WO2022130566A1 - 分布型アンプ - Google Patents

分布型アンプ Download PDF

Info

Publication number
WO2022130566A1
WO2022130566A1 PCT/JP2020/047148 JP2020047148W WO2022130566A1 WO 2022130566 A1 WO2022130566 A1 WO 2022130566A1 JP 2020047148 W JP2020047148 W JP 2020047148W WO 2022130566 A1 WO2022130566 A1 WO 2022130566A1
Authority
WO
WIPO (PCT)
Prior art keywords
output
terminal
voltage
input
transmission line
Prior art date
Application number
PCT/JP2020/047148
Other languages
English (en)
French (fr)
Inventor
照男 徐
宗彦 長谷
秀之 野坂
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2020/047148 priority Critical patent/WO2022130566A1/ja
Priority to JP2022569424A priority patent/JP7487796B2/ja
Priority to US18/256,022 priority patent/US20240072733A1/en
Publication of WO2022130566A1 publication Critical patent/WO2022130566A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/08Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements
    • H03F1/22Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements by use of cascode coupling, i.e. earthed cathode or emitter stage followed by earthed grid or base stage respectively
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/08Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements
    • H03F1/22Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements by use of cascode coupling, i.e. earthed cathode or emitter stage followed by earthed grid or base stage respectively
    • H03F1/223Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements by use of cascode coupling, i.e. earthed cathode or emitter stage followed by earthed grid or base stage respectively with MOSFET's
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/60Amplifiers in which coupling networks have distributed constants, e.g. with waveguide resonators
    • H03F3/602Combinations of several amplifiers
    • H03F3/604Combinations of several amplifiers using FET's
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/60Amplifiers in which coupling networks have distributed constants, e.g. with waveguide resonators
    • H03F3/605Distributed amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/3036Automatic control in amplifiers having semiconductor devices in high-frequency amplifiers or in frequency-changers
    • H03G3/3042Automatic control in amplifiers having semiconductor devices in high-frequency amplifiers or in frequency-changers in modulators, frequency-changers, transmitters or power amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier

Definitions

  • the present invention relates to a distributed amplifier having a variable gain function.
  • Non-Patent Document 1 proposes a distributed amplifier 50 as shown in FIG.
  • FIG. 16 is a block diagram showing the configuration of a conventional distributed amplifier.
  • a plurality of unit amplifier AMPs are connected in a ladder shape between the input side transmission line W51 and the output side transmission line W52.
  • the unit amplifier AMP is composed of an input transistor Qi and an output transistor Qo connected by cascode.
  • Non-Patent Document 1 has a configuration in which the parasitic capacitance of the transistor constituting the unit amplifier AMP is incorporated in the input side transmission line W51 and the output side transmission line W52 to achieve impedance matching. Further, this conventional technique enables wideband signal amplification by matching the propagation constants between the input side transmission line W51 and the output side transmission line W52. Generally, the amplifier is required to have a variable gain function in order to compensate for the gain variation of the chip or the system and the frequency characteristic variation.
  • Non-Patent Document 2 As a method of realizing a variable gain, a technique of changing the terminating resistance (output load resistance) proposed in Non-Patent Document 2 and a technique of adjusting the bias of an input transistor proposed in Non-Patent Document 3 There is.
  • each method of realizing variable gain in such a conventional technique has the following problems.
  • the technique of Non-Patent Document 2 is applied to the unit amplifier AMP of FIG. 16 and the gain is made variable by changing the resistance value of the terminating resistance Rc of the output transmission line W52, the output transmission line W52 and the terminal are terminated. Impeen dance inconsistency occurs with the resistance Rc, resulting in multiple reflections. As a result, there is a problem that ripple occurs in the frequency characteristic and the desired characteristic cannot be obtained.
  • FIG. 17 is a graph showing the simulation result (when the terminating resistance value is adjusted) of the S parameter S21 of the conventional unit amplifier, in which the characteristic A shows the time when the low gain is set and the characteristic B shows the time when the high gain is set.
  • the characteristic A in FIG. 17 when the value of the terminating resistor Rc is reduced when the low gain is set, the DC gain changes, but the gain on the high frequency side hardly changes, and it is confirmed that the ripple is struck on the high frequency side. can.
  • Non-Patent Document 3 when the technique of Non-Patent Document 3 is applied to the unit amplifier AMP of FIG. 16 described above and the gain is made variable by changing the bias voltage Vbin of the input transistor Qi of the unit amplifier AMP, the band characteristics are changed. There is a problem of deterioration. This is because a transistor usually has an optimum bias point (bias current and bias voltage) that operates fastest (highest ft and fmax), and the actual bias condition deviates from the optimum bias point. This is because the operating speed of the transistor is reduced.
  • FIG. 18 is a graph showing the simulation result (when adjusting the bias voltage value) of the S parameter S21 of the conventional unit amplifier.
  • FIG. 18 is a graph showing a simulation result (when adjusting the bias voltage value) of the S parameter S21 of the conventional unit amplifier, in which the characteristic A shows the time when the low gain is set and the characteristic B shows the time when the high gain is set.
  • the characteristics A and B in FIG. 18 when the bias voltage Vbin is changed when the low gain is set, it can be confirmed that the gain is reduced and the band is also deteriorated.
  • the present invention is for solving such a problem, and an object of the present invention is to provide a distributed amplifier capable of changing the gain without significantly deteriorating the band characteristics.
  • the distributed amplifier has an input side transmission line configured so that an input signal is input to one end and an input side termination resistor is connected to the other end, and one end.
  • the output side transmission line configured so that the output side terminal resistor is connected to and the output signal is output from the other end, and the output side transmission lines are arranged in parallel with each other along the input side and output side transmission lines in a ladder shape.
  • the cell input terminal is connected to the input side transmission line, the cell output terminal is connected to the output side transmission line, and the unit amplifier is provided with a plurality of unit amplifiers, and the unit amplifier is cascode-connected first and second.
  • the first transistor has a base terminal or a gate terminal connected to the cell input terminal, and the second transistor has a collector terminal or a drain terminal. Is connected to the cell output terminal, the emitter terminal or the source terminal is connected to the collector terminal or the drain terminal of the first transistor, and the first variable resistance circuit has one end of the first and second ones. It is connected to the connection point of the transistor.
  • the other distributed amplifier according to the present invention comprises the distributed amplifier according to any one of claims 1 to 4, and is a pre-stage that amplifies the input input signal and outputs the obtained intermediate signal.
  • the amplifier block is composed of the distributed amplifier according to any one of claims 1 to 4, the intermediate stage amplifier block that amplifies the intermediate signal output from the front stage amplifier block, and outputs the obtained output signal.
  • the power supply voltage applied to the output-side transmission line of the front-stage amplifier block via the output-side termination resistance is the voltage across the output-side termination resistance and the input side of the rear-stage amplifier block via the input-side termination resistance.
  • the voltage value is equal to the sum of the bias voltage applied to the transmission line, and the voltage across the circuit is the current flowing through the output side termination resistor when the DC potential of the output terminal of the previous stage amplifier block is equal to the bias voltage. It is configured to consist of the product of the resistance value of the output side termination resistance.
  • another distributed amplifier according to the present invention includes the distributed amplifier according to claim 4, a pre-stage amplifier block that amplifies the input input signal and outputs the obtained intermediate signal, and claim 4. It is composed of the distributed amplifier described in the above, and includes a rear stage amplifier block that amplifies the intermediate signal output from the front stage amplifier block and outputs the obtained output signal, and of the front stage amplifier block via an output side termination resistor.
  • the power supply voltage applied to the output-side transmission line is a voltage equal to the sum of the voltage across the output-side termination resistor and the bias voltage applied to the input-side transmission line of the subsequent amplifier block via the input-side termination resistor.
  • the voltage across the product is the product of the current flowing through the output-side terminal resistor and the resistance value of the output-side terminal resistor when the DC potential of the output terminal of the pre-stage amplifier block is equal to the bias voltage.
  • the product of the current flowing through the output-side termination resistor and the resistance value of the output-side termination resistor is used. It is configured so that a power supply voltage consisting of a new DC voltage value equal to the sum of the bias voltage applied to the input side transmission line of the subsequent amplifier block is applied.
  • the present invention in a distributed amplifier, it is possible to change the gain without significantly deteriorating the band characteristics.
  • FIG. 1 is a block diagram showing a configuration of a distributed amplifier according to the first embodiment.
  • FIG. 2 is a circuit diagram showing a configuration of a unit amplifier according to the first embodiment.
  • FIG. 3 is a graph showing the simulation result of the S parameter S21 of the unit amplifier according to the first embodiment.
  • FIG. 4 is a circuit diagram showing the configuration of the unit amplifier according to the second embodiment.
  • FIG. 5 is a graph showing the simulation result of the S parameter S21 of the unit amplifier according to the second embodiment.
  • FIG. 6 is a block diagram showing a configuration of a distributed amplifier according to a third embodiment.
  • FIG. 7 is a circuit diagram showing a configuration of a unit amplifier (previous stage amplifier block) according to the third embodiment.
  • FIG. 8 is a circuit diagram showing a configuration of a unit amplifier (post-stage amplifier block) according to the third embodiment.
  • FIG. 9 is a graph showing the simulation result of the S parameter S21 of the unit amplifier according to the third embodiment.
  • FIG. 10 is a block diagram showing a configuration of a distributed amplifier according to a fourth embodiment.
  • FIG. 11 is a circuit diagram showing a variable resistance circuit according to the fifth embodiment.
  • FIG. 12 is a circuit diagram showing a variable resistance circuit according to the sixth embodiment.
  • FIG. 13 is a Smith chart showing a simulation result of the S parameter S11 seen from the connection point N of the variable resistance circuit according to the sixth embodiment.
  • FIG. 14 is a circuit diagram showing a configuration of a unit amplifier (previous stage amplifier block) according to the seventh embodiment.
  • FIG. 15 is a circuit diagram showing a configuration of a unit amplifier (post-stage amplifier block) according to the seventh embodiment.
  • FIG. 16 is a block diagram showing the configuration of a conventional distributed amplifier.
  • FIG. 17 is a graph showing a simulation result (when adjusting the terminating resistance value) of the S parameter S21 of the conventional unit amplifier.
  • FIG. 18 is a graph showing a simulation result (when adjusting the bias voltage value) of the S parameter S21 of the conventional unit amplifier.
  • FIG. 1 is a block diagram showing a configuration of a distributed amplifier according to the first embodiment.
  • FIG. 2 is a circuit diagram showing a configuration of a unit amplifier according to the first embodiment.
  • This distributed amplifier 10A is used in high-frequency signal processing circuits of various systems such as high-speed communication systems such as optical communication and wireless communication systems such as high-resolution radar, and has a wide band with good amplification characteristics in a wide frequency band. It is an amplifier. As shown in FIG. 1, the distributed amplifier 10A has, as main circuit units, an input side transmission line W1, an output side transmission line W2, an input side terminating resistor Rb, an output side terminating resistor Rc, and n (n is 2 or more).
  • the unit amplifier AMP (AMP1, AMP2, ..., AMPn-1, AMPn) is provided.
  • the input-side transmission line W1 has a configuration in which n + 1 unit transmission lines w11, w12, ..., W1n, w1n + 1 composed of high-frequency transmission lines such as a Coplanar Waveguide (CPW) are connected in series.
  • An input signal Vin is input to one end of the low frequency side (transmission line w1) of the input side transmission line W1 via the input terminal Tin.
  • the output side transmission line W2 Similar to the input side transmission line W1, the output side transmission line W2 has a configuration in which n + 1 unit transmission lines w21, w22, ..., W2n, w2n + 1 composed of high frequency transmission lines such as a Coplanar waveguide are connected in series. ing.
  • the output signal Vout obtained by amplifying the input signal Vin is output from the other end of the high frequency side (transmission line w2n + 1) of the output side transmission line W2 via the output terminal Tout.
  • [Input side terminating resistor] One end of the input side terminating resistor Rb is connected to the other end of the high frequency side (transmission line W1n + 1) of the input side transmission line W1, and the other end is connected to the connection terminal T1 to which the DC bias voltage Vbin is applied. ..
  • the resistance value of the input side terminating resistor Rb is 50 ⁇ as in the case of a general high-frequency transmission line.
  • [Output side terminating resistor] One end of the output side terminating resistor Rc is connected to one end of the low frequency side (transmission line W21) of the output side transmission line W2, and the other end is connected to a connection terminal T2 to which a DC power supply voltage Vcc is applied.
  • the resistance value of the output-side terminating resistor Rc is 50 ⁇ as in the case of a general high-frequency transmission line.
  • the unit amplifier AMPs (AMP1, AMP2, ..., AMPn-1, AMPn) are also called unit cells, and are arranged in parallel with each other along the input side transmission line W1 and the output side transmission line W2 in a ladder shape, respectively.
  • the input terminal Ti is connected to the input side transmission line W1, and the cell output terminal To is connected to the output side transmission line W2.
  • the cell input terminal Ti of the unit amplifier AMP1 is connected to the connection point between the unit transmission line w11 of the input side transmission line W1 and the unit transmission line w12, and the cell output terminal To of the unit amplifier AMP1 is transmitted on the output side. It is connected to the connection point between the unit transmission line w21 and the unit transmission line w22 of the line W2.
  • the cell input terminal Ti of the unit amplifier AMPn is connected to the connection point between the unit transmission line w1n of the input side transmission line W1 and the unit transmission line w1n + 1, and the cell output terminal To of the unit amplifier AMPn is the output side transmission line W2. It is connected to the connection point between the unit transmission line w2n and the unit transmission line w2n + 1.
  • the input signal Vin input from the input terminal Tin is sequentially input to these unit amplifiers AMP via the input side transmission line W1 in a progressive wave manner.
  • the amplification signals output from these unit amplifiers AMP are synthesized in the same phase via the output side transmission line W2, and are output as an output signal Vout from the output terminal Tout.
  • a pseudo distributed constant line is formed by the capacitance component of the unit amplifier AMP and the inductor component of the input side transmission line W1 and the output side transmission line W2K, so that the wideband characteristic of the distributed amplifier 10A is realized.
  • the unit amplifier AMP is composed of a cell having first and second transistors Qi and Qo (cascode circuit) connected by cascode and a variable resistance circuit Rm.
  • first and second transistors Qi and Qo are composed of NPN type bipolar transistors
  • PNP type bipolar transistors may be used, or MOSFETs may be used as described later.
  • MOSFET the gate terminal, drain terminal, and source terminal correspond to the base terminal, emitter terminal, and collector terminal of the bipolar transistor.
  • the base terminal is connected to the cell input terminal Ti, the negative power supply voltage VEE is applied to the emitter terminal, and the collector terminal is connected to the emitter terminal of the second transistor Qo at the connection point N. ..
  • the collector terminal is connected to the cell output terminal To, the bias voltage Vb is applied to the base terminal, and the emitter terminal is connected to the collector terminal of the first transistor Qi via the connection point N. ..
  • variable resistance circuit As shown in FIG. 2, one end of the variable resistance circuit Rm is connected to the connection point N, and the set voltage Vm is applied to the other end. At this time, a set voltage Vm having a DC voltage value equal to the DC potential Vn of the connection point N is applied to the other end of the variable resistance circuit Rm.
  • the variable resistance circuit Rm may be composed of, for example, the MOSFET of FIG. 11 described later.
  • the resistance value of the variable resistance circuit Rm can be adjusted by using a circuit configuration in which the set voltage Vm is applied to the connection points N of the two transistors Qi and Qo connected by the cascode via the variable resistance circuit Rm. By doing so, the gain of the unit amplifier AMP can be changed. At this time, by adjusting the resistance value of the variable resistance circuit Rm, the band characteristics of the unit amplifier AMP may deteriorate. This is because the DC potential Vn at the connection point N changes due to the change in the resistance value of the variable resistance circuit Rm, and the bias condition of the unit amplifier AMP changes.
  • the set voltage Vm is equal to the DC potential Vn of the connection point N.
  • a DC voltage is applied to the other end of the variable resistance circuit Rm.
  • the voltmeter and the voltage source may be automatically switched inside the voltage source device by using a voltage source device equipped with a voltmeter.
  • FIG. 3 is a graph showing the simulation result of the S parameter S21 of the unit amplifier according to the first embodiment, in which the characteristic A shows the time when the low gain is set and the characteristic B shows the time when the high gain is set.
  • the present embodiment includes a variable resistance circuit Rm in which one end is connected to the connection point N of the first and second transistors connected by cascode in the unit amplifier AMP, and the variable resistance circuit Rm.
  • a set voltage Vm having a DC voltage value equal to the DC potential Vn of the connection point N is applied to the other end.
  • FIG. 4 is a circuit diagram showing the configuration of the unit amplifier according to the second embodiment.
  • a variable peaking function may be required to compensate for the loss of passive components during mounting.
  • an RC parallel circuit is added to the circuit configuration of the unit amplifier AMP of FIG. 2 described above.
  • the RC parallel circuit consists of a circuit in which the variable resistance element Re and the capacitive element Ce are connected in parallel, one end of which is connected to the emitter terminal of the first transistor Qin, and the other.
  • a negative power supply voltage VEE is supplied to the end.
  • Other configurations of the distributed amplifier 10B according to the present embodiment are the same as those of the distributed amplifier 10A of FIG. 1, and detailed description thereof will be omitted here.
  • the peaking amount (difference between DC gain and maximum gain) can be adjusted by changing the resistance value of the variable resistance element Re.
  • the voltage value of the negative power supply voltage VEE is also adjusted so that the current amount of the unit amplifier AMP becomes constant.
  • FIG. 5 is a graph showing the simulation result of the S parameter S21 of the unit amplifier according to the second embodiment, in which the characteristic A shows the low peaking setting and the characteristic B shows the high peaking setting. These characteristics A and B show the characteristics obtained by normalizing the S parameter S21 with a gain of 1 GHz. As a result, even when the peaking amount of the unit amplifier AMP is adjusted by changing the resistance value of the variable resistance element Re, the peaking amount can be adjusted without causing ripples in the frequency characteristics as shown in FIG. I understand. Further, in the circuit configuration of the unit amplifier AMP according to the present embodiment, it is possible to adjust the peaking frequency by setting the capacitive element Ce to a variable capacitance.
  • FIG. 6 is a block diagram showing a configuration of a distributed amplifier according to a third embodiment.
  • FIG. 7 is a circuit diagram showing a configuration of a unit amplifier (previous stage amplifier block) according to the third embodiment.
  • FIG. 8 is a circuit diagram showing a configuration of a unit amplifier (post-stage amplifier block) according to the third embodiment.
  • the distributed amplifier 10C according to the present embodiment includes two front-stage amplifier blocks 11 and a rear-stage amplifier including the distributed amplifier 10A according to the first embodiment shown in FIG. 1 described above. It is a subordinate connection to the block 12.
  • the front-stage amplifier block 11 and the rear-stage amplifier block 12 may be the distributed amplifier 10B according to the second embodiment.
  • the front-stage amplifier block 11 is configured to amplify the input signal Vin input from the input terminal Tin1 and output the obtained intermediate signal Va from the output terminal Tout1.
  • the pre-stage amplifier block 11 has, as main circuit units, an input side transmission line W11, an output side transmission line W12, an input side terminating resistor Rb1, an output side terminating resistor Rc1, and n (n is an integer of 2 or more) unit amplifiers. It is equipped with AMP10 (AMP11, AMP12, ..., AMP1n-1, AMP1n).
  • n is an integer of 2 or more unit amplifier AMPs in FIG. 1, respectively. ..
  • [Input side transmission line] An input signal Vin is input to one end of the low frequency side of the input side transmission line W11 via the input terminal Tin1.
  • a DC bias voltage Vbin1 is applied to the other end of the input-side transmission line W11 on the high frequency side via the connection terminal T11 and the input-side terminating resistor Rb1.
  • the resistance value of the input side terminating resistor Rb1 is 50 ⁇ as in the case of a general high-frequency transmission line.
  • a DC power supply voltage Vcc1 is applied to one end of the output-side transmission line W12 on the low frequency side via the connection terminal T12 and the output-side terminating resistor Rc1. From the other end of the output side transmission line W2 on the high frequency side, the intermediate signal Va obtained by amplifying the input signal Vin is output via the output terminal Tout1.
  • the unit amplifier AMP10 also called a unit cell, is arranged in a ladder shape in parallel with each other along the input side transmission line W11 and the output side transmission line W12, and each cell input terminal Ti1 is connected to the input side transmission line W11.
  • the cell output terminal To1 is connected to the output side transmission line W12.
  • the unit amplifier AMP10 is composed of a cell having first and second transistors Qi1 and Qo1 (cascode circuits) connected by cascode and a variable resistance circuit Rm1. These correspond to the first and second transistors Qi and Qo connected by cascode in FIG. 2 and the variable resistance circuit Rm, respectively.
  • the base terminal is connected to the cell input terminal Ti1, and the collector terminal is connected to the emitter terminal of the second transistor Qo1 at the connection point N1. Further, a negative power supply voltage VEE1 is applied to the emitter terminal of the first transistor Qi1 via an RC parallel circuit in which the variable resistance element Re1 and the capacitive element Ce1 are connected in parallel, as in FIG. ing.
  • the collector terminal is connected to the cell output terminal To1, the bias voltage Vb1 is applied to the base terminal, and the emitter terminal is connected to the collector terminal of the first transistor Qi1 via the connection point N1. ..
  • variable resistance circuit As shown in FIG. 7, one end of the variable resistance circuit Rm1 is connected to the connection point N1, and the set voltage Vm1 is applied to the other end. At this time, a set voltage Vm2 having a DC voltage value equal to the DC potential Vn1 of the connection point N1 is applied to the other end of the variable resistance circuit Rm1.
  • the variable resistance circuit Rm may be composed of, for example, the MOSFET of FIG. 11 described later.
  • a high impedance voltmeter is connected to the other end of the variable resistance circuit Rm1 instead of the set voltage Vm1 to make it variable, as in the first embodiment described above.
  • the DC voltage of the connection point N1 is measured via the resistance circuit Rm1.
  • the measured voltage value may be set as the voltage source of the set voltage Vm1, and finally, the voltmeter may be removed and the set voltage Vm1 output from the voltage source may be applied to the other end of the variable resistance circuit Rm1.
  • the voltmeter and the voltage source may be automatically switched inside the voltage source device by using a voltage source device provided with a voltmeter.
  • the rear-stage amplifier block 12 is configured to amplify the intermediate signal Va from the front-stage amplifier block 11 input from the input terminal Tin2 and output the obtained output signal Vout from the output terminal Tout2. ing.
  • the latter-stage amplifier block 12 has input-side transmission line W21, output-side transmission line W22, input-side terminating resistor Rb2, output-side terminating resistor Rc2, and n (n is an integer of 2 or more) unit amplifiers as main circuit units. It is equipped with AMP20 (AMP21, AMP22, ..., AMP2n-1, AMP2n).
  • n is an integer of 2 or more unit amplifier AMPs in FIG. 1, respectively. ..
  • a DC bias voltage Vbin2 is applied to the other end of the input-side transmission line W21 on the high frequency side via the connection terminal T21 and the input-side terminating resistor Rb2.
  • the resistance value of the input side terminating resistor Rb2 is 50 ⁇ as in the case of a general high-frequency transmission line.
  • a DC power supply voltage Vcc2 is applied to one end of the output-side transmission line W22 on the low frequency side via the connection terminal T22 and the output-side terminating resistor Rc2. From the other end of the output side transmission line W22 on the high frequency side, the output signal Vout obtained by amplifying the intermediate signal Va is output via the output terminal Tout2.
  • the unit amplifier AMP20 also called a unit cell, is arranged in a ladder shape in parallel with each other along the input side transmission line W21 and the output side transmission line W22, and each cell input terminal Ti2 is connected to the input side transmission line W21.
  • the cell output terminal To2 is connected to the output side transmission line W22.
  • the unit amplifier AMP20 is composed of a cell having first and second transistors Qi2 and Qo2 (cascode circuit) connected by cascode and a variable resistance circuit Rm2. These correspond to the first and second transistors Qi and Qo connected by cascode in FIG. 2 and the variable resistance circuit Rm, respectively.
  • the base terminal is connected to the cell input terminal Ti2, and the collector terminal is connected to the emitter terminal of the second transistor Qo2 at the connection point N2. Further, a negative power supply voltage VEE2 is applied to the emitter terminal of the first transistor Qi2 via an RC parallel circuit in which the variable resistance element Re2 and the capacitive element Ce2 are connected in parallel, as in FIG. ing.
  • the collector terminal is connected to the cell output terminal To2, the bias voltage Vb2 is applied to the base terminal, and the emitter terminal is connected to the collector terminal of the first transistor Qi2 via the connection point N2. ..
  • variable resistance circuit As shown in FIG. 8, one end of the variable resistance circuit Rm2 is connected to the connection point N2, and the set voltage Vm2 is applied to the other end. At this time, a set voltage Vm2 having a DC voltage value equal to the DC potential Vn2 of the connection point N2 is applied to the other end of the variable resistance circuit Rm2.
  • the variable resistance circuit Rm may be composed of, for example, the MOSFET of FIG. 11 described later.
  • a high impedance voltmeter is connected to the other end of the variable resistance circuit Rm2 instead of the set voltage Vm2 to make it variable, as in the first embodiment described above.
  • the DC voltage of the connection point N2 is measured via the resistance circuit Rm2.
  • the measured voltage value may be set as the voltage source of the set voltage Vm2, and finally, the voltmeter may be removed and the set voltage Vm2 output from the voltage source may be applied to the other end of the variable resistance circuit Rm2.
  • the voltmeter and the voltage source may be automatically switched inside the voltage source device by using a voltage source device provided with a voltmeter.
  • the DC current Icc1 flowing from the power supply voltage Vcc1 to the output side transmission line W12 via the termination resistor Rc1 is measured with an ammeter, and the front stage amplifier block 11 is used.
  • the DC potential Vo1 of the output terminal Tout1 of is calculated.
  • the obtained DC potential Vo1 is compared with the voltage value of the bias voltage Vbin2 measured by the voltmeter, and the voltage value of the power supply voltage Vcc1 is adjusted so that the DC potential Vo1 becomes equal to the voltage value of the bias voltage Vbin2. do it.
  • FIG. 9 is a graph showing the simulation result of the S parameter S21 of the unit amplifier according to the third embodiment. Further, it can be seen that a higher gain and a peaking amount can be realized as compared with FIGS. 3 and 5 described above by the configuration in which the front stage amplifier block 11 and the rear stage amplifier block 12 are subordinately connected.
  • FIG. 10 is a block diagram showing a configuration of a distributed amplifier according to a fourth embodiment.
  • the input side terminating resistor Rb1 of the front-stage amplifier block 11, the output-side terminating resistor Rc1 and the input-side terminating resistor Rb2 of the rear-stage amplifier block 12 are configured by a single resistance element will be described as an example. did.
  • the wiring from these terminating resistors Rb1, Rc1 and Rb2 to the pads of the respective connection terminals T11, T12 and T21 is long, the reflection characteristics on the high frequency side may deteriorate.
  • This embodiment describes a case where any or all of these terminating resistors Rb1, Rc1 and Rb2 are configured by a resistance parallel circuit in which two resistance elements are connected in parallel.
  • the other configurations excluding the terminating resistors Rb1, Rc1 and Rb2 are the same as those in FIG. 6 described above, and detailed description thereof will be omitted here.
  • a resistance parallel circuit including a resistance element Rb11 and a resistance element Rb12 is terminated on the input side at the other end of the input side transmission line W11 of the previous stage amplifier block 11 on the high frequency side. It is connected in place of the resistor Rb1.
  • One end of the resistance element Rb11 is connected to the other end on the high frequency side of the input side transmission line W11, and the bias voltage Vbin1 is applied to the other end via the connection terminal T11.
  • one end of the resistance element Rb12 is connected to the other end of the input side transmission line W11 on the high frequency side, and the other end is connected to the ground potential GND.
  • the combined resistance of these resistance elements Rb11 and Rb12 is 50 ⁇ as in the terminating resistance Rb1.
  • the resistance value of the resistance element Rb12 may be set to a resistance value smaller than the resistance value of the resistance element Rb11.
  • a resistance parallel circuit composed of a resistance element Rc11 and a resistance element Rc12 is connected to one end of the low frequency side of the output side transmission line W12 of the front stage amplifier block 11 in place of the output side terminating resistor Rc1.
  • One end of the resistance element Rc11 is connected to one end on the low frequency side of the output side transmission line W12, and the power supply voltage Vcc1 is applied to the other end via the connection terminal T12.
  • one end of the resistance element Rc12 is connected to one end on the low frequency side of the output side transmission line W12, and the other end is connected to the ground potential GND.
  • the combined resistance of these resistance elements Rc11 and Rc12 is 50 ⁇ as in the terminating resistance Rc1.
  • the resistance element Rc12 may have a resistance value smaller than the resistance value of the resistance element Rc11.
  • a resistance parallel circuit composed of a resistance element Rb21 and a resistance element Rb22 is connected to the other end of the input side transmission line W21 of the subsequent amplifier block 12 on the high frequency side in place of the input side terminating resistor Rb2.
  • One end of the resistance element Rb21 is connected to the other end on the high frequency side of the input side transmission line W21, and the bias voltage Vbin2 is applied to the other end via the connection terminal T21.
  • one end of the resistance element Rb22 is connected to the other end of the input side transmission line W21 on the high frequency side, and the other end is connected to the ground potential GND.
  • the combined resistance of these resistance elements Rb21 and Rb22 is 50 ⁇ as in the terminating resistance Rb2.
  • the resistance element Rb22 may have a resistance value smaller than the resistance value of the resistance element Rb21.
  • any or all of the terminating resistors Rb1, Rc1 and Rb2 are configured by a resistance parallel circuit in which two resistance elements are connected in parallel.
  • the other end of the input side transmission line W11 on the high frequency side, one end of the output side transmission line W12 on the low frequency side, and the other end of the input side transmission line W21 on the high frequency side are the resistance elements Rb12, Rc12, Rb22. Will be connected to the ground potential via. Therefore, even when the wiring from the resistance elements Rb11, Rc11, and Rb21 to the pads of the respective connection terminals T11, T12, and T21 is long, deterioration of the reflection characteristics on the high frequency side can be suppressed.
  • the resistance values of the resistance elements Rb12, Rc12, and Rb22 are made smaller than the resistance values of the resistance elements Rb11, Rc11, and Rb21, respectively, the effect of suppressing deterioration of the reflection characteristics can be enhanced.
  • FIG. 11 is a circuit diagram showing a variable resistance circuit according to the fifth embodiment.
  • the variable resistance circuit Rm of the unit amplifier AMP in the first to fourth embodiments described above may be configured by MOSFET. If the manufacturing process of the distributed amplifier is a process that can also manufacture MOSFETs, it can be easily realized.
  • one of the drain terminal or the source terminal of the MOSFET may be connected to the connection point N, and the set voltage Vm may be applied to the other of the drain terminal or the source terminal. Then, an adjustment voltage VG composed of a DC voltage value for adjusting the gain according to the resistance value of the variable resistance circuit Rm may be applied to the gate terminal.
  • the variable resistance circuit Rm can be realized with an extremely simple circuit configuration. This configuration is similarly applicable to the unit amplifiers AMP, AMP10, and AMP20 of FIGS. 4, 7, and 8.
  • FIG. 12 is a circuit diagram showing a variable resistance circuit according to the sixth embodiment.
  • the variable resistance circuit Rm of the unit amplifier AMP in the first to fourth embodiments described above may be configured by a bipolar transistor. Even if the manufacturing process of the distributed amplifier is a process that can manufacture only bipolar transistors, it can be easily realized.
  • the emitter terminal of the NPN type bipolar transistor Q is connected to the connection point N, and the gain is adjusted to the collector terminal according to the resistance value of the variable resistance circuit Rm.
  • the adjustment voltage VG1 composed of the DC voltage value may be applied.
  • a resistance element may be connected between the base terminal and the emitter terminal of the bipolar transistor Q, and the base terminal may be grounded to the installation potential GND via the capacitive element.
  • the adjustment voltage VG1 is changed to a voltage value higher than the potential Vn1 of the connection point N1
  • the resistance value of the variable resistance circuit Rm is lowered, and the gain of the unit amplifier AMP10 can be reduced. Therefore, the variable resistance circuit Rm can be realized with an extremely simple circuit configuration.
  • the unit amplifiers AMP, AMP10, and AMP20 of FIGS. 4, 7, and 8 described above are also applicable.
  • FIG. 13 is a Smith chart showing a simulation result of the S parameter S11 seen from the connection point N of the variable resistance circuit according to the sixth embodiment.
  • the change in the input impedance Zin of the variable resistance circuit Rm seen from the connection point N side when the voltage value of the adjustment voltage VG is changed is shown normalized by 50 ⁇ . From this, it can be confirmed that the resistance value of Zin can be changed by the voltage value of the adjustment voltage VG.
  • FIG. 14 is a circuit diagram showing a configuration of a unit amplifier (previous stage amplifier block) according to the seventh embodiment.
  • FIG. 15 is a circuit diagram showing a configuration of a unit amplifier (post-stage amplifier block) according to the seventh embodiment.
  • the variable resistance circuits Rm1 and Rm2 of FIGS. 7 and 8 described above are configured by the variable resistance circuit of FIG. 12 described above.
  • the case of adjusting the gain will be described.
  • another variable resistance circuit of FIG. 12 described above may be added to each of the unit amplifiers AMPs 10 and 20, so that the gain and the peaking amount can be adjusted individually.
  • the unit amplifier AMP10 of the pre-stage amplifier block 11 replaces the variable resistance circuit Rm1 having the configuration of FIG. 7 described above with the input transistor Qi1 and the output transistor Qo1 connected by cascode.
  • a variable resistance circuit Rm11 for gain adjustment having the configuration of FIG. 12 described above is connected to the connection point N1 of.
  • a variable resistance circuit Rm12 for adjusting the peaking amount having the configuration shown in FIG. 12 described above is newly connected to the emitter terminal of the input transistor Qi1.
  • variable resistance circuit for gain adjustment As shown in FIG. 14, in the variable resistance circuit Rm11 for gain adjustment, the emitter terminal is connected to the connection point N1 and the collector terminal has an adjustment voltage VG1 (first adjustment) consisting of a DC voltage value for adjusting the gain. It is composed of an NPN type bipolar transistor Qm11 to which a voltage) is applied. The base terminal of the transistor Qm11 is grounded to the ground potential GND via a capacitive element and is connected to the collector terminal of the transistor Qm11 via a resistance element.
  • VG1 first adjustment
  • the base terminal of the transistor Qm11 is grounded to the ground potential GND via a capacitive element and is connected to the collector terminal of the transistor Qm11 via a resistance element.
  • the adjustment voltage VG1 When the adjustment voltage VG1 is set to a voltage value higher than the potential Vn1 of the connection point N1, the resistance value of the variable resistance circuit Rm11 is lowered, and the gain of the unit amplifier AMP10 can be reduced.
  • the DC potential Vo1 of the intermediate signal Va output from the front-stage amplifier block 11 changes, and the bias conditions of the front-stage amplifier block 11 and the rear-stage amplifier block 12 are different. Therefore, the DC potential Vo1 may be adjusted to a voltage value equal to the bias voltage Vbin2 by adjusting the power supply voltage Vcc1 in the same manner as the adjustment of the bias condition described in the third embodiment.
  • the bias conditions of the front-stage amplifier block 11 and the rear-stage amplifier block 12 become equal, and band deterioration in the distributed amplifier can be suppressed.
  • variable resistance circuit for adjusting peaking amount As shown in FIG. 14, in the variable resistance circuit Rm12 for adjusting the peaking amount, the emitter terminal is connected to the emitter terminal of the input transistor Qi1 and the adjustment voltage VP1 (which consists of a DC voltage value for adjusting the peaking amount to the collector terminal) ( It is composed of an NPN type bipolar transistor Qm12 to which a second adjustment voltage) is applied.
  • the base terminal of the transistor Qm12 is grounded to the ground potential GND via a capacitive element and is connected to the collector terminal of the transistor Qm12 via a resistance element.
  • the adjustment voltage VP1 When the adjustment voltage VP1 is set to a voltage value higher than the potential Ve1 of the emitter terminal of the input transistor Qi1, the resistance value of the variable resistance circuit Rm12 is lowered, and the peaking amount can be reduced. At this time, since the current value flowing through the unit amplifier AMP 10 decreases, the negative power supply voltage VEE1 may be adjusted so that the original current value is maintained.
  • the unit amplifier AMP20 of the subsequent amplifier block 12 replaces the variable resistance circuit Rm2 having the configuration of FIG. 8 described above with the input transistor Qi2 and the output transistor Qo2 connected by cascode.
  • the variable resistance circuit Rm21 for gain adjustment having the configuration of FIG. 12 described above is connected to the connection point N2 of.
  • a variable resistance circuit Rm22 for adjusting the peaking amount having the configuration shown in FIG. 12 described above is newly connected to the emitter terminal of the input transistor Qi1.
  • variable resistance circuit for gain adjustment As shown in FIG. 15, in the variable resistance circuit Rm21 for gain adjustment, the emitter terminal is connected to the connection point N2, and the collector terminal has an adjustment voltage VG2 (first adjustment) consisting of a DC voltage value for adjusting the gain. It is composed of an NPN type bipolar transistor Qm21 to which a voltage) is applied. The base terminal of the transistor Qm21 is grounded to the ground potential GND via a capacitive element and is connected to the collector terminal of the transistor Qm21 via a resistance element.
  • the adjustment voltage VG2 When the adjustment voltage VG2 is set to a voltage value higher than the potential Vn2 of the connection point N2, the resistance value of the variable resistance circuit Rm21 is lowered, and the gain of the unit amplifier AMP20 can be reduced. At this time, the DC potential Vo2 of the output signal Vout output from the rear-stage amplifier block 12 changes, but the bias condition between the front-stage amplifier block 11 and the rear-stage amplifier block 12 is not affected, so that the power supply voltage Vcc2 does not need to be adjusted. Is.
  • the emitter terminal is connected to the emitter terminal of the input transistor Qi2, and the adjustment voltage VP2 (adjusted voltage VP2) consisting of a DC voltage value for adjusting the peaking amount to the collector terminal. It is composed of an NPN type bipolar transistor Qm22 to which a second adjustment voltage) is applied.
  • the base terminal of the transistor Qm22 is grounded to the ground potential GND via a capacitive element and is connected to the collector terminal of the transistor Qm22 via a resistance element.
  • the adjustment voltage VP2 When the adjustment voltage VP2 is set to a voltage value higher than the potential Ve2 of the emitter terminal of the input transistor Qi2, the resistance value of the variable resistance circuit Rm22 is lowered, and the peaking amount can be reduced. At this time, since the current value of the unit amplifier AMP 20 decreases, the negative power supply voltage VEE2 may be adjusted so that the original current value is maintained.
  • 10A, 10B, 10C Distributed amplifier, W1, W11, W21 ... Input side transmission line, W2, W12, W22 ... Output side transmission line, Rb, Rb1, Rb2 ... Input side termination resistor, Rc, Rc1, Rc2 ... Output Side termination resistor, Rb11, Rb12, Rb21, Rb22, Rc11, Rc12 ... Resistance element, AMP, AMP10, AMP20 ... Unit amplifier, Qi, Qi1, Qi2 ... Input transistor, Qo, Qo1, Qo2 ... Output transistor, Rm, Rm1, Rm2, Rm11, Rm12, Rm21, Rm22 ... Variable resistance circuit, Re, Re1, Re2 ...
  • Variable resistance element Ce, Ce1, Ce2 ... Capacitive element, Vin ... Input signal, Va ... Intermediate signal, Vout ... Output signal, Tin, Tin1, Tin2 ... Input terminal, Tout, Tout1, Tout2 ... Output terminal, Ti, Ti1, Ti2 ... Cell input terminal, To, To1, To2 ... Cell output terminal, Vbin, Vbin1, Vbin2, Vb, Vb1, Vb2 ... Bias voltage , Vcc, Vcc1, Vcc2 ... Power supply voltage, Icc1 ... DC current, VEE, VEE1, VEE2 ... Negative power supply voltage, Vm, Vm1, Vm2 ... Set voltage, VG, VG1, VG2, VP1, VP2 ... Adjustment voltage, Vn, Vn1, Vn2, Vo1, Ve1 ... DC potential, N, N1, N2 ... Connection point, T1, T2, T11, T12, T21, T22 ... Connection terminal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microwave Amplifiers (AREA)
  • Amplifiers (AREA)

Abstract

単位増幅器(AMP)は、カスコード接続された第1および第2のトランジスタ(Qi,Qo)と、第1の可変抵抗回路(Rm)とを有し、第1のトランジスタ(Qi)は、ベース端子またはゲート端子がセル入力端子(Ti)に接続されており、第2のトランジスタ(Qo)は、コレクタ端子またはドレイン端子がセル出力端子(To)に接続され、エミッタ端子またはソース端子が第1のトランジスタ(Qi)のコレクタ端子またはドレイン端子と接続されており、第1の可変抵抗回路(Rm)は、一端が第1および第2のトランジスタ(Qi,Qo)の接続点(N)に接続されている。これにより、帯域特性を大きく劣化させることなく、利得を変化させることができる。

Description

分布型アンプ
 本発明は、可変利得機能を備える分布型アンプに関する。
 一般に、高速通信や高分解能レーダー等の様々なシステムでは、広い周波数帯域で良好な増幅特性を有する広帯域な増幅器が求められている。
 従来、増幅器を広帯域化する技術として、非特許文献1では、図16に示すような、分布型アンプ50が提案されている。図16は、従来の分布型アンプの構成を示すブロック図である。この分布型アンプ50は、入力側伝送線路W51と出力側伝送線路W52との間に、複数の単位増幅器AMPが梯子状に接続されている。単位増幅器AMPは、カスコード接続された入力トランジスタQiと出力トランジスタQoから構成されている。
 この非特許文献1の従来技術では、単位増幅器AMPを構成するトランジスタの寄生容量を入力側伝送線路W51と出力側伝送線路W52とに組み込み、インピーダンス整合を取る構成を有している。さらにこの従来技術は、入力側伝送線路W51と出力側伝送線路W52との間で伝搬定数を合わせることで、広帯域な信号増幅を可能にしている。
 通常、増幅器は、チップやシステムの利得ばらつきや、周波数特性ばらつきを補償するために、可変利得機能を備えることが求められる。従来、可変利得を実現する方法として、非特許文献2で提案されている、終端抵抗(出力負荷抵抗)を変える技術や、非特許文献3で提案されている、入力トランジスタのバイアスを調整する技術がある。
Eriksson, Klas, Izzat Darwazeh, and Herbert Zirath. "InP DHBT distributed amplifiers with up to 235-GHz bandwidth." IEEE Transactions on Microwave Theory and Techniques 63.4 (2015): 1334-1341. S. Nakano et al., "A 2.25-mW/Gb/s 80-Gb/s-PAM4 linear driver with a single supply using stacked current-mode architecture in 65-nm CMOS," 2017 Symposium on VLSI Circuits, Kyoto, 2017, pp. C322-C323, doi: 10.23919/VLSIC.2017.8008525. Sadhu, B., J. F. Bulzacchelli, and A. Valdes-Garcia. "A 28GHz SiGe BiCMOS phase invariant VGA." 2016 IEEE Radio Frequency Integrated Circuits Symposium (RFIC). IEEE, 2016.
 しかしながら、このような従来技術における可変利得の実現方法はそれぞれ次のような課題がある。前述した図16の単位増幅器AMPに対して非特許文献2の技術を適用し、出力伝送線路W52の終端抵抗Rcの抵抗値を変更することにより利得を可変とした場合、出力伝送線路W52と終端抵抗Rcとの間にインピーンダンス不整合が起き、多重反射が生じる。その結果、周波数特性にリップルが生じ、所望の特性が得られなくなるという課題がある。
 図17は、従来の単位増幅器のSパラメータS21のシミュレーション結果(終端抵抗値調整時)を示すグラフであり、特性Aは低利得設定時、特性Bは高利得設定時を示している。図17の特性Aが示すように、低利得設定時に終端抵抗Rcの値を小さくすると、DC利得は変化するが、高周波側の利得はほぼ変化せず、また高周波側でリップルを打つことが確認できる。
 また、前述した図16の単位増幅器AMPに対して非特許文献3の技術を適用して、単位増幅器AMPの入力トランジスタQiのバイアス電圧Vbinを変更することにより利得を可変とした場合、帯域特性が劣化するという課題がある。なぜなら、通常、トランジスタには最も速く動作する(ftとfmaxが最も高くなる)、最適バイアス点(バイアス電流とバイアス電圧)が存在しており、実際のバイアスコンディションが最適バイアス点からずれてしまうと、トランジスタの動作速度が減少するためである。
 図18は、従来の単位増幅器のSパラメータS21のシミュレーション結果(バイアス電圧値調整時)を示すグラフである。図18は、従来の単位増幅器のSパラメータS21のシミュレーション結果(バイアス電圧値調整時)を示すグラフであり、特性Aは低利得設定時、特性Bは高利得設定時を示している。図18の特性A,Bが示すように、低利得設定時にバイアス電圧Vbinを変更した場合、利得が減少するとともに帯域も劣化していることが確認できる。
 本発明はこのような課題を解決するためのものであり、帯域特性を大きく劣化させることなく、利得を変化させることができる分布型アンプを提供することを目的としている。
 このような目的を達成するために、本発明にかかる分布型アンプは、一端に入力信号が入力され、他端に入力側終端抵抗が接続されるように構成された入力側伝送線路と、一端に出力側終端抵抗が接続され、他端から出力信号が出力されるように構成された出力側伝送線路と、前記入力側および出力側伝送線路に沿って互いに並列して梯子状に配置されて、セル入力端子が前記入力側伝送線路に接続され、セル出力端子が前記出力側伝送線路に接続された、複数の単位増幅器とを備え、前記単位増幅器は、カスコード接続された第1および第2のトランジスタと、第1の可変抵抗回路とを有し、前記第1のトランジスタは、ベース端子またはゲート端子が前記セル入力端子に接続されており、前記第2のトランジスタは、コレクタ端子またはドレイン端子が前記セル出力端子に接続され、エミッタ端子またはソース端子が前記第1のトランジスタのコレクタ端子またはドレイン端子と接続されており、前記第1の可変抵抗回路は、一端が前記第1および第2のトランジスタの接続点に接続されている。
 また、本発明にかかる他の分布型アンプは、請求項1~請求項4のいずれかに記載の分布型アンプからなり、入力された入力信号を増幅し、得られた中間信号を出力する前段アンプブロックと、請求項1~請求項4のいずれかに記載の分布型アンプからなり、前段アンプブロックから出力された前記中間信号を増幅し、得られた出力信号を出力する後段アンプブロックとを備え、出力側終端抵抗を介して前記前段アンプブロックの出力側伝送線路に印加される電源電圧は、当該出力側終端抵抗の両端電圧と、入力側終端抵抗を介して前記後段アンプブロックの入力側伝送線路に印加されるバイアス電圧との和と等しい電圧値からなり、前記両端電圧は、前記前段アンプブロックの出力端子の直流電位が前記バイアス電圧と等しいときに、前記出力側終端抵抗に流れる電流と当該出力側終端抵抗の抵抗値との積からなる、ように構成されている。
 また、本発明にかかる他の分布型アンプは、請求項4に記載の分布型アンプからなり、入力された入力信号を増幅し、得られた中間信号を出力する前段アンプブロックと、請求項4に記載の分布型アンプからなり、前段アンプブロックから出力された前記中間信号を増幅し、得られた出力信号を出力する後段アンプブロックとを備え、出力側終端抵抗を介して前記前段アンプブロックの出力側伝送線路に印加される電源電圧は、当該出力側終端抵抗の両端電圧と、入力側終端抵抗を介して前記後段アンプブロックの入力側伝送線路に印加されるバイアス電圧との和と等しい電圧値からなり、前記両端電圧は、前記前段アンプブロックの出力端子の直流電位が前記バイアス電圧と等しいときに、前記出力側終端抵抗に流れる電流と当該出力側終端抵抗の抵抗値との積からなり、前記前段アンプブロックの出力側伝送線路は、前記利得変更時に前記第1の調整電圧が変更された場合、当該出力側終端抵抗に流れる電流と当該出力側終端抵抗の抵抗値との積と、前記後段アンプブロックの入力側伝送線路に印加されるバイアス電圧との和に等しい、新たな直流電圧値からなる電源電圧が印加される、ように構成されている。
 本発明によれば、分布型アンプにおいて、帯域特性を大きく劣化させることなく、利得を変化させることが可能となる。
図1は、第1の実施の形態にかかる分布型アンプの構成を示すブロック図である。 図2は、第1の実施の形態にかかる単位増幅器の構成を示す回路図である。 図3は、第1の実施の形態にかかる単位増幅器のSパラメータS21のシミュレーション結果を示すグラフである。 図4は、第2の実施の形態にかかる単位増幅器の構成を示す回路図である。 図5は、第2の実施の形態にかかる単位増幅器のSパラメータS21のシミュレーション結果を示すグラフである。 図6は、第3の実施の形態にかかる分布型アンプの構成を示すブロック図である。 図7は、第3の実施の形態にかかる単位増幅器(前段アンプブロック)の構成を示す回路図である。 図8は、第3の実施の形態にかかる単位増幅器(後段アンプブロック)の構成を示す回路図である。 図9は、第3の実施の形態にかかる単位増幅器のSパラメータS21のシミュレーション結果を示すグラフである。 図10は、第4の実施の形態にかかる分布型アンプの構成を示すブロック図である。 図11は、第5の実施の形態にかかる可変抵抗回路を示す回路図である。 図12は、第6の実施の形態にかかる可変抵抗回路を示す回路図である。 図13は、第6の実施の形態にかかる可変抵抗回路の接続点Nから見たSパラメータS11のシミュレーション結果を示すスミスチャートである。 図14は、第7の実施の形態にかかる単位増幅器(前段アンプブロック)の構成を示す回路図である。 図15は、第7の実施の形態にかかる単位増幅器(後段アンプブロック)の構成を示す回路図である。 図16は、従来の分布型アンプの構成を示すブロック図である。 図17は、従来の単位増幅器のSパラメータS21のシミュレーション結果(終端抵抗値調整時)を示すグラフである。 図18は、従来の単位増幅器のSパラメータS21のシミュレーション結果(バイアス電圧値調整時)を示すグラフである。
 次に、本発明の実施の形態について図面を参照して説明する。
[第1の実施の形態]
 まず、図1および図2を参照して、本発明の第1の実施の形態にかかる分布型アンプ10Aについて説明する。図1は、第1の実施の形態にかかる分布型アンプの構成を示すブロック図である。図2は、第1の実施の形態にかかる単位増幅器の構成を示す回路図である。
 この分布型アンプ10Aは、光通信などの高速通信システムや高分解能レーダーなどの無線通信システムなど、様々なシステムの高周波信号処理回路で用いられて、広い周波数帯域で良好な増幅特性を有する広帯域な増幅器である。
 図1に示すように、分布型アンプ10Aは、主な回路部として、入力側伝送線路W1、出力側伝送線路W2、入力側終端抵抗Rb、出力側終端抵抗Rc、およびn(nは2以上の整数)個の単位増幅器AMP(AMP1,AMP2,…,AMPn-1,AMPn)を備えている。
[入力側伝送線路]
 入力側伝送線路W1は、コプレーナ導波路(CPW:Coplanar Waveguide)などの高周波伝送線路からなるn+1個の単位伝送線路w11,w12,…,w1n,w1n+1が直列接続された構成を有している。入力側伝送線路W1の低周波数側(伝送線路w1)の一端には、入力信号Vinが入力端子Tinを介して入力される。
[出力側伝送線路]
 出力側伝送線路W2は、入力側伝送線路W1と同様に、コプレーナ導波路などの高周波伝送線路からなるn+1個の単位伝送線路w21,w22,…,w2n,w2n+1が直列接続された構成を有している。出力側伝送線路W2の高周波数側(伝送線路w2n+1)の他端から、入力信号Vinを増幅して得られた出力信号Voutが出力端子Toutを介して出力される。
[入力側終端抵抗]
 入力側終端抵抗Rbは、一端が入力側伝送線路W1の高周波数側(伝送線路W1n+1)の他端に接続され、他端は直流のバイアス電圧Vbinが印加される接続端子T1に接続されている。入力側終端抵抗Rbの抵抗値は、一般的な高周波伝送線路の場合と同様に50Ωである。
[出力側終端抵抗]
 出力側終端抵抗Rcは、一端が出力側伝送線路W2の低周波数側(伝送線路W21)の一端に接続され、他端は直流の電源電圧Vccが印加される接続端子T2に接続されている。出力側終端抵抗Rcの抵抗値は、一般的な高周波伝送線路の場合と同様に50Ωである。
[単位増幅器]
 単位増幅器AMP(AMP1,AMP2,…,AMPn-1,AMPn)は、単位セルともよばれ、入力側伝送線路W1および出力側伝送線路W2に沿って互いに並列して梯子状に配置されて、それぞれセル入力端子Tiが入力側伝送線路W1に接続され、セル出力端子Toが出力側伝送線路W2に接続されている。具体的には、単位増幅器AMP1のセル入力端子Tiは、入力側伝送線路W1の単位伝送線路w11と単位伝送線路w12の接続点に接続され、単位増幅器AMP1のセル出力端子Toは、出力側伝送線路W2の単位伝送線路w21と単位伝送線路w22の接続点に接続されている。また、単位増幅器AMPnのセル入力端子Tiは、入力側伝送線路W1の単位伝送線路w1nと単位伝送線路w1n+1の接続点に接続され、単位増幅器AMPnのセル出力端子Toは、出力側伝送線路W2の単位伝送線路w2nと単位伝送線路w2n+1の接続点に接続されている。
 したがって、入力端子Tinから入力された入力信号Vinが、入力側伝送線路W1を介してこれら単位増幅器AMPに対して進行波的に順次入力される。そして、これら単位増幅器AMPから出力された増幅信号が出力側伝送線路W2を介して同位相で合成されて、出力端子Toutから出力信号Voutとして出力される。これにより、単位増幅器AMPの容量成分と、入力側伝送線路W1および出力側伝送線路W2Kのインダクタ成分とにより、疑似的な分布定数線路が形成されるため、分布型アンプ10Aの広帯域特性が実現される。
 図2に示すように、単位増幅器AMPは、カスコード接続された第1および第2のトランジスタQi,Qo(カスコード回路)と、可変抵抗回路Rmとを有するセルから構成されている。以下では、第1および第2のトランジスタQi,QoがNPN型のバイポーラトランジスタからなる場合を例として説明するが、PNP型のバイポーラトランジスタでもよく、後述するようにMOSFETでもよい。MOSFETの場合、ゲート端子、ドレイン端子、ソース端子が、バイポーラトランジスタのベース端子、エミッタ端子、コレクタ端子に相当する。
 第1のトランジスタQiは、ベース端子がセル入力端子Tiに接続され、エミッタ端子に負側電源電圧VEEが印加され、コレクタ端子が接続点Nで第2のトランジスタQoのエミッタ端子と接続されている。
 第2のトランジスタQoは、コレクタ端子がセル出力端子Toに接続され、ベース端子にバイアス電圧Vbが印加され、エミッタ端子が接続点Nを介して第1のトランジスタQiのコレクタ端子と接続されている。
[可変抵抗回路]
 可変抵抗回路Rmは、図2に示すように、一端が接続点Nに接続され、他端に設定電圧Vmが印加されている。この際、可変抵抗回路Rmの他端には、接続点Nの直流電位Vnと等しい直流電圧値からなる設定電圧Vmが印加される。可変抵抗回路Rmは、例えば、後述する図11のMOSFETから構成してもよい。
[本発明の原理]
 ここで、本発明の原理について説明する。図2に示すように、カスコード接続された2つのトランジスタQi,Qoの接続点Nに可変抵抗回路Rmを介して設定電圧Vmを印加する回路構成を用いれば、可変抵抗回路Rmの抵抗値を調整することで、単位増幅器AMPの利得を変化させることができる。この際、可変抵抗回路Rmの抵抗値を調整したことにより、単位増幅器AMPの帯域特性が劣化する場合がある。これは、可変抵抗回路Rmの抵抗値の変化により、接続点Nの直流電位Vnが変化して、単位増幅器AMPのバイアスコンディションが変化するからである。
 本発明には、このような、単位増幅器AMPの帯域特性の劣化が、接続点Nの直流電位Vnの変化に起因することに着目し、設定電圧Vmとして、接続点Nの直流電位Vnと等しい直流電圧を、可変抵抗回路Rmの他端に印加するようにしたものである。これにより、可変抵抗回路Rmの抵抗値を調整しても、接続点Nの直流電位Vnが維持されて、単位増幅器AMPのバイアスコンディションが維持されるため、帯域特性を大きく劣化させることなく、利得を変化させることが可能となる。
 実使用時に設定電圧Vmを調整する場合、まず、可変抵抗回路Rmの他端に、設定電圧Vmに代えてハイインピーダンスの電圧計を接続し、可変抵抗回路Rmを介して接続点Nの直流電圧Vnを計測する。次に、計測された電圧値を設定電圧Vmの電圧源に設定し、最後に、電圧計を取り外して電圧源から出力された設定電圧Vmを可変抵抗回路Rmの他端に印加すればよい。この調整方法は、電圧計を備えた電圧源装置を用いることにより、電圧計と電圧源とを電圧源装置の内部で自動的に切り替えてもよい。
 図3は、第1の実施の形態にかかる単位増幅器のSパラメータS21のシミュレーション結果を示すグラフであり、特性Aは低利得設定時、特性Bは高利得設定時を示している。これにより、可変抵抗回路Rmの抵抗値を調整して、単位増幅器AMPの利得を高利得と低利得に切り替えた場合でも、設定電圧Vmが調整されるため、図3に示すように、帯域特性を大きく劣化させることなく、利得を変化させることができることが分かる。
 このように、本実施の形態は、単位増幅器AMPのうち、カスコード接続された第1および第2のトランジスタの接続点Nに一端が接続された可変抵抗回路Rmを備え、この可変抵抗回路Rmの他端に、接続点Nの直流電位Vnと等しい直流電圧値からなる設定電圧Vmを印加するように構成したものである。
 これにより、単位増幅器AMPの利得を変更するために可変抵抗回路Rmの抵抗値を調整しても、接続点Nの直流電位Vnが維持されて、単位増幅器AMPのバイアスコンディションが維持されることになる。このため、帯域特性を大きく劣化させることなく、利得を変化させることが可能となる。
[第2の実施の形態]
 次に、図4を参照して、本発明の第2の実施の形態にかかる分布型アンプ10Bについて説明する。図4は、第2の実施の形態にかかる単位増幅器の構成を示す回路図である。
 実装時のパッシブ部品のロスを補償するために、可変利得の機能に加えて、可変ピーキングの機能が必要となる場合がある。本実施の形態では、図1に示した第1の実施の形態にかかる分布型アンプ10Aのうち、前述した図2の単位増幅器AMPの回路構成に、RC並列回路を追加したものである。
 具体的には、図4に示すように、RC並列回路は、可変抵抗素子Reと容量素子Ceとが並列接続された回路からなり、一端が第1のトランジスタQinのエミッタ端子に接続され、他端に負側電源電圧VEEが供給されている。本実施の形態にかかる分布型アンプ10Bのその他の構成については、図1の分布型アンプ10Aと同様であり、ここでの詳細な説明は省略する。
 これにより、単位増幅器AMPにおいて、可変利得および可変ピーキングの機能を独立に実現することが可能になる。具体的には、可変抵抗素子Reの抵抗値を変化させることによりピーキング量(DC利得と最大利得の差)の調整が可能になる。この際、可変抵抗素子Reの抵抗値を変化させた場合、単位増幅器AMPの電流量が一定となるように負側電源電圧VEEの電圧値も調整する。
 図5は、第2の実施の形態にかかる単位増幅器のSパラメータS21のシミュレーション結果を示すグラフであり、特性Aは低ピーキング設定時、特性Bは高ピーキング設定時を示している。これら特性A,Bは、SパラメータS21を1GHzの利得で規格化した特性を示している。これにより、可変抵抗素子Reの抵抗値を変化させて、単位増幅器AMPのピーキング量を調整した場合でも、図5に示すように、周波数特性にリップルを発生させることなく、ピーキング量を調整できることが分かる。また、本実施の形態にかかる単位増幅器AMPの回路構成において、容量素子Ceを可変容量にすることにより、ピーキング周波数を調整することも可能となる。
[第3の実施の形態]
 次に、図6を参照して、本発明の第3の実施の形態にかかる分布型アンプ10Cについて説明する。図6は、第3の実施の形態にかかる分布型アンプの構成を示すブロック図である。図7は、第3の実施の形態にかかる単位増幅器(前段アンプブロック)の構成を示す回路図である。図8は、第3の実施の形態にかかる単位増幅器(後段アンプブロック)の構成を示す回路図である。
 図6に示すように、本実施の形態にかかる分布型アンプ10Cは、前述の図1に示した第1の実施の形態にかかる分布型アンプ10Aからなる、2つの前段アンプブロック11と後段アンプブロック12とを従属接続したものである。これら前段アンプブロック11と後段アンプブロック12とについては、第2の実施の形態にかかる分布型アンプ10Bであってもよい。
[前段アンプブロック]
 前段アンプブロック11は、図7に示すように、入力端子Tin1から入力された入力信号Vinを増幅し、得られた中間信号Vaを出力端子Tout1から出力するように構成されている。前段アンプブロック11は、主な回路部として、入力側伝送線路W11、出力側伝送線路W12、入力側終端抵抗Rb1、出力側終端抵抗Rc1、およびn(nは2以上の整数)個の単位増幅器AMP10(AMP11,AMP12,…,AMP1n-1,AMP1n)を備えている。これらは、図1の入力側伝送線路W1、出力側伝送線路W2、入力側終端抵抗Rb、出力側終端抵抗Rc、およびn(nは2以上の整数)個の単位増幅器AMPに、それぞれ相当する。
[入力側伝送線路]
 入力側伝送線路W11の低周波数側の一端には、入力信号Vinが入力端子Tin1を介して入力される。入力側伝送線路W11の高周波数側の他端には、接続端子T11および入力側終端抵抗Rb1を介して直流のバイアス電圧Vbin1が印加されている。入力側終端抵抗Rb1の抵抗値は、一般的な高周波伝送線路の場合と同様に50Ωである。
[出力側伝送線路]
 出力側伝送線路W12の低周波数側の一端には、接続端子T12および出力側終端抵抗Rc1を介して、直流の電源電圧Vcc1が印加されている。出力側伝送線路W2の高周波数側の他端からは、入力信号Vinを増幅して得られた中間信号Vaが出力端子Tout1を介して出力される。
[単位増幅器]
 単位増幅器AMP10は、単位セルともよばれ、入力側伝送線路W11および出力側伝送線路W12に沿って互いに並列して梯子状に配置されて、それぞれセル入力端子Ti1が入力側伝送線路W11に接続され、セル出力端子To1が出力側伝送線路W12に接続されている。
 図7に示すように、単位増幅器AMP10は、カスコード接続された第1および第2のトランジスタQi1,Qo1(カスコード回路)と、可変抵抗回路Rm1とを有するセルから構成されている。これらは、前述した図2のカスコード接続された第1および第2のトランジスタQi,Qoと、可変抵抗回路Rmに、それぞれ相当する。
 第1のトランジスタQi1は、ベース端子がセル入力端子Ti1に接続され、コレクタ端子が接続点N1で第2のトランジスタQo1のエミッタ端子と接続されている。また、第1のトランジスタQi1のエミッタ端子には、前述の図4と同様に、可変抵抗素子Re1と容量素子Ce1とが並列接続されたRC並列回路を介して、負側電源電圧VEE1が印加されている。
 第2のトランジスタQo1は、コレクタ端子がセル出力端子To1に接続され、ベース端子にバイアス電圧Vb1が印加され、エミッタ端子が接続点N1を介して第1のトランジスタQi1のコレクタ端子と接続されている。
[可変抵抗回路]
 可変抵抗回路Rm1は、図7に示すように、一端が接続点N1に接続され、他端に設定電圧Vm1が印加されている。この際、可変抵抗回路Rm1の他端には、接続点N1の直流電位Vn1と等しい直流電圧値からなる設定電圧Vm2が印加される。可変抵抗回路Rmは、例えば、後述する図11のMOSFETから構成してもよい。
 実使用時に設定電圧Vm1を調整する場合、前述した第1の実施の形態と同様に、まず、可変抵抗回路Rm1の他端に、設定電圧Vm1に代えてハイインピーダンスの電圧計を接続し、可変抵抗回路Rm1を介して接続点N1の直流電圧を計測する。次に、計測された電圧値を設定電圧Vm1の電圧源に設定し、最後に、電圧計を取り外して電圧源から出力された設定電圧Vm1を可変抵抗回路Rm1の他端に印加すればよい。この調整方法は、電圧計を備えた電圧源装置を用いることにより、電圧計と電圧源とを電圧源装置内部で自動的に切り替えてもよい。
[後段アンプブロック]
 後段アンプブロック12は、図8に示すように、入力端子Tin2から入力された前段アンプブロック11からの中間信号Vaを増幅し、得られた出力信号Voutを出力端子Tout2から出力するように構成されている。後段アンプブロック12は、主な回路部として、入力側伝送線路W21、出力側伝送線路W22、入力側終端抵抗Rb2、出力側終端抵抗Rc2、およびn(nは2以上の整数)個の単位増幅器AMP20(AMP21,AMP22,…,AMP2n-1,AMP2n)を備えている。これらは、図1の入力側伝送線路W1、出力側伝送線路W2、入力側終端抵抗Rb、出力側終端抵抗Rc、およびn(nは2以上の整数)個の単位増幅器AMPに、それぞれ相当する。
[入力側伝送線路]
 入力側伝送線路W21の低周波数側の一端には、中間信号Vaが入力端子Tin2を介して入力される。入力側伝送線路W21の高周波数側の他端には、接続端子T21および入力側終端抵抗Rb2を介して直流のバイアス電圧Vbin2が印加されている。入力側終端抵抗Rb2の抵抗値は、一般的な高周波伝送線路の場合と同様に50Ωである。
[出力側伝送線路]
 出力側伝送線路W22の低周波数側の一端には、接続端子T22および出力側終端抵抗Rc2を介して、直流の電源電圧Vcc2が印加されている。出力側伝送線路W22の高周波数側の他端からは、中間信号Vaを増幅して得られた出力信号Voutが出力端子Tout2を介して出力される。
[単位増幅器]
 単位増幅器AMP20は、単位セルともよばれ、入力側伝送線路W21および出力側伝送線路W22に沿って互いに並列して梯子状に配置されて、それぞれセル入力端子Ti2が入力側伝送線路W21に接続され、セル出力端子To2が出力側伝送線路W22に接続されている。
 図8に示すように、単位増幅器AMP20は、カスコード接続された第1および第2のトランジスタQi2,Qo2(カスコード回路)と、可変抵抗回路Rm2とを有するセルから構成されている。これらは、前述した図2のカスコード接続された第1および第2のトランジスタQi,Qoと、可変抵抗回路Rmに、それぞれ相当する。
 第1のトランジスタQi2は、ベース端子がセル入力端子Ti2に接続され、コレクタ端子が接続点N2で第2のトランジスタQo2のエミッタ端子と接続されている。また、第1のトランジスタQi2のエミッタ端子には、前述の図4と同様に、可変抵抗素子Re2と容量素子Ce2とが並列接続されたRC並列回路を介して、負側電源電圧VEE2が印加されている。
 第2のトランジスタQo2は、コレクタ端子がセル出力端子To2に接続され、ベース端子にバイアス電圧Vb2が印加され、エミッタ端子が接続点N2を介して第1のトランジスタQi2のコレクタ端子と接続されている。
[可変抵抗回路]
 可変抵抗回路Rm2は、図8に示すように、一端が接続点N2に接続され、他端に設定電圧Vm2が印加されている。この際、可変抵抗回路Rm2の他端には、接続点N2の直流電位Vn2と等しい直流電圧値からなる設定電圧Vm2が印加される。可変抵抗回路Rmは、例えば、後述する図11のMOSFETから構成してもよい。
 実使用時に設定電圧Vm2を調整する場合、前述した第1の実施の形態と同様に、まず、可変抵抗回路Rm2の他端に、設定電圧Vm2に代えてハイインピーダンスの電圧計を接続し、可変抵抗回路Rm2を介して接続点N2の直流電圧を計測する。次に、計測された電圧値を設定電圧Vm2の電圧源に設定し、最後に、電圧計を取り外して電圧源から出力された設定電圧Vm2を可変抵抗回路Rm2の他端に印加すればよい。この調整方法は、電圧計を備えた電圧源装置を用いることにより、電圧計と電圧源とを電圧源装置内部で自動的に切り替えてもよい。
[バイアスコンディションの調整]
 本実施の形態のように、前段アンプブロック11と後段アンプブロック12とを従属接続した図6の構成では、これら前段アンプブロック11と後段アンプブロック12とのバイアスコンディションが異なる場合、分布型アンプ10Bにおいて帯域劣化が生じる。本実施の形態では、このような帯域劣化は、後段アンプブロック12の入力側伝送線路W21に直流電流が流れることに原因があることに着目し、前段アンプブロック11の出力端子Tout1の直流電位Vo1が、後段アンプブロック12のバイアス電圧Vbin2と等しくなる、ような電圧を示す電源電圧Vcc1を前段アンプブロック11の出力側伝送線路W12に印加するようにしたものである。
 実使用時に電源電圧Vcc1を調整する場合、まず、前段アンプブロック11において、終端抵抗Rc1を介して電源電圧Vcc1から出力側伝送線路W12へ流れる直流電流Icc1を電流計で計測し、前段アンプブロック11の出力端子Tout1の直流電位Vo1を計算する。終端抵抗Rc1の抵抗値をR(一般的にはR=50Ω)とした場合、直流電位Vo1は、Vo1=Vcc1+Icc1×Rで求められる。次に、得られた直流電位Vo1と、電圧計で計測したバイアス電圧Vbin2の電圧値とを比較し、直流電位Vo1がバイアス電圧Vbin2の電圧値と等しくなるよう、電源電圧Vcc1の電圧値を調整すればよい。
 これにより、電源電圧Vcc1の電圧値を調整して、前段アンプブロック11と後段アンプブロック12とのバイアスコンディションを等しくすることにより、図9に示すように、帯域特性の劣化を防ぐことが可能となる。図9は、第3の実施の形態にかかる単位増幅器のSパラメータS21のシミュレーション結果を示すグラフである。また、前段アンプブロック11と後段アンプブロック12とを従属接続した構成により、前述した図3や図5と比較して、高い利得とピーキング量を実現できることが分かる。
[第4の実施の形態]
 次に、図10を参照して、本実施の形態にかかる分布型アンプ10Cについて説明する。図10は、第4の実施の形態にかかる分布型アンプの構成を示すブロック図である。
 前述した図6の構成では、前段アンプブロック11の入力側終端抵抗Rb1,出力側終端抵抗Rc1、および、後段アンプブロック12の入力側終端抵抗Rb2を単独の抵抗素子で構成した場合を例として説明した。しかし、これら終端抵抗Rb1,Rc1,Rb2から、それぞれの接続端子T11,T12,T21のパッドまでの配線が長い場合、高周波側の反射特性を劣化させる可能性がある。
 本実施の形態は、これら終端抵抗Rb1,Rc1,Rb2のうちのいずれかまたは全部を、2つの抵抗素子を並列接続した抵抗並列回路により、構成した場合について説明する。なお、本実施の形態にかかる分布型アンプ10Cにおいて、これら終端抵抗Rb1,Rc1,Rb2を除くその他の構成については、前述した図6と同様であり、ここでの詳細な説明は省略する。
 本実施の形態にかかる分布型アンプ10Cにおいて、前段アンプブロック11の入力側伝送線路W11の高周波数側の他端には、抵抗素子Rb11と抵抗素子Rb12とからなる抵抗並列回路が、入力側終端抵抗Rb1に代えて接続されている。抵抗素子Rb11の一端は入力側伝送線路W11の高周波数側の他端に接続され、他端には接続端子T11を介してバイアス電圧Vbin1が印加されている。また、抵抗素子Rb12の一端は入力側伝送線路W11の高周波数側の他端に接続され、他端は接地電位GNDに接続されている。これら抵抗素子Rb11,Rb12の合成抵抗は、終端抵抗Rb1と同様に50Ωである。この際、抵抗素子Rb12の抵抗値を、抵抗素子Rb11の抵抗値より小さい抵抗値としてもよい。
 また、前段アンプブロック11の出力側伝送線路W12の低周波数側の一端には、抵抗素子Rc11と抵抗素子Rc12とからなる抵抗並列回路が、出力側終端抵抗Rc1に代えて接続されている。抵抗素子Rc11の一端は出力側伝送線路W12の低周波数側の一端に接続され、他端には接続端子T12を介して電源電圧Vcc1が印加されている。また、抵抗素子Rc12の一端は出力側伝送線路W12の低周波数側の一端に接続され、他端は接地電位GNDに接続されている。これら抵抗素子Rc11,Rc12の合成抵抗は、終端抵抗Rc1と同様に50Ωである。この際、抵抗素子Rc12は、抵抗素子Rc11の抵抗値より小さい抵抗値としてもよい。
 また、後段アンプブロック12の入力側伝送線路W21の高周波数側の他端には、抵抗素子Rb21と抵抗素子Rb22とからなる抵抗並列回路が、入力側終端抵抗Rb2に代えて接続されている。抵抗素子Rb21の一端は入力側伝送線路W21の高周波数側の他端に接続され、他端には接続端子T21を介してバイアス電圧Vbin2が印加されている。また、抵抗素子Rb22の一端は入力側伝送線路W21の高周波数側の他端に接続され、他端は接地電位GNDに接続されている。これら抵抗素子Rb21,Rb22の合成抵抗は、終端抵抗Rb2と同様に50Ωである。この際、抵抗素子Rb22は、抵抗素子Rb21の抵抗値より小さい抵抗値としてもよい。
 このように、本実施の形態は、終端抵抗Rb1,Rc1,Rb2のうちのいずれかまたは全部を、2つの抵抗素子を並列接続した抵抗並列回路により構成したものである。これにより、入力側伝送線路W11の高周波数側の他端、出力側伝送線路W12の低周波数側の一端、および入力側伝送線路W21の高周波数側の他端が、抵抗素子Rb12,Rc12,Rb22を介して接地電位に接続されることになる。このため、抵抗素子Rb11,Rc11,Rb21から、それぞれの接続端子T11,T12,T21のパッドまでの配線が長い場合でも、高周波側の反射特性の劣化を抑制することができる。また、抵抗素子Rb12,Rc12,Rb22の抵抗値を、それぞれ抵抗素子Rb11,Rc11,Rb21の抵抗値より小さくすることにより、反射特性の劣化抑制効果を高めることができる。
[第5の実施の形態]
 次に、図11を参照して、本発明の第5の実施の形態にかかる分布型アンプについて説明する。図11は、第5の実施の形態にかかる可変抵抗回路を示す回路図である。
 前述した第1~第4の実施の形態における単位増幅器AMPの可変抵抗回路Rmは、図11に示すように、MOSFETにより構成してもよい。分布型アンプの製造プロセスがMOSFETも製造可能なプロセスであれば、容易に実現できる。
 具体的には、例えば図2の単位増幅器AMPの場合、MOSFETのドレイン端子またはソース端子の一方を接続点Nに接続し、ドレイン端子またはソース端子の他方に設定電圧Vmを印加すればよい。そして、ゲート端子に可変抵抗回路Rmの抵抗値に応じた、利得を調整するための直流電圧値からなる調整電圧VGを印加すればよい。これにより、極めて簡素な回路構成で可変抵抗回路Rmを実現できる。この構成は、図4、図7、図8の単位増幅器AMP,AMP10,AMP20も同様に適用可能である。
[第6の実施の形態] 
 次に、図12を参照して、本発明の第6の実施の形態にかかる分布型アンプについて説明する。図12は、第6の実施の形態にかかる可変抵抗回路を示す回路図である。
 前述した第1~第4の実施の形態における単位増幅器AMPの可変抵抗回路Rmは、図12に示すように、バイポーラトランジスタにより構成してもよい。分布型アンプの製造プロセスがバイポーラトランジスタのみを製造可能なプロセスである場合でも、容易に実現できる。
 具体的には、前述した図2の単位増幅器AMPの場合、NPN型のバイポーラトランジスタQのエミッタ端子を接続点Nに接続し、コレクタ端子に可変抵抗回路Rmの抵抗値に応じた、利得を調整するための直流電圧値からなる調整電圧VG1を印加すればよい。そして、バイポーラトランジスタQのベース端子とエミッタ端子との間に抵抗素子を接続し、容量素子を介してベース端子を設置電位GNDに接地すればよい。これにより、調整電圧VG1を接続点N1の電位Vn1より高い電圧値に変更すると、可変抵抗回路Rmの抵抗値が低下して、単位増幅器AMP10の利得を低減させることができる。したがって、極めて簡素な回路構成で可変抵抗回路Rmを実現できる。前述した図4、図7、図8の単位増幅器AMP,AMP10,AMP20も同様に適用可能である。
 これにより、可変抵抗回路Rmの抵抗値を調整して、単位増幅器AMPの利得を高利得と低利得に切り替えた場合でも、前述の図3に示したように、帯域特性を大きく劣化させることなく、利得を変化させることができる。
 図13は、第6の実施の形態にかかる可変抵抗回路の接続点Nから見たSパラメータS11のシミュレーション結果を示すスミスチャートである。ここでは、調整電圧VGの電圧値を変化させた場合における、接続点N側から見た可変抵抗回路Rmの入力インピーダンスZinの変化が、50Ωで正規化されて示されている。これにより、調整電圧VGの電圧値により、Zinの抵抗値を変化させることが可能であることが確認できる。
[第7の実施の形態] 
 次に、図14および図15を参照して、本発明の第7の実施の形態にかかる分布型アンプについて説明する。図14は、第7の実施の形態にかかる単位増幅器(前段アンプブロック)の構成を示す回路図である。図15は、第7の実施の形態にかかる単位増幅器(後段アンプブロック)の構成を示す回路図である。
 本実施の形態では、前述した図6または図10の分布型アンプ10B,10Cにおいて、前述した図7および図8の可変抵抗回路Rm1,Rm2を、前述した図12の可変抵抗回路で構成して、利得を調整する場合について説明する。この際、本実施の形態では、前述した図12の可変抵抗回路を単位増幅器AMP10,20のそれぞれにもう1つ追加して、利得とピーキング量とを個別に調整可能としてもよい。
[前段アンプブロックの単位増幅器]
 図14に示すように、本実施の形態にかかる前段アンプブロック11の単位増幅器AMP10は、前述した図7の構成の可変抵抗回路Rm1に代えて、カスコード接続されている入力トランジスタQi1と出力トランジスタQo1の接続点N1に、前述の図12の構成を有する利得調整用の可変抵抗回路Rm11が接続されている。また、入力トランジスタQi1のエミッタ端子に、前述の図12の構成を有するピーキング量調整用の可変抵抗回路Rm12が新たに接続されている。
[利得調整用の可変抵抗回路]
 図14に示すように、利得調整用の可変抵抗回路Rm11は、エミッタ端子が接続点N1に接続され、コレクタ端子に、利得を調整するための直流電圧値からなる調整電圧VG1(第1の調整電圧)が印加された、NPN型バイポーラのトランジスタQm11から構成されている。トランジスタQm11のベース端子は、容量素子を介して接地電位GNDに接地されているとともに、抵抗素子を介してトランジスタQm11のコレクタ端子に接続されている。
 調整電圧VG1を接続点N1の電位Vn1より高い電圧値に設定すると、可変抵抗回路Rm11の抵抗値が低下して、単位増幅器AMP10の利得を低減させることができる。この際、前段アンプブロック11から出力される中間信号Vaの直流電位Vo1が変化して、これら前段アンプブロック11と後段アンプブロック12とのバイアスコンディションが異なるものとなる。
 このため、第3の実施の形態で説明したバイアスコンディションの調整と同様にして、電源電圧Vcc1を調整することにより、直流電位Vo1をバイアス電圧Vbin2と等しい電圧値に調整すればよい。これにより、これら前段アンプブロック11と後段アンプブロック12とのバイアスコンディションが等しくなり、分布型アンプにおける帯域劣化を抑制できる。
[ピーキング量調整用の可変抵抗回路]
 図14に示すように、ピーキング量調整用の可変抵抗回路Rm12は、エミッタ端子が入力トランジスタQi1のエミッタ端子に接続され、コレクタ端子にピーキング量を調整するための直流電圧値からなる調整電圧VP1(第2の調整電圧)が印加された、NPN型バイポーラのトランジスタQm12から構成されている。トランジスタQm12のベース端子は、容量素子を介して接地電位GNDに接地されているとともに、抵抗素子を介してトランジスタQm12のコレクタ端子に接続されている。
 調整電圧VP1を入力トランジスタQi1のエミッタ端子の電位Ve1より高い電圧値に設定すると、可変抵抗回路Rm12の抵抗値が低下して、ピーキング量を低減させることができる。この際、単位増幅器AMP10に流れる電流値が低下するため、元の電流値が維持されるように、負側電源電圧VEE1を調整すればよい。
[後段アンプブロックの単位増幅器]
 図15に示すように、本実施の形態にかかる後段アンプブロック12の単位増幅器AMP20は、前述した図8の構成の可変抵抗回路Rm2に代えて、カスコード接続されている入力トランジスタQi2と出力トランジスタQo2の接続点N2に、前述の図12の構成を有する利得調整用の可変抵抗回路Rm21が接続されている。また、入力トランジスタQi1のエミッタ端子に、前述の図12の構成を有するピーキング量調整用の可変抵抗回路Rm22が新たに接続されている。
[利得調整用の可変抵抗回路]
 図15に示すように、利得調整用の可変抵抗回路Rm21は、エミッタ端子が接続点N2に接続され、コレクタ端子に、利得を調整するための直流電圧値からなる調整電圧VG2(第1の調整電圧)が印加された、NPN型バイポーラのトランジスタQm21から構成されている。トランジスタQm21のベース端子は、容量素子を介して接地電位GNDに接地されているとともに、抵抗素子を介してトランジスタQm21のコレクタ端子に接続されている。
 調整電圧VG2を接続点N2の電位Vn2より高い電圧値に設定すると、可変抵抗回路Rm21の抵抗値が低下して、単位増幅器AMP20の利得を低減させることができる。この際、後段アンプブロック12から出力される出力信号Voutの直流電位Vo2が変化するが、前段アンプブロック11と後段アンプブロック12とのバイアスコンディションには影響がないため、電源電圧Vcc2の調整は不要である。
[ピーキング量調整用の可変抵抗回路]
 図15に示すように、ピーキング量調整用の可変抵抗回路Rm22は、エミッタ端子が入力トランジスタQi2のエミッタ端子に接続され、コレクタ端子にピーキング量を調整するための直流電圧値からなる調整電圧VP2(第2の調整電圧)が印加された、NPN型バイポーラのトランジスタQm22から構成されている。トランジスタQm22のベース端子は、容量素子を介して接地電位GNDに接地されているとともに、抵抗素子を介してトランジスタQm22のコレクタ端子に接続されている。
 調整電圧VP2を入力トランジスタQi2のエミッタ端子の電位Ve2より高い電圧値に設定すると、可変抵抗回路Rm22の抵抗値が低下して、ピーキング量を低減させることができる。この際、単位増幅器AMP20の電流値が低下するため、元の電流値が維持されるように、負側電源電圧VEE2を調整すればよい。
[実施の形態の拡張]
 以上、実施形態を参照して本発明を説明したが、本発明は上記実施形態に限定されるものではない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解しうる様々な変更をすることができる。また、各実施形態については、矛盾しない範囲で任意に組み合わせて実施することができる。
 10A,10B,10C…分布型アンプ、W1,W11,W21…入力側伝送線路、W2,W12,W22…出力側伝送線路、Rb,Rb1,Rb2…入力側終端抵抗、Rc,Rc1,Rc2…出力側終端抵抗、Rb11,Rb12,Rb21,Rb22,Rc11,Rc12…抵抗素子、AMP,AMP10,AMP20…単位増幅器、Qi,Qi1,Qi2…入力トランジスタ、Qo,Qo1,Qo2…出力トランジスタ、Rm,Rm1,Rm2,Rm11,Rm12,Rm21,Rm22…可変抵抗回路、Re,Re1,Re2…可変抵抗素子、Ce,Ce1,Ce2…容量素子、Vin…入力信号、Va…中間信号、Vout…出力信号、Tin,Tin1,Tin2…入力端子、Tout,Tout1,Tout2…出力端子、Ti,Ti1,Ti2…セル入力端子、To,To1,To2…セル出力端子、Vbin,Vbin1,Vbin2,Vb,Vb1,Vb2…バイアス電圧、Vcc,Vcc1,Vcc2…電源電圧、Icc1…直流電流、VEE,VEE1,VEE2…負側電源電圧、Vm,Vm1,Vm2…設定電圧、VG,VG1,VG2,VP1,VP2…調整電圧、Vn,Vn1,Vn2,Vo1,Ve1…直流電位、N,N1,N2…接続点、T1,T2,T11,T12,T21,T22…接続端子。

Claims (8)

  1.  一端に入力信号が入力され、他端に入力側終端抵抗が接続されるように構成された入力側伝送線路と、
     一端に出力側終端抵抗が接続され、他端から出力信号が出力されるように構成された出力側伝送線路と、
     前記入力側伝送線路および前記出力側伝送線路に沿って互いに並列して梯子状に配置されて、セル入力端子が前記入力側伝送線路に接続され、セル出力端子が前記出力側伝送線路に接続された、複数の単位増幅器とを備え、
     前記単位増幅器は、カスコード接続された第1および第2のトランジスタと、第1の可変抵抗回路とを有し、
     前記第1のトランジスタは、ベース端子またはゲート端子が前記セル入力端子に接続されており、
     前記第2のトランジスタは、コレクタ端子またはドレイン端子が前記セル出力端子に接続され、エミッタ端子またはソース端子が前記第1のトランジスタのコレクタ端子またはドレイン端子と接続されており、
     前記第1の可変抵抗回路は、一端が前記第1および第2のトランジスタの接続点に接続されている
     ことを特徴とする分布型アンプ。
  2.  請求項1に記載の分布型アンプにおいて、
     前記単位増幅器は、一端が前記第1のトランジスタのエミッタ端子またはソース端子と接続され、他端に負側電源電圧が供給されているRC並列回路をさらに備えることを特徴とする分布型アンプ。
  3.  請求項1または請求項2に記載の分布型アンプにおいて、
     前記第1の可変抵抗回路は、ドレイン端子またはソース端子のうち、一方が前記接続点に接続され、他端に前記接続点の直流電位と等しい直流電圧値からなる設定電圧が印加され、ゲート端子に当該単位増幅器の利得に応じた調整用直流電圧が印加されているMOSFETを有することを特徴とする分布型アンプ。
  4.  請求項1または請求項2に記載の分布型アンプにおいて、
     前記第1の可変抵抗回路は、エミッタ端子が前記接続点に接続され、コレクタ端子に当該単位増幅器の利得に応じた、前記接続点の直流電位より高い直流電圧値からなる第1の調整電圧が印加され、ベース端子が容量素子を介して接地電位に接続されているとともに、抵抗素子を介して前記コレクタ端子に接続されているバイポーラトランジスタを有することを特徴とする分布型アンプ。
  5.  請求項1~請求項4のいずれかに記載の分布型アンプからなり、入力された入力信号を増幅し、得られた中間信号を出力する前段アンプブロックと、前段アンプブロックから出力された前記中間信号を増幅し、得られた出力信号を出力する後段アンプブロックとを備え、
     出力側終端抵抗を介して前記前段アンプブロックの出力側伝送線路に印加される電源電圧は、当該出力側終端抵抗の両端電圧と、入力側終端抵抗を介して前記後段アンプブロックの入力側伝送線路に印加されるバイアス電圧との和と等しい電圧値からなり、
     前記両端電圧は、前記前段アンプブロックの出力端子の直流電位が前記バイアス電圧と等しいときに、前記出力側終端抵抗に流れる電流と当該出力側終端抵抗の抵抗値との積からなる
     ことを特徴とする分布型アンプ。
  6.  請求項5に記載の分布型アンプにおいて、
     前記前段アンプブロックの入力側終端抵抗、前記前段アンプブロックの出力側終端抵抗、および前記後段アンプブロックの入力側終端抵抗のうち、いずれか1つまたはすべての終端抵抗は、一端がそれぞれに対応する伝送線路に並列的に接続された、2つの抵抗素子からなる抵抗並列回路からなり、
     前記抵抗並列回路のうち、一方の抵抗素子の他端は対応する直流電圧が印加され、他方の抵抗素子の他端は接地電位に接続されている
     ことを特徴とする分布型アンプ。
  7.  請求項4に記載の分布型アンプからなり、入力された入力信号を増幅し、得られた中間信号を出力する前段アンプブロックと、前段アンプブロックから出力された前記中間信号を増幅し、得られた出力信号を出力する後段アンプブロックとを備え、
     出力側終端抵抗を介して前記前段アンプブロックの出力側伝送線路に印加される電源電圧は、当該出力側終端抵抗の両端電圧と、入力側終端抵抗を介して前記後段アンプブロックの入力側伝送線路に印加されるバイアス電圧との和と等しい電圧値からなり、
     前記両端電圧は、前記前段アンプブロックの出力端子の直流電位が前記バイアス電圧と等しいときに、前記出力側終端抵抗に流れる電流と当該出力側終端抵抗の抵抗値との積からなり、
     前記前段アンプブロックの出力側伝送線路は、前記利得の変更時に前記第1の調整電圧が変更された場合、当該出力側終端抵抗に流れる電流と当該出力側終端抵抗の抵抗値との積と、前記後段アンプブロックの入力側伝送線路に印加されるバイアス電圧との和に等しい、新たな直流電圧値からなる電源電圧が印加される
     ことを特徴とする分布型アンプ。
  8.  請求項7に記載の分布型アンプにおいて、
     前記後段アンプブロックを構成する単位増幅器は、一端が第1のトランジスタのエミッタ端子またはソース端子に接続され、他端に当該単位増幅器のピーキング量に応じた直流電圧値を示す第2の調整電圧が印加されるように構成された第2の可変抵抗回路をさらに備え、
     前記後段アンプブロックは、前記ピーキング量の変更時に前記第2の調整電圧が変更された場合、当該後段アンプブロックに流れる電流値を一定に維持するための、新たな直流電圧値からなる負側電源電圧が、抵抗素子を介して前記第1のトランジスタのエミッタ端子またはソース端子に印加される
     ことを特徴とする分布型アンプ。
PCT/JP2020/047148 2020-12-17 2020-12-17 分布型アンプ WO2022130566A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2020/047148 WO2022130566A1 (ja) 2020-12-17 2020-12-17 分布型アンプ
JP2022569424A JP7487796B2 (ja) 2020-12-17 2020-12-17 分布型アンプ
US18/256,022 US20240072733A1 (en) 2020-12-17 2020-12-17 Distributed Amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/047148 WO2022130566A1 (ja) 2020-12-17 2020-12-17 分布型アンプ

Publications (1)

Publication Number Publication Date
WO2022130566A1 true WO2022130566A1 (ja) 2022-06-23

Family

ID=82059286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/047148 WO2022130566A1 (ja) 2020-12-17 2020-12-17 分布型アンプ

Country Status (3)

Country Link
US (1) US20240072733A1 (ja)
JP (1) JP7487796B2 (ja)
WO (1) WO2022130566A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006057104A1 (ja) * 2004-11-29 2006-06-01 Murata Manufacturing Co., Ltd. 半導体装置および電力増幅器
WO2019215849A1 (ja) * 2018-05-09 2019-11-14 三菱電機株式会社 分布型増幅器
US20200007100A1 (en) * 2018-06-29 2020-01-02 Macom Technology Solutions Holdings, Inc. Distributed darlington pair amplifier
WO2020049813A1 (ja) * 2018-09-04 2020-03-12 日本電信電話株式会社 分布型増幅器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006057104A1 (ja) * 2004-11-29 2006-06-01 Murata Manufacturing Co., Ltd. 半導体装置および電力増幅器
WO2019215849A1 (ja) * 2018-05-09 2019-11-14 三菱電機株式会社 分布型増幅器
US20200007100A1 (en) * 2018-06-29 2020-01-02 Macom Technology Solutions Holdings, Inc. Distributed darlington pair amplifier
WO2020049813A1 (ja) * 2018-09-04 2020-03-12 日本電信電話株式会社 分布型増幅器

Also Published As

Publication number Publication date
JP7487796B2 (ja) 2024-05-21
US20240072733A1 (en) 2024-02-29
JPWO2022130566A1 (ja) 2022-06-23

Similar Documents

Publication Publication Date Title
US7633337B2 (en) Feedback-type variable gain amplifier and method of controlling the same
US7279980B2 (en) Non-uniform distributed multi-stage circuits
US6472941B2 (en) Distributed amplifier with terminating circuit capable of improving gain flatness at low frequencies
JP5962462B2 (ja) 増幅器および無線通信装置
US8258867B2 (en) Front-end equalizer and amplifier circuit
US7405626B2 (en) Distributed amplifier having a variable terminal resistance
CN104617905A (zh) 射频放大器及射频放大方法
WO2020203182A1 (ja) 分布型回路
JP6136165B2 (ja) 電子回路
US7663444B2 (en) Amplifying circuit utilizing nonlinear gate capacitance for enhancing linearity and related method thereof
CN116888888A (zh) 用于高可靠性应用的高效双驱动功率放大器
WO2022130566A1 (ja) 分布型アンプ
CN117375544A (zh) 一种三重级联结构的超宽带分布式低噪声放大器
CN115765638A (zh) 有源匹配结合无源匹配的6-18GHz功率放大器及实现方法
CN110739917A (zh) 基于射频功率放大器的温度补偿电路
JPWO2020049813A1 (ja) 分布型増幅器
CN115694383A (zh) 一种放大器及多级放大器
US9614498B2 (en) Active balun circuit and transformer
US20160099690A1 (en) Distributed amplifier
US8847687B2 (en) Multi-path broadband amplifier
CN113659940B (zh) 一种单端输入的伪差分超宽带晶体管放大器
Ibrahim et al. Simulation of single stage LNA based on ladder matching networks for WiMAX application
JP2005159860A (ja) 広帯域増幅器
US8270846B2 (en) Amplification circuit, differential amplification circuit, and optical transmitter
WO2021260926A1 (ja) 分布型増幅器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20965954

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022569424

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18256022

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20965954

Country of ref document: EP

Kind code of ref document: A1