WO2022134558A1 - 废旧线路板和电子元件封装材料中热解油的分离回用方法 - Google Patents

废旧线路板和电子元件封装材料中热解油的分离回用方法 Download PDF

Info

Publication number
WO2022134558A1
WO2022134558A1 PCT/CN2021/107020 CN2021107020W WO2022134558A1 WO 2022134558 A1 WO2022134558 A1 WO 2022134558A1 CN 2021107020 W CN2021107020 W CN 2021107020W WO 2022134558 A1 WO2022134558 A1 WO 2022134558A1
Authority
WO
WIPO (PCT)
Prior art keywords
pyrolysis
pyrolysis oil
circuit boards
packaging materials
waste circuit
Prior art date
Application number
PCT/CN2021/107020
Other languages
English (en)
French (fr)
Inventor
孙建璋
孟英杰
Original Assignee
山东省环境保护科学研究设计院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东省环境保护科学研究设计院有限公司 filed Critical 山东省环境保护科学研究设计院有限公司
Publication of WO2022134558A1 publication Critical patent/WO2022134558A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/04Condensation polymers of aldehydes or ketones with phenols only of aldehydes
    • C08G8/08Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/04Condensation polymers of aldehydes or ketones with phenols only of aldehydes
    • C08G8/08Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ
    • C08G8/24Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ with mixtures of two or more phenols which are not covered by only one of the groups C08G8/10 - C08G8/20

Definitions

  • the invention relates to a method for separating and reusing pyrolysis oil in waste circuit boards and packaging materials of electronic components, and belongs to the technical field of recycling of non-metallic components in electronic waste.
  • Waste circuit boards and electronic components contain metals, organic substances and inorganic substances, which are valuable secondary resources, and the recovery of valuable metals and precious metals in them has considerable economic benefits.
  • non-metallic components contain brominated flame retardants. Due to the risk of release of brominated flame retardants, non-metallic components cannot be directly reused as fillers or building materials. Large amounts of non-metallic components pose huge risks to environmental protection and human health.
  • Debromination and pyrolysis technology can effectively remove bromine in non-metallic components and degrade high molecular organic matter into small molecular substances. It can be used as a pretreatment technology to remove the packaging of electronic components, and it can also be used as a non-metal treatment technology for waste circuit boards.
  • the pyrolysis oil produced by debromination pyrolysis contains more than 30% of organic compounds, and contains a large amount of carcinogens such as phenol, bisphenol A, phenol derivatives, long-chain alkanes, benzene, etc., which is a typical hazardous waste. .
  • carcinogens such as phenol, bisphenol A, phenol derivatives, long-chain alkanes, benzene, etc.
  • benzene and phenol are important chemical raw materials, and long-chain alkanes can be used as some crude oil substitutes. If the pyrolysis oil with complex composition can be separated and reused, it can not only reduce environmental pollution, but also have obvious economic value.
  • the present invention provides a method for separating and reusing pyrolysis oil in waste circuit boards and packaging materials of electronic components according to the components of pyrolysis oil and its physical properties, which fully utilizes the heat provided by the pyrolysis process,
  • the separation process does not need to provide heat, the recovery cost is low, the operation is simple, and the separation efficiency is high.
  • the present invention comprises the following steps:
  • Step 1 Crush the waste circuit boards and electronic component packaging materials, and then separate the metal components and non-metal components;
  • the crushing is secondary crushing by hammer crusher and shear crusher, respectively. But not limited to this method, it also includes multi-stage crushing and any combination of various crushers.
  • the separation of metal components and non-metal components is performed by eddy current sorting.
  • Step 2 using a debromination agent to debrominate and pyrolyze the sorted non-metallic powder under an inert gas atmosphere;
  • the debromination agent is a combination of one or two or more of alkaline metal oxides and hydroxides (such as solid sodium hydroxide, calcium hydroxide, calcium oxide, calcium carbonate, etc.) in any proportion.
  • alkaline metal oxides and hydroxides such as solid sodium hydroxide, calcium hydroxide, calcium oxide, calcium carbonate, etc.
  • the mass ratio of the non-metal to the debromination agent is 5:1-3.
  • the inert gas is argon or nitrogen.
  • the flow rate of the inert gas is 20-100 mL/min.
  • the heating rate of the debromination pyrolysis is 15-30°C/min, the pyrolysis temperature is 600-700°C, and the retention time is 15-30 minutes.
  • Step 3 The pyrolysis product is condensed by controlling the temperature, and the condensation temperature interval is adjusted according to the composition of the pyrolysis oil, so as to realize the separation of the pyrolysis oil, and obtain the separated components in different condensation temperature intervals.
  • the selection of the temperature range and the number of the condensing temperature intervals is variable, and the condensing temperature interval is adjusted according to the composition of the pyrolysis oil.
  • the condensed products in different temperature ranges are collected in sequence.
  • Step 4 Synthesize the oil-based resin under the catalysis of hydrochloric acid with the mixture of the separated components obtained in the lowest condensation temperature range and formaldehyde.
  • the condensation is divided into three condensation zones, and the condensation temperature is controlled at 150-200°C, 100-150°C and below 100°C to room temperature respectively.
  • the separated components obtained in the lowest condensation temperature range are the products condensed below 100 °C, and their components are mainly phenol and its homologues.
  • the molar ratio of the separated components to formaldehyde is 1:0.7-1.
  • the heating temperature of the synthesis is 75-95° C., the reaction time is 2-4 hours, and the mass concentration of hydrochloric acid is 2.5-10%.
  • the method of the present invention is simple to operate, has high separation efficiency, and has the following advantages:
  • the present invention utilizes the non-metallic pyrolysis waste heat to realize the evaporation of the pyrolysis oil without additional heating, thus saving the cost.
  • FIG. 1 is a picture of the pyrolysis oil ethanol solution of the electronic component packaging material obtained under different condensation temperatures obtained by the present invention.
  • Fig. 2 is the Fourier transform infrared spectrum (FT-IR) of the oil-based resin prepared by the method of the present invention.
  • Fig. 3 is the thermogravimetric analysis spectrum (TG) of the oil-based resin prepared by the method of the present invention.
  • Step 1 The waste circuit boards are subjected to secondary crushing by hammer crusher and shear crusher, and then metal components and non-metal components are separated by eddy current sorting.
  • Step 2 Using Ca(OH) 2 as a debromination agent, the sorted non-metallic powder is subjected to debromination and pyrolysis (in a pyrolysis furnace) in a nitrogen atmosphere, wherein the non-metallic components and Ca(OH) 2
  • the mass ratio is 5:1, the nitrogen flow rate is 30mL/min; the heating rate is 20°C/min; the pyrolysis temperature is 600°C; and the retention time is 15min.
  • Step 3 In the condensation zone, the separation and purification of the pyrolysis oil is achieved by controlling the condensation temperature to be 160-200°C, 120-150°C and below 120°C respectively.
  • Step 4 The condensed product below 120°C and formaldehyde are uniformly mixed according to a molar ratio of 1:0.8 to prepare a mixture, add hydrochloric acid with a mass concentration of 3.0%, and react at a reaction temperature of 90°C for 2.5 hours to obtain an oil-based resin.
  • Step 1 Disassemble the waste electronic components from the circuit board for shear crushing and ball milling, and then separate metal components and non-metal components through high-voltage electrical separation and eddy current separation.
  • Step 2 Using CaCO3 as a debromination agent, the sorted non-metallic powder is subjected to debromination and pyrolysis in an argon atmosphere, wherein the mass ratio of nonmetallic to CaCO3 is 5 :2, and the argon gas flow rate is 50mL/min ; The heating rate is 25°C/min; the pyrolysis temperature is 650°C; the retention time is 30min.
  • Step 3 Adjust the condensation temperature range according to the specific composition of the pyrolysis oil.
  • the selection of the temperature range is variable, and the number of temperature ranges and temperature settings may be inconsistent.
  • Four condensation temperature zones are set here. In the condensation zone, the separation and purification of the pyrolysis oil is achieved by controlling the condensation temperature to be 280-300°C, 200-280°C, 140-200°C and below 140°C respectively.
  • Step 4 Mix the condensed product below 140°C with formaldehyde according to a molar ratio of 1:0.85, add hydrochloric acid with a mass concentration of 6.0%, and react at a reaction temperature of 95°C for 2 hours to obtain an oil-based resin.
  • Figure 1 shows the pyrolysis oil ethanol solutions of electronic component packaging materials obtained at different condensation temperatures.
  • Figure 2 presents the Fourier transform infrared spectrum of the prepared oil-based resin.
  • Figure 3 presents the thermogravimetric analysis spectrum of the prepared oil-based resin.
  • Step 1 First crush the waste circuit board and the disassembled electronic components on it by a hammer crusher, and then cut and crush it with a shearing crusher.
  • Step 2 Using CaO 2 as a debromination agent, the sorted non-metallic powder is subjected to debromination and pyrolysis in an argon atmosphere, wherein the mass ratio of non-metal to CaCO 3 is 5:3, and the argon gas flow rate is 100 mL/min ; The heating rate is 15°C/min; the pyrolysis temperature is 700°C; the retention time is 30min.
  • Step 3 In the condensation zone, the condensation temperature is controlled to be 150-200°C, 100-150°C and below 100°C, respectively. To achieve the separation and purification of pyrolysis oil.
  • Step 4 Mix the condensed product below 100°C with formaldehyde in a molar ratio of 1:0.7, add hydrochloric acid with a mass concentration of 10.0%, and react at a reaction temperature of 75°C for 3 hours to obtain an oil-based resin.
  • Step 1 The circuit board with electronic components is subjected to shear crushing and ball milling, and then metal components and non-metal components are separated by high-voltage electrical separation and eddy current separation.
  • Step 2 Using a mixture of sodium hydroxide, calcium hydroxide, calcium oxide and calcium carbonate in equal proportions as the debromination agent, the sorted non-metallic powder is debrominated and pyrolyzed under an argon atmosphere, wherein the non-metallic and CaCO 3
  • the mass ratio was 5:2.5, the nitrogen flow was 20 mL/min; the heating rate was 30 °C/min; the pyrolysis temperature was 650 °C; and the retention time was 20 min.
  • Step 3 In the condensation zone, the condensation temperature is controlled to be 150-200°C, 100-150°C and below 100°C, respectively. To achieve the separation and purification of pyrolysis oil.
  • Step 4 Mix the condensed product below 100°C with formaldehyde in a molar ratio of 1:1, add hydrochloric acid with a mass concentration of 2.5%, and react at a reaction temperature of 80°C for 4 hours to obtain an oil-based resin.
  • the following table shows the composition of the pyrolysis oil obtained at different condensation temperatures of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

一种废旧线路板和电子元件封装材料中热解油的分离回用方法,包括下列步骤:将废旧线路板和电子元件封装材料进行破碎,然后分离出金属组分和非金属组分;采用脱溴剂,在惰性气体气氛下将分选后的非金属粉末进行脱溴热解;通过控制温度对热解产物冷凝,根据热解油组成调节冷凝温度区间,实现热解油的分离,得到不同冷凝温度区间的分离组分;将最低冷凝温度区间得到的分离组分与甲醛的混合物,在盐酸催化作用下合成油基树脂。该方法操作简单,分离效率高,利用非金属热解余热实现热解油蒸发,无需额外加热,节约成本,同时热解、分离、收集过程在同一密闭设备进行,无污染物的释放,环境友好;以热解油为原料合成油基树脂,实现废物利用。

Description

废旧线路板和电子元件封装材料中热解油的分离回用方法
本公开要求于2020年12月22日在中国专利局提交的、申请号为202011534554.1、发明名称为“废旧线路板和电子元件封装材料中热解油的分离回用方法”的优先权,其全部内容通过引用结合在本公开中。
技术领域
本发明涉及一种用于对废旧线路板和电子元件封装材料中热解油进行分离和回用的方法,属于电子废弃物中非金属组分回收技术领域。
背景技术
电子产品的快速更新换代产生了大量的废旧线路板和电子元件。据估计,每年电子垃圾的产量为4200万吨左右,给环境保护和资源回收带来巨大挑战。废旧线路板和电子元件中含有金属、有机物和无机物,是宝贵的二次资源,回收其中的有价金属和贵重金属具有可观的经济效益。然而,非金属组分中含有溴化阻燃剂,因溴化阻燃剂存在释放风险导致非金属组分不可直接作为填料或建材回用。大量的非金属组分给环境保护和人类健康造成巨大风险。
脱溴热解技术可以有效去除非金属组分中的溴并且能把高分子有机物降解为小分子物质,可作为预处理技术去除电子元件的封装,也可作为废旧线路板非金属的处理技术。然而,脱溴热解产生的热解油成分复杂含有超过30中的有机物,而且含有大量致癌物质如苯酚、双酚A、苯酚衍生物、长链烷烃、苯等,是一种典型的危险废物。然而,苯和苯酚是一种重要的化工原料,长链烷烃可作为部分原油替代品。若能将成分复杂的热解油进行分离和回用,不仅可以减少环境污染,而且具有明显的经济价值。
目前,传统方法在分离和回用废旧线路板和电子元件封装材料中热解油方面存在明显的弊端。例如,气化法费用昂贵且分离效果一般;溶剂萃取法费用高,且存在二次污染;膜分离法易造成膜污染,费用高且易造成热解油挥发组分的挥发;传统热解和微波热解易造成热解油的二次裂解,增加分离和回用难度。
因此,急需一种分离和回用废旧线路板和电子元件封装材料热解油的经济有效方法。
发明内容
本发明针对上述问题,根据热解油组分和其物理性质,提供一种废旧线路板和电子元件封装材料中热解油的分离和回用方法,该方法充分利用热解过程提供的热量,分离过程无需提供热量,回收成本低,操作简单,分离效率较高。
为实现上述目的,本发明包括下列步骤:
步骤1:将废旧线路板和电子元件封装材料进行破碎,然后分离出金属组分和非金属组分;
所述破碎是分别通过锤式破碎机和剪切破碎机进行的二级破碎。但不限于该方法,还包括多级破碎以及各种破碎机的任意组合。
所述分离出金属组分和非金属组分是通过涡电流分选。
步骤2:采用脱溴剂,在惰性气体气氛下将分选后的非金属粉末进行脱溴热解;
所述脱溴剂为碱性金属氧化物和氢氧化物(如固体氢氧化钠、氢氧化钙、氧化钙、碳酸钙等)中的一种或两种以上任意比例的组合。
所述非金属与脱溴剂的质量比为5:1~3。
所述惰性气体为氩气或氮气。
所述惰性气体的流量为20-100mL/分钟。
所述脱溴热解的加热速率为15-30℃/分钟,热解温度为600-700℃,保留时间为15-30分钟。
步骤3:通过控制温度对热解产物冷凝,根据热解油组成调节冷凝温度区间,实现热解油的分离,得到不同冷凝温度区间的分离组分。
冷凝温度区间的温度范围和区间数量的选择是可变的,根据热解油组成调节冷凝温度区间。通过控制热解产物降温冷凝,依次收集不同温度区间的冷凝产物。
步骤4:将最低冷凝温度区间得到的分离组分与甲醛的混合物,在盐酸催化作用下合成油基树脂。
如将冷凝分为三个冷凝区间,冷凝温度分别控制在150~200℃、100~150℃和100℃以下至室温。最低冷凝温度区间得到的分离组分就是100℃以下冷凝的产物,其组分主要是苯酚及其同系物。
所述分离组分与甲醛的摩尔比为1:0.7~1。所述合成的加热温度为75~95℃,反应时间为2~4小时,盐酸的质量浓度为2.5~10%。
本发明的方法操作简单,分离效率高,具有如下优点:
(1)本发明利用非金属热解余热实现热解油蒸发,无需额外加热,节约成本。
(2)热解油分离和收集同时进行,具有流程简单、操作便捷的优点;同时热解、分离、收集过程在同一密闭设备进行,无污染物的释放,环境友好。
(3)以热解油为原料合成油基树脂,实现废物利用。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明所得到的不同冷凝温度下的电子元件封装材料热解油乙醇溶液图片。
图2为本发明方法制备的油基树脂的傅里叶红外谱图(FT-IR)。
图3为本发明方法制备的油基树脂的热重分析谱图(TG)。
具体实施方式
下面将结合本发明的实施例,对本发明的技术方案进行清楚、完整地描述,显然, 所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
步骤1:将废旧线路板进行锤式破碎机和剪切破碎机的二级破碎,然后通过涡电流分选分离出金属组分和非金属组分。
步骤2:采用Ca(OH) 2为脱溴剂,在氮气气氛下将分选后的非金属粉末进行脱溴热解(在热解炉中进行),其中非金属组分与Ca(OH) 2质量比为5:1,氮气流量为30mL/min;加热速率为20℃/min;热解温度为600℃;保留时间为15min。
步骤3:在冷凝区,通过控制冷凝温度分别为160~200℃、120~150℃和120℃以下,以实现热解油的分离和纯化。
步骤4:120℃以下的冷凝产物与甲醛按照摩尔比为1:0.8混合均匀,制成混合物,加入质量浓度为3.0%的盐酸,在90℃反应温度下反应2.5h,制得油基树脂。
实施例2
步骤1:将废旧电子元件从线路板上拆解下来进行剪切破碎和球磨,再经高压电选和涡电流分选金属组分和非金属组分。
步骤2:采用CaCO 3为脱溴剂,在氩气气氛下将分选后的非金属粉末进行脱溴热解,其中非金属与CaCO 3质量比为5:2,氩气流量为50mL/min;加热速率为25℃/min;热解温度为650℃;保留时间为30min。
步骤3:根据具体热解油组成调节冷凝温度区间,温度区间的选择是可变的,温度区间个数和温度设置可不一致。这里设置四个冷凝温度区段。在冷凝区,通过控制冷凝温度分别为280~300℃、200~280℃、140~200℃和140℃以下,以实现热解油的分离和纯化。
步骤4:140℃以下冷凝产物与甲醛按照摩尔比为1:0.85混合均匀,加入质量浓度为6.0%的盐酸,在95℃反应温度下反应2h,制得油基树脂。
图1给出了不同冷凝温度下得到的电子元件封装材料热解油乙醇溶液。图2给出了制备的油基树脂的傅里叶红外谱图。图3给出了制备的油基树脂的热重分析谱图。
实施例3
步骤1:将废旧线路板及其上拆解的电子元件先通过锤式破碎机锤碎,再进行剪切破碎机剪切破碎。
步骤2:采用CaO 2为脱溴剂,在氩气气氛下将分选后的非金属粉末进行脱溴热解,其中非金属与CaCO 3质量比为5:3,氩气流量为100mL/min;加热速率为15℃/min;热解温度为700℃;保留时间为30min。
步骤3:在冷凝区,通过控制冷凝温度分别为150~200℃、100~150℃和100℃以下。以实现热解油的分离和纯化。
步骤4:100℃以下冷凝产物与甲醛按照摩尔比为1:0.7混合均匀,加入质量浓度为10.0%的盐酸,在75℃反应温度下反应3h,制得油基树脂。
实施例4
步骤1:将带有电子元件的线路板进行剪切破碎和球磨,再经高压电选和涡电流分选金属组分和非金属组分。
步骤2:采用氢氧化钠、氢氧化钙、氧化钙和碳酸钙等比例混合物为脱溴剂,在氩气气氛下将分选后的非金属粉末进行脱溴热解,其中非金属与CaCO 3质量比为5:2.5,氮气流量为20mL/min;加热速率为30℃/min;热解温度为650℃;保留时间为20min。
步骤3:在冷凝区,通过控制冷凝温度分别为150~200℃、100~150℃和100℃以下。以实现热解油的分离和纯化。
步骤4:100℃以下冷凝产物与甲醛按照摩尔比为1:1混合均匀,加入质量浓度为2.5%的盐酸,在80℃反应温度下反应4h,制得油基树脂。
下表给出了本发明不同冷凝温度下所得到的热解油组成。
Figure PCTCN2021107020-appb-000001
Figure PCTCN2021107020-appb-000002
以上实施例仅用以说明本发明的技术方案而非对其限制,尽管参照上述实施例对本发明进行了详细的说明,所属领域的普通技术人员依然可以对本发明的具体实施方式进行修改或者等同替换,这些未脱离本发明精神和范围的任何修改或者等同替换,均在申请待批的本发明的权利要求保护范围之内。

Claims (10)

  1. 一种废旧线路板和电子元件封装材料中热解油的分离回用方法,其特征在于,该方法包括下列步骤:
    (1)将废旧线路板和电子元件封装材料进行破碎,然后分离出金属组分和非金属组分;
    (2)采用脱溴剂,在惰性气体气氛下将分选后的非金属粉末进行脱溴热解;
    (3)对热解产物冷凝,根据热解油组成调节冷凝温度区间,实现热解油的分离,得到不同冷凝温度区间的分离组分;
    (4)将最低冷凝温度区间得到的分离组分与甲醛的混合物,在盐酸催化作用下合成油基树脂。
  2. 如权利要求1所述的废旧线路板和电子元件封装材料中热解油的分离回用方法,其特征在于,所述步骤(1)中破碎是分别通过锤式破碎机和剪切破碎机进行的二级破碎。
  3. 如权利要求1所述的废旧线路板和电子元件封装材料中热解油的分离回用方法,其特征在于,所述步骤(1)中分离出金属组分和非金属组分是通过涡电流分选。
  4. 如权利要求1所述的废旧线路板和电子元件封装材料中热解油的分离回用方法,其特征在于,所述步骤(2)中脱溴剂为碱性金属氧化物和氢氧化物中的一种或两种以上任意比例的组合。
  5. 如权利要求1所述的废旧线路板和电子元件封装材料中热解油的分离回用方法,其特征在于,所述步骤(2)中所述非金属与脱溴剂的质量比为5:1~3。
  6. 如权利要求1所述的废旧线路板和电子元件封装材料中热解油的分离回用方法,其特征在于,所述步骤(2)中所述惰性气体为氩气或氮气。
  7. 如权利要求1所述的废旧线路板和电子元件封装材料中热解油的分离回用方法,其特征在于,所述步骤(2)中所述惰性气体的流量为20-100mL/分钟。
  8. 如权利要求1所述的废旧线路板和电子元件封装材料中热解油的分离回用方法,其特征在于,所述步骤(2)中所述脱溴热解的加热速率为15-30℃/分钟,热解温度为600-700℃,保留时间为15-30分钟。
  9. 如权利要求1所述的废旧线路板和电子元件封装材料中热解油的分离回用方法,其特征在于,所述步骤(4)中盐酸的质量浓度为2.5~10%。
  10. 如权利要求1所述的废旧线路板和电子元件封装材料中热解油的分离回用方法,其特征在于,所述步骤(4)中分离组分与甲醛的摩尔比为1:0.7~1;所述合成的加热温度为75~95℃,反应时间为2~4小时。
PCT/CN2021/107020 2020-12-22 2021-07-19 废旧线路板和电子元件封装材料中热解油的分离回用方法 WO2022134558A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011534554.1 2020-12-22
CN202011534554.1A CN112759731A (zh) 2020-12-22 2020-12-22 废旧线路板和电子元件封装材料中热解油的分离回用方法

Publications (1)

Publication Number Publication Date
WO2022134558A1 true WO2022134558A1 (zh) 2022-06-30

Family

ID=75695285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/107020 WO2022134558A1 (zh) 2020-12-22 2021-07-19 废旧线路板和电子元件封装材料中热解油的分离回用方法

Country Status (2)

Country Link
CN (1) CN112759731A (zh)
WO (1) WO2022134558A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112759731A (zh) * 2020-12-22 2021-05-07 山东省环境保护科学研究设计院有限公司 废旧线路板和电子元件封装材料中热解油的分离回用方法
CN115228905B (zh) * 2022-07-18 2024-02-20 中国科学院过程工程研究所 一种处理废电路板中非金属材料的方法
CN115646999A (zh) * 2022-10-21 2023-01-31 昆明理工大学 一种氢氧化钙热解废线路板转化有机溴的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1844180A (zh) * 2006-04-13 2006-10-11 华南理工大学 用废旧电路板热解油制备酚醛树脂的方法
CN105817462A (zh) * 2016-03-23 2016-08-03 中山大学 一种废旧电路板电子元器件高附加值资源化的技术方法
CN107282591A (zh) * 2017-06-15 2017-10-24 广东环境保护工程职业学院 一种废线路板热解油两段式催化热解同时脱溴及轻质化的方法
CN112759731A (zh) * 2020-12-22 2021-05-07 山东省环境保护科学研究设计院有限公司 废旧线路板和电子元件封装材料中热解油的分离回用方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105713640B (zh) * 2016-04-25 2017-08-25 华中科技大学 采用废聚烯烃类塑料与溴系阻燃废塑料制备热解油的方法
CN107891053A (zh) * 2017-11-29 2018-04-10 神雾科技集团股份有限公司 一种废旧线路板热解脱溴处理的方法及系统
CN111036646A (zh) * 2019-12-06 2020-04-21 中山大学 一种废旧线路板非金属组分的低温热解脱溴方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1844180A (zh) * 2006-04-13 2006-10-11 华南理工大学 用废旧电路板热解油制备酚醛树脂的方法
CN105817462A (zh) * 2016-03-23 2016-08-03 中山大学 一种废旧电路板电子元器件高附加值资源化的技术方法
CN107282591A (zh) * 2017-06-15 2017-10-24 广东环境保护工程职业学院 一种废线路板热解油两段式催化热解同时脱溴及轻质化的方法
CN112759731A (zh) * 2020-12-22 2021-05-07 山东省环境保护科学研究设计院有限公司 废旧线路板和电子元件封装材料中热解油的分离回用方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GAO RUITONG, LIU YA, XU ZHENMING: "Synthesis of oil-based resin using pyrolysis oil produced by debromination pyrolysis of waste printed circuit boards", JOURNAL OF CLEANER PRODUCTION, vol. 203, 1 December 2018 (2018-12-01), AMSTERDAM, NL , pages 645 - 654, XP055946406, ISSN: 0959-6526, DOI: 10.1016/j.jclepro.2018.08.228 *
GAO RUITONG, XU ZHENMING: "Pyrolysis and utilization of nonmetal materials in waste printed circuit boards: Debromination pyrolysis, temperature-controlled condensation, and synthesis of oil-based resin", JOURNAL OF HAZARDOUS MATERIALS, vol. 364, 1 February 2019 (2019-02-01), AMSTERDAM, NL , pages 1 - 10, XP055946399, ISSN: 0304-3894, DOI: 10.1016/j.jhazmat.2018.09.096 *

Also Published As

Publication number Publication date
CN112759731A (zh) 2021-05-07

Similar Documents

Publication Publication Date Title
WO2022134558A1 (zh) 废旧线路板和电子元件封装材料中热解油的分离回用方法
Gao et al. Pyrolysis and utilization of nonmetal materials in waste printed circuit boards: Debromination pyrolysis, temperature-controlled condensation, and synthesis of oil-based resin
US20220119714A1 (en) A Green Resource-Generating Method Based on Thermal Mass Synergy of Waste Integrated Circuit Board
CN104624611B (zh) 一种废弃电器电路板能源化无害化处理方法
CN102172600B (zh) 一种利用废旧电路板类废弃物真空热解油综合回收方法
RU2370329C2 (ru) Способ обработки многокомпонентных, композиционных и комбинированных материалов и использования разделенных этим способом компонентов
CN107457246B (zh) 废电路板破碎分离回收铜残余非金属粉催化热解的方法
WO2022007980A1 (zh) 一种废弃发光二极管封装材料热解处理协同荧光粉稀土回收方法
Liu et al. Impact of the operating conditions on the derived products and the reaction mechanism in vacuum pyrolysis treatment of the organic material in waste integrated circuits
CN110983057B (zh) 一种可实现UPOPs合成阻滞和低温分解的烟灰处理方法
CN100518969C (zh) 一种低温真空热解废印刷线路板预处理方法
CN103949461A (zh) 一种使用近临界水分离和回收废旧电路板各组分材料的方法
CN109092847B (zh) 一种对废线路板非金属组分预处理并回收利用的方法
TWI808273B (zh) 被覆電線之處理方法
CN111036646A (zh) 一种废旧线路板非金属组分的低温热解脱溴方法
CN100506407C (zh) 一种废印刷线路板组合式处理方法
CN107282591B (zh) 一种废线路板热解油两段式催化热解同时脱溴及轻质化的方法
CN101612668A (zh) 超临界水处理废弃印刷线路板合成纳米银的工艺
CN107470317B (zh) 一种废线路板热解油脱溴及轻质化的方法
CN114014275B (zh) 一种工业副产石膏制备硅钙基料与硫酸的装置及方法
CN115679096A (zh) 一种碳渣和赤泥协同处置资源化回收利用的工艺方法
CN109628682B (zh) 一种废旧塑料颗粒的高效利用方法
KR101550136B1 (ko) 폐인조대리석의 물리화학적 처리에 의한 알루미늄 화합물과 pmma를 회수하는 방법
CN112760109A (zh) 一种废旧电脑电路板微波热解综合利用的方法
CN107243496B (zh) 一种Al2O3和Fe3O4复合催化热解废线路板非金属粉末的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21908563

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21908563

Country of ref document: EP

Kind code of ref document: A1