WO2022124863A1 - 선택적 균일계 수소화 촉매의 회수 방법 및 재사용 방법 - Google Patents

선택적 균일계 수소화 촉매의 회수 방법 및 재사용 방법 Download PDF

Info

Publication number
WO2022124863A1
WO2022124863A1 PCT/KR2021/018789 KR2021018789W WO2022124863A1 WO 2022124863 A1 WO2022124863 A1 WO 2022124863A1 KR 2021018789 W KR2021018789 W KR 2021018789W WO 2022124863 A1 WO2022124863 A1 WO 2022124863A1
Authority
WO
WIPO (PCT)
Prior art keywords
selective
hydrogenation catalyst
homogeneous hydrogenation
recovering
cyclododecene
Prior art date
Application number
PCT/KR2021/018789
Other languages
English (en)
French (fr)
Inventor
김영진
박진호
장남진
Original Assignee
한화솔루션 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한화솔루션 주식회사 filed Critical 한화솔루션 주식회사
Priority to JP2023535503A priority Critical patent/JP2023553148A/ja
Priority to US18/256,648 priority patent/US20240033721A1/en
Priority to CN202180083388.4A priority patent/CN116547257A/zh
Priority to EP21903908.8A priority patent/EP4265588A1/en
Publication of WO2022124863A1 publication Critical patent/WO2022124863A1/ko

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/03Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of non-aromatic carbon-to-carbon double bonds
    • C07C5/05Partial hydrogenation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/40Regeneration or reactivation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C13/00Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
    • C07C13/02Monocyclic hydrocarbons or acyclic hydrocarbon derivatives thereof
    • C07C13/273Monocyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with a twelve-membered ring
    • C07C13/275Monocyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with a twelve-membered ring the twelve-membered ring being unsaturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/04Purification; Separation; Use of additives by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/10Purification; Separation; Use of additives by extraction, i.e. purification or separation of liquid hydrocarbons with the aid of liquids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/20Use of additives, e.g. for stabilisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • C07C2531/24Phosphines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/18Systems containing only non-condensed rings with a ring being at least seven-membered
    • C07C2601/20Systems containing only non-condensed rings with a ring being at least seven-membered the ring being twelve-membered
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • the present invention relates to a method for recovering and reusing a selective homogeneous hydrogenation catalyst.
  • CDEN cyclododecene
  • CDT cyclododecatriene
  • a metal ligand catalyst known as a Wilkinson catalyst that is, triphenylphosphine, TPP
  • TPP triphenylphosphine
  • Catalysts are essential substances in the chemical industry as a substance that activates the entire reaction to occur quickly without reacting itself in a certain reaction system in general. Catalysts are usually present in a small amount in the reaction system to perform their role, but as the chemical industry develops, the amount used increases, and the amount of waste catalyst waste is also rapidly increasing. In Korea, which has no natural resources and is dependent on imports of precious metal-related industrial raw materials, it is urgent to recover precious metals from spent catalysts and reuse them as industrial raw materials.
  • a method of recovering the catalyst after the selective hydrogenation reaction is known depending on the state and conditions of the catalyst.
  • the interaction process takes a lot of time and requires cooling to near 0°C.
  • the present inventors have intensified the study of efficient methods for the recovery method and reuse method of the selective hydrogenation catalyst.
  • the selective hydrogenation catalyst can be separated and recovered through a simple method, the design and operation of the distillation separation device is easy to maintain, and the conversion rate of cyclododecatriene and cyclododecene even when solvent is added.
  • the present invention was completed by confirming that it was possible to maintain all of the selectivity at a high level.
  • the present invention can separate and recover a selective homogeneous hydrogenation catalyst through a relatively simple method within a short process time, while designing and operating a distillation separation device is easy, and cyclododecatriene is
  • An object of the present invention is to provide a method for recovering and reusing a selective homogeneous hydrogenation catalyst capable of maintaining both a conversion rate and a selectivity of cyclododecene at a high level.
  • cyclododecene is synthesized by selectively hydrogenating the first reaction solution containing cyclododecatriene, triphenylphosphine, formaldehyde and ruthenium chloride, and then, the cyclo
  • the selective homogeneous hydrogenation from the triphenylphosphine, formaldehyde and ruthenium chloride during the selective hydrogenation of the first reaction solution preparing a catalyst and synthesizing cyclododecene; mixing a solvent containing cyclododecanone with the first reaction solution; and recovering the selective homogeneous hydrogenation catalyst by distilling the second reaction solution in which the synthesis of cyclododecene is completed.
  • the solvent may be cyclododecanone dissolved in cyclododecatriene.
  • the distillation separation is performed through a distillation column, wherein the distillation column includes an upper column from which a product containing cyclododecene is discharged, and the selective uniformity It is provided as a lower column in which the hydrogenation catalyst and the solvent are separated, and during the distillation separation, the pressure of the upper column is 0.1 bar or less and the temperature is 100° C. to 200° C., and the pressure of the lower column is 0.1 bar or less and the temperature is It may be 150 °C to 250 °C.
  • the molar ratio of ruthenium chloride: triphenylphosphine: formaldehyde may be 1: 100 to 300: 150 to 500.
  • the selective hydrogenation reaction may be performed in a stirred tank reactor equipped with a gas-induced hollow stirrer.
  • hydrogen gas present in the gas phase at the top of the stirred tank reactor may be supplied to the reaction solution through the hollow of the gas-induced hollow stirrer.
  • the first reaction solution may further include a catalyst activator including acetic acid.
  • the catalyst activator may be added in an amount of 0.01 to 2 parts by weight based on 100 parts by weight of cyclododecatriene.
  • the selective hydrogenation reaction may be performed at a temperature of 100 to 200° C. and a pressure of 10 to 80 bar.
  • the selective homogeneous hydrogenation catalyst recovered by the above-described method is re-injected into the third reaction solution containing cyclododecatriene and subjected to a secondary selective hydrogenation reaction to cyclodode synthesizing Sen.
  • the method for recovering and reusing the selective homogeneous hydrogenation catalyst according to the present invention is only a method of adding a solvent containing cyclododecanone (CDON) to a reactant and then separating the unreacted cyclododecatriene and cyclodo Decadiene and product cyclododecene, selective homogeneous hydrogenation catalyst, and excess triphenylphosphine can be separated, and the selective homogeneous hydrogenation catalyst and excess triphenylphosphine that are separated and recovered without separate post-treatment are subjected to the following selective hydrogenation reaction can be used as is.
  • CDON cyclododecanone
  • both the conversion rate of cyclododecatriene and the selectivity of cyclododecene can be maintained at high levels.
  • the unit of % used without special mention means % by weight unless otherwise specified.
  • the present inventors can easily separate and recover the selective homogeneous hydrogenation catalyst by additionally using an appropriate solvent for the catalyst, while designing and maintaining the distillation separation device is easy.
  • the recovered selective homogeneous hydrogenation catalyst is reused, it is intended to provide a recovery method and a reuse method of a selective homogeneous hydrogenation catalyst capable of maintaining both the conversion rate of cyclododecatriene and the selectivity of cyclododecene at high levels.
  • the method for recovering the selective homogeneous hydrogenation catalyst according to the present invention is a first reaction comprising cyclododecatriene (CDT), triphenylphosphine (TPP), formaldehyde and ruthenium chloride (RhCl3)
  • CDT cyclododecatriene
  • TPP triphenylphosphine
  • RhCl3 ruthenium chloride
  • the selective reaction of the first reaction solution During the hydrogenation reaction, a selective homogeneous hydrogenation catalyst is prepared from triphenylphosphine, formaldehyde and ruthenium chloride to synthesize cyclododecene, and a solvent containing cyclododecanone (CDON) is mixed with the first reaction solution. and recovering the selective homogeneous hydrogenation catalyst by separating the second reaction solution from which the synthesis of cyclododecene
  • CDON solvent containing cyclododecanone
  • a selective homogeneous hydrogenation catalyst and excess triphenylphosphine can be separated only by the evaporation separation method, and without a separate post-treatment The separated and recovered selective homogeneous hydrogenation catalyst and excess triphenylphosphine can be used as it is in the next selective hydrogenation reaction.
  • the catalyst uses a solvent containing cyclododecanone (CDON), which is an intermediate product of the laurolactam manufacturing process, even if cyclododecanone is included in the product, the quality of the product is not affected. There is no need to perform an elaborate and complicated process to completely separate the cyclododecanone, and since the catalyst containing the solvent cyclododecanone can be directly introduced into the process, the catalyst can be efficiently recovered and reused.
  • CDON solvent containing cyclododecanone
  • both the conversion rate of cyclododecatriene and the selectivity of cyclododecene can be maintained at a high level.
  • hydrogen gas (H 2 ) is added through a conventional method for the selective hydrogenation reaction.
  • This step is a step for synthesizing cyclododecene, and cyclododecene may be synthesized through a method described below or a known method.
  • the selective hydrogenation reaction may be performed in a stirred tank reactor equipped with a gas-induced hollow stirrer.
  • a gas-induced hollow stirrer As such, when the reaction is carried out by adopting a means using a gas-induced hollow stirrer, reactivity can be secured without an organic solvent usually used to increase reactivity, and at the same time, the reaction time can be significantly reduced.
  • a gas-induced hollow stirrer is rotated and stirred to perform a reaction, and hydrogen gas present in the gas phase at the top of the stirred tank reactor through the hollow of the gas-induced hollow stirrer can be supplied to the reaction solution to supply hydrogen to cyclododecariene.
  • the gas-induced hollow stirrer has a hollow passage formed therein, and hydrogen gas is introduced through the hollow passage and comes into contact with cyclododecatriene so that a selective hydrogenation reaction can proceed.
  • cyclododecene may be synthesized by a known method.
  • a selective homogeneous hydrogenation catalyst is prepared from triphenylphosphine, formaldehyde and ruthenium chloride to synthesize cyclododecene, and the homogeneous complex catalyst, which is the selective homogeneous hydrogenation catalyst, is RuH ( PPh 3 ) 3 (CO)Cl or Ru(PPh 3 ) 2 (CO) 2 Cl 2 , or both.
  • triphenylphosphine and formaldehyde form a complex with the ruthenium chloride and serve as a catalyst for the selective hydrogenation reaction.
  • the molar ratio of ruthenium chloride: triphenylphosphine: formaldehyde may be 1: 100 to 300: 150 to 500, and more preferably, the molar ratio of ruthenium chloride: triphenylphosphine: formaldehyde is 1 : 130 to 250: may be 200 to 400, and more preferably, the molar ratio of ruthenium chloride: triphenylphosphine: formaldehyde may be 1: 170 to 230: 250 to 350.
  • the conversion rate and selectivity can be significantly improved. However, this is only a preferred example, and of course, the present invention is not limited thereto.
  • the first reaction solution may further include a catalyst activator including acetic acid.
  • acetic acid When acetic acid is added, the conversion rate and selectivity can be further improved by activating the reaction of the ruthenium chloride-triphenylphosphine complex catalyst.
  • acetic acid may be added in an amount of 0.01 to 2 parts by weight based on 100 parts by weight of cyclododecatriene, more preferably 0.05 to 1.5 parts by weight based on 100 parts by weight of cyclododecatriene, and even more preferably cyclododecatriene. It may be added in an amount of 0.1 to 1 part by weight based on 100 parts by weight.
  • this is only a preferred example, and of course, the present invention is not limited thereto.
  • the amount of the catalyst containing triphenylphosphine, formaldehyde and ruthenium chloride is sufficient as long as the reaction of the reactants can proceed sufficiently, preferably in 100 parts by weight of cyclododecatriene.
  • a catalyst containing triphenylphosphine, formaldehyde, and ruthenium chloride may be added to 1 to 20 parts by weight, preferably 1 to 10, more preferably 1 to 7 parts by weight of triphenylphosphine, formaldehyde And a catalyst containing ruthenium chloride may be added.
  • this is only a preferred example for improving the conversion rate and selectivity, and the present invention is not limited thereto.
  • the selective hydrogenation reaction may be performed under a temperature of 100 to 200 °C and a pressure of 10 to 80 bar, and more preferably, a temperature of 140 to 180 °C and 20 to 60 bar. Under pressure conditions, more preferably, it may be carried out at a temperature of 150 to 175° C. and a pressure condition of 20 to 40 bar, but this is only a preferred example for improving the conversion rate and selectivity, and the present invention is not limited thereto. Of course.
  • a step of mixing a solvent containing cyclododecanone (CDON) with the first reaction solution may be performed.
  • the solvent may be added after the selective homogeneous hydrogenation catalyst is formed by the triphenylphosphine, formaldehyde and ruthenium chloride of the first reaction solution, but, in contrast, may be added before the catalyst is formed.
  • the solvent may be cyclododecanone itself, or may further contain cyclododecatriene.
  • cyclododecanone dissolved in cyclododecatriene may be used.
  • the amount of cyclododecanone in the solvent is not limited as long as it can be dissolved in cyclododecatriene.
  • a solvent uses a solvent in which cyclododecanone (CDON), an intermediate product of the laurolactam manufacturing process, is dissolved, even if cyclododecanone is included in the product, it does not affect the quality of the product, and the product and the solvent are completely separated
  • CDON cyclododecanone
  • the catalyst containing the solvent cyclododecanone can be directly introduced into the process, the catalyst can be efficiently recovered and reused.
  • cyclododecanone is dissolved
  • the recovered cyclodecatriene is a substance that participates in this reaction and does not affect the catalyst activity, so there is no problem in reuse even if it remains in the recovered catalyst.
  • the first reaction solution is subjected to a selective hydrogenation reaction, and the second reaction solution in which the synthesis of cyclododecene is completed is distilled and separated, and unreacted cyclododecatriene, cyclododecadiene, and the product cyclododecene are distilled and separated. Recovering the selective homogeneous hydrogenation catalyst and solvent may be performed.
  • the solvent containing cyclododecanone of the present invention has good flowability at the melting point of cyclododecanone, which is a relatively low temperature, it is possible to keep the temperature of the process line lower than when distillation separation without adding a solvent is possible Thus, energy can be saved and the catalyst can be recovered more efficiently.
  • the distillation separation may be made through a distillation column, in which case the distillation column is an upper column from which a product containing cyclodecene is discharged, and a selective homogeneous hydrogenation catalyst and solvent It can be divided into a separate sub-column.
  • the pressure of the upper column may be 0.3 bar or less and the temperature may be carried out under the conditions of 100 to 200°C, and more preferably, it may be performed under the temperature of 130 to 170°C and the pressure of 0.1 bar or less.
  • the pressure of the lower column may be 0.3 bar or less and the temperature may be carried out under the conditions of 150 to 250 °C, more preferably, it may be carried out under the pressure of 0.1 bar or less and 180 to 230 °C temperature conditions.
  • the reflux ratio in the distillation column may be 0.5 to 5, specifically 1 to 2, and the boiling ratio may be 1 to 8, specifically 4 to 5, but is not limited thereto.
  • unreacted cyclododecatriene and cyclododecadiene and product cyclododecene can be effectively separated by distillation within the above range.
  • the recovery of the selective homogeneous hydrogenation catalyst may be performed at a temperature of 10 to 30° C., and a pressure of 0.1 bar or less or a nitrogen atmosphere. That is, the selective homogeneous hydrogenation catalyst can be recovered by cooling the temperature raised by the distillation separation process to a room temperature level.
  • the present invention re-injects the recovered selective homogeneous hydrogenation catalyst into a third reaction solution containing cyclododecatriene and performs a secondary selective hydrogenation reaction to synthesize cyclododecene; It relates to a method of reusing a selective homogeneous hydrogenation catalyst.
  • the recovered selective homogeneous hydrogenation catalyst is re-injected into the third reaction solution containing cyclododecatriene and subjected to a secondary selective hydrogenation reaction to cyclododecene can be synthesized.
  • the secondary selective hydrogenation reaction for synthesizing the cyclododecene may be performed through a known method.
  • the third reaction solution may further add a solvent including ethanol as well as cyclododecatriene. Since the ethanol has a high dielectric constant, the conversion rate and selectivity may be improved by further activating the reaction of the reactants in the selective hydrogenation reaction.
  • the amount of ethanol used may be sufficient as long as it allows selective hydrogenation of hydrogen to cyclododecatriene, preferably 1 to 20 parts by weight, more preferably 2 to 15 parts by weight, based on 100 parts by weight of cyclododecatriene. , more preferably 3 to 10 parts by weight may be added.
  • this is only a preferred example, and of course, the present invention is not limited thereto.
  • the secondary selective hydrogenation reaction may be carried out at a temperature of 120 to 200 °C and a pressure of 10 to 80 bar, and more preferably at a temperature of 140 to 180 °C and 20 to 60 Under a pressure condition of bar, it may be more preferably carried out under a temperature of 150 to 175 °C and a pressure condition of 20 to 40 bar, but this is only a preferred example for improving the conversion rate and selectivity, and the present invention is not limited thereto. Of course not.
  • Cyclododecatriene (CDT): Ruthenium chloride (RuCl 3 ): Triphenylphosphine (TPP): Formaldehyde was added in a molar ratio of 7500:1:110:220, and cyclododecatriene (CDT) 100 parts by weight About 80 parts by weight of cyclododecanone (CDON) was added. At this time, the mixture was heated to 70 °C under nitrogen condition to dissolve cyclododecanone (CDON). Thereafter, the reaction solution was stirred at 1600 rpm under hydrogen 6 bar conditions and heated to 140°C. Then, a selective hydrogenation reaction was performed at a temperature of 180° C. under a condition in which a hydrogen pressure of 20 bar was maintained, and in this case, the reaction was performed in a stirred tank reactor equipped with a gas induction hollow stirrer.
  • the second reaction solution was recovered after cooling to 30° C. or less under nitrogen condition.
  • the second reaction solution was put into a distillation column and distilled.
  • the internal pressure of the upper column was -0.9 bar
  • the temperature was 155.9 °C
  • the internal pressure of the lower column was -0.85 bar
  • the temperature was 203.5 °C.
  • the selective homogeneous hydrogenation catalyst was recovered by cooling to 30° C. or less in a nitrogen atmosphere.
  • Example 1 In the selective homogeneous hydrogenation catalyst recovery method of Example 1, the selective hydrogenation reaction was performed in the same manner as in Example 1, except that the selective hydrogenation reaction was carried out at a temperature of 170° C. instead of at a temperature of 180° C. The homogeneous hydrogenation catalyst was recovered and reused.
  • CDT 0 is the number of moles of cyclododecatriene added
  • CDT 1 is the number of moles of cyclododecatriene after the reaction
  • CDDN 1 is the number of moles of cyclododecatriene.
  • Equation 2 CDEN 1 is the number of moles of the produced cyclododecene, and CDAN 1 is the number of moles of the produced by-product, cyclododecane.
  • Example 1 Example 2 comparative example division primary reaction secondary reaction primary reaction secondary reaction primary reaction secondary reaction Reaction time (h) 2.0 1.5 3.0 2.5 2.0 1.5 Conversion rate (%) 98.8 98.3 98.7 98.1 98.1 97.8 Selectivity (%) 97.6 97.4 98.1 98.3 97.6 97.8 transference number(%) 96.4 95.7 96.8 96.4 95.7 95.6

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Water Supply & Treatment (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 선택적 균일계 수소화 촉매의 회수 방법 및 재사용 방법에 관한 것이다. 본원 발명은 사이클로도데카트리엔, 트리페닐포스핀, 포름알데히드 및 염화루테늄을 포함하는 제1반응용액을 선택적 수소 첨가 반응시켜 사이클로도데센을 합성한 후, 상기 사이클로도데센의 합성이 완료된 제2반응용액으로부터 선택적 균일계 수소화 촉매를 회수하는 방법에 있어서, 상기 제1반응용액의 선택적 수소 첨가 반응 중 상기 트리페닐포스핀, 포름알데히드 및 염화루테늄으로부터 선택적 균일계 수소화 촉매가 제조되며 사이클로도데센이 합성되는 단계; 상기 제1반응용액에 사이클로도데카논을 함유하는 용매를 혼합하는 단계; 및 상기 사이클로도데센의 합성이 완료된 제2반응용액을 증류 분리하여 선택적 균일계 수소화 촉매를 회수하는 단계;를 포함한다.

Description

선택적 균일계 수소화 촉매의 회수 방법 및 재사용 방법
본 발명은 선택적 균일계 수소화 촉매의 회수 방법 및 재사용 방법에 관한 것이다.
사이클로도데카트리엔(Cyclododecatriene, CDT)을 출발 물질로 하여 선택적 수소화 반응에 의한 사이클로도데센(Cyclododecene, CDEN)의 합성은 문헌에 종종 기재되어 있고, 사이클로도데센의 수율을 향상시키기 위한 많은 연구가 진행되어 왔다.
상기 선택적 수소화 반응을 위해 윌킨슨 촉매(Wilkinson catalyst)로 알려져 있는 금속리간드 촉매, 즉 루비듐(Ru), 로듐(Rh), 코발트(Co), 니켈(Ni) 등의 금속에 트리페닐포스핀(Triphenylphosphine, TPP), CO 등의 리간드와 할로겐 원소가 결합된 촉매가 사용되어 왔다.
촉매는 일반적으로 어떤 반응계에서 그 자신은 반응하지 않고 전체 반응을 빨리 일어나도록 활성화시켜주는 물질로서 화학공업에서는 빼놓을 수 없는 물질이다. 촉매는 대개 반응계에 소량 존재하면서 자신의 역할을 수행하는데 화학공업이 발달할수록 그 사용량이 많아지고, 폐촉매 폐기물 또한 발생량이 급증하고 있다. 부존자원이 전무하고 귀금속 관련 산업원료를 전량 수입에 의존하는 우리나라로서는 폐촉매로부터 귀금속을 회수하여 산업원료로 재사용하는 재활용이 시급한 실정이다.
선택적 수소화 반응 후 촉매를 회수하는 방법은 촉매의 상태와 조건에 따라 공지된 바 있다.
일 예로, US 4413118에서는 8족 금속에 트리페닐포스핀과 할로겐 원소가 리간드로 결합된 촉매를 C=S 결합이 포함된 물질과 상호작용시켜 분리하는 기술을 공지하였다. 그러나, 상호작용 과정에 많은 시간이 소요되고 0℃근처까지 냉각시켜야 한다는 단점이 있다.
US 3715405에서는 [Co(CO)3P(n-C4H9)3]2 촉매를 사이클로도데카트리엔으로부터 사이클로도데센을 생산하는 선택적 수소화 반응에 사용하면 반응 후 별도의 분리기술 없이 상 분리를 통해 촉매 회수가 가능하다고 공지하였다. 그러나 필요한 촉매의 양이 많고 상 분리 후, 용매를 완전히 제거하기 위해선 정교하고 복잡한 분리공정을 진행해야 함에 따라 공정효율성이 좋지 못하다는 단점이 있다 이와 같은 종래 기술의 문제점을 해결하고자, 당 출원인이 기 출원한 대한민국 공개특허 제10-2020-0076301호에서는 증류 장치를 통해 생성물과 촉매를 분리하고 회수한 촉매의 재사용이 가능함을 확인하였으나, 촉매의 부피 비율이 낮아 증류 분리 장치의 작동 유지가 어려웠으며, 생성물인 사이클로도데센(CDEN)이 잔여되어 재사용됨에 따라 부산물인 사이클로도데케인(CDAN)의 생성 비율이 높아진다는 단점이 있다. 아울러, 높은 흐름성을 유지하기 위해 80℃이상의 온도를 지속적으로 유지해야 한다는 어려움이 있다.
이에, 본 발명자들은 선택적 수소화 촉매의 회수 방법 및 재사용 방법에 대한 효율적인 방안 연구를 심화하였다. 그 결과, 적정 용매를 사용하면 간단한 방법을 통해 선택적 수소화 촉매를 분리 및 회수할 수 있으면서도, 증류 분리 장치의 설계 및 작동 유지가 손쉬우며, 용매 첨가 시에도 사이클로도데카트리엔의 전환율 및 사이클로도데센의 선택도 모두를 높은 수준으로 유지할 수 있음을 확인하여 본 발명을 완성하였다.
상기와 같은 문제점을 해결하기 위하여 본 발명은 짧은 공정 시간 내 비교적 간단한 방법을 통해 선택적 균일계 수소화 촉매를 분리 및 회수할 수 있으면서도, 증류 분리 장치의 설계 및 작동 유지가 용이하고, 사이클로도데카트리엔의 전환율 및 사이클로도데센의 선택도 모두를 높은 수준으로 유지할 수 있는 선택적 균일계 수소화 촉매의 회수 방법 및 재사용 방법을 제공하는 것을 목적으로 한다.
본 발명의 선택적 균일계 수소화 촉매의 회수 방법은 사이클로도데카트리엔, 트리페닐포스핀, 포름알데히드 및 염화루테늄을 포함하는 제1반응용액을 선택적 수소 첨가 반응시켜 사이클로도데센을 합성한 후, 상기 사이클로도데센의 합성이 완료된 제2반응용액으로부터 선택적 균일계 수소화 촉매를 회수하는 방법에 있어서, 상기 제1반응용액의 선택적 수소 첨가 반응 중 상기 트리페닐포스핀, 포름알데히드 및 염화루테늄으로부터 선택적 균일계 수소화 촉매가 제조되며 사이클로도데센이 합성되는 단계; 상기 제1반응용액에 사이클로도데카논을 함유하는 용매를 혼합하는 단계; 및 상기 사이클로도데센의 합성이 완료된 제2반응용액을 증류 분리하여 선택적 균일계 수소화 촉매를 회수하는 단계;를 포함한다.
본 발명의 일 실시예에 따른 균일계 수소화 촉매의 회수 방법에 있어서, 상기 용매는 사이클로도데카트리엔에 용해된 사이클로도데카논일 수 있다.
본 발명의 일 실시예에 따른 균일계 수소화 촉매의 회수 방법에 있어서, 상기 증류 분리는 증류컬럼을 통해 이루어지며, 상기 증류컬럼은 사이클로도데센을 포함하는 생성물이 배출되는 상부컬럼과, 상기 선택적 균일계 수소화 촉매 및 용매가 분리되는 하부컬럼으로 구비되고, 상기 증류분리 시, 상기 상부컬럼의 압력은 0.1bar 이하 및 온도는 100℃내지 200℃이며, 상기 하부컬럼의 압력은 0.1bar 이하 및 온도는 150℃내지 250℃일 수 있다.
본 발명의 일 실시예에 따른 균일계 수소화 촉매의 회수 방법에 있어서, 상기 염화루테늄 : 트리페닐포스핀 : 포름알데히드의 몰비는 1 : 100 내지 300 : 150 내지 500일 수 있다.
본 발명의 일 실시예에 따른 균일계 수소화 촉매의 회수 방법에 있어서, 상기 선택적 수소 첨가 반응은 가스 유도 중공형 교반기가 구비된 교반탱크반응기에서 수행될 수 있다.
본 발명의 일 실시예에 따른 균일계 수소화 촉매의 회수 방법에 있어서, 상기 가스 유도 중공형 교반기의 중공을 통해 교반탱크반응기 상단에 기상으로 존재하는 수소 기체가 반응용액에 공급되는 것일 수 있다.
본 발명의 일 실시예에 따른 균일계 수소화 촉매의 회수 방법에 있어서, 제1반응용액은 아세트산을 포함하는 촉매 활성제가 더 포함될 수 있다.
본 발명의 일 실시예에 따른 균일계 수소화 촉매의 회수 방법에 있어서, 상기 촉매 활성제는 사이클로도데카트리엔 100 중량부에 대하여 0.01 내지 2 중량부로 첨가될 수 있다.
본 발명의 일 실시예에 따른 균일계 수소화 촉매의 회수 방법에 있어서, 상기 선택적 수소 첨가 반응은 100 내지 200℃의 온도 및 10 내지 80 bar의 압력 조건 하에서 수행될 수 있다.
본 발명의 회수된 선택적 균일계 수소화 촉매의 재사용방법은 상술한 방법으로 회수된 선택적 균일계 수소화 촉매를 사이클로도데카트리엔이 포함된 제3반응용액에 재투입하고 2차 선택적 수소 첨가 반응시켜 사이클로도데센을 합성하는 단계;를 포함한다.
본 발명에 따른 선택적 균일계 수소화 촉매의 회수 방법 및 재사용 방법은 반응물에 사이클로도데카논(CDON)을 함유하는 용매를 첨가한 후 증류(evaporation) 분리하는 방법만으로 미반응된 사이클로도데카트리엔과 사이클로도데카디엔 및 생성물인 사이클로도데센과 선택적 균일계 수소화 촉매 및 잉여 트리페닐포스핀을 분리할 수 있으며, 별도의 후처리 없이 분리 회수된 선택적 균일계 수소화 촉매 및 과량의 트리페닐포스핀을 다음 선택적 수소화 반응에 그대로 사용할 수 있다.
또한, 라우로락탐 제조 공정의 중간 생성물인 사이클로도데카논(CDON)을 함유하는 용매를 사용함에 따라 사이클로도데카논이 생성물에 포함되어도 생성물의 품질에 영향을 미치지 않는다. 이로 인해, 생성물과 용매를 완전히 분리하기 위해 정교하고 복잡한 공정을 수행할 필요가 없으며, 용매인 사이클로도데카논을 함유하는 촉매를 곧바로 공정에 투입가능함에 따라, 효율적으로 촉매의 회수 및 재사용이 가능하다.
아울러, 회수된 선택적 균일계 수소화 촉매를 재사용할 시 사이클로도데카트리엔의 전환율 및 사이클로도데센의 선택도 모두를 높은 수준으로 유지할 수 있다는 장점이 있다.
본 발명에서 명시적으로 언급되지 않은 효과라 하더라도, 본 발명의 기술적 특징에 의해 기대되는 명세서에서 기재된 효과 및 그 내재적인 효과는 본 발명의 명세서에 기재된 것과 같이 취급된다.
이하 본 발명에 따른 선택적 균일계 수소화 촉매의 회수 방법 및 재사용 방법을 상세히 설명한다. 이때, 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가지며, 하기의 설명에서 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 설명은 생략한다.
또한 본 명세서에서 본 발명에 따른 구성 요소를 설명하는 데 있어서, 제1, 제2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다.
또한 본 명세서에서 사용되는 용어의 단수 형태는 특별한 지시가 없는 한 복수 형태도 포함하는 것으로 해석될 수 있다.
본 명세서에서 특별한 언급 없이 사용된 %의 단위는 별다른 정의가 없는 한 중량%를 의미한다.
사이클로도데카트리엔으로부터 사이클로도데센을 생산하는 선택적 수소화 반응에 사용되는 촉매로 희귀하고 생산량이 적어 값이 비싼 귀금속이 사용됨에 따라, 귀금속 관련 산업원료를 전량 수입에 의존하는 우리나라로서는 폐촉매로부터 귀금속을 회수하여 산업원료로 재사용하는 재활용이 시급한 실정이다. 이와 같은 종래 기술의 문제점을 해결하고자, 당 출원인이 기 출원한 대한민국 공개특허 제10-2020-0076301호에서는 증류 장치를 통해 생성물과 촉매를 분리하고 회수한 촉매의 재사용이 가능함을 확인하였으나, 촉매의 부피 비율이 낮아 증류 분리 장치의 작동 유지가 어려웠으며, 생성물인 사이클로도데센(CDEN)이 잔여되어 재사용됨에 따라 부산물인 사이클로도데케인(CDAN)의 생성 비율이 높아진다는 단점이 있다. 아울러, 높은 흐름성을 유지하기 위해 80℃이상의 온도를 지속적으로 유지해야 한다는 어려움이 있다.
이에, 본 발명자들은 촉매에 적정 용매를 추가 사용하여 선택적 균일계 수소화 촉매를 용이하게 분리 및 회수할 수 있으면서도, 증류 분리 장치의 설계 및 작동 유지가 용이하도록 한다. 아울러, 회수된 선택적 균일계 수소화 촉매를 재사용할 시 사이클로도데카트리엔의 전환율 및 사이클로도데센의 선택도 모두를 높은 수준으로 유지할 수 있는 선택적 균일계 수소화 촉매의 회수 방법 및 재사용 방법을 제공하고자 한다.
상세하게, 본 발명에 따른 선택적 균일계 수소화 촉매의 회수 방법은 사이클로도데카트리엔(Cyclododecatriene, CDT), 트리페닐포스핀(Triphenylphosphine, TPP), 포름알데히드 및 염화루테늄(RhCl3)을 포함하는 제1반응용액을 선택적 수소 첨가 반응시켜 사이클로도데센(Cyclododecene, CDEN)을 합성한 후, 사이클로도데센의 합성이 완료된 제2반응용액으로부터 선택적 균일계 수소화 촉매를 회수하는 방법에 있어서, 제1반응용액의 선택적 수소 첨가 반응 중에 트리페닐포스핀, 포름알데히드 및 염화루테늄으로부터 선택적 균일계 수소화 촉매가 제조되어 사이클로도데센이 합성되는 단계, 제1반응용액에 사이클로도데카논(Cyclododecanone, CDON)을 함유하는 용매를 혼합하는 단계 및 사이클로도데센의 합성이 완료된 제2반응용액을 증류(Evaporation) 분리하여 선택적 균일계 수소화 촉매를 회수하는 단계를 포함하는 것이다.
이처럼, 증류(Evaporation) 분리하는 방법만으로 미반응된 사이클로도데카트리엔과 사이클로도데카디엔 및 생성물인 사이클로도데센과 선택적 균일계 수소화 촉매 및 잉여 트리페닐포스핀을 분리할 수 있으며, 별도의 후처리 없이 분리 회수된 선택적 균일계 수소화 촉매 및 과량의 트리페닐포스핀을 다음 선택적 수소화 반응에 그대로 사용할 수 있다.
또한, 촉매에 라우로락탐 제조 공정의 중간 생성물인 사이클로도데카논(CDON)을 함유하는 용매를 사용함에 따라 사이클로도데카논이 생성물에 포함되어도 생성물의 품질에 영향을 미치지 않으며, 이로 인해, 생성물과 용매를 완전히 분리하기 위해 정교하고 복잡한 공정을 수행할 필요가 없으며, 용매인 사이클로도데카논을 함유하는 촉매를 곧바로 공정에 투입가능함에 따라, 효율적으로 촉매의 회수 및 재사용이 가능하다.
아울러, 최초 트리페닐포스핀, 포름알데히드 및 염화루테늄을 포함하는 촉매를 사용하여 반응 중에 선택적 균일계 수소화 촉매가 형성되어 선택적 수소 첨가 반응이 일어나는 것보다, 회수된 선택적 균일계 수소화 촉매를 사용할 시 유도기간(Induction period)을 줄일 수 있어 생산성을 더욱 높일 수 있다.
또한, 회수된 선택적 균일계 수소화 촉매를 재사용할 시 사이클로도데카트리엔의 전환율 및 사이클로도데센의 선택도 모두를 높은 수준으로 유지할 수 있다는 장점이 있다.
이하, 본 발명에 따른 선택적 균일계 수소화 촉매의 회수 방법에 대하여 상세히 설명한다.
먼저, 사이클로도데카트리엔, 트리페닐포스핀, 포름알데히드 및 염화루테늄을 포함하는 제1반응용액을 선택적 수소 첨가 반응시켜 사이클로도데센을 합성하는 단계로, 상기 선택적 수소 첨가 반응 중에 상기 트리페닐포스핀, 포름알데히드 및 염화루테늄으로부터 선택적 균일계 수소화 촉매가 제조되어 사이클로도데센이 합성되는 단계를 수행할 수 있다. 이때, 선택적 수소 첨가 반응을 위해 통상적인 방법을 통해 수소 기체(H2)를 투입함은 물론이다.
본 단계는 사이클로도데센을 합성하기 위한 단계로 후술하는 방법 또는 기존 공지된 방법을 통해 사이클로도데센을 합성할 수 있다.
상세하게, 사이클로도데센을 합성하는 단계에 있어, 상기 선택적 수소 첨가 반응은 가스 유도 중공형 교반기가 구비된 교반탱크반응기에서 수행되는 것일 수 있다. 이처럼 가스 유도 중공형 교반기를 사용하는 수단을 채택하여 상기 반응을 진행할 경우, 통상 반응성을 높이기 위해 사용되는 유기용매 없이도 반응성을 확보할 수 있으며, 동시에 반응 시간이 현저히 감소할 수 있다.
보다 구체적으로, 상기 사이클로도데센을 합성하는 단계에서, 가스 유도 중공형 교반기가 회전 및 교반되어 반응이 수행되며, 상기 가스 유도 중공형 교반기의 중공을 통해 교반탱크반응기 상단에 기상으로 존재하는 수소 기체가 반응용액에 공급되어 사이클로도데카리엔에 수소를 공급할 수 있다. 상기 가스 유도 중공형 교반기는 그 내부에 중공의 통로가 형성되어 있으며, 수소 기체가 상기 중공의 통로를 통해 유입되고 사이클로도데카트리엔에 접촉하여 선택적 수소 첨가 반응이 진행될 수 있다.
또는, 기존 공지된 방법을 통해 사이클로도데센을 합성할 수 있다.
한편, 상기 선택적 수소 첨가 반응 중에 상기 트리페닐포스핀, 포름알데히드 및 염화루테늄으로부터 선택적 균일계 수소화 촉매가 제조되어 사이클로도데센이 합성될 수 있으며, 상기 선택적 균일계 수소화 촉매인 균일복합촉매는 RuH(PPh3)3(CO)Cl 또는 Ru(PPh3)2(CO)2Cl2,일 수 있으며, 또는 둘 모두 일 수 있다.
구체적으로, 상기 트리페닐포스핀과 포름알데히드는 상기 염화루테늄에 착물을 형성하여 선택적 수소 첨가 반응의 촉매 역할을 하는 물질이다.
바람직한 일 예로, 상기 염화루테늄 : 트리페닐포스핀 : 포름알데히드의 몰비는 1 : 100 내지 300 : 150 내지 500일 수 있으며, 보다 좋게는, 상기 염화루테늄 : 트리페닐포스핀 : 포름알데히드의 몰비는 1 : 130 내지 250 : 200 내지 400일 수 있으며, 더욱 좋게는 상기 염화루테늄 : 트리페닐포스핀 : 포름알데히드의 몰비는 1 : 170 내지 230 : 250 내지 350일 수 있다. 상기 범위에서 전환율 및 선택도가 현저히 향상될 수 있다. 하지만 이는 바람직한 일 예일 뿐, 본 발명이 이에 제한되지 않음은 물론이다.
또한, 본 발명의 일 예에 있어, 상기 제1반응용액은 아세트산(acetic acid)을 포함하는 촉매 활성제가 더 포함되는 것일 수 있다. 아세트산이 투입될 경우, 염화루테늄-트리페닐포스핀 착화합물 촉매의 반응을 보다 활성화시켜 전환율 및 선택도를 더 향상시킬 수 있다. 바람직한 일 예로, 아세트산은 사이클로도데카트리엔 100 중량부에 대하여 0.01 내지 2 중량부로 첨가될 수 있으며, 보다 좋게는 사이클로도데카트리엔 100 중량부에 대하여 0.05 내지 1.5 중량부, 더욱 좋게는 사이클로도데카트리엔 100 중량부에 대하여 0.1 내지 1 중량부로 첨가될 수 있다. 하지만 이는 바람직한 일 예일 뿐, 본 발명이 이에 제한되지 않음은 물론이다.
본 발명의 일 예에 있어, 상기 트리페닐포스핀, 포름알데히드 및 염화루테늄을 포함하는 촉매의 사용량은 반응물들의 반응이 충분히 진행될 수 있을 정도라면 무방하며, 바람직하게는 사이클로도데카트리엔 100 중량부에 대하여 1 내지 20 중량부가 되도록 트리페닐포스핀, 포름알데히드 및 염화루테늄을 포함하는 촉매를 투입할 수 있으며, 보다 좋게는 1 내지 10, 더욱 좋게는 1 내지 7 중량부가 되도록 트리페닐포스핀, 포름알데히드 및 염화루테늄을 포함하는 촉매를 투입할 수 있다. 하지만 이는 전환율 및 선택도를 향상시키기 위한 바람직한 일 예일 뿐, 본 발명이 이에 제한되지 않음은 물론이다.
본 발명의 일 예에 있어서, 상기 선택적 수소 첨가 반응은 100 내지 200℃의 온도 및 10 내지 80 bar의 압력 조건 하에서 수행되는 것일 수 있으며, 보다 좋게는 140 내지 180℃의 온도 및 20 내지 60 bar의 압력 조건 하에서, 더욱 좋게는 150 내지 175℃의 온도 및 20 내지 40 bar의 압력 조건 하에서 수행되는 것일 수 있으나, 이는 전환율 및 선택도를 향상시키기 위한 바람직한 일 예일 뿐, 본 발명이 이에 제한되지 않음은 물론이다.
그 다음으로, 제1반응용액에 사이클로도데카논(Cyclododecanone, CDON)을 함유하는 용매를 혼합하는 단계를 수행할 수 있다. 이때, 용매는 제1반응용액의 트리페닐포스핀, 포름알데히드 및 염화루테늄에 의해 선택적 균일계 수소화 촉매가 형성된 후 투입될 수 있으나, 이와 달리 촉매가 형성되기 전에 투입될 수도 있다.
본 발명의 일 실시예에 있어서, 용매는 사이클로도데카논 그 자체 일 수 있으며, 또는 사이클로도데카트리엔을 더 함유할 수 있다. 좋게는 사이클로도데카논이 사이클로도데카트리엔에 용해된 것을 사용할 수 있다. 이때, 용매 내 사이클로도데카논의 양은 사이클로도데카트리엔에 용해될 수 있는 양이라면 한정되진 않는다. 이와 같은 용매는 라우로락탐 제조 공정의 중간 생성물인 사이클로도데카논(CDON)이 용해된 용매를 사용함에 따라 사이클로도데카논이 생성물에 포함되어도 생성물의 품질에 영향을 미치지 않으며, 생성물과 용매를 완전히 분리하기 위해 정교하고 복잡한 공정을 수행할 필요가 없으며, 용매인 사이클로도데카논을 함유하는 촉매를 곧바로 공정에 투입가능함에 따라, 효율적으로 촉매의 회수 및 재사용이 가능하다.. 또한, 사이클로도데카논이 용해된 사이클로데카트리엔은 본 반응에 참가하는 물질로, 촉매 활성에 영향을 끼치지 않아 회수된 촉매에 잔여하여도 재사용에 문제가 없다.
그 다음 제1반응용액을 선택적 수소 첨가 반응시켜 상기 사이클로도데센의 합성이 완료된 제2반응용액을 증류 분리하여 미반응된 사이클로도데카트리엔과 사이클로도데카디엔 및 생성물인 사이클로도데센을 증류 분리하고 선택적 균일계 수소화 촉매 및 용매를 회수하는 단계를 수행할 수 있다.
앞서 언급한 바와 같이, 사이클로도데카논을 함유하는 용매를 투입한 후 증류(Evaporation) 분리하는 방법만으로 미반응된 사이클로도데카트리엔과 사이클로도데카디엔 및 생성물인 사이클로도데센과 선택적 균일계 수소화 촉매 및 잉여 트리페닐포스핀을 분리할 수 있으며, 별도의 후처리 없이 분리 회수된 선택적 균일계 수소화 촉매 및 과량의 트리페닐포스핀을 다음 선택적 수소화 반응에 그대로 사용할 수 있다.
나아가, 본 발명의 사이클로도데카논을 함유하는 용매는 비교적 낮은 온도인 사이클로도데카논의 녹는점에서 좋은 흐름성을 가짐에 따라 용매를 첨가하지 않고 증류 분리할 시 보다 공정라인의 온도를 낮게 유지가 가능하여 에너지 절감이 가능하며 더욱 효율적으로 촉매의 회수가 가능하다.
본 발명의 일 예에 있어서, 상기 증류 분리는 증류컬럼을 통해 이루어질 수 있으며, 이때, 증류컬럼(distillation column)은 사이클로데센을 포함하는 생성물이 배출되는 상부컬럼과, 선택적 균일계 수소화 촉매 및 용매가 분리되는 하부컬럼으로 구분될 수 있다. 증류분리 시, 상부컬럼의 압력은 0.3 bar 이하 및 온도는 100 내지 200℃의 조건 하에서 수행되는 것일 수 있으며, 보다 좋게는 130 내지 170℃의 온도 및 0.1 bar 이하의 압력 조건 하에서 수행될 수 있으나 이에 한정되지 않는다. 하부컬럼의 압력은 0.3bar 이하 및 온도는 150 내지 250℃의 조건 하에서 수행될 수 있으며, 보다 좋게는 0.1 bar 이하의 압력 및 180 내지 230℃온도 조건 하에서 수행되는 것일 수 있다. 나아가 증류컬럼 내 환류비(Reflux ratio)는 0.5 내지 5 구체적으로 1 내지 2일 수 있으며, 비등비(Boilup ratio)는 1 내지 8, 구체적으로 4 내지 5일 수 있으나 이에 한정되진 않는다. 다만, 상기 범위에서 미반응된 사이클로도데카트리엔과 사이클로도데카디엔 및 생성물인 사이클로도데센이 효과적으로 증류 분리될 수 있다.
본 발명의 일 예에 있어서, 상기 선택적 균일계 수소화 촉매의 회수는 10 내지 30℃의 온도, 및 0.1 bar 이하의 압력 또는 질소 분위기 조건 하에서 수행되는 것일 수 있다. 즉, 상기 증류 분리 과정에 의해 높아진 온도를 실온 수준으로 냉각하여 선택적 균일계 수소화 촉매를 회수할 수 있다.
또한, 본 발명은 상기 회수된 선택적 균일계 수소화 촉매를 사이클로도데카트리엔이 포함된 제3반응용액에 재투입하고 2차 선택적 수소 첨가 반응시켜 사이클로도데센을 합성하는 단계;를 포함하는, 회수된 선택적 균일계 수소화 촉매의 재사용 방법에 관한 것이다.
이때, 선택적 균일계 수소화 촉매의 회수 방법은 앞서 설명한 선택적 균일계 수소화 촉매의 회수 방법과 동일함에 따라 중복 설명은 생략한다.
이후, 증류 분리 및 선택적 균일계 수소화 촉매의 회수가 완료되면, 상기 회수된 선택적 균일계 수소화 촉매를 사이클로도데카트리엔이 포함된 제3반응용액에 재투입하고 2차 선택적 수소 첨가 반응시켜 사이클로도데센을 합성하는 단계를 수행할 수 있다.
이때, 상기 사이클로도데센을 합성하기 위한 2차 선택적 수소 첨가 반응은 기존 공지된 방법을 통해 수행될 수 있다.
구체적인 일 예로, 상기 제3반응용액은 사이클로도데카트리엔뿐만 아니라 에탄올을 포함하는 용매를 더 투입할 수 있다. 상기 에탄올은 유전상수가 높음에 따라 선택적 수소 첨가 반응에서 반응물들의 반응을 더욱 활성화시켜 전환율 및 선택도를 향상시킬 수 있다. 상기 에탄올의 사용량은 사이클로도데카트리엔에 수소가 선택적 수소 첨가 반응할 수 있을 정도라면 무방하며, 바람직하게는 사이클로도데카트리엔 100 중량부에 대하여 1 내지 20 중량부, 보다 좋게는 2 내지 15 중량부, 더욱 좋게는 3 내지 10 중량부가 투입될 수 있다. 하지만 이는 바람직한 일 예일 뿐, 본 발명이 이에 제한되지 않음은 물론이다.
본 발명의 일 예에 있어서, 상기 2차 선택적 수소 첨가 반응은 120 내지 200℃의 온도 및 10 내지 80 bar의 압력 조건 하에서 수행되는 것일 수 있으며, 보다 좋게는 140 내지 180℃의 온도 및 20 내지 60 bar의 압력 조건 하에서, 더욱 좋게는 150 내지 175℃의 온도 및 20 내지 40 bar의 압력 조건 하에서 수행되는 것일 수 있으나, 이는 전환율 및 선택도를 향상시키기 위한 바람직한 일 예일 뿐, 본 발명이 이에 제한되지 않음은 물론이다.
이하, 실시예를 통해 본 발명에 따른 선택적 균일계 수소화 촉매의 회수 방법 및 재사용 방법에 대하여 더욱 상세히 설명한다. 다만 하기 실시예는 본 발명을 상세히 설명하기 위한 하나의 참조일 뿐 본 발명이 이에 한정되는 것은 아니며, 여러 형태로 구현될 수 있다.
또한 달리 정의되지 않은 한, 모든 기술적 용어 및 과학적 용어는 본 발명이 속하는 당업자 중 하나에 의해 일반적으로 이해되는 의미와 동일한 의미를 갖는다. 본원에서 설명에 사용되는 용어는 단지 특정 실시예를 효과적으로 기술하기 위함이고 본 발명을 제한하는 것으로 의도되지 않는다. 또한 명세서에서 특별히 기재하지 않은 첨가물의 단위는 중량%일 수 있다.
(실시예 1)
사이클로도데카트리엔(CDT):염화루테늄(RuCl3):트리페닐포스핀(TPP):포름알데히드를 7500:1:110:220의 몰비로 투입하고, 사이클로도데카트리엔(CDT) 100중량부에 대해 사이클로도데카논(CDON) 80중량부를 투입하였다. 이때, 혼합물은 질소 조건 하 70℃로 가열되어 사이클로도데카논(CDON)이 용해되었다. 이후, 수소 6 bar 조건에서 반응용액을 1600rpm으로 교반하며 140℃까지 가열하였다. 그 다음 수소 압력 20 bar가 유지되는 조건에서 180℃의 온도하에 선택적 수소화 반응을 수행하였으며, 이때 반응은 가스 유도 중공형 교반기가 구비된 교반탱크반응기에서 수행하였다.
선택적 수소화 반응을 진행한 후, 질소 조건에서 30℃ 이하로 냉각한 후 제2반응용액을 회수하였다.
그 다음 제2반응용액을 증류칼럼에 투입하여 증류하였다. 이때, 상부칼럼의 내부 압력은 -0.9bar, 온도는 155.9℃이었으며, 하부칼럼의 내부 압력은 -0.85bar, 온도는 203.5℃이었다. 증류가 완료되면 질소 분위기에서 30℃이하로 냉각하여 선택적 균일계 수소화 촉매를 회수하였다.
그 다음 회수된 촉매를 반응용액에 재투입하여 선택적 수소화반응을 재 진행한 후, 재 회수 하였다. 이때, 사이클로도데카트리엔(CDT):회수된 선택적 균일계 수소화 촉매를 7500:1의 몰비로 투입하였다.
(실시예 2)
실시예1의 선택적 균일계 수소화 촉매 회수방법에 있어서, 선택적 수소화 반응을 수행 시 180℃의 온도가 아닌 170℃의 온도하에 선택적 수소화 반응을 수행한 것을 제외하고 실시예 1의 방법과 동일한 방법으로 선택적 균일계 수소화 촉매를 회수 및 재사용 하였다.
(비교예 1)
실시예1의 선택적 균일계 수소화 촉매 회수방법에 있어서, 사이클로도데카논(CDON) 대신, 실시예 1에 첨가된 사이클로도데카논(CDON)의 양만큼 사이클로도데카트리엔(CDT)을 더 첨가한 것을 제외하고 실시예 1의 회수방법으로 선택적 균일계 수소화 촉매를 회수 및 재사용하였다.
[실험예 1]
<전환율 및 선택도 평가>
상기 실시예 1, 실시예 2 및 비교예의 반응시간, 전환율, 선택도 수율를 계산하여 하기 표 1에 나타내었다.
전환율은 하기 계산식1, 선택도는 하기 계산식2, 수율은 하기 계산식 3을 통해 계산되었다.
[계산식 1]
전환율(%) = (CDT0 - CDT1 - CDDN1)/CDT0 × 100
계산식 1에서, CDT0는 투입된 사이클로도데카트리엔의 몰수이며, CDT1은 반응 후의 사이클로도데카트리엔의 몰수이며, 상기 CDDN1은 사이클로도데카리엔의 몰수이다. 이때, 사이클로도데카리엔(Cyclododecadiene, CDDN)은 사이클로도데카트리엔의 세개의 이중결합 중 하나의 이중결합만이 수소화되어 두개의 이중결합이 남아 있는 수소화 반응이 끝나지 않은 생성물이다.
[계산식 2]
선택도(%) = CDEN1/(CDEN1 + CDAN1) × 100
상기 계산식 2에서, CDEN1은 생성된 사이클로도데센의 몰수이며, CDAN1은 생성된 부산물인 사이클로도데칸(Cyclododecane)의 몰수이다.
[계산식 3]
수율(%) = 전환율 × 선택도
실시예1 실시예2 비교예
구분 1차반응 2차반응 1차반응 2차반응 1차반응 2차반응
반응시간(h) 2.0 1.5 3.0 2.5 2.0 1.5
전환율(%) 98.8 98.3 98.7 98.1 98.1 97.8
선택도(%) 97.6 97.4 98.1 98.3 97.6 97.8
수율(%) 96.4 95.7 96.8 96.4 95.7 95.6
그 결과, 표 1에 기재된 바와 같이, 본원 발명은 비교예와 유사하게 사이클로도데카트리엔의 전환율 및 사이클로도데센의 선택도 모두를 높은 수준으로 유지할 수 있음을 확인할 수 있었으며, 높은 수율로 촉매를 회수 할 수 있음을 확인할 수 있었다. 아울러, 본원 발명은 용매가 첨가되어 촉매의 부피 비율이 낮아 증류 분리 장치의 작동 유지가 어려운 것을 방지하여 증류 분리 장치의 작동유지가 용이함에 따라 연속 생산이 유리할 수 있으며. 또한, 생성물인 사이클로도데센(CDEN)이 잔여되어 재사용될 염려가 없다. 나아가, 높은 흐름성을 유지하기 위해선 약 60℃이상의 온도만 유지하면 되어 비교예와 비교해 공정유지가 매우 유리하다는 장점을 가질 수 있다.
이상과 같이 특정된 사항들과 한정된 실시예를 통해 본 발명이 설명되었으나, 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다.
따라서 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다.

Claims (10)

  1. 사이클로도데카트리엔, 트리페닐포스핀, 포름알데히드 및 염화루테늄을 포함하는 제1반응용액을 선택적 수소 첨가 반응시켜 사이클로도데센을 합성한 후, 상기 사이클로도데센의 합성이 완료된 제2반응용액으로부터 선택적 균일계 수소화 촉매를 회수하는 방법에 있어서,
    상기 제1반응용액의 선택적 수소 첨가 반응 중 상기 트리페닐포스핀, 포름알데히드 및 염화루테늄으로부터 선택적 균일계 수소화 촉매가 제조되며 사이클로도데센이 합성되는 단계;
    상기 제1반응용액에 사이클로도데카논을 함유하는 용매를 혼합하는 단계; 및
    상기 사이클로도데센의 합성이 완료된 제2반응용액을 증류 분리하여 선택적 균일계 수소화 촉매를 회수하는 단계;를 포함하는, 선택적 균일계 수소화 촉매의 회수 방법.
  2. 제1항에 있어서,
    상기 용매는 사이클로도데카트리엔에 용해된 사이클로도데카논인 선택적 균일계 수소화 촉매의 회수 방법.
  3. 제1항에 있어서,
    상기 증류 분리는 증류컬럼을 통해 이루어지며,
    상기 증류컬럼은 사이클로도데센을 포함하는 생성물이 배출되는 상부컬럼과, 상기 선택적 균일계 수소화 촉매 및 용매가 분리되는 하부컬럼으로 구비되고,
    상기 증류분리 시, 상기 상부컬럼의 압력은 0.1bar 이하 및 온도는 100℃내지 200℃이며, 상기 하부컬럼의 압력은 0.1bar 이하 및 온도는 150℃내지 250℃인 선택적 균일계 수소화 촉매의 회수방법.
  4. 제1항에 있어서,
    상기 염화루테늄 : 트리페닐포스핀 : 포름알데히드의 몰비는 1 : 100 내지 300 : 150 내지 500인, 선택적 균일계 수소화 촉매의 회수 방법.
  5. 제1항에 있어서,
    상기 선택적 수소 첨가 반응은 가스 유도 중공형 교반기가 구비된 교반탱크반응기에서 수행되는 것인, 선택적 균일계 수소화 촉매의 회수 방법.
  6. 제5항에 있어서,
    상기 가스 유도 중공형 교반기의 중공을 통해 교반탱크반응기 상단에 기상으로 존재하는 수소 기체가 반응용액에 공급되는 것인, 선택적 균일계 수소화 촉매의 회수 방법.
  7. 제1항에 있어서,
    상기 제1반응용액은 아세트산을 포함하는 촉매 활성제가 더 포함되는 것인, 선택적 균일계 수소화 촉매의 회수 방법.
  8. 제7항에 있어서,
    상기 촉매 활성제는 사이클로도데카트리엔 100 중량부에 대하여 0.01 내지 2 중량부로 첨가되는 것인, 선택적 균일계 수소화 촉매의 회수 방법.
  9. 제1항에 있어서,
    상기 선택적 수소 첨가 반응은 100 내지 200℃의 온도 및 10 내지 80 bar의 압력 조건 하에서 수행되는 것인, 선택적 균일계 수소화 촉매의 회수 방법.
  10. 제1항 내지 제9항 중 어느 한 항의 방법으로 회수된 선택적 균일계 수소화 촉매를 사이클로도데카트리엔이 포함된 제3반응용액에 재투입하고 2차 선택적 수소 첨가 반응시켜 사이클로도데센을 합성하는 단계;를 포함하는, 회수된 선택적 균일계 수소화 촉매의 재사용 방법.
PCT/KR2021/018789 2020-12-11 2021-12-10 선택적 균일계 수소화 촉매의 회수 방법 및 재사용 방법 WO2022124863A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023535503A JP2023553148A (ja) 2020-12-11 2021-12-10 選択的均一系水素化触媒の回収方法および再使用方法
US18/256,648 US20240033721A1 (en) 2020-12-11 2021-12-10 Method for recovering and reusing selective homogeneous hydrogenation catalyst
CN202180083388.4A CN116547257A (zh) 2020-12-11 2021-12-10 选择性均相氢化催化剂的回收方法及再使用方法
EP21903908.8A EP4265588A1 (en) 2020-12-11 2021-12-10 Method for recovering and reusing selective homogeneous hydrogenation catalyst

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0173362 2020-12-11
KR1020200173362A KR20220083279A (ko) 2020-12-11 2020-12-11 선택적 균일계 수소화 촉매의 회수 방법 및 재사용 방법

Publications (1)

Publication Number Publication Date
WO2022124863A1 true WO2022124863A1 (ko) 2022-06-16

Family

ID=81974476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/018789 WO2022124863A1 (ko) 2020-12-11 2021-12-10 선택적 균일계 수소화 촉매의 회수 방법 및 재사용 방법

Country Status (6)

Country Link
US (1) US20240033721A1 (ko)
EP (1) EP4265588A1 (ko)
JP (1) JP2023553148A (ko)
KR (1) KR20220083279A (ko)
CN (1) CN116547257A (ko)
WO (1) WO2022124863A1 (ko)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3715405A (en) 1967-11-06 1973-02-06 Nippon Oil Co Ltd Process for selective hydrogenation of highly unsaturated compounds
US4413118A (en) 1981-03-02 1983-11-01 Merck & Co., Inc. Process for removal of homogeneous catalyst group VIII metals from process streams
JP2007506695A (ja) * 2003-09-25 2007-03-22 ビーエーエスエフ アクチェンゲゼルシャフト ケトンの製造方法
JP2007506694A (ja) * 2003-09-25 2007-03-22 ビーエーエスエフ アクチェンゲゼルシャフト シクロドデカノンの製造方法
KR20190058075A (ko) * 2017-11-21 2019-05-29 한화케미칼 주식회사 사이클로도데카트라이엔의 선택적 수소화 촉매 및 이의 제조방법
JP2019523121A (ja) * 2016-06-30 2019-08-22 エボニック デグサ ゲーエムベーハーEvonik Degussa GmbH 均一系酸化触媒を再活性化する方法
KR20200076301A (ko) 2018-12-19 2020-06-29 한화솔루션 주식회사 선택적 균일계 수소화 촉매의 회수 방법 및 재사용 방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3715405A (en) 1967-11-06 1973-02-06 Nippon Oil Co Ltd Process for selective hydrogenation of highly unsaturated compounds
US4413118A (en) 1981-03-02 1983-11-01 Merck & Co., Inc. Process for removal of homogeneous catalyst group VIII metals from process streams
JP2007506695A (ja) * 2003-09-25 2007-03-22 ビーエーエスエフ アクチェンゲゼルシャフト ケトンの製造方法
JP2007506694A (ja) * 2003-09-25 2007-03-22 ビーエーエスエフ アクチェンゲゼルシャフト シクロドデカノンの製造方法
JP2019523121A (ja) * 2016-06-30 2019-08-22 エボニック デグサ ゲーエムベーハーEvonik Degussa GmbH 均一系酸化触媒を再活性化する方法
KR20190058075A (ko) * 2017-11-21 2019-05-29 한화케미칼 주식회사 사이클로도데카트라이엔의 선택적 수소화 촉매 및 이의 제조방법
KR20200076301A (ko) 2018-12-19 2020-06-29 한화솔루션 주식회사 선택적 균일계 수소화 촉매의 회수 방법 및 재사용 방법

Also Published As

Publication number Publication date
EP4265588A1 (en) 2023-10-25
KR20220083279A (ko) 2022-06-20
JP2023553148A (ja) 2023-12-20
US20240033721A1 (en) 2024-02-01
CN116547257A (zh) 2023-08-04

Similar Documents

Publication Publication Date Title
WO2019050281A1 (ko) 에스터 조성물의 제조 시스템 및 이를 이용한 에스터 조성물의 제조 방법
CN114133350A (zh) 一种抗新冠药物Paxlovid中间体的制备方法
WO2015156582A1 (ko) 복합 금속 촉매 조성물과 이를 이용한 1,4-사이클로헥산디메탄올 제조방법 및 장치
WO2019132524A1 (ko) 카본이 코팅된 실리카-알루미나 담체에 담지된 귀금속-전이금속 복합 촉매 및 이의 제조방법
WO2020130605A1 (ko) 신규한 라우로락탐 제조 방법 및 합성 장치
WO2020130280A1 (ko) 선택적 균일계 수소화 촉매의 회수 방법 및 재사용 방법
WO2022124863A1 (ko) 선택적 균일계 수소화 촉매의 회수 방법 및 재사용 방법
CN112920033A (zh) 邻炔基苯基环丁酮的制备方法及萘酮的制备方法
WO2020101413A1 (ko) 이산화탄소의 수소화 반응에 의한 포름산 제조 방법 및 제조 장치
CN111087352B (zh) 一种3-三氟烷基喹喔啉酮化合物的制备方法
WO2021132876A1 (ko) 1,4-사이클로헥산디메탄올의 제조 방법
WO2020130304A1 (ko) 사이클로도데센의 합성 방법 및 합성 장치
WO2022131888A1 (ko) 사이클로도데카트리엔의 선택수첨 반응을 위한 촉매 제조 방법 및 이의 제조방법으로 제조된 촉매
JP3581514B2 (ja) アルキルハロゲン化物の製法
WO2016064210A1 (ko) 아세틸렌을 사용한 디메틸테레프탈레이트의 제조방법
WO2018194426A1 (ko) 연속흐름반응을 이용한 담즙산 유도체의 제조 방법
WO2022139288A1 (ko) 프탈레이트계 화합물 수소화 방법
JPH06298727A (ja) 環状アミン類の製造方法
WO2021118010A1 (ko) 아크릴로니트릴 이량체 제조 방법
WO2021096075A1 (ko) 아크릴로니트릴 이량체 제조 방법
CN109776415B (zh) 一种Roxadustat中间体的制备方法
CN115448864B (zh) 3-氟-3-(1-羟乙基)吡咯烷-1-羧酸叔丁酯的制备方法
WO2015020277A1 (ko) 고효율 화학반응 방법 및 장치
WO2024053935A1 (ko) 네오펜틸 글리콜의 제조 방법
CN115448865B (zh) 一种不对称合成塞曲西坦中间体的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21903908

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18256648

Country of ref document: US

Ref document number: 2023535503

Country of ref document: JP

Ref document number: 202180083388.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021903908

Country of ref document: EP

Effective date: 20230711