WO2022126524A1 - 一种隔振衬套及车辆 - Google Patents

一种隔振衬套及车辆 Download PDF

Info

Publication number
WO2022126524A1
WO2022126524A1 PCT/CN2020/137303 CN2020137303W WO2022126524A1 WO 2022126524 A1 WO2022126524 A1 WO 2022126524A1 CN 2020137303 W CN2020137303 W CN 2020137303W WO 2022126524 A1 WO2022126524 A1 WO 2022126524A1
Authority
WO
WIPO (PCT)
Prior art keywords
flange
bushings
vibration isolation
cylinder
bushing
Prior art date
Application number
PCT/CN2020/137303
Other languages
English (en)
French (fr)
Inventor
庄美娟
刘晓奇
柳仲达
杨凯
Original Assignee
武汉路特斯汽车有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉路特斯汽车有限公司 filed Critical 武汉路特斯汽车有限公司
Priority to CN202080107971.XA priority Critical patent/CN116761949A/zh
Priority to PCT/CN2020/137303 priority patent/WO2022126524A1/zh
Publication of WO2022126524A1 publication Critical patent/WO2022126524A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/38Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers with a sleeve of elastic material between a rigid outer sleeve and a rigid inner sleeve or pin, i.e. bushing-type

Definitions

  • the invention relates to the field of vehicle structures, in particular to a vibration isolation bush and a vehicle.
  • the suspension is the first-stage vibration isolation system connecting the powertrain and the body/subframe, in order to improve this problem, a second-stage vibration isolation bushing is often used to reduce the high-frequency stiffness of the suspension to achieve the effect.
  • FIG. 1 The simplified schematic diagram of the secondary vibration isolation is shown in Figure 1, where m 1 is the weight of the powertrain; m 2 is the weight of the suspension active side bracket; k 1 is the stiffness of the small bushing; c 1 is the damping of the small bushing; k 2 is the stiffness of the large bushing; c 2 is the damping of the large bushing.
  • the small bushing When the secondary structure is used for vibration isolation, the small bushing has a compact structure, and the risk of rubber strength and durability is particularly prominent.
  • the suspension design it is often necessary to balance low stiffness requirements and high durability performance, which cannot be achieved simultaneously in the existing technology. Reduce stiffness and improve durability.
  • the present invention proposes a vibration isolation bushing and a vehicle.
  • the present invention is specifically implemented by the following technical solutions.
  • the vibration isolation bushing provided by the present invention includes:
  • the first end of the inner cylinder is provided with a first flange extending outward along the circumferential direction;
  • the middle tube is sleeved outside the inner tube, the first end of the middle tube is provided with a second flange extending outward along the circumferential direction, and the second flange abuts the first flange side;
  • the outer cylinder is sleeved outside the middle cylinder, the first end of the outer cylinder is provided with a third flange extending outward along the circumferential direction, and the third flange abuts the second flange side.
  • a further improvement of the vibration isolation bushing provided by the present invention is that the second flange includes a first step flange and a second step flange, and the first step flange is connected to the second step flange, The first step flange abuts against the first flange, and the second step flange abuts against the third flange.
  • a further improvement of the vibration isolation bushing provided by the present invention is that the outer edge of the first step flange is aligned with the outer edge of the first flange, and the outer edge of the second step flange is aligned with the outer edge of the second step flange.
  • the outer edges of the third flange are aligned.
  • a further improvement of the vibration isolation bushing provided by the present invention is that a side of the first flange away from the second flange is provided with knurling.
  • a further improvement of the vibration isolation bushing provided by the present invention is that the second end of the inner cylinder extends beyond the second end of the outer cylinder.
  • a further improvement of the vibration isolation bushing provided by the present invention is that the middle cylinder is vulcanized on the inner cylinder and the outer cylinder respectively.
  • the present invention also provides a vehicle, comprising a speed reducer, a subframe, a suspension bracket and the above-mentioned vibration isolation bushing, wherein a first A second group of bushings are arranged between the suspension bracket and the subframe.
  • a further improvement of the vehicle provided by the present invention is that the size of the second set of bushings is larger than the size of the first set of bushings.
  • a further improvement of the vehicle provided by the present invention is that the first set of bushings is press-fitted to the suspension bracket, the first set of bushings is connected to the reducer housing through a first bolt, and the second A set of bushings is press-fitted to the subframe, and the second set of bushings is connected to the suspension bracket through a second bolt.
  • a further improvement of the vehicle provided by the present invention is that the first set of bushings is press-fitted to the suspension bracket, the first set of bushings is connected to the reducer housing through a first bolt, and the second A set of bushings is press-fitted to the suspension bracket, and the second set of bushings is connected to the subframe through a second bolt.
  • the invention is mainly used for solving the secondary vibration isolation of vehicles, and is specially designed for the compact structure of secondary vibration isolation.
  • the small bushing has a compact structure, and the rubber strength and durability risks are particularly prominent.
  • the present invention fully considers the low radial While meeting the rigidity requirements, it provides a solution to improve the durability performance through the limit.
  • the vibration isolation bushing provided by the present invention, the first flanging, the third flanging and the second flanging are matched to avoid the pull-off of the second flanging, which can improve the limiting effect and solve the problem of layout space.
  • the invention can improve the axial stiffness of the vibration isolation bushing, solve the problems of poor axial strength of the bushing and easy pulling off under tension conditions; can reduce the radial stiffness of the bushing and improve the NVH performance; Adjust to make the local thickening of the middle cylinder, which can improve the durability of the bushing; increase the knurling of the bushing installation surface, improve the friction force, and avoid the large corner deformation of the middle cylinder under the installation torque.
  • the parts of the present invention are small in size and low in cost.
  • the main function stiffness of the present invention is the axial stiffness of the middle cylinder. Since there is a fixed ratio between the axial direction and the radial direction, the present invention limits the axial displacement and improves the durability.
  • FIG. 1 is a schematic structural diagram of a vibration isolation bushing provided in Embodiment 1 of the present invention.
  • FIG. 2 is an exploded view of the structure of the vibration isolation bushing provided in Embodiment 1 of the present invention.
  • FIG. 3 is a schematic cross-sectional view of the vibration isolation bushing provided in Embodiment 1 of the present invention.
  • FIG. 4 is a graph showing the axial stiffness of the vibration isolation bushing provided in Embodiment 1 of the present invention.
  • FIG. 5 is a graph showing the axial stiffness of the bushing in the prior art.
  • FIG. 6 is a schematic structural diagram of the suspension bracket and the vibration isolation bushing after press-fitting in Embodiment 2 of the present invention.
  • FIG. 7 is a schematic diagram of the connection structure of the suspension bracket and the vibration isolation bushing from another perspective in Embodiment 2 of the present invention.
  • FIG. 8 is a schematic diagram of the connection structure of the suspension bracket, the speed reducer, the sub-frame and the vibration isolation bushing in Embodiment 2 of the present invention.
  • FIG. 9 is a schematic structural diagram of a suspension bracket in Embodiment 3 of the present invention.
  • FIG. 10 is a schematic diagram of the connection structure of the suspension bracket, the speed reducer, the subframe and the vibration isolation bushing in Embodiment 3 of the present invention.
  • the present invention proposes a vibration isolation bushing and a vehicle.
  • the present invention is specifically implemented by the following technical solutions.
  • a vibration isolation bushing proposed in Embodiment 1 includes:
  • the inner cylinder 1, the first end of the inner cylinder 1 is provided with a first flange 11 extending outward along the circumferential direction;
  • the middle tube 2 the middle tube 2 is sleeved outside the inner tube 1, the first end of the middle tube 2 is provided with a second flange 21 extending outward along the circumferential direction, and the second flange 21 abuts against the first flange 11;
  • the outer cylinder 3 is sleeved outside the middle cylinder 2 , the first end of the outer cylinder 3 is provided with a third flange 31 extending outward along the circumferential direction, and the third flange 31 abuts against the second flange 21 .
  • the middle cylinder 2 is a rubber cylinder.
  • the width of the first flange 11 is smaller than the width of the third flange 31 .
  • the second flange 21 includes a first step flange 211 and a second step flange 212, the first step flange 211 is connected with the second step flange 212, and the first step flange 211 abuts against the first step flange 211.
  • the flange 11 and the second step flange 212 abut against the third flange 31 .
  • the outer edge of the first step flange 211 is aligned with the outer edge of the first flange 11
  • the outer edge of the second step flange 212 is aligned with the outer edge of the third flange 31 .
  • a preset distance is set between the first step flange 211 and the second step flange 212 ; the first step flange 211 is attached to the first flange 11 to protect the first flange 11 The second step flange 212 is attached to the third flange 31 to protect the third flange 31 .
  • the first step flange 211 is closely attached to the first flange 11, and the second step flange 212 is closely attached to the third flange 31, so that the middle cylinder 2 is not easily pulled and dislocated, thereby improving the lining Axial stiffness of the sleeve.
  • the lengths of the first step flanging 211 and the second step flanging 212 in Embodiment 1 are not equal.
  • the second-step flange 212 only needs to be attached to the third flange 31 .
  • the middle cylinder 2 is vulcanized on the inner cylinder 1 and the outer cylinder 3 respectively.
  • the middle cylinder 2, the inner cylinder 1 and the outer cylinder 3 are vulcanized and formed into one.
  • the outer cylinder 3 adopts a spinning process
  • the inner cylinder 1 adopts a cold heading process.
  • the inner cylinder 1, the middle cylinder 2 and the outer cylinder 3 are all provided with a flanging structure.
  • the middle tube 2 is provided with a second flanging 21, and the middle tube 2 can achieve different stiffnesses in the stretching and compressing directions;
  • the outer tube 3 is provided with a third flange 31, one side of the outer tube 3 is vulcanized with the middle tube 2, and the outer tube 3 is vulcanized.
  • the other side of the cylinder 3 is press-fitted and positioned with the suspension bracket 30;
  • the middle tube in the related art is not provided with a flanging structure. During actual use, the middle tube in the existing bushing is easily pulled out of the outer tube along the axial direction of the bushing, resulting in low rigidity of the existing bushing.
  • the middle tube 2 is provided with a second flange 21, the first flange 11 of the inner tube 1 and the third flange 31 of the outer tube 3 are arranged on both sides of the second flange 21;
  • the third flange 31 can prevent the second flange 21 from moving in the direction of the third flange 31;
  • the first flange 11 can prevent the second flange 21 from moving in the direction of the first flange 11; it can be seen that , the structure in this embodiment 1 can make the middle cylinder 2 not easily pulled and dislocated, thereby improving the axial rigidity of the bushing.
  • the bushing structure in this embodiment 1 increases the axial rigidity without affecting the radial rigidity. Therefore, the ratio result (stiffness ratio) between the axial rigidity and the radial rigidity is improved, so that high The axial stiffness and the more reasonable radial stiffness.
  • This embodiment 1 can achieve a higher axial/radial stiffness ratio and improve the NVH performance.
  • the axial stiffness curve is shown in FIG. 4 .
  • the axial stiffness curve of the conventional straight pipe bushing in the prior art is shown in FIG. 5 . Comparing FIG. 4 and FIG. 5 , it can be seen that the present embodiment 1 can improve the axial rigidity of the bushing.
  • the horizontal axis is the displacement of the middle cylinder, and the vertical axis is the load of the bushing.
  • the bushing in Example 1 has high axial stiffness and good tensile strength; low radial stiffness and good high-frequency vibration isolation;
  • the middle tube 2 is prevented from being pulled off, and the limit effect is good;
  • the middle tube 2 is provided with a flanging structure, so that the thickness of the middle tube 2 where the middle tube 2 is combined with the inner tube 1 or the outer tube 3 is larger, thereby improving the bushing.
  • Durable performance; the inner cylinder 1, outer cylinder 3 and middle cylinder 2 of the bushing are vulcanized into one, and the product has good stability; the size of the bushing is small, and the layout flexibility is good.
  • the first flange 11 of the inner tube 1 and the third flange 31 of the outer tube 3 are arranged on both sides of the second flange 21, which can also protect the second flange 21. .
  • the side of the first flange 11 away from the second flange 21 is provided with knurling 12 .
  • the knurling 12 of the inner cylinder 1 can increase the friction coefficient with the connected parts, avoid the relative torsion between the inner cylinder 1 and the connected parts when tightening the torque, and avoid the impact on the durability of the middle cylinder 2. Avoid wearing the mid-tube 2.
  • the first flange 11 of the inner cylinder 1 is provided with knurling 12, and the knurling 12 can increase the frictional force between the bushing and the motor and prevent the middle cylinder 2 from being twisted when the torque is tightened. Large-angle torsion occurs to prevent impact on vibration isolation and durability.
  • the second end of the inner cylinder 1 extends beyond the second end of the outer cylinder 3 .
  • the vehicle in the second embodiment includes the first type of suspension bracket (as shown in FIG. 6 ).
  • the second embodiment provides a vehicle including a speed reducer, a subframe 50 , a suspension bracket 30 and a vibration isolation bushing.
  • the vibration isolation bushing comprises: an inner tube 1, the first end of the inner tube 1 is provided with a first flange 11 extending outward along the circumferential direction; a middle tube 2, the middle tube 2 is sleeved outside the inner tube 1, and the second One end is provided with a second flange 21 extending outward along the circumferential direction, and the second flange 21 abuts against the first flange 11; the outer cylinder 3 is sleeved outside the middle cylinder 2, and the first The end is provided with a third flange 31 extending outward along the circumferential direction, and the third flange 31 abuts against the second flange 21 .
  • the second flange 21 includes a first step flange 211 and a second step flange 212, the first step flange 211 is connected with the second step flange 212, and the first step flange 211 abuts against the first step flange 211.
  • the flange 11 and the second step flange 212 abut against the third flange 31 .
  • first step flange 211 is aligned with the outer edge of the first flange 11
  • outer edge of the second step flange 212 is aligned with the outer edge of the third flange 31 .
  • middle cylinder 2 is vulcanized on the inner cylinder 1 and the outer cylinder 3 respectively.
  • the middle cylinder 2, the inner cylinder 1 and the outer cylinder 3 are vulcanized and formed into one.
  • first flange 11 away from the second flange 21 is provided with knurling 12 .
  • the second end of the inner cylinder 1 extends beyond the second end of the outer cylinder 3 .
  • the two sets of vibration isolation bushings are the first set of bushings 10 and the second set of bushings 40 respectively.
  • the first set of bushings 10 is provided between the housing of the reducer and the suspension bracket 30 , the suspension bracket 30 and the auxiliary vehicle
  • a second set of bushings 40 is provided between the frames 50 .
  • the middle tube in the prior art is not provided with a flanging structure. During actual use, the middle tube in the existing bushing is easily pulled out of the outer tube along the axial direction of the bushing, resulting in low rigidity of the existing bushing. .
  • the middle tube 2 is provided with the second flange 21, the first flange 11 of the inner tube 1 and the third flange 31 of the outer tube 3 are arranged on both sides of the second flange 21;
  • the third flange 31 can prevent the second flange 21 from moving in the direction of the third flange 31;
  • the structure in this embodiment 2 can make the middle cylinder 2 not easily pulled to cause dislocation, thereby improving the axial rigidity of the bushing.
  • the vibration isolation bushing in this embodiment 2 does not affect the radial stiffness while increasing the axial stiffness. Therefore, the ratio result (stiffness ratio) between the axial stiffness and the radial stiffness is improved, so that the simultaneous realization of High axial stiffness and relatively reasonable radial stiffness.
  • This embodiment 2 can achieve a higher axial/radial stiffness ratio and improve NVH performance.
  • the bushing in Example 2 has high axial stiffness and good tensile strength; low radial stiffness and good high-frequency vibration isolation performance;
  • the middle tube 2 is prevented from being pulled off, and the limit effect is good;
  • the middle tube 2 is provided with a flanging structure, so that the thickness of the middle tube 2 where the middle tube 2 is combined with the inner tube 1 or the outer tube 3 is larger, thereby improving the bushing.
  • Durable performance; the inner cylinder 1, outer cylinder 3 and middle cylinder 2 of the bushing are vulcanized into one, and the product has good stability; the size of the bushing is small, and the layout flexibility is good.
  • the size of the second group of bushings 40 is larger than the size of the first group of bushings 10, and the first group of bushings 10 and the second group of bushings 40 cooperate to achieve a secondary vibration isolation effect, similar to the series connection of springs
  • the size of the first group of bushings 10 is smaller than the size of the second group of bushings 40, the stiffness of the first group of bushings 10 is greater than that of the second group of bushings 40, and the series connection of bushings can also reduce the height of the series system. frequency stiffness, thereby improving the high-frequency vibration isolation performance of the system.
  • first set of bushings 10 are press-fitted to the suspension bracket 30
  • first set of bushings 10 are connected to the reducer housing 20 through the first bolts 60
  • second set of bushings 40 are press-fitted to the subframe 50
  • the second set of bushings 40 are connected to the suspension bracket 30 by second bolts.
  • the first group of bushings 10 includes three vibration isolation bushings, and the three vibration isolation bushings are first connected to the reducer housing 20 and fixed by the first bolts 60 .
  • the inner cylinder 1 of the second group of bushings 40 is connected with the suspension bracket 30 through a second bolt, and at the same time, the second group of bushings 40 are press-fitted into the sub-frame 50 .
  • the stiffness of the second set of bushings 40 is smaller than that of the first set of bushings 10 , and the excitation generated by the motor is first isolated by the first set of bushings 10 connected to the reducer, and then press-fitted into the subframe 50 through the After the second set of bushings 40 are attenuated, they are transmitted to the subframe 50 .
  • the middle tube 2 can improve the overall high-frequency stiffness and achieve better vibration isolation and noise reduction effects.
  • the invention is mainly used for solving the secondary vibration isolation of vehicles, and is specially designed for the compact structure of secondary vibration isolation.
  • the small bushing has a compact structure, and the rubber strength and durability risks are particularly prominent.
  • the present invention fully considers the low radial While meeting the rigidity requirements, it provides a solution to improve the durability performance through the limit.
  • the first flanging 11 and the third flanging 31 cooperate with the second flanging 21 to prevent the second flanging 21 from being pulled off, which can improve the limiting effect and solve the problem of layout space. .
  • the invention can improve the axial stiffness of the vibration isolation bushing, solve the problems of poor axial strength of the bushing and easy pulling off under tension conditions; it can reduce the radial stiffness of the bushing and improve the NVH performance; the structure of the centering cylinder 2 Adjust to make the part of the middle cylinder 2 thicker, which can improve the durability of the bushing; increase the knurling 12 on the bushing installation surface, improve the friction force, and avoid the large corner deformation of the middle cylinder 2 under the installation torque.
  • the parts of the present invention are small in size and low in cost.
  • the main function rigidity of the present invention is the axial rigidity of the middle cylinder 2. Since there is a fixed ratio between the axial direction and the radial direction, the present invention limits the axial displacement and improves the durability.
  • the vehicle in the third embodiment includes the second type of suspension bracket as shown in FIG. 9 .
  • the third embodiment provides a vehicle, including a speed reducer, a subframe 50 , a suspension bracket 30 and a vibration isolation bushing.
  • the vibration isolation bushing comprises: an inner tube 1, the first end of the inner tube 1 is provided with a first flange 11 extending outward along the circumferential direction; a middle tube 2, the middle tube 2 is sleeved outside the inner tube 1, and the second One end is provided with a second flange 21 extending outward along the circumferential direction, and the second flange 21 abuts against the first flange 11; the outer cylinder 3 is sleeved outside the middle cylinder 2, and the first The end is provided with a third flange 31 extending outward along the circumferential direction, and the third flange 31 abuts against the second flange 21 .
  • the two sets of vibration isolation bushings are the first set of bushings 10 and the second set of bushings 40 respectively.
  • the first set of bushings 10 , the suspension bracket 30 and the subframe 50 bracket are provided with a second set of bushings 40 .
  • the size of the second set of bushings 40 is larger than the size of the first set of bushings 10 .
  • the first group of bushings 10 are press-fitted to the suspension bracket 30
  • the first set of bushings 10 are connected to the reducer housing 20 through the first bolts 60
  • the second set of bushings 40 are press-fitted to the suspension bracket 30
  • the second set of bushings 50 are connected to the subframe 50 through bolts and nuts .
  • the first set of bushings 10 includes three vibration isolation bushings, and the three vibration isolation bushings are press-fitted into the suspension bracket 30 , firstly connected to the reducer housing 20 , and then connected to the reducer housing 20 through the first bolts 60 fixed.
  • the second set of bushings 40 are press-fitted into the suspension bracket 30 and connected to the subframe 50 through bolts and nuts.
  • the stiffness of the second set of bushings 40 is smaller than the stiffness of the first set of bushings 10 , and the excitation generated by the motor is first isolated by the first set of bushings 10 connected to the reducer, and then is press-fitted integrally with the suspension bracket 30 . After the second set of bushings 40 are attenuated, they are transmitted to the subframe 50 .
  • the middle tube 2 can improve the overall high-frequency stiffness and achieve better vibration isolation and noise reduction effects.
  • the second flange 21 includes a first step flange 211 and a second step flange 212, the first step flange 211 is connected with the second step flange 212, and the first step flange 211 abuts against the first step flange 211.
  • the flange 11 and the second step flange 212 abut against the third flange 31 .
  • first step flange 211 is aligned with the outer edge of the first flange 11
  • outer edge of the second step flange 212 is aligned with the outer edge of the third flange 31 .
  • middle cylinder 2 is vulcanized on the inner cylinder 1 and the outer cylinder 3 respectively.
  • the middle cylinder 2, the inner cylinder 1 and the outer cylinder 3 are vulcanized and formed into one.
  • first flange 11 away from the second flange 21 is provided with knurling 12 .
  • the second end of the inner cylinder 1 extends beyond the second end of the outer cylinder 3 .
  • the middle tube in the prior art is not provided with a flanging structure. During actual use, the middle tube in the existing bushing is easily pulled out of the outer tube along the axial direction of the bushing, resulting in low rigidity of the existing bushing. .
  • the middle tube 2 is provided with the second flange 21, the first flange 11 of the inner tube 1 and the third flange 31 of the outer tube 3 are arranged on both sides of the second flange 21;
  • the third flange 31 can prevent the second flange 21 from moving in the direction of the third flange 31;
  • the structure in this embodiment 3 can make the middle cylinder 2 not easily pulled to cause dislocation, thereby improving the axial rigidity of the bushing.
  • the vibration isolation bushing in this embodiment 3 does not affect the radial stiffness while increasing the axial stiffness. Therefore, the ratio result (stiffness ratio) between the axial stiffness and the radial stiffness is improved, so that the simultaneous realization of High axial stiffness and relatively reasonable radial stiffness.
  • Embodiment 3 can achieve a higher axial/radial stiffness ratio and improve NVH performance.
  • the bushing in Example 3 has high axial stiffness and good tensile strength; low radial stiffness and good high-frequency vibration isolation;
  • the middle tube 2 is prevented from being pulled off, and the limit effect is good;
  • the middle tube 2 is provided with a flanging structure, so that the thickness of the middle tube 2 where the middle tube 2 is combined with the inner tube 1 or the outer tube 3 is larger, thereby improving the bushing.
  • Durable performance; the inner cylinder 1, outer cylinder 3 and middle cylinder 2 of the bushing are vulcanized into one, and the product has good stability; the size of the bushing is small, and the layout flexibility is good.
  • the invention is mainly used for solving the secondary vibration isolation of vehicles, and is specially designed for the compact structure of secondary vibration isolation.
  • the small bushing has a compact structure, and the rubber strength and durability risks are particularly prominent.
  • the present invention fully considers the low radial While meeting the rigidity requirements, it provides a solution to improve the durability performance through the limit.
  • the first flanging 11 and the third flanging 31 cooperate with the second flanging 21 to prevent the second flanging 21 from being pulled off, which can improve the limiting effect and solve the problem of layout space. .
  • the invention can improve the axial stiffness of the vibration isolation bushing, solve the problems of poor axial strength of the bushing and easy pulling off under tension conditions; it can reduce the radial stiffness of the bushing and improve the NVH performance; the structure of the centering cylinder 2 Adjust to make the part of the middle cylinder 2 thicker, which can improve the durability of the bushing; increase the knurling 12 on the bushing installation surface, improve the friction force, and avoid the large corner deformation of the middle cylinder 2 under the installation torque.
  • the parts of the present invention are small in size and low in cost.
  • the main function rigidity of the present invention is the axial rigidity of the middle cylinder 2. Since there is a fixed ratio between the axial direction and the radial direction, the present invention limits the axial displacement and improves the durability.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Springs (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

一种隔振衬套,包括内筒(1),内筒(1)的第一端沿周向设有向外延伸的第一翻边(11);中筒(2),中筒具有弹性,中筒(2)套设于内筒(1)外,中筒(2)的第一端沿周向设有向外延伸的第二翻边(21),第二翻边(21)抵靠于第一翻边(11);外筒(3),外筒(3)套设于中筒(2)外,外筒(3)的第一端沿周向设有向外延伸的第三翻边(31),第三翻边(31)抵靠于第二翻边(21)。该隔振衬套可以提高隔振衬套的轴向刚度,解决衬套轴向强度差、受拉工况下容易拉脱的问题。还公开了一种车辆。

Description

一种隔振衬套及车辆 技术领域
本发明涉及车辆结构领域,具体涉及一种隔振衬套及车辆。
背景技术
随着汽车的普及,用户对汽车舒适性的要求也在不断提高。动力总成悬置系统作为主要的隔振、降噪的系统,如何合理地设计也成了,影响整车NVH(噪声、振动与声振粗糙度)性能的关键环节。
尤其是对于由电机/发动机/减速器等零部件电磁激励以及齿轮啮合问题引起的高频啸叫现象频发。由于悬置为连接动力总成与车身/副车架的第一级隔振系统,为改善这一问题,多采用二级隔振衬套实现降低悬置高频段刚度来达到效果。
二级隔振简化原理图如图1所示,其中:m 1为动力总成重量;m 2为悬置主动侧支架重量;k 1为小衬套刚度;c 1为小衬套阻尼;k 2为大衬套刚度;c 2为大衬套阻尼。
忽略悬置支架质量和零件阻尼时,系统的等效刚度为:
Figure PCTCN2020137303-appb-000001
橡胶悬置多存在高频硬化现象,通过串联小衬套,来达到降低高频动刚度的目的,进而提升NVH隔振性能。
在采用二级结构隔振时小衬套结构紧凑,橡胶强度及耐久风险尤其突出,在悬置设计时往往要在低刚度需求和高耐久性能方面做平衡,而现有技术中无法同时做到降低刚度和提高耐久性。
因此,有必要提供一种方案,解决现有技术中无法同时做到降低刚度和提高耐久性的技术问题。
发明内容
为了解决现有技术中无法同时做到降低刚度和提高耐久性的技术问题,本发明提出了一种隔振衬套及车辆,本发明具体是以如下技术方案实现的。
本发明提供的隔振衬套,包括:
内筒,所述内筒的第一端沿周向设有向外延伸的第一翻边;
中筒,所述中筒套设于所述内筒外,所述中筒的第一端沿周向设有向外延伸的第二翻边,所述第二翻边抵靠于所述第一翻边;
外筒,所述外筒套设于所述中筒外,所述外筒的第一端沿周向设有向外延伸的第三翻边,所述第三翻边抵靠于所述第二翻边。
本发明提供的隔振衬套的进一步改进在于,所述第二翻边包括第一台阶翻边和第二台阶翻边,所述第一台阶翻边与所述第二台阶翻边相连接,所述第一台阶翻边抵靠于所述第一翻边,所述第二台阶翻边抵靠于所述第三翻边。
本发明提供的隔振衬套的更进一步改进在于,所述第一台阶翻边的外沿与所述第一翻边的外沿相对齐,所述第二台阶翻边的外沿与所述第三翻边的外沿相对齐。
本发明提供的隔振衬套的进一步改进在于,所述第一翻边的远离所述第二翻边的一侧设有滚花。
本发明提供的隔振衬套的进一步改进在于,所述内筒的第二端延伸出所述外筒的第二端。
本发明提供的隔振衬套的进一步改进在于,所述中筒分别硫化于所述内筒和所述外筒。
此外,本发明还提供一种车辆,包括减速器、副车架、悬置支架和如上所述的隔振衬套,所述减速器的壳体和所述悬置支架之间设有第一组衬套,所述悬置支架和所述副车架之间设有第二组衬套。
本发明提供的车辆的进一步改进在于,所述第二组衬套的尺寸大于所述第一组衬套的尺寸。
本发明提供的车辆的进一步改进在于,所述第一组衬套压装于所述悬 置支架,所述第一组衬套通过第一螺栓连接于所述减速器壳体,所述第二组衬套压装于所述副车架,所述第二组衬套通过第二螺栓连接于所述悬置支架。
本发明提供的车辆的进一步改进在于,所述第一组衬套压装于所述悬置支架,所述第一组衬套通过第一螺栓连接于所述减速器壳体,所述第二组衬套压装于所述悬置支架,所述第二组衬套通过第二螺栓连接于所述副车架。
本发明主要用于车辆二级隔振的解决,专门针对二级隔振紧凑结构进行了特殊设计。在采用二级结构隔振时小衬套结构紧凑,橡胶强度及耐久风险尤其突出,在悬置设计时往往需要要在低刚度需求和高耐久性能方面做平衡,本发明在充分考虑低径向刚度需求的同时,提供了一种通过限位提升耐久性能的解决方案。在本发明提供的隔振衬套中,第一翻边、第三翻边与第二翻边相配合,避免第二翻边拉脱,可以提高限位效果,解决布置空间问题。本发明可以提高隔振衬套的轴向刚度,解决衬套轴向强度差、受拉工况下容易拉脱的问题;可以降低衬套径向刚度,提升NVH性能;对中筒的结构进行调整,使得中筒的局部加厚,可以提高衬套的耐久性能;衬套安装面增加滚花,提高摩擦力,避免中筒在安装扭力下的大转角变形。本发明的零件尺寸小,成本低。本发明主要作用刚度为中筒的轴向刚度,由于轴向和径向有固定比值,故本发明对轴向位移进行限位,提高耐久性能。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例1提供的隔振衬套的结构示意图。
图2为本发明实施例1提供的隔振衬套的结构爆炸图。
图3为本发明实施例1提供的隔振衬套的剖面示意图。
图4为本发明实施例1提供的隔振衬套的轴向刚度曲线图。
图5为现有技术中的衬套的轴向刚度曲线图。
图6为本发明实施例2中悬置支架与隔振衬套压装后的结构示意图。
图7为本发明实施例2中悬置支架与隔振衬套在另一视角下的连接结构示意图。
图8为本发明实施例2中悬置支架、减速器、副车架与隔振衬套的连接结构示意图。
图9为本发明实施例3中悬置支架的结构示意图。
图10为本发明实施例3中悬置支架、减速器、副车架与隔振衬套的连接结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
为了解决现有技术中无法同时做到降低刚度和提高耐久性的技术问题,本发明提出了一种隔振衬套及车辆,本发明具体是以如下技术方案实现的。
实施例1:
结合图1至图3所示,本实施例1提出的一种隔振衬套包括:
内筒1,内筒1的第一端沿周向设有向外延伸的第一翻边11;
中筒2,中筒2套设于内筒1外,中筒2的第一端沿周向设有向外延伸的第二翻边21,第二翻边21抵靠于第一翻边11;
外筒3,外筒3套设于中筒2外,外筒3的第一端沿周向设有向外延伸的第三翻边31,第三翻边31抵靠于第二翻边21。
较佳地,本实施例1中,中筒2为橡胶筒。
进一步地,第一翻边11的宽度小于第三翻边31的宽度。
进一步地,第二翻边21包括第一台阶翻边211和第二台阶翻边212,第一台阶翻边211与第二台阶翻边212相连接,第一台阶翻边211抵靠于第一翻边11,第二台阶翻边212抵靠于第三翻边31。
更进一步地,第一台阶翻边211的外沿与第一翻边11的外沿相对齐,第二台阶翻边212的外沿与第三翻边31的外沿相对齐。
本实施例1中,第一台阶翻边211和第二台阶翻边212之间设有预设距离;第一台阶翻边211贴合于第一翻边11,起到保护第一翻边11的作用;第二台阶翻边212贴合于第三翻边31,起到保护第三翻边31的作用。
同时,第一台阶翻边211紧密贴合于第一翻边11,第二台阶翻边212紧密贴合于第三翻边31,使得中筒2不容易被拉扯而产生错位,从而提高了衬套的轴向刚度。为了节省生产成本,减少材料浪费,本实施例1中的第一台阶翻边211和第二台阶翻边212的长度不等,只要第一台阶翻边211贴合于第一翻边11,第二台阶翻边212贴合于第三翻边31即可。进一步地,中筒2分别硫化于内筒1和外筒3。中筒2、内筒1和外筒3硫化成型为一体。
本实施例1中,外筒3采用旋压工艺,内筒1采用冷镦工艺。内筒1、中筒2和外筒3均设有翻边结构。具体的,中筒2设置第二翻边21,中筒2可以实现拉伸、压缩方向的不同刚度;外筒3设置第三翻边31,外筒3的一侧与中筒2硫化,外筒3的另一侧与悬置支架30压装定位;内筒1设置第一翻边11,内筒1的一侧与橡胶硫化,内筒1的另一侧与减速器壳体20固定。
相关技术中的中筒不设置翻边结构,在实际使用过程中,现有的衬套中的中筒容易被沿着衬套的轴向拉扯出外筒,导致现有的衬套的刚度小。
本实施例1中,中筒2设置第二翻边21,内筒1的第一翻边11和外筒3的第三翻边31设置在第二翻边21的两侧;当中筒2受到拉力时,由于第二翻边21可以抵靠至外筒3的第三翻边31上,第三翻边31可以阻止第二翻边21向第三翻边31的方向移动;当中筒2受到相反方向的拉力时,由于第二翻边21可以抵靠至内筒1的第一翻边11上,第一翻边11可以阻止 第二翻边21向第一翻边11的方向移动;可见,本实施例1中的结构可以使中筒2不容易被拉扯而产生错位,从而提高了衬套的轴向刚度。
本实施例1中的衬套结构,在增加轴向刚度的同时,不影响径向刚度,因此,轴向刚度和径向刚度之间的比值结果(刚度比)得到提高,从而可以同时实现高的轴向刚度和比较合理的径向刚度。本实施例1可以实现较高的轴/径向刚度比,提升NVH性能,轴向刚度曲线如图4所示。而现有技术中常规直管衬套的轴向刚度曲线如图5所示。对图4和图5进行对比可知,本实施例1可以提高衬套的轴向刚度。图4和图5中,横轴为中筒的位移,纵轴为衬套的荷载。
本实施例1中的衬套轴向刚度高,抗拉强度好;径向刚度低,高频隔振性能好;衬套的内筒1、外筒3和中筒2均设置翻边结构,避免中筒2拉脱,限位效果好;中筒2设置了翻边结构,使得中筒2与内筒1或外筒3结合之处的中筒2厚度更大,从而提升了衬套的耐久性能;衬套的内筒1、外筒3和中筒2硫化为一体,产品稳定性好;衬套的尺寸小,布置灵活性好。此外,本实施例1中,内筒1的第一翻边11和外筒3的第三翻边31设置在第二翻边21的两侧,还可以起到保护第二翻边21的作用。
进一步地,第一翻边11的远离第二翻边21的一侧设有滚花12。本实施例1中,内筒1的滚花12可以提高与被连接件间的摩擦系数,避免打紧力矩时内筒1与被连接件间的相对扭转,避免对中筒2耐久性能的影响,避免磨损中筒2。具体地,当衬套与电机连接接触时,内筒1的第一翻边11设置滚花12,滚花12可以提升衬套与电机之间的摩擦力,防止打紧力矩时中筒2受扭发生大角度扭转,防止影响隔振及耐久性能。
进一步地,内筒1的第二端延伸出外筒3的第二端。
衬套在实际使用中,内筒1和外筒3之间会发生微小的相对运动,本实施例1中,将内筒1的第二端延伸出外筒3的第二端,且中筒2分别接触内筒1的外壁和外筒3的内壁,可以在内筒1和外筒3之间发生相对运动时避免中筒2受到磨损。
实施例2:
在车辆结构领域,常见的悬置支架有两种,本实施例2中的车辆包括第一种悬置支架(如图6所示)。
结合图6至图8所示,本实施例2提供一种车辆,包括减速器、副车架50、悬置支架30和隔振衬套。隔振衬套包括:内筒1,内筒1的第一端沿周向设有向外延伸的第一翻边11;中筒2,中筒2套设于内筒1外,中筒2的第一端沿周向设有向外延伸的第二翻边21,第二翻边21抵靠于第一翻边11;外筒3,外筒3套设于中筒2外,外筒3的第一端沿周向设有向外延伸的第三翻边31,第三翻边31抵靠于第二翻边21。
进一步地,第二翻边21包括第一台阶翻边211和第二台阶翻边212,第一台阶翻边211与第二台阶翻边212相连接,第一台阶翻边211抵靠于第一翻边11,第二台阶翻边212抵靠于第三翻边31。
更进一步地,第一台阶翻边211的外沿与第一翻边11的外沿相对齐,第二台阶翻边212的外沿与第三翻边31的外沿相对齐。
进一步地,中筒2分别硫化于内筒1和外筒3。中筒2、内筒1和外筒3硫化成型为一体。
进一步地,第一翻边11的远离第二翻边21的一侧设有滚花12。
进一步地,内筒1的第二端延伸出外筒3的第二端。
两组隔振衬套分别为第一组衬套10和第二组衬套40,减速器的壳体和悬置支架30之间设有第一组衬套10,悬置支架30和副车架50之间设有第二组衬套40。
现有技术中的中筒不设置翻边结构,在实际使用过程中,现有的衬套中的中筒容易被沿着衬套的轴向拉扯出外筒,导致现有的衬套的刚度小。
本实施例2中,中筒2设置第二翻边21,内筒1的第一翻边11和外筒3的第三翻边31设置在第二翻边21的两侧;当中筒2受到拉力时,由于第二翻边21可以抵靠至外筒3的第三翻边31上,第三翻边31可以阻止第二翻边21向第三翻边31的方向移动;当中筒2受到相反方向的拉力时,由于第二翻边21可以抵靠至内筒1的第一翻边11上,第一翻边11可以阻止第二翻边21向第一翻边11的方向移动;可见,本实施例2中的结构可以使中筒2不容易被拉扯而产生错位,从而提高了衬套的轴向刚度。
本实施例2中的隔振衬套,在增加轴向刚度的同时,不影响径向刚度,因此,轴向刚度和径向刚度之间的比值结果(刚度比)得到提高,从而可以同时实现高的轴向刚度和比较合理的径向刚度。本实施例2可以实现较高的轴/径向刚度比,提升NVH性能。
本实施例2中的衬套轴向刚度高,抗拉强度好;径向刚度低,高频隔振性能好;衬套的内筒1、外筒3和中筒2均设置翻边结构,避免中筒2拉脱,限位效果好;中筒2设置了翻边结构,使得中筒2与内筒1或外筒3结合之处的中筒2厚度更大,从而提升了衬套的耐久性能;衬套的内筒1、外筒3和中筒2硫化为一体,产品稳定性好;衬套的尺寸小,布置灵活性好。
进一步地,第二组衬套40的尺寸大于第一组衬套10的尺寸,第一组衬套10和第二组衬套40相配合,可以实现二级隔振效果,类似于弹簧的串联;第一组衬套10的尺寸小于第二组衬套40的尺寸,第一组衬套10的刚度比40第二组衬套40的刚度大,通过衬套串联还可以降低串联系统的高频刚度,进而改善系统的高频隔振性能。
进一步地,第一组衬套10压装于悬置支架30,第一组衬套10通过第一螺栓60连接于减速器壳体20,第二组衬套40压装于副车架50,第二组衬套40通过第二螺栓连接于悬置支架30。
本实施例2中,第一组衬套10中包括三个隔振衬套,三个隔振衬套先与减速器壳体20连接,通过第一螺栓60固定。第二组衬套40的内筒1与悬置支架30通过第二螺栓连接,同时第二组衬套40压装到副车架50中。其中,第二组衬套40的刚度小于第一组衬套10的刚度,电机产生的激励先通过与减速器连接的第一组衬套10隔离,再经由与副车架50压装一体的第二组衬套40衰减后,传递至副车架50。中筒2可以改善整体的高频刚度,实现更好的隔振、降噪的效果。
本发明主要用于车辆二级隔振的解决,专门针对二级隔振紧凑结构进行了特殊设计。在采用二级结构隔振时小衬套结构紧凑,橡胶强度及耐久风险尤其突出,在悬置设计时往往需要要在低刚度需求和高耐久性能方面做平衡,本发明在充分考虑低径向刚度需求的同时,提供了一种通过限位 提升耐久性能的解决方案。在本发明提供的隔振衬套中,第一翻边11、第三翻边31与第二翻边21相配合,避免第二翻边21拉脱,可以提高限位效果,解决布置空间问题。本发明可以提高隔振衬套的轴向刚度,解决衬套轴向强度差、受拉工况下容易拉脱的问题;可以降低衬套径向刚度,提升NVH性能;对中筒2的结构进行调整,使得中筒2的局部加厚,可以提高衬套的耐久性能;衬套安装面增加滚花12,提高摩擦力,避免中筒2在安装扭力下的大转角变形。本发明的零件尺寸小,成本低。本发明主要作用刚度为中筒2的轴向刚度,由于轴向和径向有固定比值,故本发明对轴向位移进行限位,提高耐久性能。
实施例3:
本实施例3中的车辆包括如图9所示的第二种悬置支架。
结合图9和图10所示,本实施例3提供一种车辆,包括减速器、副车架50、悬置支架30和隔振衬套。隔振衬套包括:内筒1,内筒1的第一端沿周向设有向外延伸的第一翻边11;中筒2,中筒2套设于内筒1外,中筒2的第一端沿周向设有向外延伸的第二翻边21,第二翻边21抵靠于第一翻边11;外筒3,外筒3套设于中筒2外,外筒3的第一端沿周向设有向外延伸的第三翻边31,第三翻边31抵靠于第二翻边21。
本实施例3中设有两组隔振衬套,两组隔振衬套分别为第一组衬套10和第二组衬套40,减速器的壳体和悬置支架30之间设有第一组衬套10,悬置支架30和副车架50支架设有第二组衬套40。
进一步地,第二组衬套40的尺寸大于第一组衬套10的尺寸。
由于本实施例3中的悬置支架的结构不同于实施例2中的悬置支架,因此,不同于实施例2,本实施例3中,第一组衬套10压装于悬置支架30,第一组衬套10通过第一螺栓60连接于减速器壳体20,第二组衬套40压装于悬置支架30,第二组衬套50通过螺栓、螺母连接于副车架50。
本实施例3中,第一组衬套10中包括三个隔振衬套,三个隔振衬套压装到悬置支架30中,先与减速器壳体20连接,通过第一螺栓60固定。第二组衬套40压装于悬置支架30中,并通过螺栓、螺母与副车架50连接。 其中,第二组衬套40的刚度小于第一组衬套10的刚度,电机产生的激励先通过与减速器连接的第一组衬套10隔离,再经由与悬置支架30压装一体的第二组衬套40衰减后,传递至副车架50。中筒2可以改善整体的高频刚度,实现更好的隔振、降噪的效果。
进一步地,第二翻边21包括第一台阶翻边211和第二台阶翻边212,第一台阶翻边211与第二台阶翻边212相连接,第一台阶翻边211抵靠于第一翻边11,第二台阶翻边212抵靠于第三翻边31。
更进一步地,第一台阶翻边211的外沿与第一翻边11的外沿相对齐,第二台阶翻边212的外沿与第三翻边31的外沿相对齐。
进一步地,中筒2分别硫化于内筒1和外筒3。中筒2、内筒1和外筒3硫化成型为一体。
进一步地,第一翻边11的远离第二翻边21的一侧设有滚花12。
进一步地,内筒1的第二端延伸出外筒3的第二端。
现有技术中的中筒不设置翻边结构,在实际使用过程中,现有的衬套中的中筒容易被沿着衬套的轴向拉扯出外筒,导致现有的衬套的刚度小。
本实施例3中,中筒2设置第二翻边21,内筒1的第一翻边11和外筒3的第三翻边31设置在第二翻边21的两侧;当中筒2受到拉力时,由于第二翻边21可以抵靠至外筒3的第三翻边31上,第三翻边31可以阻止第二翻边21向第三翻边31的方向移动;当中筒2受到相反方向的拉力时,由于第二翻边21可以抵靠至内筒1的第一翻边11上,第一翻边11可以阻止第二翻边21向第一翻边11的方向移动;可见,本实施例3中的结构可以使中筒2不容易被拉扯而产生错位,从而提高了衬套的轴向刚度。
本实施例3中的隔振衬套,在增加轴向刚度的同时,不影响径向刚度,因此,轴向刚度和径向刚度之间的比值结果(刚度比)得到提高,从而可以同时实现高的轴向刚度和比较合理的径向刚度。本实施例3可以实现较高的轴/径向刚度比,提升NVH性能。
本实施例3中的衬套轴向刚度高,抗拉强度好;径向刚度低,高频隔振性能好;衬套的内筒1、外筒3和中筒2均设置翻边结构,避免中筒2拉脱,限位效果好;中筒2设置了翻边结构,使得中筒2与内筒1或外筒3 结合之处的中筒2厚度更大,从而提升了衬套的耐久性能;衬套的内筒1、外筒3和中筒2硫化为一体,产品稳定性好;衬套的尺寸小,布置灵活性好。
本发明主要用于车辆二级隔振的解决,专门针对二级隔振紧凑结构进行了特殊设计。在采用二级结构隔振时小衬套结构紧凑,橡胶强度及耐久风险尤其突出,在悬置设计时往往需要要在低刚度需求和高耐久性能方面做平衡,本发明在充分考虑低径向刚度需求的同时,提供了一种通过限位提升耐久性能的解决方案。在本发明提供的隔振衬套中,第一翻边11、第三翻边31与第二翻边21相配合,避免第二翻边21拉脱,可以提高限位效果,解决布置空间问题。本发明可以提高隔振衬套的轴向刚度,解决衬套轴向强度差、受拉工况下容易拉脱的问题;可以降低衬套径向刚度,提升NVH性能;对中筒2的结构进行调整,使得中筒2的局部加厚,可以提高衬套的耐久性能;衬套安装面增加滚花12,提高摩擦力,避免中筒2在安装扭力下的大转角变形。本发明的零件尺寸小,成本低。本发明主要作用刚度为中筒2的轴向刚度,由于轴向和径向有固定比值,故本发明对轴向位移进行限位,提高耐久性能。
以上仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种隔振衬套,其特征在于,包括:
    内筒(1),所述内筒(1)的第一端沿周向设有向外延伸的第一翻边(11);
    中筒(2),所述中筒具有弹性,所述中筒(2)套设于所述内筒(1)外,所述中筒(2)的第一端沿周向设有向外延伸的第二翻边(21),所述第二翻边(21)抵靠于所述第一翻边(11);
    外筒(3),所述外筒(3)套设于所述中筒(2)外,所述外筒(3)的第一端沿周向设有向外延伸的第三翻边(31),所述第三翻边(31)抵靠于所述第二翻边(21)。
  2. 如权利要求1所述的隔振衬套,其特征在于,所述第二翻边(21)包括第一台阶翻边(211)和第二台阶翻边(212),所述第一台阶翻边(211)与所述第二台阶翻边(212)相连接,所述第一台阶翻边(211)抵靠于所述第一翻边(11),所述第二台阶翻边(212)抵靠于所述第三翻边(31)。
  3. 如权利要求2所述的隔振衬套,其特征在于,所述第一台阶翻边(211)的外沿与所述第一翻边(11)的外沿相对齐,所述第二台阶翻边(212)的外沿与所述第三翻边(31)的外沿相对齐。
  4. 如权利要求1所述的隔振衬套,其特征在于,所述第一翻边(11)的远离所述第二翻边(21)的一侧设有滚花(12)。
  5. 如权利要求1所述的隔振衬套,其特征在于,所述内筒(1)的第二端延伸出所述外筒(3)的第二端。
  6. 如权利要求1所述的隔振衬套,其特征在于,所述中筒(2)分别硫化于所述内筒(1)和所述外筒(3)。
  7. 一种车辆,其特征在于,包括减速器、副车架(50)、悬置支架(30)、和如权利要求1至6中任一项所述的隔振衬套,所述减速器的壳体和所述悬置支架(30)之间设有第一组衬套(10),所述悬置支架(30)和所述副车架(50)之间设有第二组衬套(40)。
  8. 如权利要求7所述的车辆,其特征在于,所述第二组衬套(40)的尺寸大于所述第一组衬套(10)的尺寸。
  9. 如权利要求8所述的车辆,其特征在于,所述第一组衬套(10)压装于所述悬置支架(30),所述第一组衬套(10)通过第一螺栓(60)连接于所述减速器壳体(20),所述第二组衬套(40)压装于所述副车架(50),所述第二组衬套(40)通过第二螺栓连接于所述悬置支架(30)。
  10. 如权利要求8所述的车辆,其特征在于,所述第一组衬套(10)压装于所述悬置支架(30),所述第一组衬套(10)通过第一螺栓(60)连接于所述减速器壳体(20),所述第二组衬套(40)压装于所述悬置支架(30),所述第二组衬套(40)通过第二螺栓连接于所述副车架(50)。
PCT/CN2020/137303 2020-12-17 2020-12-17 一种隔振衬套及车辆 WO2022126524A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080107971.XA CN116761949A (zh) 2020-12-17 2020-12-17 一种隔振衬套及车辆
PCT/CN2020/137303 WO2022126524A1 (zh) 2020-12-17 2020-12-17 一种隔振衬套及车辆

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/137303 WO2022126524A1 (zh) 2020-12-17 2020-12-17 一种隔振衬套及车辆

Publications (1)

Publication Number Publication Date
WO2022126524A1 true WO2022126524A1 (zh) 2022-06-23

Family

ID=82058814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/137303 WO2022126524A1 (zh) 2020-12-17 2020-12-17 一种隔振衬套及车辆

Country Status (2)

Country Link
CN (1) CN116761949A (zh)
WO (1) WO2022126524A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN200943660Y (zh) * 2006-06-30 2007-09-05 南京汽车集团有限公司 钢板弹簧衬套
CN201456973U (zh) * 2009-07-23 2010-05-12 重庆长安汽车股份有限公司 一种轿车扭梁式后悬架连接衬套总成
CN104191927A (zh) * 2014-09-12 2014-12-10 东风小康汽车有限公司重庆分公司 汽车悬架用轴向型阻尼可变液压衬套
CN204372013U (zh) * 2015-01-05 2015-06-03 安徽江淮汽车股份有限公司 一种汽车及其副车架前安装衬套
CN204493547U (zh) * 2015-02-16 2015-07-22 安徽江淮汽车股份有限公司 一种安装衬套

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN200943660Y (zh) * 2006-06-30 2007-09-05 南京汽车集团有限公司 钢板弹簧衬套
CN201456973U (zh) * 2009-07-23 2010-05-12 重庆长安汽车股份有限公司 一种轿车扭梁式后悬架连接衬套总成
CN104191927A (zh) * 2014-09-12 2014-12-10 东风小康汽车有限公司重庆分公司 汽车悬架用轴向型阻尼可变液压衬套
CN204372013U (zh) * 2015-01-05 2015-06-03 安徽江淮汽车股份有限公司 一种汽车及其副车架前安装衬套
CN204493547U (zh) * 2015-02-16 2015-07-22 安徽江淮汽车股份有限公司 一种安装衬套

Also Published As

Publication number Publication date
CN116761949A (zh) 2023-09-15

Similar Documents

Publication Publication Date Title
CN109501565B (zh) 用于驱动电机的悬置装置以及包括其的电动车
WO2012056635A1 (ja) タンク用ゴムクッション
JPS6014627A (ja) サスペンションメンバの筒状弾性ブッシュ
WO2017056546A1 (ja) ブラケット付き筒形防振装置
JP2012211604A (ja) 防振装置
WO2022126524A1 (zh) 一种隔振衬套及车辆
JP2004176803A (ja) 筒形防振装置
CN113022284A (zh) 一种动力总成悬置衬套
WO2019131509A1 (ja) 電気自動車用防振装置の配設構造
CN107891737A (zh) 一种悬置系统及汽车
JP2004028267A (ja) 防振ブッシュ
JPH10274268A (ja) 防振ブッシュおよびブッシュ組立体
JP2005188575A (ja) 防振支持装置及び防振支持装置の取付構造
JP2007263154A (ja) 防振ブッシュ組立体
US20240010043A1 (en) Suspension system for vehicle air conditioner compressor, and vehicle
JP2011241931A (ja) 防振装置
JP3846688B2 (ja) 防振支持装置
CN110450615B (zh) 抗扭拉杆
JPH018752Y2 (zh)
CN210211933U (zh) 一种摆臂衬套及摆臂衬套组件
CN220298683U (zh) 全地形车
CN214874174U (zh) 一种动力总成悬置衬套
CN218966655U (zh) 一种隔振悬置衬套及电动车辆
CN220884019U (zh) 一种电动车用电机的二级减振悬置
CN109278520A (zh) 一种零刚度悬置和汽车

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20965540

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202080107971.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20965540

Country of ref document: EP

Kind code of ref document: A1