WO2022126872A1 - 磁悬浮轴承、磁悬浮轴承控制系统和控制方法 - Google Patents

磁悬浮轴承、磁悬浮轴承控制系统和控制方法 Download PDF

Info

Publication number
WO2022126872A1
WO2022126872A1 PCT/CN2021/080057 CN2021080057W WO2022126872A1 WO 2022126872 A1 WO2022126872 A1 WO 2022126872A1 CN 2021080057 W CN2021080057 W CN 2021080057W WO 2022126872 A1 WO2022126872 A1 WO 2022126872A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
displacement
circuit
magnetic suspension
module
Prior art date
Application number
PCT/CN2021/080057
Other languages
English (en)
French (fr)
Inventor
沙宏磊
洪申平
俞天野
衣存宇
刘万虎
李凯
韩景超
Original Assignee
天津飞旋科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津飞旋科技股份有限公司 filed Critical 天津飞旋科技股份有限公司
Priority to EP21854800.6A priority Critical patent/EP4039998B1/en
Priority to US17/636,304 priority patent/US20220397155A1/en
Publication of WO2022126872A1 publication Critical patent/WO2022126872A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0444Details of devices to control the actuation of the electromagnets
    • F16C32/0446Determination of the actual position of the moving member, e.g. details of sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0444Details of devices to control the actuation of the electromagnets
    • F16C32/0451Details of controllers, i.e. the units determining the power to be supplied, e.g. comparing elements, feedback arrangements with P.I.D. control
    • F16C32/0455Details of controllers, i.e. the units determining the power to be supplied, e.g. comparing elements, feedback arrangements with P.I.D. control including digital signal processing [DSP] and analog/digital conversion [A/D, D/A]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2300/00Application independent of particular apparatuses
    • F16C2300/10Application independent of particular apparatuses related to size
    • F16C2300/12Small applications, e.g. miniature bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0444Details of devices to control the actuation of the electromagnets
    • F16C32/0457Details of the power supply to the electromagnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0474Active magnetic bearings for rotary movement

Definitions

  • the embodiments of the present application relate to, but are not limited to, the technical field of magnetic levitation, and in particular, relate to a magnetic levitation bearing, a magnetic levitation bearing control system and a control method.
  • the displacement sensor in order to make the structure of the magnetic suspension bearing compact and to make the position of the displacement signal and the force of the magnetic suspension bearing as close as possible, the displacement sensor is usually installed at a position closer to the electromagnet coil.
  • the inrush current caused by the switch of the power device in the electromagnet coil can easily interfere with the sensor signal.
  • the pass filter needs to use a higher order and a lower cut-off frequency, but this method introduces a large delay and reduces the dynamic performance of the magnetic bearing; on the contrary, in order to obtain better dynamic performance, a lower order must be used.
  • a low-pass filter with a higher cut-off frequency this method will reduce the signal-to-noise ratio and increase the noise.
  • a magnetic suspension bearing control system includes: a processor, a synchronization signal generation module, a displacement signal conversion circuit, a post-processing circuit, an A/D (analog-to-digital) conversion module, a pulse width modulation module, frequency dividing circuit, synchronization module and power amplifier; the processor, the synchronization signal generation module, the displacement signal conversion circuit, the post-processing circuit and the A/D conversion module are closed-loop connected; the synchronization The signal generating module, the frequency dividing circuit, the pulse width modulation module and the power amplifier are connected in sequence; the processor is also connected with the pulse width modulation module; the pulse width modulation module and the synchronization module , the A/D conversion modules are sequentially connected; the synchronization module is also connected with the synchronization signal generation module and the frequency dividing circuit respectively; the synchronization signal generation module is used to generate a reference signal, and the The reference signal is sent to the displacement signal conversion circuit and the frequency dividing circuit; the
  • the displacement signal conversion circuit includes a first amplifying circuit and a sensor that are connected to each other, and the first amplifying circuit is also connected to the synchronization signal generating module; Amplifying the reference signal into an excitation signal; the sensor generates the AC signal containing displacement information under the drive of the excitation signal.
  • the senor includes a first sensor probe and a second sensor probe; the first sensor probe and the second sensor probe are respectively disposed on the upper and lower sides of the electromagnetic force suspension rotor.
  • the post-processing circuit includes a rectifier circuit, a filter circuit and a second amplifier circuit that are connected in sequence; the connection midpoint of the first sensor probe and the second sensor probe is connected to the rectifier circuit. circuit connection; the second amplifying circuit is connected to the A/D conversion module; the rectifier circuit is used to convert the AC signal containing displacement information into a half-wave signal containing displacement information under the action of a control signal; The filtering circuit is used for filtering based on the half-wave signal containing the displacement information to obtain the filtered displacement signal; the second amplifying circuit is used for adjusting the filtered displacement signal to obtain the standard displacement signal.
  • the system further includes a delay adjustment circuit arranged between the synchronization signal generating module and the rectifier circuit; the delay adjustment circuit is used for performing the adjustment on the reference signal. adjust, and determine the adjusted signal as the control signal.
  • the delay adjustment circuit includes an adjustable resistor, a capacitor and a buffer connected to each other.
  • the system further includes an inverter arranged between the pulse width modulation module and the power amplifier; the inverter is used to drive the power amplifier based on the PWM signal device switch in .
  • the senor is an inductive displacement sensor, an eddy current displacement sensor or a capacitive displacement sensor.
  • the filter circuit is a first-order low-pass filter or a second-order low-pass filter.
  • a magnetic suspension bearing provided by an embodiment of the present application includes: the magnetic suspension bearing control system described in the first aspect, a first iron core, and a first magnetic suspension bearing wound on the first iron core as a function of the magnetic suspension bearing. an actuator coil, a second iron core, a second magnetic suspension bearing actuator coil wound on the second iron core, and an electromagnetic force suspension rotor; wherein, the first magnetic suspension bearing actuator coil and the first magnetic suspension bearing actuator coil Two magnetic suspension bearing actuator coils are arranged opposite to the upper and lower sides of the electromagnetic suspension rotor. The first magnetic suspension bearing actuator coil and the second magnetic suspension bearing actuator coil are both connected to the magnetic suspension bearing control system. connected.
  • a magnetic suspension bearing control method provided by an embodiment of the present application which is applied to the magnetic suspension bearing control system described in any one of the above embodiments, includes: S610-S640;
  • the synchronization signal generation module generates a reference signal, and the displacement signal conversion circuit converts the reference signal into an AC signal containing displacement information, and performs post-processing to obtain a standard displacement signal;
  • the frequency division circuit divides the reference signal to generate a frequency division signal
  • the synchronization module outputs the synchronization signal based on the duty cycle of the pulse width modulation PWM signal output by the pulse width modulation module, and accordingly determines the output time based on the frequency division signal or the PWM signal;
  • the analog-to-digital conversion module converts the standard displacement signal into a standard displacement digital signal according to the synchronization signal and sends it to the processor, so that the processor performs data processing on the standard displacement digital signal.
  • the displacement signal converting circuit converts the reference signal into an AC signal containing displacement information, and performs post-processing to obtain a standard displacement signal including:
  • the rectifier circuit converts the reference signal into a half-wave signal containing displacement information
  • the filtering circuit filters the half-wave signal containing the displacement information to obtain the filtered displacement signal
  • the second amplifying circuit adjusts the filtered displacement signal to obtain a standard displacement signal.
  • FIG. 1 is a schematic structural diagram of a magnetic suspension bearing control system provided by an embodiment of the application.
  • FIG. 2 is a schematic diagram of the wiring of an inductive displacement sensor and an eddy current displacement sensor in a technology
  • FIG. 3 is a schematic diagram of the wiring of a capacitive displacement sensor in a technology
  • FIG. 4 is a schematic structural diagram of a delay adjustment circuit in a technology
  • FIG. 5 is a schematic structural diagram of a magnetic suspension bearing provided by an embodiment of the application.
  • FIG. 6 is a flowchart of a method for controlling a magnetic suspension bearing provided by an embodiment of the present application.
  • Magnetic bearing is an electromagnetic device that uses magnetic force to suspend the rotor in the center of the stator, thereby obtaining non-contact support.
  • the existing magnetic suspension bearing is composed of displacement sensor, actuator, control system and auxiliary bearing.
  • the displacement sensor is used to collect the rotor displacement signal.
  • the magnetic suspension bearing is essentially a displacement control device, so the sensitivity and accuracy of the displacement acquisition are related to the suspension accuracy of the entire device.
  • the control system is used to realize displacement control and resist external disturbance. With the rapid development of computer technology, digital control has become the mainstream.
  • the magnetic bearing control system includes a displacement signal conversion circuit, a main operation unit, a power amplifier circuit, etc.
  • the displacement signal conversion circuit includes a signal amplification, filtering and other circuits, the main operation unit performs arithmetic operations, and the power amplifier circuit adopts a switch-type power amplifier. main.
  • the purpose of the embodiments of the present application is to provide a magnetic suspension bearing, a magnetic suspension bearing control system and method, which can effectively solve the contradiction between the signal-to-noise ratio and the dynamic response performance.
  • FIG. 1 is a schematic structural diagram of a magnetic suspension bearing control system provided by an embodiment of the application, including: a processor 1, a synchronization signal generation module 2, a displacement signal conversion circuit (consisting of the first amplifier circuit 11 in FIG. 1, the first sensor probe 13 and the second sensor probe 14), post-processing circuit (composed of rectifier circuit 7, filter circuit 8 and second amplifier circuit 9), A/D conversion module 10, pulse width modulation module 4, frequency dividing circuit 3, synchronization Module 6 and Power Amplifier 18 .
  • the above-mentioned processor 1 is an abbreviation of digital signal processor 1
  • the post-processing circuit is an abbreviation of sensor signal post-processing circuit
  • the power amplifier 18 may also be referred to as a power device.
  • connection relationship between the above components is as follows: the processor 1, the synchronization signal generation module 2, the displacement signal conversion circuit, the post-processing circuit and the A/D conversion module 10 are closed-loop connected; the synchronization signal generation module 2, the frequency dividing circuit 3, the pulse
  • the width modulation module 4 is connected with the power amplifier 18 in sequence; the processor 1 is also connected with the pulse width modulation module 4; the pulse width modulation module 4, the synchronization module 6 and the A/D conversion module 10 are connected in sequence; the synchronization module 6 is also connected with the synchronization
  • the signal generating module 2 and the frequency dividing circuit 3 are connected.
  • the synchronization signal generation module 2 is used to generate the reference signal and send the reference signal to the displacement signal conversion circuit and the frequency dividing circuit 3;
  • the displacement signal conversion circuit is used to convert the reference signal into a reference signal containing displacement information
  • the AC signal containing the displacement information is sent to the post-processing circuit;
  • the post-processing circuit is used to post-process the AC signal containing the displacement information to obtain a standard displacement signal, and send the standard displacement signal to the A/
  • the D conversion module 10 the frequency dividing circuit 3 is used for dividing the reference signal to generate a frequency dividing signal, and sending the frequency dividing signal to the pulse width modulation module 4 and the synchronization module 6;
  • the pulse width modulation module 4 is used for the synchronization
  • the module 6 outputs the PWM signal;
  • the synchronization module 6 determines the delay time based on the PWM signal, and sends the synchronization signal based on the delay time;
  • the A/D conversion module 10 is used for synchronizing with the power amplifier 18
  • the type of the reference signal may be a sine wave or a square wave, which is not limited here.
  • the AC signal containing the displacement information indicates that after the reference signal is amplified by the first amplifier circuit 11, the first sensor probe 13 and the second sensor probe 14 are driven to form a signal containing the displacement information of the electromagnetic suspension rotor 17 (or called the current rotor).
  • the sensor modulates the signal.
  • the magnetic suspension bearing control system includes a synchronization module 6, and the synchronization signal sent to the A/D conversion module 10 through the synchronization module 6 can effectively avoid inrush current and impulse voltage interference caused by device switching in the power amplifier 18, Ensure the end of the transient process of current and voltage fluctuations caused by device switching, and ensure that the interference of inrush current and impulse voltage is avoided in the process of A/D conversion, so as to increase the system response bandwidth, improve the response speed, and effectively solve the problem.
  • the contradiction between signal-to-noise ratio and dynamic response performance is solved.
  • the displacement signal conversion circuit includes a first amplifying circuit 11 and a sensor that are connected to each other, and the first amplifying circuit 11 is also connected to the synchronization signal generating module 2; the first amplifying circuit 11 , used to amplify the reference signal into an excitation signal; the sensor, driven by the excitation signal, generates an AC signal containing displacement information.
  • the sensor includes a first sensor probe 13 and a second sensor probe 14 ; the first sensor probe 13 and the second sensor probe 14 are arranged on the upper and lower sides of the electromagnetic force suspension rotor 17 . It should be noted that the purpose of the sensor is to generate an AC signal containing displacement information.
  • the upper and lower sides in this embodiment refer to the relative positional relationship, which is not specific. That is to say, although they are on the upper and lower sides of the electromagnetic suspension rotor 17, the actual system is not necessarily the upper and lower sides.
  • the left and right sides, the front and rear sides, etc., can be installed on both sides of the rotor relative to 180 degrees, so this embodiment does not limit it.
  • the senor may refer to an inductive displacement sensor, an eddy current displacement sensor, or a capacitive displacement sensor.
  • the inductive displacement sensor and the eddy current displacement sensor have the same structure, including the first sensor coil 19, the second sensor coil 20, the first end 21, the second end 22, the first end 21 and the The midpoint 23 in the middle of the second end 22.
  • the above-mentioned first sensor probe 13 may refer to the first end 21
  • the second sensor probe 14 may refer to the second end 22 .
  • the two ends of the first sensor coil 19 and the second sensor coil 20 connected in series ie the first end 21 and the second end 22 ) receive the excitation signal (or AC excitation signal), and the midpoint 23 is connected to the sensor signal post-processing circuit.
  • the inductive displacement sensor and the eddy current displacement sensor are also different in structure.
  • the difference is that the coil of the inductive displacement sensor needs to have an iron core, and the detected surface on the corresponding rotor needs to be a magnetic conductive material; while the eddy current displacement sensor needs to have an iron core.
  • the displacement sensor does not need an iron core, and the detected surface needs a conductive material.
  • the capacitive displacement sensor includes a first capacitive probe 24 , a second capacitive probe 25 , a first resistor 26 , a second resistor 27 , a first connection point 28 , a second connection point 29 , and a third connection point 30 in FIG. 3 .
  • the first connection point 28 is the connection point between the first capacitance probe 24 and the first resistor 26
  • the second connection point 29 is the connection point between the second capacitance probe 25 and the second resistor 27
  • the third connection point 30 is the connection point of the first resistor 26 and the second resistor 27 .
  • the above-mentioned first sensor probe 13 may refer to the first capacitance probe 24
  • the second sensor probe 14 may refer to the second capacitance probe 25 .
  • the first capacitance probe 24 and the second capacitance probe 25 are respectively connected to the first resistor 26 and the second resistor 27 , the first connection point 28 and the second connection point 29 receive the AC excitation signal, and the third connection point 30 can be used as a central point to connect the sensor signal post-processing circuit.
  • a synchronization module 6 and a corresponding synchronization method are used to ensure that the power device is not in a switch state at the time of sensor sampling, which effectively solves the problem of signal sampling being interfered with.
  • the post-processing circuit includes a rectifier circuit 7 , a filter circuit 8 and a second amplifier circuit 9 connected in sequence;
  • the point 23 is connected with the rectifier circuit 7;
  • the second amplifier circuit 9 is connected with the A/D conversion module 10;
  • the rectifier circuit 7 is used to convert the AC signal containing the displacement information into the half-wave displacement containing the displacement information under the action of the control signal
  • the filter circuit 8 is used for filtering based on the half-wave signal containing the displacement information to obtain the filtered displacement signal;
  • the second amplifier circuit 9 is used for adjusting the filtered displacement signal to obtain the standard displacement signal.
  • the above-mentioned rectifier circuit 7 may be referred to as a synchronous rectifier module or a controlled rectifier circuit.
  • the above-mentioned half-wave signal containing displacement information may refer to an unfiltered sensor analog voltage signal.
  • the above-mentioned filter circuit 8 is a first-order low-pass filter or a second-order low-pass filter. Since the magnetic suspension bearing control system does not need to filter the noise caused by the switching current/voltage in the coil, the filter circuit 8 can use a low-pass filter with a lower order such as 1st or 2nd order, and the filter bandwidth can be set to a higher value, which only needs to be less than half the sampling frequency.
  • the magnetic suspension bearing control system further includes a delay adjustment circuit 12 arranged between the synchronization signal generating module 2 and the rectifier circuit 7; the delay adjustment circuit 12 is used for The reference signal is adjusted, and the adjusted signal is determined as the control signal.
  • the delay adjustment circuit 12 may be referred to as a phase adjustment module.
  • the delay adjustment circuit 12 includes: an adjustable resistor 31 , a capacitor 32 and a buffer 33 connected to each other.
  • the delay time can be set by adjusting the resistance value of the resistor 31 , the capacitor 32 is grounded, and the buffer 33 is used for outputting the adjusted signal.
  • the structure of the delay adjustment circuit 12 given above is exemplary, and other structures may also be used, that is, the structure of the delay adjustment circuit 12 is not limited in this embodiment of the present application.
  • the magnetic bearing control system further includes an inverter 5 arranged between the pulse width modulation module 4 and the power amplifier 18; the inverter 5 is used for PWM-based
  • the signal drives device switches in power amplifier 18 .
  • the device switches are either MOSFETs or IGBTs.
  • the embodiment of the present application discloses a magnetic suspension bearing control method, which is applied to a magnetic suspension bearing control system and implements the following steps:
  • Step 110 The synchronization signal generating module 2 generates a sine wave or square wave type reference signal, the reference signal is amplified by the first amplifier circuit 11 into an excitation signal with driving capability, and the first sensor probe 13 and the second sensor probe 14 are excited to generate The AC signal containing displacement information, the connection midpoint 23 of the two sensor probes is connected to the sensor signal post-processing circuit.
  • Step 120 Perform post-processing on the AC signal containing the displacement information.
  • the sensor signal post-processing circuit includes a rectifier circuit 7, a filter circuit 8, and a second amplifier circuit 9.
  • the function of the rectifier circuit 7 is to convert the AC displacement signal containing the displacement information into a A half-wave displacement signal containing displacement information, and the signal amplitude and rotor displacement are approximately linear;
  • the time adjustment method is to first determine the signal transmission delay time T1 generated after the excitation signal passes through the first sensor probe 13 and the second sensor probe 14, and adjust the adjustable resistor 31 in the delay adjustment circuit 12 to make the delay time equal to the above T1. , so that the output of the delay adjustment circuit 12 is a neat half-wave, that is, the adjusted signal is a neat half-wave.
  • the function of the filter circuit 8 is mainly to filter out the high-frequency signal with the same frequency as the carrier signal and eliminate the high-frequency noise that may exist in the circuit, so as to prevent the phenomenon of A/D sampling aliasing when the A/D conversion module 10 is working;
  • the function of the second amplifying circuit 9 is to adjust the voltage signal that is linearly related to the rotor displacement (that is, the above-mentioned filtered displacement signal) to a signal suitable for the input voltage range of the A/D conversion module 10 (that is, the above-mentioned standard displacement signal), and make full use of the Analog voltage range for A/D sampling.
  • Step 130 Use the frequency dividing circuit 3 to divide the frequency of the reference signal generated by the synchronization signal generating module 2 by N, where N can be an integer greater than or equal to 1.
  • the output timing is determined based on the frequency division signal or the PWM signal to output the synchronization signal, and the synchronization signal can be output in different situations to trigger the A/D conversion module 10 to perform AD conversion, for example: when the PWM duty cycle output by the pulse width modulation module 4 When it is 0 or 100%, the synchronization module 6 outputs a trigger signal (ie, the above-mentioned synchronization signal) at the rising edge or falling edge of the frequency division signal output by the frequency division circuit 3.
  • a trigger signal ie, the above-mentioned synchronization signal
  • the synchronization module 6 When the PWM duty cycle output by the pulse width modulation module 4 is close to 0 When , the synchronization module 6 outputs a trigger signal after the falling edge of the PWM signal is delayed by T2. The judgment basis for approaching 0 is that the high level time of the PWM signal is less than or equal to T2. When the PWM duty cycle output by the pulse width modulation module 4 is close to At 100%, the synchronization module 6 outputs a trigger signal after the rising edge of the PWM signal is delayed by T3. The judgment basis for close to 100% is that the low level time of the PWM signal is less than or equal to T3, and the method for determining T2 is to determine the power amplifier through experiments.
  • the value of the transition time, T3 is determined by experimentally measuring the turn-on transition time of the MOSFET or IGBT inside the power amplifier 18, and setting T3 to a value greater than the turn-off transition time.
  • the trigger signal can be output after a delay T3 on the rising edge of the PWM signal or after a delay T2 on the falling edge of the PWM signal.
  • the goal of the adjustment of the synchronization module 6 is to delay slightly longer than the switching time of the power amplifier 18 to avoid the switching interference of the power device.
  • the synchronization module 6 can also perform differentiated processing according to different PWM conditions. Therefore, the above-mentioned operation of the synchronization module 6 can effectively avoid the inrush current and inrush voltage interference caused by the device switching in the power amplifier 18, and ensure that the transient process of current and voltage fluctuation caused by the device switching in the power amplifier 18 ends, thereby ensuring the end of the transient process. Make sure to avoid the interference of surge current and surge voltage during AD conversion.
  • the trigger signal output by the synchronization module 6 triggers the A/D conversion module 10 to perform A/D conversion on the standard displacement signal, and after the conversion is completed, the processor 1 is notified to read the data and start the arithmetic operation by means of an interrupt.
  • the control algorithm can use the PID algorithm or other modern control algorithms.
  • Step 140 The processor 1 outputs the operation result (that is, the value of the control current, whose range is from 0 to the maximum current) to the pulse width modulation module 4 for generating the PWM signal, and generates a complementary pair through the inverter 5.
  • the PWM signal drives the MOSFIT or IGBT device switch in the power amplifier 18 to generate a control current into a pair of differential magnetic suspension bearing actuator coils, thereby generating electromagnetic force to act on the electromagnetic force suspension rotor 17 to achieve suspension control.
  • the embodiment of the present application provides a magnetic suspension bearing control system.
  • the processor 1 collects the current displacement signal of the rotor (ie, the above-mentioned standard displacement digital signal), and controls the system.
  • the algorithm calculates to obtain the value of the control current
  • the synchronization signal generation module 2 generates a synchronous sine wave or square wave type reference signal
  • the frequency dividing circuit 3 divides the frequency of the reference signal
  • the delay adjustment circuit 12 performs phase adjustment on the reference signal
  • One or more rectification circuits 7 can realize the rectification of the sensor modulation signal
  • a pulse width modulation module 4 generates a PWM signal.
  • the process of generating the PWM signal can be as follows: the pulse width modulation module 4 generates a PWM signal with a corresponding duty cycle based on the percentage of the control current output by the processor 1.
  • this control has two closed loops, an inner loop. It is a current loop, and its function is to make the first magnetic suspension bearing actuator coil 15 and the second magnetic suspension bearing actuator coil 16 control the current of the coil to reach a given value, and collect the current signals of these two coils.
  • the feedback law outputs a 0 to 100% signal to the PWM module 4, and the PWM module 4 generates a PWM signal with a duty cycle of 0 to 100%; the outer loop is a displacement loop, and the function is to make the current rotor displacement reach the given value.
  • the signal collected is the displacement sensor
  • the output result is the percentage of the current
  • the output result is given to the inner loop.
  • the design of the inner loop is not shown in FIG. 1 , and the current signals of the above two coils are not introduced into the A/D conversion module 10 .
  • An A/D conversion module 10 with a conversion trigger converts the filtered and amplified sensor's analog voltage signal into a digital signal (ie, the above-mentioned standard displacement digital signal), and a synchronization module 6 can realize analog-to-digital conversion and power devices. Synchronization of switches. Through the synchronous operation of these modules, the excitation signal of the sensor, the trigger signal of the A/D conversion module 10 and the switch signal of the power amplifier 18 can be synchronized to reduce interference.
  • the premise of the synchronization of these modules is that there is a reference signal, the excitation signal of the sensor, the synchronization of the switch of the power amplifier 18, all modules work based on this reference signal, the signal sampling and device switching control are in a synchronous cycle (after frequency division)
  • the synchronization module 6 ensures that the sampling process of the sensor is not disturbed by the device switch under the premise of a synchronization period.
  • the most important thing in this embodiment is to realize the synchronization between the A/D conversion module 10 and the pulse width modulation module 4, and the synchronization module 6 is the key module for realizing the synchronization.
  • the first amplifier circuit 11 amplifies the reference signal into an excitation signal with driving ability
  • the filter circuit 8 filters out high-frequency interference
  • the second amplifier circuit 9 amplifies the signal to a voltage signal suitable for the analog input range of the AD acquisition chip
  • the inverter 5 is used to generate an inverted PWM signal
  • the power amplifier 18 converts the PWM signal into a corresponding current signal
  • the first sensor probe 13 and the second sensor probe 14 detect the rotor displacement of the current rotor
  • the first magnetic suspension bearing actuator coil 15 is energized to generate electromagnetic force to levitate the electromagnetic force suspension rotor 17 .
  • the reference signal output by the synchronization signal generating module 2 may be generated by a hardware circuit, or may be generated by a timer of the processor 1 and then output through an IO pin. When generated by the hardware circuit, the reference signal is connected to the external interrupt pin of the processor 1 for program synchronization.
  • the biggest feature (ie, the key point) of the embodiment of the present application is that the excitation signal of the sensor, the trigger signal of the A/D conversion module 10, and the switching signal of the power amplifier 18 share a signal source, and the internal synchronization can ensure that the signal
  • the acquisition time ie, the output time of the post-processing circuit
  • the system response bandwidth can be increased, the response speed can be improved, and the contradiction between the signal-to-noise ratio and the dynamic response performance can be effectively solved.
  • FIG. 5 is a schematic structural diagram of a magnetic suspension bearing according to an embodiment of the present application.
  • the magnetic suspension bearing provided in this embodiment includes: the magnetic suspension bearing control system 100 described in Embodiment 1, a first iron core (not shown in FIG. 5 ), and a first magnetic suspension bearing actuator wound on the first iron core
  • the coils 16 are arranged in parallel on the upper and lower sides of the electromagnetic suspension rotor 17 , and the first magnetic suspension bearing actuator coil 15 and the second magnetic suspension bearing actuator coil 16 are both connected to the magnetic suspension bearing control system 100 .
  • Both the first iron core and the second iron core may be made of silicon steel sheets, and the material of the first iron core and the second iron core is not limited in this embodiment.
  • An inverter 5, a rectifier circuit 7, a filter circuit 8, a second amplifier circuit 9, a delay adjustment circuit 12, a first sensor probe 13, a second sensor probe 14, and a first magnetic suspension bearing in the magnetic suspension bearing control system 100 are used.
  • the actuator coil 15 , the second magnetic suspension bearing actuator coil 16 , the electromagnetic force suspension rotor 17 and the power amplifier 18 can represent a magnetic suspension bearing with one degree of freedom.
  • the actual magnetic suspension bearing may have multiple degrees of freedom. This part of the modules are paralleled.
  • the common magnetic suspension bearing with 5 degrees of freedom has the same component in 5 channels.
  • the focus of the embodiment of this application is the synchronization method. No matter how many degrees of freedom there are, the principle is the same.
  • the power amplifier 18 After the inverter 5 in the magnetic suspension bearing control system 100 drives the device switch, the power amplifier 18 generates a control current, and applies the control current to the first magnetic suspension bearing actuator coil 15 and the second magnetic suspension bearing actuator coil 16; The first magnetic suspension bearing actuator coil 15 and the second magnetic suspension bearing actuator coil 16 generate electromagnetic force to act on the electromagnetic force suspension rotor 17, so that the electromagnetic force suspension rotor 17 realizes suspension control.
  • the embodiment of the present application can omit the low-pass filter or use a low-pass filter with a higher cut-off frequency, significantly reduce the phase lag of the one-way displacement signal caused by filtering, improve the dynamic response capability of the magnetic suspension bearing, and at the same time can effectively avoid the power amplifier
  • the interference caused by the switch of 18 reduces the control noise and improves the control stability of the magnetic suspension bearing. Since the magnetic suspension bearing includes the magnetic suspension bearing control system 100, and the magnetic suspension bearing control system 100 includes the synchronization module 6, the beneficial effects brought by the synchronization module 6 are also applicable to the magnetic suspension bearing, so this embodiment can obtain the same technical effect as the previous embodiment. , which will not be repeated here.
  • FIG. 6 is a flowchart of a control method of a magnetic suspension bearing provided by an embodiment of the present application.
  • the magnetic suspension bearing control method provided in this embodiment is applied to the magnetic suspension bearing control system described in any one of the foregoing embodiments, and includes: S610-S640;
  • the synchronization signal generation module generates a reference signal, and the displacement signal conversion circuit converts the reference signal into an AC signal containing displacement information, and performs post-processing to obtain a standard displacement signal;
  • the frequency division circuit divides the reference signal to generate a frequency division signal
  • the synchronization module outputs the synchronization signal based on the duty cycle of the pulse width modulation PWM signal output by the pulse width modulation module, and accordingly determines the output time based on the frequency division signal or the PWM signal;
  • the analog-to-digital conversion module converts the standard displacement signal into a standard displacement digital signal according to the synchronization signal and sends it to the processor, so that the processor performs data processing on the standard displacement digital signal.
  • the displacement signal converting circuit converts the reference signal into an AC signal containing displacement information, and performs post-processing to obtain a standard displacement signal including:
  • the rectifier circuit converts the reference signal into a half-wave signal containing displacement information
  • the filtering circuit filters the half-wave signal containing the displacement information to obtain the filtered displacement signal
  • the second amplifying circuit adjusts the filtered displacement signal to obtain a standard displacement signal.
  • the magnetic suspension bearing control method provided in the embodiment of the present application is applied to the magnetic suspension bearing control system described in any one of the above embodiments, so this embodiment can obtain the same technical effect as the previous embodiment, which is not repeated here.
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection , or integrally connected; it can be a mechanical connection or an electrical connection; it can be a direct connection, or an indirect connection through an intermediate medium, or the internal communication between the two components.
  • installed should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection , or integrally connected; it can be a mechanical connection or an electrical connection; it can be a direct connection, or an indirect connection through an intermediate medium, or the internal communication between the two components.
  • Computer storage media includes both volatile and nonvolatile implemented in any method or technology for storage of information, such as computer readable instructions, data structures, program modules or other data flexible, removable and non-removable media.
  • Computer storage media include, but are not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cartridges, magnetic tape, magnetic disk storage or other magnetic storage devices, or may Any other medium used to store desired information and which can be accessed by a computer.
  • communication media typically embodies computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transport mechanism, and can include any information delivery media, as is well known to those of ordinary skill in the art .

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Signal Processing (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

磁悬浮轴承、磁悬浮轴承控制系统(100)和控制方法,磁悬浮轴承控制系统(100)包括:处理器(1)、同步信号发生模块(2)、位移信号转换电路、后处理电路、A/D转换模块(10)、脉宽调制模块(4)、分频电路(3)、同步模块(6)和功率放大器(18)。磁悬浮轴承包括:磁悬浮轴承控制系统(100)、第一铁芯、绕在第一铁芯上的第一磁悬浮轴承作动器线圈(15)、第二铁芯,绕在第二铁芯上的第二磁悬浮轴承作动器线圈(16),以及电磁力悬浮转子(17);其中,第一磁悬浮轴承作动器线圈(15)和第二磁悬浮轴承作动器线圈(16)相对设置在电磁力悬浮转子(17)的上下两侧,第一磁悬浮轴承作动器线圈(15)和第二磁悬浮轴承作动器线圈(16)均与磁悬浮轴承控制系统(100)相连。

Description

磁悬浮轴承、磁悬浮轴承控制系统和控制方法 技术领域
本申请实施例涉及但不限于磁悬浮技术领域,尤其涉及磁悬浮轴承、磁悬浮轴承控制系统和控制方法。
背景技术
一些技术中磁悬浮轴承为了使结构紧凑,以及为了位移信号和磁悬浮轴承作用力位置尽量接近,位移传感器通常安装在离电磁铁线圈较近的位置。电磁铁线圈中由功率器件开关引起的冲击电流极易干扰到传感器信号,为了降低电磁干扰,保证较高的信噪比,通常需要对传感器信号进行低通滤波,为了获得较小的噪声,低通滤波器需要采用较高阶数、较低截止频率,但这种方式引入了较大的延迟,降低了磁悬浮轴承的动态性能;反之,为了获得较好的动态性能,必须采用较低阶数、较高截止频率的低通滤波器,这种方式就会使信噪比下降,噪声增大。
综上,一些技术存在降低电磁干扰与提高磁悬浮轴承的动态性能两者无法同时兼顾的技术问题。
发明概述
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
一方面,本申请实施例提供的一种磁悬浮轴承控制系统,其中,包括:处理器、同步信号发生模块、位移信号转换电路、后处理电路、A/D(模数)转换模块、脉宽调制模块、分频电路、同步模块和功率放大器;所述处理器、所述同步信号发生模块、所述位移信号转换电路、所述后处理电路和所述A/D转换模块闭环连接;所述同步信号发生模块、所述分频电路、所述脉宽调制模块和所述功率放大器顺序相连;所述处理器还与所述脉宽调制模块相连接; 所述脉宽调制模块、所述同步模块、所述A/D转换模块顺序连接;所述同步模块还分别与所述同步信号发生模块和所述分频电路相连接;所述同步信号发生模块,用于产生基准信号,并将所述基准信号发送至所述位移信号转换电路和所述分频电路;所述位移信号转换电路,用于将所述基准信号转换成含有位移信息的交流信号,并将所述含有位移信息的交流信号发送给所述后处理电路;所述后处理电路,用于对所述含有位移信息的交流信号进行后处理得到标准位移信号,并将所述标准位移信号发送至A/D转换模块;所述分频电路,用于对所述基准信号进行分频产生分频信号,并将所述分频信号发送至脉宽调制模块和同步模块;所述脉宽调制模块,用于向所述同步模块输出PWM(Pulse Width Modulation,脉冲宽度调制)信号;所述同步模块,基于所述PWM信号确定延时时间,并基于所述延时时间发送同步信号;所述A/D转换模块,用于在所述同步信号的作用下与所述功率放大器同步,并将所述标准位移信号转化为标准位移数字信号发送至处理器,以使所述处理器对所述标准位移数字信号进行数据处理。
一种示例性的实施例中,所述位移信号转换电路包括互相连接的第一放大电路和传感器,所述第一放大电路还与所述同步信号发生模块相连;所述第一放大电路,用于将所述基准信号放大成激励信号;所述传感器,在所述激励信号的驱动下产生所述含有位移信息的交流信号。
一种示例性的实施例中,所述传感器包括第一传感器探头和第二传感器探头;所述第一传感器探头和所述第二传感器探头分别设置在电磁力悬浮转子的上下两侧。
一种示例性的实施例中,所述后处理电路包括依次连接的整流电路、滤波电路和第二放大电路;所述第一传感器探头和所述第二传感器探头的连接中点与所述整流电路连接;所述第二放大电路与A/D转换模块相连;所述整流电路,用于在控制信号的作用下将所述含有位移信息的交流信号转换成含有位移信息的半波信号;所述滤波电路,用于基于含有位移信息的半波信号进行滤波,得到滤波后的位移信号;所述第二放大电路,用于对滤波后的位移信号进行调节,得到标准位移信号。
一种示例性的实施例中,所述系统还包括设置在所述同步信号发生模块与所述整流电路之间的延时调整电路;所述延时调整电路,用于对所述基准信号进行调整,并将调整后的信号确定为所述控制信号。
一种示例性的实施例中,所述延时调整电路包括:互相连接的可调电阻、电容器和缓冲器。
一种示例性的实施例中,系统还包括设置在所述脉宽调制模块和所述功率放大器之间的反相器;所述反相器,用于基于所述PWM信号驱动所述功率放大器中的器件开关。
一种示例性的实施例中,所述传感器为电感式位移传感器、电涡流式位移传感器或电容式位移传感器。
一种示例性的实施例中,所述滤波电路为一阶低通滤波器或二阶低通滤波器。
另一方面,本申请实施例提供的一种磁悬浮轴承,其中,包括:第一方面所述的磁悬浮轴承控制系统、第一铁芯、绕在所述第一铁芯上的第一磁悬浮轴承作动器线圈、第二铁芯,绕在所述第二铁芯上的第二磁悬浮轴承作动器线圈,以及电磁力悬浮转子;其中,所述第一磁悬浮轴承作动器线圈和所述第二磁悬浮轴承作动器线圈相对设置在所述电磁力悬浮转子的上下两侧,所述第一磁悬浮轴承作动器线圈和所述第二磁悬浮轴承作动器线圈均与所述磁悬浮轴承控制系统相连。
另一方面,本申请实施例提供的一种磁悬浮轴承控制方法,应用于上述实施例中任一项所述的磁悬浮轴承控制系统,包括:S610-S640;
S610.同步信号发生模块产生基准信号,位移信号转换电路将所述基准信号转换成含有位移信息的交流信号,并进行后处理得到标准位移信号;
S620.分频电路对所述基准信号进行分频产生分频信号;
S630.同步模块基于脉宽调制模块输出的脉冲宽度调制PWM信号的占空比,相应基于分频信号或PWM信号确定输出时刻,来输出同步信号;
S640.所述模数转换模块根据所述同步信号将所述标准位移信号转化为标准位移数字信号发送至处理器,以使所述处理器对所述标准位移数字信号进行数据处理。
一种示例性的实施例中,所述位移信号转换电路将所述基准信号转换成含有位移信息的交流信号,并进行后处理得到标准位移信号包括:
在控制信号的作用下所述整流电路将基准信号转换成含有位移信息的半波信号;
所述滤波电路对含有位移信息的半波信号进行滤波,得到滤波后的位移信号;
所述第二放大电路对滤波后的位移信号进行调节,得到标准位移信号。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
附图用来提供对本申请技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本申请的技术方案,并不构成对本申请技术方案的限制。
图1为本申请实施例提供的一种磁悬浮轴承控制系统的结构示意图;
图2为一种技术中电感式位移传感器以及电涡流式位移传感器的接线示意图;
图3为一种技术中电容式位移传感器的接线示意图;
图4为一种技术中延时调整电路的结构示意图;
图5为本申请实施例提供的一种磁悬浮轴承的结构示意图;
图6为本申请实施例提供的一种磁悬浮轴承控制方法流程图。
图标:
1-处理器;2-同步信号发生模块;3-分频电路;4-脉宽调制模块;5-反相器;6-同步模块;7-整流电路;8-滤波电路;9-第二放大电路;10-A/D转换模块;11-第一放大电路;12-延时调整电路;13-第一传感器探头;14-第二传感 器探头;15-第一磁悬浮轴承作动器线圈;16-第二磁悬浮轴承作动器线圈;17-电磁力悬浮转子;18-功率放大器;19-第一传感器线圈;20-第二传感器线圈;21-第一端;22-第二端;23-中点;24-第一电容探头;25-第二电容探头;26-第一电阻;27-第二电阻;28-第一连接点;29-第二连接点;30-第三连接点;31-可调电阻;32-电容器;33-缓冲器;100-磁悬浮轴承控制系统。
详述
下文中将结合附图对本申请的实施例进行详细说明。在不冲突的情况下,本公开实施例及实施例中的特征可以相互任意组合。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
磁悬浮轴承是利用磁力使转子悬浮于定子中心,从而获得无接触支承的一种电磁装置。现有的磁悬浮轴承由位移传感器、作动器、控制系统和辅助轴承等部分组成。位移传感器用于采集转子位移信号,磁悬浮轴承本质上是一种位移控制装置,因而位移采集的灵敏度和精度关系到整个装置的悬浮精度。控制系统用于实现位移控制和抵抗外界扰动,随着计算机技术的飞速发展,数字控制已经成为主流。磁悬浮轴承控制系统包含了位移信号转换电路,主运算单元,功率放大电路等,位移信号转换电路包含了信号放大、滤波等电路,主运算单元进行算法运算,功率放大电路以采用开关式的功率放大为主。
一些技术存在降低电磁干扰与提高磁悬浮轴承的动态性能两者无法同时兼顾的技术问题。基于此,本申请实施例的目的在于提供一种磁悬浮轴承、磁悬浮轴承控制系统和方法,可以有效地解决信噪比和动态响应性能的矛盾。
为便于对本实施例进行理解,首先对本申请实施例所公开的一种磁悬浮轴承控制系统进行详细描述。
实施例1:
图1为本申请实施例提供的一种磁悬浮轴承控制系统的结构示意图,包括:处理器1、同步信号发生模块2、位移信号转换电路(由图1中第一放大电路11、第一传感器探头13和第二传感器探头14构成)、后处理电路(由整流电路7、滤波电路8和第二放大电路9构成)、A/D转换模块10、脉宽调制模块4、分频电路3、同步模块6和功率放大器18。上述处理器1是数字信号处理器1的简称,且后处理电路是传感器信号后处理电路的简称,功率放大器18还可以称为功率器件。
上述元器件之间的连接关系如下:处理器1、同步信号发生模块2、位移信号转换电路、后处理电路和A/D转换模块10闭环连接;同步信号发生模块2、分频电路3、脉宽调制模块4和功率放大器18顺序相连;处理器1还与脉宽调制模块4相连接;脉宽调制模块4、同步模块6、A/D转换模块10顺序连接;同步模块6还分别与同步信号发生模块2、分频电路3相连接。
上述元器件的功能如下:同步信号发生模块2,用于产生基准信号,并将基准信号发送至位移信号转换电路和分频电路3;位移信号转换电路,用于将基准信号转换成含有位移信息的交流信号,并将所述含有位移信息的交流信号发送给后处理电路;后处理电路,用于对含有位移信息的交流信号进行后处理得到标准位移信号,并将标准位移信号发送至A/D转换模块10;分频电路3,用于对基准信号进行分频产生分频信号,并将分频信号发送至脉宽调制模块4和同步模块6;脉宽调制模块4,用于向同步模块6输出PWM信号;同步模块6,基于PWM信号确定延时时间,并基于延时时间发送同步信号;A/D转换模块10,用于在同步信号的作用下与功率放大器18同步,并将标准位移信号转化为标准位移数字信号发送至处理器1,以使处理器1对标准位移数字信号进行数据处理。基准信号的类型可以是正弦波,也可以是方波,在此不作限定。含有位移信息的交流信号表示基准信号经第一放大电路11放大以后,驱动第一传感器探头13、第二传感器探头14后形成的包含了电磁力悬浮转子17(或称为当前转子)位移信息的传感器调制信号。
本申请实施例提供的磁悬浮轴承控制系统包含同步模块6,通过同步模块6向A/D转换模块10发送的同步信号可以有效避开功率放大器18中的器件开关引起的冲击电流和冲击电压干扰,保证器件开关引起的电流和电压波动 的瞬态过程结束,保证在进行A/D转换的过程中避开冲击电流和冲击电压的干扰,从而可以增大系统响应带宽,提高响应速度,有效地解决了信噪比和动态响应性能的矛盾。
一种示例性的实施例中,如图1所示,位移信号转换电路包括互相连接的第一放大电路11和传感器,第一放大电路11还与同步信号发生模块2相连;第一放大电路11,用于将基准信号放大成激励信号;传感器,在激励信号的驱动下产生含有位移信息的交流信号。进一步的,传感器包括第一传感器探头13和第二传感器探头14;第一传感器探头13和第二传感器探头14设置在电磁力悬浮转子17的上下两侧。需要注意的是,传感器的目的在于产生包含位移信息的交流信号。本实施例中的上下两侧是指相对位置关系,并非特定,也就是说,虽然是在电磁力悬浮转子17的上下两侧,但实际系统中实际上不一定是上下两侧,也可以是左右两侧,前后两侧等,只要是相对180度安装在转子两侧即可,因此本实施例对此不做限定。
一种示例性的实施例中,传感器可以指电感式位移传感器、电涡流式位移传感器,或电容式位移传感器。电感式位移传感器以及电涡流式位移传感器结构有相同之处,均包括图2中的第一传感器线圈19、第二传感器线圈20、第一端21、第二端22、位于第一端21与第二端22中间的中点23。其中,上述第一传感器探头13可以指第一端21,第二传感器探头14可以指第二端22。第一传感器线圈19和第二传感器线圈20串联后的两端(即第一端21和第二端22)接收激励信号(或称为交流激励信号),中点23连接传感器信号后处理电路。但是电感式位移传感器以及电涡流式位移传感器在结构上也有不同,不同之处在于:电感式位移传感器的线圈需要有铁芯,对应转子上的被检测面需要是导磁材料;而电涡流式位移传感器无需铁芯,被检测面需要的是导电材料。
电容式位移传感器包括图3中的第一电容探头24、第二电容探头25、第一电阻26、第二电阻27、第一连接点28、第二连接点29、第三连接点30。第一连接点28为第一电容探头24与第一电阻26的连接点,第二连接点29为第二电容探头25与第二电阻27的连接点。第三连接点30为第一电阻26与第二电阻27的连接点。在本实施例中,上述第一传感器探头13可以指第 一电容探头24,第二传感器探头14可以指第二电容探头25。如图3所示,第一电容探头24、第二电容探头25分别与第一电阻26、第二电阻27相连,第一连接点28和第二连接点29接收交流激励信号,第三连接点30可以作为中心点连接传感器信号后处理电路。
本申请实施例通过一个同步模块6以及相应的同步方法,保证功率器件在传感器采样时刻不处于开关状态,有效解决了信号采样受干扰的问题。
一种示例性的实施例中,如图1所示,后处理电路包括依次连接的整流电路7、滤波电路8和第二放大电路9;第一传感器探头13和第二传感器探头14的连接中点23与整流电路7连接;第二放大电路9与A/D转换模块10相连;整流电路7,用于在控制信号的作用下将含有位移信息的交流信号转换成含有位移信息的半波位移信号;滤波电路8,用于基于含有位移信息的半波信号进行滤波,得到滤波后的位移信号;第二放大电路9,用于对滤波后的位移信号进行调节,得到标准位移信号。上述整流电路7可以称为同步整流模块或受控整流电路。上述含有位移信息的半波信号可以指未滤波的传感器模拟电压信号。
上述滤波电路8为一阶低通滤波器或二阶低通滤波器。由于该磁悬浮轴承控制系统无需滤除线圈中开关电流/电压引起的噪声,滤波电路8可以采用1阶或2阶等较低阶数的低通滤波器,滤波带宽可以设置较高,只需小于采样频率一半即可。
一种示例性的实施例中,如图1所示,该磁悬浮轴承控制系统还包括设置在同步信号发生模块2与整流电路7之间的延时调整电路12;延时调整电路12,用于对基准信号进行调整,并将调整后的信号确定为控制信号。延时调整电路12可以称为相位调整模块。
一种示例性的实施例中,如图4所示,延时调整电路12包括:互相连接的可调电阻31、电容器32和缓冲器33。通过可调电阻31的阻值即可设置延迟时间,电容器32接地,缓冲器33用于输出调整后的信号。需要注意的是,上述给出的延时调整电路12的结构是示例性的,还可以是其他结构,即本申请实施例对延时调整电路12的结构不作限定。
一种示例性的实施例中,如图1所示,该磁悬浮轴承控制系统还包括设置在脉宽调制模块4和功率放大器18之间的反相器5;反相器5,用于基于PWM信号驱动功率放大器18中的器件开关。器件开关为MOSFET或IGBT。
结合上述给出的磁悬浮轴承控制系统元器件之间的连接关系与功能,本申请实施例公开一种磁悬浮轴承控制方法,应用于磁悬浮轴承控制系统,实现以下步骤:
步骤110:同步信号发生模块2产生正弦波或方波类型的基准信号,该基准信号经第一放大电路11放大成有驱动能力的激励信号,激励第一传感器探头13和第二传感器探头14产生含有位移信息的交流信号,这两个传感器探头的连接中点23连接传感器信号后处理电路。
步骤120:对含有位移信息的交流信号进行后处理,传感器信号后处理电路包括整流电路7、滤波电路8、第二放大电路9,整流电路7的作用是将含有位移信息的交流位移信号转换成含有位移信息的半波位移信号,且信号幅度与转子位移近似呈线性关系;整流电路7的控制信号来源于同步信号发生模块2产生的基准信号经延时调整电路12得到调整后的信号,延时调整的方法为,先确定激励信号经过第一传感器探头13、第二传感器探头14之后产生的信号传输延迟时间T1,通过调整延时调整电路12中的可调电阻31使延迟时间等于上述T1,从而使延时调整电路12的输出为整齐的半波,即调整后的信号是整齐的半波。
滤波电路8的作用主要是为了滤除与载波信号同频的高频信号以及消除电路中可能存在的高频噪声,防止A/D转换模块10工作时出现A/D采样混叠的现象;第二放大电路9的作用是将与转子位移呈线性关系的电压信号(即上述滤波后的位移信号)调整到适应A/D转换模块10输入电压范围的信号(即上述标准位移信号),充分利用A/D采样的模拟电压范围。
步骤130:利用分频电路3对同步信号发生模块2产生的基准信号进行N分频,N可以取大于等于1的整数,同步模块6根据脉宽调制模块4输出的PWM占空比的不同,相应基于分频信号或PWM信号确定输出时刻,来输出同步信号,可以在不同情况下输出同步信号触发A/D转换模块10进行AD转换,例如:当脉宽调制模块4输出的PWM占空比为0或100%时,同步模块 6在分频电路3输出的分频信号的上升沿或下降沿输出触发信号(即上述同步信号),当脉宽调制模块4输出的PWM占空比接近0时,同步模块6在PWM信号的下降沿延时T2后输出触发信号,接近0的判断依据是PWM信号的高电平时间小于或等于T2,当脉宽调制模块4输出的PWM占空比接近100%时,同步模块6在PWM信号的上升沿延时T3后输出触发信号,接近100%的判断依据是PWM信号的低电平时间小于或等于T3,T2的确定方法为通过实验测定功率放大器18内部的MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor,金氧半场效晶体管)或IGBT(Insulated Gate Bipolar Transistor,绝缘栅双极型晶体管)的关断过渡时间,将T2设置成大于关断过渡时间的值,T3的确定方法为通过实验测定功率放大器18内部的MOSFET或IGBT的开通过渡时间,将T3设置成大于关断过渡时间的值。当PWM占空比既不接近0也不接近100%时,则触发信号可以在PWM信号的上升沿延时T3后输出或在PWM信号的下降沿延时T2后输出。
同步模块6调整的目标是延迟略大于功率放大器18的开关时间,以避免功率器件的开关干扰。同步模块6除了可以进行延迟时间调整之后,还可以根据PWM的不同情况进行区分性的处理。因此通过同步模块6的上述操作,可以有效避开功率放大器18中的器件开关引起的冲击电流和冲击电压干扰,保证功率放大器18中的器件开关引起的电流和电压波动的瞬态过程结束,从而保证在进行AD转换的过程中避开冲击电流和冲击电压的干扰。
同步模块6输出的触发信号触发A/D转换模块10对标准位移信号进行A/D转换,转换完成后通过中断的方式通知处理器1进行数据读取并开始算法运算,处理器1所采用的控制算法可以用PID算法,也可以用其它现代控制算法。
步骤140:处理器1将运算结果(即控制电流的数值,其范围是0到最大电流)输出到用于生成PWM信号的脉宽调制模块4,经过反相器5反相生成互补的一对PWM信号,驱动功率放大器18中的MOSFIT或IGBT器件开关,产生控制电流进入一对差动的磁悬浮轴承作动器线圈,从而产生电磁力作用于电磁力悬浮转子17实现悬浮控制。
本申请实施例提供了一种磁悬浮轴承控制系统,该系统在A/D转换模块10进行A/D转换后,处理器1采集到当前转子的位移信号(即上述标准位移数字信号),进行控制算法计算,得到控制电流的数值,同步信号发生模块2产生同步的正弦波或方波类型的基准信号,分频电路3对基准信号进行分频,延时调整电路12对基准信号进行相位调整,一个或多个整流电路7可以实现传感器调制信号的整流,一个脉宽调制模块4生成PWM信号。
生成该PWM信号的过程可以为:脉宽调制模块4基于处理器1输出的控制电流的百分比生成相应占空比的PWM信号,一种示例性实施例中,这个控制有两个闭环,内环是电流环,实现的功能是使第一磁悬浮轴承作动器线圈15、第二磁悬浮轴承作动器线圈16控制线圈的电流达到给定值,采集这两个线圈的电流信号,处理器1根据反馈规律输出0到100%的信号给脉宽调制模块4,脉宽调制模块4生成0到100%占空比的PWM信号;外环是位移环,实现的功能是使当前转子的位移达到给定值,采集的是位移传感器的信号,输出的结果是电流的百分比,输出结果给到内环。图1中并未表现内环的设计,未将上述两个线圈的电流信号引入A/D转换模块10。
一个带有转换触发的A/D转换模块10将经历了滤波和放大后的传感器的模拟电压信号转换成数字信号(即上述标准位移数字信号),一个同步模块6可以实现模数转换和功率器件开关的同步。通过上述这些模块的同步工作,可以实现传感器的激励信号、A/D转换模块10的触发信号、以及功率放大器18的开关信号的同步,减少干扰。
这些模块同步的前提是有一个基准信号,传感器的激励信号、功率放大器18的开关的同步、所有的模块均基于这个基准信号工作,信号采样和器件开关控制是在一个同步的周期(分频之后的周期)内完成的,同步模块6是在一个同步周期的前提下保证传感器的采样过程不受器件开关的干扰。本实施例最主要的是实现A/D转换模块10与脉宽调制模块4的同步,同步模块6是实现同步的关键模块。
第一放大电路11将基准信号放大成有驱动能力的激励信号,滤波电路8滤除高频干扰,第二放大电路9将信号放大到适合AD采集芯片模拟量输入范围的电压信号,反相器5用于产生反相的PWM信号、功率放大器18将 PWM信号转换成对应的电流信号,第一传感器探头13和第二传感器探头14检测当前转子的转子位移,第一磁悬浮轴承作动器线圈15、第二磁悬浮轴承作动器线圈16通电,产生电磁力以使电磁力悬浮转子17悬浮。
一种示例性的实施例中,同步信号发生模块2输出的基准信号可以由硬件电路产生,也可通过处理器1的定时器产生后经IO引脚输出。当由硬件电路产生时,则将该基准信号接入处理器1的外部中断引脚,以便进行程序同步。
本申请实施例的最大特点(即关键点)是传感器的激励信号、A/D转换模块10的触发信号、以及功率放大器18的开关信号三者共用一个信号源,可以通过内在的同步,保证信号采集时刻(即后处理电路的输出时刻)不受功率器件开关的干扰,从而可以增大系统响应带宽,提高响应速度,有效地解决了信噪比和动态响应性能的矛盾。
实施例2:
图5为本申请实施例提供的一种磁悬浮轴承的结构示意图。本实施例提供的磁悬浮轴承,包括:实施例1中所述的磁悬浮轴承控制系统100、第一铁芯(图5未给出),绕在第一铁芯上的第一磁悬浮轴承作动器线圈15、第二铁芯、绕在第二铁芯上的第二磁悬浮轴承作动器线圈16,以及电磁力悬浮转子17;第一磁悬浮轴承作动器线圈15和第二磁悬浮轴承作动器线圈16平行设置在电磁力悬浮转子17的上下两侧,第一磁悬浮轴承作动器线圈15和第二磁悬浮轴承作动器线圈16均与磁悬浮轴承控制系统100相连。第一铁芯和第二铁芯均可以采用硅钢片制成,本实施例对第一铁芯和第二铁芯的材质不作限定。
磁悬浮轴承控制系统100中的一个反相器5、整流电路7、滤波电路8、第二放大电路9、延时调整电路12、第一传感器探头13、第二传感器探头14、第一磁悬浮轴承作动器线圈15、第二磁悬浮轴承作动器线圈16、电磁力悬浮转子17和功率放大器18可以表示1个自由度的磁悬浮轴承,实际的磁悬浮轴承可能有多个自由度,多个自由度时这部分模块并列,常见的为5个自由 度的磁悬浮轴承,则有5路同样的该组成部分,本申请实施例的重点在于同步方法,无论有多少个自由度,原理相同。
在磁悬浮轴承控制系统100中的反相器5驱动器件开关之后,功率放大器18产生控制电流,并将控制电流作用于第一磁悬浮轴承作动器线圈15和第二磁悬浮轴承作动器线圈16;第一磁悬浮轴承作动器线圈15和第二磁悬浮轴承作动器线圈16产生电磁力作用于电磁力悬浮转子17,以使电磁力悬浮转子17实现悬浮控制。
由于功率放大器18内部有开关器件(即器件开关)MOSFET或IGBT,其在开关的过渡过程中会产生电压冲击、寄生振荡和振铃等现象,都会对周边电路产生干扰,当过渡过程结束后,干扰消失。本申请实施例的目的就是通过同步,保证每次进行信号采集时都是过渡过程已经结束的时刻。
本申请实施例可以省去低通滤波器或采用截止频率较高的低通滤波器,显著降低单向位移信号因滤波引起的相位滞后,提高磁悬浮轴承的动态响应能力,同时可以有效避免功率放大器18的开关引起的干扰,减小控制噪声,提高磁悬浮轴承的控制稳定性。由于磁悬浮轴承包括磁悬浮轴承控制系统100,且磁悬浮轴承控制系统100包括同步模块6,因此同步模块6带来的有益效果同样适用于磁悬浮轴承,因此该实施例可以得到如前述实施例相同的技术效果,在此不作赘述。
实施例3
图6为本申请实施例提供的一种磁悬浮轴承的控制方法流程图。本实施例提供的磁悬浮轴承控制方法,应用于上述实施例中任一项所述的磁悬浮轴承控制系统,包括:S610-S640;
S610.同步信号发生模块产生基准信号,位移信号转换电路将所述基准信号转换成含有位移信息的交流信号,并进行后处理得到标准位移信号;
S620.分频电路对所述基准信号进行分频产生分频信号;
S630.同步模块基于脉宽调制模块输出的脉冲宽度调制PWM信号的占空比,相应基于分频信号或PWM信号确定输出时刻,来输出同步信号;
S640.所述模数转换模块根据所述同步信号将所述标准位移信号转化为标准位移数字信号发送至处理器,以使所述处理器对所述标准位移数字信号进行数据处理。
一种示例性的实施例中,所述位移信号转换电路将所述基准信号转换成含有位移信息的交流信号,并进行后处理得到标准位移信号包括:
在控制信号的作用下所述整流电路将基准信号转换成含有位移信息的半波信号;
所述滤波电路对含有位移信息的半波信号进行滤波,得到滤波后的位移信号;
所述第二放大电路对滤波后的位移信号进行调节,得到标准位移信号。
本申请实施例中提供的磁悬浮轴承控制方法应用于上述实施例中任一项所述的磁悬浮轴承控制系统,因此该实施例可以得到如前述实施例相同的技术效果,在此不作赘述。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的磁悬浮轴承的工作过程,可以参考前述实施例1中的对应过程,在此不再赘述。
另外,在本申请实施例的描述中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据实际情况理解上述术语在本申请实施例中的含义。
在本实施例的描述中,需要说明的是,术语“中”、“上”、“下”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本实施例的限制。此外,术语“第一”和“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些组件或所有组件可以被实施为由处理器,如数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。

Claims (12)

  1. 一种磁悬浮轴承控制系统,包括:处理器、同步信号发生模块、位移信号转换电路、后处理电路、模数转换模块、脉宽调制模块、分频电路、同步模块和功率放大器;
    所述处理器、所述同步信号发生模块、所述位移信号转换电路、所述后处理电路和所述模数转换模块闭环连接;所述同步信号发生模块、所述分频电路、所述脉宽调制模块和所述功率放大器顺序相连;所述处理器还与所述脉宽调制模块相连接;所述脉宽调制模块、所述同步模块、所述模数转换模块顺序连接;所述同步模块还分别与所述同步信号发生模块和所述分频电路相连接;
    所述同步信号发生模块,设置为产生基准信号,并将所述基准信号发送至所述位移信号转换电路和所述分频电路;
    所述位移信号转换电路,设置为将所述基准信号转换成含有位移信息的交流信号,并将所述含有位移信息的交流信号发送给所述后处理电路;
    所述后处理电路,设置为对所述含有位移信息的交流信号进行后处理得到标准位移信号,并将所述标准位移信号发送至模数转换模块;
    所述分频电路,设置为对所述基准信号进行分频产生分频信号,并将所述分频信号发送至脉宽调制模块和同步模块;
    所述脉宽调制模块,设置为向所述同步模块输出脉冲宽度调制PWM信号;
    所述同步模块,设置为基于所述PWM信号确定延时时间,并基于所述延时时间发送同步信号;
    所述模数转换模块,设置为在所述同步信号的作用下与所述功率放大器同步,并将所述标准位移信号转化为标准位移数字信号发送至处理器,以使所述处理器对所述标准位移数字信号进行数据处理。
  2. 根据权利要求1所述的系统,其中,所述位移信号转换电路包括互相连接的第一放大电路和传感器,所述第一放大电路还与所述同步信号发生模块相连;
    所述第一放大电路,设置为将所述基准信号放大成激励信号;
    所述传感器,设置为在所述激励信号的驱动下产生所述含有位移信息的交流信号。
  3. 根据权利要求2所述的系统,其中,所述传感器包括第一传感器探头和第二传感器探头;所述第一传感器探头和所述第二传感器探头分别设置在电磁力悬浮转子的上下两侧。
  4. 根据权利要求3所述的系统,其中,所述后处理电路包括依次连接的整流电路、滤波电路和第二放大电路;所述第一传感器探头和所述第二传感器探头的连接中点与所述整流电路连接;所述第二放大电路与模数转换模块相连;
    所述整流电路,设置为在控制信号的作用下将所述含有位移信息的交流信号转换成含有位移信息的半波信号;
    所述滤波电路,设置为基于含有位移信息的半波信号进行滤波,得到滤波后的位移信号;
    所述第二放大电路,设置为对滤波后的位移信号进行调节,得到标准位移信号。
  5. 根据权利要求4所述的系统,还包括设置在所述同步信号发生模块与所述整流电路之间的延时调整电路;
    所述延时调整电路,设置为对所述基准信号进行调整,并将调整后的信号确定为所述控制信号。
  6. 根据权利要求5所述的系统,其中,所述延时调整电路包括:互相连接的可调电阻、电容器和缓冲器。
  7. 根据权利要求1所述的系统,还包括设置在所述脉宽调制模块和所述功率放大器之间的反相器;
    所述反相器,设置为基于所述PWM信号驱动所述功率放大器中的器件开关。
  8. 根据权利要求2所述的系统,其中,所述传感器为电感式位移传感器、电涡流式位移传感器或电容式位移传感器。
  9. 根据权利要求4所述的系统,其中,所述滤波电路为一阶低通滤波器或二阶低通滤波器。
  10. 一种磁悬浮轴承,包括:如权利要求1-9任一项所述的磁悬浮轴承控制系统、第一铁芯、绕在所述第一铁芯上的第一磁悬浮轴承作动器线圈、第二铁芯,绕在所述第二铁芯上的第二磁悬浮轴承作动器线圈,以及电磁力悬浮转子;其中,所述第一磁悬浮轴承作动器线圈和所述第二磁悬浮轴承作动器线圈相对设置在所述电磁力悬浮转子的上下两侧,所述第一磁悬浮轴承作动器线圈和所述第二磁悬浮轴承作动器线圈均与所述磁悬浮轴承控制系统相连。
  11. 一种磁悬浮轴承控制方法,应用于上述权利要求1-9中任一项所述的磁悬浮轴承控制系统,包括:
    同步信号发生模块产生基准信号,位移信号转换电路将所述基准信号转换成含有位移信息的交流信号,并进行后处理得到标准位移信号;
    分频电路对所述基准信号进行分频产生分频信号;
    同步模块基于脉宽调制模块输出的脉冲宽度调制PWM信号的占空比,相应基于分频信号或PWM信号确定输出时刻,来输出同步信号;
    所述模数转换模块根据所述同步信号将所述标准位移信号转化为标准位移数字信号发送至处理器,以使所述处理器对所述标准位移数字信号进行数据处理。
  12. 根据权利要求11所述的方法,其中,所述位移信号转换电路将所述基准信号转换成含有位移信息的交流信号,并进行后处理得到标准位移信号包括:
    在控制信号的作用下整流电路将基准信号转换成含有位移信息的半波信号;
    滤波电路对含有位移信息的半波信号进行滤波,得到滤波后的位移信号;
    第二放大电路对滤波后的位移信号进行调节,得到标准位移信号。
PCT/CN2021/080057 2020-12-18 2021-03-10 磁悬浮轴承、磁悬浮轴承控制系统和控制方法 WO2022126872A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21854800.6A EP4039998B1 (en) 2020-12-18 2021-03-10 Magnetic suspension bearing, and magnetic suspension bearing control system and control method
US17/636,304 US20220397155A1 (en) 2020-12-18 2021-03-10 Magnetic suspension bearing, magnetic suspension bearing control system and control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011498884.X 2020-12-18
CN202011498884.XA CN112240346B (zh) 2020-12-18 2020-12-18 磁悬浮轴承控制系统及磁悬浮轴承

Publications (1)

Publication Number Publication Date
WO2022126872A1 true WO2022126872A1 (zh) 2022-06-23

Family

ID=74175283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/080057 WO2022126872A1 (zh) 2020-12-18 2021-03-10 磁悬浮轴承、磁悬浮轴承控制系统和控制方法

Country Status (4)

Country Link
US (1) US20220397155A1 (zh)
EP (1) EP4039998B1 (zh)
CN (1) CN112240346B (zh)
WO (1) WO2022126872A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115566959A (zh) * 2022-12-06 2023-01-03 北京航空航天大学 一种磁悬浮电机位移自检测方法
CN116430733A (zh) * 2023-05-12 2023-07-14 曲阜师范大学 一种基于反演控制位置非对称约束的积分滑模机舱悬浮控制方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112240346B (zh) * 2020-12-18 2021-03-23 天津飞旋科技有限公司 磁悬浮轴承控制系统及磁悬浮轴承
CN116221276B (zh) * 2023-05-04 2023-08-15 山东华东风机有限公司 一种磁悬浮电机专用控制系统及控制方法
CN116696946B (zh) * 2023-08-02 2023-10-20 山东华东风机有限公司 一种磁悬浮轴承控制装置及控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000060169A (ja) * 1998-08-04 2000-02-25 Ebara Corp 磁気浮上制御装置
CN1812261A (zh) * 2005-12-29 2006-08-02 南京航空航天大学 避开开关功率放大器干扰的a/d采集系统
EP2006556A1 (en) * 2007-06-18 2008-12-24 Mecos Traxler AG Recovery of impact in a magnetic bearing device
CN101599670A (zh) * 2009-05-27 2009-12-09 北京航空航天大学 一种集成化双框架磁悬浮控制力矩陀螺磁轴承控制系统
CN105823452A (zh) * 2016-04-29 2016-08-03 北京航空航天大学 一种磁轴承用位移传感器位移信号调理方法
CN111130541A (zh) * 2019-12-20 2020-05-08 江苏大学 基于锁相环与td滤波器的磁轴承转子振动前馈补偿控制器
CN112240346A (zh) * 2020-12-18 2021-01-19 天津飞旋科技有限公司 磁悬浮轴承控制系统及磁悬浮轴承

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2716700B1 (fr) * 1994-02-28 1996-05-15 Mecanique Magnetique Sa Palier magnétique actif à auto-détection de position.
JPH11287248A (ja) * 1998-04-03 1999-10-19 Koyo Seiko Co Ltd 制御型磁気軸受
CN1599239A (zh) * 2004-09-23 2005-03-23 山东科技大学 基于fpga的磁悬浮轴承功率放大器
CZ302646B6 (cs) * 2009-08-26 2011-08-10 Rieter Cz S.R.O. Zpusob stabilizace levitujícího rotujícího elementu a zarízení pro stabilizaci levitujícího rotujícího elementu

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000060169A (ja) * 1998-08-04 2000-02-25 Ebara Corp 磁気浮上制御装置
CN1812261A (zh) * 2005-12-29 2006-08-02 南京航空航天大学 避开开关功率放大器干扰的a/d采集系统
EP2006556A1 (en) * 2007-06-18 2008-12-24 Mecos Traxler AG Recovery of impact in a magnetic bearing device
CN101599670A (zh) * 2009-05-27 2009-12-09 北京航空航天大学 一种集成化双框架磁悬浮控制力矩陀螺磁轴承控制系统
CN105823452A (zh) * 2016-04-29 2016-08-03 北京航空航天大学 一种磁轴承用位移传感器位移信号调理方法
CN111130541A (zh) * 2019-12-20 2020-05-08 江苏大学 基于锁相环与td滤波器的磁轴承转子振动前馈补偿控制器
CN112240346A (zh) * 2020-12-18 2021-01-19 天津飞旋科技有限公司 磁悬浮轴承控制系统及磁悬浮轴承

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4039998A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115566959A (zh) * 2022-12-06 2023-01-03 北京航空航天大学 一种磁悬浮电机位移自检测方法
CN115566959B (zh) * 2022-12-06 2023-03-24 北京航空航天大学 一种磁悬浮电机位移自检测方法
CN116430733A (zh) * 2023-05-12 2023-07-14 曲阜师范大学 一种基于反演控制位置非对称约束的积分滑模机舱悬浮控制方法
CN116430733B (zh) * 2023-05-12 2024-01-02 曲阜师范大学 含反演控制位置非对称约束的积分滑模机舱悬浮控制方法

Also Published As

Publication number Publication date
EP4039998C0 (en) 2024-02-14
CN112240346A (zh) 2021-01-19
CN112240346B (zh) 2021-03-23
EP4039998A1 (en) 2022-08-10
EP4039998B1 (en) 2024-02-14
EP4039998A4 (en) 2022-11-16
US20220397155A1 (en) 2022-12-15

Similar Documents

Publication Publication Date Title
WO2022126872A1 (zh) 磁悬浮轴承、磁悬浮轴承控制系统和控制方法
JP7089619B2 (ja) Pwmコンデンサの制御
JP4874665B2 (ja) ゲート駆動回路
JP5401774B2 (ja) 半導体素子のゲート駆動回路
JP5056955B2 (ja) 電圧駆動型素子を駆動する駆動装置
JP2010504730A (ja) 自動ゼロ電圧スイッチングモードコントローラ
JP5480750B2 (ja) 半導体素子の駆動装置及び方法
US11522460B2 (en) Optimizing the control of a hysteretic power converter at low duty cycles
WO2015074430A1 (zh) 一种igbt的数字控制方法及系统
JP5460520B2 (ja) 半導体素子の駆動装置及び方法
WO2020238899A1 (zh) 一种基于反馈的用于射频功率放大器的电源
JP2013153620A (ja) スイッチング電源装置
JP5462109B2 (ja) 半導体素子の駆動装置
WO2018203544A1 (en) Quasiresonant flyback converter
JP2532355B2 (ja) インバ−タ装置
JP2007020262A (ja) 電力変換装置
KR100536753B1 (ko) 피엘엘방식을 이용한 초음파 모터 구동방법
JP2005513849A (ja) 同期されたスイッチングレグをもつアイソレーションコンバータ
JP2019097287A (ja) Dc/dcコンバータ
CN109889041B (zh) 一种基于电容电流反馈控制的buck电路
TW517444B (en) High-order resonant drive circuit for linear piezoelectric ceramic motor
CN102437785A (zh) 基于单电感双电容的超声波电机半桥驱动电路
JP2004096834A (ja) 電気車両制御装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021854800

Country of ref document: EP

Effective date: 20220216

NENP Non-entry into the national phase

Ref country code: DE