WO2020054388A1 - 高周波フロントエンドモジュールおよび通信装置 - Google Patents

高周波フロントエンドモジュールおよび通信装置 Download PDF

Info

Publication number
WO2020054388A1
WO2020054388A1 PCT/JP2019/033383 JP2019033383W WO2020054388A1 WO 2020054388 A1 WO2020054388 A1 WO 2020054388A1 JP 2019033383 W JP2019033383 W JP 2019033383W WO 2020054388 A1 WO2020054388 A1 WO 2020054388A1
Authority
WO
WIPO (PCT)
Prior art keywords
band
communication
transmission
frequency
frequency signal
Prior art date
Application number
PCT/JP2019/033383
Other languages
English (en)
French (fr)
Inventor
礼滋 中嶋
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2020054388A1 publication Critical patent/WO2020054388A1/ja
Priority to US17/153,197 priority Critical patent/US11349510B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0053Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band
    • H04B1/006Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band using switches for selecting the desired band
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0053Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band
    • H04B1/0057Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band using diplexing or multiplexing filters for selecting the desired band
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0067Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with one or more circuit blocks in common for different bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0408Circuits with power amplifiers

Definitions

  • a high-frequency signal of a first communication channel of the communication band and a high-frequency signal of a second communication channel of the communication band having a frequency different from that of the first communication channel.
  • a non-linear element such as a power amplifier causes intermodulation distortion.
  • the frequency of the unnecessary signal of the intermodulation distortion is included in the reception band, there is a problem that the reception sensitivity of the high-frequency front-end module is deteriorated.
  • the RFIC 10 also has a function as a control unit that controls connection of a switch circuit (shown in FIGS. 2 and 4 to 7) included in the high-frequency front-end module 3 based on a communication band (frequency band) used. Have. Specifically, the RFIC 10 switches connection of a switch circuit included in the high-frequency front-end module 3 according to a control signal (not shown).
  • the control unit may be provided outside the RFIC 10, and may be provided, for example, in the high-frequency front-end module 3 or the BBIC.
  • the antenna circuit 2 is connected to the antenna common terminal 100 of the high-frequency front-end module 3, and simultaneously transmits and receives, for example, a high-frequency signal of the channel A of the communication band I and a high-frequency signal of the channel D of the communication band I at the same time. .
  • the transmission band of the communication band is a transmission band of a communication band defined by the 3GPP (Third Generation Partnership Project) standard
  • the reception band of the communication band is a reception band of the communication band defined by the 3GPP standard. Band.
  • the high-frequency front-end module 3 can simultaneously transmit and receive high-frequency signals of two different channels of the communication band.
  • Band 71 of LTE Long Term Evolution
  • reception band: 617-652 MHz is applied as the communication band I.
  • the channel A of Band 71 is applied as the channel A
  • the channel D of Band 71 is used as the channel D.
  • the unnecessary signal due to the intermodulation distortion generated in the transmission amplifier 20 is attenuated by the transmission filter 40 before flowing into the duplexer 50, so that the unnecessary signal passes through the transmission filter unit 50T. It is sufficiently attenuated at the stage where it is performed. Therefore, according to the high-frequency front-end module 3 and the communication device 1 according to the present embodiment, there is a case where high-frequency signals of two different communication channels (for example, channels A and D) of the same communication band I are simultaneously transmitted. Also, it is possible to suppress a decrease in reception sensitivity. In addition, since it is not necessary to limit the combination of two communication channels for simultaneous transmission and the transmission power in order to avoid a decrease in reception sensitivity, the degree of freedom of carrier aggregation (CA) is improved.
  • CA carrier aggregation
  • the high-frequency signal of channel A is used at 4G
  • the high-frequency signal of channel D is used at 5G
  • the high-frequency signal of channel A and the high-frequency signal of channel D are connected by dual connectivity (DC). Transmitted simultaneously.
  • NSA Non Stand Alone
  • 4G-LTE Long Term Evolution
  • DC technology for simultaneously transmitting and receiving high-frequency signals of two communication channels used in different communication standards (4G-LTE and 5G-NR (New @ Radio)) within the same communication band in order to increase the amount of communication data. Is also being born.
  • the high-frequency front-end module 3 even when simultaneous transmission is performed using the 4G and 5G DC technology, a combination of two communication channels that are simultaneously transmitted, and Further, it is possible to suppress a decrease in the receiving sensitivity without limiting the transmission power.
  • the RFIC 10 transmits the high frequency signal of the communication band II to the high frequency front end module 3A, and receives the high frequency signal of the communication band II from the high frequency front end module 3A.
  • the antenna common terminal 100 is connected to the antenna circuit 2, the output terminals of the transmission filter units 50T and 51T, and the input terminals of the reception filter units 50R and 51R.
  • the receiving amplifier 30 is a low-noise amplifier that amplifies a high-frequency signal with low noise.
  • the high-frequency signal of channel A of the communication band I and the high-frequency signal of channel D are input at the same time. Further, a high frequency signal of communication band II is input.
  • the receiving amplifier 30 amplifies the simultaneously input high frequency signals of the channels A and D of the communication band I, and outputs the amplified signals to the terminals 104R and 105R of the RFIC 10.
  • the receiving amplifier 30 amplifies the input high frequency signal of the communication band II and outputs the amplified signal to the RFIC 10.
  • the transmission filter 40 is disposed between an output terminal of the transmission amplifier 20 and an input terminal of the transmission filter unit 50T, and a band including a transmission band of a communication band (communication band I) is set as a pass band, and the communication band (communication band I ) Is a filter in which a band including the reception band is used as an attenuation band.
  • the switch 61 has a common terminal 61a, selection terminals 61b and 61c, the common terminal 61a is connected to the output terminal of the transmission amplifier 20, the selection terminal 61b is connected to the input terminal of the transmission filter 40, and the selection terminal 61c is transmitted. It is connected to the input terminal of the filter section 51T. With this configuration, the switch 61 switches the connection between the transmission amplifier 20 and the transmission filter unit 50T and the connection between the transmission amplifier 20 and the transmission filter unit 51T.
  • the switch 62 has a common terminal 62a, selection terminals 62b and 62c, the common terminal 62a is connected to the input terminal of the reception amplifier 30, the selection terminal 62b is connected to the output terminal of the reception filter unit 50R, and the selection terminal 62c is It is connected to the output terminal of the reception filter unit 51R.
  • the switch 62 switches the connection between the reception amplifier 30 and the reception filter unit 50R and the connection between the reception amplifier 30 and the reception filter unit 51R.
  • FIG. 3 is a circuit configuration diagram of a communication device 1B according to a second modification of the first embodiment.
  • the communication device 1B includes a high-frequency front-end module 3B, an antenna circuit 2, and an RFIC 10B.
  • the communication device 1B according to the present modification differs from the communication device 1A according to the first modification in the configuration of the high-frequency front-end module 3B and the RFIC 10B. More specifically, the high-frequency front-end module 3B is different from the high-frequency front-end module 3A in that the transmission amplifier and the reception amplifier are arranged for each communication band, and also in the signal path of the communication band II.
  • the receiving amplifier 31 is a low-noise amplifier that amplifies a high-frequency signal with low noise.
  • the high-frequency signal of channel A and the high-frequency signal of channel D of the communication band II are input at the same time.
  • the receiving amplifier 31 amplifies the simultaneously input high frequency signals of the channels A and D of the communication band II, and outputs the amplified signals to the terminals 106R and 107R of the RFIC 10B.
  • the switch circuit 60 is connected to the output terminal of the transmission amplifier 20 and the input terminal of the transmission filter unit 50T, and switches between bypassing the output terminal of the transmission amplifier 20 and the input terminal of the transmission filter unit 50T and not performing the bypass. It is a two-switch circuit. In other words, the switch circuit 60 is a second switch circuit that switches between bypassing and not bypassing the transmission filter 40.
  • the high-frequency front-end module 3D includes an antenna common terminal 100, a transmission amplifier 20, a reception amplifier 30, a transmission filter 40, a duplexer 50, and a switch circuit 63.
  • the RFIC 10 has a terminal 104T for transmitting a high-frequency signal used for 4G and a terminal 105T for transmitting a high-frequency signal used for 5G.
  • the RFIC 10 simultaneously transmits, for example, the high-frequency signal of the channel A of the communication band I used as 4G and the high-frequency signal of the channel D of the communication band I used as 5G to the high-frequency front-end module 3E.
  • the RFIC 10 simultaneously transmits, for example, a high-frequency signal of the channel A of the communication band II used as 4G and a high-frequency signal of the channel D of the communication band II used as 5G to the high-frequency front-end module 3E.
  • the antenna circuit 2 includes antenna elements 2a and 2b.
  • the antenna element 2a is connected to the antenna common terminal 100a of the high-frequency front-end module 3E, and radiates and transmits, for example, a high-frequency signal of communication band I.
  • the antenna element 2b is connected to the antenna common terminal 100b of the high-frequency front-end module 3E, and radiates and transmits, for example, a high-frequency signal of the communication band II.
  • the transmission amplifier 20 is a power amplifier that amplifies a high-frequency signal, and receives high-frequency signals of communication bands I and II.
  • the transmission amplifier 20 amplifies the high-frequency signals of the two channels of the communication band I that are simultaneously input by switching the switch circuit 64, and outputs the amplified signals to the input terminal of the transmission filter 40.
  • the transmission amplifier 20 amplifies the simultaneously input high frequency signals of the two channels of the communication band II by switching the switch circuit 64, and outputs the amplified signals to the input terminal of the transmission filter 41.
  • the transmission amplifier 20 amplifies the input high-frequency signal of one channel of the communication band I by switching the switch circuit 64 and outputs the amplified signal to the transmission filter unit 50T without passing through the transmission filter 40.
  • the transmission amplifier 20 amplifies the input high-frequency signal of one channel of the communication band II by switching the switch circuit 64 and outputs the amplified signal to the transmission filter unit 51T without passing through the transmission filter 41.
  • the transmission filter 41 is disposed between the output terminal of the transmission amplifier 20 and the input terminal of the transmission filter unit 51T, uses a band including the transmission band of the communication band II as a pass band, and sets a band including the reception band of the communication band II. This is a filter used as an attenuation band.
  • the switch 65 has a common terminal 65a, selection terminals 65b and 65c, the common terminal 65a is connected to the input terminal of the reception amplifier 30, the selection terminal 65b is connected to the output terminal of the reception filter unit 50R, and the selection terminal 65c is It is connected to the output terminal of the reception filter unit 51R.
  • the switch 65 switches the connection between the reception amplifier 30 and the reception filter unit 50R and the connection between the reception amplifier 30 and the reception filter unit 51R.
  • the transmission amplifier 21 is a power amplifier that amplifies a high-frequency signal, and receives high-frequency signals of two channels among a plurality of communication channels allocated to the communication band II at the same time.
  • the transmission amplifier 21 amplifies the high-frequency signals of the two channels of the communication band II that have been input at the same time, and outputs the amplified signals to the input terminal of the transmission filter 41. Further, the transmission amplifier 21 amplifies the high-frequency signal of one channel of the communication band II and outputs the amplified signal to the transmission filter unit 51T without passing through the transmission filter 41.
  • the terminal 66c becomes conductive with either of the terminals 66f and 66g, and the terminal 66c and the terminals 66f and 66g constitute an SPDT type switch.
  • the terminal 66j conducts with either of the terminals 66h and 66g, and the terminal 66j and the terminals 66h and 66g constitute an SPDT type switch.
  • the terminal 66a1 and the terminal 66b1 constitute an SPST switch
  • the terminal 66a2 and the terminal 66b2 constitute an SPST switch
  • the terminal 66d1 and the terminal 66e1 constitute an SPST switch
  • the terminal 66d2 and the terminal 66d2 constitute an SPST switch.
  • the terminal 66e2 forms an SPST type switch. That is, the switch circuit 66 has two SPDT switches and four SPST switches. Note that the terminal 66g may not be provided.
  • the receiving amplifier 30 is a low-noise amplifier that amplifies a high-frequency signal with low noise, and receives a high-frequency signal of the first communication channel and a high-frequency signal of the second communication channel at the same time.
  • a high-frequency signal of channel A (first communication channel) of communication band I and a high-frequency signal of channel D (second communication channel) of communication band I are transmitted from antenna circuit 2 to reception filter unit. Input simultaneously via 50R.
  • the receiving amplifier 30 amplifies the simultaneously input high frequency signals of channels A and D, and outputs the amplified signals to the terminals 104R and 105R of the RFIC 10.
  • FIG. 9 is a diagram showing communication channel assignment and intermodulation distortion of LTE-Band 71.
  • the Band 71 has, for example, channels A to G.
  • Band 71A transmission band: 663-688 MHz, reception band: 617-642 MHz
  • Band 71B transmission band: 672-698 MHz, reception band: 627-652 MHz
  • Band 71A and Band 71B have different frequency bands and have overlapping bands (transmission overlapping band: 673-688 MHz, receiving overlapping band: 627-642 MHz).
  • the switch circuit 67 has terminals 67a1, 67a2, 67b, 67c, 67d1, 67d2, 67e, 67f, 67g, and 67h.
  • Terminal 67c is connected to the output terminal and terminal 67b of transmission amplifier 20
  • terminal 67f is connected to the input terminal and terminal 67e of transmission filter unit 50T
  • terminal 67a1 is connected to the input terminal of transmission filter 40A
  • terminal 67d1 is the transmission terminal.
  • the terminal 67a2 is connected to the input terminal of the transmission filter 40B
  • the terminal 67d2 is connected to the output terminal of the transmission filter 40B.
  • the terminals 67a1 and 67b are made conductive, and the terminals 67d1 and 67e are made conductive. And the terminal 67c and the terminal 67f are made non-conductive, whereby the high-frequency signal output from the transmission amplifier 20 passes through the transmission filter 40A and is input to the transmission filter unit 50T.
  • the frequency of, for example, the fifth-order intermodulation distortion (IMD5) is received by passing through the transmission filter 40A. Even if it is included in the band, it is possible to suppress a decrease in reception sensitivity. Further, when high-frequency signals of two channels of the second sub-band (Band 71B) are transmitted simultaneously, by passing through the transmission filter 40B, for example, the frequency of the fifth-order intermodulation distortion (IMD5) is included in the reception band. Even when the reception is performed, a decrease in the reception sensitivity can be suppressed.
  • 3f Tx1 -2f Tx2 , 2f Tx2 -2f Tx1 , 2f Tx1 -f Tx2 , 2f Tx2 -f Tx1 , f Tx1 ⁇ f Tx2 and f Tx2 ⁇ f Tx1 include, but are not limited to, mf Tx1 ⁇ nf Tx2 and mf Tx2 ⁇ nf Tx1 including those defined by (m and n are natural numbers) It is.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transceivers (AREA)

Abstract

高周波フロントエンドモジュール(3)は、通信バンドの第1通信チャネルの高周波信号と当該通信バンドの第2通信チャネルの高周波信号とを同時に送信することが可能であり、アンテナ共通端子(100)と、第1通信チャネルの高周波信号と第2通信チャネルの高周波信号とが同時に入力される送信増幅器(20)と、アンテナ共通端子(100)に接続され当該通信バンドの送信帯域を通過帯域とする送信フィルタ部(50T)および当該通信バンドの受信帯域を通過帯域とする受信フィルタ部(50R)を有するデュプレクサ(50)と、送信増幅器(20)と送信フィルタ部(50T)との間に配置され、上記送信帯域を含む帯域を通過帯域とし上記受信帯域を含む帯域を減衰帯域とする送信フィルタ(40)とを備える。

Description

高周波フロントエンドモジュールおよび通信装置
 本発明は、高周波信号を処理する高周波フロントエンドモジュールおよび通信装置に関する。
 異なる周波数の高周波信号を同時に送受信するキャリアアグリゲーション(CA)方式に対応した高周波フロントエンドモジュールが求められている。
 特許文献1(の図2B)には、第1送信回路と第2送信回路とを有する電子システム(高周波フロントエンドモジュール)の回路構成が開示されている。具体的には、第1送信回路は、一の周波数領域(第1の周波数帯域群)の高周波信号を増幅する第1電力増幅器と、第1アンテナスイッチと、第1電力増幅器と第1アンテナスイッチとを結ぶ第1信号経路に配置された第1帯域選択スイッチと、第1帯域選択スイッチに接続された複数の第1フィルタ(デュプレクサ)とを有している。第2送信回路は、他の周波数領域(第2の周波数帯域群)の高周波信号を増幅する第2電力増幅器と、第2アンテナスイッチと、第2電力増幅器と第2アンテナスイッチとを結ぶ第2信号経路に配置された第2帯域選択スイッチと、第2帯域選択スイッチに接続された複数の第2フィルタ(デュプレクサ)と、を有している。これによれば、第1送信回路から出力された第1高周波送信信号と、第2送信回路から出力された第2高周波送信信号とを同時送信する、いわゆるアップリンクキャリアアグリゲーションを実現できる。
特開2017-17691号公報
 近年、例えば、第4世代移動通信システム(4G)から第5世代移動通信システム(5G)へ移行する準備段階として、4G-LTE(Long Term Evolution)の通信網を利用して5Gの通信を行うNSA(Non Stand Alone)という技術が生まれている。NSAのなかには、通信データ量を増やすために、同一通信バンド内において異なる通信規格(4G-LTEと5G-NR(New Radio))で使用される2つの通信チャネルの高周波信号を同時に送受信するDual Connectivity(DC)という技術も生まれつつある。
 上述したDC技術を含め、複数の通信チャネルが割り当てられた通信バンドにおいて、当該通信バンドの第1通信チャネルの高周波信号と、第1通信チャネルと周波数が異なる当該通信バンドの第2通信チャネルの高周波信号とを同時に送信しようとした場合、電力増幅器などの非線形素子により相互変調歪が発生する。この相互変調歪の不要信号の周波数が受信帯域に含まれた場合、高周波フロントエンドモジュールの受信感度が劣化してしまうという問題がある。
 そこで、本発明は、上記課題を解決するためになされたものであって、同一通信バンド内の異なる通信チャネルの高周波信号の相互変調歪による受信感度の劣化が抑制された高周波フロントエンドモジュールおよび通信装置を提供することを目的とする。
 上記目的を達成するために、本発明の一態様に係る高周波フロントエンドモジュールは、複数の通信チャネルが割り当てられた通信バンドにおいて、当該通信バンドにおける第1通信チャネルの高周波信号と、前記第1通信チャネルと周波数が異なる当該通信バンドにおける第2通信チャネルの高周波信号とを同時に送信することが可能な高周波フロントエンドモジュールであって、共通端子と、前記第1通信チャネルの高周波信号と前記第2通信チャネルの高周波信号とが同時に入力される電力増幅器と、前記共通端子に接続され、前記通信バンドの送信帯域を通過帯域とする送信フィルタ部、および、前記共通端子に接続され、前記通信バンドの受信帯域を通過帯域とする受信フィルタ部を有するマルチプレクサと、前記電力増幅器の出力端子と前記送信フィルタ部の入力端子との間に配置され、前記送信帯域を含む帯域を通過帯域とし、前記受信帯域を含む帯域を減衰帯域とする送信フィルタと、を備える。
 本発明によれば、同一通信バンド内の異なる通信チャネルの高周波信号の相互変調歪による受信感度の劣化が抑制された高周波フロントエンドモジュールおよび通信装置を提供することが可能となる。
図1は、実施の形態1に係る通信装置の回路構成図である。 図2は、実施の形態1の変形例1に係る通信装置の回路構成図である。 図3は、実施の形態1の変形例2に係る通信装置の回路構成図である。 図4は、実施の形態1の変形例3に係る通信装置の回路構成図である。 図5は、実施の形態1の変形例4に係る通信装置の回路構成図である。 図6は、実施の形態1の変形例5に係る通信装置の回路構成図である。 図7は、実施の形態1の変形例6に係る通信装置の回路構成図である。 図8は、実施の形態2に係る通信装置の回路構成図である。 図9は、LTEバンド71の通信チャネルの割り当ておよび相互変調歪を示す図である。
 以下、本発明の実施の形態について、図面を用いて詳細に説明する。なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置および接続形態などは、一例であり、本発明を限定する主旨ではない。以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、図面に示される構成要素の大きさまたは大きさの比は、必ずしも厳密ではない。
 (実施の形態1)
 [1.1 高周波フロントエンドモジュールおよび通信装置の構成]
 図1は、実施の形態1に係る通信装置1の回路構成図である。同図に示すように、通信装置1は、高周波フロントエンドモジュール3と、アンテナ回路2と、RF信号処理回路(RFIC)10と、を備える。
 RFIC10は、アンテナ回路2で送受信される高周波信号を処理するRF信号処理回路であり、高周波フロントエンドモジュール3の受信信号経路を介して入力された高周波受信信号をダウンコンバートなどにより信号処理し、当該信号処理して生成された受信信号をベースバンド信号処理回路(BBIC:図示せず)へ出力する。また、RFIC10は、BBICから入力された送信信号をアップコンバートなどにより信号処理し、当該信号処理して生成された高周波送信信号を高周波フロントエンドモジュール3の送信信号経路に出力する。
 特に、RFIC10は、複数の通信チャネルが割り当てられた通信バンドにおいて、当該通信バンドの第1通信チャネルの高周波信号と、第1通信チャネルと周波数が異なる第2通信チャネルの高周波信号とを同時に高周波フロントエンドモジュール3へ出力することが可能である。
 本実施の形態では、RFIC10は、第4世代移動通信システム(4G)に使用される高周波信号を送信する端子104Tと、第5世代移動通信システム(5G)に使用される高周波信号を送信する端子105Tと、を有している。RFIC10は、例えば、4Gとして使用される第1通信チャネルの高周波信号と、5Gとして使用される第2通信チャネルの高周波信号とを、同時に高周波フロントエンドモジュール3へ送信する。また、RFIC10は、4Gに使用される高周波信号を受信する端子104Rと、5Gに使用される高周波信号を受信する端子105Rと、を有している。RFIC10は、例えば、4Gとして使用される第1通信チャネルの高周波信号と、5Gとして使用される第2通信チャネルの高周波信号とを、同時に高周波フロントエンドモジュール3から受信する。
 なお、RFIC10は、4Gの高周波信号と5Gの高周波信号とを同時に送受信することに限定されない。RFIC10は、例えば、同じ移動通信システムの高周波信号(例えば、2つの5Gの高周波信号)を、異なる通信チャネルにて同時に送受信してもよい。また、RFIC10は、2つの異なる通信チャネルの高周波信号を同時に受信しなくてもよい。
 BBICは、高周波フロントエンドモジュール3を伝搬する高周波信号よりも低周波の中間周波数帯域を用いて信号処理する回路である。BBICで処理された信号は、例えば、画像表示のための画像信号として使用され、または、スピーカを介した通話のために音声信号として使用される。
 また、RFIC10は、使用される通信バンド(周波数帯域)に基づいて、高周波フロントエンドモジュール3が有するスイッチ回路(図2、図4~図7に図示)の接続を制御する制御部としての機能も有する。具体的には、RFIC10は、制御信号(図示せず)によって、高周波フロントエンドモジュール3が有するスイッチ回路の接続を切り替える。なお、制御部は、RFIC10の外部に設けられていてもよく、例えば、高周波フロントエンドモジュール3またはBBICに設けられていてもよい。
 アンテナ回路2は、高周波フロントエンドモジュール3のアンテナ共通端子100に接続され、例えば、通信バンドIのチャネルAの高周波信号および通信バンドIのチャネルDの高周波信号を同時に送信し、また、同時に受信する。
 なお、本実施の形態に係る通信装置1において、アンテナ回路2およびBBICは、必須の構成要素ではない。
 次に、高周波フロントエンドモジュール3の構成について説明する。
 図1に示すように、高周波フロントエンドモジュール3は、アンテナ共通端子100と、送信増幅器20と、受信増幅器30と、送信フィルタ40と、デュプレクサ50と、を備える。
 デュプレクサ50は、送信フィルタ部50Tと、受信フィルタ部50Rとを備えるマルチプレクサである。送信フィルタ部50Tは、通信バンド(通信バンドI)の送信帯域を通過帯域とし、受信フィルタ部50Rは、通信バンド(通信バンドI)の受信帯域を通過帯域としている。
 アンテナ共通端子100は、アンテナ回路2、デュプレクサ50の共通端子に接続されている。デュプレクサ50の共通端子には、送信フィルタ部50Tの出力端子と受信フィルタ部50Rの入力端子とが接続されている。
 送信増幅器20は、高周波信号を増幅する電力増幅器であり、同一の通信バンドに割り当てられた複数の通信チャネルのうちの、第1通信チャネルの高周波信号と第2通信チャネルの高周波信号とが同時に入力される。本実施の形態では、例えば、通信バンドIのチャネルA(第1通信チャネル)の高周波信号と、通信バンドIのチャネルD(第2通信チャネル)の高周波信号とが、RFIC10から同時に入力される。送信増幅器20は、同時に入力されたチャネルAおよびDの高周波信号を、それぞれ増幅して送信フィルタ40に向けて出力する。
 受信増幅器30は、高周波信号を低雑音で増幅する低雑音増幅器であり、第1通信チャネルの高周波信号と第2通信チャネルの高周波信号とが同時に入力される。本実施の形態では、例えば、通信バンドIのチャネルA(第1通信チャネル)の高周波信号と、通信バンドIのチャネルD(第2通信チャネル)の高周波信号とが、アンテナ回路2から受信フィルタ部50Rを経由して同時に入力される。受信増幅器30は、同時に入力されたチャネルAおよびDの高周波信号を、それぞれ増幅してRFIC10の端子104Rおよび105Rに出力する。
 送信フィルタ40は、送信増幅器20と送信フィルタ部50Tとの間に配置され、通信バンド(通信バンドI)の送信帯域を含む帯域を通過帯域とし、通信バンド(通信バンドI)の受信帯域を含む帯域を減衰帯域とするフィルタである。
 なお、上記通信バンドの送信帯域とは、3GPP(Third Generation Partnership Project)規格で定められた通信バンドの送信帯域であり、上記通信バンドの受信帯域とは、3GPP規格で定められた通信バンドの受信帯域である。
 上記構成により、高周波フロントエンドモジュール3は、複数の通信チャネルが割り当てられた通信バンド(通信バンドI)において、当該通信バンドの2つの異なるチャネルの高周波信号を同時に送受信することが可能である。
 本実施の形態に係る高周波フロントエンドモジュール3および通信装置1において、例えば、通信バンドIとしてLTE(Long Term Evolution)のBand71(送信帯域:663-698MHz、受信帯域:617-652MHz)を適用する。また、チャネルAとしてBand71のチャネルA(送信チャネル:663-668MHz、受信チャネル:617-622MHz)を適用し、チャネルDとしてBand71のチャネルD(送信チャネル:678-683MHz、受信チャネル:632-637MHz)を適用する。この場合、Band71のチャネルAの高周波送信信号TA(中心周波数665.5MHz)と、Band71のチャネルDの高周波送信信号TB(中心周波数680.5MHz)とが、送信増幅器20に同時に入力されると、当該2つの高周波送信信号の相互変調歪が発生する。ここで、5次相互変調歪(3×fTXA-2×fTXB)の周波数は635.5MHzであり、Band71の受信帯域(617-652MHz)に含まれる。
 上記のように、同一の通信バンドIの異なる2つの通信チャネル(例えばチャネルAおよびD)の高周波信号を同時送信した場合、送信増幅器20で発生する相互変調歪の周波数が通信バンドIの受信帯域に含まれる場合がある。このとき、当該相互変調歪による不要信号が送信フィルタ部50Tで十分に減衰されずに、受信フィルタ部50Rを通過して受信増幅器30で増幅されてRFIC10で受信されることで、受信感度を低下させることが想定される。
 これに対して、上記構成によれば、送信増幅器20で発生した当該相互変調歪による不要信号がは、デュプレクサ50に流入する前に、送信フィルタ40で減衰されるので、送信フィルタ部50Tを通過した段階で十分に減衰される。よって、本実施の形態に係る高周波フロントエンドモジュール3および通信装置1によれば、同一の通信バンドIの異なる2つの通信チャネル(例えばチャネルAおよびD)の高周波信号を同時送信する場合であっても、受信感度の低下を抑制できる。また、受信感度の低下を回避すべく、同時送信する2つの通信チャネルの組み合わせおよび送信電力を制限する必要がないので、キャリアアグリゲーション(CA)の自由度が向上する。
 なお、同時に送信される通信バンドIの2つの異なるチャネルの高周波信号は、それぞれ異なる通信規格で使用されてもよい。
 これによれば、異なる通信規格で使用される2つのチャネルの高周波信号の同時送信において、同時送信する2つのチャネルの組み合わせ、および、送信電力を制限せずに、受信感度の低下を抑制できる。
 また、本実施の形態では、チャネルAの高周波信号は4Gで使用され、チャネルDの高周波信号は5Gで使用され、チャネルAの高周波信号とチャネルDの高周波信号とは、デュアルコネクティビティ(DC)により同時送信される。
 近年、例えば、4Gから5Gへ移行する準備段階として、4G-LTE(Long Term Evolution)の通信網を利用して5Gの通信を行うNSA(Non Stand Alone)という技術が生まれている。NSAのなかには、通信データ量を増やすために、同一通信バンド内において異なる通信規格(4G-LTEと5G-NR(New Radio))で使用される2つの通信チャネルの高周波信号を同時に送受信するDC技術も生まれつつある。
 本実施の形態に係る高周波フロントエンドモジュール3および通信装置1を、4Gと5GとのDCに適用した場合、例えば、通信バンドIとして4G-LTEのBand71および5G-NRのn71を適用する。また、チャネルAとして4G-LTEのBand71の第1チャネルを適用し、チャネルDとして5G-NRのn71の第2チャネルを適用する。
 これに対して、4Gおよび5Gの高周波信号を同時送信する場合であっても、受信感度の低下を抑制できる。また、受信感度の低下を回避すべく、同時送信する2つの通信チャネルの組み合わせおよび送信電力を制限する必要がないので、デュアルコネクティビティ(DC)の自由度が向上する。
 上述したDC技術を含め、複数の通信チャネルが割り当てられた通信バンドIにおいて、例えば、通信バンドIのチャネルAの高周波信号と、チャネルAと周波数が異なる通信バンドIのチャネルDの高周波信号とを同時に送信しようとした場合、送信増幅器20などの非線形素子により相互変調歪が発生する。この相互変調歪は不要信号となり、当該不要信号の周波数が受信帯域に含まれた場合、高周波フロントエンドモジュールの受信感度が劣化してしまうという問題がある。
 これに対して、本実施の形態に係る高周波フロントエンドモジュール3によれば、4Gと5GとのDC技術により同時送信される場合であっても、同時送信される2つの通信チャネルの組み合わせ、および、送信電力を制限せずに、受信感度の低下を抑制できる。
 [1.2 変形例1に係る高周波フロントエンドモジュールおよび通信装置の構成]
 図2は、実施の形態1の変形例1に係る通信装置1Aの回路構成図である。同図に示すように、通信装置1Aは、高周波フロントエンドモジュール3Aと、アンテナ回路2と、RFIC10と、を備える。本変形例に係る通信装置1Aは、実施の形態1に係る通信装置1と比較して、高周波フロントエンドモジュール3Aの構成が異なる。より具体的には、高周波フロントエンドモジュール3Aは、高周波フロントエンドモジュール3と比較して、通信バンドI用のデュプレクサ50に代わって通信バンドIおよびII用のクワッドプレクサ52が配置されている点、および、スイッチ61および62が配置されている点が異なる。以下、本変形例に係る通信装置1Aについて、実施の形態1に係る通信装置1と同じ構成については説明を省略し、異なる構成を中心に説明する。
 RFIC10は、4Gに使用される高周波信号を送信する端子104Tと、5Gに使用される高周波信号を送信する端子105Tと、を有している。RFIC10は、例えば、4Gとして使用される通信バンドIのチャネルAの高周波信号と、5Gとして使用される通信バンドIのチャネルDの高周波信号とを、同時に高周波フロントエンドモジュール3Aへ送信する。また、RFIC10は、4Gに使用される高周波信号を受信する端子104Rと、5Gに使用される高周波信号を受信する端子105Rと、を有している。RFIC10は、例えば、4Gとして使用される通信バンドIのチャネルAの高周波信号と、5Gとして使用される通信バンドIのチャネルDの高周波信号とを、同時に高周波フロントエンドモジュール3Aから受信する。
 さらに、RFIC10は、通信バンドIIの高周波信号を高周波フロントエンドモジュール3Aへ送信し、通信バンドIIの高周波信号を高周波フロントエンドモジュール3Aから受信する。
 また、RFIC10は、使用される通信バンドに基づいて、高周波フロントエンドモジュール3Aが有するスイッチ61および62の接続を制御する制御部としての機能も有する。
 アンテナ回路2は、高周波フロントエンドモジュール3Aのアンテナ共通端子100に接続され、例えば、通信バンドIのチャネルAの高周波信号および通信バンドIのチャネルDの高周波信号を同時に放射送信し、また、同時に受信する。さらに、アンテナ回路2は、通信バンドIIの高周波信号を放射送信し、また、受信する。
 次に、高周波フロントエンドモジュール3Aの構成について説明する。
 図2に示すように、高周波フロントエンドモジュール3Aは、アンテナ共通端子100と、送信増幅器20と、受信増幅器30と、送信フィルタ40と、クワッドプレクサ52と、スイッチ61および62と、を備える。
 クワッドプレクサ52は、送信フィルタ部50Tおよび51Tと、受信フィルタ部50Rおよび51Rとを備えるマルチプレクサである。送信フィルタ部50Tは通信バンドIの送信帯域を通過帯域とし、受信フィルタ部50Rは通信バンドIの受信帯域を通過帯域としている。また、送信フィルタ部51Tは通信バンドIIの送信帯域を通過帯域とし、受信フィルタ部51Rは通信バンドIIの受信帯域を通過帯域としている。
 アンテナ共通端子100は、アンテナ回路2、送信フィルタ部50Tおよび51Tの出力端子、および受信フィルタ部50Rおよび51Rの入力端子に接続されている。
 送信増幅器20は、高周波信号を増幅する電力増幅器であり、通信バンドIに割り当てられた複数の通信チャネルのうちの、例えばチャネルAの高周波信号とチャネルDの高周波信号とが同時に入力される。また、通信バンドIIの高周波信号が入力される。送信増幅器20は、同時に入力された通信バンドIのチャネルAおよびDの高周波信号を、それぞれ増幅して送信フィルタ40の入力端子に向けて出力する。また、送信増幅器20は、入力された通信バンドIIの高周波信号を増幅して送信フィルタ40の入力端子に向けて出力する。
 受信増幅器30は、高周波信号を低雑音で増幅する低雑音増幅器であり、例えば通信バンドIのチャネルAの高周波信号とチャネルDの高周波信号とが同時に入力される。また、通信バンドIIの高周波信号が入力される。受信増幅器30は、同時に入力された通信バンドIのチャネルAおよびDの高周波信号を、それぞれ増幅してRFIC10の端子104Rおよび105Rに出力する。また、受信増幅器30は、入力された通信バンドIIの高周波信号を増幅してRFIC10に出力する。
 送信フィルタ40は、送信増幅器20の出力端子と送信フィルタ部50Tの入力端子との間に配置され、通信バンド(通信バンドI)の送信帯域を含む帯域を通過帯域とし、通信バンド(通信バンドI)の受信帯域を含む帯域を減衰帯域とするフィルタである。
 スイッチ61は、共通端子61a、選択端子61bおよび61cを有し、共通端子61aが送信増幅器20の出力端子に接続され、選択端子61bが送信フィルタ40の入力端子に接続され、選択端子61cが送信フィルタ部51Tの入力端子に接続されている。この構成により、スイッチ61は、送信増幅器20と送信フィルタ部50Tとの接続、および、送信増幅器20と送信フィルタ部51Tとの接続を切り替える。
 スイッチ62は、共通端子62a、選択端子62bおよび62cを有し、共通端子62aが受信増幅器30の入力端子に接続され、選択端子62bが受信フィルタ部50Rの出力端子に接続され、選択端子62cが受信フィルタ部51Rの出力端子に接続されている。この構成により、スイッチ62は、受信増幅器30と受信フィルタ部50Rとの接続、および、受信増幅器30と受信フィルタ部51Rとの接続を切り替える。
 上記構成により、高周波フロントエンドモジュール3Aは、複数の通信チャネルが割り当てられた通信バンドIにおいて、例えばチャネルAの高周波信号とチャネルDの高周波信号とを同時に送信することが可能である。また、スイッチ61および62の切り替えにより、通信バンドIIの高周波信号を送受信することが可能である。
 本変形例に係る高周波フロントエンドモジュール3Aおよび通信装置1Aによれば、通信バンドIの異なる2つの通信チャネル(例えばチャネルAおよびD)の高周波信号を同時送信する場合であっても、受信感度の低下を抑制できる。また、通信バンドIと通信バンドIIとを切り替えて送受信できるので、マルチバンド対応の高周波フロントエンドモジュール3Aおよび通信装置1Aを提供できる。
 [1.3 変形例2に係る高周波フロントエンドモジュールおよび通信装置の構成]
 図3は、実施の形態1の変形例2に係る通信装置1Bの回路構成図である。同図に示すように、通信装置1Bは、高周波フロントエンドモジュール3Bと、アンテナ回路2と、RFIC10Bと、を備える。本変形例に係る通信装置1Bは、変形例1に係る通信装置1Aと比較して、高周波フロントエンドモジュール3BおよびRFIC10Bの構成が異なる。より具体的には、高周波フロントエンドモジュール3Bは、高周波フロントエンドモジュール3Aと比較して、送信増幅器および受信増幅器が、通信バンドごとに配置されている点、および、通信バンドIIの信号経路にも送信フィルタ41が配置されている点が異なる。また、RFIC10Bは、RFIC10と比較して、通信バンドIIに対しても4G用の端子および5G用の端子が配置されている点が異なる。以下、本変形例に係る通信装置1Bについて、変形例1に係る通信装置1Aと同じ構成については説明を省略し、異なる構成を中心に説明する。
 RFIC10Bは、通信バンドIの4Gに使用される高周波信号を送信する端子104Tと、通信バンドIの5Gに使用される高周波信号を送信する端子105Tと、通信バンドIIの4Gに使用される高周波信号を送信する端子106Tと、通信バンドIIの5Gに使用される高周波信号を送信する端子107Tとを有している。RFIC10Bは、例えば、4Gとして使用される通信バンドIのチャネルAの高周波信号と、5Gとして使用される通信バンドIのチャネルDの高周波信号とを、同時に高周波フロントエンドモジュール3Bへ送信し、例えば、4Gとして使用される通信バンドIIのチャネルAの高周波信号と、5Gとして使用される通信バンドIIのチャネルDの高周波信号とを、同時に高周波フロントエンドモジュール3Bへ送信する。
 また、RFIC10Bは、通信バンドIの4Gに使用される高周波信号を受信する端子104Rと、通信バンドIの5Gに使用される高周波信号を受信する端子105Rと、通信バンドIIの4Gに使用される高周波信号を受信する端子106Rと、通信バンドIIの5Gに使用される高周波信号を受信する端子107Rと、を有している。RFIC10Bは、例えば、4Gとして使用される通信バンドIのチャネルAの高周波信号と、5Gとして使用される通信バンドIのチャネルDの高周波信号とを、同時に高周波フロントエンドモジュール3Bから受信し、例えば、4Gとして使用される通信バンドIIのチャネルAの高周波信号と、5Gとして使用される通信バンドIIのチャネルDの高周波信号とを、同時に高周波フロントエンドモジュール3Bから受信する。
 アンテナ回路2は、高周波フロントエンドモジュール3Bのアンテナ共通端子100に接続され、例えば、通信バンドIのチャネルAの高周波信号および通信バンドIのチャネルDの高周波信号を同時に放射送信し、また、同時に受信する。さらに、アンテナ回路2は、例えば、通信バンドIIのチャネルAの高周波信号および通信バンドIIのチャネルDの高周波信号を同時に放射送信し、また、同時に受信する。
 次に、高周波フロントエンドモジュール3Bの構成について説明する。
 図3に示すように、高周波フロントエンドモジュール3Bは、アンテナ共通端子100と、送信増幅器20および21と、受信増幅器30および31と、送信フィルタ40および41と、クワッドプレクサ52と、を備える。
 送信増幅器20は、高周波信号を増幅する電力増幅器であり、通信バンドIに割り当てられた複数の通信チャネルのうちの、例えばチャネルAの高周波信号とチャネルDの高周波信号とが同時に入力される。送信増幅器20は、同時に入力された通信バンドIのチャネルAおよびDの高周波信号を、それぞれ増幅して送信フィルタ40の入力端子に向けて出力する。
 送信増幅器21は、高周波信号を増幅する電力増幅器であり、通信バンドIIに割り当てられた複数の通信チャネルのうちの、例えばチャネルAの高周波信号とチャネルDの高周波信号とが同時に入力される。送信増幅器21は、同時に入力された通信バンドIIのチャネルAおよびDの高周波信号を、それぞれ増幅して送信フィルタ41の入力端子に向けて出力する。
 受信増幅器30は、高周波信号を低雑音で増幅する低雑音増幅器であり、通信バンドIのチャネルAの高周波信号とチャネルDの高周波信号とが同時に入力される。受信増幅器30は、同時に入力された通信バンドIのチャネルAおよびDの高周波信号を、それぞれ増幅してRFIC10Bの端子104Rおよび105Rに出力する。
 受信増幅器31は、高周波信号を低雑音で増幅する低雑音増幅器であり、例えば通信バンドIIのチャネルAの高周波信号とチャネルDの高周波信号とが同時に入力される。受信増幅器31は、同時に入力された通信バンドIIのチャネルAおよびDの高周波信号を、それぞれ増幅してRFIC10Bの端子106Rおよび107Rに出力する。
 送信フィルタ40は、送信増幅器20の出力端子と送信フィルタ部50Tの入力端子との間に配置され、通信バンドIの送信帯域を含む帯域を通過帯域とし、通信バンドIの受信帯域を含む帯域を減衰帯域とするフィルタである。
 送信フィルタ41は、送信増幅器21の出力端子と送信フィルタ部51Tの入力端子との間に配置され、通信バンドIIの送信帯域を含む帯域を通過帯域とし、通信バンドIIの受信帯域を含む帯域を減衰帯域とするフィルタである。
 上記構成により、高周波フロントエンドモジュール3Bは、複数の通信チャネルが割り当てられた通信バンドIにおいて、例えば、チャネルAの高周波信号とチャネルDの高周波信号とを同時に送信することが可能である。また、複数の通信チャネルが割り当てられた通信バンドIIにおいて、例えば、チャネルAの高周波信号とチャネルDの高周波信号とを同時に送信することが可能である。
 本変形例に係る高周波フロントエンドモジュール3Bおよび通信装置1Bによれば、通信バンドIの異なる2つの通信チャネルの高周波信号を同時送信する場合であっても、受信感度の低下を抑制でき、通信バンドIIの異なる2つの通信チャネルの高周波信号を同時送信する場合であっても、受信感度の低下を抑制できる。つまり、マルチバンド対応の通信バンドIおよび通信バンドIIの双方において、異なる2つの通信チャネルの高周波信号を同時送信でき、この場合に受信感度の低下を抑制できる。
 [1.4 変形例3に係る高周波フロントエンドモジュールおよび通信装置の構成]
 図4は、実施の形態1の変形例3に係る通信装置1Cの回路構成図である。同図に示すように、通信装置1Cは、高周波フロントエンドモジュール3Cと、アンテナ回路2と、RFIC10と、を備える。本変形例に係る通信装置1Cは、実施の形態1に係る通信装置1と比較して、高周波フロントエンドモジュール3Cの構成が異なる。より具体的には、高周波フロントエンドモジュール3Cは、高周波フロントエンドモジュール3と比較して、送信フィルタ40をバイパスするスイッチ回路60が配置されている点が異なる。以下、本変形例に係る通信装置1Cについて、実施の形態1に係る通信装置1と同じ構成については説明を省略し、異なる構成を中心に説明する。
 RFIC10は、4Gに使用される高周波信号を送信する端子104Tと、5Gに使用される高周波信号を送信する端子105Tと、を有している。RFIC10は、例えば、4Gとして使用される通信バンドIのチャネルAの高周波信号と、5Gとして使用される通信バンドIのチャネルDの高周波信号とを、同時に高周波フロントエンドモジュール3Aへ送信する。また、RFIC10は、4Gに使用される高周波信号を受信する端子104Rと、5Gに使用される高周波信号を受信する端子105Rと、を有している。RFIC10は、例えば、4Gとして使用される通信バンドIのチャネルAの高周波信号と、5Gとして使用される通信バンドIのチャネルDの高周波信号とを、同時に高周波フロントエンドモジュール3Aから受信する。
 さらに、RFIC10は、通信バンドIの所定のチャネルの高周波信号を単独で高周波フロントエンドモジュール3Cへ送信し、当該所定のチャネルの高周波信号を単独で高周波フロントエンドモジュール3Cから受信する。
 また、RFIC10は、2つのチャネルの高周波信号の同時送受信、および、1つのチャネルの高周波信号の単独送受信のいずれのモードを実行するかに応じて、スイッチ回路60の接続を制御する制御部としての機能も有する。
 アンテナ回路2は、高周波フロントエンドモジュール3Cのアンテナ共通端子100に接続され、例えば、通信バンドIのチャネルAの高周波信号および通信バンドIのチャネルDの高周波信号を同時に放射送信し、また、同時に受信する。さらに、アンテナ回路2は、通信バンドIの所定のチャネルの高周波信号を単独で放射送信し、また、受信する。
 次に、高周波フロントエンドモジュール3Cの構成について説明する。
 図4に示すように、高周波フロントエンドモジュール3Cは、アンテナ共通端子100と、送信増幅器20と、受信増幅器30と、送信フィルタ40と、デュプレクサ50と、スイッチ回路60と、を備える。
 スイッチ回路60は、送信増幅器20の出力端子および送信フィルタ部50Tの入力端子に接続され、送信増幅器20の出力端子と送信フィルタ部50Tの入力端子とをバイパスする、および、バイパスしない、を切り替える第2スイッチ回路である。言い換えると、スイッチ回路60は、送信フィルタ40をバイパスする、および、バイパスしない、を切り替える第2スイッチ回路である。
 これによれば、例えば、通信バンドIのチャネルAの高周波信号とチャネルDの高周波信号とが同時送信される場合には、スイッチ回路60を非導通として、実施の形態1に係る高周波フロントエンドモジュール3と同様に受信感度の低下を抑制できる。また、2つのチャネルの高周波信号を同時送信せず、いずれかのチャネルの高周波信号を単独で送信する場合には、スイッチ回路60を導通させて、送信フィルタ40を通過することに起因した高周波信号の伝搬損失を抑制できる。
 [1.5 変形例4に係る高周波フロントエンドモジュールおよび通信装置の構成]
 図5は、実施の形態1の変形例4に係る通信装置1Dの回路構成図である。同図に示すように、通信装置1Dは、高周波フロントエンドモジュール3Dと、アンテナ回路2と、RFIC10と、を備える。本変形例に係る通信装置1Dは、変形例3に係る通信装置1Cと比較して、高周波フロントエンドモジュール3Dの構成が異なる。より具体的には、高周波フロントエンドモジュール3Dは、高周波フロントエンドモジュール3Cと比較して、スイッチ回路60に代わってスイッチ回路63が配置されている点が異なる。以下、本変形例に係る通信装置1Dについて、変形例3に係る通信装置1Cと同じ構成については説明を省略し、異なる構成を中心に説明する。
 RFIC10は、2つのチャネルの高周波信号の同時送受信、および、1つのチャネルの高周波信号の単独送受信のいずれのモードを実行するかに応じて、スイッチ回路63の接続を制御する制御部としての機能も有する。
 図5に示すように、高周波フロントエンドモジュール3Dは、アンテナ共通端子100と、送信増幅器20と、受信増幅器30と、送信フィルタ40と、デュプレクサ50と、スイッチ回路63と、を備える。
 スイッチ回路63は、送信増幅器20の出力端子および送信フィルタ部50Tの入力端子に接続され、送信増幅器20の出力端子と送信フィルタ部50Tの入力端子とをバイパスする、および、バイパスしない、を切り替える第2スイッチ回路である。言い換えると、スイッチ回路63は、送信フィルタ40をバイパスする、および、バイパスしない、を切り替える第2スイッチ回路である。
 より具体的には、スイッチ回路63は、端子63a、63b、63c、63d、63e、63f、63gおよび63hを有している。端子63cは送信増幅器20の出力端子および端子63bに接続され、端子63fは送信フィルタ部50Tの入力端子および端子63eに接続され、端子63aは送信フィルタ40の入力端子に接続され、端子63dは送信フィルタ40の出力端子に接続されている。端子63cと端子63fとはSPST(Single Pole Single Throw)型のスイッチを構成し、端子63aと端子63bとはSPST型のスイッチを構成し、端子63dと端子63eとはSPST型のスイッチを構成している。つまり、スイッチ回路63は、3つのSPST型スイッチを有している。なお、端子63gおよび63hはなくてもよい。
 上記構成において、例えば通信バンドIのチャネルAの高周波信号とチャネルDの高周波信号とが同時送信される場合には、端子63aと端子63bとを導通させ、端子63dと端子63eとを導通させ、端子63cと端子63fとを非導通とすることにより、送信増幅器20から出力された高周波信号は、送信フィルタ40を通過して送信フィルタ部50Tに入力される。また、いずれか1つのチャネルの高周波信号を単独で送信する場合には、端子63aと端子63bとを非導通とし、端子63dと端子63eとを非導通とし、端子63cと端子63fとを導通させることにより、送信増幅器20から出力された高周波信号は、送信フィルタ40をバイパスして送信フィルタ部50Tに入力される。
 これによれば、例えば通信バンドIのチャネルAの高周波信号とチャネルDの高周波信号とが同時送信される場合には、送信フィルタ40を経由させることで、受信感度の低下を抑制できる。また、2つのチャネルの高周波信号を同時送信せず、いずれかのチャネルの高周波信号を単独で送信する場合には、送信フィルタ40の入力端子は送信増幅器20と切り離され、送信フィルタ40の出力端子は送信フィルタ部50Tと切り離される。このため、送信増幅器20および送信フィルタ部50Tから見て、送信フィルタ40は開放状態となるので、送信増幅器20から出力された高周波信号が送信フィルタ40に漏洩することを抑制できる。よって、いずれか1つのチャネルの高周波信号を単独で送信する場合における高周波信号の伝搬損失を極力抑制できる。
 [1.6 変形例5に係る高周波フロントエンドモジュールおよび通信装置の構成]
 図6は、実施の形態1の変形例5に係る通信装置1Eの回路構成図である。同図に示すように、通信装置1Eは、高周波フロントエンドモジュール3Eと、アンテナ回路2と、RFIC10と、を備える。本変形例に係る通信装置1Eは、変形例4に係る通信装置1Dと比較して、高周波フロントエンドモジュール3Eおよびアンテナ回路2の構成が異なる。より具体的には、高周波フロントエンドモジュール3Eは、高周波フロントエンドモジュール3Dと比較して、スイッチ回路63に代わってスイッチ回路64が配置されている点、送信フィルタ40に加えて送信フィルタ41が付加されている点、および、デュプレクサ51が付加されている点が異なる。また、本変形例に係るアンテナ回路2は、変形例4に係るアンテナ回路2と比較して、アンテナ素子が2個配置されている点が異なる。以下、本変形例に係る通信装置1Eについて、変形例4に係る通信装置1Dと同じ構成については説明を省略し、異なる構成を中心に説明する。
 RFIC10は、4Gに使用される高周波信号を送信する端子104Tと、5Gに使用される高周波信号を送信する端子105Tと、を有している。RFIC10は、例えば、4Gとして使用される通信バンドIのチャネルAの高周波信号と、5Gとして使用される通信バンドIのチャネルDの高周波信号とを、同時に高周波フロントエンドモジュール3Eへ送信する。また、RFIC10は、例えば、4Gとして使用される通信バンドIIのチャネルAの高周波信号と、5Gとして使用される通信バンドIIのチャネルDの高周波信号とを、同時に高周波フロントエンドモジュール3Eへ送信する。また、RFIC10は、4Gに使用される高周波信号を受信する端子104Rと、5Gに使用される高周波信号を受信する端子105Rと、を有している。RFIC10は、例えば、4Gとして使用される通信バンドIのチャネルAの高周波信号と、5Gとして使用される通信バンドIのチャネルDの高周波信号とを、同時に高周波フロントエンドモジュール3Eから受信する。また、RFIC10は、例えば、4Gとして使用される通信バンドIIのチャネルAの高周波信号と、5Gとして使用される通信バンドIIのチャネルDの高周波信号とを、同時に高周波フロントエンドモジュール3Eから受信する。
 さらに、RFIC10は、通信バンドIの所定のチャネルの高周波信号を単独で高周波フロントエンドモジュール3Eへ送信し、当該所定のチャネルの高周波信号を単独で高周波フロントエンドモジュール3Eから受信する。また、RFIC10は、通信バンドIIの所定のチャネルの高周波信号を単独で高周波フロントエンドモジュール3Eへ送信し、当該所定のチャネルの高周波信号を単独で高周波フロントエンドモジュール3Eから受信する。
 また、RFIC10は、2つのチャネルの高周波信号の同時送受信、および、1つのチャネルの高周波信号の単独送受信のいずれのモードを実行するかに応じて、スイッチ回路64の接続を制御する制御部としての機能も有する。
 アンテナ回路2は、アンテナ素子2aおよび2bを備える。アンテナ素子2aは、高周波フロントエンドモジュール3Eのアンテナ共通端子100aに接続され、例えば、通信バンドIの高周波信号を放射送信し、また、受信する。アンテナ素子2bは、高周波フロントエンドモジュール3Eのアンテナ共通端子100bに接続され、例えば、通信バンドIIの高周波信号を放射送信し、また、受信する。
 図6に示すように、高周波フロントエンドモジュール3Eは、アンテナ共通端子100aおよび100bと、送信増幅器20と、受信増幅器30と、送信フィルタ40および41と、デュプレクサ50および51と、スイッチ回路64と、スイッチ65と、を備える。
 デュプレクサ50は、送信フィルタ部50Tと、受信フィルタ部50Rとを備えるマルチプレクサである。送信フィルタ部50Tは、通信バンドIの送信帯域を通過帯域とし、受信フィルタ部50Rは、通信バンドIの受信帯域を通過帯域としている。
 デュプレクサ51は、送信フィルタ部51Tと、受信フィルタ部51Rとを備えるマルチプレクサである。送信フィルタ部51Tは、通信バンドIIの送信帯域を通過帯域とし、受信フィルタ部51Rは、通信バンドIIの受信帯域を通過帯域としている。
 アンテナ共通端子100aは、アンテナ素子2a、送信フィルタ部50Tの出力端子、および受信フィルタ部50Rの入力端子に接続されている。アンテナ共通端子100bは、アンテナ素子2b、送信フィルタ部51Tの出力端子、および受信フィルタ部51Rの入力端子に接続されている。
 送信増幅器20は、高周波信号を増幅する電力増幅器であり、通信バンドIおよびIIの高周波信号が入力される。送信増幅器20は、スイッチ回路64の切り替えにより、同時に入力された通信バンドIの2つのチャネルの高周波信号を、それぞれ増幅して送信フィルタ40の入力端子に向けて出力する。また、送信増幅器20は、スイッチ回路64の切り替えにより、同時に入力された通信バンドIIの2つのチャネルの高周波信号を、それぞれ増幅して送信フィルタ41の入力端子に向けて出力する。また、送信増幅器20は、スイッチ回路64の切り替えにより、入力された通信バンドIの1つのチャネルの高周波信号を増幅して送信フィルタ40を介さずに送信フィルタ部50Tに向けて出力する。また、送信増幅器20は、スイッチ回路64の切り替えにより、入力された通信バンドIIの1つのチャネルの高周波信号を増幅して送信フィルタ41を介さずに送信フィルタ部51Tに向けて出力する。
 受信増幅器30は、高周波信号を低雑音で増幅する低雑音増幅器であり、通信バンドIの2つのチャネルの高周波信号が同時に入力され、また、通信バンドIIの2つのチャネルの高周波信号が同時に入力される。また、通信バンドIの1つのチャネルの高周波信号が入力され、また、通信バンドIIの1つのチャネルの高周波信号が入力される。受信増幅器30は、同時に入力された通信バンドIの2つのチャネルの高周波信号を、それぞれ増幅してRFIC10の端子104Rおよび105Rに出力する。また、受信増幅器30は、同時に入力された通信バンドIIの2つのチャネルの高周波信号を、それぞれ増幅してRFIC10の端子104Rおよび105Rに出力する。
 送信フィルタ40は、送信増幅器20の出力端子と送信フィルタ部50Tの入力端子との間に配置され、通信バンドIの送信帯域を含む帯域を通過帯域とし、通信バンドIの受信帯域を含む帯域を減衰帯域とするフィルタである。
 送信フィルタ41は、送信増幅器20の出力端子と送信フィルタ部51Tの入力端子との間に配置され、通信バンドIIの送信帯域を含む帯域を通過帯域とし、通信バンドIIの受信帯域を含む帯域を減衰帯域とするフィルタである。
 スイッチ65は、共通端子65a、選択端子65bおよび65cを有し、共通端子65aが受信増幅器30の入力端子に接続され、選択端子65bが受信フィルタ部50Rの出力端子に接続され、選択端子65cが受信フィルタ部51Rの出力端子に接続されている。この構成により、スイッチ65は、受信増幅器30と受信フィルタ部50Rとの接続、および、受信増幅器30と受信フィルタ部51Rとの接続を切り替える。
 スイッチ回路64は、送信増幅器20の出力端子、送信フィルタ部50Tおよび51Tの入力端子に接続され、送信増幅器20の出力端子と送信フィルタ部50Tの入力端子とをバイパスする、および、バイパスしない、を切り替え、送信増幅器20の出力端子と送信フィルタ部51Tの入力端子とをバイパスする、および、バイパスしない、を切り替える第2スイッチ回路である。言い換えると、スイッチ回路64は、送信フィルタ40をバイパスする、および、バイパスしない、を切り替え、送信フィルタ41をバイパスする、および、バイパスしない、を切り替える第2スイッチ回路である。
 より具体的には、スイッチ回路64は、端子64a1、64a2、64b、64c、64d1、64d2、64e1、64e2、64f、64gおよび64hを有している。端子64cは送信増幅器20の出力端子および端子64bに接続され、端子64fは送信フィルタ部50Tの入力端子および端子64e1に接続され、端子64a1は送信フィルタ40の入力端子に接続され、端子64d1は送信フィルタ40の出力端子に接続され、端子64a2は送信フィルタ41の入力端子に接続され、端子64d2は送信フィルタ41の出力端子に接続され、端子64hは送信フィルタ部51Tの入力端子および端子64e2に接続されている。端子64cは端子64f、64gおよび64hのいずれかと導通状態となり、端子64cと端子64f、64gおよび64hとは、SP3T(Single Pole 3 Throw)型のスイッチを構成している。また、端子64a1および64a2と端子64bとはSPDT(Single Pole Double Throw)型のスイッチを構成し、端子64d1と端子64e1とはSPST型のスイッチを構成し、端子64d2と端子64e2とはSPST型のスイッチを構成している。つまり、スイッチ回路64は、1つのSP3T型スイッチ、1つのSPDT型スイッチ、および2つのSPST型スイッチを有している。なお、端子64gはなくてもよい。
 上記構成において、例えば、通信バンドIのチャネルAの高周波信号とチャネルDの高周波信号とが同時送信される場合には、端子64a1と端子64bとを導通させ、端子64d1と端子64e1とを導通させ、端子64cと端子64fとを非導通とすることにより、送信増幅器20から出力された高周波信号は、送信フィルタ40を通過して送信フィルタ部50Tに入力される。また、例えば、通信バンドIIのチャネルAの高周波信号とチャネルDの高周波信号とが同時送信される場合には、端子64a2と端子64bとを導通させ、端子64d2と端子64e2とを導通させ、端子64cと端子64fとを非導通とすることにより、送信増幅器20から出力された高周波信号は、送信フィルタ41を通過して送信フィルタ部51Tに入力される。また、通信バンドIのいずれか1つのチャネルの高周波信号を単独で送信する場合には、端子64a1および64a2と端子64bとを非導通とし、端子64d1と端子64e1とを非導通とし、端子64d2と端子64e2とを非導通とし、端子64cと端子64fとを導通させることにより、送信増幅器20から出力された高周波信号は、送信フィルタ40および41をバイパスして送信フィルタ部50Tに入力される。また、通信バンドIIのいずれか1つのチャネルの高周波信号を単独で送信する場合には、端子64a1および64a2と端子64bとを非導通とし、端子64d1と端子64e1とを非導通とし、端子64d2と端子64e2とを非導通とし、端子64cと端子64hとを導通させることにより、送信増幅器20から出力された高周波信号は、送信フィルタ40および41をバイパスして送信フィルタ部51Tに入力される。
 これによれば、通信バンドIの2つのチャネルの高周波信号が同時送信される場合には、送信フィルタ40を経由させることで、受信感度の低下を抑制できる。また、通信バンドIIの2つのチャネルの高周波信号が同時送信される場合には、送信フィルタ41を経由させることで、受信感度の低下を抑制できる。また、通信バンドIの2つのチャネルの高周波信号を同時送信せず、いずれかのチャネルの高周波信号を単独で送信する場合には、送信フィルタ40の入力端子は送信増幅器20と切り離され、送信フィルタ40の出力端子は送信フィルタ部50Tと切り離される。このため、送信増幅器20および送信フィルタ部50Tから見て、送信フィルタ40は開放状態となるので、送信増幅器20から出力された高周波信号が送信フィルタ40に漏洩することを抑制できる。また、通信バンドIIの2つのチャネルの高周波信号を同時送信せず、いずれかのチャネルの高周波信号を単独で送信する場合には、送信フィルタ41の入力端子は送信増幅器20と切り離され、送信フィルタ41の出力端子は送信フィルタ部51Tと切り離される。このため、送信増幅器20および送信フィルタ部51Tから見て、送信フィルタ41は開放状態となるので、送信増幅器20から出力された高周波信号が送信フィルタ41に漏洩することを抑制できる。よって、いずれか1つのチャネルの高周波信号を単独で送信する場合における高周波信号の伝搬損失を極力抑制できる。
 [1.7 変形例6に係る高周波フロントエンドモジュールおよび通信装置の構成]
 図7は、実施の形態1の変形例6に係る通信装置1Fの回路構成図である。同図に示すように、通信装置1Fは、高周波フロントエンドモジュール3Fと、アンテナ回路2と、RFIC10Bと、を備える。本変形例に係る通信装置1Fは、変形例5に係る通信装置1Eと比較して、高周波フロントエンドモジュール3FおよびRFIC10Bの構成が異なる。より具体的には、高周波フロントエンドモジュール3Fは、高周波フロントエンドモジュール3Eと比較して、スイッチ回路64に代わってスイッチ回路66が配置されている点、送信増幅器21および受信増幅器31が付加されている点が異なる。また、本変形例に係るRFIC10Bは、変形例5のRFIC10と比較して、通信バンドIおよびIIごとに、4G用の端子および5G用の端子が配置されている点が異なる。以下、本変形例に係る通信装置1Fについて、変形例5に係る通信装置1Eと同じ構成については説明を省略し、異なる構成を中心に説明する。
 RFIC10Bは、通信バンドIの4Gに使用される高周波信号を送信する端子104Tと、通信バンドIの5Gに使用される高周波信号を送信する端子105Tと、通信バンドIIの4Gに使用される高周波信号を送信する端子106Tと、通信バンドIIの5Gに使用される高周波信号を送信する端子107Tとを有している。RFIC10Bは、例えば、4Gとして使用される通信バンドIのチャネルAの高周波信号と、5Gとして使用される通信バンドIのチャネルDの高周波信号とを、同時に高周波フロントエンドモジュール3Bへ送信し、例えば、4Gとして使用される通信バンドIIのチャネルAの高周波信号と、5Gとして使用される通信バンドIIのチャネルDの高周波信号とを、同時に高周波フロントエンドモジュール3Fへ送信することが可能である。
 また、RFIC10Bは、通信バンドIの4Gに使用される高周波信号を受信する端子104Rと、通信バンドIの5Gに使用される高周波信号を受信する端子105Rと、通信バンドIIの4Gに使用される高周波信号を受信する端子106Rと、通信バンドIIの5Gに使用される高周波信号を受信する端子107Rと、を有している。RFIC10Bは、例えば、4Gとして使用される通信バンドIのチャネルAの高周波信号と、5Gとして使用される通信バンドIのチャネルDの高周波信号とを、同時に高周波フロントエンドモジュール3Fから受信し、例えば、4Gとして使用される通信バンドIIのチャネルAの高周波信号と、5Gとして使用される通信バンドIIのチャネルDの高周波信号とを、同時に高周波フロントエンドモジュール3Fから受信することが可能である。
 図7に示すように、高周波フロントエンドモジュール3Fは、アンテナ共通端子100aおよび100bと、送信増幅器20および21と、受信増幅器30および31と、送信フィルタ40および41と、デュプレクサ50および51と、スイッチ回路66と、を備える。
 送信増幅器20は、高周波信号を増幅する電力増幅器であり、通信バンドIに割り当てられた複数の通信チャネルのうちの、2つのチャネルの高周波信号が同時に入力される。送信増幅器20は、同時に入力された通信バンドIの2つのチャネルの高周波信号を、それぞれ増幅して送信フィルタ40の入力端子に向けて出力する。また、送信増幅器20は、通信バンドIの1つのチャネルの高周波信号を増幅して送信フィルタ40を介さずに送信フィルタ部50Tに向けて出力する。
 送信増幅器21は、高周波信号を増幅する電力増幅器であり、通信バンドIIに割り当てられた複数の通信チャネルのうちの、2つのチャネルの高周波信号が同時に入力される。送信増幅器21は、同時に入力された通信バンドIIの2つのチャネルの高周波信号を、それぞれ増幅して送信フィルタ41の入力端子に向けて出力する。また、送信増幅器21は、通信バンドIIの1つのチャネルの高周波信号を増幅して送信フィルタ41を介さずに送信フィルタ部51Tに向けて出力する。
 受信増幅器30は、高周波信号を低雑音で増幅する低雑音増幅器であり、通信バンドIの2つのチャネルの高周波信号が同時に入力される。受信増幅器30は、同時に入力された通信バンドIの2つのチャネルの高周波信号を、それぞれ増幅してRFIC10Bの端子104Rおよび105Rに出力する。
 受信増幅器31は、高周波信号を低雑音で増幅する低雑音増幅器であり、通信バンドIIの2つのチャネルの高周波信号が同時に入力される。受信増幅器31は、同時に入力された通信バンドIIの2つのチャネルの高周波信号を、それぞれ増幅してRFIC10Bの端子106Rおよび107Rに出力する。
 スイッチ回路66は、送信増幅器20および21の出力端子、送信フィルタ部50Tおよび51Tの入力端子に接続されている。スイッチ回路66は、送信増幅器20の出力端子と送信フィルタ部50Tの入力端子とをバイパスする、および、バイパスしない、を切り替え、送信増幅器21の出力端子と送信フィルタ部51Tの入力端子とをバイパスする、および、バイパスしない、を切り替える第2スイッチ回路である。言い換えると、スイッチ回路66は、送信フィルタ40をバイパスする、および、バイパスしない、を切り替え、送信フィルタ41をバイパスする、および、バイパスしない、を切り替える第2スイッチ回路である。
 より具体的には、スイッチ回路66は、端子66a1、66a2、66b1、66b2、66c、66d1、66d2、66e1、66e2、66f、66g、66hおよび66jを有している。端子66cは送信増幅器20の出力端子および端子66b1に接続され、端子66jは送信増幅器21の出力端子および端子66b2に接続され、端子66fは送信フィルタ部50Tの入力端子および端子66e1に接続され、端子66a1は送信フィルタ40の入力端子に接続され、端子66d1は送信フィルタ40の出力端子に接続され、端子66a2は送信フィルタ41の入力端子に接続され、端子66d2は送信フィルタ41の出力端子に接続され、端子66hは送信フィルタ部51Tの入力端子および端子66e2に接続されている。端子66cは端子66fおよび66gのいずれかと導通状態となり、端子66cと端子66fおよび66gとは、SPDT型のスイッチを構成している。端子66jは端子66hおよび66gのいずれかと導通状態となり、端子66jと端子66hおよび66gとは、SPDT型のスイッチを構成している。また、端子66a1と端子66b1とはSPST型のスイッチを構成し、端子66a2と端子66b2とはSPST型のスイッチを構成し、端子66d1と端子66e1とはSPST型のスイッチを構成し、端子66d2と端子66e2とはSPST型のスイッチを構成している。つまり、スイッチ回路66は、2つのSPDT型スイッチ、および4つのSPST型スイッチを有している。なお、端子66gはなくてもよい。
 上記構成において、例えば、通信バンドIのチャネルAの高周波信号とチャネルDの高周波信号とが同時送信される場合には、端子66a1と端子66b1とを導通させ、端子66d1と端子66e1とを導通させ、端子66cと端子66fとを非導通とすることにより、送信増幅器20から出力された高周波信号は、送信フィルタ40を通過して送信フィルタ部50Tに入力される。また、例えば、通信バンドIIのチャネルAの高周波信号とチャネルDの高周波信号とが同時送信される場合には、端子66a2と端子66b2とを導通させ、端子66d2と端子66e2とを導通させ、端子66jと端子66hとを非導通とすることにより、送信増幅器21から出力された高周波信号は、送信フィルタ41を通過して送信フィルタ部51Tに入力される。また、通信バンドIのいずれか1つのチャネルの高周波信号を単独で送信する場合には、端子66a1と端子66b1とを非導通とし、端子66a2と端子66b2とを非導通とし、端子66d1と端子66e1とを非導通とし、端子66d2と端子66e2とを非導通とし、端子66cと端子66fとを導通させることにより、送信増幅器20から出力された高周波信号は、送信フィルタ40および41をバイパスして送信フィルタ部50Tに入力される。また、通信バンドIIのいずれか1つのチャネルの高周波信号を単独で送信する場合には、端子66a1と端子66b1とを非導通とし、端子66a2と端子66b2とを非導通とし、端子66d1と端子66e1とを非導通とし、端子66d2と端子66e2とを非導通とし、端子66jと端子66hとを導通させることにより、送信増幅器21から出力された高周波信号は、送信フィルタ40および41をバイパスして送信フィルタ部51Tに入力される。
 これによれば、通信バンドIの2つのチャネルの高周波信号が同時送信される場合には、送信フィルタ40を経由させることで、受信感度の低下を抑制できる。また、通信バンドIIの2つのチャネルの高周波信号が同時送信される場合には、送信フィルタ41を経由させることで、受信感度の低下を抑制できる。また、通信バンドIの2つのチャネルの高周波信号を同時送信せず、いずれかのチャネルの高周波信号を単独で送信する場合には、送信フィルタ40の入力端子は送信増幅器20と切り離され、送信フィルタ40の出力端子は送信フィルタ部50Tと切り離される。このため、送信増幅器20および送信フィルタ部50Tから見て、送信フィルタ40は開放状態となるので、送信増幅器20から出力された高周波信号が送信フィルタ40に漏洩することを抑制できる。また、通信バンドIIの2つのチャネルの高周波信号を同時送信せず、いずれかのチャネルの高周波信号を単独で送信する場合には、送信フィルタ41の入力端子は送信増幅器21と切り離され、送信フィルタ41の出力端子は送信フィルタ部51Tと切り離される。このため、送信増幅器21および送信フィルタ部51Tから見て、送信フィルタ41は開放状態となるので、送信増幅器21から出力された高周波信号が送信フィルタ41に漏洩することを抑制できる。よって、いずれか1つのチャネルの高周波信号を単独で送信する場合における高周波信号の伝搬損失を極力抑制できる。
 (実施の形態2)
 本実施の形態では、実施の形態1に係る通信装置および高周波フロントエンドモジュールに対して、さらに、同一の通信バンド内の2つのチャネルの高周波信号による相互変調歪のスプリアスがアンテナ回路から放射されることを抑制する構成を示す。
 図8は、実施の形態2に係る通信装置1Gの回路構成図である。同図に示すように、通信装置1Gは、高周波フロントエンドモジュール3Gと、アンテナ回路2と、RFIC10と、を備える。本実施の形態に係る通信装置1Gは、実施の形態1に係る通信装置1と比較して、高周波フロントエンドモジュール3Gの構成が異なる。より具体的には、高周波フロントエンドモジュール3Gは、高周波フロントエンドモジュール3と比較して、送信フィルタ40Aおよび40Bが配置されている点、および、スイッチ回路67が配置されている点が異なる。以下、本実施の形態に係る通信装置1Gについて、実施の形態1に係る通信装置1と同じ構成については説明を省略し、異なる構成を中心に説明する。
 本実施の形態に係る高周波フロントエンドモジュール3Gおよび通信装置1Gでは、複数の通信チャネルが割り当てられた通信バンドIの高周波信号が処理される。通信バンドIは、通信バンドIの周波数帯域の一部である第1サブバンド、および、通信バンドの周波数帯域の一部であって第1サブバンドと周波数帯域が異なり、かつ、第1サブバンドとの重複帯域を有する第2サブバンドを有する。高周波フロントエンドモジュール3Gおよび通信装置1Gは、通信バンドIにおける第1通信チャネルの高周波信号と、第1通信バンドと周波数が異なる通信バンドIの第2通信チャネルの高周波信号とを同時に送信することが可能である。
 図8に示すように、高周波フロントエンドモジュール3Gは、アンテナ共通端子100と、送信増幅器20と、受信増幅器30と、送信フィルタ40Aおよび40Bと、デュプレクサ50と、スイッチ回路67と、を備える。
 デュプレクサ50は、送信フィルタ部50Tと、受信フィルタ部50Rとを備えるマルチプレクサである。送信フィルタ部50Tは、通信バンドIの送信帯域を通過帯域とし、受信フィルタ部50Rは、通信バンドIの受信帯域を通過帯域としている。
 送信増幅器20は、高周波信号を増幅する電力増幅器であり、同一の通信バンドに割り当てられた複数の通信チャネルのうちの、第1通信チャネルの高周波信号と第2通信チャネルの高周波信号とが同時に入力される。本実施の形態では、例えば、通信バンドIのチャネルA(第1通信チャネル)の高周波信号と、通信バンドIのチャネルD(第2通信チャネル)の高周波信号とが、RFIC10から同時に入力される。送信増幅器20は、同時に入力されたチャネルAおよびDの高周波信号を、それぞれ増幅して送信フィルタ40に向けて出力する。
 受信増幅器30は、高周波信号を低雑音で増幅する低雑音増幅器であり、第1通信チャネルの高周波信号と第2通信チャネルの高周波信号とが同時に入力される。本実施の形態では、例えば、通信バンドIのチャネルA(第1通信チャネル)の高周波信号と、通信バンドIのチャネルD(第2通信チャネル)の高周波信号とが、アンテナ回路2から受信フィルタ部50Rを経由して同時に入力される。受信増幅器30は、同時に入力されたチャネルAおよびDの高周波信号を、それぞれ増幅してRFIC10の端子104Rおよび105Rに出力する。
 本実施の形態では、例えば、通信バンドIとしてLTEのBand71(送信帯域:663-698MHz、受信帯域:617-652MHz)を例示適用する。
 図9は、LTE-Band71の通信チャネルの割り当ておよび相互変調歪を示す図である。同図に示すように、Band71は、例えば、チャネルA~Gを有している。Band71A(送信帯域:663-688MHz、受信帯域:617-642MHz)は、Band71の周波数帯域の一部である第1サブバンドに相当する。また、Band71B(送信帯域:673-698MHz、受信帯域:627-652MHz)は、Band71の周波数帯域の一部である第2サブバンドに相当する。Band71AとBand71Bとは、周波数帯域が異なり、かつ、重複帯域(送信重複帯域:673-688MHz、受信重複帯域:627-642MHz)を有している。
 Band71において、例えば、チャネルAの高周波送信信号TA(中心周波数665.5MHz)と、チャネルDの高周波送信信号TB(中心周波数680.5MHz)とが、送信増幅器20に同時に入力されると、当該2つの高周波送信信号の相互変調歪が発生する。ここで、5次相互変調歪(IMD5:3×fTXA-2×fTXB)の周波数は635.5MHzであり、Band71の受信帯域(617-652MHz)に含まれる。また、3次相互変調歪(IMD3:2×fTXA-fTXB)の周波数は650.5MHzであり、Band71の受信帯域(617-652MHz)に含まれる。また、3次相互変調歪(IMD3:2×fTXB-fTXA)の周波数は695.5MHzであり、Band71Bの送信帯域(かつBand71Aの送信帯域でない帯域)に含まれる。
 送信フィルタ40Aは、送信増幅器20の入力端子と送信フィルタ部50Tの出力端子との間に配置され、第1サブバンド(Band71A)の送信帯域を通過帯域とし、第1サブバンド(Band71A)の受信帯域を減衰帯域とし、かつ、通信バンドI(Band71)の周波数帯域から第1サブバンド(Band71A)を除いた帯域を減衰帯域とする第1送信フィルタである。
 送信フィルタ40Bは、送信増幅器20の入力端子と送信フィルタ部50Tの出力端子との間に配置され、第2サブバンド(Band71B)の送信帯域を通過帯域とし、第2サブバンド(Band71B)の受信帯域を減衰帯域とし、かつ、通信バンドI(Band71)の周波数帯域から第2サブバンド(Band71B)を除いた帯域を減衰帯域とする第2送信フィルタである。
 スイッチ回路67は、送信増幅器20の出力端子、送信フィルタ部50Tの入力端子に接続され、送信増幅器20の出力端子と送信フィルタ部50Tの入力端子とをバイパスする、送信フィルタ40Aを通過する、および、送信フィルタ40Bを通過する、を切り替える第1スイッチ回路であり、かつ、第2スイッチ回路である。
 より具体的には、スイッチ回路67は、端子67a1、67a2、67b、67c、67d1、67d2、67e、67f、67gおよび67hを有している。端子67cは送信増幅器20の出力端子および端子67bに接続され、端子67fは送信フィルタ部50Tの入力端子および端子67eに接続され、端子67a1は送信フィルタ40Aの入力端子に接続され、端子67d1は送信フィルタ40Aの出力端子に接続され、端子67a2は送信フィルタ40Bの入力端子に接続され、端子67d2は送信フィルタ40Bの出力端子に接続されている。端子67cは端子67f、67gおよび67hのいずれかと導通状態となり、端子67cと端子67f、67gおよび67hとは、SP3T型のスイッチを構成している。また、端子67a1および67a2と端子67bとはSPDT型のスイッチを構成し、端子67d1および67d2と端子67eとはSPDT型のスイッチを構成している。つまり、スイッチ回路67は、1つのSP3T型スイッチおよび2つのSPDT型スイッチを有している。なお、端子67gおよび67hはなくてもよい。
 上記構成において、例えば、第1サブバンド(Band71A)のチャネルAの高周波信号とチャネルDの高周波信号とが同時送信される場合には、端子67a1と端子67bとを導通させ、端子67d1と端子67eとを導通させ、端子67cと端子67fとを非導通とすることにより、送信増幅器20から出力された高周波信号は、送信フィルタ40Aを通過して送信フィルタ部50Tに入力される。また、例えば、第2サブバンド(Band71B)のチャネルCの高周波信号とチャネルFの高周波信号とが同時送信される場合には、端子67a2と端子67bとを導通させ、端子67d2と端子67eとを導通させ、端子67cと端子67fとを非導通とすることにより、送信増幅器20から出力された高周波信号は、送信フィルタ40Bを通過して送信フィルタ部50Tに入力される。また、通信バンドI(Band71)のいずれか1つのチャネルの高周波信号を単独で送信する場合には、端子67a1および67a2と端子67bとを非導通とし、端子67d1および67d2と端子67eとを非導通とし、端子67cと端子67fとを導通させることにより、送信増幅器20から出力された高周波信号は、送信フィルタ40Aおよび40Bをバイパスして送信フィルタ部50Tに入力される。
 これによれば、第1サブバンド(Band71A)の2つのチャネルの高周波信号が同時送信される場合には、送信フィルタ40Aを経由させることで、たとえば5次相互変調歪(IMD5)の周波数が受信帯域に含まれる場合であっても、受信感度の低下を抑制できる。また、第2サブバンド(Band71B)の2つのチャネルの高周波信号が同時送信される場合には、送信フィルタ40Bを経由させることで、たとえば5次相互変調歪(IMD5)の周波数が受信帯域に含まれる場合であっても受信感度の低下を抑制できる。
 また、第1サブバンド(Band71A)の2つのチャネルの高周波信号が同時送信される場合には、送信フィルタ40Aを経由させることで、たとえば3次相互変調歪(IMD3)の周波数が通信バンドI(Band71)の送信帯域に含まれる場合であっても、第1サブバンド(Band71A)外かつ第2サブバンド(Band71B)内に発生する3次相互変調歪(IMD3)のスプリアスがアンテナ回路2から放射されることを抑制できる。また、第2サブバンド(Band71B)の2つのチャネルの高周波信号が同時送信される場合には、送信フィルタ40Bを経由させることで、相互変調歪の周波数が通信バンドI(Band71)の送信帯域に含まれる場合であっても、第2サブバンド(Band71B)外かつ第1サブバンド(Band71A)内に発生する相互変調歪のスプリアスがアンテナ回路2から放射されることを抑制できる。
 また、通信バンドI(Band71)の2つのチャネルの高周波信号を同時送信せず、いずれかのチャネルの高周波信号を単独で送信する場合には、送信フィルタ40Aおよび40Bの入力端子は送信増幅器20と切り離され、送信フィルタ40Aおよび40Bの出力端子は送信フィルタ部50Tと切り離される。このため、送信増幅器20および送信フィルタ部50Tから見て、送信フィルタ40Aおよび40Bは開放状態となるので、送信増幅器20から出力された高周波信号が送信フィルタ40Aおよび40Bに漏洩することを抑制できる。よって、いずれか1つのチャネルの高周波信号を単独で送信する場合における高周波信号の伝搬損失を極力抑制できる。
 上述したように、5G(NR)の通信規格では、4Gとの同時通信(DC)のケースも想定しており、例えば、同時送信した複数の高周波信号の相互変調歪が、自らの通信バンドの受信帯域および送信帯域内に発生し、受信感度劣化や送信信号のスプリアス基準(SEM:Supurious Emission Mask)を満足できないケースが起こる。
 ここで、上記の相互変調歪を、アンテナ回路2に接続されたマルチプレクサ(デュプレクサ)により十分に減衰できれば問題ないが、高周波フロントエンドモジュールに要求される減衰量は約-90dBであり、端末向けの小型マルチプレクサ(デュプレクサ)で実現することは困難な状況である。そのため、現状では、DC技術でハンドリングできる送信電力に制約を設けること(MPR)や、受信感度劣化をある程度許容する(MSD)することを公的規格で設定する方向に進んでいる。MPR/MSDは、10dB以上適用される見通しであるが、その場合には5G/4Gの通信エリアを狭くしてしまう懸念がある。
 これに対して、本実施の形態1および2に係る高周波フロントエンドモジュールおよび通信装置によれば、同一通信バンド内の異なる2つのチャネルの高周波信号により発生する相互変調歪を、アンテナ回路2に接続されたマルチプレクサ(デュプレクサ)の前段に配置された送信フィルタ40、41、40Aおよび40Bで十分に減衰できるので、MPR/MSDを過剰に適用する必要がなくなり、通信エリアを広げることが可能となる。
 さらに、高周波フロントエンドモジュールに設けられた通信バンド選択用のスイッチ回路にバイパス機能を設けることで、同一通信バンド内の異なる2つのチャネルの高周波信号を同時送信しない場合には、送信フィルタによる伝搬損失増加させないことで、不要な消費電流増加を抑制できる。
 また、同一通信バンド内の異なる2つのチャネルの高周波信号を同時送信する場合であっても、送信フィルタによる伝搬損失(1~2dB程度)は発生するが、送信フィルタを用いない場合のMPRが10dB以上となることと比較すれば、高周波送信信号の許容出力を大きくすることが可能となる。
 (その他の実施の形態)
 以上、実施の形態に係る高周波フロントエンドモジュールおよび通信装置について、実施の形態1~2およびその変形例を挙げて説明したが、本発明の高周波フロントエンドモジュールおよび通信装置は、上記実施の形態およびその変形例に限定されるものではない。上記実施の形態およびその変形例における任意の構成要素を組み合わせて実現される別の実施の形態や、上記実施の形態およびその変形例に対して本発明の主旨を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例や、本開示の高周波フロントエンドモジュールおよび通信装置を内蔵した各種機器も本発明に含まれる。
 なお、実施の形態1および2に係る高周波フロントエンドモジュールおよび通信装置は、例えば、3GPP規格などの通信システムに適用される。実施の形態1およびその変形例で示した通信バンドIおよび通信バンドIIは、例えば、LTEの各バンドに適用される。
 また、2つの高周波送信信号(Tx1およびTx2)による相互変調歪の周波数としては、典型的には、3fTx1-2fTx2、2fTx2-2fTx1、2fTx1-fTx2、2fTx2-fTx1、fTx1-fTx2、およびfTx2-fTx1が挙げられるが、これに限られず、mfTx1±nfTx2、および、mfTx2±nfTx1に(m、nは自然数)で規定されるものが含まれる。
 また、上記実施の形態およびその変形例では、2つの異なる通信チャネルを同時使用するCAの構成を例示したが、本発明に係る高周波フロントエンドモジュールおよび通信装置の構成は、3つ以上の異なる通信チャネルを同時使用するCAの構成にも適用できる。つまり、3つ以上の異なる通信チャネルを同時使用するCAを実行する構成であって、上記実施の形態およびその変形例に係る高周波フロントエンドモジュールまたは通信装置の構成を含む高周波フロントエンドモジュールまたは通信装置も、本発明に含まれる。
 また、例えば、上記実施の形態およびその変形例に係る高周波フロントエンドモジュールおよび通信装置において、図面に開示された各回路素子および信号経路を接続する経路の間に別の高周波回路素子および配線などが挿入されていてもよい。
 また、上記実施の形態およびその変形例に係る高周波フロントエンドモジュールおよび通信装置において、「AとBとが接続された」とは、AとBとが他の高周波回路素子を介さず直接接続された態様だけでなく、AとBとが、インダクタおよびキャパシタなどで構成された受動回路、または、スイッチ回路などを介して間接的に接続された態様を含むものとする。
 本発明は、キャリアアグリゲーション方式を採用するマルチバンド/マルチモード対応のフロントエンドモジュールとして、携帯電話などの通信機器に広く利用できる。
 1、1A、1B、1C、1D、1E、1F、1G  通信装置
 2  アンテナ回路
 2a、2b  アンテナ素子
 3、3A、3B、3C、3D、3E、3F、3G  高周波フロントエンドモジュール
 10、10B  RF信号処理回路(RFIC)
 20、21  送信増幅器
 30、31  受信増幅器
 40、40A、40B、41  送信フィルタ
 50、51  デュプレクサ
 50R、51R  受信フィルタ部
 50T、51T  送信フィルタ部
 52  クワッドプレクサ
 60、63、64、66、67  スイッチ回路
 61、62、65  スイッチ
 61a、62a、65a  共通端子
 61b、61c、62b、62c、65b、65c  選択端子
 63a、63b、63c、63d、63e、63f、63g、63h、64a1、64a2、64b、64c、64d1、64d2、64e1、64e2、64f、64g、64h、66a1、66a2、66b1、66b2、66c、66d1、66d2、66e1、66e2、66f、66g、66h、67a1、67a2、67b、67c、67d1、67d2、67e、67f、67g、67h、104R、104T、105R、105T、106R、106T、107R、107T  端子
 100、100a、100b  アンテナ共通端子

Claims (8)

  1.  複数の通信チャネルが割り当てられた通信バンドにおいて、当該通信バンドにおける第1通信チャネルの高周波信号と、前記第1通信チャネルと周波数が異なる当該通信バンドにおける第2通信チャネルの高周波信号とを同時に送信することが可能な高周波フロントエンドモジュールであって、
     共通端子と、
     前記第1通信チャネルの高周波信号と前記第2通信チャネルの高周波信号とが同時に入力される電力増幅器と、
     前記共通端子に接続され、前記通信バンドの送信帯域を通過帯域とする送信フィルタ部、および、前記共通端子に接続され、前記通信バンドの受信帯域を通過帯域とする受信フィルタ部を有するマルチプレクサと、
     前記電力増幅器の出力端子と前記送信フィルタ部の入力端子との間に配置され、前記送信帯域を含む帯域を通過帯域とし、前記受信帯域を含む帯域を減衰帯域とする送信フィルタと、を備える、
     高周波フロントエンドモジュール。
  2.  複数の通信チャネルが割り当てられた通信バンドの周波数帯域の一部である第1サブバンド、および、前記通信バンドの周波数帯域の一部であって前記第1サブバンドと周波数帯域が異なり、かつ、前記第1サブバンドとの重複帯域を有する第2サブバンドを有する通信バンドにおいて、当該通信バンドの第1通信チャネルの高周波信号と、前記第1通信チャネルと周波数が異なる当該通信バンドの第2通信チャネルの高周波信号とを同時に送信することが可能な高周波フロントエンドモジュールであって、
     共通端子と、
     前記第1通信チャネルの高周波信号と前記第2通信チャネルの高周波信号とが同時に入力される電力増幅器と、
     前記共通端子に接続され、前記通信バンドの送信帯域を通過帯域とする送信フィルタ部、および、前記共通端子に接続され、前記通信バンドの受信帯域を通過帯域とする受信フィルタ部を有するマルチプレクサと、
     前記電力増幅器の出力端子と前記送信フィルタ部の入力端子との間に配置され、前記第1サブバンドの送信帯域を通過帯域とし、前記第1サブバンドの受信帯域を減衰帯域とする第1送信フィルタと、
     前記電力増幅器の出力端子と前記送信フィルタ部の入力端子との間に配置され、前記第2サブバンドの送信帯域を通過帯域とし、前記第2サブバンドの受信帯域を減衰帯域とする第2送信フィルタと、
     前記電力増幅器と前記送信フィルタ部との間に配置され、前記第1サブバンドに属する前記第1通信チャネルの高周波信号と前記第1サブバンドに属する前記第2通信チャネルの高周波信号とが同時に送信される場合には、前記電力増幅器および前記マルチプレクサと前記第1送信フィルタとを接続し、前記第2サブバンドに属する前記第1通信チャネルの高周波信号と前記第2サブバンドに属する前記第2通信チャネルの高周波信号とが同時に送信される場合には、前記電力増幅器および前記マルチプレクサと前記第2送信フィルタとを接続する第1スイッチ回路と、を備える、
     高周波フロントエンドモジュール。
  3.  前記第1送信フィルタは、前記第1サブバンドの送信帯域を通過帯域とし、前記第1サブバンドの受信帯域を減衰帯域とし、かつ、前記通信バンドの周波数帯域から前記第1サブバンドを除いた帯域を減衰帯域とし、
     前記第2送信フィルタは、前記第2サブバンドの送信帯域を通過帯域とし、前記第2サブバンドの受信帯域を減衰帯域とし、かつ、前記通信バンドの周波数帯域から前記第2サブバンドを除いた帯域を減衰帯域とする、
     請求項2に記載の高周波フロントエンドモジュール。
  4.  同時に送信される前記第1通信チャネルの高周波信号と前記第2通信チャネルの高周波信号とは、異なる通信規格で使用される、
     請求項1~3のいずれか1項に記載の高周波フロントエンドモジュール。
  5.  前記第1通信チャネルの高周波信号は、第4世代移動通信システム(4G)で使用され、
     前記第2通信チャネルの高周波信号は、第5世代移動通信システム(5G)で使用され、
     前記第1通信チャネルの高周波信号と前記第2通信チャネルの高周波信号とは、デュアルコネクティビティにより同時送信される、
     請求項4に記載の高周波フロントエンドモジュール。
  6.  前記通信バンドの送信帯域は、3GPP(Third Generation Partnership Project)規格で定められた通信バンドの送信帯域であり、
     前記通信バンドの受信帯域は、3GPP規格で定められた通信バンドの受信帯域である、
     請求項1~5のいずれか1項に記載の高周波フロントエンドモジュール。
  7.  さらに、
     前記電力増幅器の出力端子および前記送信フィルタ部の入力端子に接続され、前記電力増幅器の出力端子と前記送信フィルタ部の入力端子とをバイパスする、および、バイパスしない、を切り替える第2スイッチ回路を備える、
     請求項1~6のいずれか1項に記載の高周波フロントエンドモジュール。
  8.  請求項1~7のいずれか1項に記載の高周波フロントエンドモジュールと、
     前記第1通信チャネルの高周波信号と前記第2通信チャネルの高周波信号とを同時に送信するRF信号処理回路と、を備える、
     通信装置。
PCT/JP2019/033383 2018-09-11 2019-08-26 高周波フロントエンドモジュールおよび通信装置 WO2020054388A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/153,197 US11349510B2 (en) 2018-09-11 2021-01-20 Radio frequency front end module and communication device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-169630 2018-09-11
JP2018169630 2018-09-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/153,197 Continuation US11349510B2 (en) 2018-09-11 2021-01-20 Radio frequency front end module and communication device

Publications (1)

Publication Number Publication Date
WO2020054388A1 true WO2020054388A1 (ja) 2020-03-19

Family

ID=69777510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/033383 WO2020054388A1 (ja) 2018-09-11 2019-08-26 高周波フロントエンドモジュールおよび通信装置

Country Status (2)

Country Link
US (1) US11349510B2 (ja)
WO (1) WO2020054388A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114614851A (zh) * 2020-12-08 2022-06-10 Oppo广东移动通信有限公司 信号收发电路、射频系统以及移动终端
WO2022135129A1 (zh) * 2020-12-21 2022-06-30 荣耀终端有限公司 无线通信系统、方法、设备以及芯片
WO2022145412A1 (ja) * 2020-12-28 2022-07-07 株式会社村田製作所 高周波モジュール及び通信装置
WO2023243175A1 (ja) * 2022-06-15 2023-12-21 株式会社村田製作所 高周波回路および通信装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11150482A (ja) * 1997-11-17 1999-06-02 Matsushita Electric Ind Co Ltd 通信装置
WO2016117482A1 (ja) * 2015-01-21 2016-07-28 株式会社村田製作所 高周波電力増幅モジュールおよび通信装置
JP2018101856A (ja) * 2016-12-19 2018-06-28 富士通株式会社 通信装置および通信方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4647486B2 (ja) * 2005-12-27 2011-03-09 京セラ株式会社 送受信回路
WO2013031440A1 (ja) * 2011-08-31 2013-03-07 株式会社村田製作所 半導体集積回路装置および高周波電力増幅器モジュール
US20150236798A1 (en) * 2013-03-14 2015-08-20 Peregrine Semiconductor Corporation Methods for Increasing RF Throughput Via Usage of Tunable Filters
CN106688192B (zh) * 2014-08-08 2018-10-16 天工方案公司 用于间歇辐射和/或共存规范的前端结构
JP2017011533A (ja) * 2015-06-23 2017-01-12 株式会社村田製作所 通信ユニット
KR101988406B1 (ko) * 2015-06-26 2019-06-12 스카이워크스 솔루션즈, 인코포레이티드 집성된 반송파의 개별 반송파의 전력 검출
KR102060406B1 (ko) * 2015-11-04 2019-12-30 가부시키가이샤 무라타 세이사쿠쇼 분파 장치 및 그 설계 방법
US10263647B2 (en) * 2016-04-09 2019-04-16 Skyworks Solutions, Inc. Multiplexing architectures for wireless applications
JP6822299B2 (ja) 2016-07-15 2021-01-27 株式会社村田製作所 高周波フロントエンド回路および通信装置
US10505700B1 (en) * 2018-07-12 2019-12-10 T-Mobile Usa, Inc. Reducing intermodulation distortion for intra-band dual connectivity

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11150482A (ja) * 1997-11-17 1999-06-02 Matsushita Electric Ind Co Ltd 通信装置
WO2016117482A1 (ja) * 2015-01-21 2016-07-28 株式会社村田製作所 高周波電力増幅モジュールおよび通信装置
JP2018101856A (ja) * 2016-12-19 2018-06-28 富士通株式会社 通信装置および通信方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114614851A (zh) * 2020-12-08 2022-06-10 Oppo广东移动通信有限公司 信号收发电路、射频系统以及移动终端
WO2022135129A1 (zh) * 2020-12-21 2022-06-30 荣耀终端有限公司 无线通信系统、方法、设备以及芯片
EP4175188A4 (en) * 2020-12-21 2024-02-14 Honor Device Co Ltd WIRELESS COMMUNICATIONS SYSTEM AND METHOD AND APPARATUS AND CHIP
WO2022145412A1 (ja) * 2020-12-28 2022-07-07 株式会社村田製作所 高周波モジュール及び通信装置
WO2023243175A1 (ja) * 2022-06-15 2023-12-21 株式会社村田製作所 高周波回路および通信装置

Also Published As

Publication number Publication date
US20210143847A1 (en) 2021-05-13
US11349510B2 (en) 2022-05-31

Similar Documents

Publication Publication Date Title
WO2020054388A1 (ja) 高周波フロントエンドモジュールおよび通信装置
US20070161357A1 (en) Multiband antenna switch
US20210006274A1 (en) Radio frequency front end circuit and communication device
US11336310B2 (en) Radio frequency circuit and communication device
US11323193B2 (en) Filter circuit and radio-frequency module
US10499352B2 (en) Power amplification module for multiple bands and multiple standards
CN111756386B (zh) 前端电路以及通信装置
US11336323B2 (en) Front-end module and communication device
US11201632B2 (en) High-frequency front-end module and communication device
US10326484B1 (en) Reconfigurable carrier aggregation FECC with switched filters and programmable band switching LNA
US11050456B2 (en) Radio frequency module and communication device
JP2021175084A (ja) 高周波回路および通信装置
WO2019244757A1 (ja) 高周波増幅回路および通信装置
US11483019B2 (en) Radio-frequency module and communication device
WO2020226119A1 (ja) 高周波回路および通信装置
US20230163791A1 (en) Radio-frequency circuit
WO2022244543A1 (ja) 高周波回路および通信装置
WO2022264862A1 (ja) 高周波回路および通信装置
WO2024042910A1 (ja) 高周波モジュールおよび通信装置
US20220173765A1 (en) Radio-frequency circuit and communication device
US20240097719A1 (en) Radio-frequency circuit and communication device
US20230223964A1 (en) Front end module and wireless device having multiple pre-amplifier bandpass filters
US20240106465A1 (en) Radio frequency module and communication device
WO2023037978A1 (ja) 高周波回路および通信装置
WO2022202048A1 (ja) 高周波回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19859077

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19859077

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP