CN111130541A - 基于锁相环与td滤波器的磁轴承转子振动前馈补偿控制器 - Google Patents

基于锁相环与td滤波器的磁轴承转子振动前馈补偿控制器 Download PDF

Info

Publication number
CN111130541A
CN111130541A CN201911335459.6A CN201911335459A CN111130541A CN 111130541 A CN111130541 A CN 111130541A CN 201911335459 A CN201911335459 A CN 201911335459A CN 111130541 A CN111130541 A CN 111130541A
Authority
CN
China
Prior art keywords
value
voltage signal
voltage
phase
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911335459.6A
Other languages
English (en)
Inventor
朱熀秋
唐明杰
樊帅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN201911335459.6A priority Critical patent/CN111130541A/zh
Publication of CN111130541A publication Critical patent/CN111130541A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/16Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop
    • H03L7/18Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop
    • H03L7/1803Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop the counter or frequency divider being connected to a cycle or pulse swallowing circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/16Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop
    • H03L7/18Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop
    • H03L7/181Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop a numerical count result being used for locking the loop, the counter counting during fixed time intervals

Abstract

本发明公开一种基于锁相环与TD滤波器的磁轴承转子振动前馈补偿控制器,由力/电流转换模块、第一、第二PID控制器和前馈补偿控制模块组成,前馈补偿控制模块由依次串接的电压比较器、PLL模块、FFT算法模块、坐标变换模块、TD滤波器以及坐标反变换模块组成,PLL模块由鉴相器、环路滤波器、压控振荡器、1/N分频器组成,鉴相器、环路滤波器和压控振荡器次串接,1/N分频器输入端连接压控振荡器输出端,1/N分频器输出端连接鉴相器输入端;在快速傅里叶变换进行频域分析提取振动信号之前加入设置好的锁相环倍频电路,利用锁相环倍频电路实现了整周期采样,保证振动信号的周期完整,抑制栅栏效应与泄露效应,准确反映转子的当前振动状况,提高振动的补偿精度。

Description

基于锁相环与TD滤波器的磁轴承转子振动前馈补偿控制器
技术领域
本发明是属于磁悬浮轴承控制领域,具体是二自由度六极混合磁悬浮轴承的转子不平衡振动补偿控制器,对二自由度六极混合磁轴承转子的振动实现前馈补偿。
背景技术
磁悬浮轴承(简称磁轴承)是利用线圈中的电流或永磁体产生电磁力,使转子悬浮于空间中,实现转子和定子之间没有任何机械接触的一种新型高性能轴承。由于磁轴承具有无摩擦、无损耗、无需润滑和密封、可支承转速高、回转精度高、无污染、使用寿命长等优点,从根本上改变了传统的支承形式,特别适用于高速、超洁净、真空等要求非常高的场合。由于磁轴承转子能达到数万转以上的速度,在高速旋转会带来一系列问题,其中最主要的是转子自身不平衡引发的问题,即周期性振动问题。目前,振动补偿即是通过一定控制策略把磁轴承系统转子转动时产生的与转速同频的周期位移或激振力补偿掉。针对周期性位移力对磁轴承系统的不同影响出现两种不同补偿方案:1、针对位移进行补偿的策略称为位移最小补偿,即让转子绕几何中心旋转。此类补偿方法有影响系数法、开环前馈法、迭代学习控制法等,目的是提高转子回转精度,如磁悬浮加工主轴应用等,但是其控制电流易饱和,使转速不易提高,阻碍加工效率提高。2、针对振动力进行的补偿称为惯性力最小补偿,即让转子绕其惯性中心旋转。常采用的方法有凹陷滤波器法、频域跟踪法、力自动平衡法、自适应滤波法等,目的是通过减小磁轴承线圈电流波动,降低系统不平衡激振力响应,增强系统稳定性,提高转子速度等。
《现代电子技术》2017年10月1日第40卷第19期出版的文献《基于自抗扰控制器和坐标变换的BSRM转子不平衡振动补偿控制》中利用快速傅里叶变换从位移传感器采集到的位移信号中提取出与转速同频率的同步振动信号,在进行低通滤波和坐标变换后,将得到的补偿信号求反叠加到原来的信号之上,减弱或消除该频段内的信号,即达到减小或消除振动的目的。但是由于采样频率固定,不能跟踪转子转速变化,导致对位移信号进行FFT频谱分析时产生栅栏效应与泄漏效应,不能准确反映转子的当前振动状况,导致振动补偿缺乏实时性,且补偿效果欠佳。所以,为了保证振动信号的周期完整,抑制栅栏效应与泄露效应,必须采用整周期采样。整周期采样是指系统的采样频率动态地跟踪信号频率的变化,信号频率高,则采样间隔短,反之采样间隔长,即采样频率是周期信号频率的整数倍。实现整周期采样的关键是锁相环倍频电路的设置。
发明内容
本发明的目的是提供了一种基于锁相环倍频电路与TD滤波器的二自由度六级混合磁轴承转子不平衡振动前馈补偿控制器,实现整周期采样,保证振动信号的周期完整,抑制栅栏效应与泄露效应,确保提取的振动信号的实时性与可靠性,提高补偿效果。
为实现上述目的,本发明基于锁相环与TD滤波器的磁轴承转子振动前馈补偿控制器采用的技术方案是:其由力/电流转换模块、第一、第二PID控制器和前馈补偿控制模块组成,所述的前馈补偿控制模块由依次串接的电压比较器、PLL模块、FFT算法模块、坐标变换模块、TD滤波器以及坐标反变换模块组成,力/电流转换模块的输出端连接复合被控对象的输入端,电压比较器的输入端连接复合被控对象的输出端,复合被控对象的输入为控制电流ix *、iy *,输出为转子径向两个方向上位移的电压信号值
Figure BDA0002327684220000021
复合被控对象由依次串接的Clark逆变换模块、电流滞环三相功率逆变器和二自由度六级混合磁轴承组成;所述的电压信号值
Figure BDA0002327684220000022
输入到电压比较器中,坐标反变换模块输出振动补偿信号值xm、ym,振动补偿信号值xm、ym与对应的给定位移电压x*、y*作比较得到对应的位移误差w1、w2,两个位移误差w1、w2经对应的第一、第二PID控制器后输出力信号值Fx、Fy,力信号值Fx、Fy经至力/电流转换模块后输出为所述的控制电流
Figure BDA0002327684220000023
到复合被控对象中。
所述的电压比较器将电压信号值
Figure BDA0002327684220000024
分别与对应的参考电压作比较,输出与转子同频的方波电压信号值ux、uy,该方波电压信号值ux、uy经PLL模块后输出一频率N倍于转子转速的对应的方波电压信号值uξ、uα,该方波电压信号值uξ、uα经FFT算法模块后输出对应的振动信号值ξm、αm,该振动信号值ξm、αm经坐标变换模块输出对应的振动信号直流值
Figure BDA0002327684220000025
该振动信号直流值
Figure BDA0002327684220000026
经TD滤波器输出对应的直流信号值
Figure BDA0002327684220000027
该直流信号值
Figure BDA0002327684220000028
经坐标反变换模块输出所述的交流振动补偿信号值xm、ym
所述的PLL模块由鉴相器、环路滤波器、压控振荡器、1/N分频器组成,鉴相器、环路滤波器和压控振荡器次串接,1/N分频器的输入端连接压控振荡器的输出端,1/N分频器的输出端连接鉴相器的输入端。
以输入PLL模块22的电压信号值ux为例:电压信号值ux与1/N分频器输出的电压信号值up同时输入到输入鉴相器中,鉴相器输出电压信号值ud,电压信号值ud经环路滤波器后输出电压信号值uc,电压信号值uc经压控振荡器后输出方波电压信号值uξ,方波电压信号值uξ,方波电压信号值uξ经1/N分频器将分频后的电压信号值up送入鉴相器中;PLL模块对输入的电压信号值uy的处理过程与电压信号值ux相同。
本发明的优点在于:
(1)本发明采用开环前馈补偿控制,相对于闭环反馈补偿控制,其优点是不会增加混合磁悬浮轴承原控制系统传递函数的阶次,对整个系统的稳定性影响较小,并且PID的参数基本不用变化,这样能够减少调试时间。
(2)为了防止对位移信号进行频谱分析时产生栅栏效应与泄漏效应,从而导致不能准确反映转子的当前振动状况,提取的频率信号与真实的振动信号不符,达不到补偿的效果,本发明在快速傅里叶变换(FFT)进行频域分析提取振动信号之前,加入设置好的锁相环倍频电路,利用锁相环倍频电路(PLL),实现了整周期采样,保证振动信号的周期完整,抑制栅栏效应与泄露效应,确保了系统的采样频率动态地跟踪信号频率的变化,信号频率高,则采样间隔短,反之采样间隔长,即采样频率是周期信号频率的整数倍,可以实时跟踪转子转速变化,防止了对位移信号进行频谱分析时产生栅栏效应与泄漏效应,因此可以准确反映转子的当前振动状况,确保了提取的振动信号的实时性与可靠性,提高了振动的补偿精度。
(3)本发明利用自抗扰控制器中的TD滤波器良好的低通滤波性能,经坐标变换后的直流信号可以顺利的通过滤波器,同时可以消除高频噪声。利用快速傅立叶变换(FFT)将采样得到的时域位移信号进行频域分析,从中提取出与转速同频的振动信号,在此分析的基础上,再经过两次坐标变换,把提取出来的同频振动信号经过滤波处理后叠加到原来的位移信号中用来抵消掉原振动信号,这样进入控制器的位移信号中就不再包含同频振动成分,从而使转子绕惯性主轴旋转,达到振动补偿的目的。
(4)本发明采用TD滤波器,TD滤波器非线性过程分析时,一旦将TD滤波器的跟踪参数给定之后,即使输入信号频率非常高,其跟踪波形也可以被视为一个正弦波,并且频率与输入信号相同。二阶TD滤波器和二阶线性低通滤波器特性相似,但远远优于一般线性系统,并且在通带内有较小相移时,无谐振现象产生,使去噪效果更优,提高了振动的补偿精度,使得磁轴承能够被运用到更多高速、高精的领域中。
附图说明
图1是二自由度六极径向混合磁轴承的轴向结构示意图;
图2是复合被控对象的等效示意图;
图3是本发明所述的基于锁相环与TD滤波器的磁轴承转子振动前馈补偿控制器的结构框图;
图4是图3中的PLL模块22的结构框图;
图中,1.二自由度六极混合磁轴承;11.环形永磁体;12.转子;13.径向控制线圈;14.为定子;
2.前馈补偿控制模块;21.电压比较器;22.PLL模块;23.FFT算法模块;24.坐标变换模块;25.TD滤波器;26.坐标反变换模块;221.鉴相器;222.环路滤波器;223.压控振荡器;224.1/N分频器;
3.Clark逆变换模块;4.电流滞环三相功率逆变器;5.复合被控对象;6.第一PID控制器;7.第二控制器;8.传感器;9.力/电流转换模块。
具体实施方式
如图1所示,二自由度六极混合磁轴承1是由环形永磁体11、转子12、径向控制线圈13、两个径向定子14构成的轴向双片式结构,其中的环形永磁体11置于两个完全相同的径向定子14中间,且每个径向定子14沿圆周方向均匀分布六个定子磁极,定子磁极沿轴向对齐,径向控制线圈13缠绕在定子磁极上,分为A、B、C三组,每组四个线圈串联,采用星型连接,通以三相电流,转子12的中心置于径向定子14的几何中心处。
如图2所示,二自由度六极混合磁轴承1的功率驱动由电流滞环三相功率逆变器4实现,电流滞环三相功率逆变器4串接于二自由度六级混合磁轴承1前,电流滞环三相功率逆变器4之间串接Clark逆变换模块3,坐标变换由Clark逆变换模块3实现。Clark逆变换模块3、电流滞环三相功率逆变器4与二自由度六级混合磁轴承1依次串接共同构成复合被控对象5。二自由度六极径向混合磁轴承1的径向控制电流ix *、iy *经Clark逆变换模块3变换为三相电流期望值iu *、iv *、iw *,电流滞环三相功率逆变器4跟踪三相电流期望值iu *、iv *、iw *输出二自由度六极径向混合磁轴承1径向控制电流iu、iv、iw,二自由度六极径向混合磁轴承1的径向控制线圈13由径向控制电流iu、iv、iw驱动。因此,复合被控对象5等效为依次串接的Clark逆变换模块3、电流滞环三相功率逆变器4和二自由度六级混合磁轴承1,复合被控对象5的输入为控制电流ix *、iy *,输出为转子径向两个方向上位移的电压信号值
Figure BDA0002327684220000041
转子径向X、Y两个方向上的位移的电压信号值
Figure BDA0002327684220000042
分别由传感器测得,根据转子径向两个方向上的位移信号可得到控制电流ix *、iy *
如图3所示,本发明基于锁相环与TD滤波器的磁轴承转子振动前馈补偿控制器连接在复合被控对象5的输入端和输出端之间,该控制器由力/电流转换模块9、第一PID控制器6、第二PID控制器7以及前馈补偿控制模块2组成。前馈补偿控制模块2由依次串接的电压比较器21、PLL(锁相环倍频电路)模块22、FFT(傅里叶变换)算法模块23、坐标变换模块24、TD滤波器25以及坐标反变换模块26组成。力/电流转换模块9的输出端连接复合被控对象5的输入端,电压比较器21的输入端连接复合被控对象5的输出端。
当转子高速旋转时,采用传感器8检测复合被控对象5的径向X、Y两个方向上的位移的电压信号值
Figure BDA0002327684220000051
将电压信号值
Figure BDA0002327684220000052
输入到电压比较器21中,电压比较器21将电压信号值
Figure BDA0002327684220000053
分别与对应的参考电压作比较,输出与转子同频的方波电压信号值ux、uy。例如:传感器8检测包含了正弦振动信号的转子位移的电压信号值
Figure BDA0002327684220000054
将电压信号值
Figure BDA0002327684220000055
作为电压比较器21的一个输入;将参考电压ur作为电压比较器21的另一个输入,在正弦振动信号的正半周期,
Figure BDA0002327684220000056
大于ur,电压比较器21输出高电平,反之电压比较器21输出低电平,这样比较器21输出为与转子同频的方波电压信号值ux
方波电压信号值ux、uy输入至PLL模块22中,PLL模块22后输出一频率N倍于转子转速的对应的方波电压信号值uξ、uα
DSP在uξ的上升沿控制ADC对转子位移进行采样,以实现整周期采样,然后利用快速傅立叶变换从采样得到的位移信号中提取出与转子同频的振动信号。将方波电压信号uξ、uα值输入至FFT算法模块23中,FFT算法模块23输出对应的振动信号值ξm、αm
振动信号值ξm、αm输入至坐标变换模块24中,坐标变换模块24输出对应的振动信号直流值
Figure BDA0002327684220000057
坐标变换模块24将提取出来的振动信号值ξm、αm交流值转换为振动信号直流值
Figure BDA0002327684220000058
一些高频噪声信号则包含在该直流值中。
振动信号直流值
Figure BDA0002327684220000059
输入至TD滤波器25,TD滤波器25输出对应的直流信号值
Figure BDA00023276842200000510
Figure BDA00023276842200000511
TD滤波器25拥有良好的低通滤波性能,能够滤除掉振动信号直流值
Figure BDA00023276842200000512
中的高频噪声信号,然后输出平稳的直流信号值
Figure BDA0002327684220000061
直流信号值
Figure BDA0002327684220000062
输入至坐标反变换模块26中,坐标反变换模块26输出对应的交流振动补偿信号值xm、ym。坐标反变换模块26将滤波后的直流信号值
Figure BDA0002327684220000063
再转变成交流信号,就得到了精确的与转子同频的不平衡振动补偿信号值xm、ym。将振动补偿信号值xm、ym取反叠加到位移电压信号中,就能把振动信号从位移信号中消除。
将振动补偿信号值xm、ym与对应的给定位移电压x*、y*作比较,得到对应的位移误差w1、w2,即将振动补偿信号值xm与给定位移电压x*比较得到位移误差w1,将振动补偿信号值ym与给定位移电压y*比较得到位移误差w2
两个位移误差w1、w2经对应的PID控制器后输出力信号值Fx、Fy,即位移误差w1经第一PID控制器6输出力信号值Fx,位移误差w2经第二PID控制器7输出力信号值Fy。此时,进入第一、第二PID控制器6、7的位移误差w1、w2信号中没有不平衡振动信号。
力信号值Fx、Fy输入至力/电流转换模块9中,输出为转换后的控制电流
Figure BDA0002327684220000064
该控制电流
Figure BDA0002327684220000065
输入到复合被控对象5中,对复合被控对象5进行控制,此时的控制电流
Figure BDA0002327684220000066
Figure BDA0002327684220000067
信号中已经不包含振动信号,从而达到抑制甚至消除转子不平衡振动的目的。
如图4所示,PLL(锁相环倍频电路)模块22由鉴相器221、环路滤波器222、压控振荡器223,1/N分频器224组成。鉴相器221、环路滤波器222和压控振荡器223依次串接,且1/N分频器224的输入端连接压控振荡器223的输出端,1/N分频器224的输出端连接鉴相器221的输入端。电压比较器21输出的电压信号值ux、uy都需要经过PLL模块22进行锁相环倍频处理,且PLL模块22对电压信号值ux、uy的处理方法和作用完全相同,因此以下仅以电压比较器21输出的电压信号值ux为例,PLL模块22对电压信号值uy的处理过程与电压信号值ux相同:
图4中,输入PLL模块22中的电压信号值ux与其中的1/N分频器224输出的电压信号值up同时到输入鉴相器221中,鉴相器221的作用是检测输入电压信号值ux和电压信号值up的相位差,并将检测出的相位差信号转换成电压信号值ud输出。
因为1/N分频器224输出的电压信号值up是压控振荡器223输出的电压信号值uξ经过N分频得到的,因此up与uξ的频率不同,但相位相同。因此鉴相器221输出的电压信号值ud可以写成鉴相器221输入电压信号值ux和压控振荡器223输出的电压信号值uξ之间相位差的比例函数,鉴相器221通常是一个模拟乘法器,所以电压信号值ud可表示为:
ud=Kd sinθe
其中Kd是鉴相器增益,θe表示相位差,且:
ux=uxsin(ωit+θi),uξ=uξcos(ωot+θo),θe=θio
其中ωi是鉴相器221输入电压信号值ux的频率,θi是鉴相器221输入电压信号值ux的相位;ωo是压控振荡器223输出的方波电压信号值uξ的频率,θo是压控振荡器223输出的方波电压信号值uξ的相位,t为时域变量;
当θe≤30°时,ud可以近似为:
ud=Kdθe
鉴相器221输出的电压信号值ud输入至环路滤波器222,环路滤波器222在这里是起到无源低通滤波器的作用,将电压信号值ud中的噪声和干扰成分滤除。其性能的好坏会直接关系到锁相环能否正常工作,设其传递函数为F,可得:
uc=F·ud
环路滤波器222输出的电压信号值uc输入至压控振荡器223,压控振荡器223输出方波电压信号值uξ。压控振荡器223是一种电压/频率转换器,因此其输出的电压信号值uξ的频率ωo是环路滤波器222输出的电压信号值uc的函数,在环路锁定点附近,频率为:
ωo=ωc+Kouc
由式可知uc对ωo的控制特性呈线性,Ko为控制特性斜率,ωc为压控振荡器223的中心频率。
电压信号值uc输入至压控振荡器223,压控振荡器223输出的电压信号值uξ。电压信号值uc作用于压控振荡器223的结果是把压控振荡器223输出的电压信号值uξ的频率ωo拉向鉴相器221输入电压信号值ux的频率ωi,当二者相等时,鉴相器221的输入电压信号值ux与压控振荡器223的输出电压信号uξ保持固定的相位差值,即它们的相位被锁住,称之为入锁。
为了实现倍频,在压控振荡器223输出的电压信号值uξ后对uξ作N分频,即反馈通道上加上1/N分频器224,电压信号值uξ输入到1/N分频器224中,1/N分频器224将分频后的电压信号值up送入鉴相器221中与电压比较器21输出的电压信号值ux进行相位比较。当PLL进入锁定状态时,即分频后电压信号值up的频率与鉴相器221输入电压信号ux的频率相等时,压控振荡器223输出的电压信号值uξ即可实现倍频。此时:
ωo=ωp·N,
式中ωp为1/N分频器224输出的电压信号值up的频率,N为分频系数。当ωi=ωp时,ωo=ωi·N。
压控振荡器223输出的电压信号值uξ是一频率N倍于转子转速的方波信号。因此,电压信号值ux经PLL模块22后输出一频率N倍于转子转速的方波信号值uξ,DSP在电压信号uξ的上升沿控制ADC对转子位移进行采样,以实现整周期采样。然后利用快速傅立叶算法模块23将采样得到的时域位移信号进行频域分析,从中提取出与转速同频的振动信号。
本发明工作时,通过位移检测和不平衡补偿控制这两个部分来实现的,由于转子的振动频率等于转子的转速,因而,传感器采集到的位移信号中必然含有与转速ω同频的分量。前馈补偿控制模块2利用快速傅立叶变换从采样得到的位移信号中提取出与转速同频的振动信号,利用坐标变换将交流变化的振动信号转换为直流值,再经过TD滤波器滤波,和坐标反变换将滤波后的直流信号转换成交流信号,该信号即为振动补偿信号,取反叠加到原位移信号中,抵消掉振动信号,这样系统位移信号中就不再包含同频振动成分,从而使转子绕惯性主轴旋转。

Claims (6)

1.一种基于锁相环与TD滤波器的磁轴承转子振动前馈补偿控制器,其由力/电流转换模块(9)、第一、第二PID控制器(6、7)和前馈补偿控制模块(2)组成,其特征是:所述的前馈补偿控制模块(2)由依次串接的电压比较器(21)、PLL模块(22)、FFT算法模块(23)、坐标变换模块(24)、TD滤波器(25)以及坐标反变换模块(26)组成,力/电流转换模块(9)的输出端连接复合被控对象(5)的输入端,电压比较器(21)的输入端连接复合被控对象(5)的输出端,复合被控对象(5)的输入为控制电流ix *、iy *,输出为转子径向两个方向上位移的电压信号值
Figure FDA0002327684210000011
复合被控对象(5)由依次串接的Clark逆变换模块(3)、电流滞环三相功率逆变器(4)和二自由度六级混合磁轴承(1)组成;所述的电压信号值
Figure FDA0002327684210000012
输入到电压比较器(21)中,坐标反变换模块(26)输出振动补偿信号值xm、ym,振动补偿信号值xm、ym与对应的给定位移电压x*、y*作比较得到对应的位移误差w1、w2,两个位移误差w1、w2经对应的第一、第二PID控制器(6、7)后输出力信号值Fx、Fy,力信号值Fx、Fy经至力/电流转换模块(9)后输出为所述的控制电流
Figure FDA0002327684210000013
Figure FDA0002327684210000014
到复合被控对象(5)中。
2.根据权利要求1所述的基于锁相环与TD滤波器的磁轴承转子振动前馈补偿控制器,其特征是:所述的电压比较器(21)将电压信号值
Figure FDA0002327684210000015
分别与对应的参考电压作比较,输出与转子同频的方波电压信号值ux、uy,该方波电压信号值ux、uy经PLL模块(22)后输出一频率N倍于转子转速的对应的方波电压信号值uξ、uα,该方波电压信号值uξ、uα经FFT算法模块(23)后输出对应的振动信号值ξm、αm,该振动信号值ξm、αm经坐标变换模块(24)输出对应的振动信号直流值
Figure FDA0002327684210000016
该振动信号直流值
Figure FDA0002327684210000017
经TD滤波器(25)输出对应的直流信号值
Figure FDA0002327684210000018
该直流信号值
Figure FDA0002327684210000019
经坐标反变换模块(26)输出所述的交流振动补偿信号值xm、ym
3.根据权利要求2所述的基于锁相环与TD滤波器的磁轴承转子振动前馈补偿控制器,其特征是:所述的PLL模块(22)由鉴相器(221)、环路滤波器(222)、压控振荡器(223)、1/N分频器(224)组成,鉴相器(221)、环路滤波器(222)和压控振荡器(223)依次串接,1/N分频器(224)的输入端连接压控振荡器(223)的输出端,1/N分频器(224)的输出端连接鉴相器(221)的输入端。
4.根据权利要求3所述的基于锁相环与TD滤波器的磁轴承转子振动前馈补偿控制器,其特征是:以输入PLL模块(22)的电压信号值ux为例:电压信号值ux与1/N分频器(224)输出的电压信号值up同时输入到输入鉴相器(221)中,鉴相器(221)输出电压信号值ud,电压信号值ud经环路滤波器(222)后输出电压信号值uc,电压信号值uc经压控振荡器(223)后输出方波电压信号值uξ,方波电压信号值uξ,方波电压信号值uξ经1/N分频器(224)将分频后的电压信号值up送入鉴相器(221)中;PLL模块(22)对电压信号值uy的处理过程与电压信号值ux相同。
5.根据权利要求4所述的基于锁相环与TD滤波器的磁轴承转子振动前馈补偿控制器,其特征是:所述的电压信号值ux=uxsin(ωit+θi),电压信号值ud=Kd sinθe,电压信号值uc=F·ud,电压信号值uξ=uξcos(ωot+θo),θe=θio,Kd是鉴相器增益,θe是相位差,ωi是鉴相器(221)输入电压信号值ux的频率,θi是鉴相器(221)输入电压信号值ux的相位,ωo是压控振荡器(223)输出的电压信号值uξ的频率,θo是压控振荡器(223)输出的电压信号值uξ的相位,t为时域变量,F为传递函数。
6.根据权利要求5所述的基于锁相环与TD滤波器的磁轴承转子振动前馈补偿控制器,其特征是:所述的频率ωo=ωp·N,ωp为1/N分频器(224)输出的电压信号值up的频率,N为分频系数。
CN201911335459.6A 2019-12-20 2019-12-20 基于锁相环与td滤波器的磁轴承转子振动前馈补偿控制器 Pending CN111130541A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911335459.6A CN111130541A (zh) 2019-12-20 2019-12-20 基于锁相环与td滤波器的磁轴承转子振动前馈补偿控制器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911335459.6A CN111130541A (zh) 2019-12-20 2019-12-20 基于锁相环与td滤波器的磁轴承转子振动前馈补偿控制器

Publications (1)

Publication Number Publication Date
CN111130541A true CN111130541A (zh) 2020-05-08

Family

ID=70501132

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911335459.6A Pending CN111130541A (zh) 2019-12-20 2019-12-20 基于锁相环与td滤波器的磁轴承转子振动前馈补偿控制器

Country Status (1)

Country Link
CN (1) CN111130541A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111835251A (zh) * 2020-07-30 2020-10-27 扬州大学 一种基于无速度传感的永磁同步电机高性能控制方法
CN112096738A (zh) * 2020-09-30 2020-12-18 华中科技大学 一种应用于磁悬浮轴承的电流振动抑制方法和系统
CN112198911A (zh) * 2020-09-29 2021-01-08 上海大学 一种随机线谱自适应跟踪消除方法和系统
CN113342080A (zh) * 2021-06-20 2021-09-03 三河科达实业有限公司 便携式通用生命支持系统的呼吸模块涡轮变速控制方法
WO2022126872A1 (zh) * 2020-12-18 2022-06-23 天津飞旋科技股份有限公司 磁悬浮轴承、磁悬浮轴承控制系统和控制方法
CN114962450A (zh) * 2022-03-21 2022-08-30 华中科技大学 磁悬浮转子系统同步振动抑制方法、系统、存储介质及终端

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101599670A (zh) * 2009-05-27 2009-12-09 北京航空航天大学 一种集成化双框架磁悬浮控制力矩陀螺磁轴承控制系统
CN110380658A (zh) * 2019-06-27 2019-10-25 江苏大学 一种无轴承磁通切换永磁电机转子偏心位移补偿控制器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101599670A (zh) * 2009-05-27 2009-12-09 北京航空航天大学 一种集成化双框架磁悬浮控制力矩陀螺磁轴承控制系统
CN110380658A (zh) * 2019-06-27 2019-10-25 江苏大学 一种无轴承磁通切换永磁电机转子偏心位移补偿控制器

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
张丹红等: "PLL电路在磁悬浮转子振动信号提取中的应用", 武汉工程大学学报 *
朱熀秋等: "三自由度六极混合磁轴承线性/非线性自抗扰切换解耦控制" *
李雪林等: "基于自抗扰控制器和坐标变换的BSRM转子不平衡振动补偿控制", 现代电子技术 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111835251A (zh) * 2020-07-30 2020-10-27 扬州大学 一种基于无速度传感的永磁同步电机高性能控制方法
CN111835251B (zh) * 2020-07-30 2023-11-24 扬州大学 一种基于无速度传感的永磁同步电机高性能控制方法
CN112198911A (zh) * 2020-09-29 2021-01-08 上海大学 一种随机线谱自适应跟踪消除方法和系统
CN112198911B (zh) * 2020-09-29 2021-07-27 上海大学 一种随机线谱自适应跟踪消除方法和系统
CN112096738A (zh) * 2020-09-30 2020-12-18 华中科技大学 一种应用于磁悬浮轴承的电流振动抑制方法和系统
CN112096738B (zh) * 2020-09-30 2021-06-11 华中科技大学 一种应用于磁悬浮轴承的电流振动抑制方法和系统
WO2022126872A1 (zh) * 2020-12-18 2022-06-23 天津飞旋科技股份有限公司 磁悬浮轴承、磁悬浮轴承控制系统和控制方法
CN113342080A (zh) * 2021-06-20 2021-09-03 三河科达实业有限公司 便携式通用生命支持系统的呼吸模块涡轮变速控制方法
CN114962450A (zh) * 2022-03-21 2022-08-30 华中科技大学 磁悬浮转子系统同步振动抑制方法、系统、存储介质及终端
CN114962450B (zh) * 2022-03-21 2023-06-16 华中科技大学 磁悬浮转子系统同步振动抑制方法、系统、存储介质及终端

Similar Documents

Publication Publication Date Title
CN111130541A (zh) 基于锁相环与td滤波器的磁轴承转子振动前馈补偿控制器
Song et al. A novel sensorless rotor position detection method for high-speed surface PM motors in a wide speed range
Song et al. Adaptive compensation method for high-speed surface PMSM sensorless drives of EMF-based position estimation error
CN109889117B (zh) 基于旋转高频注入法的ipmsm位置观测方法、系统及驱动系统
CN110426062A (zh) 一种具有误差抑制功能的全数字rdc解码系统
Ghoshal et al. A method to improve PLL performance under abnormal grid conditions
CN113258741B (zh) 基于线性霍尔的磁通切换电机转子角度检测方法和系统
CN112737450A (zh) 一种用于spmsm转子位置估计的高频注入补偿方法
Zhang et al. High-precision sensorless optimal commutation deviation correction strategy of BLDC motor with asymmetric back EMF
Chen et al. High-precision rotor position correction strategy for high-speed permanent magnet synchronous motor based on resolver
CN112072975A (zh) 一种滑模观测方法及一种pmsm无传感器控制系统
Jiang et al. Displacement self-sensing method for AMB-rotor systems using current ripple demodulations combined with PWM command signals
Reill et al. Utilisation of magnetic saliency for sensorless-control of permanent-magnet synchronous motors
Malekipour et al. A closed-loop pmsm sensorless control based-on the machine acoustic noise
CN114421838A (zh) 一种高精度旋转变压器软解码实现方法
Han et al. Position estimation for ultra-low speed gimbal servo system of SGMSCMG based on linear Hall sensors
CN109600089A (zh) 一种基于新型反电势观测器的永磁电机无位置控制方法
Yu et al. Speed estimation of multiphase induction motor using rotor slot harmonics with limited SNR and dynamic load conditions
Pacas Sensorless harmonic speed control and detection of bearing faults in repetitive mechanical systems
Guo et al. A Virtual-Flux State Observer-Based Inductance Identification Method for Model Predictive Control of Grid-Tied Inverters With a Finite Phase Angle Set-Based PLL
Kloeck et al. Harmonic current control for transverse flux machines
Keysan et al. Speed & position estimation by demodulating rotor slot harmonics
CN114070154A (zh) 电机控制方法、芯片以及电机控制系统
Wang et al. A high precision resolver-to-digital conversion method with pre-filtering DDSRF used in electric vehicle
Wang et al. High Response Decoding System of Resolver Considering Signal Errors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200508