WO2022126451A1 - 局部厚铜结构加工方法、局部厚铜电路板及加工方法 - Google Patents

局部厚铜结构加工方法、局部厚铜电路板及加工方法 Download PDF

Info

Publication number
WO2022126451A1
WO2022126451A1 PCT/CN2020/136963 CN2020136963W WO2022126451A1 WO 2022126451 A1 WO2022126451 A1 WO 2022126451A1 CN 2020136963 W CN2020136963 W CN 2020136963W WO 2022126451 A1 WO2022126451 A1 WO 2022126451A1
Authority
WO
WIPO (PCT)
Prior art keywords
thick copper
copper
laminate
layer
circuit
Prior art date
Application number
PCT/CN2020/136963
Other languages
English (en)
French (fr)
Inventor
刘志华
丁大舟
韩雪川
李智
Original Assignee
深南电路股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深南电路股份有限公司 filed Critical 深南电路股份有限公司
Priority to PCT/CN2020/136963 priority Critical patent/WO2022126451A1/zh
Publication of WO2022126451A1 publication Critical patent/WO2022126451A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits

Definitions

  • the present application relates to the technical field of circuit boards, and in particular, to a method for processing a partially thick copper structure, a partially thick copper circuit board and a processing method.
  • the power supply current and voltage requirements become larger and larger, and the demand for thick copper lines is also larger.
  • the thick copper layer is limited by process limitations and precision requirements. Generally, it is difficult to process fine lines on the thick copper layer, and signal lines cannot be designed on the thick copper layer. However, if a whole thick copper layer is added in addition to the ordinary circuit layer to meet the large circulation demand, it will increase the number of layers of the entire circuit board, which will make the circuit board processing difficult and the processing cost will increase.
  • the present application provides a local thick copper structure processing method, a local thick copper circuit board and a processing method, so as to solve the problem that increasing the thick copper layer satisfies the current flow requirement but increases the number of layers of the circuit board, which leads to the difficulty in processing the circuit board, A local thick copper circuit and an ordinary thin copper circuit are realized in the same circuit layer, thereby reducing the processing difficulty and the processing cost.
  • the method for processing a local thick copper structure includes: providing a first laminate, the first laminate including a first core having a first copper cladding layer on at least one side; The surface of the copper layer is covered with a first dry film, and by exposing and developing the first dry film, a first thick copper area is formed on the first laminate; The thick copper area is electroplated to increase the copper thickness to form a first thick copper layer; the first dry film is removed; the side of the first laminate with the first thick copper layer is covered with a second dry film, and exposed to light and developing the second dry film, followed by etching to form a first wiring layer including a first thin copper wiring and a first thick copper wiring.
  • the thickness of the first dry film matches the copper thickness of the first thick copper circuit.
  • the first dry film is formed by stacking at least two sub-dry films.
  • the method further comprises: covering the first laminate with the first coating The surface of the copper layer is covered with a third dry film, and by exposing and developing the third dry film, a third thick copper area is formed on the first laminate; The thick copper area is electroplated to increase the copper thickness to form a third thick copper layer; wherein the copper thickness of the third thick copper layer is different from the copper thickness of the first thick copper layer; and the third dry film is removed.
  • the method for processing a local thick copper structure includes: covering a side of the first laminate with the first thick copper layer with a second dry film, exposing and developing the second dry film, and then performing etching , forming a first circuit layer including a first thin copper circuit, a first thick copper circuit and a third thick copper circuit.
  • the processing method of the local thick copper circuit board includes: providing a first laminate and a first insulating layer, the first laminate including a first core board with a first copper clad layer on at least one side; A first thin copper line and a first thick copper line are formed on the layer; wherein, by covering a first dry film on the surface of the first laminate with the first copper clad layer, by exposing and developing the first dry film a dry film, forming a first thick copper area on the first laminate; electroplating the first thick copper area on the first laminate to increase the copper thickness to form a first thick copper layer; removing all the the first dry film; cover a second dry film on the side of the first laminate with the first thick copper layer, expose and develop the second dry film, and then perform etching to form a first circuit layer,
  • the first circuit layer includes the first thin copper circuit and the first thick copper circuit; a first insulating layer
  • the first groove on the first insulating layer matches the first thick copper line.
  • the first insulating layer is formed by stacking at least two sub-insulating layers.
  • the processing method further includes: providing a second laminate, the second laminate including a second core having a second copper clad layer on at least one side; wherein at least the second copper clad layer is formed with a first two thick copper lines and a second thin copper line; the first insulating layer is provided with a second slot matching the second thick copper line; the first laminate, the first insulating layer and all the The second laminate is laminated; wherein, the first insulating layer is interposed between the first laminate and the second laminate, so as to connect the first thick copper circuit and the first thick copper circuit on the first laminate.
  • the second thick copper lines on the second laminate are respectively pressed into the corresponding first grooves and the second grooves on the first insulating layer, and make the first laminate
  • the first thick copper trace of the second laminate is insulated from the second thick copper trace of the second laminate.
  • the processing method further includes: opening the first groove and the second groove on the first insulating layer; wherein, the first groove and the second groove are respectively located in the first groove.
  • the first groove matches the first thick copper line
  • the second groove matches the second thick copper line.
  • the first circuit layer includes a third thick copper circuit in addition to the first thick copper circuit and the first thin copper circuit, and the copper thickness of the third thick copper circuit is the same as that of the first thick copper circuit.
  • the copper thicknesses of the lines are different; wherein, a first slot matching the first thick copper line and a third slot matching the third thick copper line are opened on the first insulating layer;
  • a laminate is laminated with the first insulating layer such that the first thick copper trace on the first laminate is pressed into the first groove on the first insulating layer, and the The third thick copper circuit on the first laminate is pressed into the third groove on the first insulating layer so that the first circuit layer of the first laminate is adjacent to it.
  • the method before the step of laminating the first insulating layer on the first laminate, the method further includes: inspecting the first laminate and judging whether the first laminate has defects; if the If the first laminate has no defects, the first insulating layer is laminated on the first laminate.
  • the local thick copper circuit board includes a first laminate, the first laminate includes a first core board with a first copper clad layer on at least one side, and the at least first copper clad layer is formed with a first thin copper circuit and The first circuit layer of the first thick copper circuit; the first insulating layer, which is pressed on the first laminate; the first insulating layer includes a first groove, and the first insulating layer and the first layer During the press-fit connection of the pressing plate, the first groove is matched with the first thick copper circuit on the first laminate, so that the circuit of the first laminate is insulated from the adjacent laminate.
  • the copper thickness of the first thick copper line is greater than or equal to 45 microns.
  • the local thick copper circuit board includes a second laminate, and the first insulating layer is interposed between the first laminate and the second laminate; the second laminate includes at least one side with a first laminate.
  • the first insulating layer further includes a second groove, the first groove and the second groove are respectively on two sides of the first insulating layer, the second groove and the second thick copper line to match.
  • the first circuit layer includes a third thick copper circuit in addition to the first thick copper circuit and the first thin copper circuit, and the copper thickness of the third thick copper circuit is the same as that of the first thick copper circuit.
  • the copper thickness of the lines is different.
  • a third groove is further formed on the side of the first insulating layer on which the first groove is formed, and the third groove is matched with the third thick copper circuit.
  • the first groove and the third groove have the same groove depth, and the groove depth is determined according to the copper thickness of the first thick copper line and the copper thickness of the third thick copper line.
  • both sides of the local thick copper circuit board are respectively provided with a secondary outer insulating layer and an outermost circuit layer.
  • the processing method of the local thick copper circuit board provided by the present application covers the first dry film on the surface of the first laminate board with the first copper cladding layer, through exposing and developing the first dry film, forming a first thick copper area on the first laminate, and performing electroplating on the first thick copper area to increase the copper thickness to form a first thick copper layer; removing the first dry film, One side of the first laminate with the first thick copper layer is covered with a second dry film, and by exposing and developing the second dry film, etching is performed to form a first circuit layer including a first thin copper circuit and a first thick copper circuit, Thus, a local thick copper structure is obtained.
  • the first circuit layer including the first thin copper circuit and the first thick copper circuit is formed by performing one etching, which reduces the processing steps and the processing difficulty.
  • the first insulating layer is laminated on the first laminate with a local thick copper structure, and a first groove matching the first thick copper circuit is opened on the first insulating layer.
  • the first thick copper circuit Pressing into the first groove on the first insulating layer, the first circuit layer on the first laminate including the first thick copper circuit is insulated and pressed with other pressing plates to form a local thick copper circuit board.
  • a thin copper circuit and a local thick copper circuit are formed on the same circuit layer, which realizes the large flow of local thick copper circuits without increasing the number of layers of laminates in the circuit board. At the same time, it can meet the needs of common lines and signal lines, meet the needs of different currents and wiring on the circuit board, and reduce the processing difficulty and processing cost.
  • FIG. 1 is a schematic flowchart of an embodiment of a method for processing a local thick copper structure provided by the present application
  • FIGS. 2a-2f are schematic flowcharts of another embodiment of the method for processing a local thick copper structure provided by the present application.
  • FIG. 3 is a schematic flowchart of another embodiment of a method for processing a local thick copper structure provided by the present application
  • FIG. 4 is a schematic flowchart of an embodiment of a method for processing a local thick copper circuit board provided by the present application
  • FIG. 5 is a schematic flowchart of another embodiment of a method for processing a local thick copper circuit board provided by the present application
  • FIG. 6 is a schematic structural diagram of an embodiment of a local thick copper circuit board provided by the present application.
  • FIG. 7 is a schematic structural diagram of another embodiment of the local thick copper circuit board provided by the present application.
  • FIG. 8 is a schematic structural diagram of another embodiment of the local thick copper circuit board provided by the present application.
  • FIG. 9 is a schematic structural diagram of an embodiment of an electronic device provided by the present application.
  • the embodiments of the present application provide a local thick copper structure processing method, a local thick copper circuit board and a processing method, so as to solve the problem that increasing the thick copper layer satisfies the current flow requirement but increases the number of layers of the circuit board, which makes the circuit board processing difficult.
  • the problem is to realize the realization of local thick copper lines and ordinary thin copper lines in the same circuit layer, thereby reducing the processing difficulty and processing cost.
  • first”, “second” and “third” in this application are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature defined as “first”, “second”, “third” may expressly or implicitly include at least one of that feature.
  • "a plurality of” means at least two, such as two, three, etc., unless otherwise expressly and specifically defined. All directional indications (such as up, down, left, right, front, rear%) in the embodiments of the present application are only used to explain the relative positional relationship between components under a certain posture (as shown in the accompanying drawings).
  • the thickness of the surface copper used for wiring on the circuit board also has thick copper and ordinary copper. Thick requirements, but also need to consider the difficulty of circuit board processing and cost.
  • the present application provides a method for processing a local thick copper structure. details as follows:
  • FIG. 1 is a schematic flowchart of an embodiment of a method for processing a local thick copper structure provided by the present application. In this embodiment, it specifically includes:
  • S101 Provide a first laminate, where the first laminate includes a first core having a first copper clad layer on at least one side.
  • the first laminated board includes a first core board with a first copper cladding layer on at least one side thereof. That is to say, the core board in the first laminate may be a core board with a single-sided copper cladding layer, or a core board with a double-sided copper cladding layer.
  • the copper thickness of the first copper clad layer is a common copper thickness, and the thickness is 35UM or more than 35UM, and a common circuit can be formed on the first copper clad layer.
  • providing the first laminate also includes cutting. Specifically, the raw material is taken and placed on the cutting machine, and the first laminate of the required size is cut out according to the size required by the production to provide the first laminate.
  • S102 Covering a first dry film on the surface of the first laminate with the first copper clad layer, and exposing and developing the first dry film to form a first thick copper region on the first laminate.
  • the dry film is a photosensitive film.
  • the dry film cures when exposed to light, forming a protective film on the surface of the first copper clad layer on the laminate.
  • a first dry film is covered on the surface of the first laminate with the first copper cladding layer, the first copper cladding layer corresponding to the first thick copper area is exposed by exposure and development, and the first copper cladding layer corresponding to other areas is still Under the protection of the dry film, the first copper clad layer in the first thick copper area can be subjected to subsequent surface copper plating treatment to increase the copper thickness without changing the copper thickness in other areas.
  • the thickness increased by electroplating is related to the thickness of the first dry film. Therefore, the thickness of the first dry film needs to match the copper thickness of the first thick copper circuit.
  • the first dry film may also be formed by superimposing at least two layers of sub-dry films.
  • one side of the core board has the first copper cladding layer
  • one side of the core board when covering the first dry film, one side of the core board can be covered with the first dry film by the copper cladding layer, or the copper cladding layers on both sides of the core board can be covered with the first dry film. Both are covered with the first dry film, so that exposure and development are performed on one or both sides of the core board to form a first thick copper area.
  • both sides of the first laminate are covered with the first dry film, and the first dry film is pressed, the negative film is aligned with the first laminate on which the first dry film is pressed, and the first dry film is pressed on the exposure machine.
  • the unshaded dry film on the negative film is chemically changed and cured, and the pattern including the first thick copper area on the negative film is transferred to the photosensitive dry film.
  • a weak alkaline developer such as sodium carbonate
  • dissolve and wash away the unexposed dry film so that the surface of the first copper clad layer corresponding to the first thick copper area is exposed, and the exposed part of the dry film is cured due to While remaining, that is, the surface of the first copper clad layer except the first thick copper region is protected by the dry film.
  • the surface of the copper clad layer Before covering the first dry film on the surface of the first laminate with the first copper clad layer, the surface of the copper clad layer can also be cleaned with an acid pick to ensure that no other dust or impurities are on it, followed by mechanical grinding To roughen the surface of the copper clad layer to enhance the adhesion between the dry film and the copper clad layer.
  • S103 Perform electroplating on the first thick copper region on the first laminate to increase the copper thickness to form a first thick copper layer.
  • the first thick copper area is electroplated to increase the copper thickness, and the electroplating conditions are controlled to increase the copper thickness so that the thickness of the first thick copper layer reaches the preset thickness. Since the first copper clad layer on the core layer has a certain thickness of copper, the surface-enhancing copper electroplating is performed on the basis of the first copper clad layer corresponding to the first thick copper area to increase the first thick copper area corresponding to the first cladding.
  • the copper of the copper layer is thick, so the thickness of the first thick copper layer is the sum of the thickness of the first copper clad layer and the copper thickness added by electroplating. Therefore, by controlling the copper thickness of the electroplated copper increase, the copper thickness of the first thick copper layer can be controlled.
  • the thickness added by plating is also related to the thickness of the first dry film. Therefore, the thickness of the first dry film covered in S102 needs to match the copper thickness of the first thick copper line.
  • the first dry film cured to protect the first copper clad layer except for the first thick copper area is removed, so that the copper layer can be subsequently processed.
  • S105 Covering a second dry film on the side of the first laminate with the first thick copper layer, exposing and developing the second dry film, and then performing etching to form a first thin copper circuit and a first thick copper circuit. a line layer.
  • first dry film and the second dry film may be the same, both of which are the same photosensitive film, or may be photosensitive films of different types. Specifically, for the specific steps of exposing and developing the second dry film, reference may be made to the corresponding content in S102, which will not be repeated here.
  • the copper cladding corresponding to the first thin copper circuit and the first thick copper circuit is protected by the second dry film, and the copper cladding except the first thin copper circuit and the first thick copper circuit is exposed, and the exposed copper cladding part is exposed.
  • Etching is performed to remove copper cladding outside the lines to form a first line layer including a first thin copper line and a first thick copper line.
  • the copper thickness of the first thick copper circuit is greater than or equal to 45 micrometers ( ⁇ m).
  • the copper thickness of the first thick copper circuit may be 107.80 ⁇ m, 118.80 ⁇ m, or the like.
  • the copper thickness of the first thin copper circuit is in the range of 11.4 ⁇ m ⁇ 25.0 ⁇ m, including 11.4 ⁇ m and 25.0 ⁇ m.
  • the copper thickness of the first thick copper line is greater than or equal to 45 ⁇ m and less than or equal to 140 ⁇ m.
  • the thicknesses of the first thin copper circuit and the first thick copper circuit are determined according to actual functions and design requirements, and then corresponding surface copper thickness processing is performed.
  • the first dry film is covered on the surface with the first copper cladding layer of the first laminate, and the first dry film is exposed and developed on the first laminate. forming a first thick copper area, and performing electroplating on the first thick copper area to increase the copper thickness to form a first thick copper layer; removing the first dry film and covering the side of the first laminate with the first thick copper layer
  • the second dry film is etched by exposing and developing the second dry film to form a first circuit layer including a first thin copper circuit and a first thick copper circuit, thereby obtaining a local thick copper structure.
  • the first circuit layer including the first thin copper circuit and the first thick copper circuit is formed by performing one etching, which reduces the processing steps and the processing difficulty.
  • FIGS. 2 a to 2 f are schematic flowcharts of another embodiment of the method for processing a local thick copper structure provided by the present application.
  • a first laminate is provided, the first laminate includes a first core having a first copper clad layer 201 on both sides.
  • a first dry film 202 is covered on the first copper clad layers 201 on both sides, and a first thick copper region 203 is formed on the first laminate by exposing and developing the first dry film.
  • the first thick copper region 203 on the first laminate is electroplated to increase the copper thickness to form a first thick copper layer 204 .
  • the first dry film 202 is removed so that the first copper clad layer 201 except the first thick copper layer 204 is also exposed for subsequent processing. Referring to FIG.
  • a second dry film 205 is covered on both sides of the first laminate, and the copper layer to be etched is exposed by exposing and developing the second dry film 205. Referring to FIG. 2f, the exposed copper layer is etched, and a second dry film 205 is formed to form a first wiring layer including a first thin copper wiring and a first thick copper wiring.
  • FIG. 3 is a schematic flowchart of another embodiment of the method for processing a local thick copper structure provided by the present application.
  • S301 Provide a first laminate, where the first laminate includes a first core board with a first copper clad layer on at least one side.
  • step S101 for this step, and details are not repeated here.
  • S302 Cover a first dry film on the surface of the first laminate with the first copper clad layer, and form a first thick copper region on the first laminate by exposing and developing the first dry film.
  • step S102 For this step, refer to step S102, and details are not repeated here.
  • S303 Perform electroplating on the first thick copper region on the first laminate to increase the copper thickness to form a first thick copper layer.
  • step S103 For this step, refer to step S103, which will not be repeated here.
  • step S104 for this step, and details are not repeated here.
  • S305 Cover the surface of the first laminate with the first copper clad layer with a third dry film, and form a third thick copper region on the first laminate by exposing and developing the third dry film.
  • a third thick copper region is formed on the first copper clad layer except for the first thick copper layer.
  • the third dry film is of the same material as the first dry film, and the thickness of the dry film is determined according to the copper thickness of the third thick copper layer to be formed.
  • S306 Perform electroplating on the third thick copper region on the first laminate to increase the copper thickness to form a third thick copper layer; wherein the copper thickness of the third thick copper layer is different from that of the first thick copper layer.
  • the third thick copper area on the first laminate is electroplated to increase the copper thickness to form a third thick copper layer, wherein the copper thickness of the third thick copper layer is different from the copper thickness of the first thick copper layer same. Since the first thick copper region and the third thick copper region do not overlap, the thickness of the third thick copper layer may be greater than or smaller than that of the first thick copper layer.
  • the third thick copper region may be on the first thick copper layer, and a corresponding third thick copper region on the first thick copper layer may be increased by performing electroplating on the third thick copper region on the first thick copper layer of copper thickness, resulting in the third thickest copper layer, with the ability to reduce electroplating alone. While the thickness of the third thick copper layer is based on the copper thickness of the first thick copper layer, the copper thickness of the third thick copper layer is the sum of the copper thickness of the first thick copper layer and the copper thickness added by electroplating. In this embodiment, the copper thickness of the third thick copper layer is greater than the copper thickness of the first thick copper layer.
  • This step is the same as the step of removing the first dry film, and will not be repeated here.
  • S308 Cover the side of the first laminate with the first thick copper layer with a second dry film, expose and develop the second dry film, and then perform etching to form a first thin copper circuit and a first thick copper circuit and the first trace layer of the third thick copper trace.
  • the copper thickness is increased by electroplating the first thick copper area on the surface of the first copper clad layer to form the first thick copper layer, and the copper thickness is increased by electroplating on the third thick copper area of the first laminate to form the first thick copper layer.
  • Three thick copper layers wherein the thickness of the first thick copper layer is different from that of the third thick copper layer, and the side with the first thick copper layer covers the second dry film, and by exposing and developing the second dry film, etching is performed to form the A first thin copper line, a first thick copper line and a third thick copper line, thereby obtaining a local thick copper structure with two different local thick copper lines.
  • the first circuit layer including the first thin copper circuit, the first thick copper circuit and the third thick copper circuit is formed by performing one etching, which reduces the processing steps and the processing difficulty.
  • FIG. 4 is a schematic flowchart of an embodiment of a method for processing a partially thick copper circuit board provided by the present application.
  • S401 Provide a first laminate and a first insulating layer, where the first laminate includes a first core with a first copper clad layer on at least one side.
  • S402 Form a first thin copper circuit and a first thick copper circuit on the first copper clad layer.
  • the first thick copper region is formed on the first laminate by covering a first dry film on the surface of the first laminate having the first copper clad layer, exposing and developing the first dry film ; Electroplating the first thick copper area on the first laminate to increase the copper thickness to form a first thick copper layer; Remove the first dry film; Cover the second dry film on the side of the first laminate with the first thick copper layer film, by exposing and developing the second dry film, and then performing etching to form a first circuit layer, where the first circuit layer includes a first thin copper circuit and the first thick copper circuit.
  • the first groove on the first insulating layer is matched with the first thick copper line.
  • the first insulating layer may be formed by stacking at least two sub-insulating layers, so that a first groove matching the first thick copper circuit can be formed on the first insulating layer.
  • One or continuous multi-layer sub-insulating layers are provided with through grooves, so that the first groove of the first insulating layer formed by superimposing the multi-layer sub-insulating layers, and at least one sub-insulating layer far from the opening direction of the first groove. non-through grooves so that the first thick copper traces on the first laminate are pressed into the first grooves on the first insulating layer and the first laminate is insulated from the adjacent laminate.
  • the first circuit layer includes a third thick copper circuit in addition to the first thick copper circuit and the first thin copper circuit, and the copper thickness of the third thick copper circuit is the same as the copper thickness of the first thick copper circuit.
  • the first insulating layer is provided with a first slot matched with the first thick copper line and a third slot matched with the third thick copper line. Laminate the first laminate with the first insulating layer such that the first thick copper trace on the first laminate is pressed into the first groove on the first insulating layer, and the third thick copper trace on the first The copper traces are pressed into the third grooves on the first insulating layer and insulate the first trace layer of the first laminate from its adjacent laminates.
  • the first laminate Before laminating the first insulating layer on the first laminate, the first laminate can also be inspected to determine whether the first laminate has defects. If there is no defect in the first laminate, the first insulating layer is laminated on the first laminate, so as to avoid the circuit board formed after final processing from being unusable due to defects in the first laminate, saving processing cost.
  • the first insulating layer is laminated on the first laminate having a local thick copper structure, and the first insulating layer is provided with a first groove matching the first thick copper circuit.
  • a thick copper circuit is pressed into the first groove on the first insulating layer, and the first circuit layer on the first laminate including the first thick copper circuit is insulated and pressed with other pressing plates to form a local thick copper circuit board.
  • FIG. 5 is a schematic flowchart of another embodiment of the method for processing a partially thick copper circuit board provided by the present application.
  • S501 Provide a first laminated board and a second laminated board; wherein the first laminated board includes a first core board with a first copper cladding layer on at least one side, and a first thick copper circuit and a first copper cladding layer are formed on the first copper cladding layer.
  • S502 Open a first slot and a second slot on the first insulating layer; wherein the first slot and the second slot are respectively on two sides of the first insulating layer, the first slot matches the first thick copper circuit, and the second slot Match the second thick copper trace.
  • S503 Laminate the first laminate, the first insulating layer and the second laminate; wherein the first insulating layer is interposed between the first laminate and the second laminate, so that the first thick copper on the first laminate The circuit and the second thick copper circuit on the second laminate are respectively pressed into the corresponding first groove and the second groove on the first insulating layer, so that the first thick copper circuit of the first laminate is connected to the second layer.
  • the first slot and the second slot are respectively opened on both sides of the first insulating layer, and the side of the first laminate with the first thick copper circuit is in contact with the side of the first insulating layer with the first slot and pressed together , the first thick copper circuit is pressed into the first groove, the side with the second thick copper circuit on the second laminate is in contact with the side with the second groove on the first insulating layer and pressed together, and the first thick copper circuit is respectively pressed. Pressing into the first slot and pressing the second thick copper circuit into the second slot avoids uneven thickness distribution caused by lamination of multilayer boards.
  • the present application also provides a local thick copper circuit board.
  • the local thick copper circuit board of the present application is not limited to locally increasing the thick copper structure to form a local thick copper circuit.
  • the method of locally reducing the surface copper can also be used, and the same circuit layer can include both thin copper circuits and Include thick copper traces without adding layers to the board. Specifically, it includes: providing a first laminate, the first laminate including a first core board and at least a first copper clad layer.
  • a first dry film is covered on the surface of the first laminate with the first copper cladding layer, and a first thin copper area is formed on the first laminate by exposing and developing the first dry film. Partial etching is performed on the first thin area on the first laminate to reduce the surface copper thickness of the first thin copper area to obtain a first thin copper layer. Then the first dry film is removed, at least one side of the first laminate with the first thin copper layer is covered with a second dry film, and the second dry film is exposed and developed, and then etched to form a circuit including the first thin copper layer and the first circuit layer of the first thick copper circuit.
  • FIG. 6 is a schematic structural diagram of an embodiment of a partially thick copper circuit board provided by the present application.
  • the local thick copper circuit board in this embodiment includes: a first laminate 610 and a first insulating layer 620 .
  • the first laminate 610 includes a first core board (not shown) with at least one side having a first copper cladding layer 611 .
  • both sides of the first core board may have a first copper cladding layer 611 .
  • a first circuit layer (not shown) including a first thin copper circuit (not shown) and a first thick copper circuit 612 is formed on the first copper clad layer 611 .
  • the first thin copper circuit is formed on the first copper clad layer 611 without thickening the copper layer.
  • the first insulating layer 620 is pressed on the first laminate 610 , and the first insulating layer 620 includes a first groove 621 .
  • the first grooves 621 are matched with the first thick copper traces 612 on the first laminate 610, so that the traces of the first laminate 610 are adjacent to them. laminate insulation.
  • the copper thickness of the first thick copper circuit 612 is greater than or equal to 45 microns.
  • the first circuit layer includes a third thick copper circuit (not shown) in addition to the first thick copper circuit 612 and the first thin copper circuit (not shown).
  • the copper thickness of the three thick copper lines (not shown) is different from the copper thickness of the first thick copper line 612 .
  • a third groove (not shown) is also formed on the side of the first insulating layer 620 on which the first groove 621 is formed, and the third groove (not shown) is matched with the third thick copper circuit (not shown).
  • the groove depths of the first groove 621 and the third groove are the same, and the groove depth is determined according to the copper thickness of the first thick copper circuit 612 and the copper thickness of the third thick copper circuit (not shown), such as , and determine the groove depth according to the maximum copper thickness of the two thick copper lines to reduce the processing difficulty.
  • the local thick copper circuit board further includes a second laminate 630 , and the first insulating layer 620 is interposed between the first laminate 610 and the second laminate 630 .
  • the second laminated board 630 includes a second core board (not shown) with a second copper cladding layer 631 on at least one side. Common lines are formed on the second copper cladding layer 631 without local thick copper lines.
  • both sides of the local thick copper circuit board are respectively provided with a secondary outer insulating layer 640 and an outermost circuit layer 650 .
  • a second thick copper circuit 632 is formed on the second copper clad layer 631 of the second laminate 630 , see FIG. 7 , which is provided by the present application
  • the first insulating layer 620 further includes a second groove 622 , the first groove 621 and the second groove 622 are respectively on two sides of the first insulating layer 620 , and the second groove 622 is matched with the second thick copper wire 632 .
  • the first laminated board 610 includes a core board (not shown) with a first copper cladding layer 611 on both sides, please refer to FIG.
  • the application provides a schematic structural diagram of another embodiment of the local thick copper circuit board.
  • a first thick copper circuit 612 and a first thin copper circuit (not shown) are formed on one side of the first laminate 610, and a fourth thick copper circuit 613 and a fourth thin copper circuit (not shown) are formed on the other side.
  • One side of the first laminate 610 is press-fitted with the first insulating layer 620 , and the other side is press-fitted with the insulating layer 640 .
  • the insulating layer 640 includes a groove matching the fourth thick copper circuit 613, so that the fourth thick copper circuit 613 can be pressed into the groove during pressing to avoid the uneven thickness of the circuit board formed after pressing. The delamination and other situations even increase the scrap rate of the circuit board.
  • the local thick copper circuit board of this embodiment thin copper circuits and local thick copper circuits are formed on the same circuit layer, so that the local thick copper circuit can be routed without increasing the number of layers of laminates in the circuit board. It can meet the needs of different currents and wiring on the circuit board, and reduce the processing difficulty and processing cost.
  • the grooves on the insulating layer corresponding to the local thick copper lines the delamination caused by the uneven thickness of the circuit board formed after pressing is reduced, and the scrap rate of the circuit board is even increased.
  • FIG. 9 is a schematic structural diagram of an embodiment of an electronic device provided by the present application.
  • the electronic device 90 includes the local thick copper circuit board 91 in the above embodiment.
  • the electronic device 90 in this application may be a network device applied in the communication field, backbone network, enterprise network, service storage, and the like.
  • the local thick copper circuit board 91 in the electronic device 90 provided by the present application can run a large current in the local thick copper circuit, and run the signal circuit in the ordinary thin copper circuit, so as to meet different wiring requirements and current requirements, In addition, the number of layers of the circuit board is not increased, and the processing difficulty and processing cost are reduced.
  • the local thick copper circuit board 91 includes a communication component 911, and the communication component 911 is used to communicate with an external device (not shown) to support the electronic device 90 to communicate with the external device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Manufacturing Of Printed Circuit Boards (AREA)

Abstract

本申请公开了一种局部厚铜结构加工方法、局部厚铜电路板及加工方法。该局部厚铜电路板的加工方法通过在第一厚铜区域进行电镀增加铜厚,形成第一厚铜层,在第一层压板的具有第一厚铜层的一面覆干膜,通过曝光和显影第二干膜,通过进行一次蚀刻形成了包括第一薄铜线路和第一厚铜线路的第一线路层,减小了加工步骤和加工难度。通过此厚铜电路板的加工方法,在同一个线路层上形成了薄铜线路和局部厚铜线路,实现了在不增加电路板中层压板等板材层数的情况下,局部厚铜线路走大的通流,同时又能满足普通线路走信号线路,满足了电路板上不同通流的需求和布线需求,减小了加工难度和加工成本。

Description

局部厚铜结构加工方法、局部厚铜电路板及加工方法 【技术领域】
本申请涉及电路板技术领域,特别涉及一种局部厚铜结构加工方法、局部厚铜电路板及加工方法。
【背景技术】
随着芯片尺寸变大,对供电电流、电压要求越来越大,对厚铜线路的需求也就越大。而厚铜层受工艺限制和精度需求的限制,一般难以在厚铜层上加工出细密线路,不能在厚铜层上设计信号线路。但是如果在普通线路层之外额外增加整层厚铜层来满足大流通需求,会由于增加了整个电路板的层数,使电路板加工难度大,加工成本上升。
【发明内容】
本申请提供一种局部厚铜结构加工方法、局部厚铜电路板及加工方法,以解决增加厚铜层满足了通流需求但增加了电路板的层数而导致电路板加工难度大的问题,实现了在同一线路层中实现局部厚铜线路和普通薄铜线路,从而减小加工难度和减少加工成本。
为解决上述技术问题,本申请采用的一个技术方案是:提供一种局部厚铜结构加工方法。该局部厚铜结构加工方法包括:提供第一层压板,所述第一层压板包括至少一面具有第一覆铜层的第一芯板;在所述第一层压板的具有所述第一覆铜层的表面上覆盖第一干膜,通过曝光和显影所述第一干膜,在所述第一层压板上形成第一厚铜区域;对所述第一层压板上的所述第一厚铜区域进行电镀增加铜厚,形成第一厚铜层;去除所述第一干膜;在所述第一层压板的具有所述第一厚铜层的一面覆盖第二干膜,通过曝光和显影所述第二干膜,然后进行蚀刻,形成包括第一薄铜线路和第一厚铜线路的第一线路层。
可选地,所述第一干膜的厚度与所述第一厚铜线路的铜厚相匹配。
可选地,所述第一干膜由至少两层子干膜叠加而成。
可选地,所述将所述第一层压板的具有所述第一厚铜层的一面覆盖第二干膜的步骤之前,还包括:将所述第一层压板的具有所述第一覆铜层的表面上覆盖第三干膜,通过曝光和显影所述第三干膜,在所述第一层压板上形成第三厚铜区域;对所述第一层压板上的所述第三厚铜区域进行电镀增加铜厚,形成第三厚铜层;其中,所述第三厚铜层的铜厚与所述第一厚铜层的铜厚不相同;去 除所述第三干膜。
可选地,局部厚铜结构加工方法包括:将所述第一层压板的具有所述第一厚铜层的一面覆盖第二干膜,通过曝光和显影所述第二干膜,然后进行蚀刻,形成包括第一薄铜线路、第一厚铜线路和第三厚铜线路的第一线路层。
为解决上述技术问题,本申请采用的另一个技术方案是:提供一种局部厚铜电路板的加工方法。该局部厚铜电路板的加工方法包括:提供第一层压板和第一绝缘层,所述第一层压板包括至少一面具有第一覆铜层的第一芯板;在所述第一覆铜层上形成第一薄铜线路和第一厚铜线路;其中,通过在所述第一层压板的具有所述第一覆铜层的表面上覆盖第一干膜,通过曝光和显影所述第一干膜,在所述第一层压板上形成第一厚铜区域;对所述第一层压板上的所述第一厚铜区域进行电镀增加铜厚,形成第一厚铜层;去除所述第一干膜;在所述第一层压板的具有所述第一厚铜层的一面覆盖第二干膜,通过曝光和显影所述第二干膜,然后进行蚀刻形成第一线路层,所述第一线路层包括所述第一薄铜线路和所述第一厚铜线路;将第一绝缘层压合于所述第一层压板上,所述第一绝缘层上开设有第一槽,以使得所述第一厚铜线路压入所述第一绝缘层上的第一槽中。
可选地,所述第一绝缘层上的所述第一槽与所述第一厚铜线路相匹配。
可选地,所述第一绝缘层由至少两层子绝缘层叠加而成。
可选地,所述加工方法还包括:提供第二层压板,所述第二层压板包括至少一面具有第二覆铜层的第二芯板;其中,至少第二覆铜层上形成有第二厚铜线路和第二薄铜线路;所述第一绝缘层上开设有与所述第二厚铜线路匹配的第二槽;将所述第一层压板、所述第一绝缘层以及所述第二层压板压合;其中,所述第一绝缘层介于所述第一层压板和所述第二层压板,以将所述第一层压板上的所述第一厚铜线路和所述第二层压板上的所述第二厚铜线路分别压入所述第一绝缘层上的对应设置的所述第一槽和所述第二槽中,并使得所述第一层压板的所述第一厚铜线路与所述第二层压板的所述第二厚铜线路绝缘。
可选地,所述加工方法还包括:在所述第一绝缘层上开设所述第一槽和所述第二槽;其中,所述第一槽和所述第二槽分别在所述第一绝缘层的两面,所述第一槽与所述第一厚铜线路相匹配,所述第二槽与所述第二厚铜线路相匹配。
可选地,所述第一线路层包括第一厚铜线路和第一薄铜线路之外,还包括第三厚铜线路,所述第三厚铜线路的铜厚与所述第一厚铜线路的铜厚不同;其中,所述第一绝缘层上开设有与所述第一厚铜线路匹配的第一槽以及与所述第三厚铜线路匹配的第三槽;将所述第一层压板与所述第一绝缘层压合,以使得 所述第一层压板上的所述第一厚铜线路压入所述第一绝缘层上的所述第一槽中,以及使得所述第一层压板上的所述第三厚铜线路压入所述第一绝缘层上的所述第三槽中,并使得与所述第一层压板的所述第一线路层与其相邻的层压板绝缘。
可选地,所述将第一绝缘层压合于所述第一层压板上的步骤之前,还包括:对所述第一层压板进行检测并判断第一层压板是否存在缺陷;若所述第一层压板不存在缺陷,则将第一绝缘层压合于所述第一层压板上。
为解决上述技术问题,本申请采用的又一个技术方案是:提供一种局部厚铜电路板。该局部厚铜电路板包括第一层压板,所述第一层压板包括至少一面具有第一覆铜层的第一芯板,所述至少第一覆铜层上形成包括第一薄铜线路和第一厚铜线路的第一线路层;第一绝缘层,压合在所述第一层压板上;所述第一绝缘层包括第一槽,所述第一绝缘层与所述第一层压板的压合连接时,所述第一槽与所述第一层压板上的所述第一厚铜线路匹配,以使得所述第一层压板的所述线路与其相邻的层压板绝缘。
可选地,第一厚铜线路的铜厚大于等于45微米。
可选地,局部厚铜电路板包括第二层压板,所述第一绝缘层介于所述第一层压板与所述第二层压板之间;所述第二层压板包括至少一面具有第二覆铜层的第二芯板;其中,所述第二覆铜层上形成有第二厚铜线路和第二薄铜线路。
可选地,所述第一绝缘层还包括第二槽,所述第一槽和所述第二槽分别在所述第一绝缘层的两面,所述第二槽与所述第二厚铜线路相匹配。
可选地,所述第一线路层包括第一厚铜线路和第一薄铜线路之外,还包括第三厚铜线路,所述第三厚铜线路的铜厚与所述第一厚铜线路的铜厚不同。
可选地,所述第一绝缘层上开设第一槽的一面上还开设有第三槽,所述第三槽与所述第三厚铜线路匹配。
可选地,所述第一槽与所述第三槽的槽深度相同,所述槽深度根据第一厚铜线路的铜厚和第三厚铜线路的铜厚确定。
可选地,所述局部厚铜电路板的两面分别都设置有次外层绝缘层和最外层线路层。
本申请的有益效果是:区别于现有技术的情况,本申请提供的局部厚铜电路板的加工方法通过在第一层压板的具有第一覆铜层的表面上覆盖第一干膜,通过曝光和显影第一干膜,在第一层压板上形成第一厚铜区域,并对第一厚铜区域进行电镀增加铜厚,形成第一厚铜层;去除所述第一干膜,在第一层压板的具有第一厚铜层的一面覆盖第二干膜,通过曝光和显影第二干膜,进行蚀刻, 形成包括第一薄铜线路和第一厚铜线路的第一线路层,从而得到了局部厚铜结构。其中,通过进行一次蚀刻形成了包括第一薄铜线路和第一厚铜线路的第一线路层,减小了加工步骤和加工难度。将第一绝缘层压合于具有局部厚铜结构的第一层压板上,而第一绝缘层上开设有与第一厚铜线路相匹配的第一槽,压合时,第一厚铜线路压入第一绝缘层上的第一槽中,包括有第一厚铜线路的第一层压板上的第一线路层与其他压板绝缘压合,形成局部厚铜电路板。通过此加工方法,在同一个线路层上形成了薄铜线路和局部厚铜线路,实现了在不增加电路板中层压板等板材层数的情况下,实现局部厚铜线路走大的通流,同时又能满足普通线路走信号线路,满足了电路板上不同通流的需求和布线需求,减小了加工难度和加工成本。
【附图说明】
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,其中:
图1是本申请提供的局部厚铜结构加工方法一实施例的流程示意图;
图2a~图2f是本申请提供的局部厚铜结构加工方法另一实施例的流程示意图;
图3是本申请提供的局部厚铜结构加工方法又一实施例的流程示意图;
图4是本申请提供的局部厚铜电路板的加工方法一实施例的流程示意图;
图5是本申请提供的局部厚铜电路板的加工方法另一实施例的流程示意图;
图6是本申请提供的局部厚铜电路板一实施例的结构示意图;
图7是本申请提供的局部厚铜电路板另一实施例的结构示意图;
图8是本申请提供的局部厚铜电路板又一实施例的结构示意图;
图9是本申请提供的电子设备一实施例的结构示意图。
【具体实施方式】
本申请实施例提供一种局部厚铜结构加工方法、局部厚铜电路板及加工方法,以解决增加厚铜层满足了通流需求但增加了电路板的层数而导致电路板加工难度大的问题,实现了在同一线路层中实现局部厚铜线路和普通薄铜线路,从而减小加工难度和加工成本。
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请 实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请中的术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”的特征可以明示或者隐含地包括至少一个该特征。本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。本申请实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,在不冲突的情况下,本文所描述的实施例可以与其它实施例相结合。下面通过具体实施例,分别进行详细的说明。
由于目前对电路板存在流通大电路和大电压的需求,同时也要满足普通的走线需求,比如普通的信号线路,电路板上的用于走线的面铜厚度也存在厚铜和普通铜厚的需求,同时还需要考虑到电路板加工难度以及成本问题。对此本申请体提供了一种局部厚铜结构加工方法。具体如下:
请参阅图1,图1是本申请提供的局部厚铜结构加工方法一实施例的流程示意图。本实施例中,具体包括:
S101:提供第一层压板,第一层压板包括至少一面具有第一覆铜层的第一芯板。
本实施例中,第一层压板包括至少一面具有第一覆铜层的第一芯板。也就是说,第一层压板中的芯板,可以为单面覆铜层的芯板,或者是双面覆铜层的芯板。其中,第一覆铜层的铜厚为普通铜厚,厚度为35UM或大于35UM,能够在第一覆铜层形成普通线路。还有一些需要走高频或信号的线路,对铜厚有其他要求的,根据客户和产品的要求来选择。而提供第一层压板还包括开料。 具体地,取原材料放置在开料机上,按照生产所要求的尺寸,裁剪出所需的规格尺寸的第一层压板,提供第一层压板。
S102:在第一层压板的具有第一覆铜层的表面上覆盖第一干膜,通过曝光和显影第一干膜,在第一层压板上形成第一厚铜区域。
本实施例中,干膜是一种感光膜。干膜遇光会固化,在层压板上的第一覆铜层的表面上形成一道保护膜。在第一层压板的具有第一覆铜层的表面上覆盖第一干膜,通过曝光显影将第一厚铜区域对应的第一覆铜层暴露,其他区域对应的第一覆铜层仍在干膜的保护下,从而能对第一厚铜区域的第一覆铜层进行后续镀面铜处理以增加铜厚,而不改变其他区域的铜厚。而电镀增加的厚度与第一干膜的厚度有关,因此,第一干膜的厚度需要与第一厚铜线路的铜厚相匹配。其中,第一干膜也可以是由至少两层子干膜叠加而成。
由于芯板至少一面具有第一覆铜层,因此在覆盖第一干膜时,根据需求可以对芯板的其中一面覆铜层进行覆盖第一干膜,或者将芯板的两面的覆铜层均进行覆盖第一干膜,以在芯板的其中一面或者两面进行曝光显影,形成第一厚铜区域。
在一个具体实施例中,将第一层压板的两面均覆盖第一干膜,并压好第一干膜,将底片与压好第一干膜的第一层压板进行对位,在曝光机上利用紫外光的照射,使底片上未被遮光的干膜产生化学变化而固化,将底片上包括第一厚铜区域的图形转移到感光干膜上。然后使用弱碱性的显影液,如碳酸钠,将未经曝光的干膜溶解冲洗掉,得到第一厚铜区域对应的第一覆铜层的表面暴露出来,而已曝光的部分干膜由于固化而保留,即除第一厚铜区域之外的第一覆铜层的表面均被干膜保护。
在第一层压板的具有第一覆铜层的表面上覆盖第一干膜之前,还可以使用酸洗来清洁覆铜层表面,以确保没有其他的灰尘或者杂质在上面,接着会用机械研磨来粗化覆铜层表面,以增强干膜与覆铜层的附着力。
S103:对第一层压板上的第一厚铜区域进行电镀增加铜厚,形成第一厚铜层。
根据预设的铜厚需求,对第一厚铜区域进行电镀来增加铜厚,并控制电镀条件,使增加铜厚使第一厚铜层的厚度达到预设厚度。由于芯层上的第一覆铜层具有一定的铜厚,而电镀增面铜是在第一厚铜区域对应的第一覆铜层的基础上进行来增加第一厚铜区域对应第一覆铜层的铜厚的,因此第一厚铜层的厚度为第一覆铜层的厚度与电镀增加的铜厚之和。因此,通过控制电镀增铜的铜厚,即可控制第一厚铜层的铜厚。
另外,电镀增加的厚度还与第一干膜的厚度有关。因此,在S102中覆盖的第一干膜的厚度需要与第一厚铜线路的铜厚相匹配。
S104:去除第一干膜。
电镀完成后,将除第一厚铜区域之外固化以对第一覆铜层起到保护作用的第一干膜去除掉,以便对铜层进行后续加工。
S105:在第一层压板的具有第一厚铜层的一面覆盖第二干膜,通过曝光和显影第二干膜,然后进行蚀刻,形成包括第一薄铜线路和第一厚铜线路的第一线路层。
为了对第一厚铜层以及第一覆铜层上的其他区域进行蚀刻得到相应的路线,将第一覆铜层上包括第一厚铜层的一面覆盖第二干膜,压膜并曝光和显影第二干膜。其中,第一干膜与第二干膜的材料可以相同,均为同一种感光膜,也可以为不同型号的感光膜。具体的,曝光和显影第二干膜的具体步骤可以参阅S102中的相应内容,此处不赘述。显影后,第一薄铜线路和第一厚铜线路对应的覆铜被第二干膜保护,除第一薄铜线路和第一厚铜线路外的覆铜暴露,对暴露出的覆铜部分进行蚀刻,去除线路之外的覆铜,形成包括第一薄铜线路和第一厚铜线路的第一线路层。
在本实施例中,第一厚铜线路的铜厚大于等于45微米(μm),比如第一厚铜线路的铜厚可以为107.80μm、118.80μm等。第一薄铜线路的铜厚在11.4μm~25.0μm的范围内,包括11.4μm和25.0μm。在其他实施例中,第一厚铜线路的铜厚大于等于45μm,且小于等于140μm。在具体加工操作中,第一薄铜线路和第一厚铜线路的厚度根据实际功能及设计需求来确定,然后进行相应的面铜厚度处理。
本实施例中的局部厚铜电路板的加工方法通过在第一层压板的具有第一覆铜层的表面上覆盖第一干膜,通过曝光和显影第一干膜,在第一层压板上形成第一厚铜区域,并对第一厚铜区域进行电镀增加铜厚,形成第一厚铜层;去除所述第一干膜,在第一层压板的具有第一厚铜层的一面覆盖第二干膜,通过曝光和显影第二干膜,进行蚀刻,形成包括第一薄铜线路和第一厚铜线路的第一线路层,从而得到了局部厚铜结构。其中,通过进行一次蚀刻形成了包括第一薄铜线路和第一厚铜线路的第一线路层,减小了加工步骤和加工难度。
请参阅图2a~图2f,图2a~图2f是本申请提供的局部厚铜结构加工方法另一实施例的流程示意图。
参阅图2a,提供第一层压板,第一层压板包括两面具有第一覆铜层201的第一芯板。参阅图2b,在两面的第一覆铜层201上均覆盖第一干膜202,并通 过曝光和显影第一干膜,在第一层压板上形成第一厚铜区域203。参阅图2c,对第一层压板上的第一厚铜区域203进行电镀增加铜厚,形成第一厚铜层204。参阅图2d,去除第一干膜202,使得除第一厚铜层204之外的第一覆铜层201也暴露出,以进行后续处理。参阅图2e,在第一层压板两面均覆盖第二干膜205,通过曝光和显影第二干膜205,将需要蚀刻的铜层暴露。参阅图2f,对暴露的铜层进行蚀刻,并第二干膜205,形成包括第一薄铜线路和第一厚铜线路的第一线路层。
请参阅图3,图3是本申请提供的局部厚铜结构加工方法又一实施例的流程示意图。
S301:提供第一层压板,第一层压板包括至少一面具有第一覆铜层的第一芯板。
此步骤参阅步骤S101,此处不再赘述。
S302:在第一层压板的具有第一覆铜层的表面上覆盖第一干膜,通过曝光和显影所述第一干膜,在第一层压板上形成第一厚铜区域。
此步骤参阅步骤S102,此处不再赘述。
S303:对第一层压板上的第一厚铜区域进行电镀增加铜厚,形成第一厚铜层。
此步骤参阅步骤S103,此处不再赘述。
S304:去除第一干膜。
此步骤参阅步骤S104,此处不再赘述。
S305:将第一层压板的具有第一覆铜层的表面上覆盖第三干膜,通过曝光和显影第三干膜,在第一层压板上形成第三厚铜区域。
在本实施例中,在第一覆铜层上除第一厚铜层之外的区域,形成第三厚铜区域,形成第三厚铜区域的方法步骤参阅形成第一厚铜区域的步骤。此处第三干膜与所述第一干膜材料相同,干膜的厚度根据需要形成的第三厚铜层的铜厚确定。
S306:对第一层压板上的第三厚铜区域进行电镀增加铜厚,形成第三厚铜层;其中,第三厚铜层的铜厚与第一厚铜层的铜厚不相同。
在本实施例中,对第一层压板上的第三厚铜区域进行电镀增加铜厚形成第三厚铜层,其中,第三厚铜层的铜厚与第一厚铜层的铜厚不相同。由于第一厚铜区域与第三厚铜区域不重合,所以第三厚铜层的厚度可以大于第一厚铜层的厚度,也可以小于第一厚铜层。
在其他实施例中,第三厚铜区域可以在第一厚铜层上,可以通过在第一厚 铜层上的第三厚铜区域进行电镀增加第一厚铜层上对应第三厚铜区域的铜厚,得到第三厚铜层,与单独能够减小电镀。而第三厚铜层的厚度是基于第一厚铜层的铜厚,则第三厚铜层的铜厚为第一厚铜层的铜厚与电镀增加的铜厚之和。在此实施例中,第三厚铜层的铜厚大于第一厚铜层的铜厚。
S307:去除第三干膜。
此步骤与去除第一干膜的步骤相同,此处不再赘述。
S308:将第一层压板的具有所述第一厚铜层的一面覆盖第二干膜,通过曝光和显影第二干膜,然后进行蚀刻,形成包括第一薄铜线路、第一厚铜线路和第三厚铜线路的第一线路层。
本实施例中,通过第一覆铜层的表面的第一厚铜区域电镀增加铜厚,形成第一厚铜层,以及在第一层压板的第三厚铜区域电镀增加铜厚,形成第三厚铜层,其中第一厚铜层与第三厚铜层厚度不相同,并具有第一厚铜层的一面覆盖第二干膜,通过曝光和显影第二干膜,进行蚀刻,形成包括第一薄铜线路、第一厚铜线路和第三厚铜线路,从而得到了具有两个不同局部厚铜线路的局部厚铜结构。其中,通过进行一次蚀刻形成了包括第一薄铜线路、第一厚铜线路和第三厚铜线路的第一线路层,减小了加工步骤和加工难度。
请参阅图4,图4是本申请提供的局部厚铜电路板的加工方法一实施例的流程示意图。
S401:提供第一层压板和第一绝缘层,第一层压板包括至少一面具有第一覆铜层的第一芯板。
S402:在第一覆铜层上形成第一薄铜线路和第一厚铜线路。
本实施例中形成第一薄铜线路和第一厚铜线路的步骤,可以参考本申请局部厚铜结构加工方法的步骤,比如参阅前面3个实施例的步骤。在一个具体实施例中,通过在第一层压板的具有第一覆铜层的表面上覆盖第一干膜,通过曝光和显影第一干膜,在第一层压板上形成第一厚铜区域;对第一层压板上的第一厚铜区域进行电镀增加铜厚,形成第一厚铜层;去除第一干膜;在第一层压板的具有第一厚铜层的一面覆盖第二干膜,通过曝光和显影第二干膜,然后进行蚀刻形成第一线路层,第一线路层包括第一薄铜线路和所述第一厚铜线路。
S403:将第一绝缘层压合于第一层压板上,第一绝缘层上开设有第一槽,以使得第一厚铜线路压入第一绝缘层上的第一槽中。
具体的,第一绝缘层上的第一槽与第一厚铜线路相匹配。其中,第一绝缘层可以由至少两层子绝缘层叠加而成,以能在第一绝缘层上形成与第一厚铜线路相匹配的第一槽。而其中一层或连续的多层子绝缘层开设有通槽,以使多层 子绝缘层叠加而成的第一绝缘层第一槽,而远离第一槽开口方向的至少一层子绝缘层非通槽,从而使第一层压板上的第一厚铜线路压入第一绝缘层上的第一槽且第一层压板与相邻层压板绝缘。
在其他实施例中,第一线路层包括第一厚铜线路和第一薄铜线路之外,还包括第三厚铜线路,第三厚铜线路的铜厚与第一厚铜线路的铜厚不同;其中,第一绝缘层上开设有与第一厚铜线路匹配的第一槽以及与所述第三厚铜线路匹配的第三槽。将第一层压板与第一绝缘层压合,以使得第一层压板上的第一厚铜线路压入第一绝缘层上的第一槽中,以及使得第一层压板上的第三厚铜线路压入第一绝缘层上的第三槽中,并使得第一层压板的第一线路层与其相邻的层压板绝缘。
将第一绝缘层压合于第一层压板上之前,还可以对第一层压板进行检测,并判断第一层压板是否存在缺陷。若第一层压板不存在缺陷,则将第一绝缘层压合于所述第一层压板上,以免因为第一层压板上的存在缺陷而导致最终加工后形成的电路板无法使用,节约加工成本。
本实施例中将第一绝缘层压合于具有局部厚铜结构的第一层压板上,而第一绝缘层上开设有与第一厚铜线路相匹配的第一槽,压合时,第一厚铜线路压入第一绝缘层上的第一槽中,包括有第一厚铜线路的第一层压板上的第一线路层与其他压板绝缘压合,形成局部厚铜电路板。通过此加工方法,在同一个线路层上形成了薄铜线路和局部厚铜线路,实现了在不增加电路板中层压板等板材层数的情况下,实现局部厚铜线路走大的通流,同时又能满足普通线路走信号线路,满足了电路板上不同通流的需求和布线需求,减小了加工难度和加工成本。
请参阅图5,图5是本申请提供的局部厚铜电路板的加工方法另一实施例的流程示意图。
S501:提供第一层压板和第二层压板;其中,第一层压板包括至少一面具有第一覆铜层的第一芯板,具有第一覆铜层上形成有第一厚铜线路和第一薄铜线路;第二层压板包括至少一面具有第二覆铜层的第二芯板,具有第二覆铜层上形成有第二厚铜线路和第二薄铜线路。
S502:在第一绝缘层上开设第一槽和第二槽;其中,第一槽和第二槽分别在第一绝缘层的两面,第一槽与第一厚铜线路相匹配,第二槽与第二厚铜线路相匹配。
S503:将第一层压板、第一绝缘层以及第二层压板压合;其中,第一绝缘层介于第一层压板和第二层压板,以将第一层压板上的第一厚铜线路和第二层 压板上的第二厚铜线路分别压入第一绝缘层上的对应设置的第一槽和第二槽中,并使得第一层压板的第一厚铜线路与第二层压板的第二厚铜线路绝缘。
本实施例中,第一绝缘层上两面分别开设有第一槽和第二槽,第一层压板上具有第一厚铜线路的一面与第一绝缘层具有第一槽的一面接触并压合,使第一厚铜线路压入第一槽中,第二层压板上具有第二厚铜线路的一面与第一绝缘层具有第二槽的一面接触并压合,分别使第一厚铜线路压入第一槽中以及第二厚铜线路压入第二槽中,避免多层板压合导致厚度分布不均匀。
本申请还提供一种局部厚铜电路板。局部厚铜电路板的加工方法以及其中的局部厚铜结构的加工方法参阅上文中关于局部厚铜电路板的加工方法以及局部厚铜结构的加工方法的相关内容。但本申请的局部厚铜电路板不限于局部增加厚铜结构来形成局部厚铜电路,还可以采用局部减小面铜的方法,也能实现在同一层线路层中既包括薄铜线路,又包括厚铜线路,而同时又不增加电路板层数。具体地,包括:提供第一层压板,第一层压板包括第一芯板及至少第一覆铜层。将第一层压板的具有第一覆铜层的表面上覆盖第一干膜,通过曝光和显影第一干膜,在第一层压板上形成第一薄铜区域。对对第一层压板上的第一薄区域进行局部蚀刻,减小第一薄铜区域的面铜铜厚厚,得到第一薄铜层。然后去除第一干膜,将第一层压板的至少具有第一薄铜层的一面覆盖第二干膜,通过曝光和显影所述第二干膜,然后进行蚀刻,形成包括第一薄铜线路和第一厚铜线路的第一线路层。
参阅图6,图6是本申请提供的局部厚铜电路板一实施例的结构示意图。本实施中的局部厚铜电路板,包括:第一层压板610和第一绝缘层620。第一层压板610,包括至少一面具有第一覆铜层611的第一芯板(图未标),具体的,第一芯板的两面可以均具有第一覆铜层611。第一覆铜层611上形成包括第一薄铜线路(图未标)和第一厚铜线路612的第一线路层(图未标)。第一薄铜线路形成于未加厚铜层的第一覆铜层611上。第一绝缘层620压合在第一层压板610上,第一绝缘层620包括第一槽621。在第一绝缘层620与第一层压板610进行压合连接时,第一槽621与第一层压板610上的第一厚铜线路612匹配,以使得第一层压板610的线路与其相邻的层压板绝缘。本实施例中,第一厚铜线路612的铜厚大于等于45微米。
在其他实施例中,第一线路层(图未标)包括第一厚铜线路612和第一薄铜线路(图未标)之外,还包括第三厚铜线路(图未示),第三厚铜线路(图未示)的铜厚与第一厚铜线路612的铜厚不同。第一绝缘层620上开设第一槽621的一面上还开设有第三槽(图未示),第三槽(图未示)与第三厚铜线路(图未 示)匹配。具体的,第一槽621与第三槽(图未示)的槽深度相同,槽深度根据第一厚铜线路612的铜厚和第三厚铜线路(图未示)的铜厚确定,比如,根据两个厚铜线路的最大铜厚确定槽深度,以减小加工难度。
在本实施例中,局部厚铜电路板还包括第二层压板630,第一绝缘层620介于第一层压板610与第二层压板630之间。第二层压板630包括至少一面具有第二覆铜层631的第二芯板(图未标),第二覆铜层631上形成普通线路,无局部厚铜线路。
在本实施例中,除内层的层压板外,局部厚铜电路板的两面分别都设置有次外层绝缘层640和最外层线路层650。
在另一个实施例中,在上一实施例的基础上,在第二层压板630的第二覆铜层631上形成有第二厚铜线路632,参阅图7,图7是本申请提供的局部厚铜电路板另一实施例的结构示意图。第一绝缘层620还包括有第二槽622,第一槽621和第二槽622分别在第一绝缘层620的两面,第二槽622与第二厚铜线路632相匹配。
在另一个实施例中,在图6对应的实施例的基础上,第一层压板610包括两面均有第一覆铜层611的芯板(图未标),参阅图8,图8是本申请提供的局部厚铜电路板又一实施例的结构示意图。第一层压板610的其中一面形成第一厚铜线路612和第一薄铜线路(图未标),另一面形成第四厚铜线路613和第四薄铜线路(图未标)。第一层压板610的一面与第一绝缘层620压合,另一面与绝缘层640压合。绝缘层640上包括有与第四厚铜线路613相匹配的槽,以在压合时,将第四厚铜线路613压入槽中,避免压合后形成的电路板因厚度不均匀而导致的分层等情况甚至增加电路板报废率。
本实施例的局部厚铜电路板,在同一个线路层上形成了薄铜线路和局部厚铜线路,实现了在不增加电路板中层压板等板材层数的情况下,实现局部厚铜线路走大的通流,同时又能满足普通线路走信号线路,满足了电路板上不同通流的需求和布线需求,减小了加工难度和加工成本。同时,也通过设置与局部厚铜线路对应的绝缘层上的槽,减小压合后形成的电路板因厚度不均匀而导致的分层等情况甚至增加电路板报废率。
除此之外,本申请还提供一种电子设备。参阅图9,图9是本申请提供的电子设备一实施例的结构示意图。本实施例中,电子设备90包括上述实施例中的局部厚铜电路板91。本申请中的电子设备90可以是应用于通讯领域,骨干网、企业网、服务存储等的网络设备。本申请提供的电子设备90中的局部厚铜电路板91,能够在局部厚铜线路中走大的通流,在普通薄铜线路中走信号线路,以 满足不同的布线需求和通流需求,且不增加电路板层数,减小了加工难度和加工成本。其中,局部厚铜电路板91上包括有通信组件911,通信组件911用于与外部设备(图未示)进行通信连接,以支持电子设备90与外部设备进行通信。
以上所述仅为本申请的实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (20)

  1. 一种局部厚铜结构加工方法,其特征在于,包括:
    提供第一层压板,所述第一层压板包括至少一面具有第一覆铜层的第一芯板;
    在所述第一层压板的具有所述第一覆铜层的表面上覆盖第一干膜,通过曝光和显影所述第一干膜,在所述第一层压板上形成第一厚铜区域;
    对所述第一层压板上的所述第一厚铜区域进行电镀增加铜厚,形成第一厚铜层;
    去除所述第一干膜;
    在所述第一层压板的具有所述第一厚铜层的一面覆盖第二干膜,通过曝光和显影所述第二干膜,然后进行蚀刻,形成包括第一薄铜线路和第一厚铜线路的第一线路层。
  2. 根据权利要求1所述的局部厚铜结构加工方法,其特征在于,所述第一干膜的厚度与所述第一厚铜线路的铜厚相匹配。
  3. 根据权利要求1所述的局部厚铜结构加工方法,其特征在于,所述第一干膜由至少两层子干膜叠加而成。
  4. 根据权利要求1所述的局部厚铜结构加工方法,其特征在于,所述将所述第一层压板的具有所述第一厚铜层的一面覆盖第二干膜的步骤之前,还包括:
    将所述第一层压板的具有所述第一覆铜层的表面上覆盖第三干膜,通过曝光和显影所述第三干膜,在所述第一层压板上形成第三厚铜区域;
    对所述第一层压板上的所述第三厚铜区域进行电镀增加铜厚,形成第三厚铜层;其中,所述第三厚铜层的铜厚与所述第一厚铜层的铜厚不相同;
    去除所述第三干膜。
  5. 根据权利要求4所述的局部厚铜结构加工方法,其特征在于,包括:
    将所述第一层压板的具有所述第一厚铜层的一面覆盖第二干膜,通过曝光和显影所述第二干膜,然后进行蚀刻,形成包括第一薄铜线路、第一厚铜线路和第三厚铜线路的第一线路层。
  6. 一种局部厚铜电路板的加工方法,其特征在于,包括:
    提供第一层压板和第一绝缘层,所述第一层压板包括至少一面具有第一覆铜层的第一芯板;
    在所述第一覆铜层上形成第一薄铜线路和第一厚铜线路;其中,通过在所述第一层压板的具有所述第一覆铜层的表面上覆盖第一干膜,通过曝光和显影 所述第一干膜,在所述第一层压板上形成第一厚铜区域;对所述第一层压板上的所述第一厚铜区域进行电镀增加铜厚,形成第一厚铜层;去除所述第一干膜;在所述第一层压板的具有所述第一厚铜层的一面覆盖第二干膜,通过曝光和显影所述第二干膜,然后进行蚀刻形成第一线路层,所述第一线路层包括所述第一薄铜线路和所述第一厚铜线路;
    将第一绝缘层压合于所述第一层压板上,所述第一绝缘层上开设有第一槽,以使得所述第一厚铜线路压入所述第一绝缘层上的第一槽中。
  7. 根据权利要求6所述局部厚铜电路板的加工方法,其特征在于,所述第一绝缘层上的所述第一槽与所述第一厚铜线路相匹配。
  8. 根据权利要求6所述局部厚铜电路板的加工方法,其特征在于,所述第一绝缘层由至少两层子绝缘层叠加而成。
  9. 根据权利要求6所述局部厚铜电路板的加工方法,其特征在于,所述加工方法还包括:
    提供第二层压板,所述第二层压板包括至少一面具有第二覆铜层的第二芯板;其中,至少第二覆铜层上形成有第二厚铜线路和第二薄铜线路;所述第一绝缘层上开设有与所述第二厚铜线路匹配的第二槽;
    将所述第一层压板、所述第一绝缘层以及所述第二层压板压合;其中,所述第一绝缘层介于所述第一层压板和所述第二层压板,以将所述第一层压板上的所述第一厚铜线路和所述第二层压板上的所述第二厚铜线路分别压入所述第一绝缘层上的对应设置的所述第一槽和所述第二槽中,并使得所述第一层压板的所述第一厚铜线路与所述第二层压板的所述第二厚铜线路绝缘。
  10. 根据权利要求9所述局部厚铜电路板的加工方法,其特征在于,包括:
    在所述第一绝缘层上开设所述第一槽和所述第二槽;其中,所述第一槽和所述第二槽分别在所述第一绝缘层的两面,所述第一槽与所述第一厚铜线路相匹配,所述第二槽与所述第二厚铜线路相匹配。
  11. 根据权利要求6所述局部厚铜电路板的加工方法,其特征在于,所述第一线路层包括第一厚铜线路和第一薄铜线路之外,还包括第三厚铜线路,所述第三厚铜线路的铜厚与所述第一厚铜线路的铜厚不同;其中,所述第一绝缘层上开设有与所述第一厚铜线路匹配的第一槽以及与所述第三厚铜线路匹配的第三槽;
    将所述第一层压板与所述第一绝缘层压合,以使得所述第一层压板上的所述第一厚铜线路压入所述第一绝缘层上的所述第一槽中,以及使得所述第一层压板上的所述第三厚铜线路压入所述第一绝缘层上的所述第三槽中,并使得与 所述第一层压板的所述第一线路层与其相邻的层压板绝缘。
  12. 根据权利要求6所述局部厚铜电路板的加工方法,其特征在于,所述将第一绝缘层压合于所述第一层压板上的步骤之前,还包括:
    对所述第一层压板进行检测,并判断第一层压板是否存在缺陷;
    若所述第一层压板不存在缺陷,则将第一绝缘层压合于所述第一层压板上。
  13. 一种局部厚铜电路板,其特征在于,包括:
    第一层压板,所述第一层压板包括至少一面具有第一覆铜层的第一芯板,所述第一覆铜层上形成包括第一薄铜线路和第一厚铜线路的第一线路层;
    第一绝缘层,压合在所述第一层压板上;所述第一绝缘层包括第一槽,所述第一绝缘层与所述第一层压板的压合连接时,所述第一槽与所述第一层压板上的所述第一厚铜线路匹配,以使得所述第一层压板的所述线路与其相邻的层压板绝缘。
  14. 根据权利要求13所述的局部厚铜电路板,其特征在于,所述第一厚铜线路的铜厚大于等于45微米。
  15. 根据权利要求13所述的局部厚铜电路板,其特征在于,包括第二层压板,所述第一绝缘层介于所述第一层压板与所述第二层压板之间;
    所述第二层压板包括至少一面具有第二覆铜层的第二芯板;其中,所述第二覆铜层上形成有第二厚铜线路和第二薄铜线路。
  16. 根据权利要求15所述的局部厚铜电路板,其特征在于,所述第一绝缘层还包括第二槽,所述第一槽和所述第二槽分别在所述第一绝缘层的两面,所述第二槽与所述第二厚铜线路相匹配。
  17. 根据权利要求13所述的局部厚铜电路板,其特征在于,所述第一线路层包括第一厚铜线路和第一薄铜线路之外,还包括第三厚铜线路,所述第三厚铜线路的铜厚与所述第一厚铜线路的铜厚不同。
  18. 根据权利要求17所述的局部厚铜电路板,其特征在于,所述第一绝缘层上开设第一槽的一面上还开设有第三槽,所述第三槽与所述第三厚铜线路匹配。
  19. 根据权利要求18所述的局部厚铜电路板,其特征在于,所述第一槽与所述第三槽的槽深度相同,所述槽深度根据第一厚铜线路的铜厚和第三厚铜线路的铜厚确定。
  20. 根据权利要求13所述的局部厚铜电路板,其特征在于,所述局部厚铜电路板的两面分别都设置有次外层绝缘层和最外层线路层。
PCT/CN2020/136963 2020-12-16 2020-12-16 局部厚铜结构加工方法、局部厚铜电路板及加工方法 WO2022126451A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/136963 WO2022126451A1 (zh) 2020-12-16 2020-12-16 局部厚铜结构加工方法、局部厚铜电路板及加工方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/136963 WO2022126451A1 (zh) 2020-12-16 2020-12-16 局部厚铜结构加工方法、局部厚铜电路板及加工方法

Publications (1)

Publication Number Publication Date
WO2022126451A1 true WO2022126451A1 (zh) 2022-06-23

Family

ID=82059921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/136963 WO2022126451A1 (zh) 2020-12-16 2020-12-16 局部厚铜结构加工方法、局部厚铜电路板及加工方法

Country Status (1)

Country Link
WO (1) WO2022126451A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115003039A (zh) * 2022-07-25 2022-09-02 广东通元精密电路有限公司 一种厚铜hdi电路板及其精细线路的制作方法
CN117979542A (zh) * 2024-03-29 2024-05-03 苏州元脑智能科技有限公司 一种电路板电源结构及制作方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040168314A1 (en) * 2000-11-06 2004-09-02 Giuseppe Pedretti Process for manufacture of printed circuit boards with thick copper power circuitry and thin copper signal circuitry on the same layer
CN101616549A (zh) * 2009-07-21 2009-12-30 东莞康源电子有限公司 电镀加成法制作单侧厚铜台阶板的方法
CN102651946A (zh) * 2012-04-05 2012-08-29 深圳崇达多层线路板有限公司 一种印刷线路板阶梯线路的制作工艺
CN104717850A (zh) * 2013-12-12 2015-06-17 深南电路有限公司 一种局部厚铜电路板的制作方法和局部厚铜电路板
CN106852033A (zh) * 2017-04-06 2017-06-13 昆山苏杭电路板有限公司 高精密度局部超高电流印制电路板加工方法
CN108617104A (zh) * 2018-05-02 2018-10-02 深圳市景旺电子股份有限公司 印刷电路板的局部图形铜厚加厚的制作方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040168314A1 (en) * 2000-11-06 2004-09-02 Giuseppe Pedretti Process for manufacture of printed circuit boards with thick copper power circuitry and thin copper signal circuitry on the same layer
CN101616549A (zh) * 2009-07-21 2009-12-30 东莞康源电子有限公司 电镀加成法制作单侧厚铜台阶板的方法
CN102651946A (zh) * 2012-04-05 2012-08-29 深圳崇达多层线路板有限公司 一种印刷线路板阶梯线路的制作工艺
CN104717850A (zh) * 2013-12-12 2015-06-17 深南电路有限公司 一种局部厚铜电路板的制作方法和局部厚铜电路板
CN106852033A (zh) * 2017-04-06 2017-06-13 昆山苏杭电路板有限公司 高精密度局部超高电流印制电路板加工方法
CN108617104A (zh) * 2018-05-02 2018-10-02 深圳市景旺电子股份有限公司 印刷电路板的局部图形铜厚加厚的制作方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115003039A (zh) * 2022-07-25 2022-09-02 广东通元精密电路有限公司 一种厚铜hdi电路板及其精细线路的制作方法
CN115003039B (zh) * 2022-07-25 2023-10-31 江西景伟电子电路有限公司 一种厚铜hdi电路板及其精细线路的制作方法
CN117979542A (zh) * 2024-03-29 2024-05-03 苏州元脑智能科技有限公司 一种电路板电源结构及制作方法
CN117979542B (zh) * 2024-03-29 2024-05-31 苏州元脑智能科技有限公司 一种电路板电源结构及制作方法

Similar Documents

Publication Publication Date Title
WO2022126451A1 (zh) 局部厚铜结构加工方法、局部厚铜电路板及加工方法
TWI314032B (en) Process for producing circuit board
CN105704948B (zh) 超薄印制电路板的制作方法及超薄印制电路板
JP2006165494A (ja) プリント基板の製造方法および薄型プリント基板
WO2012031522A1 (zh) 一种制造厚铜箔pcb的方法
CN113613399A (zh) 电路板制作方法及电路板
CN214800039U (zh) 一种局部厚铜电路板及电子设备
TWI384923B (zh) A multilayer circuit board having a wiring portion, and a method of manufacturing the same
CN114641133A (zh) 局部厚铜结构加工方法、局部厚铜电路板及加工方法
CN115460781A (zh) 一种阻抗控制的pcb设计制作方法及pcb板
CN109413891B (zh) 一种盲孔线路板及其制作方法
CN103002677B (zh) 线路板及其制作方法
CN114615830B (zh) 一种改善埋铜块电路板压合溢胶的方法
JPH11154788A (ja) 多層プリント配線板の製造方法
JPH0851284A (ja) 高い生産性で微細な線の多層プリント配線板パネルの製造方法
JP3631184B2 (ja) プリント配線板の製造方法
KR100990575B1 (ko) 미세 패턴을 갖는 인쇄회로기판 및 그 제조 방법
KR102330334B1 (ko) Bvh를 포함하는 연성인쇄회로기판 제조 방법
KR20110022284A (ko) 인쇄회로기판 및 그 제조방법
CN111654978B (zh) 一种电路板制作方法
JP3983466B2 (ja) 多層プリント基板の製造方法
KR20050029904A (ko) 경-연성 회로기판의 제조방법
CN114007343B (zh) 一种印刷电路板电厚金、印刷电路板及其制造方法
KR20060128168A (ko) 양면형 동박 적층판을 이용한 다층 연성인쇄기판 제조방법
KR102330332B1 (ko) 연성인쇄회로기판 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20965469

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20965469

Country of ref document: EP

Kind code of ref document: A1