CN110829875A - 一种三相逆变器桥臂精确电流检测的保护设计 - Google Patents

一种三相逆变器桥臂精确电流检测的保护设计 Download PDF

Info

Publication number
CN110829875A
CN110829875A CN201911231080.0A CN201911231080A CN110829875A CN 110829875 A CN110829875 A CN 110829875A CN 201911231080 A CN201911231080 A CN 201911231080A CN 110829875 A CN110829875 A CN 110829875A
Authority
CN
China
Prior art keywords
operational amplifier
bridge arm
current detection
phase inverter
accurate current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911231080.0A
Other languages
English (en)
Inventor
颜景斌
刘清岚
李瑞松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin University of Science and Technology
Original Assignee
Harbin University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin University of Science and Technology filed Critical Harbin University of Science and Technology
Priority to CN201911231080.0A priority Critical patent/CN110829875A/zh
Publication of CN110829875A publication Critical patent/CN110829875A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53873Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/122Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. dc/ac converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/122Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. dc/ac converters
    • H02H7/1227Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. dc/ac converters responsive to abnormalities in the output circuit, e.g. short circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/05Synchronous machines, e.g. with permanent magnets or DC excitation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

本发明涉及三相电能变换领域,具体涉及一种三相逆变器桥臂精确电流检测的保护设计,一种三相逆变器桥臂精确电流检测的保护设计包括栅极驱动器、IGBT模块、电动机、四通道运算放大器、单通道运算放大器、微功耗比较器、温度传感器、六路缓冲及线性驱动器、微控制器、电阻R1、R2、R3、电容C1和DC/DC降压转换器,此参考设计展示了摆幅响应趋稳时间接近1µs、准确度误差小于1%的逆变器桥臂电流感应;即使附近有高功率IGBT开关,此设计也可展现出优异的噪声抑制性能。

Description

一种三相逆变器桥臂精确电流检测的保护设计
技术领域
本发明涉及三相电能变换领域,具体涉及一种三相逆变器桥臂精确电流检测的保护设计。
技术背景
逆变技术是将太阳能等新能源转化的直流电变换成交流电的技术,随着电力电子技术的迅猛发展,逆变技术在各种行业应用广泛,特别是随着石油、煤和天然气等主要能源日益紧张,新能源的开发和利用越来越受到人们的重视。
逆变器是整个电流变换的重要组成部分,其性能的优劣直接影响电能的质量;电流感知中的延迟或慢速响应可能导致错误的电流估计,从而导致电流波形失真,使得转换效率低下和产生噪声;所以,提高逆变器电流感应精确度,提高噪声的抑制能力是非常有必要的。
发明内容
本发明的目的是提供一种三相逆变器桥臂精确电流检测的保护设计,该逆变器可以精确的感应电流和具有非常优异的噪声抑制性能,应用前景十分广泛。
本发明的目的通过以下技术方案来实现:三相逆变器桥臂精确电流检测的保护设计包括栅极驱动器、IGBT模块、电动机、四通道运算放大器、单通道运算放大器、微功耗比较器、温度传感器、六路缓冲及线性驱动器、微控制器、电阻R1、R2、R3、电容C1和DC/DC降压转换器,所述的栅极驱动器和IGBT模块连接在一起;所述的IGBT模块输出端连接着电动机;所述的电容C1连接在电源正负极之间;所述的R1、R2、R3分别连接着IGBT模块的三个下桥臂;所述的四通道运算放大器输入端连接在电阻两端;所述的四通道运算放大器输出端连接着微控制器;所述的微功耗比较器输入端连接着四通道运算放大器;所述的微功耗运算放大器输出端连接着六路缓冲及线性驱动器OE端口;所述的微控制器反馈的PWM波输入到路缓冲及线性驱动器中;所述的温度传感器连接着单通道运算放大器;所述的单通道运算放大器输出端连接着微控制器;所述的DC/DC降压转换器连接着微控制器。
作为本发明的进一步优化,本发明一种三相逆变器桥臂精确电流检测的保护设计所述的栅极驱动器采用UCC27712,它是一个620V高侧和低侧栅极驱动器,目标是驱动功率MOSFET或IGBT;该器件具有传播延迟快、通道间延迟匹配好等特点。
作为本发明的进一步优化,本发明一种三相逆变器桥臂精确电流检测的保护设计所述的IGBT模块采用六个IGBT进行半桥连接,直流侧使用一个电容C1,每一个桥臂使用一个二极管和一个IGBT组成。
作为本发明的进一步优化,本发明一种三相逆变器桥臂精确电流检测的保护设计所述的电动机采用永磁同步电动机。
作为本发明的进一步优化,本发明一种三相逆变器桥臂精确电流检测的保护设计所述的四通道运算放大器采用TLV9064,它具有足够的增益带宽和转换速率、RRIO能力、良好的CMRR和PSRR、良好的EMI和RFI抑制、低偏置电压和输入偏置电流以及稳定的电容负载驱动,它适用于需要低压操作、占用空间小和高电容负载驱动的应用场合。
作为本发明的进一步优化,本发明一种三相逆变器桥臂精确电流检测的保护设计所述的单通道运算放大器采用TLV9001,它具有轨对轨输入和输出摆幅能力;这些运算放大器为空间受限的应用提供了一种经济有效的解决方案;它的阻式开环输出阻抗使得更高的电容负载更容易稳定。
作为本发明的进一步优化,本发明一种三相逆变器桥臂精确电流检测的保护设计所述的微功耗比较器采用TLV1701,该设备提供了广泛的电源范围、轨对轨输入、低静止电流和低传播延迟。
作为本发明的进一步优化,本发明一种三相逆变器桥臂精确电流检测的保护设计所述的温度传感器采用一个R63(10kΩ)和一个电阻器R74(100Ω)。
作为本发明的进一步优化,本发明一种三相逆变器桥臂精确电流检测的保护设计所述的六路缓冲及线性驱动器采用SN74AHC367,它用于2V到5.5V的VCC操作,该器件是专门设计来提高微控制器性能和密度的。
作为本发明的进一步优化,本发明一种三相逆变器桥臂精确电流检测的保护设计所述的微控制器采用TMS320F28027,该设备提供了C28x核心的能力,并在低针数设备中与高度集成的控制外围设备相结合,可以直接路由控制PWM输出,ADC转换从0V到3.3V的固定满量程,且ADC接口已经进行了优化,以降低开销和延迟。
作为本发明的进一步优化,本发明一种三相逆变器桥臂精确电流检测的保护设计所述的DC/DC降压转换器采用TPS54202,它是一种小型、高效率、低EMI DC/DC模块,节省了体积和成本,因为不需要散热器;使用相同的输入电流,TPS54202作为功率转换器,可以提供更高的输出电流,并在满负荷、低负荷和备用运行时具有更低的功耗。
本发明的有益效果:该逆变器低成本低,精确度高,电流感应的趋稳时间小于1.25μs,校准精度低于1%,可实现精确的电流感应;微控制器采用TMS320F28027,它具有一个很好的电源噪声抑制的ADC单片机,即使附近有高功率IGBT开关,此设计也可展现出优异的噪声抑制性能;此设计通过硬件充分实现过流保护,总响应时间低于1.5µs;该参考设计适用于压缩机;逆变器的功率级可在高达2kW的功率下工作。
附图说明
图1为本发明一种三相逆变器桥臂精确电流检测的保护设计的结构示意图;
图2为本发明一种三相逆变器桥臂精确电流检测的保护设计所述的温度传感器结构示意图。
具体实施方式
结合图1、2说明本实施方式,本实施方式所述一种三相逆变器桥臂精确电流检测的保护设计包括栅极驱动器、IGBT模块、电动机、四通道运算放大器、单通道运算放大器、微功耗比较器、温度传感器、六路缓冲及线性驱动器、微控制器、电阻R1、R2、R3、电容C1和DC/DC降压转换器。
其中所述的温度传感器使用一个NTC电阻,具体是使用一个R63(10kΩ)接3.3V和一个电阻器R74(100Ω)接地面如图2所示,通过NTC的电压作为输入连接在运算放大器TLV9001中运放。
其中所述的栅极驱动器采用UCC27712,它是一个620V高侧和低侧栅极驱动器,目标是驱动IGBT模块;它包括保护功能,当输入保持打开状态或当不满足最小输入脉冲宽度规范时,输出保持低电平,联锁和死区功能防止同时打开两个输出,它采用最新的高压设备技术,具有良好的噪声和瞬态抗扰度,包括输入端较大的负电压容差、高的dV/dt容差、开关节点上较大的负瞬态安全操作区(NTSOA)和联锁;该设备由一个地面参考信道(LO)和一个浮动信道(HO)组成,浮动信道用于引导或隔离电源。
其中所述的DC/DC降压转换器采用TPS54202,它连接着微控制器,为其提供3.3V电压,作为降压转换器,它可以提供更高的输出电流,并在满负荷、低负荷和备用运行时具有更低的功耗。
其中所述的四通道运算放大器采用TLV9064,它输入端连接IGBT模块,输出端连接微控制器和微功耗比较器,具有轨对轨输入和输出摆动能力,低输入偏移电压和内部RFI和EMI滤波器,它的作用是放大逆变器输出的电流。
其中所述的微功耗比较器采用TLV1701,它输入端连接着四通道运算放大器,输出端连着六路缓冲及线性驱动器;比较器在发生过驱动输入和内部迟滞时,不会产生输出相位反转;它非常适合在恶劣嘈杂环境中进行精密电压监测,其中缓慢输入信号可以转换为无噪声数字输出。
四通道运算放大器的瞬态响应是通过并联电阻上的电压阶跃变化来评估的,感应电压的阶跃变化是通过与电动机连接的相应IGBT开关产生的,使绕组电流流过感应电阻;分流电阻容易产生电压振荡,放大器的输入滤波器和放大器的内部EMI滤波器有助于消除并联电阻上的高频振荡;电流感知放大器的全摆幅瞬态响应稳定时间为1.25us;TLV9064的高10mhz GBW和高旋转速率有助于实现更快的稳定时间,该电路使用TLV9064的一个通道作为比较器,TLV1701作为另一个比较器,过流保护电路输出信号连接到六路缓冲及线性驱动器上;一旦发生过流事件,输出信号将被拉起并使线路驱动器的输出无效,因此在门驱动程序UCC27712的输入端SVPWM信号将被禁用;因此,整个保护过程都是通过硬件来实现的,并且具有非常快的响应时间。
虽然本发明已以较佳的实施例公开如上,但其并非用以限定本发明,任何熟悉此技术的人,在不脱离本发明的精神和范围内,都可以做各种改动和修饰,因此本发明的保护范围应该以权利要求书所界定的为准。

Claims (7)

1.一种三相逆变器桥臂精确电流检测的保护设计,其特征是:它包括栅极驱动器、IGBT模块、电动机、四通道运算放大器、单通道运算放大器、微功耗比较器、温度传感器、六路缓冲及线性驱动器、微控制器、电阻R1、R2、R3、电容C1和DC/DC降压转换器,所述的栅极驱动器和IGBT模块连接在一起;所述的IGBT模块输出端连接着电动机;所述的电容C1连接在电源正负极之间;所述的R1、R2、R3分别连接着IGBT模块的三个下桥臂;所述的四通道运算放大器输入端连接在电阻两端;所述的四通道运算放大器输出端连接着微控制器;所述的微功耗比较器输入端连接着四通道运算放大器;所述的微功耗运算放大器输出端连接着六路缓冲及线性驱动器OE端口;所述的微控制器反馈的PWM波输入到路缓冲及线性驱动器中;所述的温度传感器连接着单通道运算放大器;所述的单通道运算放大器输出端连接着微控制器;所述的DC/DC降压转换器连接着微控制器。
2.根据权利要求1所述的一种三相逆变器桥臂精确电流检测的保护设计,其特征在于:所述的栅极驱动器采用UCC27712;所述的IGBT模块采用六个IGBT进行半桥连接。
3.根据权利要求1所述的一种三相逆变器桥臂精确电流检测的保护设计,其特征在于:所述的电动机采用永磁同步电动机;所述的四通道运算放大器采用TLV9064。
4.根据权利要求1所述的一种三相逆变器桥臂精确电流检测的保护设计,其特征在于:所述的单通道运算放大器采用TLV9001;所述的微功耗比较器采用TLV1701。
5.根据权利要求1所述的一种三相逆变器桥臂精确电流检测的保护设计,其特征在于:所述的温度传感器采用一个R63(10kΩ)和一个电阻器R74(100Ω)。
6.根据权利要求1所述的一种三相逆变器桥臂精确电流检测的保护设计,其特征在于:所述的六路缓冲及线性驱动器采用SN74AHC367;所述的微控制器采用TMS320F28027。
7.根据权利要求1所述的一种三相逆变器桥臂精确电流检测的保护设计,其特征在于:所述的DC/DC降压转换器采用TPS54202。
CN201911231080.0A 2019-12-05 2019-12-05 一种三相逆变器桥臂精确电流检测的保护设计 Pending CN110829875A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911231080.0A CN110829875A (zh) 2019-12-05 2019-12-05 一种三相逆变器桥臂精确电流检测的保护设计

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911231080.0A CN110829875A (zh) 2019-12-05 2019-12-05 一种三相逆变器桥臂精确电流检测的保护设计

Publications (1)

Publication Number Publication Date
CN110829875A true CN110829875A (zh) 2020-02-21

Family

ID=69543824

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911231080.0A Pending CN110829875A (zh) 2019-12-05 2019-12-05 一种三相逆变器桥臂精确电流检测的保护设计

Country Status (1)

Country Link
CN (1) CN110829875A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112260570A (zh) * 2020-11-16 2021-01-22 哈尔滨理工大学 一种三相逆变器桥臂精确电流检测的设计
CN112350608A (zh) * 2020-12-07 2021-02-09 哈尔滨理工大学 一种关于delta结构的双向PWM整流器设计

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204064495U (zh) * 2014-08-26 2014-12-31 新疆特变电工自控设备有限公司 一种变压器油温检测装置
CN106385195A (zh) * 2016-12-03 2017-02-08 河池学院 一种高频逆变器及其短路保护电路
CN208241641U (zh) * 2018-06-21 2018-12-14 中国矿业大学 风机变桨距永磁电机相电流检测及过流保护电路

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204064495U (zh) * 2014-08-26 2014-12-31 新疆特变电工自控设备有限公司 一种变压器油温检测装置
CN106385195A (zh) * 2016-12-03 2017-02-08 河池学院 一种高频逆变器及其短路保护电路
CN208241641U (zh) * 2018-06-21 2018-12-14 中国矿业大学 风机变桨距永磁电机相电流检测及过流保护电路

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112260570A (zh) * 2020-11-16 2021-01-22 哈尔滨理工大学 一种三相逆变器桥臂精确电流检测的设计
CN112350608A (zh) * 2020-12-07 2021-02-09 哈尔滨理工大学 一种关于delta结构的双向PWM整流器设计

Similar Documents

Publication Publication Date Title
Wang et al. Integrated switch current sensor for shortcircuit protection and current control of 1.7-kV SiC MOSFET modules
KR100617884B1 (ko) 펄스폭변조기시스템
US20170373599A1 (en) Apparatus for controlling insulating gate-type semiconductor element, and power conversion apparatus using apparatus for controlling insulating gate-type semiconductor element
KR20200091398A (ko) 복수의 독립된 출력 스테이지들을 가진 클래스-d 증폭기
TW200412006A (en) Adaptive compensation of dead time for inverter and converter
Mocevic et al. Phase current sensor and short-circuit detection based on rogowski coils integrated on gate driver for 1.2 kv sic mosfet half-bridge module
CN110829875A (zh) 一种三相逆变器桥臂精确电流检测的保护设计
TW201601424A (zh) 功率變換器、短路保護電路與控制方法
KR20200093454A (ko) 게이트 드라이버들에서의 저전력 사이클 간 비트 전송
CN102377326B (zh) 基于igbt桥式开关拓扑的驱动电路及其保护模块
CN105162314A (zh) 一种用于buck变换器的过流检测电路
EP3454465B1 (en) Power conversion device and driving method of power switch
CN112165319A (zh) 一种上桥臂驱动电路、高压集成电路以及功率模块
CN112332667B (zh) 一种电流模升降压变换器电流检测电路
CN203151079U (zh) 限电流和过电流双电流环保护电路
CN202189087U (zh) 一种交流电中检测直流分量的装置
CN115663763B (zh) SiC MOSFET高精度短路保护电路
JP2003088098A (ja) 電力変換装置
CN106953624B (zh) Mosfet并联过流保护电路
CN103187710A (zh) 限电流和过电流双电流环保护电路
Anurag et al. Effect of optocoupler gate drivers on SiC MOSFET
CN108540026A (zh) 一种基于碳化硅/氮化镓mosfet的永磁同步电机驱动控制实时调压电路
US20130307458A1 (en) Motor Driving Circuit and Method Thereof
CN214097598U (zh) 一种适用于开关电源的高速电流检测电路
CN109254188B (zh) 一种适用于开关电源的高速电流检测电路

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination