WO2022134964A1 - 风机组件和吸尘器 - Google Patents

风机组件和吸尘器 Download PDF

Info

Publication number
WO2022134964A1
WO2022134964A1 PCT/CN2021/131381 CN2021131381W WO2022134964A1 WO 2022134964 A1 WO2022134964 A1 WO 2022134964A1 CN 2021131381 W CN2021131381 W CN 2021131381W WO 2022134964 A1 WO2022134964 A1 WO 2022134964A1
Authority
WO
WIPO (PCT)
Prior art keywords
impeller
diffuser
air duct
air
rotating shaft
Prior art date
Application number
PCT/CN2021/131381
Other languages
English (en)
French (fr)
Inventor
秦杰
胡小文
胡斯特
曾振杰
张龙新
Original Assignee
广东美的白色家电技术创新中心有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的白色家电技术创新中心有限公司, 美的集团股份有限公司 filed Critical 广东美的白色家电技术创新中心有限公司
Publication of WO2022134964A1 publication Critical patent/WO2022134964A1/zh
Priority to US18/212,508 priority Critical patent/US20230332604A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • F04D17/122Multi-stage pumps the individual rotor discs being, one for each stage, on a common shaft and axially spaced, e.g. conventional centrifugal multi- stage compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D1/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D1/06Multi-stage pumps
    • F04D1/08Multi-stage pumps the stages being situated concentrically
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L5/00Structural features of suction cleaners
    • A47L5/12Structural features of suction cleaners with power-driven air-pumps or air-compressors, e.g. driven by motor vehicle engine vacuum
    • A47L5/22Structural features of suction cleaners with power-driven air-pumps or air-compressors, e.g. driven by motor vehicle engine vacuum with rotary fans
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/22Mountings for motor fan assemblies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0606Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • F04D29/444Bladed diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps

Definitions

  • the present application relates to the technical field of household appliances, and in particular, to a fan assembly and a vacuum cleaner.
  • vacuum cleaners are gradually favored by consumers due to their advantages of small size, light weight and convenient use.
  • major manufacturers have increased the speed of the fan of the vacuum cleaner or increased the size of the fan, which is accompanied by an increase in the noise and volume of the vacuum cleaner, which is very unfavorable for users to use.
  • the present application aims to solve at least one of the technical problems existing in the prior art.
  • a first aspect of the present application provides a fan assembly.
  • a second aspect of the present application provides a vacuum cleaner.
  • a first aspect of the present application provides a fan assembly, comprising: a casing, the casing includes an air inlet and an air outlet that communicate with each other; a rotating shaft is disposed in the casing and extends from the air inlet to the air outlet; a first impeller , which is arranged on the rotating shaft and is located on the side of the air inlet; the diffuser is arranged in the casing and is located on the side of the air outlet; the second impeller is arranged on the rotating shaft and is located between the first impeller and the diffuser.
  • the fan assembly proposed in this application includes a casing, a rotating shaft, a first impeller, a diffuser and a second impeller.
  • the casing includes an air inlet and an air outlet that are connected to each other, and the rotating shaft is located inside the casing and extends from the air inlet to the air outlet.
  • An impeller and a second impeller, and the first impeller, the second impeller and the diffuser can be used together to drive the gas into the interior of the casing from the air inlet and exhaust from the air outlet.
  • the driving shaft drives the first impeller and the second impeller to rotate.
  • the first impeller rotates at the air inlet, and then sucks the external gas into the casing from the air inlet, and drives the gas to flow to the second impeller; after the gas flows to the second impeller, it is further driven by the second impeller. flow to the diffuser.
  • the secondary driving of the gas is realized, on the one hand, the air supply capacity of the fan assembly can be improved, and on the other hand, the working noise of the fan assembly can be reduced.
  • the second impeller drives the gas to the diffuser, so that the gas flow is blown out from the gas outlet after being diffused by the diffuser.
  • the radial dimensions of the first impeller and the second impeller can be greatly reduced under the condition of ensuring the air supply capacity of the fan assembly, thereby reducing the radial size of the fan assembly itself. Structure miniaturization and compact design.
  • the fan assembly proposed in this application can effectively reduce the working noise of the fan assembly through the cooperation of the first impeller and the second impeller while ensuring the air supply capacity of the fan assembly, and through the design of the diffuser, the fan can be greatly reduced.
  • the radial dimension of the assembly ensures that the radial dimension of the fan assembly will not increase under the condition that the fan assembly can realize the air supply of the secondary impeller, so that the fan assembly proposed in the present application and the fan assembly with a single impeller in the related art
  • the radial dimensions are similar, and the flow efficiency of the gas is guaranteed to be improved.
  • a second aspect of the present application provides a vacuum cleaner, comprising: the fan assembly according to the first aspect of the present application.
  • the vacuum cleaner proposed in the present application includes the fan assembly according to the first aspect of the present application. Therefore, it has all the beneficial effects of the above-mentioned fan assembly, and will not be discussed one by one here.
  • the vacuum cleaner proposed in the present application can be a hand-held vacuum cleaner, and has a miniaturized structure, which is convenient for users to use.
  • FIG. 1 is a schematic structural diagram of a fan assembly according to an embodiment of the present application.
  • Figure 2 is a cross-sectional view of the fan assembly of the embodiment shown in Figure 1;
  • Fig. 3 is a partial schematic view of the embodiment shown in Fig. 2;
  • Fig. 4 is a partial schematic view of the embodiment shown in Fig. 2;
  • Fig. 5 is the partial schematic diagram of the embodiment shown in Fig. 2;
  • FIG. 6 is a schematic structural diagram of a backflow structure in the fan assembly of the embodiment shown in FIG. 1;
  • Fig. 7 is a partial schematic view of the embodiment shown in Fig. 2;
  • FIG. 8 is a schematic diagram showing the performance comparison of the fan assembly in the present application and the related art.
  • the following describes the fan assembly and the vacuum cleaner provided according to some embodiments of the present application with reference to FIGS. 1 to 8 .
  • the arrow in FIG. 2 represents the gas flow direction
  • the solid line in FIG. 8 represents the relevant data of the fan assembly proposed in the present application
  • the dashed line represents the test data of the fan assembly in the related art.
  • an embodiment of the first aspect of the present application proposes a fan assembly, including: a casing 100 , the casing 100 includes an air inlet 110 and an air outlet 112 that communicate with each other; a rotating shaft 200 is provided Inside the casing 100 and extending from the air inlet 110 to the air outlet 112; the first impeller 300 is arranged on the rotating shaft 200 and is located on the side of the air inlet 110; the diffuser 400 is arranged in the casing 100, located at On the side of the air outlet 112;
  • the fan assembly proposed in this embodiment includes a casing 100 , a rotating shaft 200 , a first impeller 300 , a diffuser 400 and a second impeller 500 .
  • the housing 100 includes an air inlet 110 and an air outlet 112 that communicate with each other.
  • the rotating shaft 200 is located inside the housing 100 and extends from the air inlet 110 to the air outlet 112;
  • a first impeller 300 and a second impeller 500 are arranged on the rotating shaft 200 in sequence, and the first impeller 300, the second impeller 500 and the diffuser 400 can be used together to drive the gas from the air inlet 110 into the casing. 100 and discharged from the air outlet 112.
  • the driving shaft 200 drives the first impeller 300 and the second impeller 500 to rotate.
  • the first impeller 300 rotates at the air inlet 110, and then sucks the external gas from the air inlet 110 into the interior of the casing 100, and drives the gas to flow to the second impeller 500;
  • the second impeller 500 further flows to the diffuser 400 .
  • two-stage driving of the gas is realized, on the one hand, the air supply capacity of the fan assembly can be improved, and on the other hand, the working noise of the fan assembly can be reduced.
  • the second impeller 500 drives the gas to the diffuser 400 , so that the gas flow is blown out from the gas outlet 112 after being diffused by the diffuser 400 .
  • the radial dimensions of the first impeller 300 and the second impeller 500 can be greatly reduced under the condition of ensuring the air supply capacity of the fan assembly, thereby reducing the radial dimension of the fan assembly itself, so as to achieve The structure miniaturization and compact design of the fan assembly are achieved.
  • the fan assembly proposed in the present application can effectively reduce the working noise of the fan assembly through the cooperation of the first impeller and the second impeller 500 while ensuring the air supply capacity of the fan assembly.
  • the radial dimension of the fan assembly is reduced, and the radial dimension of the fan assembly is not increased under the condition that the fan assembly can realize the air supply of the secondary impeller, which can make the application of the fan assembly and the single impeller in the related art.
  • the radial dimensions of the fan assemblies are similar and ensure that the gas flow efficiency is improved.
  • the fan assembly further includes: a guide air duct 600 , and both ends of the guide air duct 600 are respectively connected to the air outlet end of the first impeller 300 and the air outlet of the second impeller 500 .
  • the intake end wherein, along the gas flow direction, the diameter of at least part of the guide air duct 600 gradually increases.
  • the fan assembly further includes an air guide duct 600 .
  • the guide air duct 600 is arranged inside the casing 100, the inlet of the guide air duct 600 is communicated with the outlet end of the first impeller 300, and the outlet of the guide air duct 600 is communicated with the intake end of the second impeller 500, Further, it plays a role of guiding flow between the first impeller 300 and the second impeller 500, thereby reducing the airflow loss.
  • the diameter of at least part of the guide air duct 600 gradually increases. That is, during the operation of the fan assembly, the airflow entering the inside of the air guide structure 800 will pass through a portion of the air guide air duct 600 with a gradually increasing diameter.
  • the effect of deceleration and boosting can be achieved, the noise when the gas flows in this part of the guide air duct 600 can be reduced, and the airflow pressure can be ensured.
  • the diversion air duct 600 includes: a diffuser air duct 602 , which is communicated with the air outlet end of the first impeller 300 ; a return air duct 604 , It communicates with the diffuser air duct 602 and the intake end of the second impeller 500 ; wherein, along the gas flow direction, the diameter of the diffuser air duct 602 gradually increases.
  • the guide air duct 600 includes a diffuser air duct 602 and a return air duct 604 that are communicated with each other.
  • the diffuser air duct 602 communicates with the outlet end of the first impeller 300
  • the return air duct 604 communicates with the diffuser air duct 602 and the air inlet end of the second impeller 500 .
  • FIG. 3 it is designed in this way that during the operation of the fan assembly, the air flow, driven by the first impeller 300 , first enters the diffuser air duct 602 of the guide air duct 600 , and then passes through the air guide air duct 600 .
  • the return air duct 604 flows toward the second impeller 500 .
  • the diameter of the diffuser air duct 602 gradually increases. That is, when the gas flows in the diffuser duct 602, the flow velocity of the gas decreases, and the air pressure inside the diffuser duct 602 increases.
  • the radial dimension of the first impeller 300 can be effectively reduced under the condition of ensuring the same air supply volume, thereby realizing the compactness and miniaturization of the fan assembly.
  • the diffuser air duct 602, the return air duct 604 and the diffuser 400 are used together, which can greatly reduce the radial size of the fan assembly, which is smaller than the radial size of the fan assembly of the traditional two-stage vacuum cleaner. 20%, which is equivalent to the radial size of the fan assembly of the single-stage vacuum cleaner, and the aerodynamic efficiency is significantly improved compared with the single-stage vacuum cleaner.
  • the first impeller 300 is a centrifugal impeller; the diffuser air duct 602 includes at least one bend, the diffuser air duct 602 is located on both sides of the first impeller 300 , and the backflow The air duct 604 is located between the first impeller 300 and the second impeller 500 .
  • the first impeller 300 adopts a centrifugal impeller, and the diffuser air duct 602 includes at least one bend.
  • the design is such that the axial direction of the first impeller 300 is disposed toward the air inlet 110 , so that the radial direction of the first impeller 300 is used as the air outlet.
  • the bending of the diffuser air duct 602 is located on the peripheral side of the first impeller 300 , thereby ensuring that the diffuser air duct 602 is located on both sides of the first impeller 300 and communicated with both sides of the first impeller 300 the air inlet 110 and the second impeller 500.
  • the diameter of the diffuser air duct 602 along the gas flow direction is gradually increased, and the diffuser air duct 602 itself is bent.
  • the diffuser air duct 602 integrates the functions of diffuser and bend, so that the airflow in the diffuser air duct 602 can be decelerated and pressurized while turning, thereby reducing the radial dimension of the first impeller 300 .
  • the fan assembly further includes: a return structure 700 , which is disposed in the casing 100 and located between the first impeller 300 and the second impeller 500 .
  • the fan assembly further includes a return structure 700 .
  • the recirculation structure 700 is disposed in the casing 100 and is located between the first impeller 300 and the second impeller 500 .
  • the recirculation structure 700 is used in cooperation with the first impeller 300 , so that the gas flows from the first impeller 300 to the recirculation structure 700 .
  • the recirculation structure 700 is sleeved on the rotating shaft 200, and plays the role of recirculation for the gas blown radially from the first impeller 300, thereby changing the flow direction of the gas blown radially from the first impeller 300, so that the part of the gas flow to the second impeller 500 .
  • the recirculation structure 700 is used together with the first impeller 300 , so that the recirculation structure 700 has good guiding and recirculation functions, so that the gas flows from the first impeller 300 to the second impeller 500 .
  • the reflow structure 700 includes: a reflow disk 702 sleeved on the rotating shaft 200 and having a gap with the rotating shaft 200 , and the air guide duct 600 is formed on the rotating shaft 200 .
  • the guide vanes 704 are disposed on the return disk 702 and at least partially located in the return air duct 604 .
  • the return structure 700 includes a return disk 702 and guide vanes 704 .
  • the radial end surface of the return disk 702 is configured as an arc 708, so that the return disk 702 and the interior of the casing 100 jointly define the guide air duct 600, and ensure the air guide duct 600 and the first impeller 300.
  • the gas outlet ends are connected, so that the gas driven by the first impeller 300 flows to the recirculation structure 700 .
  • guide vanes 704 are disposed at least partially within the return air duct 604.
  • the gas enters into the guide air duct 600 under the drive of the first impeller 300, and flows to the second impeller 500 under the guide action of the guide vanes 704, so as to make the return flow Structure 700 has good rectification and racemization.
  • a plurality of guide vanes 704 are provided and extend spirally along the outer circumference of the return disk 702 .
  • the gas blown out from the first impeller 300 flows toward the inner side wall of the casing 100.
  • the flow direction of the gas blown out from the first impeller 300 is changed by the cooperation of the guide air duct 600 and the guide vanes 704 , so that this part of the airflow flows toward the second impeller 500 .
  • the flow in the gap between the two adjacent guide vanes 704 further plays the role of derotation, ensuring that the gas is blown to the second impeller 500 smoothly, avoiding the phenomenon of eddy currents and the like in the process of the gas flowing to the second impeller 500, and then Avoid unnecessary noise inside the fan assembly.
  • an accommodating groove 706 is provided on an end face of the return plate 702 facing the air inlet 110 , and the first rotating plate 302 of the first impeller 300 is at least partially accommodated in the accommodating groove 706 In order to ensure that the first turntable 302 and the part of the return disk 702 without the accommodating groove 706 are arranged flush, so that the first air guide cover 306 of the first impeller 300 is arranged flush with the interior of the housing 100 .
  • This design ensures that the radial outlet end of the first impeller 300 is aligned with the guide air duct 600, ensures that the first turntable 302 and the first air guide hood 306 are tangent to the inner wall of the guide air duct 600, and ensures that the air flow from the first When the impeller 300 enters the inside of the guide air duct 600, it will not receive resistance.
  • the radial end surface of the return disk 702 is the first arc 710
  • the casing 100 forms part of the inner wall of the diffuser air duct 602 is the second arc 114, the distance L1 from the first center O1 of the first arc 710 to the axial end surface of the first impeller 300 facing the recirculation structure 700, and the first center O2 of the second arc 114 to the first The distance L2 between the axial end faces of an impeller 300 facing the backflow structure 700 .
  • the radial end surface of the return disk 702 is the first arc 710
  • the partial inner wall of the casing 100 forming the diffuser air duct 602 is the second arc 114 .
  • the diameter of the first arc 710 is smaller than the diameter of the second arc 114
  • the distance between the first center O1 of the first arc 710 and the axial end surface of the first impeller 300 facing the recirculation structure 700 is L1
  • the distance between the first center O 2 of the second arc 114 and the axial end surface of the first impeller 300 facing the recirculation structure 700 is L2 , which satisfies L1 ⁇ L2 .
  • This design ensures that in the direction of gas flow, the distance between the first arc 710 and the second arc 114 gradually increases, that is, it ensures that the diameter of the diffusing air duct 602 gradually increases, thereby ensuring that the diffusing air is gradually increased.
  • the pressure and deceleration effect of the channel 602 on the airflow reduces the radial dimension of the first impeller 300 .
  • L1 is the distance from the first circle center O1 to the end face of the first turntable 302 where the first blades 304 are provided
  • L2 is the distance from the second circle center O2 to the end face of the first turntable 302 where the first blades 304 are provided the distance between.
  • the distance from the first circle center O 1 to the axial end surface of the first impeller 300 facing the backflow structure 700 is L1
  • the second circle center O 2 to the first impeller 300 toward the axial end surface 700 is L2
  • the distance between the axial end faces of the reflow structure 700 is L2, and satisfies 2% ⁇ (L1-L2)/L1 ⁇ 7%.
  • the ratio of the distance L1-L2 between the first circle center O1 and the second circle center O2 to the distance L1 from the first circle center O1 to the axial end face of the first impeller 300 facing the recirculation structure 700 To be greater than or equal to 2% and less than or equal to 7%. That is, 2% ⁇ (L1-L2)/L1 ⁇ 7%.
  • the flow velocity and pressure of the air flow in the compressed air duct 602 are matched, so as to achieve the best effect of diffusion and deceleration, and ensure the air supply capacity of the first impeller 300 while ensuring the radial size of the first impeller 300 .
  • the value of (L1-L2)/L1 may be 2%, 3%, 4%, 5%, 6%, 7%, etc., which is not specifically limited here. It can be understood by those skilled in the art that as long as the diffusing effect of the diffusing air duct 602 on the airflow can be guaranteed, it can be realized.
  • the part of the end face of the return disk 702 forming the return air duct 604 is the first straight line 712
  • the casing 100 forms the return flow Part of the inner wall of the air duct 604 is a second straight line 116
  • the first straight line 712 is parallel to the second straight line 116 and extends along the radial direction of the rotating shaft 200 .
  • the part of the end face of the return disk 702 forming the return air duct 604 is the first straight line 712
  • the part of the inner wall of the housing 100 forming the return air duct 604 is the second straight line 116
  • the first straight line 712 is disposed parallel to the second straight line 116 and extends toward the direction of the rotating shaft 200 .
  • the gas blown from the first impeller 300 passes through the diffuser air duct 602 and enters the return air duct 604 and still has a certain direction of rotation, and the inner walls of the return air duct 604 are arranged in parallel and are guided in coordination.
  • the vanes 704 work together to make the air flow through the gap between the two adjacent guide vanes 704 , thereby arranging and de-rotating the air flow to ensure that the air is blown to the second impeller smoothly.
  • the first impeller 300 includes: a first turntable 302 disposed on the rotating shaft 200; The end face; the first air guide cover 306 is connected with the first blade 304, and the first blade 304 is located between the first turntable 302 and the first air guide cover 306;
  • the distance L3 between the axes of the impellers 300 is greater than the distance L4 between the outer edge of the first turntable 302 and the axis of the first impeller 300 .
  • the first impeller 300 is a centrifugal impeller, and the first impeller 300 includes a first turntable 302 , a first blade 304 and a first air guide cover 306 .
  • the first turntable 302 is arranged on the shaft 200, and can drive the first blade 304 to rotate under the drive of the shaft 200; the first air guide cover 306 and the first turntable 302 are located on both sides of the first blade 304, and can be rotated at the During the operation, it plays the role of guiding the flow, thereby reducing the loss of the airflow under the action of the first impeller 300 .
  • the gas enters the interior of the first impeller 300 from the axial direction driven by the first blades 304 , and is guided by the first air guide hood 306 and the first turntable 302 Blow out radially.
  • the distance between the outer edge of the first air guide cover 306 and the axis of the first impeller 300 is L3, and the distance between the outer edge of the first turntable 302 and the axis of the first impeller 300 is L4, and satisfy L3>L4. That is, at the position of the radial outlet end of the first impeller 300 , the size of the first air guide hood 306 is longer than that of the first turntable 302 .
  • This design can control the airflow from the first impeller 300 to be blown out more evenly and smoothly, and ensure that the airflow blown out from the first impeller 300 has an included angle compared with the rotating shaft 200 itself, ensuring that the airflow blown out from the first impeller 300 is smooth.
  • the second impeller 500 includes: a second turntable 502 disposed on the rotating shaft 200; end face; the second wind guide cover 506 is connected with the second blade 504, and the second blade 504 is located between the second turntable 502 and the second wind guide cover 506; wherein, the outer edge of the second wind guide cover 506 is connected to the second wind guide cover 506.
  • the distance L5 between the axes of the impellers 500 is greater than the distance L6 between the outer edge of the second turntable 502 and the axis of the second impeller 500 .
  • the second impeller 500 is a centrifugal impeller, and the second impeller 500 includes a second turntable 502 , a second blade 504 and a second air guide cover 506 .
  • the second turntable 502 is arranged on the shaft 200, and can drive the second blade 504 to rotate under the drive of the shaft 200; the second wind deflector 506 and the second turntable 502 are located on both sides of the second blade 504, and can During the operation, it plays a role of guiding the flow, thereby reducing the loss of the airflow under the action of the second impeller 500 .
  • the gas enters the interior of the second impeller 500 from the axial direction driven by the second blades 504 , and is guided by the second air guide hood 506 and the second turntable 502 Blow out radially.
  • the distance between the outer edge of the second air guide cover 506 and the axis of the second impeller 500 is L5
  • the outer edge of the second turntable 502 and the second The distance between the axes of the impellers 500 is L6, and satisfies L5>L6. That is, at the position of the radial outlet end of the second impeller 500 , the size of the second air guide hood 506 is longer than that of the second turntable 502 .
  • This design can control the airflow from the second impeller 500 to be blown out more evenly and smoothly, and ensure that the airflow blown out from the second impeller 500 has an included angle compared with the rotating shaft 200 itself, ensuring that the airflow from the second impeller 500 is smooth. Enter diffuser 400 with minimal flow loss noise reduction in turns. On the one hand, the air supply capability of the fan assembly is ensured, and on the other hand, the noise of the airflow in the air guide duct 600 is reduced.
  • the straight line where the extension line of the radial edge of the second rotating disk 502 is located intersects with the axis of the rotating shaft 200 to form a clamp
  • the angle ⁇ is greater than or equal to 80° and less than or equal to 89°, wherein the included angle ⁇ is located between the second turntable 502 and the air outlet 112 .
  • the line where the extension line of the radial edge of the second rotating disk 502 is located forms an angle ⁇ with the axis of the rotating shaft 200 , and the included angle ⁇ is at the second rotating disk 502 . and the air outlet 112, and is greater than or equal to 80° and less than or equal to 89°, that is, 80° ⁇ 89°.
  • This design ensures that the airflow is inclined relative to the rotating shaft 200 after the second impeller 500 is blown out from the outlet end of the second impeller 500, and ensures that the airflow can smoothly transition into the diffuser 400, reducing airflow loss and airflow noise.
  • the distance L5 between the outer edge of the second air guide cover 506 and the axis of the second impeller 500 is greater than the distance between the outer edge of the second turntable 502 and the axis of the second impeller 500
  • the distance L6, and the included angle ⁇ between the extension line of the radial edge of the second turntable 502 and the axis of the shaft 200 is designed to be greater than or equal to 80° and less than or equal to 89°, so that the optimal two-stage aerodynamic load matching can be realized. , and then improve the technical effect of the aerodynamic efficiency of the whole machine.
  • the value of the included angle ⁇ is not specifically limited, and may be 80°, 81°, 82°, 83°, 84°, 85°, 86°, 87°, 88°, 89°, and the like. Those skilled in the art can understand that as long as the aerodynamic efficiency of the whole machine can be improved, it can be achieved.
  • the fan assembly further includes: a flow guide structure 800 disposed on the rotating shaft 200 , and an overflow air duct 900 is formed between the flow guide structure 800 and the inner wall of the housing 100 , and the flow guide structure 800 is formed between the flow guide structure 800 and the inner wall of the housing 100 ,
  • the air flow channel 900 is communicated with the air outlet end of the air guide air channel 600 and the air intake end of the second impeller 500 .
  • the fan assembly further includes a flow guide structure 800 .
  • the diversion structure 800 is disposed on the rotating shaft 200 and is located inside the casing 100 .
  • An overflow air duct 900 is formed between the flow guide structure 800 and the inner wall of the housing 100 .
  • the diameter of the air guide structure 800 first decreases and then increases.
  • the two ends of the flow guide structure 800 are connected to the return disk 702 and the second impeller 500 respectively, and it is ensured that the diameter of the flow guide structure 800 first decreases and then increases. .
  • This design ensures that the two ends of the diversion structure 800 are tangent to the connection between the return disk 702 and the second impeller 500 , and ensures that the two ends of the diversion structure 800 smoothly transition with the return disk 702 and the second impeller 500 to avoid diversion. Steps exist at the junction between the structure 800 and the return disk 702 and the junction between the flow guide structure 800 and the second impeller 500 , thereby ensuring that the airflow flows smoothly from the guide air duct 600 to the overflow air duct 900 .
  • the diffuser 400 is an axial flow diffuser, and the diffuser 400 includes at least one set of diffuser vanes 402 , and any set of diffuser vanes 402 is annularly distributed .
  • the diffuser is provided as an axial flow diffuser.
  • the diffuser 400 includes at least one group of diffuser vanes 402, and any one group of diffuser vanes is annularly distributed at the air outlet.
  • This design enables the axial flow diffuser to ensure that the radial dimensions of the first impeller and the second impeller are greatly reduced on the one hand, and to ensure the air supply efficiency of the fan assembly on the other hand.
  • an axial flow diffuser can be used instead of a radial diffuser, thereby reducing the radial dimension of the fan assembly.
  • the diffuser 400 includes a plurality of sets of diffuser vanes 402; in the direction of gas flow, the number of diffuser vanes 402 gradually increases; and/or in the direction of gas flow , the rotation angle of the diffuser vane 402 gradually decreases.
  • the diffuser 400 includes multiple sets of diffuser vanes 402, and the multiple sets of diffuser vanes 402 are spaced in the gas flow direction.
  • the number of each group of diffuser vanes 402 gradually increases, and the rotational angle of each group of diffuser vanes 402 gradually decreases.
  • the diffusing vanes 402 of the diffuser 400 can cooperate with each other to ensure the diffusing effect on the airflow, and at the same time, an axial flow diffuser including multiple sets of diffusing vanes 402 can be used instead of the radial diffuser, thereby Reduce the radial dimension of the fan assembly.
  • the diffuser blade 402 is a three-element blade.
  • the diffuser vanes 402 are ternary vanes.
  • a plurality of diffuser vanes 402 may be used in combination to replace a radial diffuser, thereby reducing the radial dimension of the fan assembly.
  • the casing 100 includes: a first installation section 102, where the first impeller 300 is located; and a second installation section 104, in which the second impeller 500 and the diffuser 400 are located in the second installation section 104; the transition section 106 is connected to the first installation section 102 and the second installation section 104 and is arranged.
  • the housing 100 includes a first mounting section 102, a second mounting section 104, and a transition section 106 that are connected.
  • the air inlet 110 is arranged on the axial end face of the first installation section 102, and the first impeller 300 is arranged in the first installation section 102; the air outlet 112 is arranged on the axial end face of the second installation section 104, and The second impeller 500 is arranged in the second installation section 104 ; the transition section 106 is arranged between the first installation section 102 and the second installation section 104 and is connected with the first installation section 102 and the second installation section 104 at the same time.
  • a flow passage 900 is formed between the flow guide structure 800 and the inner wall of the transition section 106 , and a flow guide is formed between a part of the inner wall of the first installation section 102 and the return plate 702 of the return structure 700 . Road 600.
  • the transition section 106 is recessed toward the rotating shaft 200 ; the housing 100 further includes fins 108 , and the fins 108 are disposed on the transition section 106 and connected to the first A mounting section 102 and a second mounting section 104 .
  • the fan assembly also includes fins 108 .
  • the transition section 106 is recessed toward the rotating shaft 200 , and the fins 108 are disposed on the outer wall of the housing 100 at the position of the transition section 106 and connected to the first installation section 102 and the second installation section 104 at the same time.
  • the disposition of the fins 108 effectively increases the heat dissipation area of the fan assembly, thereby achieving the purpose of rapidly cooling the fan assembly.
  • the fins 108 are made of metal materials that are easy to conduct heat, are located between the first impeller 300 and the second impeller 500 , and are seamlessly connected with the outer wall of the casing 100 . Specifically, a plurality of fins 108 are provided and distributed along the axial direction of the rotating shaft 200 .
  • the rotating shaft 200 is provided with threads
  • the fan assembly further includes a nut 202 , which is mounted on the threads to fix the first impeller 300 .
  • the fan assembly further includes a nut 202 .
  • the rotating shaft 200 is provided with threads, and the first impeller 300 is installed through the nut 202 in cooperation with the threads on the rotating shaft 200 .
  • the rotation direction of the nut 202 is opposite to that of the rotating shaft 200, which ensures that the first impeller 300 will not fall off when the fan assembly is running.
  • the fan assembly further includes a driving part 204 , and the driving part 204 is connected with the rotating shaft 200 and is configured to drive the rotating shaft 200 to rotate.
  • the fan assembly further includes a driving part 204, which is connected with the rotating shaft 200 and can be driven to rotate during operation, thereby making the first impeller 300, the second impeller 500 and the diffuser 400 work to drive the gas.
  • the driving part 204 can use a motor
  • the diffuser 400 is provided on the outer periphery of the driving part 204 .
  • the rotation of the rotating shaft 200 drives the rotation of the first impeller 300 and the second impeller 500 arranged on the rotating shaft 200.
  • the rotation of the first impeller 300 can drive the air outside the casing 100 to enter the interior of the casing 100 through the air inlet 110, and then the first impeller 300 rotates.
  • Part of the gas enters the inside of the guide air duct 600 under the drive of the casing 100 , and passes through the diffuser air duct 602 and the return air duct 604 successively, and then the part of the gas flows to the overflow air duct 900 under the guidance of the guide vanes 704 , and flows to the second impeller 500 under the diversion action of the flow passage 900 , the second impeller 500 continues to drive the gas to flow to the diffuser 400 , and finally the part of the gas passes through the diffuser 400 and is discharged through the air outlet 112 .
  • the distance L3 between the outer edge of the first air guide hood 306 and the axis of the first impeller 300 is greater than the distance L4 between the outer edge of the first turntable 302 and the axis of the first impeller 300 , which can be This ensures that the flow field of the air outlet section of the first impeller 300 is more uniform, and the flow loss of the diffuser air duct 602 and the return air duct 604 is reduced.
  • the first impeller 300 is a centrifugal impeller
  • the diffuser air duct 602 is bent, and the diameter of the diffuser air duct 602 gradually increases in the direction of gas flow, so that the air flow in the diffuser air duct 602 Both turning and deceleration and supercharging can be achieved, thereby reducing the radial dimension of the first impeller 300 .
  • the return air duct 604 is designed with the guide vanes 704 to rectify and de-rotate the airflow.
  • a flow guide structure 800 is disposed on the rotating shaft 200 , and the profile line of the flow guide structure 800 is streamlined and tangent to the first straight line 712 of the return disk 702 and the second impeller 500 and has a smooth transition.
  • the distance L5 between the outer edge of the second air guide cover 506 and the axis of the second impeller 500 is greater than the distance L6 between the outer edge of the second turntable 502 and the axis of the second impeller 500 , and
  • the angle ⁇ formed by the extension line of the radial edge of the second rotating disk 502 and the axis of the rotating shaft 200 is greater than or equal to 80° and less than or equal to 89°, which can be optimized.
  • the two-stage aerodynamic load matching improves the aerodynamic efficiency of the whole machine.
  • the diffuser 400 adopts a three-stage axial flow diffuser, which can replace the radial diffuser to reduce the radial dimension of the fan assembly.
  • An embodiment of the second aspect of the present application provides a vacuum cleaner, including: the fan assembly according to any one of the foregoing embodiments.
  • the vacuum cleaner proposed in this embodiment includes the fan assembly as in any of the above-mentioned embodiments. Therefore, it has all the beneficial effects of the above-mentioned fan assembly, and will not be discussed one by one here.
  • the vacuum cleaner proposed in this embodiment can be a hand-held vacuum cleaner, and has a miniaturized structure, which is convenient for users to use.
  • the fan assembly proposed in this embodiment when the fan assembly proposed in this embodiment is applied to a hand-held vacuum cleaner, due to the cooperation of the first impeller 300 and the second impeller 500, the large suction force of the hand-held vacuum cleaner can be realized, thereby enhancing the function of the hand-held vacuum cleaner Distance and work effect.
  • the structural size of the hand-held vacuum cleaner is effectively reduced, especially the size of the hand-held vacuum cleaner. Radial size, on the one hand, it is convenient for users to operate by hand, and on the other hand, it can be extended into a narrow space for action.
  • the fan assembly proposed in this embodiment includes a first impeller 300 , a diffuser air duct 602 , a return air duct 604 , a rotating shaft 200 , a flow guide structure 800 , and a second impeller 500 , the fin 108, the nut 202 and the diffuser 400 and other structures.
  • the air passes through the first impeller 300 , the diffuser air duct 602 , the return air duct 604 , the flow guide structure 800 , the second impeller 500 and the diffuser 400 in sequence to accomplish the purpose of supercharging.
  • the first impeller 300 is fixed on the rotating shaft 200 by a nut 202, and the rotation direction of the nut 202 is opposite to the rotating direction of the rotating shaft 200, so as to ensure that the first impeller 300 does not work during operation. fall off.
  • the distance between the outer edge of the first air guide hood 306 and the axis of the first impeller 300 is slightly larger than the distance between the outer edge of the first turntable 302 and the axis of the first impeller 300 to control the first impeller 300
  • the flow field at the outlet end is more uniform, and the flow loss of the diffuser air duct 602 and the return air duct 604 is reduced.
  • the diffuser air duct 602 is defined by the first arc 710 of the return pan 702 and the second arc 114 of the inner wall of the housing 100 .
  • the first center O 1 of the first arc 710 and the second center O 2 of the second arc 114 do not overlap, and the first center O 1 of the first arc 710 is larger than the second center O 1 of the second arc 114 O2 is closer to the first turntable 302 of the first impeller 300 in the axial direction, the distance between the first center O1 of the first arc 710 and the first turntable 302 is L1, and the second center O of the second arc 114
  • the distance between 2 and the second turntable 502 is L2, which satisfies 2% ⁇ (L1-L2)/L1 ⁇ 7%.
  • the diffuser air duct 602 forms a gradually expanding air duct.
  • the diffuser air duct 602 itself is bent, which forms the diffuser air duct 602 integrating the diffuser and the curve, so that the airflow decelerates and pressurizes while turning, thereby reducing the radial direction of the first impeller 300 size.
  • the value of (L1-L2)/L1 can be selected from 2%, 3%, 4%, 5%, 6%, 7%, and the like.
  • the return air duct 604 is defined by the first straight line 712 of the return disk 702 and the second straight line 116 of the inner wall of the housing 100 , and is used in conjunction with the return combined 16 and the guide vanes 704 .
  • the first straight line 712 and the second straight line 116 are vertically parallel, and cooperate with the guide vanes 704 to achieve the effect of airflow rectification and de-rotation.
  • the number of guide vanes 704 is multiple, and they are distributed in a spiral shape on the return disk 702 .
  • the rotating shaft 200 is provided with a flow guiding structure 800 and threads.
  • the rotation direction of the thread is opposite to the rotation direction of the rotating shaft 200 to ensure that the first impeller 300 does not fall off during operation.
  • the outer wall of the guide structure 800 is streamlined, and is tangent to the first straight line 712 of the return plate 702 and the second impeller 500 and smoothly transitions, so that the flow guide duct 900 is formed between the guide air duct 600 and the interior of the housing 100 , And ensure that the first impeller 300 is stably installed on the rotating shaft 200 .
  • the distance between the outer edge of the second air guide cover 506 and the axis of the second impeller 500 is slightly larger than the distance between the outer edge of the second turntable 502 and the axis of the second impeller 500,
  • the straight line where the extension line of the radial edge of the second rotating disk 502 is located is not perpendicular to the axis of the rotating shaft 200, but forms an included angle ⁇ with the axis of the rotating shaft 200, and the included angle ⁇ is At 80° to 89°, to optimize the two-stage aerodynamic load matching and improve the aerodynamic efficiency of the whole machine.
  • the value of the included angle ⁇ can be selected from 80°, 81°, 82°, 83°, 84°, 85°, 86°, 87°, 88°, 89°, etc.
  • 27 fins 108 are connected to the first installation section 102 and the second installation section 104 of the casing 100 to play the role of cooling airflow, and the fins 108 are made of metal materials that are easy to conduct heat. Thus, it is arranged between the first impeller 300 and the second impeller 500 and is seamlessly connected with the casing 100 .
  • the diffuser 400 adopts a three-stage axial flow diffuser, and the diffuser 400 includes three rows of diffuser vanes 402 , and the numbers of the three rows of diffuser vanes 402 are 11, 15 and 402 respectively. 23. Arranged in sequence in the gas flow direction, and in the gas flow direction, the rotation angles of the diffuser vanes 402 at each stage gradually decrease.
  • the diffuser blade 402 is a ternary blade.
  • the fan assembly proposed in this embodiment adopts a two-stage impeller solution, which can reduce the rotational speed of the impeller by 33% under the same air volume and air pressure.
  • achieving the same suction power at a lower rotational speed has the effect of reducing the noise of the vacuum cleaner.
  • this embodiment adopts the diffuser air duct 602, the return air duct 604 and the three-stage axial flow diffuser, which can greatly reduce the radial size of the multi-stage fan assembly, which is smaller than the radial size of the fan assembly of the traditional two-stage vacuum cleaner. 20%, which is comparable to the radial size of the fan assembly of mainstream single-stage vacuum cleaners, and the aerodynamic efficiency is significantly improved compared to single-stage vacuum cleaners.
  • the radial end face of the return disk 702 on the axial section of the rotating shaft 200 and the inner wall of the casing 100 forming the part of the diffuser air duct 602 are not limited to arcs, and spline curves and Bezier curves can also achieve similar effect.
  • the center of the spline can be understood as the midpoint of the line connecting the two ends of the spline.
  • the center of the spline can be understood as the midpoint of the line connecting the two ends of the Bezier curve.
  • a plurality of guide vanes 704 of the return structure 700 may be provided, but not limited to 16.
  • a plurality of fins 108 may be provided, but not limited to 27, and the shape of the fins 108 is not limited to a sheet shape.
  • the diffuser 400 is not limited to having three rows of diffuser vanes 402, and the number of the diffuser vanes 402 is not limited to 11, 15, and 23.
  • the solid line in the figure represents the relevant data of the fan assembly proposed in this embodiment, and the dashed line represents the test data of the fan assembly in the related art. It can be clearly seen from FIG. 8 that the fan assembly proposed in this embodiment is obviously superior to the related art in terms of air supply capacity, radial size and operating noise.
  • the term “plurality” refers to two or more than two, unless otherwise expressly defined, the orientation or positional relationship indicated by the terms “upper”, “lower” etc. is based on what is shown in the accompanying drawings The orientation or positional relationship is only for the convenience of describing the application and simplifying the description, rather than indicating or implying that the referred device or element must have a specific orientation, be constructed and operated in a specific orientation, and therefore should not be construed as a limitation on the application;
  • the terms “connected”, “installed”, “fixed”, etc. should be understood in a broad sense.
  • connection can be a fixed connection, a detachable connection, or an integral connection; it can be directly connected, or through the middle media are indirectly connected.
  • connection can be a fixed connection, a detachable connection, or an integral connection; it can be directly connected, or through the middle media are indirectly connected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种风机组件和吸尘器,其中,风机组件包括:壳体(100),壳体(100)包括相连通的进气口(110)和出气口(112);转轴(200),设置于壳体(100)内,并从进气口(110)向出气口(112)延伸;第一叶轮(300),设置于转轴(200)上,位于进气口(110)一侧;扩压器(400),设置于壳体(100)内,位于出气口(112)一侧;第二叶轮(500),设置于转轴(200)上,位于第一叶轮(300)和扩压器(400)之间。风机组件,在保证风机组件送风能力的同时,可有效降低风机组件的工作噪声,可大幅度降低风机组件的径向尺寸,并且保证了气体的流动效率得到提升。

Description

风机组件和吸尘器
本申请要求于2020年12月25日提交到中国国家知识产权局、申请号为“202011558784.1”、发明名称为“风机组件和吸尘器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及家用电器技术领域,具体而言,涉及一种风机组件和吸尘器。
背景技术
随着人们生活品质的提高,吸尘器以其体积小、重量轻、使用方便等优点逐渐受到消费者的青睐。为了提高吸尘器的吸力,目前各大厂家纷纷提高吸尘器风机的转速或者增大风机的尺寸,随之而来的是吸尘器的噪音和体积的增大,非常不利于用户使用。
发明内容
本申请旨在至少解决现有技术中存在的技术问题之一。
为此,本申请第一方面提供了一种风机组件。
本申请第二方面提供了一种吸尘器。
本申请第一方面提供了一种风机组件,包括:壳体,壳体包括相连通的进气口和出气口;转轴,设置于壳体内,并从进气口向出气口延伸;第一叶轮,设置于转轴上,位于进气口一侧;扩压器,设置于壳体内,位于出气口一侧;第二叶轮,设置于转轴上,位于第一叶轮和扩压器之间。
本申请提出的风机组件包括壳体、转轴、第一叶轮、扩压器和第二叶轮。其中,壳体包括相连通的进气口和出气口,转轴位于壳体的内部,并从进气口向出气口延伸设置;从进气口到出气口的方向上,转轴上依次设置有第一叶轮和第二叶轮,并且第一叶轮、第二叶轮和扩压器可配合使用,进而驱动气体从进气口进入到壳体内部,并从出气口排出。
在风机组件运行过程中,驱动转轴带动第一叶轮和第二叶轮旋转。第一叶轮在进气口处旋转,进而将外部的气体从进气口吸入到壳体内部,并且驱动气体向第二叶轮流动;气体流到第二叶轮后,在第二叶轮的驱动下进一步流向扩压器。特别地,通过第一叶轮与第二叶轮的配合,实现了对气体的二级驱动,一方面可提升风机组件的送风能力,另一方面可降低风机组件的工作噪声。
此外,第二叶轮将气体驱动到扩压器处,使得气流经过扩压器的扩压后从出气口吹出。特别地,由于扩压器的设计,在保证风机组件送风能力的情况下,可以大幅降低第一叶轮和第二叶轮的径向尺寸,进而降低风机组件自身的径向尺寸,实现了风机组件的结构小型化和紧凑化设计。
本申请提出的风机组件通过第一与叶轮与第二叶轮的配合,在保证风机组件送风能力的同时,可有效降低风机组件的工作噪声,并且通过扩压器的设计,可大幅度降低风机组件的径向尺寸,在保证风机组件可实现二级叶轮送风的情况下,保证了风机组件的径向尺寸不会增大,可使得本申请提出风机组件与相关技术中单叶轮的风机组件的径向尺寸相仿,并且保证了气体的流动效率得到提升。
本申请第二方面提供了一种吸尘器,包括:如本申请第一方面的风机组件。
本申请提出的吸尘器包括如本申请第一方面的风机组件。因此,具有上述风机组件的全部有益效果,在此不再一一论述。
特别地,本申请提出的吸尘器可以为手持式吸尘器,并且具有小型化的结构特点,便于用户使用。
本申请的附加方面和优点将在下面的描述部分中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是本申请一个实施例的风机组件的结构示意图;
图2是图1所示实施例的风机组件的剖视图;
图3是图2所示实施例的局部示意图;
图4是图2所示实施例的局部示意图;
图5是图2所示实施例的局部示意图;
图6是图1所示实施例的风机组件中回流结构的结构示意图;
图7是图2所示实施例的局部示意图;
图8是本申请与相关技术中风机组件的性能对比示意图。
其中,图1至图7中附图标记与部件名称之间的对应关系为:
100壳体,102第一安装段,104第二安装段,106过渡段,108翅片,110进气口,112出气口,114第二弧线,116第二直线,200转轴,202螺母,204驱动部件,300第一叶轮,302第一转盘,304第一叶片,306第一导风罩,400扩压器,402扩压叶片,500第二叶轮,502第二转盘,504第二叶片,506第二导风罩,600导流风道,602扩压风道,604回流风道,700回流结构,702回流盘,704导向叶片,706容置槽,708弧形,710第一弧线,712第一直线,800导流结构,900过流风道。
具体实施方式
为了能够更清楚地理解本申请的上述目的、特征和优点,下面结合附图和具体实施方式对本申请进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本申请,但是,本申请还可以采用其他不同于在此描述的方式来实施,因此,本申请的保护范围并不受下面公开的具体实施例的限制。
下面参照图1至图8来描述根据本申请一些实施例提供的风机组件和吸尘器。其中,图2中箭头表示气体流动方向,图8中实线表示本申请提出的风机组件的相关数据,虚线表示相关技术中风机组件的试验数据。
如图1和图2所示,本申请第一方面的实施例提出了一种风机组件,包括:壳体100,壳体100包括相连通的进气口110和出气口112;转轴200,设置于壳体100内,并从进气口110向出气口112延伸;第一叶轮300,设置于转轴200上,位于进气口110一侧;扩压器400,设置于壳体100内,位于 出气口112一侧;第二叶轮500,设置于转轴200上,位于第一叶轮300和扩压器400之间。
本实施例提出的风机组件包括壳体100、转轴200、第一叶轮300、扩压器400和第二叶轮500。其中,壳体100包括相连通的进气口110和出气口112,转轴200位于壳体100的内部,并从进气口110向出气口112延伸设置;从进气口110到出气口112的方向上,转轴200上依次设置有第一叶轮300和第二叶轮500,并且第一叶轮300、第二叶轮500和扩压器400可配合使用,进而驱动气体从进气口110进入到壳体100内部,并从出气口112排出。
如图2所示,在风机组件运行过程中,驱动转轴200带动第一叶轮300和第二叶轮500旋转。第一叶轮300在进气口110处旋转,进而将外部的气体从进气口110吸入到壳体100内部,并且驱动气体向第二叶轮500流动;气体流到第二叶轮500后,在第二叶轮500的驱动下进一步流向扩压器400。特别地,通过第一叶轮300与第二叶轮500的配合,实现了对气体的二级驱动,一方面可提升风机组件的送风能力,另一方面可降低风机组件的工作噪声。
此外,第二叶轮500将气体驱动到扩压器400处,使得气流经过扩压器400的扩压后从出气口112吹出。特别地,由于扩压器400的设计,在保证风机组件送风能力的情况下,可以大幅降低第一叶轮300和第二叶轮500的径向尺寸,进而降低风机组件自身的径向尺寸,实现了风机组件的结构小型化和紧凑化设计。
本申请提出的风机组件通过第一与叶轮与第二叶轮500的配合,在保证风机组件送风能力的同时,可有效降低风机组件的工作噪声,并且通过扩压器400的设计,可大幅度降低风机组件的径向尺寸,在保证风机组件可实现二级叶轮送风的情况下,保证了风机组件的径向尺寸不会增大,可使得本申请提出风机组件与相关技术中单叶轮的风机组件的径向尺寸相仿,并且保证了气体的流动效率得到提升。
在本申请的一个实施例中,如图2所示,风机组件还包括:导流风道600,导流风道600的两端分别连通于第一叶轮300的出气端和第二叶轮500的进气端;其中,沿气体流动方向,至少部分导流风道600的口径逐渐增大。
在该实施例中,风机组件还包括导流风道600。其中,导流风道600设 置在壳体100的内部,导流风道600的进口与第一叶轮300的出气端连通,导流风道600的出口与第二叶轮500的进气端连通,进而在第一叶轮300与第二叶轮500之间起到导流的作用,减小气流损失。
此外,如图2所示,沿气体流动方向,至少部分导流风道600的口径逐渐增大。也即,在风机组件运行过程中,进入到导流结构800内部的气流会经过一段口径逐渐增大的导流风道600。气流在经过该部分口径逐渐增大的导流风道600时,可实现减速增压的效果,可降低气体在该部分导流风道600流通时的噪声,并且保证气流压力。
在本申请的一个实施例中,如图2、图3和图4所示,导流风道600包括:扩压风道602,与第一叶轮300的出气端相连通;回流风道604,与扩压风道602和第二叶轮500的进气端相连通;其中,沿气体流动方向,扩压风道602的口径逐渐增大。
在该实施例中,导流风道600包括相连通的扩压风道602和回流风道604。其中,扩压风道602与第一叶轮300的出气端相连通,回流风道604与扩压风道602和第二叶轮500的进气端相连通。如图3所示,如此设计,在风机组件运行过程中,气流在第一叶轮300的驱动下,首先进入到导流风道600的扩压风道602内,而后经过导流风道600的回流风道604,并朝向第二叶轮500流动。
特别地,沿气体流动方向,扩压风道602的口径逐渐增大。也即,当气体在扩压风道602内流动时,气体的流动速度降低,而扩压风道602内部的气压变大。如此设计,在保证相同送风量的情况下,可有效降低第一叶轮300的径向尺寸,进而实现风机组件的结构紧凑化和小型化。
具体实施例中,本实施例采用扩压风道602、回流风道604和扩压器400配合使用,可以大幅降低风机组件的径向尺寸,较传统两级吸尘器的风机组件的径向尺寸缩小20%,与单级吸尘器的风机组件的径向尺寸相当,并且气动效率相较单级吸尘器有明显提高。
在本申请的一个实施例中,如图3所示,第一叶轮300为离心叶轮;扩压风道602包括至少一处弯折,扩压风道602位于第一叶轮300的两侧,回流风道604位于第一叶轮300和第二叶轮500之间。
在该实施例中,第一叶轮300采用离心叶轮,并且扩压风道602包括至少一处弯折。如此设计,使得第一叶轮300的轴向朝向进气口110设置,使得第一叶轮300的径向作为出气端使用。并且,如图3所示,扩压风道602的弯折位于第一叶轮300的周侧,进而保证扩压风道602位于第一叶轮300的两侧,并且连通于第一叶轮300两侧的进气口110和第二叶轮500。
特别地,扩压风道602沿气体流动方向的口径是逐渐增大的,并且扩压风道602本身是弯折设置的。如此设计,使得扩压风道602集扩压和弯道的作用于一体,使扩压风道602内的气流在转弯的同时实现减速增压,从而降低第一叶轮300的径向尺寸。
在本申请的一个实施例中,如图1和图2所示,风机组件还包括:回流结构700,设置于壳体100内,位于第一叶轮300和第二叶轮500之间。
在该实施例中,风机组件还包括回流结构700。其中,回流结构700设置在壳体100内,并且位于第一叶轮300和第二叶轮500之间。回流结构700与第一叶轮300配合使用,进而使得气体由第一叶轮300流动至回流结构700。具体地,回流结构700套设于转轴200,并对自第一叶轮300径向吹出的气体起到回流的作用,进而改变自第一叶轮300径向吹出的气体的流动方向,使得该部分气体流向第二叶轮500。
具体地,如图2和图3所示,当第一叶轮300为离心叶轮时,第一叶轮300朝向径向出风,而第二叶轮500位于第一叶轮300的轴向。因此,本实施例通过回流结构700配合第一叶轮300共同使用,使得回流结构700起到良好的导流和回流作用,进而使得气体由第一叶轮300流动至第二叶轮500。
在本申请的一个实施例中,如图4和图6所示,回流结构700包括:回流盘702,套设于转轴200上,并与转轴200之间存在间隙,导流风道600形成于回流盘702和壳体100的内壁之间;导向叶片704,设置于回流盘702上,至少部分位于回流风道604内。
在该实施例中,回流结构700包括回流盘702和导向叶片704。其中,回流盘702的径向端面被构造为弧形708,进而使得回流盘702与壳体100的内部共同限定出了导流风道600,并且保证导流风道600与第一叶轮300的出气端相连通,进而使得第一叶轮300驱动的气体流向回流结构700。此外,导 向叶片704至少部分设置在回流风道604内。如对此设计,在风机组件运行过程中,气体在第一叶轮300的驱动下进入到导流风道600内,并在导向叶片704的导流作用下流向第二叶轮500,起到使得回流结构700良好的整流和消旋作用。
具体地,如图6所示,导向叶片704设置有多个,并沿回流盘702的外周呈螺旋状延伸。
具体地,在风机运行过程中,由于第一叶轮300为轴向进风径向出风,自第一叶轮300吹出的气体朝向壳体100的内侧壁流动,通过回流结构700的设计,特别是通过导流风道600和导向叶片704的配合,改变了自第一叶轮300吹出气体的流动方向,使得该部分气流朝向第二叶轮500流动。并且,回流盘702与转轴200之间存在间隙,在风机组件运行过程中不会随转轴200旋转,而自第一叶轮300吹出气体本身具有一定的旋向,通过导向叶片704的设计,使得气体在相邻两个导向叶片704之间的间隙流动,进一步起到了消旋作用的作用,保证气体平稳吹向第二叶轮500,避免气体在流向第二叶轮500的过程中出现涡流等现象,进而避免风机组件内部产生不必要的噪声。
具体实施例中,如图3和图5所示,回流盘702朝向进气口110的一端面设置有容置槽706,第一叶轮300的第一转盘302至少部分容置在容置槽706内,进而保证第一转盘302与回流盘702未设置容置槽706的部位平齐设置,使得第一叶轮300的第一导风罩306与壳体100的内部平齐设置。如此设计,保证了第一叶轮300径向的出气端对齐导流风道600,保证第一转盘302和第一导风罩306与导流风道600的内壁相切,保证了气流从第一叶轮300进入导流风道600内部时不会收到阻力。
在本申请的一个实施例中,如图3所示,在转轴200的轴向截面上,回流盘702的径向端面为第一弧线710,壳体100形成扩压风道602的部分内壁为第二弧线114,第一弧线710的第一圆心O 1到第一叶轮300朝向回流结构700的轴向端面之间的距离L1,第二弧线114的第一圆心O 2到第一叶轮300朝向回流结构700的轴向端面之间的距离L2。
在该实施例中,在转轴200的轴向截面上,回流盘702的径向端面为第一弧线710,壳体100形成扩压风道602的局部内壁为第二弧线114。其中, 第一弧线710的直径小于第二弧线114的直径,并且第一弧线710的第一圆心O 1到第一叶轮300朝向回流结构700的轴向端面之间的距离为L1,第二弧线114的第一圆心O 2到第一叶轮300朝向回流结构700的轴向端面之间的距离为L2,满足为L1<L2。如此设计,保证了在气体流动方向上,第一弧线710与第二弧线114之间的距离逐渐增大,也即保证了扩压风道602的口径逐渐增大,进而保证扩压风道602对气流的增压减速作用,降低了第一叶轮300的径向尺寸。
具体地,L1为第一圆心O 1到第一转盘302设置有第一叶片304的一端面之间的距离,L2为第二圆心O 2到第一转盘302设置有第一叶片304的一端面之间的距离。
在本申请的一个实施例中,如图3所示,第一圆心O 1与到第一叶轮300朝向回流结构700的轴向端面的距离为L1,第二圆心O 2到第一叶轮300朝向回流结构700的轴向端面的距离为L2,并且,满足2%≤(L1-L2)/L1≤7%。
在该实施例中,第一圆心O 1和第二圆心O 2之间的距离L1-L2,与第一圆心O 1到第一叶轮300朝向回流结构700的轴向端面的距离L1的比值,要大于或等于2%,并且小于或等于7%。也即,2%≤(L1-L2)/L1≤7%。通过合理设计第一弧线710和第二弧线114的位置关系,扩压风道602的口径的变化趋势和变化幅度,可保证扩压风道602对气流的扩压减速效果,保证了扩压风道602内气流的流速和压力相匹配,进而实现最佳的扩压减速效果,在保证第一叶轮300径向尺寸的同时,保证第一叶轮300的送风能力。
具体实施例中,(L1-L2)/L1的取值可以为2%、3%、4%、5%、6%、7%等,此处不做具体限定。本领域技术人员可以理解的是,只要是可保证扩压风道602对气流的扩压效果,均是可以实现的。
在本申请的一个实施例中,如图3和图4所示,在转轴200的轴向截面上,回流盘702形成回流风道604的部分端面为第一直线712,壳体100形成回流风道604的部分内壁为第二直线116,第一直线712与第二直线116平行,并沿转轴200的径向延伸。
在该实施例中,在转轴200的轴向截面上,回流盘702形成回流风道604的部分端面为第一直线712,壳体100形成回流风道604的部分内壁为第二直 线116,第一直线712与第二直线116平行设置,并且朝向转轴200的方向延伸。如此设计,保证了回流风道604的内壁平行设计,进而使得回流风道604配合回流结构700的导向叶片704,以起到气流整流、消旋的效果。
具体地,在风机运行过程中,从第一叶轮300吹出的气体经过扩压风道602进入到回流风道604后仍存在一定的旋向,而回流风道604的内壁平行设置,并且配合导向叶片704共同作用,使得气流在相邻两个导向叶片704之间的间隙流过,进而对气流起到一定的整理和消旋的作用,保证气体平稳吹向第二叶轮。
在本申请的一个实施例中,如图5所示,第一叶轮300包括:第一转盘302,设置于转轴200上;第一叶片304,设置于第一转盘302面向进气口110的一端面;第一导风罩306,与第一叶片304相连接,第一叶片304位于第一转盘302和第一导风罩306之间;其中,第一导风罩306的外边缘与第一叶轮300的轴线之间的距离L3,大于第一转盘302的外边缘与第一叶轮300的轴线之间的距离L4。
在该实施例中,第一叶轮300为离心叶轮,并且第一叶轮300包括第一转盘302、第一叶片304和第一导风罩306。其中,第一转盘302设置在转轴200上,并可在转轴200的驱动下带动第一叶片304转动;第一导风罩306和第一转盘302位于第一叶片304的两侧,并可在运行过程中起到导流的作用,进而减小气流在第一叶轮300作用下的损失。也即,在第一叶轮300运行过程中,气体在第一叶片304的驱动下从轴向进入到第一叶轮300的内部,并在第一导风罩306和第一转盘302的导流下从径向吹出。
此外,如图5所示,第一导风罩306的外边缘与第一叶轮300的轴线之间的距离为L3,第一转盘302的外边缘与第一叶轮300的轴线之间的距离为L4,且满足L3>L4。也即,在第一叶轮300径向的出口端的位置,第一导风罩306的尺寸比第一转盘302更长。如此设计,可控制气流自第一叶轮300更加均匀流畅的吹出,并且保证自第一叶轮300吹出的气流相较于转轴200本身就具有一个夹角,保证了自第一叶轮300吹出的气流顺畅进入到导流风道600内,并且保证气流在导流风道600内转弯时的流动损失降噪最低。基于上述设计,一方面保证了风机组件的送风能力,另一方面降低了气流在导流风道 600内的噪声和损失。
在本申请的一个实施例中,如图7所示,第二叶轮500包括:第二转盘502,设置于转轴200上;第二叶片504,设置于第二转盘502面向第一叶轮300的一端面;第二导风罩506,与第二叶片504相连接,第二叶片504位于第二转盘502和第二导风罩506之间;其中,第二导风罩506的外边缘与第二叶轮500的轴线之间的距离L5,大于第二转盘502的外边缘与第二叶轮500的轴线之间的距离L6。
在该实施例中,第二叶轮500为离心叶轮,并且第二叶轮500包括第二转盘502、第二叶片504和第二导风罩506。其中,第二转盘502设置在转轴200上,并可在转轴200的驱动下带动第二叶片504转动;第二导风罩506和第二转盘502位于第二叶片504的两侧,并可在运行过程中起到导流的作用,进而减小气流在第二叶轮500作用下的损失。也即,在第二叶轮500运行过程中,气体在第二叶片504的驱动下从轴向进入到第二叶轮500的内部,并在第二导风罩506和第二转盘502的导流下从径向吹出。
此外,如图7所示,在垂直于转轴200的截面上,第二导风罩506的外边缘与第二叶轮500的轴线之间的距离为L5,第二转盘502的外边缘与第二叶轮500的轴线之间的距离为L6,且满足L5>L6。也即,在第二叶轮500径向的出口端的位置,第二导风罩506的尺寸比第二转盘502更长。如此设计,可控制气流自第二叶轮500更加均匀流畅的吹出,并且保证自第二叶轮500吹出的气流相较于转轴200本身就具有一个夹角,保证了自第二叶轮500吹出的气流顺畅进入到扩压器400,并且在转弯时的流动损失降噪最低。一方面保证了风机组件的送风能力,另一方面降低了气流在导流风道600内的噪声。
在本申请的一个实施例中,如图7所示,在经过转轴200的轴向截面上,第二转盘502在的径向边缘的延长线所在的直线,与转轴200的轴线相交形成的夹角α,大于或等于80°,小于或等于89°,其中,夹角α位于第二转盘502与出气口112之间。
在该实施例中,在转轴200的轴向截面上,第二转盘502在的径向边缘的延长线所在的直线与转轴200的轴线形成有夹角α,该夹角α处于第二转盘502与出气口112之间,并且大于或等于80°而小于或等于89°也即,满足 80°≤α≤89°。如此设计,保证了气流在第二叶轮500从第二叶轮500的出气端吹出后相对于转轴200倾斜,并且保证了气流可以顺畅地过渡到扩压器400内,减小气流损失和气流噪声。
特别地,如图7所示,通过设置第二导风罩506的外边缘与第二叶轮500的轴线之间的距离L5大于第二转盘502的外边缘与第二叶轮500的轴线之间的距离L6,并且设计第二转盘502在的径向边缘的延长线所在的直线与转轴200的轴线形的夹角α大于或等于80°而小于或等于89°,可实现优化两级气动载荷匹配,进而提高整机气动效率的技术效果。
具体实施例中,夹角α的取值并不做具体限定,可以为80°、81°、82°、83°、84°、85°、86°、87°、88°、89°等。本领域技术人员可以理解的是,只要是能够提高整机气动效率,均是可以实现的。
在本申请的一个实施例中,如图2所示,风机组件还包括:导流结构800,设置于转轴200上,导流结构800与壳体100的内壁之间形成过流风道900,过流风道900连通于导流风道600的出气端和第二叶轮500的进气端。
在该实施例中,风机组件还包括导流结构800。其中,导流结构800设置在转轴200上,位于壳体100的内部。导流结构800与壳体100的内壁之间形成过流风道900,过流风道900的两端分别连通导流风道600的出气端和第二叶轮500的进气端。如此设计,保证了经过导流风道600吹出的气流可在导流结构800的导流作用下顺畅地流向第二叶轮500,进一步降低了壳体100内部对于气流的阻碍,一方面保证了气体在壳体100内部的流动速度,另一方面降低了气流在可以壳体100的流动噪声。
在本申请的一个实施例中,如图2所示,在过流风道900的出风方向上,导流结构800的直径先减小后增大。
在该实施例中,在过流风道900的出风方向上,导流结构800的两端分别于回流盘702和第二叶轮500衔接,并且保证导流结构800的直径先减小后增大。如此设计,保证了导流结构800的两端与回流盘702和第二叶轮500连接处相切,保证了导流结构800的两端与回流盘702和第二叶轮500平滑过渡,避免导流结构800与回流盘702的衔接处、以及导流结构800与第二叶轮500的衔接处存在阶梯,进而保证了气流平缓顺畅地从导流风道600流向过流 风道900。
在本申请的一个实施例中,如图2所示,扩压器400为轴流扩压器,扩压器400包括至少一组扩压叶片402,任一组扩压叶片402呈环状分布。
在该实施例中,设置扩压器为轴流扩压器。其中,扩压器400包括至少一组扩压叶片402,任一组扩压叶在出风口处呈环状分布。如此设计,使得轴流扩压器一方面保证了极大程度上降低第一叶轮和第二叶轮的径向尺寸,另一方面保证了风机组件的送风效率。并且可利用轴流扩压器替代径向扩压器使用,从而降低风机组件的径向尺寸。
在本申请的一个实施例中,如图2所示,扩压器400包括多组扩压叶片402;在气体流动方向上,扩压叶片402数量逐渐增大;和/或在气体流动方向上,扩压叶片402的旋向角逐渐减小。
在该实施例中,扩压器400包括多组扩压叶片402,并且多组扩压叶片402在气体流动方向上间隔设置。
此外,在气体流动方向上,每组扩压叶片402的数量逐渐增大,并且每组扩压叶片402的旋向角逐渐减小。如此设计,可使得扩压器400的扩压叶片402相互配合,保证对气流的扩压效果,同时可利用包括多组扩压叶片402的轴流扩压器替代径向扩压器使用,从而降低风机组件的径向尺寸。
在本申请的一个实施例中,如图2所示,扩压叶片402为三元叶片。
在该实施例中,扩压叶片402为三元叶片。特别地,多个扩压叶片402配合使用,可替代径向扩压器使用,从而降低风机组件的径向尺寸。
在本申请的一个实施例中,如图1和图2所示,壳体100包括:第一安装段102,第一叶轮300位于第一安装段102内;第二安装段104,第二叶轮500和扩压器400位于第二安装段104内;过渡段106,连接于第一安装段102和第二安装段104设置。
在该实施例中,壳体100包括相连接的第一安装段102、第二安装段104和过渡段106。其中,进气口110设置在第一安装段102的轴向端面,并将第一叶轮300设置在第一安装段102内;出气口112设置在第二安装段104的轴向端面,并将第二叶轮500设置在第二安装段104内;过渡段106设置在第一安装段102和第二安装段104之间,并且同时与第一安装段102和第二安装段 104相连接。
此外,如图2所示,导流结构800与过渡段106的内壁之间形成了过流风道900,第一安装段102的部分内壁与回流结构700的回流盘702之间形成了导流风道600。
在本申请的一个实施例中,如图1和图2所示,过渡段106朝向转轴200凹陷设置;壳体100还包括翅片108,翅片108设置于过渡段106上,并连接于第一安装段102和第二安装段104。
在该实施例中,风机组件还包括翅片108。其中,过渡段106朝向转轴200凹陷设置,翅片108设置在壳体100的外壁,位于过渡段106的位置,并同时与第一安装段102和第二安装段104相连接。通过翅片108的设置,有效提升了风机组件的散热面积,进而实现了风机组件快速降温的目的。
具体地,翅片108为金属易导热材料加工而成,位于第一叶轮300和第二叶轮500之间,并且与壳体100的外壁无缝连接。具体地,翅片108设置有多个,并沿转轴200的轴向分布。
在本申请的一个实施例中,如图1和图2所示,转轴200上设置有螺纹,风机组件还包括螺母202,螺母202安装于螺纹上以固定第一叶轮300。
在该实施例中,如图1和图2所示,风机组件还包括螺母202。其中,转轴200上设置有螺纹,第一叶轮300通过螺母202与转轴200上的螺纹配合实现安装。此外,螺母202的旋向与转轴200的选项相反,保证风机组件运行时第一叶轮300不会脱落。
在本申请的一个实施例中,如图2所示,风机组件还包括驱动部件204,驱动部件204与转轴200相连接,并配置为驱动转轴200旋转。
在该实施例中,风机组件还包括驱动部件204,驱动部件204与转轴200相连接,并可在运行过程中驱动转动运行,进而使得第一叶轮300、第二叶轮500和扩压器400工作以驱动气体。具体地,驱动部件204可采用电机,扩压器400设置在驱动部件204的外周。
如图2中箭头所示所示,在实施例提出的风机组件,气体流动过程如下:
转轴200运行进而带动设置与转轴200上的第一叶轮300和第二叶轮 500转动,第一叶轮300转动可驱动壳体100外部的气体通过进气口110进入到壳体100的内部,而后该部分气体在壳体100的驱动下进入到导流风道600内部,并先后经过扩压风道602和回流风道604,而后,该部分气体在导向叶片704的导向作用下流向过流风道900,并在过流风道900的导流作用下流向第二叶轮500,第二叶轮500继续驱动气体流向扩压器400,最终该部分气体经过扩压器400通过出气口112排出。
如图5所示,第一导风罩306的外边缘与第一叶轮300的轴线之间的距离L3,大于第一转盘302的外边缘与第一叶轮300的轴线之间的距离L4,可保证第一叶轮300的出气段的流场更加均匀,降低扩压风道602和回流风道604的流动损失。
如图3所示,第一叶轮300为离心叶轮,扩压风道602存在弯折,并且扩压风道602的口径在气体流动的方向上逐渐增大,使得气流在扩压风道602内既可以转弯又可以实现减速增压,进而降低了第一叶轮300的径向尺寸。
如图4所示,回流风道604配合导向叶片704设计,对气流起到整流和消旋的效果。
如图2所示,转轴200上设置有导流结构800,且导流结构800的型线为流线型,并与回流盘702的第一直线712和第二叶轮500相切且光滑过渡。
如图7所示,第二导风罩506的外边缘与第二叶轮500的轴线之间的距离L5,大于第二转盘502的外边缘与第二叶轮500的轴线之间的距离L6,并且在转轴200的轴向截面上,第二转盘502在的径向边缘的延长线所在的直线与转轴200的轴线形成的夹角α大于或等于80°而小于或等于89°,可起到优化两级气动载荷匹配提高整机气动效率的效果。
如图1和图2所示,扩压器400采用三级轴流扩压器,可替代径向扩压器从而降低风机组件的径向尺寸。
本申请第二方面的实施例提出一种吸尘器,包括:如上述任一实施例的风机组件。
本实施例提出的吸尘器包括如上述任一实施例的风机组件。因此,具有上述风机组件的全部有益效果,在此不再一一论述。
特别地,本实施例提出的吸尘器可以为手持式吸尘器,并且具有小型化的 结构特点,便于用户使用。
具体实施例中,当本实施例提出的风机组件应用于手持式吸尘器时,由于第一叶轮300与第二叶轮500的配合,可实现手持式吸尘器的大吸力工作,进而提升手持式吸尘器的作用距离和工作效果。此外,由于扩压风道602、回流风道604、导流结构800以及扩压器400等多个部件之间的配合,有效降低了手持式吸尘器的结构尺寸,特别是降低了手持式吸尘器的径向尺寸,一方面便于用户手持操作,另一方面可伸入到狭小的空间内部作用。
具体实施例中,如图1和图2所示,本实施例提出的风机组件包括第一叶轮300、扩压风道602、回流风道604、转轴200、导流结构800、第二叶轮500、翅片108、螺母202以及扩压器400等结构。其中,空气依次经过第一叶轮300、扩压风道602、回流风道604、导流结构800、第二叶轮500以及扩压器400,完成增压的目的。
其中,如图1、图2和图5所示,第一叶轮300通过螺母202固定在转轴200上,螺母202的旋向与转轴200的旋向相反,以保证工作时第一叶轮300不会脱落。其中,第一导风罩306的外边缘与第一叶轮300的轴线之间的距离,略大于第一转盘302的外边缘与第一叶轮300的轴线之间的距离,以控制第一叶轮300的出气端的流场更加均匀,降低扩压风道602及回流风道604的流动损失。
其中,如图1、图2和图3所示,扩压风道602由回流盘702的第一弧线710和壳体100内壁的第二弧线114限定出。其中,第一弧线710的第一圆心O 1和第二弧线114的第二圆心O 2不重合,且第一弧线710的第一圆心O 1较第二弧线114的第二圆心O 2在轴向距离第一叶轮300的第一转盘302更近,第一弧线710的第一圆心O 1与到第一转盘302的距离为L1,第二弧线114的第二圆心O 2与到第二转盘502的距离为L2,满足2%≤(L1-L2)/L1≤7%。如此设计,使得扩压风道602形成渐扩型风道。而扩压风道602本身就存在弯折,这就形成了集扩压和弯道于一体的扩压风道602,使气流在转弯的同时减速增压,从而降低第一叶轮300的径向尺寸。具体实施例中,(L1-L2)/L1的取值可选择2%、3%、4%、5%、6%、7%等。
其中,如图3和图4所示,回流风道604由回流盘702的第一直线712 和壳体100内壁的第二直线116限定出,并且配合回流结合的16和导向叶片704使用。其中,第一直线712和第二直线116竖直平行,并且配合导向叶片704以起到气流整流、消旋的效果。具体地,导向叶片704的数量为多个,并在回流盘702上呈螺旋状分布。
其中,如图2所示,转轴200上设置有导流结构800和螺纹。其中,螺纹旋向与转轴200旋向相反,以保证工作时第一叶轮300不会脱落。导流结构800的外壁为流线型,且与回流盘702的第一直线712以及第二叶轮500相切光滑过渡,使得导流风道600与壳体100的内部之间形成过流风道900,并保证第一叶轮300稳定安装在转轴200上。
其中,如图5所示,第二导风罩506的外边缘与第二叶轮500的轴线之间的距离,略大于第二转盘502的外边缘与第二叶轮500的轴线之间的距离,并且在转轴200的轴向截面上,第二转盘502在的径向边缘的延长线所在的直线,与转轴200的轴线非垂直,而是与转轴200的轴线形成了夹角α,夹角α在80°至89°,以起到优化两级气动载荷匹配提高整机气动效率的效果。具体实施例中,夹角α的取值可选择80°、81°、82°、83°、84°、85°、86°、87°、88°、89°等。
其中,如图1和图2所示,27个翅片108与壳体100的第一安装段102和第二安装段104连接,起到冷却气流的作用,翅片108为金属易导热材料加工而成,设置于第一叶轮300和第二叶轮500之间并与壳体100无缝连接。
其中,如图1和图2所示,扩压器400采用三级轴流扩压器,扩压器400包括三排扩压叶片402,三排扩压叶片402的数分别为11、15和23,在气体流动方向上依次排列,且在气体流动方向上,各级扩压叶片402的旋向角逐渐减小。具体地,扩压叶片402为三元叶片。
本实施例提出的风机组件采用两级叶轮的方案,可以在相同风量和风压下,叶轮转速降低33%。对于吸尘器而言,以更低的转速达到相同的吸功,具有降低吸尘器噪声的效果。此外,本实施例采用扩压风道602、回流风道604和三级轴流扩压器,可以大幅降低多级风机组件的径向尺寸,较传统两级吸尘器的风机组件的径向尺寸缩小20%,与主流单级吸尘器的风机组件的径向尺寸相当,并且气动效率相较单级吸尘器有明显提高。
具体实施例中,在转轴200的轴向截面上回流盘702的径向端面、以及壳体100形成扩压风道602的部分内壁并不局限于弧线,样条曲线、Bezier曲线也可以达到相近的效果。当采用样条曲线时,样条曲线的圆心可以理解为样条曲线两端点连线的中点,当采用Bezier曲线时,样条曲线的圆心可以理解为Bezier曲线两端点连线的中点。
具体实施例中,回流结构700的导向叶片704可以设置有多个,并不局限于16个。
具体实施例中,翅片108可以设置有多个,并不局限于27个,翅片108的外形也不仅局限于片状。
具体实施例中,扩压器400并不局限于设置三排扩压叶片402,扩压叶片402的数量也不仅局限于11、15和23。
具体实施例中,如图8所示,图中实线表示本实施例提出的风机组件的相关数据,虚线表示相关技术中风机组件的试验数据。从图8中可以清楚看出,本实施例提出的风机组件在送风能力、径向尺寸和工作噪声上明显优于相关技术。
在本申请的描述中,术语“多个”则指两个或两个以上,除非另有明确的限定,术语“上”、“下”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制;术语“连接”、“安装”、“固定”等均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本说明书的描述中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本申请的实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的 技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (17)

  1. 一种风机组件,其中,包括:
    壳体,所述壳体包括相连通的进气口和出气口;
    转轴,设置于所述壳体内,并从所述进气口向所述出气口延伸;
    第一叶轮,设置于所述转轴上,位于所述进气口一侧;
    扩压器,设置于所述壳体内,位于所述出气口一侧;
    第二叶轮,设置于所述转轴上,位于所述第一叶轮和所述扩压器之间。
  2. 根据权利要求1所述的风机组件,其中,还包括:
    导流风道,所述导流风道的两端分别连通于所述第一叶轮的出气端和所述第二叶轮的进气端;
    所述导流风道包括:
    扩压风道,与所述第一叶轮的出气端相连通,沿气体流动方向,所述扩压风道的口径逐渐增大;
    回流风道,与所述扩压风道和所述第二叶轮的进气端相连通。
  3. 根据权利要求2所述的风机组件,其中,
    所述第一叶轮为离心叶轮;
    所述扩压风道包括至少一处弯折,所述扩压风道位于所述第一叶轮的两侧,所述回流风道位于所述第一叶轮和所述第二叶轮之间。
  4. 根据权利要求2所述的风机组件,其中,还包括:
    回流结构,设置于所述壳体内,位于所述第一叶轮和所述第二叶轮之间;
    所述回流结构包括:
    回流盘,套设于所述转轴上,所述导流风道形成于所述回流盘和所述壳体的内壁之间;
    导向叶片,设置于回流盘上,至少部分位于所述回流风道内。
  5. 根据权利要求4所述的风机组件,其中,
    在所述转轴的轴向截面上,所述回流盘的径向端面为第一弧线,所述壳体形成所述扩压风道的部分内壁为第二弧线,所述第一弧线的第一圆心到所述第一叶轮朝向所述回流结构的轴向端面之间的距离,小于所述第二弧线的第二圆 心到所述第一叶轮朝向所述回流结构的轴向端面之间的距离。
  6. 根据权利要求5所述的风机组件,其中,
    所述第一圆心和所述第二圆心之间的距离,与所述第一圆心到所述第一叶轮朝向所述回流结构的轴向端面的距离的比值,大于或等于2%,并小于或等于7%。
  7. 根据权利要求4所述的风机组件,其中,
    在所述转轴的轴向截面上,所述回流盘形成所述回流风道的部分端面为第一直线,所述壳体形成所述回流风道的部分内壁为第二直线,所述第一直线与所述第二直线平行,并沿所述转轴的径向延伸。
  8. 根据权利要求1至7中任一项所述的风机组件,其中,所述第一叶轮包括:
    第一转盘,设置于所述转轴上;
    第一叶片,设置于所述第一转盘面向所述进气口的一端面;
    第一导风罩,与所述第一叶片相连接,所述第一叶片位于所述第一转盘和所述第一导风罩之间;
    其中,所述第一导风罩的外边缘与所述第一叶轮的轴线之间的距离,大于所述第一转盘的外边缘与所述第一叶轮的轴线之间的距离。
  9. 根据权利要求1至7中任一项所述的风机组件,其中,所述第二叶轮包括:
    第二转盘,设置于所述转轴上;
    第二叶片,设置于所述第二转盘面向所述第一叶轮的一端面;
    第二导风罩,与所述第二叶片相连接,所述第二叶片位于所述第二转盘和所述第二导风罩之间;
    其中,在垂直于所述转轴的截面上,所述第二导风罩的外边缘与所述第二叶轮的轴线之间的距离,大于所述第二转盘的外边缘与所述第二叶轮的轴线之间的距离。
  10. 根据权利要求9所述的风机组件,其中,
    在经过所述转轴的轴向截面上,所述第二转盘的径向边缘的延长线所在的直线,与所述转轴的轴线相交形成夹角,所述夹角位于所述第二转盘与所述出 气口之间。
  11. 根据权利要求2至7中任一项所述的风机组件,其中,还包括:
    导流结构,设置于所述转轴上,所述导流结构与所述壳体的内壁之间形成过流风道,所述过流风道连通于所述导流风道的出气端和所述第二叶轮的进气端;
    其中,在所述过流风道的出风方向上,所述导流结构的直径先减小后增大。
  12. 根据权利要求1至7中任一项所述的风机组件,其中,
    所述扩压器为轴流扩压器,所述扩压器包括至少一组扩压叶片,任一组所述扩压叶片呈环状分布。
  13. 根据权利要求12所述的风机组件,其中,
    所述扩压器包括多组所述扩压叶片;
    在气体流动方向上,每组所述扩压叶片数量逐渐增大;和/或
    在气体流动方向上,每组所述扩压叶片的旋向角逐渐减小。
  14. 根据权利要求1至7中任一项所述的风机组件,其中,所述壳体包括:
    第一安装段,所述第一叶轮位于所述第一安装段内;
    第二安装段,所述第二叶轮和所述扩压器位于所述第二安装段内;
    过渡段,连接于所述第一安装段和所述第二安装段。
  15. 根据权利要求14所述的风机组件,其中,
    所述过渡段朝向所述转轴凹陷设置;
    所述壳体还包括翅片,所述翅片设置于所述过渡段上,并连接于所述第一安装段和所述第二安装段。
  16. 根据权利要求1至7中任一项所述的风机组件,其中,
    所述转轴上设置有螺纹,所述风机组件还包括螺母,所述螺母安装于所述螺纹上以固定所述第一叶轮。
  17. 一种吸尘器,其中,包括:如权利要求1至16中任一项所述的风机组件。
PCT/CN2021/131381 2020-12-25 2021-11-18 风机组件和吸尘器 WO2022134964A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/212,508 US20230332604A1 (en) 2020-12-25 2023-06-21 Fan Assembly and Vacuum Cleaner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011558784.1A CN114680706B (zh) 2020-12-25 2020-12-25 风机组件和吸尘器
CN202011558784.1 2020-12-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/212,508 Continuation US20230332604A1 (en) 2020-12-25 2023-06-21 Fan Assembly and Vacuum Cleaner

Publications (1)

Publication Number Publication Date
WO2022134964A1 true WO2022134964A1 (zh) 2022-06-30

Family

ID=82129116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/131381 WO2022134964A1 (zh) 2020-12-25 2021-11-18 风机组件和吸尘器

Country Status (3)

Country Link
US (1) US20230332604A1 (zh)
CN (1) CN114680706B (zh)
WO (1) WO2022134964A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115021104A (zh) * 2022-08-08 2022-09-06 人民电器集团(山东)枣矿智能制造有限公司 一种高低压开关柜的轴流式清洁装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115898909A (zh) * 2022-11-22 2023-04-04 广东美的白色家电技术创新中心有限公司 电风机和终端设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB920188A (en) * 1960-06-21 1963-03-06 Neu Sa Improvements in or relating to centrifugal fans and compressors
CN206190606U (zh) * 2016-10-18 2017-05-24 美的集团股份有限公司 离心风机和具有其的吸尘器
CN106989034A (zh) * 2017-05-11 2017-07-28 美的集团股份有限公司 离心风机及具有其的吸尘器
CN207315689U (zh) * 2017-10-19 2018-05-04 美的集团股份有限公司 电风机和具有其的吸尘器
CN110513304A (zh) * 2018-05-22 2019-11-29 美的集团股份有限公司 离心风机和吸尘器
CN212079745U (zh) * 2020-05-13 2020-12-04 广东威灵电机制造有限公司 扩压装置、风机及吸尘器

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3245610A (en) * 1964-01-02 1966-04-12 Ametek Inc Motor-fan unit for vacuum cleaners
JP3482668B2 (ja) * 1993-10-18 2003-12-22 株式会社日立製作所 遠心形流体機械
CA2386355A1 (fr) * 2002-05-27 2003-11-27 Normand Beaudoin Synthese des moteurs a temps mort annules
US7128061B2 (en) * 2003-10-31 2006-10-31 Vortech Engineering, Inc. Supercharger
NZ589602A (en) * 2006-05-24 2012-02-24 Resmed Motor Technologies Inc Low noise blower for CPAP devices with a shield to isolate the stator vane from the impeller pressure pulse
CN201073278Y (zh) * 2006-11-29 2008-06-18 青岛地恩地机电科技股份有限公司 强吸风集尘器
US8408879B2 (en) * 2008-03-05 2013-04-02 Dresser-Rand Company Compressor assembly including separator and ejector pump
JP5350835B2 (ja) * 2009-02-25 2013-11-27 貞幸 網矢 円盤型同期電動機
WO2013110140A1 (en) * 2012-01-24 2013-08-01 Aquaglobe Pty Ltd A variable output generator and water turbine
CN203098404U (zh) * 2013-01-30 2013-07-31 杭州振兴工业泵制造有限公司 多级透平真空泵可拆式回流器
US20190128258A1 (en) * 2017-11-02 2019-05-02 GM Global Technology Operations LLC Multiple lobe vane fluid pump having enhanced under-vane cavity pressurization
CN109340187B (zh) * 2018-10-08 2021-04-20 江苏美的清洁电器股份有限公司 用于吸尘器的定叶轮、风机及吸尘器
CN211082284U (zh) * 2019-07-26 2020-07-24 烟台龙港泵业股份有限公司 一种对称式自平衡中心出液液下泵装置
CN110617230A (zh) * 2019-09-09 2019-12-27 浙江奥正机电技术有限公司 一种吸尘器离心风机
CN211355203U (zh) * 2019-12-06 2020-08-28 格力博(江苏)股份有限公司 吸尘器
CN111927795A (zh) * 2020-08-20 2020-11-13 绍兴智新机电科技有限公司 一种两级轴流低噪音风机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB920188A (en) * 1960-06-21 1963-03-06 Neu Sa Improvements in or relating to centrifugal fans and compressors
CN206190606U (zh) * 2016-10-18 2017-05-24 美的集团股份有限公司 离心风机和具有其的吸尘器
CN106989034A (zh) * 2017-05-11 2017-07-28 美的集团股份有限公司 离心风机及具有其的吸尘器
CN207315689U (zh) * 2017-10-19 2018-05-04 美的集团股份有限公司 电风机和具有其的吸尘器
CN110513304A (zh) * 2018-05-22 2019-11-29 美的集团股份有限公司 离心风机和吸尘器
CN212079745U (zh) * 2020-05-13 2020-12-04 广东威灵电机制造有限公司 扩压装置、风机及吸尘器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115021104A (zh) * 2022-08-08 2022-09-06 人民电器集团(山东)枣矿智能制造有限公司 一种高低压开关柜的轴流式清洁装置

Also Published As

Publication number Publication date
CN114680706A (zh) 2022-07-01
US20230332604A1 (en) 2023-10-19
CN114680706B (zh) 2023-01-24

Similar Documents

Publication Publication Date Title
WO2022134964A1 (zh) 风机组件和吸尘器
EP1340921B1 (en) Fan assembly
US11401939B2 (en) Axial fan configurations
US11116367B2 (en) Electric fan and vacuum cleaner having same
WO2022218009A1 (zh) 空调装置及汽车
CN109340187B (zh) 用于吸尘器的定叶轮、风机及吸尘器
JP4995464B2 (ja) 送風装置
CN112780599A (zh) 离心风机以及烹饪器具
CN114352573B (zh) 一种紧凑型离心风机
CN219372164U (zh) 一种降噪效果好的无刷电机
WO2022134963A1 (zh) 风机组件和吸尘器
WO2022143328A1 (zh) 离心风机、家用电器、蜗壳和烹饪器具
CN215109624U (zh) 组合风机以及烹饪器具
JPH0539930A (ja) 空気調和装置
CN113123979B (zh) 空调室外机
WO2021139508A1 (zh) 扩压器、送风装置及吸尘设备
CN108469073B (zh) 窗式空调设备
JP3387987B2 (ja) 多翼送風ファン
CN111911425A (zh) 离心风机及空调器
CN212431079U (zh) 风管机
CN217999922U (zh) 鼓型离心风机
WO2023108921A1 (zh) 风机及其清洁设备
WO2023029421A1 (zh) 扩压器组件、电风机及清洁设备
CN217206638U (zh) 双转向扇叶结构
WO2021143044A1 (zh) 离心风机以及送风装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21908963

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16.11.2023)