G基站作为MeNB,5G基站作为SeNB。NE-DC指核心网接入5GC,5G基站作为MeNB,4G基站作为SeNB。
需要说明的是,随着通信技术的发展,上述NSA模式部署的双连接还可以是其他的双连接形式,例如,NR和未来下一代通信技术(例如,6G)的双连接,或者,4G和未来下一代通信技术(例如,6G)的双连接等,本申请实施例不以LTE-NR的双连接作为限制。换言之,本申请实施例的射频前端模块可以应用于同时与不同制式的接入网设备通信的终端设备。
当然可以理解的,本申请实施例的射频前端模块也可以应用于同时与同一制式的不同接入网设备通信的终端设备。
如图1所示,该通信系统可以包含:终端设备3,接入网设备1和接入网设备2。其中,图1中的终端设备3是指具备双连接能力的终端设备,主要用于通过空口连接到运营商部署的至少一个接入网设备上接收网络服务。容易理解,具备支持双连接能力的终端设备通常需要设置有支持与两个相同或不同制式的接入网设备通信的两路射频收发通路。接入网设备主要用于实现无线协议栈功能、资源调度和无线资源管理、无线接入控制以及移动性管理功能等。
例如,在第5代(5th generation,5G)系统部署的第一阶段,往往会选择5G NR的非独立组网方式,例如基于option3x或option3架构的EN-DC通信系统。示例性地,在EN-DC通信系统中,接入网设备1可以为长期演进(long term evolution,LTE)系统中的演进型节点(evolved Node B,eNB),接入网设备2可以为NR系统中g节点(gNode B,gNB),终端设备可以同时与eNB和gNB通信。
其中,上述接入网设备可以为具有无线收发功能的接入网设备或设置于接入网设备中 的芯片。该接入网设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base stationcontroller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,homeevolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission and reception point,TRP或者transmission point,TP)等,还可以为5G,如,NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
上述终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、增强现实(augmentedreality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(selfdriving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smartgrid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smartcity)中的无线终端、智慧家庭(smart home)中的无线终端、智能手表、智能手环,智能眼镜,以及其他运动配件或可穿戴设备等等。本申请的实施例对应用场景不做限定。
需要说明的是,图1仅为示例性架构图,除图1中所示功能单元之外,该通信系统还可以包括其他功能单元,本申请实施例对此不进行限定。
另一种示例,本申请实施例提供的射频前端模块还可以应用于与同一接入网设备中的不同小区通信的终端设备,换言之可以应用于与采用载波聚合(Carrier Aggregation,CA)技术的接入网设备通信的终端设备。例如,CA可以是LTE的CA,也可以是5G的CA,或者也可以是其他制式的CA,本申请实施例不作限定。
又一种示例,本申请实施例提供的射频前端模块还可以应用于多卡终端设备,例如,双卡双待(Dual Sim Dual Standby,DSDS)终端设备,或双卡双通(Dual Sim Dual active,DSDA)终端设备。以DSDS终端设备为例,该DSDS终端设备可以设置两张用户身份识别模块(subscriber identification modula,SIM)卡,并且这两张SIM卡均处于待机状态,用户可以使用两张SIM卡进行拨打、接听电话、收发短信和访问各种应用程序(例如,视频播放类应用程序、即时通信类应用程序、游戏类应用程序)等操作。其中,任意一个SIM卡也可以替换为嵌入式SIM(Embedded-SIM,eSIM)卡。举例而言,用户可以使用一个SIM卡与LTE系统的eNB通信,使用另一个SIM卡与NR系统的gNB通信。需要说明的是,对于DSDS,用户使用一个SIM卡访问游戏类应用程序,在访问游戏类应用程序过程中,终端设备接收到另一个SIM卡的语音业务请求,这时,终端设备的游戏类应用程序会中断与服务器的连接。而与DSDS不同,对于DSDA,在上述场景中,终端设备的游戏类应用程序不会中断与服务器的连接,用户可以使用两个SIM卡一边玩游戏一边进行语音业务。
下面结合图2对上述终端设备的各个构成部件进行具体的介绍。
示例性的,图2为本申请实施例提供的一种终端设备200的结构示意图,如图2所示,该终端设备200可以包括处理器210、射频前端模块(Radio Frequency Front End Module,RFFEM)220、射频前端供电模块230以及天线模块240。
处理器210可以包括一个或多个处理单元,例如:处理器210可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带,射频收发器,和/或神经网络处理器(neural-network processing unit,NPU)等。控制器可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。
处理器210中可以设置存储器,用于存储指令和数据。在一些实施例中,处理器210中的存储器为包括高速缓冲存储器。该存储器可以保存处理器210刚用过或循环使用的指令或数据。如果处理器210需要再次使用该指令或数据,可从所述存储器中直接调用。避免了重复存取,减少了处理器210的等待时间,因而提高了系统的效率。
基带是指用来合成即将发射的基带信号,或/和用于对接收到的基带信号进行解码。具体地说,就是发射时,基带把语音或其他数据信号编码成用来发射的基带信号(基带码);接收时,把收到的基带信号(基带码)解码为语音或其他数据信号。基带可以包括编码器、解码器和基带处理器等部件。编码器用来合成即将发射的基带信号,解码器用于对接收到的基带信号进行解码。基带处理器可以为微处理器(MCU),基带处理器可以用于控制编码器和解码器,例如,基带处理器可以用于完成编码和解码的调度,编码器和解码器之间的通信,以及外设驱动(可以通过向基带以外的部件发送使能信号,以使能基带以外的部件)等等。
调制解调处理器可以包括调制器和解调器。其中,调制器用于将待发送的基带信号调制成基带调制信号。解调器用于将接收的基带调制信号解调为基带信号。随后解调器将解调得到的基带信号传送至基带处理。基带信号经基带处理后,被传递给应用处理器。应用处理器通过音频设备(不限于扬声器,受话器等)输出声音信号,或通过显示屏194显示图像或视频。在一些实施例中,调制解调处理器可以是独立的器件。在另一些实施例中,调制解调处理器可以独立于处理器210,与射频前端模块220或其他功能模块设置在同一个器件中。
射频收发器用于将调制解调器输出的基带调制信号上变频为射频(Radio Frequency,RF)信号,并将RF信号输出至射频前端模块220,以便之后由天线模块240中的一个或多个天线发射。射频收发器还用于将通过天线模块240和射频前端模块220接收到的RF信号,下变频为基带调制信号,以便之后由调制解调器和基带进行处理。在一些实施例中,射频收发器可以是独立的器件。在另一些实施例中,射频收发器可以独立于处理器210,与射频前端模块220或其他功能模块设置在同一个器件中。
处理器210可以根据移动通信技术或无线通信技术对信号进行调频。移动通信技术可以包括全球移动通讯系统(global system for mobile communications,GSM),通用分组无线服务(general packet radio service,GPRS),码分多址接入(code division multiple access,CDMA),带宽码分多址(wideband code division multiple access,WCDMA),时分码分多址(time-division code division multiple access,TD-SCDMA),长期演进(long term evolution, LTE),新兴的无线通信技术(又可称为第五代移动通信技术,英语:5th generation mobile networks或5th generation wireless systems、5th-Generation、5th-Generation New Radio,简称5G、5G技术或5G NR)等。无线通信技术可以包括无线局域网(wireless local area networks,WLAN)(如无线保真(wireless fidelity,Wi-Fi)网络),蓝牙(bluetooth,BT),全球导航卫星系统(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信技术(near field communication,NFC),红外技术(infrared,IR)等。
在处理器210中,不同的处理单元可以是独立的器件,也可以集成在一个或多个集成电路中。
射频前端模块220用于通过天线模块240接收和发射RF信号。例如,射频前端模块220可以对RF信号进行放大、滤波和/或传输等处理。
天线模块240用于以电磁波形式发射和接收射频信号。天线模块240中可以包括多个天线或多组天线(多组天线包括两个以上的天线),每个天线或多组天线可用于覆盖单个或多个通信频段。多个天线可以为多频天线、阵列天线或片上(on-chip)天线中的一种或几种。
处理器210与天线模块240相耦合,以实现发射和接收射频信号相关联的各种功能。例如,当终端设备200发射信号时,基带将待发射的数据(数字信号)合成即将发射的基带信号,基带信号由调制解调器调制成基带调制信号,基带调制信号由射频收发器转化为发送信号(射频信号),发送信号经射频前端模块220处理后,传递给天线模块240,并经天线模块240发射出去。发送信号由处理器210发送到天线模块240的路径为发射链路(或称为发射路径)。当终端设备200需要接收信号时,天线模块240将接收信号(射频信号)发送给射频前端模块220,射频前端模块对射频信号进行处理后,将射频信号发送给射频收发器,射频收发器将射频信号处理为基带调制信号,并将基带调制信号传递给调制解调器,调制解调器将基带调制信号转换为基带信号,并传递给基带,基带将基带信号转化为数据后,发送给相应的应用处理器。射频信号由天线模块240发送到处理器210的路径为接收链路(或称为接收路径)。
射频前端供电模块230用于接收电池和/或充电管理模块的输入,为射频前端模块220供电。例如,为射频前端模块220中的功率放大器供电。在一些实施例中,射频前端供电模块230也可以设置于处理器210中。
其中,处理器210还可以向射频前端供电模块230提供控制信号CON,向射频前端模块220提供第一射频信号TX1和第二射频信号TX2。
射频前端供电模块230还可以包括第一供电端Vpa11和第二供电端Vpa12。射频前端供电模块230的第一供电端Vpa11与射频前端模块220的第一供电端Vpa11耦合,射频前端供电模块230的第二供电端Vpa12与射频前端模块220的第二供电端Vpa12耦合。可选的,在一些实施例中,射频前端供电模块230还可以包括和第三供电端Vpa13,射频前端供电模块230的第三供电端Vpa13与射频前端模块220的第三供电端Vpa13耦合。射频前端供电模块230所包括的供电端的个数与射频前端模块220所包括的功率放大器的个数有关,其可以根据需求进行合理设置。例如,射频前端模块220所包括的两个功率放大器的供电电压不同,射频前端供电模块230可以包括两个供电端,以向该两个功率放大 器分别供电。
射频前端模块220还可以包括第一射频信号端RF21,第二射频信号端RF22,……,和第N射频信号端RF2N。N取任意正整数。射频前端模块220的第一射频信号端RF21与天线模块240的第一射频信号端RF21耦合。射频前端模块220的第二射频信号端RF22与天线模块240的第二射频信号端RF22耦合。射频前端模块220的第N射频信号端RF2N与天线模块240的第N射频信号端RF2N耦合。N的取值可以与天线模块240所包括的天线个数有关,例如,N=4,6等正整数。
处理器210向射频前端供电模块230提供供电控制信号,该供电控制信号作用于射频前端供电模块230,使得射频前端供电模块230向射频前端模块220供电。处理器210输出第一射频信号TX1至射频前端模块220,处理器210输出第二射频信号TX2至射频前端模块220。射频前端模块220用于对第一射频信号和第二射频信号进行放大、滤波和/或传输等处理,并通过第一射频信号端RF21、第二射频信号端RF22、……、或第N射频信号端RF2N中任意一个或两个输出至天线模块240,天线模块240用于以电磁波形式发射该第一射频信号和第二射频信号。
一种示例,本申请实施例的第一射频信号和第二射频信号可以是终端设备200同时与不同制式的接入网设备通信的射频信号。例如,第一射频信号可以是终端设备200与4G基站通信的射频信号,第二射频信号可以是终端设备200与5G基站通信的射频信号。
另一种示例,本申请实施例的第一射频信号和第二射频信号也可以是同一接入网设备中的不同载波的射频信号。
再一种示例,本申请实施例的第一射频信号和第二射频信号还可以是终端设备200使用不同SIM卡与接入网设备通信的射频信号。
本申请实施例的射频前端模块220采用简化的射频链路,支持上述任一示例的第一射频信号和第二射频信号的发射,以合理利用终端设备200的有限的射频器件的布局空间,保证终端设备200在不同应用场景中的使用性能。其中,射频前端模块220的具体结构及其射频信号处理方式可以参见下述实施例的解释说明。
可以理解的是,本实施例示意的结构并不构成对终端设备200的具体限定。在本申请另一些实施例中,终端设备200可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件,或软件和硬件的组合实现。
示例性的,以终端设备200为手机为例,对终端设备200的具体结构进行示例性说明。图3示出了终端设备200(例如手机)的结构示意图。本实施例以终端设备200的天线模块240包括天线1和天线2为例进行示例性说明。
终端设备200可以包括处理器110,外部存储器接口120,内部存储器121,通用串行总线(universal serial bus,USB)接口130,充电管理模块140,电源管理模块141,电池142,天线1,天线2,移动通信模块150,无线通信模块160,音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,传感器180,按键190,马达191,指示器192,摄像头193,显示屏194,以及用户标识模块(subscriber identification module,SIM)卡接口195等。可以理解的是,本实施例示意的结构并不构成对终端设备200的具体限定。在本 申请另一些实施例中,终端设备200可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件,或软件和硬件的组合实现。
其中,处理器110的解释说明可以参见图2所示实施例的处理器210的解释说明,此处不再赘述。
在一些实施例中,处理器110可以包括一个或多个接口。接口可以包括集成电路(inter-integrated circuit,I2C)接口,集成电路内置音频(inter-integrated circuit sound,I2S)接口,脉冲编码调制(pulse code modulation,PCM)接口,通用异步收发传输器(universal asynchronous receiver/transmitter,UART)接口,移动产业处理器接口(mobile industry processor interface,MIPI),通用输入输出(general-purpose input/output,GPIO)接口,用户标识模块(subscriber identity module,SIM)接口,和/或通用串行总线(universal serial bus,USB)接口等。其中,USB接口130是符合USB标准规范的接口,具体可以是Mini USB接口,Micro USB接口,USB Type C接口等。USB接口130可以用于连接充电器为终端设备200充电,也可以用于终端设备200与外围设备之间传输数据。也可以用于连接耳机,通过耳机播放音频。
可以理解的是,本申请实施例示意的各模块间的接口连接关系,只是示意性说明,并不构成对终端设备200的结构限定。在本申请另一些实施例中,终端设备200也可以采用上述实施例中不同的接口连接方式,或多种接口连接方式的组合。
充电管理模块140用于从充电器接收充电输入。其中,充电器可以是无线充电器,也可以是有线充电器。在一些有线充电的实施例中,充电管理模块140可以通过USB接口130接收有线充电器的充电输入。在一些无线充电的实施例中,充电管理模块140可以通过终端设备200的无线充电线圈接收无线充电输入。充电管理模块140为电池142充电的同时,还可以通过电源管理模块141为终端设备200供电。
电源管理模块141用于连接电池142,充电管理模块140与处理器110。电源管理模块141接收电池142和/或充电管理模块140的输入,为处理器110,内部存储器121,显示屏194,摄像头193,和无线通信模块160等供电。电源管理模块141还可以用于监测电池容量,电池循环次数,电池健康状态(漏电,阻抗)等参数。在其他一些实施例中,电源管理模块141也可以设置于处理器110中。在另一些实施例中,电源管理模块141和充电管理模块140也可以设置于同一个器件中。
上述射频前端供电模块230可以是电源管理模块141中的用于实现向射频前端模块供电的功能子模块。
终端设备200的无线通信功能可以通过天线1,天线2,移动通信模块150,无线通信模块160,调制解调处理器以及基带处理器等实现。天线1和天线2用于发射和接收电磁波信号。终端设备200中的每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。例如:可以将天线1复用为无线局域网的分集天线。
移动通信模块150可以提供应用在终端设备200上的包括2G/3G/4G/5G等无线通信的解决方案。移动通信模块150可以包括至少一个滤波器,开关,功率放大器,低噪声放大器等。移动通信模块150可以是如图2所示的射频前端模块220。移动通信模块150可以由天线1接收电磁波,并对接收的电磁波进行滤波,放大等处理。移动通信模块150还可 以对RF信号放大,经天线1转为电磁波辐射出去。在一些实施例中,移动通信模块150的至少部分功能模块可以被设置于处理器110中。在一些实施例中,移动通信模块150的至少部分功能模块可以与处理器110的至少部分模块被设置在同一个器件中。
无线通信模块160可以提供应用在终端设备200上的包括WLAN,蓝牙,GNSS,FM,NFC,IR等无线通信的解决方案。无线通信模块160可以是集成至少一个通信处理模块的一个或多个器件。无线通信模块160经由天线2接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器110。无线通信模块160还可以从处理器110接收待发送的信号,对其进行调频,放大,经天线2转为电磁波辐射出去。
在一些实施例中,终端设备200的天线1和移动通信模块150耦合,天线2和无线通信模块160耦合,使得终端设备200可以通过移动通信技术或无线通信技术与网络以及其他设备通信。
终端设备200通过GPU,显示屏194,以及应用处理器等可以实现显示功能。GPU为图像处理的微处理器,连接显示屏194和应用处理器。GPU用于执行数学和几何计算,用于图形渲染。处理器110可包括一个或多个GPU,其执行指令以生成或改变显示信息。
显示屏194用于显示图像,视频等。显示屏194包括显示面板。显示面板可以采用液晶显示屏(liquid crystal display,LCD),有机发光二极管(organic light-emitting diode,OLED),有源矩阵有机发光二极体或主动矩阵有机发光二极体(active-matrix organic light emitting diode的,AMOLED),柔性发光二极管(flex light-emitting diode,FLED),Miniled,MicroLed,Micro-oLed,量子点发光二极管(quantum dot light emitting diodes,QLED)等。在一些实施例中,终端设备200可以包括1个或N个显示屏194,N为大于1的正整数。
终端设备200可以通过ISP,一个或多个摄像头193,视频编解码器,GPU,一个或多个显示屏194以及应用处理器等实现拍摄功能。
外部存储器接口120可以用于连接外部存储卡,例如Micro SD卡,实现扩展终端设备200的存储能力。外部存储卡通过外部存储器接口120与处理器110通信,实现数据存储功能。例如将音乐、照片、视频等数据文件保存在外部存储卡中。
内部存储器121可以用于存储一个或多个计算机程序,该一个或多个计算机程序包括指令。处理器110可以通过运行存储在内部存储器121的上述指令,以及各种功能应用以及数据处理等。内部存储器121可以包括存储程序区和存储数据区。其中,存储程序区可存储操作系统;该存储程序区还可以存储一个或多个应用程序(比如图库、联系人等)等。存储数据区可存储终端设备200使用过程中所创建的数据(比如照片,联系人等)等。此外,内部存储器121可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件,闪存器件,通用闪存存储器(universal flash storage,UFS)等。
终端设备200可以通过音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,以及应用处理器等实现音频功能。例如音乐播放,录音等。其中,音频模块170用于将数字音频信息转换成模拟音频信号输出,也用于将模拟音频输入转换为数字音频信号。音频模块170还可以用于对音频信号编码和解码。在一些实施例中,音频模块170可以设置于处理器110中,或将音频模块170的部分功能模块设置于处理器110中。扬声器170A,也称“喇叭”,用于将音频电信号转换为声音信号。终端设备200可以通过扬声器170A收听音乐,或收听免提通话。受话器170B,也称“听筒”,用于将音频电信 号转换成声音信号。当终端设备200接听电话或语音信息时,可以通过将受话器170B靠近人耳接听语音。麦克风170C,也称“话筒”,“传声器”,用于将声音信号转换为电信号。当拨打电话或发送语音信息时,用户可以通过人嘴靠近麦克风170C发声,将声音信号输入到麦克风170C。终端设备200可以设置至少一个麦克风170C。在另一些实施例中,终端设备200可以设置两个麦克风170C,除了采集声音信号,还可以实现降噪功能。在另一些实施例中,终端设备200还可以设置三个,四个或更多麦克风170C,实现采集声音信号,降噪,还可以识别声音来源,实现定向录音功能等。耳机接口170D用于连接有线耳机。耳机接口170D可以是USB接口130,也可以是3.5mm的开放移动终端设备平台(open mobile terminal platform,OMTP)标准接口,还可以是美国蜂窝电信工业协会(cellular telecommunications industry association of the USA,CTIA)标准接口。
传感器180可以包括压力传感器180A,陀螺仪传感器180B,气压传感器180C,磁传感器180D,加速度传感器180E,距离传感器180F,接近光传感器180G,指纹传感器180H,温度传感器180J,触摸传感器180K,环境光传感器180L,骨传导传感器180M等。
按键190包括开机键,音量键等。按键190可以是机械按键,也可以是触摸式按键。终端设备200可以接收按键输入,产生与终端设备200的用户设置以及功能控制有关的键信号输入。
SIM卡接口195用于连接SIM卡。SIM卡可以通过插入SIM卡接口195,或从SIM卡接口195拔出,实现和终端设备200的接触和分离。终端设备200可以支持1个或N个SIM卡接口,N为大于1的正整数。SIM卡接口195可以支持Nano SIM卡,Micro SIM卡,SIM卡等。同一个SIM卡接口195可以同时插入多张卡。所述多张卡的类型可以相同,也可以不同。SIM卡接口195也可以兼容不同类型的SIM卡。SIM卡接口195也可以兼容外部存储卡。终端设备200通过SIM卡和网络交互,实现通话以及数据通信等功能。在一些实施例中,终端设备200采用eSIM,即:嵌入式SIM卡。eSIM卡可以嵌在终端设备200中,不能和终端设备200分离。
下面采用几个具体的实施例对本申请实施例的射频前端模块进行解释说明。
图4为本申请实施例提供的另一种终端设备的结构示意图,如图4所示,该终端设备可以包括处理器210、射频前端模块220、射频前端供电模块230以及天线模块240。其中,射频前端模块220可以包括功率放大电路10、频段选择电路20和前端电路50。前端电路50可以包括第一前端电路51。
功率放大电路10用于对处理器210输出的第一射频信号和第二射频信号,进行功率放大,之后将放大后的射频信号输出至频段选择电路20。在一些实施例中,功率放大电路10可以包括第一功率放大器11和第二功率放大器12。第一功率放大器11被配置为对第一射频信号进行功率放大,并将放大后的第一射频信号输出至频段选择电路20。第二功率放大器12被配置为对第二射频信号进行功率放大,并将放大后的第二射频信号输出至频段选择电路20。
频段选择电路20被配置为当第一射频信号满足第一频段时,将放大后的第一射频信号路由至第一前端电路51,当第二射频信号满足第二频段时,将放大后的第二射频信号路由至第一前端电路51,第一前端电路51同时支持第一频段和第二频段。第一前端电路 51被配置为对放大后的第一射频信号或放大后的第二射频信号中至少一项进行滤波和/或合路,得到第一发送信号。天线模块240用于发射第一发送信号。
上述第一频段和第二频段属于第一频率范围。该第一频率范围包括HB的频率范围或MB的频率范围或LB的频率范围。例如,第一频率范围为HB的频率范围,第一频段可以包括N41、N7或N40等5G高频频段中一项或多项,第二频段可以包括B41、B7或B40等4G高频频段中一项或多项。再例如,第一频率范围为HB的频率范围,第一频段可以包括N41、N7或N40等5G高频频段中一项或多项,第二频段可以包括N41、N7或N40等5G高频频段中一项或多项。又例如,第一频率范围为HB的频率范围,第一频段可以包括B41、B7或B40等4G高频频段中一项或多项,第二频段可以包括B41、B7或B40等4G高频频段中一项或多项。
在一些实施例中,频段选择电路20可以包括n个第一子频段的信号端,n个第一子频段的信号端分别与第一前端电路51耦合,n为正整数。频段选择电路20被配置为当第一射频信号满足第一频段,且满足n个第一子频段中的一个第一子频段时,通过对应的第一子频段的信号端将放大后的第一射频信号输出至第一前端电路51,当第二射频信号满足第二频段,且满足n个第一子频段中的一个第一子频段时,通过对应的第一子频段的信号端将放大后的第二射频信号输出至第一前端电路51,n个第一子频段属于第一频率范围。以第一频率范围为HB的频率范围,n=3为例,3个第一子频段可以包括B41和N41对应的一个第一子频段的频率范围,B7和N7对应的一个第一子频段的频率范围,以及B40和N40对应的一个第一子频段的频率范围。相应的,频段选择电路20的一个第一子频段的信号端用于输出频率属于该第一子频段的第一射频信号和/或第二射频信号。
举例而言,第一射频信号为N41的射频信号,第二射频信号为B41的射频信号,第一射频信号满足B41和N41对应的第一子频段的频率范围,频段选择电路20通过B41和N41对应的第一子频段的信号端将放大后的第一射频信号输出至第一前端电路51,第二射频信号满足B41和N41对应的第一子频段的频率范围,频段选择电路20通过B41和N41对应的第一子频段的信号端将放大后的第二射频信号输出至第一前端电路51。
可选的,前端电路50还可以包括第二前端电路52,频段选择电路20还被配置为当第一射频信号满足第三频段时,将放大后的第一射频信号路由至第二前端电路52,当第二射频信号满足第四频段时,将放大后的第二射频信号路由至第二前端电路52,第二前端电路52同时支持第三频段和第四频段。第二前端电路52被配置为对放大后的第一射频信号或放大后的第二射频信号中至少一项进行滤波和/或合路,得到第二发送信号。天线模块240还用于发射第二发送信号。
上述第三频段和第四频段属于第二频率范围。该第二频率范围和第一频率范围包括HB的频率范围或MB的频率范围或LB的频率范围中任意两项。例如,第一频率范围为HB的频率范围,第二频率范围为MB的频率范围,第三频段可以包括N1或N3等5G中频频段中一项或多项,第四频段可以包括B1或B3等4G中频频段中一项或多项。再例如,第一频率范围为HB的频率范围,第二频率范围为MB的频率范围,第三频段可以包括N1或N3等5G中频频段中一项或多项,第四频段可以包括N1或N3等5G中频频段中一项或多项。又例如,第一频率范围为HB的频率范围,第二频率范围为MB的频率范围,第三频段可以包括B1或B3等4G中频频段中一项或多项,第四频段可以包括B1或B3 等4G中频频段中一项或多项。
在一些实施例中,频段选择电路20还可以包括m个第二子频段的信号端,m个第一子频段的信号端分别与第二前端电路52耦合,m为正整数。频段选择电路20被配置为当第一射频信号满足第三频段,且满足m个第二子频段中的一个第二子频段时,通过对应的第二子频段的信号端将放大后的第一射频信号输出至第二前端电路52,当第二射频信号满足第四频段,且满足m个第二子频段中的一个第二子频段时,通过对应的第二子频段的信号端将放大后的第二射频信号输出至第二前端电路52,m个第二子频段属于第二频率范围。以第二频率范围为MB的频率范围,m=2为例,2个第一子频段可以包括B1和N1对应的一个第二子频段的频率范围,以及B3和N3对应的一个第二子频段的频率范围。相应的,频段选择电路20的一个第二子频段的信号端用于输出频率属于该第二子频段的第一射频信号和/或第二射频信号。
举例而言,第一射频信号为N1的射频信号,第二射频信号为B1的射频信号,第一射频信号满足B1和N1对应的第二子频段的频率范围,频段选择电路20通过B1和N1对应的第二子频段的信号端将放大后的第一射频信号输出至第二前端电路52,第二射频信号满足B1和N1对应的第二子频段的频率范围,频段选择电路20通过B1和N1对应的第二子频段的信号端将放大后的第二射频信号输出至第二前端电路52。
可选的,前端电路50还可以包括第三前端电路53,频段选择电路20还被配置为当第一射频信号满足第五频段时,将放大后的第一射频信号路由至第三前端电路53,当第二射频信号满足第六频段时,将放大后的第二射频信号路由至第三前端电路53,第三前端电路53同时支持第五频段和第六频段。第三前端电路53被配置为对放大后的第一射频信号或放大后的第二射频信号中至少一项进行滤波和/或合路,得到第三发送信号。天线模块240还用于发射第三发送信号。
上述第五频段和第六频段属于第三频率范围。该第三频率范围、第二频率范围和第一频率范围包括HB的频率范围或MB的频率范围或LB的频率范围中任意三项,且第一频率范围、第二频率范围和第三频率范围中任意两项的频率范围不同。例如,第一频率范围为HB的频率范围,第二频率范围为MB的频率范围,第三频率范围为LB的频率范围,第五频段可以包括N28A、N28B、N20或N8等5G低频频段中一项或多项,第六频段可以包括B28A、B28B、B20或B8等4G低频频段中一项或多项。再例如,第一频率范围为HB的频率范围,第二频率范围为MB的频率范围,第三频率范围为LB的频率范围,第五频段可以包括N28A、N28B、N20或N8等5G低频频段中一项或多项,第六频段可以包括N28A、N28B、N20或N8等5G低频频段中一项或多项。又例如,第一频率范围为HB的频率范围,第二频率范围为MB的频率范围,第三频率范围为LB的频率范围,第五频段可以包括B28A、B28B、B20或B8等4G低频频段中一项或多项,第六频段可以包括B28A、B28B、B20或B8等4G低频频段中一项或多项。
在一些实施例中,频段选择电路20还可以包括k个第三子频段的信号端,k个第三子频段的信号端分别与第三前端电路53耦合,k为正整数。频段选择电路20被配置为当第一射频信号满足第五频段,且满足k个第三子频段中的一个第三子频段时,通过对应的第三子频段的信号端将放大后的第一射频信号输出至第三前端电路53,当第二射频信号满足第六频段,且满足k个第三子频段中的一个第三子频段时,通过对应的第三子频段的 信号端将放大后的第二射频信号输出至第三前端电路53,k个第三子频段属于第三频率范围。以第三频率范围为LB的频率范围,k=4为例,4个第三子频段可以包括B28A和N28A对应的一个第三子频段的频率范围,B20和N20对应的一个第三子频段的频率范围,B8和N8对应的一个第三子频段的频率范围,以及B28B和N28B对应的一个第三子频段的频率范围。相应的,频段选择电路20的一个第三子频段的信号端用于输出频率属于该第三子频段的第一射频信号和/或第二射频信号。
举例而言,第一射频信号为N8的射频信号,第二射频信号为B8的射频信号,第一射频信号满足B8和N8对应的第三子频段的频率范围,频段选择电路20通过B8和N8对应的第三子频段的信号端将放大后的第一射频信号输出至第三前端电路53,第二射频信号满足B8和N8对应的第三子频段的频率范围,频段选择电路20通过B8和N8对应的第三子频段的信号端将放大后的第二射频信号输出至第三前端电路53。
本实施例通过频段选择电路可以在功率放大电路输出至天线模块之间实现射频信号的交叉,以将射频信号路由至相应频率的天线,使得本实施例的射频前端模块可以不依赖处理器完成第一射频信号和第二射频信号的交换路由。
在一些实施例中,第一功率放大器11的输出端可以包括第一HB输出端HB1、第一MB输出端MB1和第一LB输出端LB1。第一功率放大器11用于对第一射频信号进行功率放大,并将放大后的第一射频信号通过第一HB输出端HB1、第一MB输出端MB1或第一LB输出端LB1输出至频段选择电路20。当第一射频信号为HB的射频信号时,该第一功率放大器11对该第一射频信号进行功率放大后,将放大后的第一射频信号通过第一HB输出端HB1输出至频段选择电路20。当第一射频信号为MB的射频信号时,该第一功率放大器11对该第一射频信号进行功率放大后,将放大后的第一射频信号通过第一MB输出端MB1输出至频段选择电路20。当第一射频信号为LB的射频信号时,该第一功率放大器11对该第一射频信号进行功率放大后,将放大后的第一射频信号通过第一LB输出端LB1输出至频段选择电路20。第二功率放大器12的输出端包括第二HB输出端HB2、第二MB输出端MB2和第二LB输出端LB2,第二功率放大器12用于对第二射频信号进行功率放大,并将放大后的第二射频信号通过第二HB输出端HB2、第二MB输出端MB2或第二LB输出端LB2输出至频段选择电路20。当第二射频信号为HB的射频信号时,该第二功率放大器12对该第二射频信号进行功率放大后,将放大后的第二射频信号通过第二HB输出端HB2输出至频段选择电路20。当第二射频信号为MB的射频信号时,该第二功率放大器12对该第二射频信号进行功率放大后,将放大后的第二射频信号通过第二MB输出端MB2输出至频段选择电路20。当第二射频信号为LB的射频信号时,该第二功率放大器12对该第二射频信号进行功率放大后,将放大后的第二射频信号通过第二LB输出端LB2输出至频段选择电路20。
可选的,天线模块240可以包括一个或多个第一天线,以及一个或多个第二天线。其中,一个或多个第一天线可以支持高频频段和/或5G高频频段,一个或多个第二天线可以支持中频频段、中低频频段、中高频频段或低频频段,其具体设置可以根据第一射频信号和第二射频信号的频率进行合理设置。
可选的,n的取值与终端设备支持的HB的频段个数有关,m的取值与终端设备所支持的MB的频段个数有关,k的取值与终端设备所支持的LB的频段个数有关。例如,终 端设备支持N41和N7,则n等于2。
需要说明的是,本申请实施例的射频前端模块220中的有源器件的控制信号可以由处理器210提供。例如,射频前端模块220中的第一功率放大器11和第二功率放大器12的使能信号,可以通过使能端PA11_EN、PA12_EN、PA13_EN提供。当然可以理解的,射频前端模块220中的其他有源器件的控制信号也可以由处理器210提供,本申请实施例并未一一示出。
另外,处理器210还可以向射频前端供电模块230提供控制信号,以使得射频前端供电模块230向射频前端模块220提供相应的供电电压。
在一些实施例中,射频前端供电模块230可以包括供电电路231和供电电路232,供电电路231用于向第一功率放大器11提供供电电压。供电电路232用于向第二功率放大器12提供供电电压。例如,第一功率放大器11的供电电压端如图4所示的Vpa11,第二功率放大器12的供电电压端如图4所示的Vpa12。
本实施例,通过设置频段选择电路,该频段选择电路可以将第一射频信号和第二射频信号分别路由至第一前端电路、第二前端电路或第三前端电路,第一前端电路、第二前端电路或第三前端电路可以对第一射频信号和第二射频信号进行滤波和/合路。其中,用于发送第一射频信号的第一射频前端通路和用于发送第二射频信号的第二射频前端通路可以共用滤波电路,从而可以减少射频前端的滤波器、双工器等器件,进而减少射频前端模块所占用的空间。
并且第一射频前端通路和第二射频前端通路可以共用天线,从而减少天线数量。不同天线可以支持不同的频段的射频信号的发射,从而降低天线需要支持的频率范围。
需要说明的是,本申请实施例所涉及的第一射频前端通路指的是第一射频信号从处理器至天线模块所经过的各个器件组成的通路,第二射频前端通路指的是第二射频信号从处理器至天线模块所经过的各个器件组成的通路。
图5为本申请实施例提供的一种射频前端模块220的结构示意图。本实施例在图4所示实施例的基础上,射频前端模块220还可以包括天线选择电路60。
本实施例的天线模块240可以包括r个第一天线,以及N-r+1个第二天线。r个第一天线可以包括天线241、…..、以及天线24r。N-r+1个第二天线可以包括天线24(N-r+1)、…..、以及24N。
天线选择电路60的输入端分别与第一前端电路51的输出端、第二前端电路52的输出端和第三前端电路53的输出端耦合。天线选择电路60的输出端与天线模块240耦合。天线选择电路60被配置为将第一发送信号输出至r个第一天线,将第二发送信号输出至N-r+1个第二天线中的一个或多个天线,将第三发送信号输出至N-r+1个第二天线中的一个或多个天线。换言之,天线选择电路60用于将第一发送信号或第二发送信号或第三发送信号中至少一项路由至相应的天线,通过天线发射信号。
射频前端模块220还可以包括第一射频信号端RF21,……,第r射频信号端RF2r,第(N-r+1)射频信号端RF2(N-r+1)……,以及第N射频信号端RF2N。其中,r可以为大于1的正整数。射频前端模块220的第一射频信号端RF21与天线241连接,射频前端模块220的第r射频信号端RF2r与天线24r连接,射频前端模块220的第(N-r+1)射 频信号端RF2(N-r+1)与天线24(N-r+1)连接,……,射频前端模块220的第N射频信号端RF2N与天线24N连接。
举例而言,r可以取2,N可以取4,换言之,天线模块240可以包括4个天线。天线模块240可以包括两个高频天线、两个中低频天线。高频天线用于支持5G高频频段或HB的射频信号的发送。中低频天线用于支持LMB的射频信号的发送。两个高频天线分别为天线241和天线242。两个中低频天线为天线243和天线244。
举例而言,r可以取4,N可以取7,天线模块240可以包括4个高频天线,2个中高频天线和1个低频天线。高频天线用于支持5G高频频段或HB的射频信号的发送。中高频天线用于支持MHB的射频信号的发送。低频天线用于支持LB的射频信号的发送。四个高频天线分别为天线241、天线242、天线243和天线244。两个中高频天线分别为天线245和天线246。一个低频天线为天线247。
以第一频率范围为HB的频率范围,第二频率范围为MB的频率范围,第三频率范围为LB的频率范围为例,天线选择电路60被配置为将第一前端电路输出的第一发送信号路由至高频天线,将第二前端电路输出的第二发送信号路由至中频天线,将第三前端电路输出的第三发送信号路由至低频天线。
在一些实施例中,上述射频前端模块220还可以包括第三功率放大器13和第四前端电路54。第三功率放大器13的供电电压端如图5所示的Vpa13。
第三功率放大器13被配置为在第一射频信号的频率属于第四频率范围时,对第一射频信号进行功率放大,并将放大后的第一射频信号输出至频段选择电路20,第一功率放大器11被配置为在第一射频信号的频率属于第一频率范围或第二频率范围或第三频率范围时,对第一射频信号进行功率放大,并将放大后的第一射频信号输出至频段选择电路20。频段选择电路20还被配置为当第一射频信号的频率属于第四频率范围时,将放大后的第一射频信号路由至第四前端电路54。第四前端电路54被配置为对放大后的第一射频信号进行滤波,得到第四发送信号,或将放大后的第一射频信号作为第四发送信号。天线模块240还用于发射第四发送信号。第四频率范围可以是5G高频频段的频率范围。
可选的,天线选择电路60还被配置为当第一射频信号的频率属于5G高频频段,第二射频信号的频率属于HB的频率范围时,将第四发送信号输出至r个第一天线中的一个或多个天线,将第一发送信号输出至N-r+1个第二天线中的一个或多个天线。其中,第一天线支持5G高频频段或HB的频率范围,第二天线支持MHB的频率范围。
设置本申请实施例的射频前端模块的终端设备可以支持任意频段的第一射频信号和任意频段的第二射频信号同时发送。该第一射频信号和第二射频信号可以是不同制式。该终端设备可以支持LTE-NR的双连接,例如,DC_LB_MHB,DC_LB_5G高频频段,DC_MHB_LB,DC_MB_MB,DC_HB_MB,DC_MB_HB,DC_LB_MB,DC_MB_LB,DC_MB_5G高频频段,DC_HB_HB,DC_LB_HB,DC_HB_LB,DC_HB_5G高频频段,DC_LB_LB等。其中,在支持DC_LB_LB的NSA组合时,可以减少一个低频天线,降低天线实现难度。
本实施例,通过设置频段选择电路,该频段选择电路可以将第一射频信号和第二射频信号分别路由至第一前端电路、第二前端电路或第三前端电路,第一前端电路、第二前端电路或第三前端电路可以对第一射频信号和第二射频信号进行滤波和/合路。其中,用于 发送第一射频信号的第一射频前端通路和用于发送第二射频信号的第二射频前端通路可以共用滤波电路,从而可以减少射频前端的滤波器、双工器等器件,进而减少射频前端模块所占用的空间。
并且第一射频前端通路和第二射频前端通路可以共用天线,从而减少天线数量。不同天线可以支持不同的频段的射频信号的发射,从而降低天线需要支持的频率范围。
通过设置天线选择电路,可以将不同频率的发送信号路由至相应的天线进行发射。
当第二功率放大器支持NR频段进行上行业务时,本实施例的射频前端模块可以在双卡场景下支持NR频段与5G高频频段同时收发,提高设置该射频前端模块的终端设备的双卡通信规格。
图6为本申请实施例提供的另一种射频前端模块的结构示意图,如图6所示,本实施例在图5所示实施例的基础上,以第一前端电路51支持HB的频率范围,第二前端电路52支持MB的频率范围,第三前端电路53支持LB的频率范围,第四前端电路54支持5G高频频段的频率范围为例对射频前端模块的具体结构进行举例说明。
上述n个第一子频段的信号端为n个HB信号端(311,……,31n),m个第二子频段的信号端为m个MB信号端(321,……,32m),k个第三子频段的信号端为k个LB信号端(331,……,33k)。
频段选择电路20的输出端可以包括n个HB信号端(311,……,31n)、m个MB信号端(321,……,32m)以及k个LB信号端(331,……,33k)。每一个信号端对应相同频率的频段。例如,HB信号端311对应N41和B41。
其中,n的取值与终端设备支持的HB的频段个数有关,m的取值与终端设备所支持的MB的频段个数有关,k的取值与终端设备所支持的LB的频段个数有关。例如,终端设备支持N41和N7,则n等于2。
频段选择电路20用于将放大后的第一射频信号和放大后的第二射频信号路由至n个HB信号端(311,……,31n)、m个MB信号端(321,……,32m)或k个LB信号端(331,……,33k)中任意一个或两个端口输出。例如,当第一射频信号的频段为N41,则频段选择电路20将放大后的第一射频信号路由至n个HB信号端(311,……,31n)中与N41对应的信号端输出,当第二射频信号的频段为N3,则频段选择电路20将放大后的第二射频信号路由至m个MB信号端(321,……,32m)中与N3对应的信号端输出。
可选的,频段选择电路20可以包括第一频段选择开关21、第二频段选择开关22和第三频段选择开关23。第一频段选择开关21的输入端与第一功率放大器11的第一HB输出端HB1和第二功率放大器12的第二HB输出端HB2连接。第一频段选择开关21的输出端分别与n个HB信号端(311,……,31n)连接。第二频段选择开关22的输入端与第一功率放大器11的第一MB输出端MB1和第二功率放大器12的第二MB输出端MB2连接。第二频段选择开关22的输出端分别与m个MB信号端(321,……,32m)连接。第三频段选择开关23的输入端与第一功率放大器11的第一LB输出端LB1和第二功率放大器12的第二LB输出端LB2连接。第三频段选择开关23的输出端分别与k个LB信号端(331,……,33k)连接。
第一前端电路51可以包括与频段选择电路20的n个HB信号端(311,……,31n) 分别对应连接的输入端。第二前端电路52可以包括与频段选择电路20的m个MB信号端(321,……,32m)分别对应连接的输入端。第三前端电路53可以包括与频段选择电路20的k个LB信号端(331,……,33k)分别对应连接的输入端。
第一前端电路51可以包括HB滤波电路31,第二前端电路52可以包括MB滤波电路32,第三前端电路53可以包括LB滤波电路33。
在一些实施例中,HB滤波电路31的输入端与n个HB信号端(311,……,31n)连接。MB滤波电路32的输入端与m个MB信号端(321,……,32m)连接。LB滤波电路33的输入端与k个LB信号端(331,……,33k)连接。HB滤波电路31用于对HB的第一射频信号和/或HB的第二射频信号进行滤波处理。MB滤波电路32用于对MB的第一射频信号和/或MB的第二射频信号进行滤波处理。LB滤波电路33用于对LB的第一射频信号和/或LB的第二射频信号进行滤波处理。
需要说明的是,上述HB滤波电路31、MB滤波电路32和LB滤波电路33各自可以对各个频段分别滤波,也可以对属于同一较大频段的多个频段进行滤波,所以,HB滤波电路31、MB滤波电路32和LB滤波电路33各自的输出端的个数可以小于或等于各自输入端的个数。例如,HB滤波电路31的输出端可以包括n’个HB信号端(1,……,n’)、MB滤波电路32的输出端可以包括m’个MB信号端(1,……,m’),LB滤波电路33的输出端可以包括k’个LB信号端(1,……,k’),其中,1≤n’≤n,1≤m’≤m,1≤k’≤k。
在一些实施例中,第二前端电路52还可以包括MB合路电路43。MB合路电路43的输入端与m’个MB信号端(1,……,m’)连接。MB合路电路43用于对MB滤波电路32输出的滤波后的第一射频信号和/或滤波后的第二射频信号进行合路,并将合路后的射频信号输出至天线选择电路60。天线选择电路60用于选择相应的射频信号端输出至天线模块中的天线。
在一些实施例中,第三前端电路63还可以包括LB合路电路46。LB合路电路46的输入端与k’个LB信号端(1,……,k’)连接。LB合路电路46用于对LB滤波电路33输出的滤波后的第一射频信号和/或滤波后的第二射频信号进行合路,并将合路后的射频信号输出至天线选择电路60。天线选择电路60用于选择相应的射频信号端输出至天线模块中的天线。
第四前端电路54可以包括将第三功率放大器13的输出端与天线选择电路60的输入端连接的导线。当然可以理解的,该第四前端电路54也可以包括5G高频频段的滤波器。
在一些实施例中,天线选择电路60可以包括天线选择开关41、天线选择开关42、MHB合路电路44和天线选择模块45。天线选择开关41的输入端分别与HB滤波电路31的输出端连接。天线选择开关42的输入端分别与第三功率放大器13的输出端以及天线选择开关41的一个输出端连接。天线选择开关42的输出端分别与第一射频信号端RF21,……,第r射频信号端RF2r连接。MB合路电路43的输入端与MB滤波电路32的输出端连接。MHB合路电路44的输入端分别与MB合路电路43的输出端和天线选择开关41的一个输出端连接。LB合路电路46的输入端分别与LB滤波电路33的输出端连接。天线选择模块45的输入端分别与MHB合路电路44的输出端、天线选择开关41的一个输出端以及LB合路电路46的输出端连接。天线选择模块45的输出端分别与第 (N-r+1)射频信号端RF2(N-r+1),……,第N射频信号端RF2N连接。
上述第一前端电路、第二前端电路、第三前端电路、以及天线选择电路所包括的各个模块还可以是其他实现方式,例如,第一前端电路还可以包括HB合路电路,或者,MB合路电路43、MHB合路电路44和LB合路电路46可以合并设置。当然可以理解的,还可以有其他实现方式,本申请实施例不一一举例说明。
本实施例,通过设置频段选择电路,该频段选择电路可以将第一射频信号和第二射频信号分别路由至HB信号端、MB信号端或LB信号端,HB滤波电路可以对HB信号端的射频信号进行滤波处理,MB滤波电路可以对MB信号端的射频信号进行滤波处理,LB滤波电路可以对LB信号端的射频信号进行滤波处理。其中,用于发送第一射频信号的第一射频前端通路和用于发送第二射频信号的第二射频前端通路可以共用滤波电路,从而可以减少射频前端的滤波器、双工器等器件,进而减少射频前端模块所占用的空间。
并且第一射频前端通路和第二射频前端通路可以共用天线,从而减少天线数量。不同天线可以支持不同的频段的射频信号的发射,从而降低天线需要支持的频率范围。
本申请下述图7所示实施例以天线模块240包括七个天线为例进行举例说明,即N=7。天线模块240包括四个高频天线、两个中高频天线和一个低频天线。高频天线用于支持5G高频频段或HB的射频信号的发送。中高频天线用于支持MHB的射频信号的发送。低频天线用于支持LB的射频信号的发送。四个高频天线分别为天线241、天线242、天线243和天线244。两个中高频天线分别为天线245和天线246。一个低频天线为天线247。
图7为本申请实施例提供的一种射频前端模块220的结构示意图。本实施例在图6所示实施例的基础上,以n=3,m=2,k=3为例进行举例说明,即终端设备支持3个HB的频段号、2个MB的频段号以及3个LB的频段号。如图7所示,该射频前端模块的HB滤波电路、MB滤波电路和LB滤波电路分别包括多个滤波器和/或多工器。例如,HB滤波电路31可以包括两个滤波器和一个双工器。上述n’=3。其中,一个滤波器的输入端与HB信号端311连接,输出端与天线选择开关41的端口1连接。另一个滤波器的输入端与HB信号端312连接,输出端与天线选择开关41的端口2连接。双工器的一个输入端与HB信号端313连接,输出端与天线选择开关41的端口3连接。由于该双工器与天线选择开关41之间的链路可以作为接收链路,所以,这里设置双工器,以便实现收发同步。MB滤波电路32可以包括一个四工器。上述m’=1。其中,四工器的两个输入端与MB信号端321和MB信号端322连接,四工器的输出端与MB合路电路43的输入端连接。由于该四工器与MB合路电路43之间的链路可以作为接收链路,所以,这里设置四工器,以便实现收发同步。LB滤波电路33可以包括一个三工器和一个双工器。上述k’=2。其中,三工器的两个输入端与LB信号端332和LB信号端333连接,三工器的输出端与LB合路电路46的一个输入端连接。双工器的一个输入端与LB信号端331连接,双工器的输出端与LB合路电路46的另一个输入端连接。由于该LB滤波电路33与LB合路电路46之间的链路可以作为接收链路,所以,这里设置四工器和双工器,以便实现收发同步。
举例而言,HB滤波电路31的一个滤波器可以用于对N41和B41的射频信号进行滤波处理,HB滤波电路31的另一个滤波器可以用于对N40和B40的射频信号进行滤波处理。HB滤波电路31的双工器可以用于对N7和B7的射频信号进行滤波处理。射频前端 模块220可以通过频段选择电路20将HB的第一射频信号和HB的第二射频信号路由至HB滤波电路31,从而两个射频前端通路可以共用HB滤波电路。
MB滤波电路32的一个四工器可以用于对N1和B1、以及N3和B3的射频信号进行滤波处理,射频前端模块220可以通过频段选择电路20将MB的第一射频信号和MB的第二射频信号路由至MB滤波电路32,从而两个射频前端通路可以共用MB滤波电路。
LB滤波电路33的三工器可以用于对N28A和B28A、以及N20和B20的射频信号进行滤波处理,LB滤波电路31的双工器可以用于对N28B和B28B的射频信号进行滤波处理。射频前端模块220可以通过频段选择电路20将LB的第一射频信号和LB的第二射频信号路由至LB滤波电路33,从而两个射频前端通路可以共用LB滤波电路。
本实施例,通过设置频段选择电路和支持不同频段的滤波器和/或多工器,可以实现发送第一射频信号的第一射频前端通路和用于发送第二射频信号的第二射频前端通路共用不同频段的滤波器和/或多工器,使得终端设备在支持双连接应用场景的不同制式的射频信号发送,或载波聚合应用场景的射频信号发送,或双卡双待或双卡双通应用场景的射频信号发送的同时,可以减少射频前端的滤波器、双工器等器件,进而减少射频前端模块所占用的空间。
本申请下述图8所示实施例以天线模块240包括8个天线为例进行举例说明,即N=8。天线模块240包括四个高频天线、两个中高频天线和两个低频天线。高频天线用于支持5G高频频段或HB的射频信号的发送。中高频天线用于支持MHB的射频信号的发送。低频天线用于支持LB的射频信号的发送。四个高频天线分别为天线241、天线242、天线243和天线244。两个中高频天线分别为天线245和天线246。两个低频天线为天线247和天线248。
图8为本申请实施例提供的另一种射频前端模块220和天线模块240的结构示意图。本实施例在图6或图7所示实施例的基础上,第二功率放大器12的输出端还可以包括第三MB输出端MB3和第三LB输出端LB3。MB合路电路43还可以包括另一个输入端,该输入端与第三MB输出端MB3连接。LB合路电路46还可以包括另一个输入端,该输入端与第三LB输出端LB3连接。在一些实施例中,终端设备所支持的第二射频信号的频段中可以存在部分频率范围与第一射频信号的频率范围不重叠,该不重叠的频段的第二射频信号可以通过该第三MB输出端MB3输出至MB合路电路43或通过第三LB输出端LB3输出至LB合路电路46。第二功率放大器12用于对第二射频信号进行功率放大,并将放大后的第二射频信号通过该第三MB输出端MB3输出至MB合路电路43,或者,对第二射频信号进行功率放大,并将放大后的第二射频信号通过该第三LB输出端LB3输出至LB合路电路46。
本实施例中,第三频段选择开关23还可以包括LB信号端334,即k=4,该LB信号端334可以通过LB滤波电路与LB合路电路46的一个输入端连接。该LB滤波电路33还可以包括一个连接线。相应的,上述k’=3。其中,该连接线用于导通LB信号端334和LB合路电路46的一个输入端。
射频前端模块还可以包括主集接收电路和多个分集接收电路,例如,主集接收电路可以是如图8所示的HBNR_MPRX,多个分集接收电路可以包括第一分集接收电路 HBNR_DRX、第二分集接收电路HBNR_MDRX、第三分集接收电路MB_DRX和第四分集接收电路LB_DRX。天线选择电路还可以包括开关471、开关472、开关473和开关474。开关471用于选择性导通天线242和天线选择开关42的一个输出端,或者导通天线242和第一分集接收电路HBNR_DRX的输入端。开关472用于选择性导通天线243和天线选择开关42的一个输出端,或者导通天线243和主集接收电路HBNR_MPRX的输入端。开关473用于选择性导通天线244和天线选择开关42的一个输出端,或者导通天线244和第二分集接收电路HBNR_MDRX的输入端。天线选择开关45还可以包括一个端口,该端口与第三分集接收电路MB_DRX的输入端连接,该天线选择开关45还用于将天线245或天线246与第三分集接收电路MB_DRX的输入端导通。开关474用于选择性导通天线247和LB合路电路46的一个输出端,导通天线248和第四分集接收电路LB_DRX的输入端。
本实施例的射频前端模块和天线模块可以支持第一射频信号和第二射频信号的发送和接收。
本申请上述实施例的终端设备可以支持任意频段的第一射频信号和任意频段的第二射频信号同时发送。该第一射频信号和第二射频信号可以是不同制式。该终端设备可以支持LTE-NR的双连接,例如,DC_LB_MHB,DC_LB_5G高频频段,DC_MHB_LB,DC_MB_MB,DC_HB_MB,DC_MB_HB,DC_LB_MB,DC_MB_LB,DC_MB_5G高频频段,DC_HB_HB,DC_LB_HB,DC_HB_LB,DC_HB_5G高频频段,DC_LB_LB等。下面采用几个具体的应用场景,对支持不同LTE-NR的双连接应用场景的终端设备的射频前端模块进行解释说明。
场景一、DC_LB_LB
图9为本申请实施例提供的另一种射频前端模块220和天线模块240的结构示意图。如图9所示,采用加粗和点划线的形式标注出场景一所涉及的线路,终端设备可以包括图9所示的标注的线路所涉及的器件和端口,可以不包括其他仅未标注的线路所涉及的器件和端口。本实施例的终端设备可以支持DC_LB_LB。换言之,终端设备可以支持LB的5G射频信号,与LB的4G射频信号同时发送。具体的,LB的5G射频信号可以作为第一射频信号TX1,当第一射频信号满足LB的频率范围时,处理器将第一射频信号输出至第一功率放大器11,通过第一功率放大器11进行功率放大后,输出至第三频段选择开关23。由于第一射频信号满足LB的频率范围,所以第三频段选择开关23将第一射频信号路由至LB滤波电路33,之后通过开关474输出至天线247。其中,第三频段选择开关23可以将第一射频信号从LB信号端331或LB信号端332或LB信号端333或LB信号端333输出至LB滤波电路33。LB信号端331、LB信号端332、LB信号端333和LB信号端333分别对应LB的频率范围内的一个子频段。可以基于第一射频信号所属的子频段确定第一射频信号从第三频段选择开关23的哪一个LB信号端输出。LB的4G射频信号可以作为第二射频信号TX2,当第二射频信号满足LB的频率范围时,处理器将第二射频信号输出至第二功率放大器12,通过第二功率放大器12进行功率放大后,输出至第三频段选择开关23。由于第二射频信号满足LB的频率范围,所以第三频段选择开关23将第二射频信号路由至LB滤波电路33,之后通过开关474输出至天线247。其中,第三频段选择开关 23可以将第二射频信号从LB信号端331或LB信号端332或LB信号端333或LB信号端333输出至LB滤波电路33。可以基于第二射频信号所属的子频段确定第二射频信号从第三频段选择开关23的哪一个LB信号端输出。
在场景一中,本申请实施例的射频前端模块可以支持LB和LB的NSA组合,并且用于发送第一射频信号的第一射频前端通路和用于发送第二射频信号的第二射频前端通路可以共用一个低频天线,从而降低天线实现难度。
上述射频前端模块220和天线模块240也可以支持场景一所涉及的频段的载波聚合,即LB和LB的载波聚合,其实现原理类似。
DC_LB_LB可以包括DC_20A_N28A、DC_28A_N20、DC_8A_N20A、DC_20A_N8A、DC_8A_N28A、DC_28A_N8A、DC_8A_N28B、或DC_28B_N8A等。
以LB信号端331对应N28B和B28B,LB信号端332对应N28A和B28A,LB信号端333对应N20和B20,LB信号端334对应N8和B8为例对场景一的DC_LB_LB进行示意性举例说明。
为了实现DC_20A_N28A或DC_28A_N20,终端设备的各个模块可以采用表1所示的状态。
表1 各模块输出信号及工作状态示意表
Figure PCTCN2021135830-appb-000001
如表1所示,在实现DC_20A_N28A时,第一射频信号的频段为N28A,第二射频信号的频段为B20。图10A为本申请实施例提供的射频前端模块实现DC_20A_N28A的结构示意图。如图10A所示,第一射频信号通过第一功率放大器11放大后,通过第一LB输出端LB1输出至第三频段选择开关23。由于第一射频信号满足LB的频率范围,且满足N28A,所以处理器210控制第三频段选择开关23的输入端口E和输出端口2导通,第三频段选择开关23将放大后的第一射频信号通过输出端口2(即LB信号端332)输出至LB滤波电路33。第二射频信号通过第二功率放大器12放大后,通过第二LB输出端LB2输出至第三频段选择开关23。由于第二射频信号满足LB的频率范围,且满足B20,所以处理器210控制第三频段选择开关23的输入端口F和输出端口3(即LB信号端333)导通,第三频段选择开关23将放大后的第二射频信号通过输出端口3(即LB信号端333)输出至LB滤波电路33。LB滤波电路33中的一个双工器对第一射频信号和第二射频信号进行处理之后,输出至LB合路电路46,LB合路电路46进行处理后输出至开关474。
在实现DC_28A_N20时,第一射频信号的频段为N20,第二射频信号的频段为B28A。图10B为本申请实施例提供的射频前端模块实现DC_28A_N20的结构示意图。如图10B所示,第一射频信号通过第一功率放大器11放大后,通过第一LB输出端LB1输出至第 三频段选择开关23。由于第一射频信号满足LB的频率范围,且满足N20,所以处理器210控制第三频段选择开关23的输入端口E和输出端口3导通,第三频段选择开关23将放大后的第一射频信号通过输出端口3(即LB信号端333)输出至LB滤波电路33。第二射频信号通过第二功率放大器12放大后,通过第二LB输出端LB2输出至第三频段选择开关23。由于第二射频信号满足LB的频率范围,且满足B28A,所以处理器210控制第三频段选择开关23的输入端口F和输出端口2(即LB信号端332)导通,第三频段选择开关23将放大后的第二射频信号通过输出端口2(即LB信号端332)输出至LB滤波电路33。LB滤波电路33中的一个双工器对第一射频信号和第二射频信号进行处理之后,输出至LB合路电路46,LB合路电路46进行处理后输出至开关474。
在实现CA_20_28A时,其实现方式与实现DC_20A_N28A类似,不同之处在于,上行过程中TX2不使用。在实现CA_28A_20时,其实现方式与实现DC_28A_N20类似,不同之处在于,上行过程中TX2不使用。
为了实现DC_8A_N20A、DC_20A_N8A,终端设备的各个模块可以采用表2所示的状态。
表2 各模块输出信号及工作状态示意表
Figure PCTCN2021135830-appb-000002
如表2所示,在实现DC_8A_N20A时,第一射频信号的频段为N20,第二射频信号的频段为B8。图10C为本申请实施例提供的射频前端模块实现DC_8A_N20A的结构示意图。如图10C所示,第一射频信号通过第一功率放大器11放大后,通过第一LB输出端LB1输出至第三频段选择开关23。由于第一射频信号满足LB的频率范围,且满足N20,所以处理器210控制第三频段选择开关23的输入端口E和输出端口3导通,第三频段选择开关23将放大后的第一射频信号通过输出端口3(即LB信号端333)输出至LB滤波电路33。LB滤波电路33中的一个双工器对第一射频信号进行处理之后,输出至LB合路电路46。第二射频信号通过第二功率放大器12放大后,通过第二LB输出端LB2输出至第三频段选择开关23。由于第二射频信号满足LB的频率范围,且满足B8,所以处理器210控制第三频段选择开关23的输入端口F和输出端口4(即LB信号端334)导通,第三频段选择开关23将放大后的第二射频信号通过输出端口4(即LB信号端334)输出至LB滤波电路33。通过LB滤波电路33中的一个导线将第二射频信号,输出至LB合路电路46。LB合路电路46对第一射频信号和第二射频信号进行处理后输出至开关474。
在实现DC_20A_N8A时,第一射频信号的频段为N8,第二射频信号的频段为B20。图10D为本申请实施例提供的射频前端模块实现DC_20A_N8A的结构示意图。如图10D 所示,第一射频信号通过第一功率放大器11放大后,通过第一LB输出端LB1输出至第三频段选择开关23。由于第一射频信号满足LB的频率范围,且满足N8,所以处理器210控制第三频段选择开关23的输入端口E和输出端口4导通,第三频段选择开关23将放大后的第一射频信号通过输出端口4(即LB信号端334)输出至LB滤波电路33。通过LB滤波电路33中的一个导线将第二射频信号,输出至LB合路电路46。第二射频信号通过第二功率放大器12放大后,通过第二LB输出端LB2输出至第三频段选择开关23。由于第二射频信号满足LB的频率范围,且满足B20,所以处理器210控制第三频段选择开关23的输入端口F和输出端口3导通,第三频段选择开关23将放大后的第一射频信号通过输出端口3(即LB信号端333)输出至LB滤波电路33。LB滤波电路33中的一个双工器对第二射频信号进行处理之后,输出至LB合路电路46。LB合路电路46对第一射频信号和第二射频信号进行处理后输出至开关474。
为了实现DC_8A_N28A、DC_28A_N8A,终端设备的各个模块可以采用表3所示的状态。
表3 各模块输出信号及工作状态示意表
Figure PCTCN2021135830-appb-000003
如表3所示,在实现DC_8A_N28A时,第一射频信号的频段为N28A,第二射频信号的频段为B8。图10E为本申请实施例提供的射频前端模块实现DC_8A_N28A的结构示意图。如图10E所示,第一射频信号通过第一功率放大器11放大后,通过第一LB输出端LB1输出至第三频段选择开关23。由于第一射频信号满足LB的频率范围,且满足N28A,所以处理器210控制第三频段选择开关23的输入端口E和输出端口2导通,第三频段选择开关23将放大后的第一射频信号通过输出端口2(即LB信号端332)输出至LB滤波电路33。LB滤波电路33中的一个双工器对第一射频信号进行处理之后,输出至LB合路电路46。第二射频信号通过第二功率放大器12放大后,通过第二LB输出端LB2输出至第三频段选择开关23。由于第二射频信号满足LB的频率范围,且满足B8,所以处理器210控制第三频段选择开关23的输入端口F和输出端口4(即LB信号端334)导通,第三频段选择开关23将放大后的第二射频信号通过输出端口4(即LB信号端334)输出至LB滤波电路33。通过LB滤波电路33中的一个导线将第二射频信号,输出至LB合路电路46。LB合路电路46对第一射频信号和第二射频信号进行处理后输出至开关474。
在实现DC_28A_N8A时,第一射频信号的频段为N8,第二射频信号的频段为B28A。图10F为本申请实施例提供的射频前端模块实现DC_28A_N8A的结构示意图。如图10F所示,第一射频信号通过第一功率放大器11放大后,通过第一LB输出端LB1输出至第三频段选择开关23。由于第一射频信号满足LB的频率范围,且满足N8,所以处理器210 控制第三频段选择开关23的输入端口E和输出端口4(即LB信号端334)导通,第三频段选择开关23将放大后的第一射频信号通过输出端口4(即LB信号端334)输出至LB滤波电路33。通过LB滤波电路33中的一个导线将第一射频信号,输出至LB合路电路46。第二射频信号通过第二功率放大器12放大后,通过第二LB输出端LB2输出至第三频段选择开关23。由于第二射频信号满足LB的频率范围,且满足B28A,所以处理器210控制第三频段选择开关23的输入端口F和输出端口2导通,第三频段选择开关23将放大后的第二射频信号通过输出端口2(即LB信号端332)输出至LB滤波电路33。LB滤波电路33中的一个双工器对第二射频信号进行处理之后,输出至LB合路电路46。LB合路电路46对第一射频信号和第二射频信号进行处理后输出至开关474。
为了实现DC_8A_N28B、或DC_28B_N8A,终端设备的各个模块可以采用表4所示的状态。
表4 各模块输出信号及工作状态示意表
Figure PCTCN2021135830-appb-000004
如表4所示,在实现DC_8A_N28B时,第一射频信号的频段为N28B,第二射频信号的频段为B8。图10G为本申请实施例提供的射频前端模块实现DC_8A_N28B的结构示意图。如图10G所示,第一射频信号通过第一功率放大器11放大后,通过第一LB输出端LB1输出至第三频段选择开关23。由于第一射频信号满足LB的频率范围,且满足N28B,所以处理器210控制第三频段选择开关23的输入端口E和输出端口1导通,第三频段选择开关23将放大后的第一射频信号通过输出端口1(即LB信号端331)输出至LB滤波电路33。LB滤波电路33中的一个双工器对第一射频信号进行处理之后,输出至LB合路电路46。第二射频信号通过第二功率放大器12放大后,通过第二LB输出端LB2输出至第三频段选择开关23。由于第二射频信号满足LB的频率范围,且满足B8,所以处理器210控制第三频段选择开关23的输入端口F和输出端口4(即LB信号端334)导通,第三频段选择开关23将放大后的第二射频信号通过输出端口4(即LB信号端334)输出至LB滤波电路33。通过LB滤波电路33中的一个导线将第二射频信号,输出至LB合路电路46。LB合路电路46对第一射频信号和第二射频信号进行处理后输出至开关474。
在实现DC_28B_N8A时,第一射频信号的频段为N8,第二射频信号的频段为B28B。图10H为本申请实施例提供的射频前端模块实现DC_28B_N8A的结构示意图。如图10H所示,第一射频信号通过第一功率放大器11放大后,通过第一LB输出端LB1输出至第三频段选择开关23。由于第一射频信号满足LB的频率范围,且满足N8,所以处理器210控制第三频段选择开关23的输入端口E和输出端口4导通,第三频段选择开关23将放大 后的第一射频信号通过输出端口4(即LB信号端334)输出至LB滤波电路33。通过LB滤波电路33中的一个导线将第二射频信号,输出至LB合路电路46。第二射频信号通过第二功率放大器12放大后,通过第二LB输出端LB2输出至第三频段选择开关23。由于第二射频信号满足LB的频率范围,且满足B28B,所以处理器210控制第三频段选择开关23的输入端口F和输出端口1(即LB信号端331)导通,第三频段选择开关23将放大后的第二射频信号通过输出端口1(即LB信号端331)输出至LB滤波电路33。LB滤波电路33中的一个双工器对第一射频信号进行处理之后,输出至LB合路电路46。LB合路电路46对第一射频信号和第二射频信号进行处理后输出至开关474。
场景二、DC_LB_MHB,DC_LB_5G高频频段
图11为本申请实施例提供的另一种射频前端模块220和天线模块240的结构示意图。如图11所示,采用加粗的形式标注出场景二所涉及的线路,终端设备可以包括图11所示的标注的线路所涉及的器件和端口,可以不包括其他仅未标注的线路所涉及的器件和端口。本实施例的终端设备可以支持DC_LB_MHB和DC_LB_5G高频频段。换言之,终端设备可以支持MHB或5G高频频段的5G射频信号,与LB的4G射频信号同时发送。具体的,MHB的5G射频信号或G高频频段的5G射频信号可以作为第一射频信号TX1,当第一射频信号满足MB的频率范围或HB的频率范围时,处理器将第一射频信号输出至第一功率放大器11,通过第一功率放大器11进行功率放大后,输出至第一频段选择开关21或第二频段选择开关22。例如,当第一射频信号满足HB的频率范围时,处理器将第一射频信号输出至第一功率放大器11,通过第一功率放大器11进行功率放大后,输出至第一频段选择开关21。由于第一射频信号满足HB的频率范围,所以第一频段选择开关21将第一射频信号路由至HB滤波电路31,之后通过天线选择开关41输出至天线245。其中,第一频段选择开关21可以将第一射频信号从HB信号端311或HB信号端312或HB信号端313输出至HB滤波电路31。HB信号端311、HB信号端312和HB信号端313分别对应HB的频率范围内的一个子频段。可以基于第一射频信号所属的子频段确定第一射频信号从第一频段选择开关21的哪一个HB信号端输出。当第一射频信号满足MB的频率范围时,处理器将第一射频信号输出至第一功率放大器11,通过第一功率放大器11进行功率放大后,输出至第二频段选择开关22。由于第一射频信号满足MB的频率范围,所以第二频段选择开关22将第一射频信号路由至MB滤波电路32,之后通过MB合路电路43、MHB合路电路44和天线选择开关45,输出至天线245。其中,第二频段选择开关22可以将第一射频信号从MB信号端321或MB信号端322输出至MB滤波电路32。MB信号端321和MB信号端322分别对应MB的频率范围内的一个子频段。可以基于第一射频信号所属的子频段确定第一射频信号从第二频段选择开关22的哪一个MB信号端输出。当第一射频信号满足5G高频频段的频率范围时,处理器将第一射频信号输出至第三功率放大器13,通过第三功率放大器13进行功率放大后,输出至天线选择开关42,通过天线选择开关42输出至天线241。LB的4G射频信号可以作为第二射频信号TX2,当第二射频信号满足LB的频率范围时,处理器将第二射频信号输出至第二功率放大器12,通过第二功率放大器12进行功率放大后,输出至第三频段选择开关23或LB合路电路46,通过第三频段选择开关23路由至LB合路电路46,之后通过LB合路电路46输出至天线 247。其中,第三频段选择开关23可以将第二射频信号从LB信号端331或LB信号端332或LB信号端333输出或LB信号端334至LB滤波电路33。LB信号端331、LB信号端332、LB信号端333输出和LB信号端334分别对应LB的频率范围内的一个子频段。可以基于第二射频信号所属的子频段确定第二射频信号从第三频段选择开关31的哪一个LB信号端输出。
场景三、DC_MHB_LB
图12为本申请实施例提供的另一种射频前端模块220和天线模块240的结构示意图。如图12所示,采用加粗的形式标注出场景三所涉及的线路,终端设备可以包括图11所示的标注的线路所涉及的器件和端口,可以不包括其他仅未标注的线路所涉及的器件和端口。本实施例的终端设备可以支持DC_MHB_LB。换言之,终端设备可以支持MHB的4G射频信号,与LB的5G射频信号同时发送。具体的,LB的5G射频信号可以作为第一射频信号TX1,输出至第一功率放大器11,通过第一功率放大器11进行功率放大后,输出至第三频段选择开关23,通过第三频段选择开关23路由至LB滤波电路33,之后通过LB滤波电路进行滤波处理之后,输出至LB合路电路46,之后输出至天线247。MHB的4G射频信号可以作为第二射频信号TX2,输出至第二功率放大器12,通过第二功率放大器12进行功率放大后,输出至第一频段选择开关21或第二频段选择开关22,通过第一频段选择开关21路由至HB滤波电路31,之后通过天线选择开关41路由至MHB合路电路44或天线选择开关45,最后通过天线选择开关45输出至天线245,或者,通过第二频段选择开关22路由至MB滤波电路32,之后通过MB合路电路43、MHB合路电路44和天线选择开关45输出至天线245。
场景四、DC_MB_MB
图13为本申请实施例提供的另一种射频前端模块220和天线模块240的结构示意图。如图13所示,采用加粗的形式标注出场景四所涉及的线路,终端设备可以包括图13所示的标注的线路所涉及的器件和端口,可以不包括其他仅未标注的线路所涉及的器件和端口。本实施例的终端设备可以支持DC_MB_MB。换言之,终端设备可以支持MB的5G射频信号,与MB的4G射频信号同时发送。具体的,MB的5G射频信号可以作为第一射频信号TX1,输出至第一功率放大器11,通过第一功率放大器11进行功率放大后,输出至第二频段选择开关22,通过第二频段选择开关22路由至MB滤波电路32,之后通过MB合路电路43输出至天线245。MB的4G射频信号可以作为第二射频信号TX2,输出至第二功率放大器12,通过第二功率放大器12进行功率放大后,输出至第二频段选择开关22,通过第二频段选择开关22路由至MB滤波电路32,之后通过MB合路电路43输出至天线245。
在场景四中,本申请实施例的射频前端模块可以支持MB和MB的NSA组合,并且在MB的5G射频信号,与MB的4G射频信号同时发送过程中,可以共用天线245,从而降低天线实现难度。
场景五、DC_HB_MB
图14为本申请实施例提供的另一种射频前端模块220和天线模块240的结构示意图。如图14所示,采用加粗的形式标注出场景五所涉及的线路,终端设备可以包括图14所示的标注的线路所涉及的器件和端口,可以不包括其他仅未标注的线路所涉及的器件和端口。本实施例的终端设备可以支持DC_HB_MB。换言之,终端设备可以支持MB的5G射频信号,与HB的4G射频信号同时发送。具体的,MB的5G射频信号可以作为第一射频端TX1,输出至第一功率放大器11,通过第一功率放大器11进行功率放大后,输出至第二频段选择开关22,通过第二频段选择开关22路由至MB滤波电路32,之后通过MB合路电路43、MHB合路电路44和天线选择开关45输出至天线245。HB的4G射频信号可以作为第二射频信号TX2,输出至第二功率放大器12,通过第二功率放大器12进行功率放大后,输出至第一频段选择开关21,通过第一频段选择开关21路由至HB滤波电路31。之后通过天线选择开关41和天线选择开关42输出至天线241,或者通过天线选择开关41和MHB合路电路44和天线选择开关45输出至天线245。
场景六、DC_MB_HB
图15为本申请实施例提供的另一种射频前端模块220和天线模块240的结构示意图。如图15所示,采用加粗的形式标注出场景六所涉及的线路,终端设备可以包括图15所示的标注的线路所涉及的器件和端口,可以不包括其他仅未标注的线路所涉及的器件和端口。本实施例的终端设备可以支持DC_MB_HB。换言之,终端设备可以支持HB的5G射频信号,与MB的4G射频信号同时发送。具体的,HB的5G射频信号可以作为第一射频信号TX1,输出至第一功率放大器11,通过第一功率放大器11进行功率放大后,输出至第一频段选择开关21,通过第一频段选择开关21路由至HB滤波电路31,之后通过天线选择开关41输出至天线241,或通过天线选择开关41和MHB合路电路44输出至天线245。MB的4G射频信号可以作为第二射频信号TX2,输出至第二功率放大器12,通过第二功率放大器12进行功率放大后,输出至第二频段选择开关22,通过第二频段选择开关22路由至MB滤波电路32,之后通过MB合路电路43和MHB合路电路44输出至天线245。
场景七、DC_LB_MB
图16为本申请实施例提供的另一种射频前端模块220和天线模块240的结构示意图。如图16所示,采用加粗的形式标注出场景七所涉及的线路,终端设备可以包括图16所示的标注的线路所涉及的器件和端口,可以不包括其他仅未标注的线路所涉及的器件和端口。本实施例的终端设备可以支持DC_LB_MB。换言之,终端设备可以支持MB的5G射频信号,与LB的4G射频信号同时发送。具体的,MB的5G射频信号可以作为第一射频信号TX1,输出至第一功率放大器11,通过第一功率放大器11进行功率放大后,输出至第二频段选择开关22,通过第二频段选择开关22路由至MB滤波电路32,之后通过MB合路电路43输出至天线245。LB的4G射频信号可以作为第二射频信号TX2,输出至第二功率放大器12,通过第二功率放大器12进行功率放大后,输出至第三频段选择开关23或直接输出至LB合路电路46。通过第三频段选择开关23路由至LB滤波电路33,之后通过LB合路电路46输出至天线247。
场景八、DC_MB_LB
图17为本申请实施例提供的另一种射频前端模块220和天线模块240的结构示意图。如图17所示,采用加粗的形式标注出场景八所涉及的线路,终端设备可以包括图17所示的标注的线路所涉及的器件和端口,可以不包括其他仅未标注的线路所涉及的器件和端口。本实施例的终端设备可以支持DC_MB_LB。换言之,终端设备可以支持LB的5G射频信号,与MB的4G射频信号同时发送。具体的,LB的5G射频信号可以作为第一射频信号TX1,输出至第一功率放大器11,通过第一功率放大器11进行功率放大后,输出至第三频段选择开关23,通过第三频段选择开关23路由至LB滤波电路33,之后通过LB合路电路46输出至天线247。MB的4G射频信号可以作为第二射频信号TX2,输出至第二功率放大器12,通过第二功率放大器12进行功率放大后,输出至第二频段选择开关22或MB合路电路43,通过第二频段选择开关22路由至MB滤波电路32,之后通过MB合路电路43输出至天线245。
场景九、DC_MB_5G高频频段
图18为本申请实施例提供的另一种射频前端模块220和天线模块240的结构示意图。如图18所示,采用加粗的形式标注出场景九所涉及的线路,终端设备可以包括图18所示的标注出的线路所涉及的器件和端口,可以不包括其他仅未标注的线路所涉及的器件和端口。本实施例的终端设备可以支持DC_MB_5G高频频段。换言之,终端设备可以支持5G高频频段的5G射频信号,与MB的4G射频信号同时发送。具体的,5G高频频段的5G射频信号可以作为第一射频信号TX1,输出至第三功率放大器13,通过第三功率放大器13进行功率放大后,输出至天线选择开关42,通过天线选择开关42输出至天线241。MB的4G射频信号可以作为第二射频信号TX2,输出至第二功率放大器12,通过第二功率放大器12进行功率放大后,输出至第二频段选择开关22或MB合路电路43,通过第二频段选择开关22路由至MB滤波电路32,之后通过MB合路电路43输出至天线245。
场景十、DC_HB_HB
图19为本申请实施例提供的另一种射频前端模块220和天线模块240的结构示意图。如图19所示,采用加粗的形式标注出场景十所涉及的线路,终端设备可以包括图19所示的标注出的线路所涉及的器件和端口,可以不包括其他仅未标注出的线路所涉及的器件和端口。本实施例的终端设备可以支持DC_HB_HB。换言之,终端设备可以支持HB的5G射频信号,与HB的4G射频信号同时发送。具体的,HB的5G射频信号可以作为第一射频信号TX1,输出至第一功率放大器11,通过第一功率放大器11进行功率放大后,输出至第一频段选择开关21,通过第一频段选择开关21路由至HB滤波电路31,之后通过天线选择开关41输出至天线241或天线245。HB的4G射频信号可以作为第二射频信号TX2,输出至第二功率放大器12,通过第二功率放大器12进行功率放大后,输出至第一频段选择开关21,通过第一频段选择开关21路由至HB滤波电路31,之后通过天线选择开关41输出至天线241或者输出至天线245。
场景十一、DC_LB_HB
图20为本申请实施例提供的另一种射频前端模块220和天线模块240的结构示意图。如图20所示,采用加粗的形式标注出场景十一所涉及的线路,终端设备可以包括图20所示的标注出的线路所涉及的器件和端口,可以不包括其他仅未标注出的线路所涉及的器件和端口。本实施例的终端设备可以支持DC_LB_HB。换言之,终端设备可以支持HB的5G射频信号,与LB的4G射频信号同时发送。具体的,HB的5G射频信号可以作为第一射频信号TX1,输出至第一功率放大器11,通过第一功率放大器11进行功率放大后,输出至第一频段选择开关21,通过第一频段选择开关21路由至HB滤波电路31,之后通过天线选择开关41输出至天线241或天线245。LB的4G射频信号可以作为第二射频信号TX2,输出至第二功率放大器12,通过第二功率放大器12进行功率放大后,输出至第三频段选择开关23或LB合路电路46,通过第三频段选择开关23路由至LB滤波电路33,之后通过LB合路电路46输出至天线247。
场景十二、DC_HB_LB
图21为本申请实施例提供的另一种射频前端模块220和天线模块240的结构示意图。如图21所示,采用加粗的形式标注出场景十二所涉及的线路,终端设备可以包括图21所示的标注出的线路所涉及的器件和端口,可以不包括其他仅未标注出的线路所涉及的器件和端口。本实施例的终端设备可以支持DC_HB_LB。换言之,终端设备可以支持LB的5G射频信号,与HB的4G射频信号同时发送。具体的,LB的5G射频信号可以作为第一射频信号TX1,输出至第一功率放大器11,通过第一功率放大器11进行功率放大后,输出至第三频段选择开关23,通过第三频段选择开关23路由至LB滤波电路33,之后通过LB合路电路46输出至天线247。HB的4G射频信号可以作为第二射频信号TX2,输出至第二功率放大器12,通过第二功率放大器12进行功率放大后,输出至第一频段选择开关21,通过第一频段选择开关21路由至HB滤波电路31,之后通过天线选择开关41输出至天线245或天线241。
场景十三、DC_HB_5G高频频段
图22为本申请实施例提供的另一种射频前端模块220和天线模块240的结构示意图。如图22所示,采用加粗的形式标注出场景十二所涉及的线路,终端设备可以包括图22所示的标注出的线路所涉及的器件和端口,可以不包括其他仅未标注出的线路所涉及的器件和端口。本实施例的终端设备可以支持DC_HB_5G高频频段。换言之,终端设备可以支持5G高频频段的5G射频信号,与HB的4G射频信号同时发送。具体的,5G高频频段的5G射频信号可以作为第一射频信号TX1,输出至第三功率放大器13,通过第三功率放大器13进行功率放大后,输出至天线选择开关42,之后输出至天线241。HB的4G射频信号可以作为第二射频信号TX2,输出至第二功率放大器12,通过第二功率放大器12进行功率放大后,输出至第一频段选择开关21,通过第一频段选择开关21路由至HB滤波电路31,之后通过天线选择开关41输出至天线245。
上述任一场景的射频前端模块220和天线模块240也可以支持各自场景所涉及的频段 的载波聚合,其实现原理类似,此处步骤赘述。
本申请实施例的射频前端模块可以使得终端设备支持上述各个应用场景的DC或CA,以提升终端设备的使用性能。
本申请实施例提供的射频前端模块还可以应用于多卡终端设备,该多卡终端设备可以支持DSDA,以使得用户可以使用两个SIM卡同时进行业务,其实现原理与上述DC类似,不同之处在于,第一射频信号和第二射频信号为不同SIM卡的射频信号,例如,第一射频信号为第一SIM卡的射频信号,第二射频信号为第二SIM卡的射频信号,或者,第一射频信号为第二SIM卡的射频信号,第二射频信号为第一SIM卡的射频信号。
例如,第一SIM卡支持LTE的LB频段,第二SIM卡支持5G的MHB频段,则可以将第一SIM卡的射频信号作为第二射频信号发送,将第二SIM卡的射频信号作为第一射频信号发送,以实现DSDA,其实现原理可以参见上述场景一的具体实现方式,此处不再赘述。
同理,支持不同制式和不同频段的两个SIM卡可以通过本申请实施例的射频前端模块实现DSDA,其实现原理可以参见上述各个场景的具体实现方式,此处不再赘述。
还需要说明的是,本申请实施例的射频前端模块还可以支持相同制式不同频段的两个SIM卡实现DSDA。其中,需要供电电路231和供电电路232均可以支持两种不同制式供电,且第一放大器11和第二放大器12可以支持两种不同制式。例如,支持LTE和5G。其实现原理可以参见上述各个场景的具体实现方式,此处不再赘述。
本申请实施例还提供一种无线通信方法,本实施例的执行主体可以是上述终端设备或终端设备内部处理器或芯片,该无线通信方法包括:
步骤101、使用第一功率放大器对第一射频信号进行功率放大,使用第二功率放大器对第二射频信号进行功率放大。
步骤102、使用频段选择电路,当第一射频信号满足第一频段时,将放大后的第一射频信号路由至第一前端电路,当第二射频信号满足第二频段时,将放大后的第二射频信号路由至第一前端电路,第一前端电路同时支持第一频段和第二频段。
步骤103、使用第一前端电路对放大后的第一射频信号或放大后的第二射频信号中至少一项进行滤波和/或合路,得到第一发送信号。
步骤104、使用天线模块发射第一发送信号。
在一些实施例中,该方法还可以包括:使用频段选择电路,当第一射频信号满足第三频段时,将放大后的第一射频信号路由至第二前端电路,当第二射频信号满足第四频段时,将放大后的第二射频信号路由至第二前端电路,第二前端电路同时支持第三频段和第四频段。使用第二前端电路对放大后的第一射频信号或放大后的第二射频信号中至少一项进行滤波和/或合路,得到第二发送信号。使用天线模块发射第二发送信号。
在一些实施例中,该方法还可以包括:使用频段选择电路,当第一射频信号满足第五频段时,将放大后的第一射频信号路由至第三前端电路,当第二射频信号满足第六频段时,将放大后的第二射频信号路由至第三前端电路,第三前端电路同时支持第五频段和第六频段。使用第三前端电路对放大后的第一射频信号或放大后的第二射频信号中至少一项进行滤波和/或合路,得到第三发送信号。使用天线模块发射第三发送信号。
在一些实施例中,上述使用第一功率放大器对第一射频信号进行功率放大,具体可以包括:使用第三功率放大器在第一射频信号的频率属于第四频率范围时,对第一射频信号进行功率放大,并将放大后的第一射频信号输出至频段选择电路,使用第一功率放大器在第一射频信号的频率属于第一频率范围或第二频率范围或第三频率范围时,对第一射频信号进行功率放大,并将放大后的第一射频信号输出至频段选择电路。使用频段选择电路当第一射频信号的频率属于第四频率范围时,将放大后的第一射频信号路由至第四前端电路。使用第四前端电路对放大后的第一射频信号进行滤波,得到第四发送信号,或将放大后的第一射频信号作为第四发送信号。使用天线模块发射第四发送信号。
在一些实施例中,上述使用天线模块发射第四发送信号,具体可以包括:使用天线选择电路,当第一射频信号的频率属于5G高频频段,第二射频信号属于HB的频率范围时,将第四发送信号输出至r个第一天线中一个或多个天线,将第一发送信号输出至N-r+1个第二天线中的一个或多个天线。其中,第一天线支持5G高频频段,第二天线支持HB的频率范围。
本实施例的实现原理和实现效果可以参见上述结构实施例的解释说明,此处不再赘述。
本申请实施例还提供一种终端设备,该终端设备可以包括处理器、多个天线、以及如上述任一实施例中所涉及述的射频前端模块。该射频前端模块分别与处理器和多个天线耦合,该射频前端模块从处理器接收第一射频信号和第二射频信号。
本申请实施例还提供一种处理器,该处理器被配置为控制射频前端模块执行如上所述的无线通信方法。
本申请实施例还提供一种芯片,包括处理器和存储器,存储器用于存储计算机指令,处理器用于调用并运行存储器中存储的计算机指令,以控制射频前端模块执行如上所述的无线通信方法。
以上各实施例中提及的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、特定应用集成电路(application-specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。本申请实施例公开的方法的步骤可以直接体现为硬件编码处理器执行完成,或者用编码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
上述各实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作 外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。
实施例1、一种无线通信系统,包括:
第一功率放大器、第二功率放大器、频段选择电路、第一前端电路以及天线模块;
所述第一功率放大器和所述第二功率放大器分别与所述频段选择电路耦合,所述第一前端电路分别与所述频段选择电路和所述天线模块耦合;
所述第一功率放大器被配置为对第一射频信号进行功率放大,并将放大后的第一射频信号输出至所述频段选择电路,所述第二功率放大器被配置为对第二射频信号进行功率放大,并将放大后的第二射频信号输出至所述频段选择电路;
所述频段选择电路被配置为,当所述第一射频信号满足第一频段时,将所述放大后的第一射频信号路由至所述第一前端电路;当所述第二射频信号满足第二频段时,将所述放大后的第二射频信号路由至所述第一前端电路,所述第一前端电路同时支持所述第一频段和所述第二频段;
所述第一前端电路被配置为对所述放大后的第一射频信号或所述放大后的第二射频信号中至少一项进行滤波和/或合路,得到第一发送信号;
所述天线模块用于发射所述第一发送信号。
实施例2、根据实施例1所述的系统,所述第一频段和所述第二频段属于第一频率范围。
实施例3、根据实施例2所述的系统,所述第一频率范围包括高频段HB的频率范围或中频段MB的频率范围或低频段LB的频率范围。
实施例4、根据实施例1至3任一项所述的系统,所述频段选择电路包括n个第一子频段的信号端,所述n个第一子频段的信号端分别与所述第一前端电路耦合,n为正整数;
所述频段选择电路被配置为,当所述第一射频信号满足所述第一频段,且满足n个第一子频段中的一个第一子频段时,通过所述第一子频段的信号端将所述放大后的第一射频信号输出至所述第一前端电路;当所述第二射频信号满足所述第二频段,且满足n个第一子频段中的一个第一子频段时,通过所述第一子频段的信号端将所述放大后的第二射频信号输出至所述第一前端电路,所述n个第一子频段属于第一频率范围。
实施例5、根据实施例1至4任一项所述的系统,所述天线模块包括r个第一天线,r为大于1的整数;
所述r个第一天线用于发射所述第一前端电路输出的所述第一发送信号。
实施例6、根据实施例2至5任一项所述的系统,所述系统还包括第二前端电路;
所述频段选择电路还被配置为,当所述第一射频信号满足第三频段时,将所述放大后的第一射频信号路由至所述第二前端电路;当所述第二射频信号满足第四频段时,将所述放大后的第二射频信号路由至所述第二前端电路,所述第二前端电路同时支持所述第三频段和所述第四频段;
所述第二前端电路被配置为对所述放大后的第一射频信号或所述放大后的第二射频信号中至少一项进行滤波和/或合路,得到第二发送信号;
所述天线模块还用于发射所述第二发送信号。
实施例7、根据实施例6所述的系统,所述第三频段和所述第四频段属于第二频率范围。
实施例8、根据实施例7所述的系统,所述第一频率范围和所述第二频率范围包括高频段HB的频率范围或中频段MB的频率范围或低频段LB的频率范围中任意两项。
实施例9、根据实施例6至8任一项所述的系统,所述频段选择电路还包括m个第二子频带的信号端,所述m个第二子频带的信号端分别与所述第二前端电路耦合,m为正整数;
所述频段选择电路还被配置为,当所述第一射频信号满足所述第三频段,且满足m个第二子频段中的一个第二子频段时,通过所述第二子频段的信号端将所述放大后的第一射频信号输出至所述第二前端电路;当所述第二射频信号满足所述第四频段,且满足m个第二子频段中的一个第二子频段时,通过所述第二子频段的信号端将所述放大后的第二射频信号输出至所述第二前端电路,所述m个第二子频段属于第二频率范围。
实施例10、根据实施例6至9任一项所述的系统,所述天线模块还包括N-r+1个第二天线,N为大于2的整数;
所述N-r+1个第二天线用于发送所述第二前端电路输出的所述第二发送信号。
实施例11、根据实施例10所述的系统,所述系统还包括天线选择电路,所述天线选择电路的输入端分别与所述第一前端电路的输出端和所述第二前端电路的输出端耦合,所述天线选择电路的输出端与所述天线模块耦合,所述天线选择电路被配置为将所述第一发送信号输出至r个第一天线或N-r+1个第二天线中的一个或多个天线,将所述第二发送信号输出至所述N-r+1个第二天线中的一个或多个天线。
实施例12、根据实施例7至11任一项所述的系统,所述系统还包括第三前端电路;
所述频段选择电路还被配置为当所述第一射频信号满足第五频段时,将所述放大后的第一射频信号路由至所述第三前端电路,当所述第二射频信号满足第六频段时,将所述放大后的第二射频信号路由至所述第三前端电路,所述第三前端电路同时支持所述第五频段和所述第六频段;
所述第三前端电路被配置为对所述放大后的第一射频信号或所述放大后的第二射频信号中至少一项进行处理,得到第三发送信号;其中,在一些实施例中,所述处理包括滤波和/或合路;
所述天线模块还用于发射所述第三发送信号。
实施例13、根据实施例12所述的系统,所述第五频段和所述第六频段属于第三频率范围。
实施例14、根据实施例13所述的系统,所述第一频率范围、所述第二频率范围和所述第三频率范围分别为高频段HB的频率范围、中频段MB的频率范围和低频段LB的频率范围中一项,且所述第一频率范围、所述第二频率范围和所述第三频率范围中任意两项的频率范围不同。
实施例15、根据实施例12至14任一项所述的系统,所述频段选择电路还包括k个第三子频带的信号端,所述k个第三子频带的信号端分别与所述第三前端电路耦合,k为正整数;
所述频段选择电路还被配置为,当所述第一射频信号满足所述第五频段,且满足k个第三子频段中的一个第三子频段时,通过所述第三子频段的信号端将所述放大后的第一射频信号输出至所述第三前端电路;当所述第二射频信号满足所述第六频段,且满足k个第三子频段中的一个第三子频段时,通过所述第三子频段的信号端将所述放大后的第二射频信号输出至所述第三前端电路,所述k个第三子频段属于第三频率范围。
实施例16、根据实施例12至15任一项所述的系统,所述系统还包括天线选择电路,所述天线选择电路的输入端分别与所述第一前端电路的输出端、所述第二前端电路的输出端和所述第三前端电路的输出端耦合,所述天线选择电路的输出端与所述天线模块耦合, 所述天线选择电路被配置为将所述第一发送信号输出至r个第一天线,将所述第二发送信号输出至所述N-r+1个第二天线中的一个或多个天线,将所述第三发送信输出至所述N-r+1个第二天线中的一个或多个天线。
实施例17、根据实施例3或8或14所述的系统,所述高频段HB的频率范围包括2.3Ghz至2.7Ghz之间的频率,所述中频段MB的频率范围包括1.7Ghz至2.3Ghz之间的频率,所述低频段LB的频率范围包括1000Mhz以下的频率。
实施例18、根据实施例1至17任一项所述的系统,所述第一射频信号和所述第二射频信号的制式不同。
实施例19、根据实施例1至17任一项所述的系统,所述第一射频信号为5G射频信号,所述第二射频信号为4G射频信号。
实施例20、根据实施例1至17任一项所述的系统,所述第一射频信号和所述第二射频信号的制式相同且载波不同。
实施例21、根据实施例1至20任一项所述的系统,所述第一射频信号和所述第二射频信号对应的SIM卡不同。
实施例22、根据实施例21所述的系统,所述第一射频信号和所述第二射频信号的载波相同。
实施例23、根据实施例1至22任一项所述的系统,所述第一射频信号和所述第二射频信号各自对应的业务不同。
实施例24、根据实施例23所述的系统,所述业务包括语音通话业务或数据业务。
实施例25、根据实施例1至24任一项所述的系统,所述系统还包括第三功率放大器和第四前端电路;
所述第三功率放大器被配置为,在所述第一射频信号的频率属于第四频率范围时,对第一射频信号进行功率放大,并将放大后的第一射频信号输出至所述频段选择电路,所述第一功率放大器被配置为在所述第一射频信号的频率属于第一频率范围或第二频率范围或第三频率范围时,对所述第一射频信号进行功率放大,并将放大后的第一射频信号输出至所述频段选择电路;
所述频段选择电路还被配置为当所述第一射频信号的频率属于第四频率范围时,将所述放大后的第一射频信号路由至所述第四前端电路;
所述第四前端电路被配置为对所述放大后的第一射频信号进行滤波,得到第四发送信号,或将所述放大后的第一射频信号作为所述第四发送信号;
所述天线模块还用于发射所述第四发送信号。
实施例26、根据实施例25所述的系统,所述第四频率范围包括5G高频频段。
实施例27、根据实施例26所述的系统,所述5G高频频段的频率范围包括2.7Ghz至7.2Ghz之间的频率。
实施例28、根据实施例25至27任一项所述的系统,所述系统还包括天线选择电路,所述天线选择电路被配置为当所述第一射频信号的频率属于5G高频频段,所述第二射频信号的频率属于HB的频率范围时,将所述第四发送信号输出至r个第一天线中的一个或多个天线,将所述第一发送信号输出至N-r+1个第二天线中的一个或多个天线;
其中,所述第一天线支持所述5G高频频段,所述第二天线支持所述HB的频率范围。
实施例29、一种无线通信方法,包括:
第一功率放大器对第一射频信号进行功率放大;
第二功率放大器对第二射频信号进行功率放大;
当所述第一射频信号满足第一频段时,频段选择电路将所述放大后的第一射频信号路由至所述第一前端电路;
当所述第二射频信号满足第二频段时,所述频段选择电路将所述放大后的第二射频信号路由至所述第一前端电路,所述第一前端电路同时支持所述第一频段和所述第二频段;
所述第一前端电路对所述放大后的第一射频信号或所述放大后的第二射频信号中至少一项进行滤波和/或合路,得到第一发送信号;
天线模块发射所述第一发送信号。
实施例30、根据实施例29所述的方法,所述第一频段和所述第二频段属于第一频率范围。
实施例31、根据实施例31所述的方法,所述第一频率范围包括高频段HB的频率范围或中频段MB的频率范围或低频段LB的频率范围。
实施例32、根据实施例30或31所述的方法,所述方法还包括:
当所述第一射频信号满足第三频段时,所述频段选择电路将所述放大后的第一射频信号路由至所述第二前端电路;
当所述第二射频信号满足第四频段时,所述频段选择电路将所述放大后的第二射频信号路由至所述第二前端电路,所述第二前端电路同时支持所述第三频段和所述第四频段;
所述第二前端电路对所述放大后的第一射频信号或所述放大后的第二射频信号中至少一项进行滤波和/或合路,得到第二发送信号;
所述天线模块发射所述第二发送信号。
实施例33、根据实施例32所述的方法,所述第三频段和所述第四频段属于第二频率范围。
实施例34、根据实施例33所述的方法,所述第一频率范围和所述第二频率范围包括高频段HB的频率范围或中频段MB的频率范围或低频段LB的频率范围中任意两项。
实施例35、根据实施例30至34任一项所述的方法,所述方法还包括:
使用所述频段选择电路,当所述第一射频信号满足第五频段时,将所述放大后的第一射频信号路由至所述第三前端电路,当所述第二射频信号满足第六频段时,将所述放大后的第二射频信号路由至所述第三前端电路,所述第三前端电路同时支持所述第五频段和所述第六频段;
使用所述第三前端电路对所述放大后的第一射频信号或所述放大后的第二射频信号中至少一项进行滤波和/或合路,得到第三发送信号;
使用所述天线模块发射所述第三发送信号。
实施例36、根据实施例35所述的方法,所述第五频段和所述第六频段属于第三频率范围。
实施例37、根据实施例36所述的方法,所述第一频率范围、所述第二频率范围和所述第三频率范围分别为高频段HB的频率范围、中频段MB的频率范围和低频段LB的频 率范围中一项,且所述第一频率范围、所述第二频率范围和所述第三频率范围中任意两项的频率范围不同。
实施例38、根据实施例31或32或37所述的方法,所述高频段HB的频率范围包括2.3Ghz至2.7Ghz之间的频率,所述中频段MB的频率范围包括1.7Ghz至2.3Ghz之间的频率,所述低频段LB的频率范围包括1000Mhz以下的频率。
实施例39、根据实施例29至38任一项所述的方法,所述第一射频信号和所述第二射频信号的制式不同。
实施例40、根据实施例29至38任一项所述的方法,所述第一射频信号为5G射频信号,所述第二射频信号为4G射频信号。
实施例41、根据实施例29至38任一项所述的方法,所述第一射频信号和所述第二射频信号的制式相同且载波不同。
实施例42、根据实施例29至41任一项所述的方法,所述第一射频信号和所述第二射频信号对应的SIM卡不同。
实施例43、根据实施例42所述的方法,所述第一射频信号和所述第二射频信号的载波相同。
实施例44、根据实施例29至43任一项所述的方法,所述第一射频信号和所述第二射频信号各自对应的业务不同。
实施例45、根据实施例44所述的方法,所述业务包括语音通话业务或数据业务。
实施例46、根据实施例29至45任一项所述的方法,所述第一功率放大器对第一射频信号进行功率放大,包括:
在所述第一射频信号的频率属于第四频率范围时,第三功率放大器对第一射频信号进行功率放大,并将放大后的第一射频信号输出至所述频段选择电路,使用所述第一功率放大器在所述第一射频信号的频率属于第一频率范围或第二频率范围或第三频率范围时,对所述第一射频信号进行功率放大,并将放大后的第一射频信号输出至所述频段选择电路;
当所述第一射频信号的频率属于第四频率范围时,所述频段选择电路将所述放大后的第一射频信号路由至所述第四前端电路;
所述第四前端电路对所述放大后的第一射频信号进行滤波,得到第四发送信号,或将所述放大后的第一射频信号作为所述第四发送信号;
使用所述天线模块发射所述第四发送信号。
实施例47、根据实施例46所述的方法,所述第四频率范围包括5G高频频段。
实施例48、根据实施例47所述的方法,所述5G高频频段的频率范围包括2.7Ghz至7.2Ghz之间的频率。
实施例49、根据实施例29至48任一项所述的方法,所述使用所述天线模块发射所述第四发送信号,包括:
使用天线选择电路,当所述第一射频信号的频率属于5G高频频段,所述第二射频信号属于HB的频率范围时,将所述第四发送信号输出至r个第一天线中一个或多个天线,将所述第一发送信号输出至N-r+1个第二天线中的一个或多个天线;
其中,所述第一天线支持所述5G高频频段,所述第二天线支持所述HB的频率范围。
实施例50、一种终端设备,包括处理器、多个天线、以及如实施例1至28任一项所述的无线通信系统;
所述无线通信系统分别与所述处理器和所述多个天线耦合,所述无线通信系统从所述处理器接收所述第一射频信号和所述第二射频信号。
实施例51、一种处理器,所述处理器被配置为控制无线通信系统执行如实施例29-49中任一项所述的方法。
实施例52、一种芯片,包括处理器和存储器,所述存储器用于存储计算机指令,所述处理器用于调用并运行所述存储器中存储的计算机指令,以控制无线通信系统执行如实施例29-49中任一项所述的方法。
实施例53、一种计算机可读存储介质,所述计算机存储介质存储有计算机指令,当所述计算机指令被计算机执行时,使得所述计算机执行实施例29-49中任一项所述的方法。
实施例54、一种计算机程序产品,包括计算机程序或指令,所述计算机程序或指令被处理器执行时,实现实施例29-49中任一项所述的方法。

Claims (30)

  1. 一种无线通信系统,其特征在于,包括:
    第一功率放大器、第二功率放大器、频段选择电路、第一前端电路以及天线模块;
    所述第一功率放大器和所述第二功率放大器分别与所述频段选择电路耦合,所述第一前端电路分别与所述频段选择电路和所述天线模块耦合;
    所述第一功率放大器被配置为对第一射频信号进行功率放大,并将放大后的第一射频信号输出至所述频段选择电路,所述第二功率放大器被配置为对第二射频信号进行功率放大,并将放大后的第二射频信号输出至所述频段选择电路;
    所述频段选择电路被配置为,当所述第一射频信号满足第一频段时,将所述放大后的第一射频信号路由至所述第一前端电路;当所述第二射频信号满足第二频段时,将所述放大后的第二射频信号路由至所述第一前端电路,所述第一前端电路同时支持所述第一频段和所述第二频段;
    所述第一前端电路被配置为对所述放大后的第一射频信号或所述放大后的第二射频信号中至少一项进行滤波和/或合路,得到第一发送信号;
    所述天线模块用于发射所述第一发送信号。
  2. 根据权利要求1所述的系统,其特征在于,所述第一频段和所述第二频段属于第一频率范围;所述第一频率范围包括高频段HB的频率范围、中频段MB的频率范围或低频段LB的频率范围中的至少一个。
  3. 根据权利要求1或2所述的系统,其特征在于,所述频段选择电路包括n个第一子频段的信号端,所述n个第一子频段的信号端分别与所述第一前端电路耦合,n为正整数;
    所述频段选择电路被配置为,当所述第一射频信号满足所述第一频段,且满足n个所述第一子频段中的一个所述第一子频段时,通过所述第一子频段的信号端将所述放大后的第一射频信号输出至所述第一前端电路;当所述第二射频信号满足所述第二频段,且满足n个所述第一子频段中的一个所述第一子频段时,通过所述第一子频段的信号端将所述放大后的第二射频信号输出至所述第一前端电路,所述n个第一子频段属于第一频率范围。
  4. 根据权利要求1至3任一项所述的系统,其特征在于,所述天线模块包括r个第一天线,r为大于1的整数;
    所述r个第一天线用于发射所述第一前端电路输出的所述第一发送信号。
  5. 根据权利要求2至4任一项所述的系统,其特征在于,所述系统还包括第二前端电路;
    所述频段选择电路还被配置为,当所述第一射频信号满足第三频段时,将所述放大后的第一射频信号路由至所述第二前端电路;当所述第二射频信号满足第四频段时,将所述放大后的第二射频信号路由至所述第二前端电路,所述第二前端电路同时支持所述第三频段和所述第四频段;
    所述第二前端电路被配置为,对所述放大后的第一射频信号或所述放大后的第二射频信号中至少一项进行处理,得到第二发送信号,所述处理包括滤波和/或合路;
    所述天线模块还用于发射所述第二发送信号。
  6. 根据权利要求5所述的系统,其特征在于,所述第三频段和所述第四频段属于第 二频率范围,所述第一频率范围和所述第二频率范围包括高频段HB的频率范围、中频段MB的频率范围或低频段LB的频率范围中任意两项。
  7. 根据权利要求5或6所述的系统,其特征在于,所述频段选择电路还包括m个第二子频带的信号端,所述m个第二子频带的信号端分别与所述第二前端电路耦合,m为正整数;
    所述频段选择电路还被配置为,当所述第一射频信号满足所述第三频段,且满足m个第二子频段中的一个第二子频段时,通过所述第二子频段的信号端将所述放大后的第一射频信号输出至所述第二前端电路;当所述第二射频信号满足所述第四频段,且满足m个第二子频段中的一个第二子频段时,通过所述第二子频段的信号端将所述放大后的第二射频信号输出至所述第二前端电路,所述m个第二子频段属于第二频率范围。
  8. 根据权利要求5至7任一项所述的系统,其特征在于,所述天线模块还包括N-r+1个第二天线,N为大于2的整数;
    所述N-r+1个第二天线用于发送所述第二前端电路输出的所述第二发送信号。
  9. 根据权利要求8所述的系统,其特征在于,所述系统还包括天线选择电路,所述天线选择电路的输入端分别与所述第一前端电路的输出端和所述第二前端电路的输出端耦合,所述天线选择电路的输出端与所述天线模块耦合,所述天线选择电路被配置为将所述第一发送信号输出至r个第一天线或N-r+1个第二天线中的一个或多个天线,将所述第二发送信号输出至所述N-r+1个第二天线中的一个或多个天线。
  10. 根据权利要求6至9任一项所述的系统,其特征在于,所述系统还包括第三前端电路;
    所述频段选择电路还被配置为当所述第一射频信号满足第五频段时,将所述放大后的第一射频信号路由至所述第三前端电路,当所述第二射频信号满足第六频段时,将所述放大后的第二射频信号路由至所述第三前端电路,所述第三前端电路同时支持所述第五频段和所述第六频段;
    所述第三前端电路被配置为对所述放大后的第一射频信号或所述放大后的第二射频信号中至少一项进行滤波和/或合路,得到第三发送信号;
    所述天线模块还用于发射所述第三发送信号。
  11. 根据权利要求10所述的系统,其特征在于,所述第五频段和所述第六频段属于第三频率范围,所述第一频率范围、所述第二频率范围和所述第三频率范围分别为高频段HB的频率范围、中频段MB的频率范围和低频段LB的频率范围中一项,且所述第一频率范围、所述第二频率范围和所述第三频率范围中任意两项的频率范围不同。
  12. 根据权利要求10或11所述的系统,其特征在于,所述频段选择电路还包括k个第三子频带的信号端,所述k个第三子频带的信号端分别与所述第三前端电路耦合,k为正整数;
    所述频段选择电路还被配置为当所述第一射频信号满足所述第五频段,且满足k个第三子频段中的一个第三子频段时,通过所述第三子频段的信号端将所述放大后的第一射频信号输出至所述第三前端电路,当所述第二射频信号满足所述第六频段,且满足k个第三子频段中的一个第三子频段时,通过所述第三子频段的信号端将所述放大后的第二射频信号输出至所述第三前端电路,所述k个第三子频段属于第三频率范围。
  13. 根据权利要求10至12任一项所述的系统,其特征在于,所述系统还包括天线选择电路,所述天线选择电路的输入端分别与所述第一前端电路的输出端、所述第二前端电路的输出端和所述第三前端电路的输出端耦合,所述天线选择电路的输出端与所述天线模块耦合,所述天线选择电路被配置为将所述第一发送信号输出至r个第一天线,将所述第二发送信号输出至N-r+1个第二天线中的一个或多个天线,将所述第三发送信输出至所述N-r+1个第二天线中的一个或多个天线。
  14. 根据权利要求1至13任一项所述的系统,其特征在于,所述第一射频信号和所述第二射频信号的制式不同;或者,所述第一射频信号为5G射频信号,所述第二射频信号为4G射频信号;或者,所述第一射频信号和所述第二射频信号的制式相同且载波不同。
  15. 根据权利要求1至14任一项所述的系统,其特征在于,所述第一射频信号和所述第二射频信号对应的SIM卡不同。
  16. 根据权利要求1至15任一项所述的系统,其特征在于,所述第一射频信号和所述第二射频信号各自对应的业务不同。
  17. 根据权利要求1至16任一项所述的系统,其特征在于,所述系统还包括第三功率放大器和第四前端电路;
    所述第三功率放大器被配置为在所述第一射频信号的频率属于第四频率范围时,对第一射频信号进行功率放大,并将放大后的第一射频信号输出至所述频段选择电路,所述第一功率放大器被配置为在所述第一射频信号的频率属于第一频率范围或第二频率范围或第三频率范围时,对所述第一射频信号进行功率放大,并将放大后的第一射频信号输出至所述频段选择电路;
    所述频段选择电路还被配置为当所述第一射频信号的频率属于第四频率范围时,将所述放大后的第一射频信号路由至所述第四前端电路;
    所述第四前端电路被配置为对所述放大后的第一射频信号进行滤波,得到第四发送信号,或将所述放大后的第一射频信号作为所述第四发送信号;
    所述天线模块还用于发射所述第四发送信号。
  18. 根据权利要求17所述的系统,其特征在于,所述第四频率范围包括5G高频频段。
  19. 根据权利要求17或18所述的系统,其特征在于,所述系统还包括天线选择电路,所述天线选择电路被配置为当所述第一射频信号的频率属于5G高频频段,所述第二射频信号的频率属于HB的频率范围时,将所述第四发送信号输出至r个第一天线中的一个或多个天线,将所述第一发送信号输出至N-r+1个第二天线中的一个或多个天线;
    其中,所述第一天线支持所述5G高频频段,所述第二天线支持所述HB的频率范围。
  20. 一种无线通信方法,其特征在于,包括:
    第一功率放大器对第一射频信号进行功率放大;
    第二功率放大器对第二射频信号进行功率放大;
    当所述第一射频信号满足第一频段时,频段选择电路将所述放大后的第一射频信号路由至第一前端电路;
    当所述第二射频信号满足第二频段时,所述频段选择电路将所述放大后的第二射频信号路由至所述第一前端电路,所述第一前端电路同时支持所述第一频段和所述第二频段;
    所述第一前端电路对所述放大后的第一射频信号或所述放大后的第二射频信号中至 少一项进行滤波和/或合路,得到第一发送信号;
    天线模块发射所述第一发送信号。
  21. 根据权利要求20所述的方法,其特征在于,所述第一频段和所述第二频段属于第一频率范围;所述第一频率范围包括高频段HB的频率范围或中频段MB的频率范围或低频段LB的频率范围。
  22. 根据权利要求20或21所述的方法,其特征在于,所述方法还包括:
    当所述第一射频信号满足第三频段时,所述频段选择电路将所述放大后的第一射频信号路由至第二前端电路;
    当所述第二射频信号满足第四频段时,所述频段选择电路将所述放大后的第二射频信号路由至所述第二前端电路,所述第二前端电路同时支持所述第三频段和所述第四频段;
    所述第二前端电路对所述放大后的第一射频信号或所述放大后的第二射频信号中至少一项进行滤波和/或合路,得到第二发送信号;
    所述天线模块发射所述第二发送信号。
  23. 根据权利要求22所述的方法,其特征在于,所述第三频段和所述第四频段属于第二频率范围,所述第一频率范围和所述第二频率范围包括高频段HB的频率范围或中频段MB的频率范围或低频段LB的频率范围中任意两项。
  24. 根据权利要求21至23任一项所述的方法,其特征在于,所述方法还包括:
    使用所述频段选择电路,当所述第一射频信号满足第五频段时,将所述放大后的第一射频信号路由至第三前端电路,当所述第二射频信号满足第六频段时,将所述放大后的第二射频信号路由至所述第三前端电路,所述第三前端电路同时支持所述第五频段和所述第六频段;
    使用所述第三前端电路对所述放大后的第一射频信号或所述放大后的第二射频信号中至少一项进行滤波和/或合路,得到第三发送信号;
    使用所述天线模块发射所述第三发送信号。
  25. 根据权利要求20至24任一项所述的方法,其特征在于,所述第一射频信号和所述第二射频信号的制式不同;或者,所述第一射频信号为5G射频信号,所述第二射频信号为4G射频信号;或者,所述第一射频信号和所述第二射频信号的制式相同且载波不同。
  26. 根据权利要求20至25任一项所述的方法,其特征在于,所述第一射频信号和所述第二射频信号对应的SIM卡不同;和/或,所述第一射频信号和所述第二射频信号各自对应的业务不同。
  27. 根据权利要求20至26任一项所述的方法,其特征在于,所述第一功率放大器对第一射频信号进行功率放大,包括:
    在所述第一射频信号的频率属于第四频率范围时,第三功率放大器对第一射频信号进行功率放大,并将放大后的第一射频信号输出至所述频段选择电路,使用所述第一功率放大器在所述第一射频信号的频率属于第一频率范围或第二频率范围或第三频率范围时,对所述第一射频信号进行功率放大,并将放大后的第一射频信号输出至所述频段选择电路;
    当所述第一射频信号的频率属于第四频率范围时,所述频段选择电路将所述放大后的第一射频信号路由至第四前端电路;
    所述第四前端电路对所述放大后的第一射频信号进行滤波,得到第四发送信号,或将 所述放大后的第一射频信号作为所述第四发送信号;
    使用所述天线模块发射所述第四发送信号。
  28. 一种终端设备,其特征在于,包括处理器、多个天线、以及如权利要求1至19任一项所述的无线通信系统;
    所述无线通信系统分别与所述处理器和所述多个天线耦合,所述无线通信系统从所述处理器接收所述第一射频信号和所述第二射频信号。
  29. 一种处理器,其特征在于,所述处理器被配置为控制无线通信系统执行如权利要求20-27中任一项所述的方法。
  30. 一种芯片,其特征在于,包括处理器和存储器,所述存储器用于存储计算机指令,所述处理器用于调用并运行所述存储器中存储的计算机指令,以控制无线通信系统执行如权利要求20-27中任一项所述的方法。
PCT/CN2021/135830 2020-12-21 2021-12-06 无线通信系统、方法、设备以及芯片 WO2022135129A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180079864.5A CN116601874A (zh) 2020-12-21 2021-12-06 无线通信系统、方法、设备以及芯片
EP21909126.1A EP4175188A4 (en) 2020-12-21 2021-12-06 WIRELESS COMMUNICATIONS SYSTEM AND METHOD AND APPARATUS AND CHIP
MX2023003444A MX2023003444A (es) 2020-12-21 2021-12-06 Sistema, metodo y dispositivo de comunicaciones inalambricas, y dispositivo, y chip.
US18/019,127 US20230299798A1 (en) 2020-12-21 2021-12-06 Wireless communications system, method, and device, and chip

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011524419.9A CN114650066B (zh) 2020-12-21 2020-12-21 无线通信系统、方法、设备以及芯片
CN202011524419.9 2020-12-21

Publications (1)

Publication Number Publication Date
WO2022135129A1 true WO2022135129A1 (zh) 2022-06-30

Family

ID=81991817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/135830 WO2022135129A1 (zh) 2020-12-21 2021-12-06 无线通信系统、方法、设备以及芯片

Country Status (5)

Country Link
US (1) US20230299798A1 (zh)
EP (1) EP4175188A4 (zh)
CN (4) CN116545469A (zh)
MX (1) MX2023003444A (zh)
WO (1) WO2022135129A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114884532A (zh) * 2022-07-01 2022-08-09 荣耀终端有限公司 射频前端电路、芯片及终端设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230354279A1 (en) * 2022-04-28 2023-11-02 Qualcomm Incorporated Systems and methods to include demodulation reference signal bundling in multi-subscriber identity module devices
CN116232369B (zh) * 2023-05-06 2023-11-17 中科(深圳)无线半导体有限公司 一种sip封装的无人机sdr系统芯片

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106656243A (zh) * 2015-10-27 2017-05-10 中兴通讯股份有限公司 多频段收发信机及多频段射频信号发送和接收方法
CN207530820U (zh) * 2017-12-06 2018-06-22 维沃移动通信有限公司 一种射频前端模块及移动终端
WO2020054388A1 (ja) * 2018-09-11 2020-03-19 株式会社村田製作所 高周波フロントエンドモジュールおよび通信装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4348498B2 (ja) * 2000-07-17 2009-10-21 ソニー株式会社 無線通信機器
GB2374251A (en) * 2001-04-04 2002-10-09 Secr Defence Base station transmitter
JP5388307B2 (ja) * 2010-07-28 2014-01-15 株式会社Nttドコモ 携帯無線装置
US9667306B2 (en) * 2011-10-26 2017-05-30 Adam James Wang Multimode multiband wireless device with broadband power amplifier
CN102404022A (zh) * 2011-11-04 2012-04-04 中兴通讯股份有限公司 功率放大模块、射频前端模块和多模终端
US9143208B2 (en) * 2012-07-18 2015-09-22 Rf Micro Devices, Inc. Radio front end having reduced diversity switch linearity requirement
CN104427656A (zh) * 2013-08-19 2015-03-18 中兴通讯股份有限公司 信号处理方法、装置及移动终端
CN105940760B (zh) * 2015-01-07 2019-03-26 华为技术有限公司 射频前端系统、终端设备和基站
CN106160775B (zh) * 2015-04-13 2019-05-14 中国移动通信集团公司 一种射频通路及终端
JP2017011533A (ja) * 2015-06-23 2017-01-12 株式会社村田製作所 通信ユニット
US10263647B2 (en) * 2016-04-09 2019-04-16 Skyworks Solutions, Inc. Multiplexing architectures for wireless applications
CN108540147B (zh) * 2016-05-03 2020-03-10 Oppo广东移动通信有限公司 一种载波聚合的抗谐波干扰装置、天线装置和移动终端
US10608677B2 (en) * 2018-03-01 2020-03-31 Murata Manufacturing Co., Ltd. High-frequency front end circuit and communication device including the same
JP2019154025A (ja) * 2018-03-01 2019-09-12 株式会社村田製作所 高周波フロントエンド回路及びそれを備える通信装置
US10505700B1 (en) * 2018-07-12 2019-12-10 T-Mobile Usa, Inc. Reducing intermodulation distortion for intra-band dual connectivity
CN110971262B (zh) * 2019-11-29 2021-09-28 惠州Tcl移动通信有限公司 射频电路、天线装置及移动终端
CN111193526B (zh) * 2020-01-14 2021-11-05 Oppo广东移动通信有限公司 射频系统和电子设备
CN111277296B (zh) * 2020-02-25 2021-07-02 Oppo广东移动通信有限公司 射频电路、射频芯片和电子设备
CN111478709B (zh) * 2020-04-03 2021-11-16 惠州Tcl移动通信有限公司 载波聚合电路及移动终端
CN111884671A (zh) * 2020-08-04 2020-11-03 维沃移动通信有限公司 射频电路和电子设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106656243A (zh) * 2015-10-27 2017-05-10 中兴通讯股份有限公司 多频段收发信机及多频段射频信号发送和接收方法
CN207530820U (zh) * 2017-12-06 2018-06-22 维沃移动通信有限公司 一种射频前端模块及移动终端
WO2020054388A1 (ja) * 2018-09-11 2020-03-19 株式会社村田製作所 高周波フロントエンドモジュールおよび通信装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4175188A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114884532A (zh) * 2022-07-01 2022-08-09 荣耀终端有限公司 射频前端电路、芯片及终端设备
CN114884532B (zh) * 2022-07-01 2022-11-25 荣耀终端有限公司 射频前端电路、芯片及终端设备

Also Published As

Publication number Publication date
EP4175188A1 (en) 2023-05-03
EP4175188A4 (en) 2024-02-14
CN116455421A (zh) 2023-07-18
CN116455421B (zh) 2024-04-26
MX2023003444A (es) 2023-04-19
US20230299798A1 (en) 2023-09-21
CN114650066B (zh) 2023-05-05
CN116601874A (zh) 2023-08-15
CN114650066A (zh) 2022-06-21
CN116545469A (zh) 2023-08-04

Similar Documents

Publication Publication Date Title
WO2022135129A1 (zh) 无线通信系统、方法、设备以及芯片
US10512002B2 (en) Lossless split data bearer for inter-RAT dual connectivity wireless device
US20150109997A1 (en) Apparatus, system and method of interfacing between a cellular manager and a wlan access device
CN113891452B (zh) 双卡终端异常场景下的频段控制方法及终端设备
WO2021155677A1 (zh) 一种双卡双待双通方法、设备和存储介质
KR101713930B1 (ko) 휴대 단말기의 송신 장치 및 그의 운용 방법
US20240007843A1 (en) Radio frequency channel sharing method and related apparatus
WO2022127690A1 (zh) 终端设备、多链路通信方法及芯片
WO2023016215A1 (zh) 发射模组、射频系统及通信设备
WO2023197662A1 (zh) 一种双发射频电路及电子设备
CN112243218B (zh) 一种数据业务的传输方法及电子设备
CN113315558A (zh) 支持热缓解的电子装置及其控制方法
US20230171833A1 (en) Methods and devices for connection retry after failed connection attempt in wireless systems
WO2021197010A1 (zh) 建立网络连接的方法和装置
CN114765831B (zh) 上行资源预申请的方法及相关设备
CN114205699A (zh) 无线耳机、控制无线耳机的方法及存储介质
WO2020155114A1 (zh) 一种天线选择的方法、终端设备
CN117135654B (zh) 语音业务的建立方法和电子设备
CN104053220A (zh) 基于pcm的多卡多待3g功能模组
WO2024078377A1 (zh) 一种通信方法及相关设备
CN113453274B (zh) 一种上行数据的分流方法及终端
CN118801903A (zh) 无线通信电路、方法、设备及存储介质
CN117713851A (zh) 谐波抑制电路、射频前端模组、无线通信方法及电子设备
WO2019040093A1 (en) APPARATUS, SYSTEM AND METHOD FOR COMMUNICATING AN ALARM RADIO FRAME

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21909126

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202337006126

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2021909126

Country of ref document: EP

Effective date: 20230126

WWE Wipo information: entry into national phase

Ref document number: 202180079864.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE