WO2020203182A1 - 分布型回路 - Google Patents

分布型回路 Download PDF

Info

Publication number
WO2020203182A1
WO2020203182A1 PCT/JP2020/011103 JP2020011103W WO2020203182A1 WO 2020203182 A1 WO2020203182 A1 WO 2020203182A1 JP 2020011103 W JP2020011103 W JP 2020011103W WO 2020203182 A1 WO2020203182 A1 WO 2020203182A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
input
transmission line
emitter
distributed
Prior art date
Application number
PCT/JP2020/011103
Other languages
English (en)
French (fr)
Inventor
照男 徐
宗彦 長谷
秀之 野坂
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to US17/598,379 priority Critical patent/US11764744B2/en
Publication of WO2020203182A1 publication Critical patent/WO2020203182A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/60Amplifiers in which coupling networks have distributed constants, e.g. with waveguide resonators
    • H03F3/605Distributed amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • H03D7/12Transference of modulation from one carrier to another, e.g. frequency-changing by means of semiconductor devices having more than two electrodes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • H03D7/14Balanced arrangements
    • H03D7/1425Balanced arrangements with transistors
    • H03D7/1433Balanced arrangements with transistors using bipolar transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • H03D7/14Balanced arrangements
    • H03D7/1425Balanced arrangements with transistors
    • H03D7/1458Double balanced arrangements, i.e. where both input signals are differential
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/08Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements
    • H03F1/18Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements by use of distributed coupling, i.e. distributed amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/08Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements
    • H03F1/22Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements by use of cascode coupling, i.e. earthed cathode or emitter stage followed by earthed grid or base stage respectively
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D2200/00Indexing scheme relating to details of demodulation or transference of modulation from one carrier to another covered by H03D
    • H03D2200/0001Circuit elements of demodulators
    • H03D2200/0019Gilbert multipliers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier

Definitions

  • the present invention relates to a distributed circuit such as a distributed amplifier or a distributed mixer.
  • Distributed circuits such as distributed mixers and distributed amplifiers have excellent wide bandwidth and are used in various systems such as high-speed optical communication and high-resolution radar.
  • impedance matching is performed with the parasitic capacitance of the transistor incorporated in the input / output transmission line, and the propagation constants of the transmission line between the input and output are matched to amplify or mix the signal over a wide band. It is possible to do.
  • FIG. 9 is a circuit diagram showing the configuration of a conventional distributed amplifier.
  • the distributed amplifier includes an input transmission line CPW1 whose input end is connected to the signal input terminal 1, an output transmission line CPW2 whose termination is connected to the signal output terminal 2, and a termination and power supply voltage of the transmission line CPW1.
  • An input terminating resistor R1 that connects to the VEE, an output terminating resistor R2 that connects the input end of the transmission line CPW2 to the ground, and an input terminating resistor R2 arranged along the transmission lines CPW1 and CPW2, and the input terminal is connected to the transmission line CPW1. It is composed of a plurality of unit cells 3-1 to 3-N whose output terminals are connected to the transmission line CPW2, and a bias tee 4 that supplies a bias voltage to the input transistors in each unit cell 3-1 to 3-N. To. In the example of FIG. 9, unit cells 3 (3-1 to 3-N) are provided in N stages.
  • each unit cell 3 (3-1 to 3-N) has an input transistor Q30 whose base terminal is connected to the transmission line CPW1 and an emitter terminal whose collector terminal is connected to the transmission line CPW2. Is connected to the collector terminal of the input transistor Q30, the emitter resistance REE is connected to the emitter terminal of the input transistor Q30 at one end, and the other end is connected to the power supply voltage VEE, and one end is connected to the power supply voltage VEE.
  • a resistor R30 whose other end is connected to the base terminal of the output transistor Q2, a resistor R31 whose other end is connected to the base terminal of the output transistor Q2 and whose other end is grounded, and one end to the base terminal of the output transistor Q2. It is composed of a transistor C30 which is connected and the other end is grounded.
  • the bias tee 4 is connected to a capacitor C1 inserted between the signal input terminal 1 and the input end of the transmission line CPW1 and one end is connected to the input end of the transmission line CPW1 and the other end is biased. It is composed of an inductor L1 connected to a voltage vbin.
  • each unit cell 3 a collector current flows through the input transistor Q30 as shown in FIGS. 12A and 12B, but the voltage value differs between the bias tee 4 side and the input terminating resistor R1 side. Since the base voltage Vic of the input transistor Q30 of each unit cell 3 becomes non-uniform, the value of the collector current also becomes non-uniform.
  • the collector current flowing through the input transistor Q30 of the first-stage unit cell 3-1 flows through the input transistor Q30 of the N-th stage unit cell 3-N. Greater than the collector current.
  • Non-Patent Document 2 there is a method of inserting a capacitor in series with the input terminating resistor R1 to cut the direct current.
  • the capacitance value of the capacitor to be inserted is small, the reflection characteristic on the low frequency side deteriorates, so that a large capacitance value is required.
  • the method disclosed in Non-Patent Document 2 cannot be applied to the amplification of a baseband signal that requires good reflection characteristics from a low frequency.
  • one terminal of the input terminating resistor R1 is taken out of the chip, and this terminal is connected in series with an off-chip capacitor capable of realizing a large capacitance value to achieve a low frequency.
  • a method of improving the reflection characteristics on the side is also conceivable.
  • the distributed mixer is for transmission line CPW1 whose input end is connected to the signal input terminal (IF (Intermediate Frequency) terminal) 1 and RF (Radio Frequency) signal output whose end is connected to the signal output terminals 2p and 2n.
  • the output termination resistors R2p, R2n connecting the and ground
  • the termination resistors R3p, R3n connecting the terminations of the transmission lines CPW3p, CPW3n and the bias voltage vblo
  • the transmission lines CPW1, CPW2p, CPW2n, CPW3p, CPW3n are connected to the transmission lines CPW1, CPW2p, CPW2n, CPW3p, CPW3n.
  • the IF input terminal is connected to the transmission line CPW1
  • the LO input terminal is connected to the transmission lines CPW3p, CPW3n
  • the RF output terminal is connected to the transmission lines CPW2p, CPW2n.
  • a bias tee 4 that supplies a bias voltage to the input transistors in each unit cell 5-1 to 5-N, and a branched waveguide that splits the LO signal into two and inputs it to the input ends of the transmission lines CPW3p and CPW3n. It is composed of 6.
  • each unit cell 5 (5-1 to 5-N) has an input transistor Q50 whose base terminal is connected to the transmission line CPW1 and a base terminal connected to the transmission lines CPW3p and CPW3n.
  • the collector terminals are connected to the transmission lines CPW2p and CPW2n, the emitter terminals are connected to the collector terminals of the transistor Q50, and the output transistors Q51 and Q52, one end is connected to the emitter terminal of the input transistor Q50, and the other end is connected to the power supply voltage VEE. It consists of a connected emitter resistor REE.
  • the base voltage Vif of the input transistor Q50 of each unit cell 5 becomes non-uniform, so that the collector current value also increases. It becomes non-uniform.
  • the collector current flowing through the input transistor Q50 of the first-stage unit cell 5-1 flows through the input transistor Q50 of the N-th stage unit cell 5-N. Greater than the collector current.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide a distributed circuit capable of improving the gain as compared with the conventional case.
  • the distributed circuit of the present invention includes a first transmission line configured to input an input signal to an input terminal, a second transmission line configured to output an output signal from the output terminal, and the above-mentioned
  • a terminating resistor connected to the end of the first transmission line and arranged along the first and second transmission lines, the input terminal is connected to the first transmission line, and the output terminal is the second transmission line.
  • a plurality of unit cells connected to the transmission line and a bias tee connected to the input end of the first transmission line and configured to supply a bias voltage to each input transistor of the plurality of unit cells.
  • the unit cell includes at least the input transistor whose base terminal or gate terminal is connected to the first transmission line, and the emitter resistance or source resistance which is connected to the emitter terminal or source terminal of the input transistor. ,
  • the emitter resistance or source resistance of each of the plurality of unit cells is set to a different value so that the collector current or the drain current flowing through the input transistors of the plurality of unit cells becomes uniform. Is to be.
  • the emitter resistance of each of the plurality of unit cells when a current flows from the bias tee through the first transmission line in the direction of the terminating resistor, the emitter resistance of each of the plurality of unit cells is obtained.
  • the source resistance is set so that the closer to the bias tee, the larger the value, and the closer to the terminating resistance, the smaller the value.
  • the emitter resistance of each of the plurality of unit cells when a current flows from the terminating resistor through the first transmission line in the direction of the bias tee, the emitter resistance of each of the plurality of unit cells is obtained.
  • the source resistance is set so that the closer to the bias tee, the smaller the value, and the closer to the terminating resistance, the larger the value.
  • the unit cell includes the input transistor whose base terminal or gate terminal is connected to the first transmission line, and the emitter terminal or source of the input transistor at one end.
  • the emitter resistance or source resistance connected to the terminal and the other end connected to the first voltage, and the base terminal or gate terminal connected to the second voltage, and the collector terminal or drain terminal connected to the second transmission line.
  • the emitter terminal or source terminal is composed of an output transistor connected to a collector terminal or a drain terminal of the input transistor, and operates as a distributed amplifier.
  • the input signal is an IF signal
  • the output signal is an RF signal
  • a third transmission line configured so that an LO signal is input to an input end is provided.
  • the unit cell includes the input transistor whose base terminal or gate terminal is connected to the first transmission line, and the collector terminal or drain terminal whose base terminal or gate terminal is connected to the third transmission line.
  • the emitter terminal or source terminal is connected to the collector terminal or drain terminal of the input transistor, and one end is connected to the emitter terminal or source terminal of the input transistor.
  • It is composed of the emitter resistance or the source resistance whose end is connected to the first voltage, and is characterized by operating as a distributed mixer.
  • the bias tee has a capacitor in which the input signal is input to one end and the other end is connected to the input end of the first transmission line, and one end is the same. It is characterized in that it is composed of an inductor connected to an input end of a first transmission line and the other end connected to a third voltage.
  • the present invention by setting the emitter resistance or source resistance of each of the plurality of unit cells to different values so that the collector current or drain current flowing through the input transistors of the plurality of unit cells becomes uniform.
  • the gain of the distributed circuit can be improved.
  • FIG. 1 is a circuit diagram showing a configuration of a distributed amplifier according to a first embodiment of the present invention.
  • FIG. 2 is a circuit diagram showing a configuration of a unit cell of the distributed amplifier according to the first embodiment of the present invention.
  • FIG. 3 is a diagram illustrating the effect of the distributed amplifier according to the first embodiment of the present invention.
  • FIG. 4 is a diagram showing simulation results of the gain of the distributed amplifier according to the conventional and the first embodiment of the present invention.
  • FIG. 5 is a circuit diagram showing a configuration of a distributed mixer according to a second embodiment of the present invention.
  • FIG. 6 is a circuit diagram showing a configuration of a unit cell of the distributed mixer according to the second embodiment of the present invention.
  • FIG. 1 is a circuit diagram showing a configuration of a distributed amplifier according to a first embodiment of the present invention.
  • FIG. 2 is a circuit diagram showing a configuration of a unit cell of the distributed amplifier according to the first embodiment of the present invention.
  • FIG. 3 is a
  • FIG. 7 is a diagram illustrating the effect of the distributed mixer according to the second embodiment of the present invention.
  • FIG. 8 is a diagram showing simulation results of conversion gain of the distributed mixer according to the conventional and the second embodiment of the present invention.
  • FIG. 9 is a circuit diagram showing a configuration of a conventional distributed amplifier using bias tees.
  • FIG. 10 is a circuit diagram showing a configuration of a unit cell of the distributed amplifier of FIG.
  • FIG. 11 is a diagram illustrating a problem of a conventional distributed amplifier using bias tee.
  • FIG. 12 is a diagram illustrating a problem of a conventional distributed amplifier using bias tee.
  • FIG. 13 is a diagram illustrating a problem of a conventional distributed mixer using bias tea.
  • FIG. 14 is a diagram illustrating a problem of a conventional distributed mixer using bias tea.
  • the emitter resistance of each unit cell is set to be larger on the side closer to the bias tee and smaller on the input terminating resistance side so that the collector current of each unit cell is uniform.
  • the collector current of the unit cell is relatively difficult to flow toward the side closer to the bias tee and relatively easy to flow toward the input terminating resistor side. Therefore, by appropriately setting the value of the emitter resistance of each unit cell, all The collector current of the unit cell can be made uniform.
  • the collector current of each unit cell which has been non-uniform in the past, can be compensated to be uniform, and the gain of the circuit can be improved.
  • FIG. 1 is a circuit diagram showing a configuration of a distributed amplifier according to a first embodiment of the present invention.
  • the distributed amplifier of this embodiment has a transmission line CPW1 for input whose input end is connected to the signal input terminal 1, a transmission line CPW2 for output whose termination is connected to the signal output terminal 2, and a transmission line CPW1.
  • the input terminating resistor R1 that connects the termination and the power supply voltage VEE (first voltage)
  • the output terminating resistor R2 that connects the input end of the transmission line CPW2 and the ground
  • the transmission lines CPW1 and CPW2 are arranged.
  • unit cells 3a (3a-1 to 3a-N) are provided in N stages (N is an integer of 2 or more).
  • Vin is an input signal of the distributed amplifier
  • Vout is an output signal of the distributed amplifier
  • Vic is an input signal of the unit cell 3a (base voltage of the input transistor)
  • Vio is an output signal of the unit cell 3a.
  • each unit cell 3a (3a-1 to 3a-N) has an input transistor Q30 whose base terminal is connected to the transmission line CPW1 and an emitter terminal whose collector terminal is connected to the transmission line CPW2. Is connected to the collector terminal of the input transistor Q30, the emitter resistance REEa is connected to the emitter terminal of the input transistor Q30 at one end, and the other end is connected to the power supply voltage VEE, and one end is connected to the power supply voltage VEE.
  • a resistor R30 whose other end is connected to the base terminal of the output transistor Q2, a resistor R31 whose other end is connected to the base terminal of the output transistor Q2 and whose other end is grounded, and one end to the base terminal of the output transistor Q2.
  • the DC potential (second voltage) of the gate terminal of the output transistor Q31 is set to a voltage higher than the power supply voltage VEE (in this embodiment, the voltage between the ground voltage and the power supply voltage VEE).
  • the bias tee 4 is connected to a capacitor C1 inserted between the signal input terminal 1 and the input end of the transmission line CPW1 and one end is connected to the input end of the transmission line CPW1 and the other end is biased. It is composed of an inductor L1 connected to a voltage vbin (third voltage).
  • the emitter resistance REE of the input transistor Q30 of each unit cell 3 has the same value.
  • the emitter resistance REEa of the input transistor Q30 of each unit cell 3a is set to a different value, specifically, close to the bias tee 4 so that the collector current of each unit cell 3a becomes uniform. The value is set so that the value becomes larger and the value becomes smaller as the value is closer to the input terminating resistor R1.
  • the collector current flowing through the input transistor Q30 of each unit cell 3a can be transferred. It is possible to set almost the same value, and it is possible to set the collector current flowing through the input transistor Q30 of each unit cell 3a to an optimum value.
  • the inventor simulated the conventional distributed amplifier shown in FIGS. 9 and 10 and the distributed amplifier of the present embodiment shown in FIGS. 1 and 2.
  • N 6 was set for both the conventional and the present examples.
  • the emitter resistance REE of each unit cell 3 (3-1 to 3-6) of the conventional distributed amplifier is 15 ⁇ .
  • the emitter resistance REEa of the first-stage unit cell 3a-1 is 15 ⁇ and the emitter resistance REEa of the second-stage unit cell 3a-2 is 14 ⁇ in order from the one closest to the bias tee 4.
  • the emitter resistance REEa of the third-stage unit cell 3a-3 is 13 ⁇
  • the emitter resistance REEa of the fourth-stage unit cell 3a-4 is 11.5 ⁇
  • the emitter resistance REEa of the fifth-stage unit cell 3a-5 is 11 ⁇ .
  • the emitter resistance REEa of the unit cell 3a-6 in the sixth stage is set to 10 ⁇ .
  • the collector current of the 6th stage unit cell 3-6 is 20% smaller than that of the 1st stage unit cell 3-1.
  • the difference in collector current between all the unit cells can be suppressed within 1%.
  • FIG. 4 shows the simulation results of the gain (S21) of the conventional and distributed amplifiers of this embodiment.
  • 40 in FIG. 4 shows the gain of the conventional distributed amplifier
  • 41 shows the gain of the distributed amplifier of this embodiment.
  • the gain at 20 GHz is 8.8 dB in the conventional distributed amplifier, whereas it can be improved to 9.5 dB in the distributed amplifier of the present embodiment.
  • FIG. 5 is a circuit diagram showing a configuration of a distributed mixer according to a second embodiment of the present invention.
  • the distributed mixer of this embodiment is for RF signal output in which the input end is connected to the signal input terminal (IF terminal) 1 and the end is connected to the signal output terminals (RF terminals) 2p and 2n.
  • the output termination resistors R2p and R2n to be connected, the termination resistors R3p and R3n to connect the terminations of the transmission lines CPW3p and CPW3n and the bias voltage vblo, and the transmission lines CPW1, CPW2p, CPW2n, CPW3p and CPW3n are arranged along the IF.
  • bias tee 4 that supplies a bias voltage to the input transistors in the unit cells 5a-1 to 5a-N
  • a branched waveguide 6 that splits the LO signal into two and inputs it to the input ends of the transmission lines CPW3p and CPW3n. Will be done.
  • Vin is the input signal (IF signal) of the distributed mixer
  • Vout + is the output signal (RF + signal) on the positive phase side of the distributed mixer
  • Vout- is the output signal (RF- signal) on the opposite phase side of the distributed mixer.
  • LO + is the LO signal on the positive phase side
  • LO ⁇ is the LO signal on the negative phase side.
  • each unit cell 5a (5a-1 to 5a-N) has an input transistor Q50 whose base terminal is connected to the transmission line CPW1 and a base terminal connected to the transmission lines CPW3p and CPW3n.
  • the collector terminals are connected to the transmission lines CPW2p and CPW2n, the emitter terminals are connected to the collector terminals of the transistor Q50, and the output transistors Q51 and Q52, one end is connected to the emitter terminal of the input transistor Q50, and the other end is connected to the power supply voltage VEE. It is composed of a connected emitter resistor REEa.
  • the emitter resistance REE of the input transistor Q50 of each unit cell 5 has the same value.
  • the emitter resistance REEa of the input transistor Q50 of each unit cell 5a is set to a different value, specifically, close to the bias tee 4 so that the collector current of each unit cell 5a becomes uniform. The value is set so that the value becomes larger and the value becomes smaller as the value is closer to the input terminating resistor R1.
  • the inventor simulated the conventional distributed mixer shown in FIGS. 13 and 14 and the distributed mixer of the present embodiment shown in FIGS. 5 and 6.
  • N 6 was set for both the conventional and the present examples.
  • the emitter resistance REE of each unit cell 5 (5-1 to 5-6) of the conventional distributed mixer is 15 ⁇ .
  • the emitter resistance REEa of the first-stage unit cell 5a-1 is 15 ⁇ and the emitter resistance REEa of the second-stage unit cell 5a-2 is 14 in order from the one closest to the bias tee 4.
  • the emitter resistance REEa of the third-stage unit cell 5a-3 is 14 ⁇
  • the emitter resistance REEa of the fourth-stage unit cell 5a-4 is 13.5 ⁇
  • the emitter resistance REEa of the fifth-stage unit cell 5a-5 Is set to 12 ⁇
  • the emitter resistance REEa of the unit cell 5a-6 in the sixth stage is set to 10.5 ⁇ .
  • the collector current of the 6th stage unit cell 5-6 is 22% smaller than that of the 1st stage unit cell 5-1.
  • the difference in collector current between all the unit cells can be suppressed within 1%.
  • the collector current of the 6th stage unit cell 3-6 is 20% smaller than that of the 1st stage unit cell 3-1.
  • the difference in collector current between all the unit cells can be suppressed within 1%.
  • FIG. 8 shows the simulation results of the conversion gains of the conventional and distributed mixers of this embodiment.
  • the frequency of the IF signal is DC to 100 GHz
  • the frequency of the LO signal is 100 GHz.
  • the distributed mixer is a double-sided band mixer, and the RF signal after frequency conversion has a signal band of an upper band wave (100 GHz-200 GHz) and a lower band wave (DC-100 GHz).
  • 80 in FIG. 8 shows the conversion gain of the conventional distributed mixer
  • 81 shows the conversion gain of the distributed mixer of this embodiment.
  • the conversion gain at an RF frequency of 20 GHz can be improved to -2.3 dB in the case of the distributed mixer of this example, while it is -3.3 dB in the conventional distributed mixer.
  • the input terminating resistor R1 is connected to the power supply voltage VEE (the first voltage, which is a negative voltage), and the bias voltage vbin is higher than the power supply voltage VEE.
  • VEE the first voltage, which is a negative voltage
  • vbin the bias voltage vbin is higher than the power supply voltage VEE.
  • the ground voltage is higher than the bias voltage vbin, so that the bias tee 4 is passed from the input terminating resistor R1 through the transmission line CPW1.
  • a current flows through the inductor L1.
  • the emitter resistance REEa of the input transistors Q30 and Q50 of the unit cells 3a and 5a may be set so that the closer to the bias tee 4, the smaller the value, and the closer to the input terminating resistor R1, the larger the value. ..
  • FIGS. 1 and 5 are taken as examples of the distributed circuit, but the emitter resistance of the input transistor of each unit cell is set to a different appropriate value.
  • the circuit configuration is not limited to FIGS. 1 and 5 as long as it is a distributed circuit that is set and compensates for the non-uniformity of the current.
  • the field effect transistor may be used.
  • the base terminal should be replaced with a gate terminal
  • the collector terminal should be replaced with a drain terminal
  • the emitter terminal should be replaced with a source terminal
  • the emitter resistance should be replaced with a source resistance. Good.
  • the present invention can be applied to a distributed circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microwave Amplifiers (AREA)
  • Amplifiers (AREA)

Abstract

【課題】回路の利得を向上させる。 分布型増幅器は、入力用の伝送線路CPW1と、出力用の伝送線路CPW2と、伝送線路CPW1の終端と電源電圧VEEとを接続する入力終端抵抗R1と、伝送線路CPW2の入力端と接地とを接続する出力終端抵抗R2と、入力端子が伝送線路CPW1に接続され、出力端子が伝送線路CPW2に接続された単位セル3a-1~3a-Nと、各単位セル3a-1~3a-N内の入力トランジスタにバイアス電圧を供給するバイアスティー4とから構成される。単位セル3a-1~3a-Nのそれぞれの入力トランジスタに流れるコレクタ電流またはドレイン電流が均一になるように、単位セル3a-1~3a-Nのそれぞれの入力トランジスタのエミッタ抵抗またはソース抵抗が異なる値に設定されている。

Description

分布型回路
 本発明は、分布型増幅器や分布型ミキサなどの分布型回路に関するものである。
 分布型ミキサや分布型増幅器などの分布型回路は、広帯域性に優れ、高速光通信や高分解能レーダー等の様々なシステムで使用されている。分布型回路では、トランジスタの寄生容量を入出力の伝送線路に組み込んだ状態でインピーダンスマッチングを取り、さらに入出力間の伝送線路の伝搬定数を合わせることで、広帯域に信号を増幅したり、ミキシングしたりすることが可能である。
 分布型回路を適切に動作させるためには、使用する各トランジスタに適切な電流(バイポーラトランジスタの場合にはコレクタ電流、電界効果トランジスタの場合にはドレイン電流)を流す必要がある。図9は従来の分布型増幅器の構成を示す回路図である。分布型増幅器は、入力端が信号入力端子1に接続された入力用の伝送線路CPW1と、終端が信号出力端子2に接続された出力用の伝送線路CPW2と、伝送線路CPW1の終端と電源電圧VEEとを接続する入力終端抵抗R1と、伝送線路CPW2の入力端と接地とを接続する出力終端抵抗R2と、伝送線路CPW1,CPW2に沿って配置され、入力端子が伝送線路CPW1に接続され、出力端子が伝送線路CPW2に接続された複数の単位セル3-1~3-Nと、各単位セル3-1~3-N内の入力トランジスタにバイアス電圧を供給するバイアスティー4とから構成される。図9の例では、単位セル3(3-1~3-N)をN段設けている。
 図10に示すように、各単位セル3(3-1~3-N)は、それぞれベース端子が伝送線路CPW1に接続された入力トランジスタQ30と、コレクタ端子が伝送線路CPW2に接続され、エミッタ端子が入力トランジスタQ30のコレクタ端子に接続された出力トランジスタQ31と、一端が入力トランジスタQ30のエミッタ端子に接続され、他端が電源電圧VEEに接続されたエミッタ抵抗REEと、一端が電源電圧VEEに接続され、他端が出力トランジスタQ2のベース端子に接続された抵抗R30と、一端が出力トランジスタQ2のベース端子に接続され、他端が接地された抵抗R31と、一端が出力トランジスタQ2のベース端子に接続され、他端が接地されたキャパシタC30とから構成される。
 バイアスティー4は、図9に示すように、信号入力端子1と伝送線路CPW1の入力端との間に挿入されたキャパシタC1と、一端が伝送線路CPW1の入力端に接続され、他端がバイアス電圧vbinに接続されたインダクタL1とから構成される。
 例えば集積回路(IC:Integrated Circuit)で実現する図9のような分布型増幅器の場合、各単位セル3のトランジスタQ30,Q31に適切な電流を流すためには、各単位セル3の入力トランジスタQ30のベース端子に適切なバイアス電圧を与える必要がある。入力トランジスタQ30のバイアス電圧を与える時に、前段回路の直流電圧が影響しないように、直流電圧をカットするバイアスティー4(オフチップ)が用いられることがある(非特許文献1参照)。
 しかしながら、バイアスティー4を用いる時に、インダクタL1から入力終端抵抗R1へ流れる電流が原因で増幅器の利得が低下するという課題があった。この現象は以下のように説明できる。伝送線路CPW1,CPW2は小さいながらも抵抗成分を持つために、図11のようにバイアスティー4のインダクタL1から伝送線路CPW1を通って入力終端抵抗R1へ流れる電流Iによって電圧降下が起きる。この電圧降下によってバイアスティー4側と入力終端抵抗R1側とで電圧値が異なる。
 各単位セル3においては、図12の(a)、(b)に示すように入力トランジスタQ30にコレクタ電流が流れるが、バイアスティー4側と入力終端抵抗R1側とで電圧値が異なるために、各単位セル3の入力トランジスタQ30のベース電圧Vicが不均一になるため、コレクタ電流の値も不均一になる。図12の(a)、(b)の例では、1段目の単位セル3-1の入力トランジスタQ30に流れるコレクタ電流の方が、N段目の単位セル3-Nの入力トランジスタQ30に流れるコレクタ電流よりも大きい。
 一方で、トランジスタの最大利得を引き出すための最適なコレクタ電流の値が存在する。しかしながら、上記のとおりコレクタ電流が不均一なために、終端側に近い単位セル程、最適なコレクタ電流の値から外れるため、従来の分布型増幅器では利得が低下するという課題があった。
 この課題を解決するための方法がいくつか提案されている。例えば、非特許文献2のように入力終端抵抗R1に直列にキャパシタを挿入し、直流電流をカットする方法がある。しかし、非特許文献2に開示された方法では、挿入するキャパシタの容量値が小さいと低周波側の反射特性が悪化するため、大きな容量値が必要となる。しかしながら、オンチップの構成では大きな容量値を実現できないため、非特許文献2に開示された方法を、低い周波数から良好な反射特性を必要とするベースバンド信号の増幅に適用することはできない。
 また、利得が低下するという課題に対して、入力終端抵抗R1の片方の端子をチップの外に取り出し、この端子を、大きな容量値を実現できるオフチップのキャパシタと直列に接続することによって低周波側の反射特性を改善する方法も考えられる。しかしながら、入力終端抵抗R1の片方の端子をチップの外に取り出すためには、配線を長く引き回す必要がある。この長い配線は、入力終端抵抗R1とオフチップのキャパシタとの間に大きなインダクタンスが接続されていることと等価なため、高周波側の反射特性が悪化する。このため、オフチップのキャパシタを用いる方法を、広帯域なベースバンド信号の増幅に適用することはできない。
 このように従来では、良好な反射特性を維持しながら、不均一なコレクタ電流に起因する増幅器の利得低下を防ぐことが困難であるという課題があった。この課題は増幅器のみならず例えば図13、図14のようなバイアスティーを用いた分布型ミキサでも同様に起き、変換利得の低下を招く原因となる。
 分布型ミキサは、入力端が信号入力端子(IF(Intermediate Frequency)端子)1に接続された伝送線路CPW1と、終端が信号出力端子2p,2nに接続されたRF(Radio Frequency)信号出力用の伝送線路CPW2p,CPW2nと、LO(Local Oscillator)信号入力用の伝送線路CPW3p,CPW3nと、伝送線路CPW1の終端と電源電圧VEEとを接続する入力終端抵抗R1と、伝送線路CPW2p,CPW2nの入力端と接地とを接続する出力終端抵抗R2p,R2nと、伝送線路CPW3p,CPW3nの終端とバイアス電圧vbloとを接続する終端抵抗R3p,R3nと、伝送線路CPW1,CPW2p,CPW2n,CPW3p,CPW3nに沿って配置され、IF入力端子が伝送線路CPW1に接続され、LO入力端子が伝送線路CPW3p,CPW3nに接続され、RF出力端子が伝送線路CPW2p,CPW2nに接続された複数の単位セル5-1~5-Nと、各単位セル5-1~5-N内の入力トランジスタにバイアス電圧を供給するバイアスティー4と、LO信号を2分岐させて伝送線路CPW3p,CPW3nの入力端に入力する分岐導波管6とから構成される。
 図14に示すように、各単位セル5(5-1~5-N)は、それぞれベース端子が伝送線路CPW1に接続された入力トランジスタQ50と、ベース端子が伝送線路CPW3p,CPW3nに接続され、コレクタ端子が伝送線路CPW2p,CPW2nに接続され、エミッタ端子がトランジスタQ50のコレクタ端子に接続された出力トランジスタQ51,Q52と、一端が入力トランジスタQ50のエミッタ端子に接続され、他端が電源電圧VEEに接続されたエミッタ抵抗REEとから構成される。
 図13の構成においても、バイアスティー4側と入力終端抵抗R1側とで電圧値が異なるために、各単位セル5の入力トランジスタQ50のベース電圧Vifが不均一になるため、コレクタ電流の値も不均一になる。図14の(a)、(b)の例では、1段目の単位セル5-1の入力トランジスタQ50に流れるコレクタ電流の方が、N段目の単位セル5-Nの入力トランジスタQ50に流れるコレクタ電流よりも大きい。
Satoshi Masuda,Tsuyoshi Takahashi,and Kazukiyo Joshin,"An over-110-GHz InP HEMT flip-chip distributed baseband amplifier with inverted microstrip line structure for optical transmission system",IEEE Journal of Solid-State Circuits,Vol.38,No.9,pp.1479-1484,2003 Kevin W.Kobayashi,Reza Esfandiari,and Aaron K.Oki,"A novel HBT distributed amplifier design topology based on attenuation compensation techniques",IEEE transactions on microwave theory and techniques,Vol.42,No.12,pp.2583-2589,1994
 本発明は、上記課題を解決するためになされたもので、従来よりも利得を向上させることができる分布型回路を提供することを目的とする。
 本発明の分布型回路は、入力端に入力信号が入力されるように構成された第1の伝送線路と、出力端から出力信号を出力するように構成された第2の伝送線路と、前記第1の伝送線路の終端に接続された終端抵抗と、前記第1、第2の伝送線路に沿って配置され、入力端子が前記第1の伝送線路に接続され、出力端子が前記第2の伝送線路に接続された複数の単位セルと、前記第1の伝送線路の入力端に接続され、前記複数の単位セルのそれぞれの入力トランジスタにバイアス電圧を供給するように構成されたバイアスティーとを備え、前記単位セルは、ベース端子またはゲート端子が前記第1の伝送線路に接続された前記入力トランジスタと、前記入力トランジスタのエミッタ端子またはソース端子に接続されたエミッタ抵抗またはソース抵抗とを少なくとも備え、前記複数の単位セルのそれぞれの入力トランジスタに流れるコレクタ電流またはドレイン電流が均一になるように、前記複数の単位セルのそれぞれの前記エミッタ抵抗またはソース抵抗が異なる値に設定されていることを特徴とするものである。
 また、本発明の分布型回路の1構成例は、前記バイアスティーから前記第1の伝送線路を通って前記終端抵抗の方向に電流が流れる場合に、前記複数の単位セルのそれぞれの前記エミッタ抵抗またはソース抵抗を、前記バイアスティーに近いほど値が大きく、前記終端抵抗に近いほど値が小さくなるように設定することを特徴とするものである。
 また、本発明の分布型回路の1構成例は、前記終端抵抗から前記第1の伝送線路を通って前記バイアスティーの方向に電流が流れる場合に、前記複数の単位セルのそれぞれの前記エミッタ抵抗またはソース抵抗を、前記バイアスティーに近いほど値が小さく、前記終端抵抗に近いほど値が大きくなるように設定することを特徴とするものである。
 また、本発明の分布型回路の1構成例において、前記単位セルは、ベース端子またはゲート端子が前記第1の伝送線路に接続された前記入力トランジスタと、一端が前記入力トランジスタのエミッタ端子またはソース端子に接続され、他端が第1の電圧に接続された前記エミッタ抵抗またはソース抵抗と、ベース端子またはゲート端子が第2の電圧に接続され、コレクタ端子またはドレイン端子が前記第2の伝送線路に接続され、エミッタ端子またはソース端子が前記入力トランジスタのコレクタ端子またはドレイン端子に接続された出力トランジスタとから構成され、分布型増幅器として動作することを特徴とするものである。
 また、本発明の分布型回路の1構成例において、前記入力信号はIF信号、前記出力信号はRF信号であり、入力端にLO信号が入力されるように構成された第3の伝送線路をさらに備え、前記単位セルは、ベース端子またはゲート端子が前記第1の伝送線路に接続された前記入力トランジスタと、ベース端子またはゲート端子が前記第3の伝送線路に接続され、コレクタ端子またはドレイン端子が前記第2の伝送線路に接続され、エミッタ端子またはソース端子が前記入力トランジスタのコレクタ端子またはドレイン端子に接続された出力トランジスタと、一端が前記入力トランジスタのエミッタ端子またはソース端子に接続され、他端が第1の電圧に接続された前記エミッタ抵抗またはソース抵抗とから構成され、分布型ミキサとして動作することを特徴とするものである。
 また、本発明の分布型回路の1構成例において、前記バイアスティーは、一端に前記入力信号が入力され、他端が前記第1の伝送線路の入力端に接続されたキャパシタと、一端が前記第1の伝送線路の入力端に接続され、他端が第3の電圧に接続されたインダクタとから構成されることを特徴とするものである。
 本発明によれば、複数の単位セルのそれぞれの入力トランジスタに流れるコレクタ電流またはドレイン電流が均一になるように、複数の単位セルのそれぞれのエミッタ抵抗またはソース抵抗を異なる値に設定することにより、分布型回路の利得を向上させることができる。
図1は、本発明の第1の実施例に係る分布型増幅器の構成を示す回路図である。 図2は、本発明の第1の実施例に係る分布型増幅器の単位セルの構成を示す回路図である。 図3は、本発明の第1の実施例に係る分布型増幅器の効果を説明する図である。 図4は、従来および本発明の第1の実施例に係る分布型増幅器の利得のシミュレーション結果を示す図である。 図5は、本発明の第2の実施例に係る分布型ミキサの構成を示す回路図である。 図6は、本発明の第2の実施例に係る分布型ミキサの単位セルの構成を示す回路図である。 図7は、本発明の第2の実施例に係る分布型ミキサの効果を説明する図である。 図8は、従来および本発明の第2の実施例に係る分布型ミキサの変換利得のシミュレーション結果を示す図である。 図9は、バイアスティーを用いた従来の分布型増幅器の構成を示す回路図である。 図10は、図9の分布型増幅器の単位セルの構成を示す回路図である。 図11は、バイアスティーを用いた従来の分布型増幅器の課題を説明する図である。 図12は、バイアスティーを用いた従来の分布型増幅器の課題を説明する図である。 図13は、バイアスティーを用いた従来の分布型ミキサの課題を説明する図である。 図14は、バイアスティーを用いた従来の分布型ミキサの課題を説明する図である。
[発明の原理]
 本発明では、各単位セルのコレクタ電流が均一になるように、各単位セルのエミッタ抵抗を同じ値ではなく、バイアスティーに近い側程大きく、入力終端抵抗側程小さく設定する。これにより、単位セルのコレクタ電流は、バイアスティーに近い側程比較的流れにくく、入力終端抵抗側程比較的流れ易くなるため、各単位セルのエミッタ抵抗の値を適切に設定することにより、全ての単位セルのコレクタ電流を均一にすることができる。
 本発明により、従来不均一だった各単位セルのコレクタ電流を均一となるように補償でき、回路の利得を向上させることが可能になる。
[第1の実施例]
 以下、本発明の実施例について図面を参照して説明する。図1は本発明の第1の実施例に係る分布型増幅器の構成を示す回路図である。本実施例の分布型増幅器は、入力端が信号入力端子1に接続された入力用の伝送線路CPW1と、終端が信号出力端子2に接続された出力用の伝送線路CPW2と、伝送線路CPW1の終端と電源電圧VEE(第1の電圧)とを接続する入力終端抵抗R1と、伝送線路CPW2の入力端と接地とを接続する出力終端抵抗R2と、伝送線路CPW1,CPW2に沿って配置され、入力端子が伝送線路CPW1に接続され、出力端子が伝送線路CPW2に接続された複数の単位セル3a-1~3a-Nと、各単位セル3a-1~3a-N内の入力トランジスタにバイアス電圧を供給するバイアスティー4とから構成される。
 図1の例では、単位セル3a(3a-1~3a-N)をN段設けている(Nは2以上の整数)。図1のVinは分布型増幅器の入力信号、Voutは分布型増幅器の出力信号、Vicは単位セル3aの入力信号(入力トランジスタのベース電圧)、Vioは単位セル3aの出力信号である。
 図2に示すように、各単位セル3a(3a-1~3a-N)は、それぞれベース端子が伝送線路CPW1に接続された入力トランジスタQ30と、コレクタ端子が伝送線路CPW2に接続され、エミッタ端子が入力トランジスタQ30のコレクタ端子に接続された出力トランジスタQ31と、一端が入力トランジスタQ30のエミッタ端子に接続され、他端が電源電圧VEEに接続されたエミッタ抵抗REEaと、一端が電源電圧VEEに接続され、他端が出力トランジスタQ2のベース端子に接続された抵抗R30と、一端が出力トランジスタQ2のベース端子に接続され、他端が接地された抵抗R31と、一端が出力トランジスタQ2のベース端子に接続され、他端が接地されたキャパシタC30とから構成される。出力トランジスタQ31のゲート端子の直流電位(第2の電圧)は、電源電圧VEEよりも高い電圧(本実施例では接地電圧と電源電圧VEEとの間の電圧)に設定される。
 バイアスティー4は、図1に示すように、信号入力端子1と伝送線路CPW1の入力端との間に挿入されたキャパシタC1と、一端が伝送線路CPW1の入力端に接続され、他端がバイアス電圧vbin(第3の電圧)に接続されたインダクタL1とから構成される。
 上記のとおり、従来の分布型増幅器では、各単位セル3の入力トランジスタQ30のエミッタ抵抗REEが同一の値であった。これに対して、本実施例では、各単位セル3aのコレクタ電流が均一になるように、各単位セル3aの入力トランジスタQ30のエミッタ抵抗REEaを、異なる値、具体的にはバイアスティー4に近いほど値が大きく、入力終端抵抗R1に近いほど値が小さくなるように設定する。
 これにより、図3の(a)、(b)に示すように各単位セル3aの入力トランジスタQ30のベース電圧Vicが不均一であっても、各単位セル3aの入力トランジスタQ30に流れるコレクタ電流をほぼ同一の値にすることが可能となり、各単位セル3aの入力トランジスタQ30に流れるコレクタ電流を最適な値に設定することが可能となる。
 発明者は、図9、図10に示した従来の分布型増幅器と図1、図2に示した本実施例の分布型増幅器のシミュレーションを行った。ここでは、従来および本実施例共にN=6とした。従来の分布型増幅器の各単位セル3(3-1~3-6)のエミッタ抵抗REEは全て15Ωである。一方、本実施例の分布型増幅器では、バイアスティー4に近い方から順に1段目の単位セル3a-1のエミッタ抵抗REEaを15Ω、2段目の単位セル3a-2のエミッタ抵抗REEaを14Ω、3段目の単位セル3a-3のエミッタ抵抗REEaを13Ω、4段目の単位セル3a-4のエミッタ抵抗REEaを11.5Ω、5段目の単位セル3a-5のエミッタ抵抗REEaを11Ω、6段目の単位セル3a-6のエミッタ抵抗REEaを10Ωに設定している。
 従来の分布型増幅器では、1段目の単位セル3-1に比べて6段目の単位セル3-6のコレクタ電流は20%小さくなる。一方、本実施例の分布型増幅器では、全ての単位セル間のコレクタ電流の差を1%以内に抑えることが可能となる。
 図4に従来および本実施例の分布型増幅器の利得(S21)のシミュレーション結果を示す。図4の40は従来の分布型増幅器の利得を示し、41は本実施例の分布型増幅器の利得を示している。20GHzにおける利得が従来の分布型増幅器では8.8dBであるのに対して、本実施例の分布型増幅器の場合、9.5dBに向上させることが可能である。
[第2の実施例]
 次に、本発明の第2の実施例について説明する。図5は本発明の第2の実施例に係る分布型ミキサの構成を示す回路図である。本実施例の分布型ミキサは、入力端が信号入力端子(IF端子)1に接続された伝送線路CPW1と、終端が信号出力端子(RF端子)2p,2nに接続されたRF信号出力用の伝送線路CPW2p,CPW2nと、LO信号入力用の伝送線路CPW3p,CPW3nと、伝送線路CPW1の終端と電源電圧VEEとを接続する入力終端抵抗R1と、伝送線路CPW2p,CPW2nの入力端と接地とを接続する出力終端抵抗R2p,R2nと、伝送線路CPW3p,CPW3nの終端とバイアス電圧vbloとを接続する終端抵抗R3p,R3nと、伝送線路CPW1,CPW2p,CPW2n,CPW3p,CPW3nに沿って配置され、IF入力端子が伝送線路CPW1に接続され、LO入力端子が伝送線路CPW3p,CPW3nに接続され、RF出力端子が伝送線路CPW2p,CPW2nに接続された複数の単位セル5a-1~5a-Nと、各単位セル5a-1~5a-N内の入力トランジスタにバイアス電圧を供給するバイアスティー4と、LO信号を2分岐させて伝送線路CPW3p,CPW3nの入力端に入力する分岐導波管6とから構成される。
 図1のVinは分布型ミキサの入力信号(IF信号)、Vout+は分布型ミキサの正相側の出力信号(RF+信号)、Vout-は分布型ミキサの逆相側の出力信号(RF-信号)、LO+は正相側のLO信号、LO-は逆相側のLO信号である。
 図6に示すように、各単位セル5a(5a-1~5a-N)は、それぞれベース端子が伝送線路CPW1に接続された入力トランジスタQ50と、ベース端子が伝送線路CPW3p,CPW3nに接続され、コレクタ端子が伝送線路CPW2p,CPW2nに接続され、エミッタ端子がトランジスタQ50のコレクタ端子に接続された出力トランジスタQ51,Q52と、一端が入力トランジスタQ50のエミッタ端子に接続され、他端が電源電圧VEEに接続されたエミッタ抵抗REEaとから構成される。
 上記のとおり、従来の分布型ミキサでは、各単位セル5の入力トランジスタQ50のエミッタ抵抗REEが同一の値であった。これに対して、本実施例では、各単位セル5aのコレクタ電流が均一になるように、各単位セル5aの入力トランジスタQ50のエミッタ抵抗REEaを、異なる値、具体的にはバイアスティー4に近いほど値が大きく、入力終端抵抗R1に近いほど値が小さくなるように設定する。
 これにより、図7の(a)、(b)に示すように各単位セル5aの入力トランジスタQ50のベース電圧Vifが不均一であっても、各単位セル5aの入力トランジスタQ50に流れるコレクタ電流をほぼ同一の値にすることが可能となり、各単位セル5aの入力トランジスタQ50に流れるコレクタ電流を最適な値に設定することが可能となる。
 発明者は、図13、図14に示した従来の分布型ミキサと図5、図6に示した本実施例の分布型ミキサのシミュレーションを行った。ここでは、従来および本実施例共にN=6とした。従来の分布型ミキサの各単位セル5(5-1~5-6)のエミッタ抵抗REEは全て15Ωである。一方、本実施例の分布型ミキサでは、バイアスティー4に近い方から順に1段目の単位セル5a-1のエミッタ抵抗REEaを15Ω、2段目の単位セル5a-2のエミッタ抵抗REEaを14.5Ω、3段目の単位セル5a-3のエミッタ抵抗REEaを14Ω、4段目の単位セル5a-4のエミッタ抵抗REEaを13.5Ω、5段目の単位セル5a-5のエミッタ抵抗REEaを12Ω、6段目の単位セル5a-6のエミッタ抵抗REEaを10.5Ωに設定している。
 従来の分布型ミキサでは、1段目の単位セル5-1に比べて6段目の単位セル5-6のコレクタ電流は22%小さくなる。一方、本実施例の分布型ミキサでは、全ての単位セル間のコレクタ電流の差を1%以内に抑えることが可能となる。従来の分布型増幅器では、1段目の単位セル3-1に比べて6段目の単位セル3-6のコレクタ電流は20%小さくなる。一方、本実施例の分布型増幅器では、全ての単位セル間のコレクタ電流の差を1%以内に抑えることが可能となる。
 図8に従来および本実施例の分布型ミキサの変換利得のシミュレーション結果を示す。IF信号の周波数はDCから100GHzであり、LO信号の周波数は100GHzである。分布型ミキサはダブルサイドバンドミキサであり、周波数変換後のRF信号は、上側帯波(100GHz-200GHz)と下側帯波(DC-100GHz)の信号帯域を持つ。図8の80は従来の分布型ミキサの変換利得を示し、81は本実施例の分布型ミキサの変換利得を示している。RF周波数20GHzにおける変換利得が従来の分布型ミキサでは-3.3dBであるのに対して、本実施例の分布型ミキサの場合、-2.3dBに向上させることが可能である。
 なお、第1、第2の実施例では、入力終端抵抗R1を電源電圧VEE(第1の電圧であり、負電圧)に接続しており、バイアス電圧vbinの方が電源電圧VEEよりも高いため、図1、図5に示したように、バイアスティー4のインダクタL1から伝送線路CPW1を通って入力終端抵抗R1へと電流Iが流れる。
 一方、入力終端抵抗R1を接地電圧(第1の電圧)に接続した場合には、接地電圧の方がバイアス電圧vbinよりも高いため、入力終端抵抗R1から伝送線路CPW1を通ってバイアスティー4のインダクタL1へと電流が流れる。この場合には、各単位セル3a,5aの入力トランジスタQ30,Q50のエミッタ抵抗REEaを、バイアスティー4に近いほど値が小さく、入力終端抵抗R1に近いほど値が大きくなるように設定すればよい。
 また、第1、第2の実施例では、分布型回路の例として図1、図5を例に挙げて説明しているが、各単位セルの入力トランジスタのエミッタ抵抗をそれぞれ異なる適切な値に設定し、電流の不均一性を補償する分布型回路であれば、回路構成は図1、図5に限るものではない。
 また、第1、第2の実施例では、トランジスタQ30,Q31,Q50~Q52としてバイポーラトランジスタを使用した例を示しているが、電界効果トランジスタを使用してもよい。電界効果トランジスタを使用する場合には、上記の説明において、ベース端子をゲート端子に置き換え、コレクタ端子をドレイン端子に置き換え、エミッタ端子をソース端子に置き換え、エミッタ抵抗をソース抵抗に置き換えるようにすればよい。
 本発明は、分布型回路に適用することができる。
 1…信号入力端子、2,2p,2n…信号出力端子、3a,5a…単位セル、4…バイアスティー、CPW1,CPW2,CPW2p,CPW2n,CPW3p,CPW3n…伝送線路、Q30,Q31,Q50~Q52…トランジスタ、R1,R2p,R2n,R3p,R3n,R30,R31,REEa…抵抗、C1,C30…キャパシタ、L1…インダクタ。

Claims (6)

  1.  入力端に入力信号が入力されるように構成された第1の伝送線路と、
     出力端から出力信号を出力するように構成された第2の伝送線路と、
     前記第1の伝送線路の終端に接続された終端抵抗と、
     前記第1、第2の伝送線路に沿って配置され、入力端子が前記第1の伝送線路に接続され、出力端子が前記第2の伝送線路に接続された複数の単位セルと、
     前記第1の伝送線路の入力端に接続され、前記複数の単位セルのそれぞれの入力トランジスタにバイアス電圧を供給するように構成されたバイアスティーとを備え、
     前記単位セルは、
     ベース端子またはゲート端子が前記第1の伝送線路に接続された前記入力トランジスタと、
     前記入力トランジスタのエミッタ端子またはソース端子に接続されたエミッタ抵抗またはソース抵抗とを少なくとも備え、
     前記複数の単位セルのそれぞれの入力トランジスタに流れるコレクタ電流またはドレイン電流が均一になるように、前記複数の単位セルのそれぞれの前記エミッタ抵抗またはソース抵抗が異なる値に設定されていることを特徴とする分布型回路。
  2.  請求項1記載の分布型回路において、
     前記バイアスティーから前記第1の伝送線路を通って前記終端抵抗の方向に電流が流れる場合に、前記複数の単位セルのそれぞれの前記エミッタ抵抗またはソース抵抗を、前記バイアスティーに近いほど値が大きく、前記終端抵抗に近いほど値が小さくなるように設定することを特徴とする分布型回路。
  3.  請求項1記載の分布型回路において、
     前記終端抵抗から前記第1の伝送線路を通って前記バイアスティーの方向に電流が流れる場合に、前記複数の単位セルのそれぞれの前記エミッタ抵抗またはソース抵抗を、前記バイアスティーに近いほど値が小さく、前記終端抵抗に近いほど値が大きくなるように設定することを特徴とする分布型回路。
  4.  請求項1乃至3のいずれか1項に記載の分布型回路において、
     前記単位セルは、
     ベース端子またはゲート端子が前記第1の伝送線路に接続された前記入力トランジスタと、
     一端が前記入力トランジスタのエミッタ端子またはソース端子に接続され、他端が第1の電圧に接続された前記エミッタ抵抗またはソース抵抗と、
     ベース端子またはゲート端子が第2の電圧に接続され、コレクタ端子またはドレイン端子が前記第2の伝送線路に接続され、エミッタ端子またはソース端子が前記入力トランジスタのコレクタ端子またはドレイン端子に接続された出力トランジスタとから構成され、
     分布型増幅器として動作することを特徴とする分布型回路。
  5.  請求項1乃至3のいずれか1項に記載の分布型回路において、
     前記入力信号はIF信号、前記出力信号はRF信号であり、
     入力端にLO信号が入力されるように構成された第3の伝送線路をさらに備え、
     前記単位セルは、
     ベース端子またはゲート端子が前記第1の伝送線路に接続された前記入力トランジスタと、
     ベース端子またはゲート端子が前記第3の伝送線路に接続され、コレクタ端子またはドレイン端子が前記第2の伝送線路に接続され、エミッタ端子またはソース端子が前記入力トランジスタのコレクタ端子またはドレイン端子に接続された出力トランジスタと、
     一端が前記入力トランジスタのエミッタ端子またはソース端子に接続され、他端が第1の電圧に接続された前記エミッタ抵抗またはソース抵抗とから構成され、
     分布型ミキサとして動作することを特徴とする分布型回路。
  6.  請求項1乃至5のいずれか1項に記載の分布型回路において、
     前記バイアスティーは、
     一端に前記入力信号が入力され、他端が前記第1の伝送線路の入力端に接続されたキャパシタと、
     一端が前記第1の伝送線路の入力端に接続され、他端が第3の電圧に接続されたインダクタとから構成されることを特徴とする分布型回路。
PCT/JP2020/011103 2019-03-29 2020-03-13 分布型回路 WO2020203182A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/598,379 US11764744B2 (en) 2019-03-29 2020-03-13 Distributed circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019065715A JP7263884B2 (ja) 2019-03-29 2019-03-29 分布型回路
JP2019-065715 2019-03-29

Publications (1)

Publication Number Publication Date
WO2020203182A1 true WO2020203182A1 (ja) 2020-10-08

Family

ID=72668353

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/011103 WO2020203182A1 (ja) 2019-03-29 2020-03-13 分布型回路

Country Status (3)

Country Link
US (1) US11764744B2 (ja)
JP (1) JP7263884B2 (ja)
WO (1) WO2020203182A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114884472A (zh) * 2022-05-23 2022-08-09 王琮 基于谐波调控的j类分布式功率放大器及其优化方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11641180B2 (en) * 2021-06-02 2023-05-02 Adtran, Inc. Distribution amplifier for a communication device
WO2023089727A1 (ja) * 2021-11-18 2023-05-25 日本電信電話株式会社 分布型ダブルバランスドミキサ

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007049391A1 (ja) * 2005-10-24 2007-05-03 Nec Corporation 分布型増幅器および集積回路
WO2007108103A1 (ja) * 2006-03-20 2007-09-27 Fujitsu Limited アナログ回路

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002033627A (ja) * 2000-07-19 2002-01-31 Fujitsu Ltd 分布増幅器
US20020130720A1 (en) * 2001-03-15 2002-09-19 Motorola, Inc. Distributed amplifier with transistors in a cascode configuration and negative feedback

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007049391A1 (ja) * 2005-10-24 2007-05-03 Nec Corporation 分布型増幅器および集積回路
WO2007108103A1 (ja) * 2006-03-20 2007-09-27 Fujitsu Limited アナログ回路

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114884472A (zh) * 2022-05-23 2022-08-09 王琮 基于谐波调控的j类分布式功率放大器及其优化方法

Also Published As

Publication number Publication date
JP7263884B2 (ja) 2023-04-25
US20220123702A1 (en) 2022-04-21
US11764744B2 (en) 2023-09-19
JP2020167503A (ja) 2020-10-08

Similar Documents

Publication Publication Date Title
WO2020203182A1 (ja) 分布型回路
TW200929853A (en) Amplifier and the method thereof
TWI766983B (zh) 具有大的射頻及瞬時頻寬的反相杜赫功率放大器
JP2002033627A (ja) 分布増幅器
CN112332806B (zh) 一种高增益低噪声射频移相器
Vasilakopoulos et al. A 92GHz bandwidth SiGe BiCMOS HBT TIA with less than 6dB noise figure
US7728673B2 (en) Wideband active balun using darlington pair
KR20140112428A (ko) 주파수 배율기를 위한 시스템 및 방법
US10090816B2 (en) Current reuse amplifier
US9722541B2 (en) Distributed amplifier
US6801088B2 (en) Dual gate low noise amplifier
CN116888888A (zh) 用于高可靠性应用的高效双驱动功率放大器
EP3721557B1 (en) A combined mixer and filter circuitry
Dennler et al. Monolithic three-stage 6–18GHz high power amplifier with distributed interstage in GaN technology
Hoffman et al. A low noise, DC-135GHz MOS-HBT distributed amplifier for receiver applications
US8421537B2 (en) Electronic circuit
WO2021005679A1 (ja) 分布型回路
US8547176B2 (en) Distributed power amplifier with active matching
US20190020311A1 (en) Mixer with series connected active devices
JP2005101871A (ja) 分布型増幅器
Wang et al. The D-band MMIC LNA circuit using 70nm InP HEMT technology
US20210257979A1 (en) Distributed Amplifier
Dietrich et al. 450W Sequential power amplifier with 60% efficiency at 10 dB back-off using active Doherty-type load modulation
JP2008236354A (ja) 増幅器
Holdenried et al. A DC-6 GHz, 50 dB dynamic range, SiGe HBT true logarithmic amplifier

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20782069

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20782069

Country of ref document: EP

Kind code of ref document: A1