WO2022127076A1 - 基于张量高阶奇异值分解的雷达角度和距离估计方法 - Google Patents

基于张量高阶奇异值分解的雷达角度和距离估计方法 Download PDF

Info

Publication number
WO2022127076A1
WO2022127076A1 PCT/CN2021/103354 CN2021103354W WO2022127076A1 WO 2022127076 A1 WO2022127076 A1 WO 2022127076A1 CN 2021103354 W CN2021103354 W CN 2021103354W WO 2022127076 A1 WO2022127076 A1 WO 2022127076A1
Authority
WO
WIPO (PCT)
Prior art keywords
matrix
tensor
target
distance
singular value
Prior art date
Application number
PCT/CN2021/103354
Other languages
English (en)
French (fr)
Inventor
王咸鹏
徐腾贤
黄梦醒
苏婷
吴迪
迟阔
简琳露
Original Assignee
海南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海南大学 filed Critical 海南大学
Publication of WO2022127076A1 publication Critical patent/WO2022127076A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/418Theoretical aspects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
    • G06F17/12Simultaneous equations, e.g. systems of linear equations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/16Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S2013/0236Special technical features
    • G01S2013/0245Radar with phased array antenna

Definitions

  • the invention relates to the technical field of bistatic MIMO radar systems, in particular to a radar angle and distance estimation method based on tensor high-order singular value decomposition.
  • Frequency-controlled array MIMO radar is a new system radar that has been continuously developed in recent years. On the premise of retaining the advantages of phased array, it has been better improved. It has high resolution and excellent parameter estimation performance. Research hotspots.
  • the frequency-controlled array MIMO radar can be divided into two categories according to the relative positions of the receiving array and the transmitting array, namely the stand-alone ground-frequency-controlled-array MIMO radar and the bistatic frequency-controlled-array MIMO radar.
  • the research on frequency-controlled array MIMO radar has mostly focused on the monostatic field, and some algorithms have appeared, such as ESPRIT (estimation of signal parameters via rotational invariance techniques) algorithm and MUSIC (multiple signal classification) algorithm.
  • ESPRIT estimation of signal parameters via rotational invariance techniques
  • MUSIC multiple signal classification
  • a sub-array partition mode is proposed to design the radar transmitting array.
  • the accuracy of this algorithm is based on a large amount of computational complexity and requires high speed. Number of shots to guarantee.
  • Another algorithm proposes a new idea of sub-array division, which consists of multiple sub-arrays to form a transmitting array, and realizes joint estimation of target DOA, DOD and distance through rotation invariance.
  • the methods mentioned above are all subspace algorithms based on matrix decomposition, which simply store the received echo data as a matrix, but this method will lose the inherent multi-dimensional structure of the received data.
  • this kind of algorithm has poor performance in the case of low snapshot and low signal-to-noise ratio.
  • parameter matching errors are prone to occur in the case of multiple targets.
  • the case of multiple targets is more common, and in the harsh electromagnetic environment, the application performance of the above method will be seriously affected.
  • the purpose of the present invention is to provide a radar angle and distance estimation method based on tensor high-order singular value decomposition, so as to solve the problems raised in the above background art.
  • a radar angle and distance estimation method based on tensor high-order singular value decomposition comprising the following steps:
  • constructing a MIMO radar receiving array including k sub-arrays obtaining the received data of the target echo through the MIMO radar receiving array, and constructing a third-order tensor signal model
  • the third-order tensor signal model is decomposed by high-order singular value to obtain a tensor-based signal subspace
  • Extract the signal subspace and emission matrix corresponding to each subarray eliminate the phase ambiguity caused by target DOD parameters and distance coupling, and realize the automatic pairing of target DOD and distance with DOA parameters, and finally realize the target DOD parameters and distance of MIMO radar. parameter estimation.
  • the received data of the target echo is obtained through the MIMO radar receiving array, and a third-order tensor signal model is constructed, including:
  • the received data of the target echo is expressed as:
  • Ar is the receiving steering matrix
  • Ats is the transmitting steering matrix
  • N is the noise matrix
  • S T is the space signal vector matrix
  • Stacking received data along different directions in 3D to form a tensor signal model Its dimension is M ⁇ N ⁇ L, N is the number of radar receiving array antennas, M is the number of receiving array antennas, and the tensor By modulo-3 expansion, the third-order tensor signal model can be obtained:
  • a high-order singular value decomposition third-order tensor signal model is used to obtain a tensor-based signal subspace, including:
  • extracting the receiving matrix of the signal subspace includes:
  • the receiving matrix of the signal subspace is obtained using the least squares criterion:
  • 0 (N-1) ⁇ 1 represents a (N-1) ⁇ 1-dimensional zero matrix
  • I M and I (N-1) both represent unit matrices.
  • eigenvalue decomposition is performed on the receiving matrix to realize DOA parameter estimation of the MIMO radar target, including:
  • the receiving matrix is subjected to eigenvalue decomposition to obtain:
  • E r Represents a matrix composed of eigenvectors, and ⁇ r represents a diagonal matrix composed of eigenvalues;
  • a matrix containing the DOA information of the target is obtained:
  • T represents the matrix composed of eigenvectors
  • T -1 represents the inverse matrix of T
  • ⁇ r represents the diagonal matrix composed of eigenvalues
  • the DOA parameter estimation of the MIMO radar target is achieved by the following formula:
  • extract the signal subspace and subarray emission matrix corresponding to each subarray including:
  • the signal subspace corresponding to each sub-matrix is extracted and expressed as:
  • the least squares criterion is used to obtain the emission matrix of the signal subspace corresponding to each subarray:
  • phase ambiguity problem caused by the coupling of target DOD parameters and distance is eliminated, and at the same time, automatic pairing of target DOD and distance and DOA parameters is realized, including:
  • ⁇ t k T -1 ⁇ t k T.
  • the estimation of DOD and distance parameters of the MIMO radar target is realized, including:
  • phase ambiguity parameters are:
  • the present invention provides a radar angle and distance estimation method based on tensor high-order singular value decomposition.
  • the tensor signal model is processed by using the high-order singular value decomposition method of tensor. Compared with the traditional SVD/EVD method, this method can more effectively suppress noise interference and improve the performance of target parameter estimation.
  • ESPRIT algorithm based on matrix factorization has better angle estimation performance;
  • FIG. 1 is a structural diagram of a radar angle and distance estimation method based on tensor high-order singular value decomposition provided by the present invention
  • Figure 2 is a schematic structural diagram of a bistatic frequency-controlled array MIMO radar system
  • FIG. 3 is a schematic diagram of the division structure of a transmitting array in a sub-array mode
  • Figure 4 is a three-dimensional point cloud image of the target DOA, DOD and distance parameter estimation results
  • Figure 5 is a schematic diagram of the comparison of the subspace accuracy of the tensor signal with the number of snapshots
  • FIG. 6 is a schematic diagram of the comparison of tensor signal subspace accuracy with a fixed signal-to-noise ratio
  • Figure 7 is a comparison diagram of the variation of the root mean square error of different algorithm pairs with the target DOA, DOD and distance parameters with the signal-to-noise ratio;
  • Figure 8 is another comparison graph of the variation of the RMS error of different algorithm pairs with the target DOA, DOD and distance parameters as a function of signal-to-noise ratio
  • Fig. 9 is a comparison diagram of different algorithm pairs and the target DOA, DOD and the root mean square error of the distance parameters as a function of the number of snapshots;
  • Figure 10 is another comparison graph of different algorithm pairs versus target DOA, DOD, and the RMSE of the distance parameters as a function of the number of snapshots.
  • the radar angle and distance estimation method based on tensor high-order singular value decomposition includes the following steps:
  • Step 101 constructing a MIMO radar receiving array including k sub-arrays, obtaining received data of target echoes through the MIMO radar receiving array, and constructing a third-order tensor signal model;
  • the preset bistatic frequency controlled array MIMO radar receiving array antennas are N, receiving array antennas are M, and the receiving array is divided into K sub-arrays, and the transmission waveforms between the transmitting antennas are the same as each other.
  • Orthogonal, in the subarray mode, the transmit frequency of the mth antenna of the kth subarray can be expressed as
  • the receive steering vector can be expressed as:
  • a non-overlapping sub-array is designed, and the number of antennas of each sub-array should be the same, so
  • the carrier frequency of the last antenna of the sub-array is equal to the carrier frequency of the first antenna of the next sub-array, i.e. and and ⁇ f 1 ⁇ f 2 ... ⁇ f K .
  • the signal model array prevalence matrix of the bistatic frequency-controlled array MIMO radar can be expressed as:
  • the received data X is stacked in different directions in three dimensions to form a tensor signal model Its dimension is M ⁇ N ⁇ L, the tensor By modulo-3 expansion, the third-order tensor signal model can be obtained:
  • Step 102 use high-order singular value decomposition of a third-order tensor signal model to obtain a tensor-based signal subspace;
  • high-order singular value decomposition is used to process tensors It can be expressed as
  • U 1 ⁇ ⁇ M ⁇ M , U 2 ⁇ ⁇ N ⁇ N and U 3 ⁇ ⁇ L ⁇ L respectively represent the tensors composed of is composed of left singular vectors modulo n decomposition, namely
  • the tensor-based signal subspace can be obtained as
  • Step 103 extract the receiving matrix of the signal subspace to realize the DOA parameter estimation of the MIMO radar target;
  • the first selection matrix is defined as follows:
  • 0 (N-1) ⁇ 1 represents a (N-1) ⁇ 1-dimensional zero matrix
  • I M and I (N-1) both represent unit matrices.
  • U s is decomposed into two parts as the receiving matrix of the signal subspace, which is specifically expressed as:
  • the method for realizing the DOA parameter estimation of the MIMO radar target is:
  • the eigenvalue decomposition of the receiving matrix can be obtained:
  • E r Represents a matrix composed of eigenvectors, and ⁇ r represents a diagonal matrix composed of eigenvalues;
  • T represents the matrix composed of eigenvectors
  • T -1 represents the inverse matrix of T
  • ⁇ r represents the diagonal matrix composed of eigenvalues
  • ⁇ r is as follows:
  • the target DOA parameters are obtained by the following formulas
  • Step 104 Extract the signal subspace and emission matrix corresponding to each sub-array, and eliminate the phase ambiguity caused by target DOD parameters and distance coupling, and realize automatic pairing of target DOD, distance and DOA parameters, and finally achieve target DOD for MIMO radar. Estimation of parameters and distance parameters.
  • each transmitting sub-array and receiving array can be regarded as a whole, which contains the corresponding signal sub-space. Therefore, a second selection matrix is constructed to select the signal subspace of each subarray, and the constructed second selection matrix is as follows:
  • the specific construction of the third selection matrix is as follows:
  • ⁇ r and ⁇ t k span into the same subspace, which can be used to diagonalize ⁇ t k using a matrix T consisting of a matrix ⁇ that contains the DOA information of the target r is composed of eigenvectors, so that the target DOD and distance are automatically paired with the DOA parameters, as follows:
  • phase ambiguity caused by target DOD parameters and distance coupling and realize the estimation of MIMO radar target DOD and distance parameters, including:
  • phase ambiguity parameters are:
  • the preset DOD, DOA and distance to three incoherent targets are (-15°, -50°, 30km), (20°, 35°, 9km) and (40°, 10°, 58km), respectively.
  • the X-axis, Y-axis and Z-axis represent DOA, DOD and distance respectively. It can be seen from Figure 4 that the estimated target landing points are highly concentrated, and the same location as the actual target. This can prove that the stability and accuracy of the present invention are very excellent.
  • Figures 5-6 show the accuracy of the signal subspace as a function of signal-to-noise ratio and number of snapshots.
  • the present invention outperforms the ESPRIT method.
  • the performance of the present invention is continuously improved, but the performance improvement of the ESPRIT method is very small. This is because the present invention uses a tensor signal model to preserve the structural characteristics of the radar array antenna, so as the number of antennas increases, the performance of the tensor-based method will be better than that of the matrix decomposition-based method.
  • the performance of the present invention is better than that of the ESPRIT method.
  • the present invention uses tensors to construct a signal model, it can make good use of the inherent multi-dimensional structure information of the received data, so it has higher performance under the same signal-to-noise ratio and number of snapshots, and a lower signal-to-noise ratio.
  • the performance is better in the case of the number of snapshots.
  • the RMSE of the present invention decreases with the increase of the number of snapshots, which indicates that the performance of the present invention is continuously improving and is gradually approaching the CRB.
  • the trend of the curve of the present invention is close to the trend of CRB, which indicates that the performance of the present invention gradually tends to be stable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Data Mining & Analysis (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Theoretical Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Algebra (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Operations Research (AREA)
  • Computing Systems (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明提供一种基于张量高阶奇异值分解的雷达角度和距离估计方法,包括下列步骤:构建包含k个子阵的MIMO雷达接收阵列,通过所述MIMO雷达接收阵列获取目标回波的接收数据,并构造三阶张量信号模型;采用高阶奇异值分解三阶张量信号模型,获得基于张量的信号子空间;提取所述信号子空间的接收矩阵,实现MIMO雷达目标DOA参数估计;提取每个子阵对应的信号子空间和发射矩阵,并消除因目标DOD参数和距离耦合造成的相位模糊问题,同时实现目标DOD和距离与DOA参数自动配对,最终实现对MIMO雷达目标DOD参数和距离参数的估计。

Description

基于张量高阶奇异值分解的雷达角度和距离估计方法 技术领域
本发明涉及双基地MIMO雷达系统技术领域,尤其涉及基于张量高阶奇异值分解的雷达角度和距离估计方法。
背景技术
频控阵MIMO雷达是近年来不断发展的新体制雷达,在保留了相控阵优点的前提下,有了更好的提升,具有高分辨率和优秀的参数估计性能,是目前信号处理领域的研究热点。频控阵MIMO雷达主要可以根据接收阵列和发射阵列的相对位置来划分成两类,分别是单机地频控阵MIMO雷达和双基地频控阵MIMO雷达。近年来,针对频控阵MIMO雷达的研究多集中于单基地领域,已经有出现了一些算法,比如ESPRIT(estimation of signal parameters via rotational invariance techniques)算法和MUSIC(multiple signal classification)算法,但是因为单基地频控阵MIMO雷达的抗干扰能力弱,难以应对在日益复杂的电磁环境下对雷达目标探测的挑战,因此为了开发抗干扰能力更强的频控阵MIMO雷达,双基地频控阵MIMO雷达研究至关重要。
为了实现双基地频控阵MIMO雷达的DOD和距离解耦合,一种子阵划分模式被提出来用于设计雷达发射阵列,然而该算法的精度是建立在大量计算复杂度上的,并且需要高快拍数来保证。另一种算法提出了子阵划分的新思路,通过多个子阵组成发射阵列,通过旋转不变性实现对目标DOA、DOD和距离的联合估计。然而,上述所提到的方法都是基于矩阵分解的子空间算法,只是简单将接收的回波数据存储为一个矩阵,但是这种方式会丢失接收数据固有的多维结构。其次这类算法在低快拍和低信噪比的情况下性能较差。此外对于多目标的情况下容易出现参数匹配错误,在实际应用中,多目标的情况更为常见,且在恶劣的电磁环境下,上述方法的应用性能会受到严重影响。
发明内容
本发明的目的在于提供基于张量高阶奇异值分解的雷达角度和距离估计方法,以解决上述背景技术中提出的问题。
本发明是通过以下技术方案实现的:基于张量高阶奇异值分解的雷达角度和距离估计方法,包括下列步骤:
构建包含k个子阵的MIMO雷达接收阵列,通过所述MIMO雷达接收阵列获取目标回波的接收数据,并构造三阶张量信号模型;
采用高阶奇异值分解三阶张量信号模型,获得基于张量的信号子空间;
提取所述信号子空间的接收矩阵,实现MIMO雷达目标DOA参数估计;
提取每个子阵对应的信号子空间和发射矩阵,并消除因目标DOD参数和距离耦合造成的相位模糊问题,同时实现目标DOD和距离与DOA参数自动配对,最终实现对MIMO雷达目标DOD参数和距离参数的估计。
优选的,通过所述MIMO雷达接收阵列获取目标回波的接收数据,并构造三阶张量信号模型,包括:
在接收L个快拍数后,将目标回波的接收数据表示为:
X=AS T+N=[A r□A ts]S T+N
其中,A r为接收导向矩阵,A ts为发射导向矩阵,N为噪声矩阵,S T为空间信号矢量矩阵;
沿着三维不同方向将接收数据进行堆叠形成张量信号模型
Figure PCTCN2021103354-appb-000001
其维度为M×N×L,N为雷达接收阵列天线的个数,M为接收阵列天线的个数,将张量
Figure PCTCN2021103354-appb-000002
进行模-3展开,可以得到三阶张量信号模型:
Figure PCTCN2021103354-appb-000003
优选的,采用高阶奇异值分解三阶张量信号模型,获得基于张量的信号子 空间,包括:
预设有P个非相干远场目标,同时设定张量
Figure PCTCN2021103354-appb-000004
的秩为P,通过对
Figure PCTCN2021103354-appb-000005
使用截断式高阶奇异值分解,就可以得到一个张量信号子空间,具体可以表示为
Figure PCTCN2021103354-appb-000006
式中
Figure PCTCN2021103354-appb-000007
表示核心张量,U s1、U s2表示奇异值对应的列向量组成;
其截断式的核心张量表示为:
Figure PCTCN2021103354-appb-000008
将核心张量代入高阶奇异值分解的表达式,可获得:
Figure PCTCN2021103354-appb-000009
化简结果可得到基于张量的信号子空间:
Figure PCTCN2021103354-appb-000010
优选的,提取所述信号子空间的接收矩阵,包括:
构建第一选择矩阵:
Figure PCTCN2021103354-appb-000011
采用最小二乘准则获得所述信号子空间的接收矩阵:
Figure PCTCN2021103354-appb-000012
式中,0 (N-1)×1表示一个(N-1)×1维的零矩阵,I M、I (N-1)均表示单位矩阵。
优选的,对所述接收矩阵进行特征值分解,实现MIMO雷达目标DOA参数估计,包括:
所述接收矩阵进行特征值分解,获得:
Figure PCTCN2021103354-appb-000013
式中,E r
Figure PCTCN2021103354-appb-000014
表示特征向量组成的矩阵,Λ r表示由特征值组成的对角矩阵;
将E r分成四个子矩阵,具体为:
Figure PCTCN2021103354-appb-000015
根据所述四个子矩阵,获得包含目标的DOA信息的矩阵:
Figure PCTCN2021103354-appb-000016
对Ψ r进行特征值分解:
Figure PCTCN2021103354-appb-000017
式中,T表示特征向量组成的矩阵,T -1表示T的逆矩阵,Φ r表示由特征值组成的对角矩阵;
通过如下公式实现MIMO雷达目标DOA参数估计:
Figure PCTCN2021103354-appb-000018
其中
Figure PCTCN2021103354-appb-000019
表示Φ r的第p个元素,angle(·)表示取相位,c表示光速,d r表示接收天线间距,f 1表示第一根天线的频率。
优选的,提取每个子阵对应的信号子空间和子阵发射矩阵,包括:
构建第二选择矩阵:
Figure PCTCN2021103354-appb-000020
基于第二选择矩阵,提取每个子阵对应的信号子空间表示为:
Figure PCTCN2021103354-appb-000021
构建第三选择矩阵:
Figure PCTCN2021103354-appb-000022
采用最小二乘准则获得每个子阵对应的信号子空间的发射矩阵:
Figure PCTCN2021103354-appb-000023
优选的,消除因目标DOD参数和距离耦合造成的相位模糊问题,,同时实 现目标DOD和距离与DOA参数自动配对,包括:
利用旋转不变形和最小二乘准则,得到包含目标DOD和距离信息的矩阵Ψ t k
使用矩阵T对矩阵Ψ t k进行对角化,从而实现目标DOD和距离与DOA参数自动配对:Φ t k=T -1Ψ t kT。
优选的,实现对MIMO雷达目标DOD和距离参数的估计,包括:
确定雷达的最大目标探测距离:
Figure PCTCN2021103354-appb-000024
式中,
Figure PCTCN2021103354-appb-000025
表示第k个子阵的发射频偏;
提取每个子阵的发射矩阵相位,获得DOD和距离信息:
Figure PCTCN2021103354-appb-000026
其中
Figure PCTCN2021103354-appb-000027
包含第k个子阵中第p个目标的相位信息
通过推导得出相位模糊参数为:
Figure PCTCN2021103354-appb-000028
从而可以得出目标的距离:
Figure PCTCN2021103354-appb-000029
采用向下取整方法确定k i
Figure PCTCN2021103354-appb-000030
确定目标的DOD参数估计:
Figure PCTCN2021103354-appb-000031
与现有技术相比,本发明达到的有益效果如下:
本发明提供的一种基于张量高阶奇异值分解的雷达角度和距离估计方法,(1)通过利用张量构建信号模型,重新堆叠保存目标回波的接收数据,保存了接收数据固有的多维结构信息,相较于传统子空间算法具有很大的优越性;
(2)通过采用张量的高阶奇异值分解方法处理张量信号模型,该方法与传统的SVD/EVD方法相比,可以更有效的抑制噪声干扰,提升目标参数估计性能,本发明比传统基于矩阵分解的ESPRIT算法有更好的角度估计性能;
(3)通过在张量域实现了对每个子阵信号子空间的独立提取,从而获得目标DOD和距离耦合信息,利用子阵之间不同的频率增益以及对目标范围的限定,解决了耦合信息的相位模糊问题;
(4)通过利用张量信号模型固有的多维结构信息,提高了信号子空间的估计精确度,减小了与真实信号子空间的夹角,并且利用旋转不变性实现了对目标DOA和DOD与距离参数的配自动匹配。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的优选实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明提供的基于张量高阶奇异值分解的雷达角度和距离估计方法的结构图;
图2是双基地频控阵MIMO雷达系统的结构示意图;
图3是子阵模式下发射阵列的划分结构示意图;
图4是目标DOA、DOD和距离参数估计结果的三维点云图;
图5是张量信号子空间精确度随快拍数的对比示意图;
图6是张量信号子空间精确度随固定信噪比的对比示意图;
图7是不同算法对与目标DOA、DOD和距离参数均方根误差随信噪比变化的一个对比图;
图8是不同算法对与目标DOA、DOD和距离参数均方根误差随信噪比变化的另一个对比图
图9是不同算法对与目标DOA、DOD和距离参数均方根误差随快拍数变化的一个对比图;
图10是不同算法对与目标DOA、DOD和距离参数均方根误差随快拍数变化的另一个对比图。
具体实施方式
为了更好理解本发明技术内容,下面提供具体实施例,并结合附图对本发明做进一步的说明。
参见图1,基于张量高阶奇异值分解的雷达角度和距离估计方法,包括下列步骤:
步骤101:构建包含k个子阵的MIMO雷达接收阵列,通过所述MIMO雷达接收阵列获取目标回波的接收数据,并构造三阶张量信号模型;
参见图2-图3,其中预设双基地频控阵MIMO雷达接收阵列天线为N个,接收阵列天线为M个,并将接收阵列划分为K个子阵,发射天线之间的发射波形是彼此正交的,在子阵模式下第k个子阵的第m个天线的发射频率可以表示为
Figure PCTCN2021103354-appb-000032
Figure PCTCN2021103354-appb-000033
接收导向矢量可以表示为:
Figure PCTCN2021103354-appb-000034
第k个子阵列的发射导向矢量可以表示为
Figure PCTCN2021103354-appb-000035
具体如下:
Figure PCTCN2021103354-appb-000036
本实施例中设计了一个不重叠的子阵列,且每个子阵列的天线数应相同,因此
Figure PCTCN2021103354-appb-000037
除此之外,还需保证子阵列的最后一个天线载波频率等于下一个子阵列的第一个天线载波频率,即
Figure PCTCN2021103354-appb-000038
Figure PCTCN2021103354-appb-000039
且Δf 1<Δf 2…<Δf K
在子阵模式下,双基地频控阵MIMO雷达的信号模型阵列流行矩阵可以表示为:
Figure PCTCN2021103354-appb-000040
在接收了L个快拍数之后,将接收到的数据排列为X=[x(1),x(2),…,x(L)],则X可以表示为:
X=AS T+N=[A r□A ts]S T+N
其中,接收矩阵为A r=[a r1),a r2),…,a rP)]∈□ N×P;a rP)代表接收导向矢量,子阵模式下发射矩阵为
Figure PCTCN2021103354-appb-000041
代表发射导向矢量,且有X=[x(1),x(2),…,x(L)]∈□ MN×L,S=[s(1),s(2),…,s(L)] T∈□ L×P,N是均匀高斯白噪声矩阵,并且N∈□ MN×L,S T为空间信号矢量矩阵。
沿着三维不同方向将接收数据X进行堆叠形成张量信号模型
Figure PCTCN2021103354-appb-000042
其维度为M×N×L,将张量
Figure PCTCN2021103354-appb-000043
进行模-3展开,可以得到三阶张量信号模型:
Figure PCTCN2021103354-appb-000044
步骤102:采用高阶奇异值分解三阶张量信号模型,获得基于张量的信号子 空间;
在本实施例中,采用高阶奇异值分解来处理张量
Figure PCTCN2021103354-appb-000045
可以表示为
Figure PCTCN2021103354-appb-000046
其中
Figure PCTCN2021103354-appb-000047
表示核心张量,U 1∈□ M×M、U 2∈□ N×N和U 3∈□ L×L分别表示由张量
Figure PCTCN2021103354-appb-000048
的模n分解的左奇异向量组成,即
Figure PCTCN2021103354-appb-000049
预设有P个非相干远场目标,同时设定张量
Figure PCTCN2021103354-appb-000050
的秩为P,通过对
Figure PCTCN2021103354-appb-000051
使用截断式高阶奇异值分解,就可以得到一个张量信号子空间,具体可以表示为
Figure PCTCN2021103354-appb-000052
其中U sn(n=1,2,3)由U n的前P个最大奇异值对应的列向量组成,且
Figure PCTCN2021103354-appb-000053
表示截断式的核心张量;
将核心张量代入高阶奇异值分解的表达式,可获得:
Figure PCTCN2021103354-appb-000054
将张量
Figure PCTCN2021103354-appb-000055
进行模-3展开,可以得到基于张量的信号子空间为
Figure PCTCN2021103354-appb-000056
其中
Figure PCTCN2021103354-appb-000057
Figure PCTCN2021103354-appb-000058
的奇异值分解为
Figure PCTCN2021103354-appb-000059
将其代入基于张量的信号子空间,化简得到如下结果:
Figure PCTCN2021103354-appb-000060
至此,获得了基于张量的信号子空间U s
步骤103:提取所述信号子空间的接收矩阵,实现MIMO雷达目标DOA参数估计;
在本实施例中,为了提取接收矩阵,定义第一选择矩阵如下:
Figure PCTCN2021103354-appb-000061
式中,0 (N-1)×1表示一个(N-1)×1维的零矩阵,I M、I (N-1)均表示单位矩阵。
根据旋转不变性和最小二乘准则,将U s分解为两部分作为所述信号子空间的接收矩阵,具体表示为:
Figure PCTCN2021103354-appb-000062
可选的,通过所述信号子空间的接收矩阵,实现MIMO雷达目标DOA参数估计的方式为:
对接收矩阵进行特征值分解,可以得到:
Figure PCTCN2021103354-appb-000063
式中,E r
Figure PCTCN2021103354-appb-000064
表示特征向量组成的矩阵,Λ r表示由特征值组成的对角矩阵;
将E r∈□ K×K分为四个子矩阵,具体为
Figure PCTCN2021103354-appb-000065
其中E r11、E r12、E r21和E r22的维度均为K×K,至此得到包含目标的DOA信息的矩阵Ψ r
对Ψ r进行特征值分解
Figure PCTCN2021103354-appb-000066
T表示特征向量组成的矩阵,T -1表示T的逆矩阵,Φ r表示由特征值组成的对角矩阵;
其中Φ r具体如下:
Figure PCTCN2021103354-appb-000067
通过如下公式得到目标DOA参数
Figure PCTCN2021103354-appb-000068
其中
Figure PCTCN2021103354-appb-000069
表示Φ r的第p个元素,angle(·)表示取相位,c表示光速,d r表示接收天线间距,f 1表示第一根天线的频率。。
步骤104:提取每个子阵对应的信号子空间和发射矩阵,并消除因目标DOD参数和距离耦合造成的相位模糊问题,同时实现目标DOD和距离与DOA参数自动配对,最终实现对MIMO雷达目标DOD参数和距离参数的估计。
在子阵FDA-MIMO雷达模式下,每个发射子阵和接收阵列都可以视为一个整体,其中包含对应的信号子空间。因此,构建第二选择矩阵以选择每个子阵的信号子空间,所构建的第二选择矩阵具体如下:
Figure PCTCN2021103354-appb-000070
其中
Figure PCTCN2021103354-appb-000071
代表第k个子数组的选择矩阵,
Figure PCTCN2021103354-appb-000072
均为零矩阵,
Figure PCTCN2021103354-appb-000073
为单位矩阵,然后每个子阵列的信号子空间
Figure PCTCN2021103354-appb-000074
可以表示为:
Figure PCTCN2021103354-appb-000075
通过构建第三选择矩阵,用于从每个子阵信号子空间获得目标的DOD和距离信息,所构建第三选择矩阵的具体如下:
Figure PCTCN2021103354-appb-000076
同样利用旋转不变形和最小二乘准则,得到包含目标DOD和距离信息的矩阵Ψ t k
由于旋转不变性的存在,Ψ r和Ψ t k张成相同的子空间,可以采用这一特性,使用矩阵T对Ψ t k进行对角化,该矩阵T由包含目标的DOA信息的矩阵Ψ r的特征向量组成,从而实现目标DOD和距离与DOA参数自动配对,具体如下:
Φ t k=T -1Ψ t kT
矩阵Φ t k的具体形式如下:
Figure PCTCN2021103354-appb-000077
可选的,消除因目标DOD参数和距离耦合造成的相位模糊问题,并实现对MIMO雷达目标DOD和距离参数的估计,包括:
确定雷达的最大目标探测距离:
Figure PCTCN2021103354-appb-000078
Figure PCTCN2021103354-appb-000079
表示第k个子阵的发射频偏;
提取每个子阵的发射矩阵相位,获得DOD和距离信息:
Figure PCTCN2021103354-appb-000080
其中
Figure PCTCN2021103354-appb-000081
包含第k个子阵中第p个目标的相位信息,且k i∈□,i=1,2,…,K。
将上述中的每个方程减去前一个方程,可以得到新方程组为:
Figure PCTCN2021103354-appb-000082
通过推导得出相位模糊参数为:
Figure PCTCN2021103354-appb-000083
将相位模糊参数(k i+1-k i)代入到前述新方程组中,采用最小二乘准则,可以得到目标的距离
Figure PCTCN2021103354-appb-000084
为:
Figure PCTCN2021103354-appb-000085
Figure PCTCN2021103354-appb-000086
其中
Figure PCTCN2021103354-appb-000087
表示第p个目标的估计距离;
在阵列设计时,发射阵列天线之间的间距保证了2d tf 1/c≤1,经过推导可以得出k i(i=1,2,…,K)如下:
Figure PCTCN2021103354-appb-000088
其中
Figure PCTCN2021103354-appb-000089
表示向下取整
根据k i和距离参数
Figure PCTCN2021103354-appb-000090
以及最小二乘法可以得到第p个目标的DOD为:
Figure PCTCN2021103354-appb-000091
至此,通过本发明已经成功估计出目标的DOA、DOD和距离参数,并且实现了目标参数自动配对。
下面结合MALTAB模拟仿真实验结果对本发明作进一步说明:
在仿真实验中将第一个发射天线的发射频率设置为f 1=10GHz,天线的间距为
Figure PCTCN2021103354-appb-000092
其中f max为最大发射频率。预设发射天线和接收天线数量为M=N=18,并将发射阵列划分为K=3个子阵,每个子阵具有M ts=6个发射天线。每个子阵的发射频率增量分别为Δf 1=5000Hz、Δf 2=10000Hz和Δf 3=15000Hz,并且信噪比为SNR=20dB,快拍数为L=300。预设三个非相干目标到的DOD、DOA和距离分别为(-15°,-50°,30km)、(20°,35°,9km)和(40°,10°,58km)。
对每次仿真均进行T=500次蒙特卡洛实验后获得仿真结果,其具体结果如 图,4-图6所示。
图4展示了在SNR=20dB和L=300情况下估计目标的位置,X轴、Y轴和Z轴分别表示DOA,DOD和距离,从图4可以看出,估计的目标落点高度集中,并且与实际目标的位置相同。这可以证明本发明的稳定性和准确性是非常优秀的。
图5-图6展示了信号子空间的精度随信噪比和快拍数变化的关系。图图5中固定快拍数为L=300,图图6中固定信噪比为SNR=20dB。雷达结构和目标参数与上个仿真保持一致,且设置天线数量为M=N=9,12,15,18。
从图中可以看出,当信噪比和快拍数增加时,本发明的性能会逐渐提升。在相同的条件下,本发明的性能优于ESPRIT方法。同时可以看出,随着天线数量的增加,本发明的性能在不断提升,但是对ESPRIT方法的性能提升很小。这是因为本发明使用了张量信号模型来保存雷达阵列天线的结构特性,因此随着天线数量的增加,基于张量的方法性能会更加优于基于矩阵分解的方法。
图7-图8展示了在快拍数为L=50的情况下,估计方法的角度和距离RMSE随信噪比的关系。
可以看出,本发明的性能优于ESPRIT方法。同时,由于本发明采用张量构建信号模型,可以很好的利用接收数据固有的多维结构信息,因此在相同的信噪比和快拍数下具有较高的性能,且在较低信噪比和快拍数的情况下性能更优秀。
图9-图10展示了在信噪比为SNR=5dB的情况下,估计方法的角度和距离RMSE随快拍数的关系。
可以发现,本发明的RMSE随着快拍数的增加而降低,这表明本发明的性能在不断提高,并逐渐接近于CRB。此外,当快拍数较大时,本发明的曲线走向接近于CRB的趋势,这表明本发明的性能逐渐趋于稳定。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明保护的范围之内。

Claims (8)

  1. 基于张量高阶奇异值分解的雷达角度和距离估计方法,其特征在于,包括下列步骤:
    构建包含k个子阵的MIMO雷达接收阵列,通过所述MIMO雷达接收阵列获取目标回波的接收数据,并构造三阶张量信号模型;
    采用高阶奇异值分解三阶张量信号模型,获得基于张量的信号子空间;
    提取所述信号子空间的接收矩阵,实现MIMO雷达目标DOA参数估计;
    提取每个子阵对应的信号子空间和发射矩阵,并消除因目标DOD参数和距离耦合造成的相位模糊问题,同时实现目标DOD和距离与DOA参数自动配对,最终实现对MIMO雷达目标DOD参数和距离参数的估计。
  2. 根据权利要求1所述的基于张量高阶奇异值分解的雷达角度和距离估计方法,其特征在于,通过所述MIMO雷达接收阵列获取目标回波的接收数据,并构造三阶张量信号模型,包括:
    在接收L个快拍数后,将目标回波的接收数据表示为:
    X=AS T+N=[A r□A ts]S T+N
    其中,A r为接收导向矩阵,A ts为发射导向矩阵,N为噪声矩阵,S T为空间信号矢量矩阵;
    沿着三维不同方向将接收数据进行堆叠形成张量信号模型
    Figure PCTCN2021103354-appb-100001
    其维度为M×N×L,N为雷达接收阵列天线的个数,M为接收阵列天线的个数,将张量
    Figure PCTCN2021103354-appb-100002
    进行模-3展开,可以得到三阶张量信号模型:
    Figure PCTCN2021103354-appb-100003
  3. 根据权利要求2所述的基于张量高阶奇异值分解的雷达角度和距离估计方法,其特征在于,采用高阶奇异值分解三阶张量信号模型,获得基于张量的信号子空间,包括:
    预设有P个非相干远场目标,同时设定张量
    Figure PCTCN2021103354-appb-100004
    的秩为P,通过对
    Figure PCTCN2021103354-appb-100005
    使用截断式高阶奇异值分解,就可以得到一个张量信号子空间,具体可以表示为
    Figure PCTCN2021103354-appb-100006
    式中
    Figure PCTCN2021103354-appb-100007
    表示核心张量,U s1、U s2表示奇异值对应的列向量组成;
    其截断式的核心张量表示为:
    Figure PCTCN2021103354-appb-100008
    将核心张量代入高阶奇异值分解的表达式,可获得:
    Figure PCTCN2021103354-appb-100009
    化简结果可得到基于张量的信号子空间:
    Figure PCTCN2021103354-appb-100010
  4. 根据权利要求3所述的基于张量高阶奇异值分解的雷达角度和距离估计方法,其特征在于,提取所述信号子空间的接收矩阵,包括:
    构建第一选择矩阵:
    Figure PCTCN2021103354-appb-100011
    采用最小二乘准则获得所述信号子空间的接收矩阵:
    Figure PCTCN2021103354-appb-100012
    式中,0 (N-1)×1表示一个(N-1)×1维的零矩阵,I M、I (N-1)均表示单位矩阵。
  5. 根据权利要求4所述的基于张量高阶奇异值分解的雷达角度和距离估计方法,其特征在于,对所述接收矩阵进行特征值分解,实现MIMO雷达目标DOA参数估计,包括:
    所述接收矩阵进行特征值分解,获得:
    Figure PCTCN2021103354-appb-100013
    式中,E r
    Figure PCTCN2021103354-appb-100014
    表示特征向量组成的矩阵,Λ r表示由特征值组成的对角矩阵;
    将E r分成四个子矩阵,具体为:
    Figure PCTCN2021103354-appb-100015
    根据所述四个子矩阵,获得包含目标的DOA信息的矩阵:
    Figure PCTCN2021103354-appb-100016
    对Ψ r进行特征值分解:
    Figure PCTCN2021103354-appb-100017
    式中,T表示特征向量组成的矩阵,T -1表示T的逆矩阵,Φ r表示由特征值组成的对角矩阵;
    通过如下公式实现MIMO雷达目标DOA参数估计:
    Figure PCTCN2021103354-appb-100018
    其中
    Figure PCTCN2021103354-appb-100019
    表示Φ r的第p个元素,angle(·)表示取相位,c表示光速,d r表示接收天线间距,f 1表示第一根天线的频率。
  6. 根据权利要求5所述的基于张量高阶奇异值分解的雷达角度和距离估计方法,其特征在于,提取每个子阵对应的信号子空间和子阵发射矩阵,包括:
    构建第二选择矩阵:
    Figure PCTCN2021103354-appb-100020
    基于第二选择矩阵,提取每个子阵对应的信号子空间表示为:
    Figure PCTCN2021103354-appb-100021
    构建第三选择矩阵:
    Figure PCTCN2021103354-appb-100022
    采用最小二乘准则获得每个子阵对应的信号子空间的发射矩阵:
    Figure PCTCN2021103354-appb-100023
  7. 根据权利要求6所述的基于张量高阶奇异值分解的雷达角度和距离估计方法,其特征在于,消除因目标DOD参数和距离耦合造成的相位模糊问题,,同时实现目标DOD和距离与DOA参数自动配对,包括:
    利用旋转不变形和最小二乘准则,得到包含目标DOD和距离信息的矩阵Ψ t k
    使用矩阵T对矩阵Ψ t k进行对角化,从而实现目标DOD和距离与DOA参数自动配对:Φ t k=T -1Ψ t kT。
  8. 根据权利要求7所述的基于张量高阶奇异值分解的雷达角度和距离估计方法,其特征在于,实现对MIMO雷达目标DOD和距离参数的估计,包括:
    确定雷达的最大目标探测距离:
    Figure PCTCN2021103354-appb-100024
    式中,
    Figure PCTCN2021103354-appb-100025
    表示第k个子阵的发射频偏;
    提取每个子阵的发射矩阵相位,获得DOD和距离信息:
    Figure PCTCN2021103354-appb-100026
    其中
    Figure PCTCN2021103354-appb-100027
    包含第k个子阵中第p个目标的相位信息
    通过推导得出相位模糊参数为:
    Figure PCTCN2021103354-appb-100028
    从而可以得出目标的距离:
    Figure PCTCN2021103354-appb-100029
    采用向下取整方法确定k i
    Figure PCTCN2021103354-appb-100030
    确定目标的DOD参数估计:
    Figure PCTCN2021103354-appb-100031
PCT/CN2021/103354 2020-12-18 2021-06-30 基于张量高阶奇异值分解的雷达角度和距离估计方法 WO2022127076A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011500253.7 2020-12-18
CN202011500253.7A CN112630766B (zh) 2020-12-18 2020-12-18 基于张量高阶奇异值分解的雷达角度和距离估计方法

Publications (1)

Publication Number Publication Date
WO2022127076A1 true WO2022127076A1 (zh) 2022-06-23

Family

ID=75316714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/103354 WO2022127076A1 (zh) 2020-12-18 2021-06-30 基于张量高阶奇异值分解的雷达角度和距离估计方法

Country Status (2)

Country Link
CN (1) CN112630766B (zh)
WO (1) WO2022127076A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115201759A (zh) * 2022-07-04 2022-10-18 中国人民解放军国防科技大学 一种基于奇异值分解的雷达嵌入式通信波形设计方法
CN116298651A (zh) * 2023-05-17 2023-06-23 广东电网有限责任公司阳江供电局 一种换流阀功率模块的故障监测方法、系统、设备和介质
CN116776076A (zh) * 2023-07-06 2023-09-19 中国人民解放军空军预警学院 一种三阶累计量和张量压缩的欠定盲源分离方法及系统
CN116879835A (zh) * 2023-07-25 2023-10-13 安徽大学 一种投影最小最大凹函数波达方向估计方法和装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112630766B (zh) * 2020-12-18 2022-04-19 海南大学 基于张量高阶奇异值分解的雷达角度和距离估计方法
CN113406586B (zh) * 2021-04-26 2023-08-29 北京理工大学 基于约束张量分解的mimo雷达二维波达方向估计方法
CN113516663B (zh) * 2021-06-30 2022-09-27 同济大学 点云语义分割方法及装置、电子设备及存储介质
CN113644941B (zh) * 2021-07-29 2022-10-25 海南大学 一种基于大规模mimo接收阵列结构的模糊相位快速消除方法
CN114424930B (zh) * 2022-01-07 2024-02-27 煤炭科学研究总院有限公司 基于奇异值分解的超宽带uwb生命信号数据处理方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104931931A (zh) * 2015-05-18 2015-09-23 哈尔滨工程大学 互耦条件下基于张量实值子空间的双基地mimo雷达角度估计方法
CN107064892A (zh) * 2016-11-11 2017-08-18 长江大学 基于张量子空间和旋转不变的mimo雷达角度估计算法
CN109143228A (zh) * 2018-08-28 2019-01-04 海南大学 互耦条件下双基地mimo雷达非圆目标的角度估计方法
CN110927711A (zh) * 2019-10-24 2020-03-27 长江大学 一种双基地emvs-mimo雷达的高精度定位算法及装置
CN112630766A (zh) * 2020-12-18 2021-04-09 海南大学 基于张量高阶奇异值分解的雷达角度和距离估计方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104931931A (zh) * 2015-05-18 2015-09-23 哈尔滨工程大学 互耦条件下基于张量实值子空间的双基地mimo雷达角度估计方法
CN107064892A (zh) * 2016-11-11 2017-08-18 长江大学 基于张量子空间和旋转不变的mimo雷达角度估计算法
CN109143228A (zh) * 2018-08-28 2019-01-04 海南大学 互耦条件下双基地mimo雷达非圆目标的角度估计方法
CN110927711A (zh) * 2019-10-24 2020-03-27 长江大学 一种双基地emvs-mimo雷达的高精度定位算法及装置
CN112630766A (zh) * 2020-12-18 2021-04-09 海南大学 基于张量高阶奇异值分解的雷达角度和距离估计方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XU TENGXIAN; WANG XIANPENG; SU TING; WAN LIANGTIAN; SUN LU: "Vehicle Location in Edge Computing Enabling IoTs Based on Bistatic FDA-MIMO Radar", IEEE ACCESS, IEEE, USA, vol. 9, 9 March 2021 (2021-03-09), USA , pages 46398 - 46408, XP011847211, DOI: 10.1109/ACCESS.2021.3064849 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115201759A (zh) * 2022-07-04 2022-10-18 中国人民解放军国防科技大学 一种基于奇异值分解的雷达嵌入式通信波形设计方法
CN115201759B (zh) * 2022-07-04 2023-05-16 中国人民解放军国防科技大学 一种基于奇异值分解的雷达嵌入式通信波形设计方法
CN116298651A (zh) * 2023-05-17 2023-06-23 广东电网有限责任公司阳江供电局 一种换流阀功率模块的故障监测方法、系统、设备和介质
CN116776076A (zh) * 2023-07-06 2023-09-19 中国人民解放军空军预警学院 一种三阶累计量和张量压缩的欠定盲源分离方法及系统
CN116879835A (zh) * 2023-07-25 2023-10-13 安徽大学 一种投影最小最大凹函数波达方向估计方法和装置

Also Published As

Publication number Publication date
CN112630766A (zh) 2021-04-09
CN112630766B (zh) 2022-04-19

Similar Documents

Publication Publication Date Title
WO2022127076A1 (zh) 基于张量高阶奇异值分解的雷达角度和距离估计方法
CN106054123B (zh) 一种稀疏l阵及其二维doa估计方法
CN107064892B (zh) 基于张量子空间和旋转不变的mimo雷达角度估计算法
CN108562866B (zh) 基于矩阵填充的双基地mimo雷达角度估算方法
CN106526530B (zh) 基于传播算子的2-l型阵列二维doa估计算法
CN106680815B (zh) 基于张量稀疏表示的mimo雷达成像方法
CN106483493B (zh) 一种稀疏双平行线阵及二维波达方向估计方法
CN106526531A (zh) 基于三维天线阵列的改进传播算子二维doa估计算法
CN102135617A (zh) 双基地多输入多输出雷达多目标定位方法
CN113189592B (zh) 考虑幅相互耦误差的车载毫米波mimo雷达测角方法
CN110927711A (zh) 一种双基地emvs-mimo雷达的高精度定位算法及装置
CN108872930A (zh) 扩展孔径二维联合对角化doa估计方法
Xu et al. Tensor-based angle and range estimation method in monostatic FDA-MIMO radar
CN108614234A (zh) 基于多采样快拍互质阵列接收信号快速傅里叶逆变换的波达方向估计方法
CN113075649A (zh) 一种适用于分布式网络化雷达的信号级直接定位方法
CN110146854B (zh) 一种fda-mimo雷达稳健抗干扰方法
CN112924947A (zh) 一种基于实值稀疏贝叶斯学习的mimo雷达稳健doa估计方法
Hassanien et al. Direction finding for MIMO radar with colocated antennas using transmit beamspace preprocessing
Yu et al. Multi‐mode propagation mode localisation and spread‐Doppler clutter suppression method for multiple‐input multiple‐output over‐the‐horizon radar
CN106199550B (zh) 一种波离角和二维波达角自动配对联合估计方法
CN109471087B (zh) 基于互质mimo雷达差集和集信号快速傅里叶变换的波达方向估计方法
Zhao et al. Active phased array radar-based 2D beamspace MUSIC channel estimation for an integrated radar and communication system
Chen et al. Eigenstructure-based ambiguity resolution algorithm for distributed subarray antennas VHF radar
CN117970232A (zh) 一种基于emvs-mimo雷达相干目标2d-doa估计算法
Liu et al. A joint DOD and DOA estimation method for bistatic MIMO radar

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21905010

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21905010

Country of ref document: EP

Kind code of ref document: A1