WO2022134226A1 - 一种高温烟气熔盐换热器及换热方法 - Google Patents

一种高温烟气熔盐换热器及换热方法 Download PDF

Info

Publication number
WO2022134226A1
WO2022134226A1 PCT/CN2021/070741 CN2021070741W WO2022134226A1 WO 2022134226 A1 WO2022134226 A1 WO 2022134226A1 CN 2021070741 W CN2021070741 W CN 2021070741W WO 2022134226 A1 WO2022134226 A1 WO 2022134226A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
flue gas
temperature
exchange chamber
molten salt
Prior art date
Application number
PCT/CN2021/070741
Other languages
English (en)
French (fr)
Inventor
陈金华
姚成林
肖露
霍春秀
江万刚
黄克海
李磊
甘海龙
朱菁
张涛
李艳青
王刚
肖正
张群
董浩明
Original Assignee
山东科技大学
中煤科工集团重庆研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东科技大学, 中煤科工集团重庆研究院有限公司 filed Critical 山东科技大学
Publication of WO2022134226A1 publication Critical patent/WO2022134226A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0034Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/04Constructions of heat-exchange apparatus characterised by the selection of particular materials of ceramic; of concrete; of natural stone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0034Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material
    • F28D2020/0047Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material using molten salts or liquid metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the invention relates to the technical field of heat exchange equipment and gas utilization, in particular to a high-temperature flue gas molten salt heat exchanger and a method for using the heat exchanger for flue gas molten salt heat exchange.
  • the existing high-temperature flue gas molten salt heat exchanger still does not solve the problem of low-concentration gas utilization, and the high-temperature regenerative oxidation heat exchanger also needs to be improved in terms of safety, heat storage capacity, and heat exchange capacity.
  • the structure and heat exchange method of high temperature flue gas molten salt heat exchange are further improved.
  • the present invention provides a high temperature flue gas molten salt heat exchanger and a heat exchange method.
  • the technical solution is as follows.
  • a high-temperature flue gas molten salt heat exchanger comprising a controller, a heat exchange chamber and a flue gas channel
  • the heat exchange chamber includes a heat storage ceramic, an inner wall, a thermal insulation layer and a shell, and an inner wall is arranged on the outer side of the heat storage ceramic, The outer side of the inner wall is provided with an insulation layer, and the outer shell is fixed on the outer side of the insulation layer;
  • the flue gas channel guides the flue gas to pass through the heat exchange chamber, a plurality of heating rods are arranged in the heat exchange chamber, and a plurality of temperature sensors and pressure sensors are also arranged in the heat exchange chamber
  • the sensor, the temperature sensor and the pressure sensor are connected with the controller, and the controller controls the heating rod in the heat exchange chamber to work.
  • the heat storage ceramic is made of square-hole corundum mullite
  • the inner wall is made of refractory bricks
  • the thermal insulation layer is made of ceramic fiber board and high-alumina ceramic fiber
  • the outer shell is made of steel.
  • the thickness of the thermal insulation layer is greater than 350 mm.
  • the maximum temperature of the heating rod is greater than 1400°C, and the working temperature of the heat exchange chamber is greater than 1200°C.
  • the pressure sensors are staggered and arranged in the middle of the heat exchange chamber, and the temperature sensors are evenly arranged in the heat exchange chamber.
  • a high-temperature flue gas molten salt heat exchange method using the above-mentioned high-temperature flue gas molten salt heat exchanger, the steps include:
  • the controller opens the flow rate of the flue gas channel
  • the host of the controller processes the flow rate, volume and concentration monitoring data of the gas in the flue gas channel, and the temperature and pressure monitoring data of the heat exchange chamber in real time, and controls the heating rod to work; the display of the controller displays the monitoring data.
  • a high-temperature flue gas molten salt heat exchange method is applied to a low-concentration gas conveying system.
  • the beneficial effect of the high-temperature flue gas molten salt heat exchanger and the heat exchange method provided by the invention is that the structure ensures the safety of the flue gas molten salt heat exchange process, and according to the heat exchange characteristics of the flue gas and the molten salt, a reasonable
  • the material of the heat exchange chamber is selected, and the size and structure of the heat exchange chamber are optimized to ensure its high temperature resistance performance and improve the heat exchange efficiency; the heat exchange chamber also has high temperature resistance to flue gas, molten salt corrosion resistance, and long service life And other advantages, it provides a safe and efficient way for the utilization of low-concentration gas.
  • Fig. 1 is the top view structure schematic diagram of high temperature flue gas molten salt heat exchanger
  • Figure 2 is a perspective view of a high temperature flue gas molten salt heat exchanger
  • Fig. 3 is the flow chart of the high temperature flue gas molten salt heat exchange method
  • a high-temperature flue gas molten salt heat exchanger comprising a controller, a heat exchange chamber and a flue gas channel, the flue gas channel guides the flue gas through the heat exchange chamber, and the structure of the heat exchange chamber has high temperature resistance, ensuring high temperature resistance.
  • the controller comprehensively controls the flow of flue gas, and combines with real-time feedback data to ensure the efficient operation of the heat exchange chamber and the safety during the heat exchange process of flue gas molten salt.
  • the heat exchange chamber includes a heat storage ceramic, an inner wall, a thermal insulation layer and an outer shell.
  • the outer side of the thermal storage ceramic 3 is provided with an inner wall, the outer side of the inner wall is provided with an insulation layer 5, and the outer shell is fixed on the outer side of the insulation layer.
  • the material of the heat exchange chamber is reasonably selected, and the size and structure of the heat exchanger are optimized to ensure its high temperature resistance performance and improve the heat exchange efficiency.
  • the flue gas channel 6 is a flue gas conveying pipe that can control the flow rate and monitor the concentration. It can guide the flue gas to pass through the heat exchange chamber.
  • a plurality of heating rods are arranged in the heat exchange chamber to heat the heat exchange chamber.
  • the temperature sensor 1 and pressure sensor 2 are connected to the controller, and the controller controls the heating rod in the heat exchange chamber. work.
  • the pressure sensors 2 are arranged in the middle of the heat exchange chamber in a staggered manner, and the temperature sensors are evenly arranged in the heat exchange chamber.
  • a plurality of pressure sensors are staggered in the heat exchange chamber, the pressure sensor 2 is installed vertically in the heat exchange chamber, and the plurality of temperature sensors 1 are distributed at multiple locations in the heat exchange chamber.
  • the controller is connected, the temperature sensor 1 transmits the temperature signal to the controller, and the controller controls the heat exchange chamber to perform heat exchange work of high temperature flue gas according to the received temperature signal.
  • the regenerative ceramic 3 is made of square-hole corundum mullite, and has the characteristics of wear resistance, corrosion resistance, high strength, and good insulation performance.
  • the inner wall is composed of refractory bricks, which ensures its high temperature resistance and the safety of flue gas molten salt heat exchange at high temperature.
  • the thickness of the insulation layer 5 is greater than 350mm.
  • the insulation layer is made of ceramic fiber board and high-alumina ceramic fiber, which has better insulation performance, shock resistance, sealing performance, etc.
  • the ceramic fiber board is aluminum silicate fiber board, which can be heated after heating. It maintains good mechanical strength, is rigid and has a certain supporting strength; high-alumina ceramic fibers can withstand high temperatures of 1350 ° C, and have heat insulation and sealing functions. Thermal conductivity and stable thermal shock stability.
  • the shell is made of steel, which can be designed according to the actual size, so as to ensure the structural strength and stability of the heat exchange chamber.
  • the maximum temperature of the heating rod is greater than 1400 °C, and the working temperature of the heat exchange chamber is greater than 1200 °C; the controller controls the heating rod to work to control the heating temperature, and adjust the heating according to the monitoring feedback of the temperature sensor.
  • a high-temperature flue gas molten salt heat exchange method using the above-mentioned high-temperature flue gas molten salt heat exchanger, the steps include:
  • the controller opens the flow rate of the flue gas channel.
  • each set temperature is the optimal operating temperature set according to the structural characteristics of the high-temperature flue gas molten salt heat exchanger, and the control method.
  • the heat exchange efficiency is high, the safety is good, and the use of the equipment Longevity is also guaranteed.
  • the host of the controller processes the monitoring data of the flow rate, volume and concentration of the gas in the flue gas channel in real time, as well as the monitoring data of the temperature and pressure of the heat exchange chamber, and controls the heating rod to work; the display of the controller displays the monitoring data.
  • the high-temperature flue gas molten salt heat exchange method can be applied to a low-concentration gas conveying system, specifically a ventilation system that discharges exhausted air in a coal mine, and a ventilation system that discharges low-concentration gas, and is arranged in a ventilation pipeline In the middle, the effective use of low-concentration gas.
  • the structure of the high-temperature flue gas molten salt heat exchanger ensures the safety of the flue gas molten salt heat exchange process.
  • the material of the heat exchange chamber is reasonably selected, and the heat exchange chamber is optimized. Its size and structure ensure its high temperature resistance and improve heat exchange efficiency; the heat exchange chamber also has the advantages of high temperature flue gas resistance, molten salt corrosion resistance, long service life, etc., which provides a safe and efficient use of low-concentration gas. way of use.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Air Supply (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

一种高温烟气熔盐换热器及换热方法,换热器包括控制器和换热室,换热室包括蓄热陶瓷(3)、内墙、保温层(5)和外壳,烟气通道(6)穿过换热室,换热室内配置有多个加热棒(4),换热室内还配置有多个温度传感器(1)和压力传感器(2),温度传感器(1)和压力传感器(2)与控制器相连,控制器控制换热室工作。换热器在使用时先进行预热,预热至设定温度,控制器开启烟气通道,进气吹扫后换热室升温至运行温度,调整低浓度烟气的流速,记录换热过程中的温度和压力。该换热器提供的换热方法能够强化换热,耐高温烟气,耐熔盐腐蚀,并延长了高温条件下的使用寿命。

Description

一种高温烟气熔盐换热器及换热方法 技术领域
本发明涉及热交换设备和气体利用技术领域,尤其是一种高温烟气熔盐换热器,以及利用该换热器进行烟气熔盐换热的方法。
背景技术
随着煤矿行业的发展,每年煤矿行业都会排放大量的乏风瓦斯,以及无法有效利用的低浓度瓦斯,从而可能会造成严重的温室效应和资源浪费。目前,低浓度瓦斯的主要利用方式是高温烟气熔盐蓄热氧化技术,这种方式能够有效地对资源进行利用,然而高温烟气与氧化环境对换热器的使用寿命和安全性有着巨大影响。因此,许多研究在高温蓄热氧化燃烧器的结构设计、材料组成、参数设置方面进行了展开,但气体氧化反应发生在高温高压条件下,这不仅对换热器性能要求很高,而且易发生爆炸,甚至爆炸可能会沿低浓度瓦斯输送系统传播并影响抽采泵站安全。     现有的高温烟气熔盐换热器,仍然没有解决低浓度气体利用问题,并且高温蓄热氧化换热器的在安全性、蓄热能力、换热能力方面也有待提高,为此需要对高温烟气熔盐换热的结构和换热方式做进一步的改进。
技术解决方案
为了解决低浓度气体利用的问题,提升温蓄热氧化换热器的安全性、蓄热能力、换热能力,本发明提供了一种高温烟气熔盐换热器及换热方法,具体的技术方案如下。
一种高温烟气熔盐换热器,包括控制器、换热室和烟气通道,所述换热室包括蓄热陶瓷、内墙、保温层和外壳,蓄热陶瓷外侧设置有内墙,内墙外侧具有保温层,外壳固定在保温层外侧;所述烟气通道引导烟气穿过换热室,换热室内配置有多个加热棒,换热室内还配置有多个温度传感器和压力传感器,温度传感器和压力传感器与控制器相连,控制器控制换热室内的加热棒工作。
优选的是,蓄热陶瓷使用四方孔刚玉莫来石制作而成,内墙使用耐火砖堆砌组成,保温层使用陶瓷纤维板和高铝陶瓷纤维搭建而成,外壳使用钢材制作而成。
优选的是,保温层的厚度大于350mm。
优选的是,加热棒的最高温度大于1400℃,换热室的工作温度大于1200℃。
优选的是,压力传感器间隔交错布置在换热室的中部,所述温度传感器均匀排布在换热室内。
一种高温烟气熔盐换热方法,利用上述的一种高温烟气熔盐换热器,步骤包括:
A.预热换热室温度至200℃,开启控制器;
B.开启烟气通道的进气通道,换热室通入空气吹扫五分钟,控制换热室升温至1100℃;
C.控制器开启烟气通道的流速;
D.进行高温下的烟气熔盐换热作业,记录烟气熔盐换热过程中的温度和压力。
进一步优选的是,控制器的主机实时处理烟气通道内气体的流速、体积和浓度监测数据,以及换热室的温度和压力监测数据,并控制加热棒工作;控制器的显示器显示监测数据。
进一步优选的是,一种高温烟气熔盐换热方法应用于低浓度瓦斯输送系统中。
有益效果
本发明提供的一种高温烟气熔盐换热器及换热方法有益效果是,该结构保证了烟气熔盐换热过程的安全性,根据烟气和熔盐换热的特性,合理的选择换热室的材质,并且优化了换热室的尺寸和结构,保证了其耐高温的性能,提升了换热效率;换热室还具有耐高温烟气,耐熔盐腐蚀,使用寿命长等优点,为低浓度瓦斯的利用提供了安全高效的使用方式。
附图说明
图1是高温烟气熔盐换热器的俯视结构示意图;
图2是高温烟气熔盐换热器的透视图;
图3是高温烟气熔盐换热方法的流程图;
图中:1-温度传感器,2-压力传感器,3-蓄热陶瓷,4-加热棒,5-保温层,6-烟气通道。
本发明的实施方式
结合图1至图3所示,对本发明提供的一种高温烟气熔盐换热器及换热方法的具体实施方式进行说明。
一种高温烟气熔盐换热器,包括控制器、换热室和烟气通道,烟气通道引导烟气通过换热室,换热室的结构具有耐高温的性能,保证了高温下的烟气熔盐换热作业的进行,控制器综合控制烟气的流动,并且结合实时反馈数据保证换热室内的高效工作,并保证烟气熔盐换热过程中的安全。
其中换热室包括蓄热陶瓷、内墙、保温层和外壳,蓄热陶瓷3外侧设置有内墙,内墙外侧具有保温层5,外壳固定在保温层外侧;根据烟气和熔盐换热的特性,合理的选择换热室的制作的材质,并且优化了换热器的尺寸和结构,保证了其耐高温的性能,提升了换热效率。烟气通道6是可以控制流量并监测浓度的烟气输送管道,可以引导烟气穿过换热室,在换热室内配置有多个加热棒,对换热室进行加热,换热室内还配置有多个温度传感器1和压力传感器2,其中温度传感器1的测点具有多个,从而可以全面的控制温度,温度传感器1和压力传感器2与控制器相连,控制器控制换热室内的加热棒的工作。其中压力传感器2间隔交错布置在换热室的中部,温度传感器均匀排布在换热室内。多个压力传感器在换热室中间隔交错设置,压力传感器2竖直安装在换热室中,多个温度传感器1分布在换热室的多个位点,压力传感器2和温度传感器1均与所述控制器连接,温度传感器1将温度信号传输给控制器,控制器根据收到的温度信号控制换热室进行高温烟气换热工作。
具体的是,蓄热陶瓷3使用四方孔刚玉莫来石制作而成,具有耐磨损、耐腐蚀、高强度、绝缘性能好等特点。内墙使用耐火砖堆砌组成,保证了其耐高温的性能,以及高温下进行烟气熔盐换热的安全性。保温层5的厚度大于350mm,保温层使用陶瓷纤维板和高铝陶瓷纤维搭建而成,具有更好的保温性能,以及抗震性能、密封性能等,陶瓷纤维板即为硅酸铝纤维板,在加热后可以保持良好的机械强度,是刚性的并具有一定的支撑强度的;高铝陶瓷纤维可耐1350℃高温,并且具有隔热和密封作用,另外还具有密度小、重量轻等优点,具有较低的导热率和稳定的抗热震稳定性。外壳使用钢材制作而成,可以根据实际需要的尺寸进行设计,从而保证了换热室的结构强度和稳定性。
加热棒的最高温度大于1400℃,换热室的工作温度大于1200℃;控制器控制加热棒工作来控制加热温度,并根据温度传感器的监测反馈调整加热。
一种高温烟气熔盐换热方法,利用上述的一种高温烟气熔盐换热器,步骤包括:
A.预热换热室温度至200℃,开启控制器。
B.开启烟气通道的进气通道,换热室通入空气吹扫五分钟,控制换热室升温至1100℃。
C.控制器开启烟气通道的流速。
D.进行高温下的烟气熔盐换热作业,记录烟气熔盐换热过程中的温度和压力。
该方法中各设定温度是根据高温烟气熔盐换热器的结构特征进行设定的最佳使用温度,和控制方式,在该情况下其换热效率高,安全性好,设备的使用寿命也会得到保证。
其中控制器的主机实时处理烟气通道内气体的流速、体积和浓度监测数据,以及换热室的温度和压力监测数据,并控制加热棒工作;控制器的显示器显示监测数据。
该一种高温烟气熔盐换热方法可以应用于低浓度瓦斯输送系统中,具体的可以是煤矿中排放乏风的通风系统中,以及低浓度瓦斯排放的通风系统中,设置在通风管路中,有效的利用低浓度瓦斯。
该高温烟气熔盐换热器的结构保证了烟气熔盐换热过程的安全性,根据烟气和熔盐换热的特性,合理的选择换热室的材质,并且优化了换热室的尺寸和结构,保证了其耐高温的性能,提升了换热效率;换热室还具有耐高温烟气,耐熔盐腐蚀,使用寿命长等优点,为低浓度瓦斯的利用提供了安全高效的使用方式。
当然,上述说明并非是对本发明的限制,也并不仅限于上述举例,本技术领域的技术人员在本发明的实质范围内所做出的变化、改型、添加或替换,也应属于本发明的保护范围。

Claims (8)

  1. 一种高温烟气熔盐换热器,其特征在于,包括控制器、换热室和烟气通道,所述换热室包括蓄热陶瓷、内墙、保温层和外壳,蓄热陶瓷外侧设置有内墙,内墙外侧具有保温层,外壳固定在保温层外侧;所述烟气通道引导烟气穿过换热室,换热室内配置有多个加热棒,换热室内还配置有多个温度传感器和压力传感器,温度传感器和压力传感器与控制器相连,控制器控制换热室内的加热棒工作。
  2. 根据权利要求1所述的一种高温烟气熔盐换热器,其特征在于,所述蓄热陶瓷使用四方孔刚玉莫来石制作而成,内墙使用耐火砖堆砌组成,保温层使用陶瓷纤维板和高铝陶瓷纤维搭建而成,外壳使用钢材制作而成。
  3. 根据权利要求1所述的一种高温烟气熔盐换热器,其特征在于,所述保温层的厚度大于350mm。
  4. 根据权利要求1所述的一种高温烟气熔盐换热器,其特征在于,所述加热棒的最高温度大于1400℃,换热室的工作温度大于1200℃。
  5. 根据权利要求1所述的一种高温烟气熔盐换热器,其特征在于,所述压力传感器间隔交错布置在换热室的中部,所述温度传感器均匀排布在换热室内。
  6. 一种高温烟气熔盐换热方法,其特征在于,利用权利要求1至5任一项所述的一种高温烟气熔盐换热器,步骤包括:
    A.预热换热室温度至200℃,开启控制器;
    B.开启烟气通道的进气通道,换热室通入空气吹扫五分钟,控制换热室升温至1100℃;
    C.控制器开启的烟气通道内的流速;
    D.进行高温下的烟气熔盐换热作业,记录烟气熔盐换热过程中的温度和压力。
  7. 根据权利要求6所述的一种高温烟气熔盐换热方法,其特征在于,所述控制器的主机实时处理烟气通道内气体的流速、体积和浓度监测数据,以及换热室的温度和压力监测数据,并控制加热棒工作;控制器的显示器显示监测数据。
  8. 根据权利要求7所述的一种高温烟气熔盐换热方法,其特征在于,应用于低浓度瓦斯输送系统中。
PCT/CN2021/070741 2020-12-23 2021-01-08 一种高温烟气熔盐换热器及换热方法 WO2022134226A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011535722.9A CN112629301A (zh) 2020-12-23 2020-12-23 一种高温烟气熔盐换热器及换热方法
CN202011535722.9 2020-12-23

Publications (1)

Publication Number Publication Date
WO2022134226A1 true WO2022134226A1 (zh) 2022-06-30

Family

ID=75321562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/070741 WO2022134226A1 (zh) 2020-12-23 2021-01-08 一种高温烟气熔盐换热器及换热方法

Country Status (2)

Country Link
CN (1) CN112629301A (zh)
WO (1) WO2022134226A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113175686B (zh) * 2021-05-08 2022-12-27 中煤科工集团重庆研究院有限公司 基于瓦斯蓄热氧化的熔盐储热系统预热方法
CN113217979A (zh) * 2021-05-08 2021-08-06 中煤科工集团重庆研究院有限公司 瓦斯蓄热氧化、电辅热及熔盐储热多态耦合调峰智能控制系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003056841A (ja) * 2001-08-10 2003-02-26 Chugai Ro Co Ltd 燃焼排ガスの顕熱回収方法
CN202100275U (zh) * 2011-05-23 2012-01-04 湖南科技大学 煤矿乏风瓦斯连续逆流催化氧化装置
CN204973582U (zh) * 2015-09-17 2016-01-20 北京化工大学 一种风排瓦斯催化氧化的设备
CN207605578U (zh) * 2017-12-12 2018-07-13 胜利油田胜利动力机械集团有限公司 制取高温烟气氧化装置
CN207610395U (zh) * 2017-12-01 2018-07-13 山西嘉源致远新能源科技有限公司 一种预热装置
CN109613060A (zh) * 2018-11-20 2019-04-12 中煤科工集团重庆研究院有限公司 测定蓄热氧化高温条件下瓦斯爆炸下限的装置及方法
CN109973141A (zh) * 2019-04-22 2019-07-05 山西文龙中美环能科技股份有限公司 超低浓瓦斯双氧化制热系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100462663C (zh) * 2006-11-10 2009-02-18 中南大学 一种高温低氧空气燃烧锅炉及使用方法
EP3490016B1 (en) * 2016-07-22 2020-05-20 Fujitsu Limited Thermoelectric conversion module, sensor module, and information processing system
CN207351272U (zh) * 2017-09-14 2018-05-11 中投亿星新能源科技有限公司 一种熔盐蓄热换热装置
CN107726905A (zh) * 2017-09-27 2018-02-23 北京工业大学 卧式高温蓄热供热设备及使用方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003056841A (ja) * 2001-08-10 2003-02-26 Chugai Ro Co Ltd 燃焼排ガスの顕熱回収方法
CN202100275U (zh) * 2011-05-23 2012-01-04 湖南科技大学 煤矿乏风瓦斯连续逆流催化氧化装置
CN204973582U (zh) * 2015-09-17 2016-01-20 北京化工大学 一种风排瓦斯催化氧化的设备
CN207610395U (zh) * 2017-12-01 2018-07-13 山西嘉源致远新能源科技有限公司 一种预热装置
CN207605578U (zh) * 2017-12-12 2018-07-13 胜利油田胜利动力机械集团有限公司 制取高温烟气氧化装置
CN109613060A (zh) * 2018-11-20 2019-04-12 中煤科工集团重庆研究院有限公司 测定蓄热氧化高温条件下瓦斯爆炸下限的装置及方法
CN109973141A (zh) * 2019-04-22 2019-07-05 山西文龙中美环能科技股份有限公司 超低浓瓦斯双氧化制热系统

Also Published As

Publication number Publication date
CN112629301A (zh) 2021-04-09

Similar Documents

Publication Publication Date Title
WO2022134226A1 (zh) 一种高温烟气熔盐换热器及换热方法
CN101963449B (zh) 双层环型转底炉
JP7308255B2 (ja) 熱交換装置によって形成される管路ケーシングを有する高温流体輸送管路、適切な熱交換装置及び熱交換方法
CN102653439B (zh) 玻璃配合料超常规投料法及其投料预热装置
CN111578698B (zh) 一种适用于碳化硅纤维热处理的辊道炉
US4069008A (en) Method and apparatus for heating a workpiece
CN202141326U (zh) 隧道窑烟道换热装置
CN211626055U (zh) 一种辊道窑系统
CN210532995U (zh) 一种双区加热热解窑
CN207760402U (zh) 一种新型钢丝热处理装置
CN102260034A (zh) 新型坩埚玻璃窑炉
CN102304615A (zh) 用于光亮退火罩式炉的中央热交换器
CN217877039U (zh) 一种蜂窝式scr催化剂干燥煅烧装置
CN217209844U (zh) 具有高隔热性能的热风炉结构
CN209820227U (zh) 一种耐高温防腐蚀的碳化硅换热器
CN215217143U (zh) 一种冶炼用回转窑窑头耐材降温和余热回收装置
CN105821526B (zh) 炭纤维连续生产炭化炉及其传动装置
CN117685778A (zh) 一种气氛保护高温辊道炉及其使用方法
CN204958706U (zh) 一种环缝式高温换热器
CN219829491U (zh) 一种节能再生炉
CN218994065U (zh) 一种烧结炉的炉膛加热装置
CN219390455U (zh) 一种节能降炭型回转窑内衬结构
CN215810121U (zh) 一种大型无马弗带式h2还原炉
CN111266063B (zh) 一种酸再生用加热系统
CN217202543U (zh) 一种全自动低碳节能环保高寿命石灰窑

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21908245

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21908245

Country of ref document: EP

Kind code of ref document: A1