WO2022124540A1 - 유기 화합물 및 이를 포함하는 유기발광소자 - Google Patents

유기 화합물 및 이를 포함하는 유기발광소자 Download PDF

Info

Publication number
WO2022124540A1
WO2022124540A1 PCT/KR2021/013092 KR2021013092W WO2022124540A1 WO 2022124540 A1 WO2022124540 A1 WO 2022124540A1 KR 2021013092 W KR2021013092 W KR 2021013092W WO 2022124540 A1 WO2022124540 A1 WO 2022124540A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
layer
unsubstituted
formula
Prior art date
Application number
PCT/KR2021/013092
Other languages
English (en)
French (fr)
Inventor
현서용
윤석근
이성림
Original Assignee
(주)피엔에이치테크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)피엔에이치테크 filed Critical (주)피엔에이치테크
Priority to CN202180082553.4A priority Critical patent/CN116724684A/zh
Priority to US18/256,597 priority patent/US20240124433A1/en
Publication of WO2022124540A1 publication Critical patent/WO2022124540A1/ko

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D333/76Dibenzothiophenes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K99/00Subject matter not provided for in other groups of this subclass

Definitions

  • the present invention relates to an organic compound, and more particularly, to an organic compound used as a material for an organic layer in an organic light emitting device, and a light efficiency improving layer (Capping layer) provided in the organic light emitting device, and a low voltage of the device by employing the same It relates to an organic light-emitting device having significantly improved light-emitting characteristics such as driving and excellent light-emitting efficiency.
  • the organic light emitting device can be formed on a transparent substrate as well as being able to drive at a low voltage of 10 V or less compared to a plasma display panel or an inorganic electroluminescent (EL) display, and consume relatively little power. , has the advantage of excellent color, and can represent three colors of green, blue, and red.
  • the material constituting the organic layer in the device such as a hole injection material, a hole transport material, a light emitting material, an electron transport material, and an electron injection material, is supported by stable and efficient materials.
  • a stable and efficient organic layer material for an organic light emitting device has not yet been sufficiently developed.
  • the present invention is a novel organic compound capable of implementing excellent light emitting characteristics such as low voltage driving and improved light emitting efficiency of the device by being employed in an organic layer in an organic light emitting device or a light efficiency improving layer (Capping layer) provided in the organic light emitting device, and
  • An object of the present invention is to provide an organic light emitting device including
  • the present invention provides an organic compound represented by the following [Formula I] in order to solve the above problems.
  • the organic compound according to the present invention is employed as an organic layer in an organic light emitting device or as a material for a light efficiency improvement layer provided in an organic light emitting device, it is possible to realize light emitting characteristics such as low voltage driving and excellent light emitting efficiency of the device, which is useful for various display devices. can be used
  • the present invention relates to an organic compound represented by the following [Formula I], which can achieve light emitting characteristics such as low voltage driving and excellent luminous efficiency of the organic light emitting device,
  • Ar is a substituted or unsubstituted aryl group having 6 to 30 carbon atoms in which at least one cyano group (CN) is substituted, m is an integer of 1 or 2, and when m is 2, a plurality of Ars are the same as or different from each other do.
  • L is a single bond or a substituted or unsubstituted arylene group having 6 to 30 carbon atoms
  • n is an integer of 0 to 2
  • a plurality of L's are the same or different from each other.
  • the compound according to the present invention is characterized in that an aryl structure (-(L) n -(Ar) m ) having at least one cyano group (CN) is necessarily introduced at the -N group of the carbazole in the [Formula I] skeleton do.
  • R 1 to R 2 are each independently represented by the following [Structural Formula 1].
  • X is O or S
  • Z is CR
  • a plurality of R are the same or different from each other.
  • R and R 3 are each independently hydrogen, deuterium, a halogen group, a cyano group, a substituted or unsubstituted C 1 to C 20 alkyl group, a substituted or unsubstituted C 2 to C 20 alkenyl group, a substituted or unsubstituted C 3 to 20 cycloalkyl group, substituted or unsubstituted C1-C20 alkoxy group, substituted or unsubstituted C1-C20 halogenated alkyl group, substituted or unsubstituted C1-C20 halogenated alkoxy group, substituted or It is selected from an unsubstituted C6-C30 aryl group and a substituted or unsubstituted C3-C30 heteroaryl group.
  • Any one of the plurality of R and R 3 is a moiety in which [Formula 1] is connected in [Formula I] at the positions of R 1 and R 2 , respectively.
  • [Formula 1] is represented by the following [Formula 2] to [Formula 6] It may be any one selected from the structural formulas shown.
  • X is O or S
  • Z is CR
  • a plurality of R are the same or different from each other.
  • R and R 3 are each independently hydrogen, deuterium, a halogen group, a cyano group, a substituted or unsubstituted C 1 to C 20 alkyl group, a substituted or unsubstituted C 2 to C 20 alkenyl group, a substituted or unsubstituted C 3 to 20 cycloalkyl group, substituted or unsubstituted C1-C20 alkoxy group, substituted or unsubstituted C1-C20 halogenated alkyl group, substituted or unsubstituted C1-C20 halogenated alkoxy group, substituted or It is selected from an unsubstituted C6-C30 aryl group and a substituted or unsubstituted C3-C30 heteroaryl group.
  • Any one of the plurality of R and R 3 is a moiety in which [Formula 1] is connected in [Formula I] at the positions of R 1 and R 2 , respectively.
  • 'substituted or unsubstituted' means deuterium, deuterium, halogen group, cyano group, nitro group, hydroxyl group, silyl group, alkyl group, halogenated alkyl group, heavy water
  • a digested alkyl group, a cycloalkyl group, a heterocycloalkyl group, an alkoxy group, a halogenated alkoxy group, a deuterated alkoxy group, an aryl group, a heteroaryl group, an alkylamine group, an arylamine group, and a silyl group It means that it is substituted with a substituent, is substituted with a substituent to which two or more of the substituents are connected, or does not have any substituents.
  • the substituted aryl group means that a phenyl group, a biphenyl group, a naphthalene group, a fluorenyl group, a pyrenyl group, a phenanthrenyl group, a perylene group, a tetracenyl group, an anthracenyl group, etc. are substituted with other substituents do.
  • the substituted heteroaryl group refers to a pyridyl group, a thiophenyl group, a triazine group, a quinoline group, a phenanthroline group, an imidazole group, a thiazole group, an oxazole group, a carbazole group and a condensed heterocyclic group thereof, such as a benzquinoline group.
  • a benzimidazole group, a benzoxazole group, a benzthiazole group, a benzcarbazole group, a dibenzothiophenyl group, a dibenzofuran group, and the like are substituted with other substituents.
  • the alkyl group may be linear or branched, and the number of carbon atoms is not particularly limited, but is preferably 1 to 20.
  • Specific examples include methyl group, ethyl group, propyl group, n-propyl group, isopropyl group, butyl group, n-butyl group, isobutyl group, tert-butyl group, sec-butyl group, 1-methyl-butyl group, 1- Ethyl-butyl group, pentyl group, n-pentyl group, isopentyl group, neopentyl group, tert-pentyl group, hexyl group, n-hexyl group, 1-methylpentyl group, 2-methylpentyl group, 4-methyl- 2-pentyl group, 3,3-dimethylbutyl group, 2-ethylbutyl group, heptyl group, n-heptyl group, 1-methylhexyl group, 2-
  • the alkoxy group may be straight-chain or branched.
  • the number of carbon atoms of the alkoxy group is not particularly limited, it is preferably 1 to 20 in a range that does not cause steric hindrance.
  • a deuterated alkyl group or alkoxy group, halogenated alkyl group or alkoxy group means an alkyl group or alkoxy group in which the alkyl group or alkoxy group is substituted with deuterium or a halogen group.
  • the aryl group may be monocyclic or polycyclic, and the number of carbon atoms is not particularly limited, but is preferably 6 to 30.
  • the monocyclic aryl group include a phenyl group, a biphenyl group, a terphenyl group, and a stilbene group.
  • the polycyclic aryl group include a naphthyl group, an anthracenyl group, a phenanthrenyl group, a pyrenyl group, a perylenyl group, and a tetracenyl group. , chrysenyl group, fluorenyl group, acenaphthacenyl group, triphenylene group, fluoranthrene group, etc., but the scope of the present invention is not limited only to these examples.
  • the fluorenyl group is a structure in which two ring organic compounds are connected through one atom, for example, , , etc.
  • the fluorenyl group includes a structure of an open fluorenyl group, wherein the open fluorenyl group is a structure in which one ring compound is disconnected in a structure in which two ring organic compounds are connected through one atom. , for example , etc.
  • the carbon atom of the ring may be substituted with any one or more heteroatoms selected from N, S and O, for example, , , , etc.
  • the heteroaryl group is a heterocyclic group containing O, N, or S as a heteroatom, and the number of carbon atoms is not particularly limited, but preferably has 2 to 30 carbon atoms, and for a specific example thereof in the present invention, a thiophene group , furan group, pyrrole group, imidazole group, thiazole group, oxazole group, oxadiazole group, triazole group, pyridyl group, bipyridyl group, pyrimidyl group, triazine group, triazole group, acridyl group, pyridazine group, pyra Zinyl group, quinolinyl group, quinazoline group, quinoxalinyl group, phthalazinyl group, pyrido pyrimidinyl group, pyrido pyrazinyl group, pyrazino pyrazinyl group, isoquinoline group, in
  • the silyl group is an unsubstituted silyl group or a silyl group substituted with an alkyl group, an aryl group, etc.
  • specific examples of the silyl group include trimethylsilyl, triethylsilyl, triphenylsilyl, trimethoxysilyl, dimethoxy phenylsilyl, diphenylmethylsilyl, diphenylvinylsilyl, methylcyclobutylsilyl, dimethylfurylsilyl, and the like, but is not limited thereto.
  • the amine group may be -NH 2 , an alkylamine group, an arylamine group, etc.
  • the arylamine group means an amine substituted with an aryl
  • the alkylamine group means an amine substituted with an alkyl
  • an arylamine group examples of these include a substituted or unsubstituted monoarylamine group, a substituted or unsubstituted diarylamine group, or a substituted or unsubstituted triarylamine group
  • the aryl group in the arylamine group is the same as the definition of the aryl group
  • the alkyl group of the alkylamine group is also the same as the definition of the alkyl group.
  • the cycloalkyl group refers to, and includes, monocyclic, polycyclic and spiro alkyl radicals, and preferably contains 3 to 20 ring carbon atoms, cyclopropyl, cyclopentyl, cyclohexyl, bicyclo heptyl, spirodecyl, spirodecyl, adamantyl, and the like, wherein the cycloalkyl group may be optionally substituted.
  • heterocycloalkyl groups refer to and include aromatic and non-aromatic cyclic radicals containing one or more heteroatoms, wherein one or more heteroatoms are O, S, N, P, B, Si, and Se , Preferably it is selected from O, N or S, and specifically, when N is included, it may be aziridine, pyrrolidine, piperidine, azepane, azocan, and the like.
  • the organic compound according to the present invention represented by the [Formula I] can be used as various organic layers including the electron transport layer in the organic light emitting device due to its structural specificity, and can also be used as a material for the light efficiency improvement layer provided in the organic light emitting device can
  • Preferred examples of the organic compound represented by [Formula I] according to the present invention include the following compounds, but are not limited thereto.
  • the organic compound according to the present invention can synthesize organic compounds having various characteristics using a characteristic skeleton exhibiting intrinsic characteristics and a moiety having intrinsic characteristics introduced thereto, and as a result
  • the organic compound according to the present invention can be applied to various organic layer materials such as a light emitting layer, a hole transport layer, an electron transport layer, an electron blocking layer, and a hole blocking layer.
  • a light emitting layer such as a light emitting layer, a hole transport layer, an electron transport layer, an electron blocking layer, and a hole blocking layer.
  • the compound of the present invention can be applied to a device according to a general method for manufacturing an organic light emitting device.
  • the organic light emitting device may have a structure including a first electrode and a second electrode and an organic layer disposed therebetween, except that the organic compound according to the present invention is used in the organic layer of the device. and can be manufactured using conventional device manufacturing methods and materials.
  • the organic layer of the organic light emitting device may have a single-layer structure, but may have a multi-layered structure in which two or more organic layers are stacked.
  • it may have a structure including a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, an electron blocking layer, a hole blocking layer, a light efficiency improving layer (Capping layer) and the like.
  • the present invention is not limited thereto and may include a smaller number or a larger number of organic layers.
  • the organic electroluminescent device includes a substrate, a first electrode (anode), an organic layer, a second electrode (cathode) and a light efficiency improving layer, wherein the light efficiency improving layer is a lower portion of the first electrode ( Bottom emission) or on the second electrode top (Top emission).
  • the light formed in the light emitting layer is emitted toward the cathode, and the light emitted toward the cathode passes through the light efficiency improvement layer (CPL) formed of the compound according to the present invention having a relatively high refractive index.
  • the wavelength is amplified and thus the luminous efficiency is increased.
  • the light efficiency of the organic electric device is improved by employing the compound according to the present invention in the light efficiency improving layer according to the same principle as the method formed in the lower portion of the first electrode (Bottom emission).
  • the organic light emitting device uses a PVD (physical vapor deposition) method, such as sputtering or e-beam evaporation, to form a metal or a conductive metal oxide or an alloy thereof on a substrate.
  • PVD physical vapor deposition
  • It can be prepared by depositing an anode, forming an organic layer including a hole injection layer, a hole transport layer, a light emitting layer, and an electron transport layer thereon, and then depositing a material that can be used as a cathode thereon.
  • an organic light emitting diode may be manufactured by sequentially depositing a cathode material, an organic layer, and an anode material on a substrate.
  • the organic layer may have a multilayer structure including a hole injection layer, a hole transport layer, a light emitting layer and an electron transport layer, but is not limited thereto and may have a single layer structure.
  • the organic layer can be formed in a smaller number by a solvent process rather than a deposition method using various polymer materials, such as spin coating, dip coating, doctor blading, screen printing, inkjet printing, or thermal transfer method. It can be made in layers.
  • anode material a material having a large work function is generally preferred so that holes can be smoothly injected into the organic layer.
  • the anode material that can be used in the present invention include metals such as vanadium, chromium, copper, zinc, gold, or alloys thereof, zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO), etc.
  • Metal oxides, combinations of metals and oxides such as ZnO:Al or SnO 2 :Sb, poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene] (PEDT) , a conductive polymer such as polypyrrole and polyaniline, but is not limited thereto.
  • the cathode material is preferably a material having a small work function to facilitate electron injection into the organic layer.
  • the negative electrode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin and lead or alloys thereof, and multilayered materials such as LiF/Al or LiO 2 /Al Structural materials and the like, but are not limited thereto.
  • the hole injection material is a material capable of well injecting holes from the anode at a low voltage, and it is preferable that the highest occupied molecular orbital (HOMO) of the hole injection material is between the work function of the anode material and the HOMO of the surrounding organic layer.
  • the hole injection material include metal porphyrine, oligothiophene, arylamine-based organic material, hexanitrile hexaazatriphenylene, quinacridone-based organic material, perylene-based organic material, anthraquinone, polyaniline, and polythiophene-based conductive polymers, and the like, but are not limited thereto.
  • the hole transport material a material capable of transporting holes from the anode or the hole injection layer to the light emitting layer is suitable, and a material having high hole mobility is suitable.
  • Specific examples include an arylamine-based organic material, a conductive polymer, and a block copolymer having a conjugated portion and a non-conjugated portion together. can be further improved.
  • the light emitting material is a material capable of emitting light in the visible ray region by receiving and combining holes and electrons from the hole transport layer and the electron transport layer, respectively, and a material having good quantum efficiency for fluorescence or phosphorescence is preferable.
  • Specific examples include 8-hydroxy-quinoline aluminum complex (Alq 3 ), carbazole-based compounds, dimerized styryl compounds, BAlq, 10-hydroxybenzoquinoline-metal compounds, benzoxazole, benzthiazole and Benzimidazole-based compounds, poly(p-phenylenevinylene) (PPV)-based polymers, spiro compounds, polyfluorene, rubrene, and the like, but are not limited thereto.
  • the electron transport material a material capable of receiving electrons from the cathode and transferring them to the light emitting layer is suitable, and a material having high electron mobility is suitable.
  • Specific examples include, but are not limited to, an Al complex of 8-hydroxyquinoline, a complex including Alq 3 , an organic radical compound, and a hydroxyflavone-metal complex.
  • the organic light emitting diode according to the present invention may be a top emission type, a back emission type, or a double side emission type depending on the material used.
  • organic compound according to the present invention may act on a principle similar to that applied to an organic light emitting device in an organic electronic device including an organic solar cell, an organic photoreceptor, an organic transistor, and the like.
  • the anode was cleaned using an ITO glass substrate containing 25 mm ⁇ 25 mm ⁇ 0.7 mm Ag, after patterning so that the light emitting area has a size of 2 mm ⁇ 2 mm.
  • organic materials and metals were deposited on the substrate in the following structure at a process pressure of 1 ⁇ 10 -6 torr or more.
  • [HAT-CN] was formed on a glass substrate to a thickness of 5 nm on an ITO transparent electrode containing Ag to form a hole injection layer, and then [ ⁇ -NPB] was formed to a thickness of 100 nm to form a hole transport layer, [TCTA] was deposited to a thickness of 10 nm to form an electron blocking layer, and a light emitting layer was formed by co-deposition at 20 nm using [BH1] as a host compound and [BD1] as a dopant compound, and an electron transport layer ( ] After depositing the compound Liq 50% doping) at 30 nm, LiF was formed to a thickness of 1 nm to form an electron injection layer, and Mg:Ag was formed to a thickness of 15 nm in a ratio of 1:9 to form a cathode. , the light efficiency improving layer (capping layer) was prepared by forming an organic light emitting device by forming a film of the compound implemented in the present invention described in [Table 1] to
  • the organic light emitting device for Device Comparative Example 1 was manufactured in the same manner except that the light efficiency improving layer was not used in the device structure of Example 1.
  • the organic light emitting device for Device Comparative Example 2 was manufactured in the same manner except that Alq 3 was used instead of the compound of the present invention as the light efficiency improving layer compound in the device structure of Example 1.
  • the organic light emitting device for Device Comparative Example 3 was manufactured in the same manner except that CP1 was used instead of the compound of the present invention as the light efficiency improving layer compound in the device structure of Example 1.
  • An organic light emitting device for Device Comparative Example 4 was manufactured in the same manner except that CP2 was used instead of the compound of the present invention as the light efficiency improving layer compound in the device structure of Example 1.
  • the driving voltage, current efficiency and color coordinates were measured using a source meter (Model 237, Keithley) and a luminance meter (PR-650, Photo Research) for the organic light emitting diodes manufactured according to the Examples and Comparative Examples, 1,000 nit standard
  • the result value of is shown in [Table 1] below.
  • the ITO transparent electrode is patterned so that the light emitting area is 2 mm ⁇ 2 mm in size, using an ITO glass substrate to which an ITO transparent electrode is attached, on a glass substrate of 25 mm ⁇ 25 mm ⁇ 0.7 mm After that, it was washed. After the substrate was mounted in a vacuum chamber and the base pressure was set to 1 ⁇ 10 -6 torr or more, the organic material and the metal were deposited on the ITO in the following structure.
  • the compound implemented according to the present invention was used as the electron transport layer.
  • a blue organic light emitting device having the following device structure was manufactured, and light emitting characteristics including current efficiency were measured.
  • ITO / hole injection layer HAT-CN, 5 nm
  • hole transport layer ⁇ -NPB, 100 nm
  • electron blocking layer EBL1 10 nm
  • light emitting layer (20 nm
  • hole blocking layer HBL1, 50 nm
  • Electron transport layer 201:Liq, 30 nm) / LiF (1 nm) / Al (100 nm)
  • the hole injection layer on the ITO transparent electrode it was deposited at 5 nm using [HAT-CN], the hole transport layer was formed at 100 nm using ⁇ -NPB, and the electron blocking layer was 10 using [EBL1]. It was deposited to a thickness of nm, and [BH1] was used as a host compound for the emission layer, and [BD1] was used as a dopant compound to be co-deposited to a thickness of 20 nm.
  • the electron transport layer was formed into a film to a thickness of 30 nm (Liq doping) using the compound embodied in the present invention described in [Table 2] below.
  • An organic light emitting diode was manufactured by forming a film of 1 nm LiF and 100 nm of Al.
  • the organic light emitting device for Device Comparative Example 5 was manufactured in the same manner except that the following [201] was used instead of the compound embodied in the present invention in the electron transport layer in the device structure of Example 21.
  • the organic light emitting device for Device Comparative Example 6 was manufactured in the same manner except that the following [ET1] was used instead of the compound embodied in the present invention in the electron transport layer in the device structure of Example 21.
  • the organic light emitting device for Device Comparative Example 7 was manufactured in the same manner except that the following [ET2] was used instead of the compound embodied in the present invention for the electron transport layer in the device structure of Example 21.
  • the organic compound according to the present invention is employed as a material for an organic layer in an organic light emitting device or a light efficiency improvement layer provided in an organic light emitting device, it is possible to realize light emitting characteristics such as low voltage driving and excellent luminous efficiency of the device, so that it can be used in various lighting and display devices. It can be usefully used industrially.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 발명은 유기발광소자 내의 전자수송층 등의 유기층과, 그리고 유기발광소자에 구비되는 광효율 개선층 (Capping layer)에 채용되어 소자의 저전압 구동과 우수한 발광 효율 등의 발광 특성을 구현할 수 있는 유기화합물 및 이를 포함하는 유기발광소자에 관한 것으로서, 우수한 발광 효율과 저전압 구동 등의 향상된 소자 특성을 구현할 수 있어 다양한 조명 및 디스플레이 소자에 산업적으로 유용하게 사용될 수 있다.

Description

유기 화합물 및 이를 포함하는 유기발광소자
본 발명은 유기 화합물에 관한 것으로서, 더욱 상세하게는 유기발광소자 내의 유기층, 그리고 유기발광소자에 구비되는 광효율 개선층 (Capping layer) 재료로 채용되는 것을 특징으로 하는 유기 화합물과 이를 채용하여 소자의 저전압 구동과 우수한 발광 효율 등의 발광 특성이 현저히 향상된 유기발광소자에 관한 것이다.
유기발광소자는 투명 기판 위에도 소자를 형성할 수 있을 뿐 아니라, 플라즈마 디스플레이 패널 (Plasma Display Panel)이나 무기전계발광 (EL) 디스플레이에 비해 10 V 이하의 저전압 구동이 가능하고, 전력 소모가 비교적 적으며, 색감이 뛰어나다는 장점이 있고, 녹색, 청색, 적색의 3가지 색을 나타낼 수가 있어 최근에 차세대 디스플레이 소자로 많은 관심의 대상이 되고 있다.
다만, 이러한 유기발광소자가 상기와 같은 특징으로 발휘하기 위해서는 소자 내 유기층을 이루는 물질인 정공주입 물질, 정공수송 물질, 발광물질, 전자수송 물질, 전자주입 물질 등이 안정하고 효율적인 재료에 의하여 뒷받침되는 것이 선행되어야 하나, 아직까지는 안정하고 효율적인 유기발광소자용 유기층 재료의 개발이 충분히 이루어지지 않은 상태이다.
따라서, 더욱 안정적인 유기발광소자를 구현하고, 소자의 고효율, 장수명, 대형화 등을 위해서는 효율 및 수명 특성 측면에서 추가적인 개선이 요구되고 있는 상황이고, 특히 유기발광소자의 각 유기층을 이루는 소재에 대한 개발이 절실히 필요한 실정이다.
또한, 최근에는 각 유기층 재료의 성능 변화를 주어 유기발광소자의 특성을 향상시키는 연구뿐만 아니라, 애노드 (anode)와 캐소드 (cathode) 사이에서 최적화된 광학 두께에 의한 색순도 향상 및 발광 효율 증대 기술이 소자 성능을 향상시키는데 중요한 요소 중의 하나로 착안되고 있으며, 이러한 방법의 일 예로 전극에 캡핑층 (capping layer)을 사용하여 광효율 증가와 우수한 색순도를 거두기도 한다.
따라서, 본 발명은 유기발광소자 내의 유기층 내지 유기발광소자에 구비되는 광효율 개선층 (Capping layer)에 채용되어 소자의 저전압 구동과 향상된 발광 효율 등의 우수한 발광 특성을 구현할 수 있는 신규한 유기 화합물 및 이를 포함하는 유기발광소자를 제공하고자 한다.
본 발명은 상기 과제를 해결하기 위하여, 하기 [화학식 Ⅰ]로 표시되는 유기화합물을 제공한다.
[화학식 Ⅰ]
Figure PCTKR2021013092-appb-img-000001
상기 [화학식 Ⅰ]의 특징적인 구조와 이에 의하여 구현되는 화합물, Ar, L, R1 내지 R2에 대해서는 후술하기로 한다.
본 발명에 따른 유기 화합물을 유기발광소자 내의 유기층 또는 유기발광소자에 구비되는 광효율 개선층 재료로 채용할 경우에 소자의 저전압 구동과 우수한 발광 효율 등의 발광 특성을 구현할 수 있어 다양한 디스플레이 소자에 유용하게 사용될 수 있다.
이하, 본 발명을 더욱 상세하게 설명한다.
본 발명은 유기발광소자의 소자의 저전압 구동과 우수한 발광 효율 등의 발광 특성을 거둘 수 있는 하기 [화학식 Ⅰ]로 표시되는 유기 화합물에 관한 것으로서,
구조적으로 하기 [화학식 Ⅰ]로 표시되는 골격 구조에서, (1) 카바졸 -N 단에 반드시 하나 이상의 시아노기 (CN)를 갖는 아릴 유도체를 도입하고, (2) 카바졸의 1-4 번 위치 (R2)와 카바졸의 5-8 번 위치 (R1)에 벤조옥사졸 및/또는 벤조티아졸 유도체를 도입한 것을 특징으로 하고, 이러한 구조적 특징을 통하여 유기발광소자의 저전압 구동 특성, 발광 효율 특성을 향상시킬 수 있다.
[화학식 Ⅰ]
Figure PCTKR2021013092-appb-img-000002
상기 [화학식 Ⅰ]에서,
Ar은 적어도 하나 이상의 시아노기 (CN)가 치환된 치환 또는 비치환된 탄소수 6 내지 30의 아릴기이고, m은 1 또는 2의 정수이며, 상기 m이 2인 경우 복수 개의 Ar은 서로 동일하거나 상이하다.
L은 단일결합이거나, 치환 또는 비치환된 탄소수 6 내지 30의 아릴렌기이며, n은 0 내지 2의 정수이고, n이 2인 경우 복수 개의 L은 서로 동일하거나 상이하다.
본 발명에 따른 화합물은 상기 [화학식 Ⅰ] 골격에서 카바졸의 -N 단에 반드시 하나 이상의 시아노기 (CN)를 갖는 아릴 구조체 (-(L)n-(Ar)m)가 도입되는 것을 특징으로 한다.
R1 내지 R2는 각각 독립적으로 하기 [구조식 1]로 표시된다.
[구조식 1]
Figure PCTKR2021013092-appb-img-000003
상기 [구조식 1]에서,
X는 O 또는 S이고, Z는 CR이며, 복수의 R은 서로 동일하거나 상이하다.
R 및 R3은 각각 독립적으로 수소, 중수소, 할로겐기, 시아노기, 치환 또는 비치환된 탄소수 1 내지 20의 알킬기, 치환 또는 비치환된 탄소수 2 내지 20의 알케닐기, 치환 또는 비치환된 탄소수 3 내지 20의 시클로알킬기, 치환 또는 비치환된 탄소수 1 내기 20의 알콕시기, 치환 또는 비치환된 탄소수 1 내지 20의 할로겐화된 알킬기, 치환 또는 비치환된 탄소수 1 내지 20의 할로겐화된 알콕시기, 치환 또는 비치환된 탄소수 6 내지 30의 아릴기 및 치환 또는 비치환된 탄소수 3 내지 30의 헤테로아릴기 중에서 선택된다.
상기 복수의 R 및 R3 중 어느 하나는 상기 [구조식 1]이 R1과 R2 위치에서 각각 상기 [화학식 Ⅰ]에서 연결되는 부분이다.
또한, 상기 복수의 R 및 R3은 서로 결합하거나 인접한 치환기와 연결되어 방향족의 단일환 또는 다환 고리를 형성할 수 있으며, 이에 따라 상기 [구조식 1]은 하기 [구조식 2] 내지 [구조식 6]으로 표시되는 구조식 중에서 선택되는 어느 하나일 수 있다.
[구조식 2] [구조식 3] [구조식 4]
Figure PCTKR2021013092-appb-img-000004
[구조식 5] [구조식 6]
Figure PCTKR2021013092-appb-img-000005
상기 [구조식 2] 내지 [구조식 6]에서,
X는 O 또는 S이고, Z는 CR이며, 복수의 R은 서로 동일하거나 상이하다.
R 및 R3은 각각 독립적으로 수소, 중수소, 할로겐기, 시아노기, 치환 또는 비치환된 탄소수 1 내지 20의 알킬기, 치환 또는 비치환된 탄소수 2 내지 20의 알케닐기, 치환 또는 비치환된 탄소수 3 내지 20의 시클로알킬기, 치환 또는 비치환된 탄소수 1 내기 20의 알콕시기, 치환 또는 비치환된 탄소수 1 내지 20의 할로겐화된 알킬기, 치환 또는 비치환된 탄소수 1 내지 20의 할로겐화된 알콕시기, 치환 또는 비치환된 탄소수 6 내지 30의 아릴기 및 치환 또는 비치환된 탄소수 3 내지 30의 헤테로아릴기 중에서 선택된다.
상기 복수의 R 및 R3 중 어느 하나는 상기 [구조식 1]이 R1과 R2 위치에서 각각 상기 [화학식 Ⅰ]에서 연결되는 부분이다.
한편, 상기 Ar, L, R 및 R3의 정의에서, '치환 또는 비치환된'이라 함은 중수소, 중수소, 할로겐기, 시아노기, 니트로기, 히드록시기, 실릴기, 알킬기, 할로겐화된 알킬기, 중수소화된 알킬기, 시클로알킬기, 헤테로시클로알킬기, 알콕시기, 할로겐화된 알콕시기, 중수소화된 알콕시기, 아릴기, 헤테로아릴기, 알킬아민기, 아릴아민기 및 실릴기로 이루어진 군에서 선택된 1 또는 2 이상의 치환기로 치환되거나, 상기 치환기 중 2 이상의 치환기가 연결된 치환기로 치환되거나, 또는 어떠한 치환기도 갖지 않는 것인 것을 의미한다.
구체적인 예를 들면, 치환된 아릴기라 함은, 페닐기, 비페닐기, 나프탈렌기, 플루오레닐기, 파이레닐기, 페난트레닐기, 페릴렌기, 테트라세닐기, 안트라센닐기 등이 다른 치환기로 치환된 것을 의미한다.
또한, 치환된 헤테로아릴기라 함은, 피리딜기, 티오페닐기, 트리아진기, 퀴놀린기, 페난트롤린기, 이미다졸기, 티아졸기, 옥사졸기, 카바졸기 및 이들의 축합헤테로고리기, 예컨대 벤즈퀴놀린기, 벤즈이미다졸기, 벤즈옥사졸기, 벤즈티아졸기, 벤즈카바졸기, 디벤조티오페닐기, 디벤조퓨란기 등이 다른 치환기로 치환된 것을 의미한다.
본 발명에 있어서, 상기 치환기들의 예시들에 대해서 아래에서 구체적으로 설명하나, 이에 한정되는 것은 아니다.
본 발명에 있어서, 상기 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 20인 것이 바람직하다. 구체적인 예로는 메틸기, 에틸기, 프로필기, n-프로필기, 이소프로필기, 부틸기, n-부틸기, 이소부틸기, tert-부틸기, sec-부틸기, 1-메틸-부틸기, 1-에틸-부틸기, 펜틸기, n-펜틸기, 이소펜틸기, 네오펜틸기, tert-펜틸기, 헥실기, n-헥실기, 1-메틸펜틸기, 2-메틸펜틸기, 4-메틸-2-펜틸기, 3,3-디메틸부틸기, 2-에틸부틸기, 헵틸기, n-헵틸기, 1-메틸헥실기, 시클로펜틸메틸기, 시클로헥틸메틸기, 옥틸기, n-옥틸기, tert-옥틸기, 1-메틸헵틸기, 2-에틸헥실기, 2-프로필펜틸기, n-노닐기, 2,2-디메틸헵틸기, 1-에틸-프로필기, 1,1-디메틸-프로필기, 이소헥실기, 2-메틸펜틸기, 4-메틸헥실기, 5-메틸헥실기 등이 있으나, 이들에 한정되지 않는다.
본 발명에 있어서, 알콕시기는 직쇄 또는 분지쇄일 수 있다. 알콕시기의 탄소수는 특별히 한정되지 않으나, 입체적 방해를 주지 않는 범위인 1 내지 20개인 것이 바람직하다. 구체적으로, 메톡시기, 에톡시기, n-프로폭시기, 이소프로폭시기, i-프로필옥시기, n-부톡시기, 이소부톡시기, tert-부톡시기, sec-부톡시기, n-펜틸옥시기, 네오펜틸옥시기, 이소펜틸옥시기, n-헥실옥시기, 3,3-디메틸부틸옥시기, 2-에틸부틸옥시기, n-옥틸옥시기, n-노닐옥시기, n-데실옥시기, 벤질옥시기, p-메틸벤질옥시기 등이 될 수 있으나, 이에 한정되는 것은 아니다.
본 발명에 있어서, 중수소화된 알킬기 또는 알콕시기, 할로겐화된 알킬기 또는 알콕시기는 상기 알킬기 또는 알콕시기가 중수소 또는 할로겐기로 치환된 알킬기 또는 알콕시기를 의미한다.
본 발명에 있어서, 아릴기는 단환식 또는 다환식일 수 있고, 탄소수는 특별히 한정되지 않으나 6 내지 30인 것이 바람직하다. 단환식 아릴기의 예로는 페닐기, 비페닐기, 터페닐기, 스틸벤기 등이 있고, 다환식 아릴기의 예로는 나프틸기, 안트라세닐기, 페난트레닐기, 파이레닐기, 페릴레닐기, 테트라세닐기, 크라이세닐기, 플루오레닐기, 아세나프타센닐기, 트리페닐렌기, 플루오안트렌기 (fluoranthrene) 등이 있으나, 본 발명의 범위가 이들 예로만 한정되는 것은 아니다.
본 발명에 있어서, 플루오레닐기는 2개의 고리 유기화합물이 1개의 원자를 통하여 연결된 구조로서, 예로는
Figure PCTKR2021013092-appb-img-000006
,
Figure PCTKR2021013092-appb-img-000007
,
Figure PCTKR2021013092-appb-img-000008
등이 있다.
본 발명에 있어서, 플루오레닐기는 열린 플루오레닐기의 구조를 포함하며, 여기서 열린 플루오레닐기는 2개의 고리 유기화합물이 1개의 원자를 통하여 연결된 구조에서 한쪽 고리 화합물의 연결이 끊어진 상태의 구조로서, 예로는
Figure PCTKR2021013092-appb-img-000009
,
Figure PCTKR2021013092-appb-img-000010
등이 있다.
또한, 상기 고리의 탄소원자는 N, S 및 O 중에서 선택되는 어느 하나 이상의 헤테로원자로 치환될 수 있으며, 예로는
Figure PCTKR2021013092-appb-img-000011
,
Figure PCTKR2021013092-appb-img-000012
,
Figure PCTKR2021013092-appb-img-000013
,
Figure PCTKR2021013092-appb-img-000014
등이 있다.
본 발명에 있어서, 헤테로아릴기는 이종원자로 O, N 또는 S를 포함하는 헤테로고리기로서, 탄소수는 특별히 한정되지 않으나 탄소수 2 내지 30인 것이 바람직하며, 본 발명에서 이의 구체적인 예를 들면, 티오펜기, 퓨란기, 피롤기, 이미다졸기, 티아졸기, 옥사졸기, 옥사디아졸기, 트리아졸기, 피리딜기, 비피리딜기, 피리미딜기, 트리아진기, 트리아졸기, 아크리딜기, 피리다진기, 피라지닐기, 퀴놀리닐기, 퀴나졸린기, 퀴녹살리닐기, 프탈라지닐기, 피리도 피리미디닐기, 피리도 피라지닐기, 피라지노 피라지닐기, 이소퀴놀린기, 인돌기, 카바졸기, 벤조옥사졸기, 벤조이미다졸기, 벤조티아졸기, 벤조카바졸기, 벤조티오펜기, 디벤조티오펜기, 벤조퓨라닐기, 디벤조퓨라닐기, 페난트롤린기, 티아졸릴기, 이소옥사졸릴기, 옥사디아졸릴기, 티아디아졸릴기, 벤조티아졸릴기, 페노티아지닐기, 페녹사진기, 페노티아진기 등이 있으나, 이들에만 한정되는 것은 아니다.
본 발명에 있어서, 실릴기는 비치환된 실릴기 또는 알킬기, 아릴기 등으로 치환된 실릴기로서, 이러한 실릴기의 구체적인 예로는 트리메틸실릴, 트리에틸실릴, 트리페닐실릴, 트리메톡시실릴, 디메톡시페닐실릴, 디페닐메틸실릴, 디페닐비닐실릴, 메틸사이클로뷰틸실릴, 디메틸퓨릴실릴 등을 들 수 있으며, 이에 한정되는 것은 아니다.
본 발명에 있어서, 아민기는 -NH2, 알킬아민기, 아릴아민기 등일 수 있고, 아릴아민기는 아릴로 치환된 아민을 의미하고, 알킬아민기는 알킬로 치환된 아민을 의미하는 것이며, 아릴아민기의 예로는 치환 또는 비치환된 모노아릴아민기, 치환 또는 비치환된 디아릴아민기, 또는 치환 또는 비치환된 트리아릴아민기가 있고, 상기 아릴아민기 중의 아릴기는 상기 아릴기의 정의와 동일하며, 상기 알킬아민기의 알킬기 역시 상기 알킬기의 정의와 동일하다.
본 발명에서 사용되는 치환기인 할로겐기의 구체적인 예로는 플루오르(F), 클로린(Cl), 브롬(Br) 등을 들 수 있다.
본 발명에 있어서, 시클로알킬기는 단환, 다환 및 스피로 알킬 라디칼을 지칭하고, 이를 포함하며, 바람직하게는 탄소수 3 내지 20의 고리 탄소 원자를 함유하는 것으로서, 시클로프로필, 시클로펜틸, 시클로헥실, 비시클로헵틸, 스피로데실, 스피로운데실, 아다만틸 등을 포함하며, 시클로알킬기는 임의로 치환될 수 있다.
본 발명에 있어서, 헤테로시클로알킬기는 하나 이상의 헤테로 원자를 함유하는 방향족 및 비방향족 시클릭 라디칼을 지칭하고, 이를 포함하며, 하나 이상의 헤테로원자는 O, S, N, P, B, Si, 및 Se, 바람직하게는 O, N 또는 S로부터 선택되며, 구체적으로 N을 포함하는 경우 아지리딘, 피롤리딘, 피페리딘, 아제판, 아조칸 등일 수 있다.
상기 [화학식 Ⅰ]로 표시되는 본 발명에 따른 유기 화합물은 그 구조적 특이성으로 인하여 유기발광소자 내의 전자수송층을 포함하여 다양한 유기층으로 사용될 수 있고, 또한, 유기발광소자에 구비되는 광효율 개선층 재료로 사용될 수 있다.
본 발명에 따른 [화학식 Ⅰ]로 표시되는 유기 화합물의 바람직한 구체예로는 하기 화합물들이 있으나, 이들에만 한정되는 것은 아니다.
Figure PCTKR2021013092-appb-img-000015
Figure PCTKR2021013092-appb-img-000016
Figure PCTKR2021013092-appb-img-000017
Figure PCTKR2021013092-appb-img-000018
Figure PCTKR2021013092-appb-img-000019
Figure PCTKR2021013092-appb-img-000020
Figure PCTKR2021013092-appb-img-000021
Figure PCTKR2021013092-appb-img-000022
Figure PCTKR2021013092-appb-img-000023
Figure PCTKR2021013092-appb-img-000024
Figure PCTKR2021013092-appb-img-000025
Figure PCTKR2021013092-appb-img-000026
Figure PCTKR2021013092-appb-img-000027
이와 같이, 본 발명에 따른 유기 화합물은 고유의 특성을 발휘하는 특징적인 골격과 이에 도입되는 고유의 특성을 갖는 모이어티 (moiety)를 이용하여 다양한 특성을 갖는 유기 화합물을 합성할 수 있고, 그 결과 본 발명에 따른 유기 화합물을 발광층, 정공수송층, 전자수송층, 전자저지층, 정공저지층 등 다양한 유기층 물질로 적용할 수 있고, 바람직하게는 전자수송 재료로 소자의 발광효율 등의 발광 특성을 더욱 향상시킬 수 있으며, 또한 유기발광소자에 구비되는 광효율 개선층에 채용하는 경우에도 발광효율 등의 발광 특성을 향상시킬 수 있다.
또한, 본 발명의 화합물은 일반적인 유기발광소자 제조방법에 따라 소자에 적용할 수 있다.
본 발명의 일 실시예에 따른 유기발광소자는 제1 전극과 제2 전극 및 이 사이에 배치된 유기층을 포함하는 구조로 이루어질 수 있으며, 본 발명에 따른 유기화합물을 소자의 유기층에 사용한다는 것을 제외하고는 통상의 소자 제조방법 및 재료를 사용하여 제조될 수 있다.
본 발명에 따른 유기발광소자의 유기층은 단층 구조로 이루어질 수도 있으나, 2층 이상의 유기층이 적층된 다층 구조로 이루어질 수 있다. 예컨대, 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층, 전자저지층, 정공저지층, 광효율 개선층 (Capping layer) 등을 포함하는 구조를 가질 수 있다. 그러나, 이에 한정되지 않고 더 적은 수, 더 많은 수의 유기층을 포함할 수도 있다.
또한, 본 발명의 일 실시예에 따른 유기전기발광소자는 기판, 제1전극 (양극), 유기층, 제2전극 (음극) 및 광효율 개선층을 포함하며, 상기 광효율 개선층은 제1 전극 하부 (Bottom emission) 또는 제2 전극 상부(Top emission)에 형성될 수 있다.
제2 전극 상부 (Top emission)에 형성되는 방식은 발광층에서 형성된 빛이 캐소드쪽으로 방출되는데 캐소드쪽으로 방출되는 빛이 굴절률이 상대적으로 높은 본 발명에 따른 화합물로 형성된 광효율 개선층 (CPL)을 통과하면서 빛의 파장이 증폭되고 따라서 광효율이 상승하게 된다. 또한, 제1 전극 하부 (Bottom emission)에 형성되는 방식 역시 마찬가지 원리에 의해 본 발명에 따른 화합물을 광효율 개선층에 채용하여 유기전기소자의 광효율이 향상된다.
본 발명에 따른 바람직한 유기발광소자의 유기층 구조 등에 대해서는 후술하는 실시예에서 보다 상세하게 설명한다.
또한, 본 발명에 따른 유기발광소자는 스퍼터링 (sputtering)이나 전자빔 증발 (e-beam evaporation)과 같은 PVD (physical vapor deposition) 방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 정공주입층, 정공수송층, 발광층, 전자수송층을 포함하는 유기층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시킴으로써 제조될 수 있다.
이와 같은 방법 외에도, 기판 상에 음극 물질부터 유기층, 양극 물질을 차례로 증착시켜 유기발광소자를 만들 수도 있다. 상기 유기층은 정공주입층, 정공수송층, 발광층 및 전자수송층 등을 포함하는 다층 구조일 수도 있으나, 이에 한정되지 않고 단층 구조일 수 있다. 또한, 상기 유기층은 다양한 고분자 소재를 사용하여 증착법이 아닌 솔벤트 프로세스(solvent process), 예컨대 스핀 코팅, 딥 코팅, 닥터 블레이딩, 스크린 프린팅, 잉크젯 프린팅 또는 열 전사법 등의 방법에 의하여 더 적은 수의 층으로 제조할 수 있다.
상기 양극 물질로는 통상 유기층으로 정공주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 본 발명에서 사용될 수 있는 양극 물질의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금, 아연 산화물, 인듐 산화물, 인듐 주석 산화물(ITO), 인듐 아연 산화물(IZO)과 같은 금속 산화물, ZnO:Al 또는 SnO2:Sb와 같은 금속과 산화물의 조합, 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 음극 물질로는 통상 유기층으로 전자 주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 음극 물질의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 타이타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금, LiF/Al 또는 LiO2/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다.
정공 주입 물질로는 낮은 전압에서 양극으로부터 정공을 잘 주입받을 수 있는 물질로서, 정공 주입 물질의 HOMO (highest occupied molecular orbital)가 양극 물질의 일함수와 주변 유기층의 HOMO 사이인 것이 바람직하다. 정공 주입 물질의 구체적인 예로는 금속 포피린 (porphyrine), 올리고티오펜, 아릴아민 계열의 유기물, 헥사니트릴 헥사아자트리페닐렌, 퀴나크리돈 (quinacridone) 계열의 유기물, 페릴렌 (perylene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리티오펜 계열의 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
정공 수송 물질로는 양극이나 정공 주입층으로부터 정공을 수송 받아 발광층으로 옮겨줄 수 있는 물질로 정공에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 아릴아민 계열의 유기물, 전도성 고분자, 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등이 있으나, 본 발명에 따른 유기 화합물을 이용하여 소자의 저전압 구동 특성, 발광효율 및 수명 특성을 더욱 향상시킬 수 있다.
발광 물질로는 정공 수송층과 전자 수송층으로부터 정공과 전자를 각각 수송받아 결합시킴으로써 가시광선 영역의 빛을 낼 수 있는 물질로서, 형광이나 인광에 대한 양자효율이 좋은 물질이 바람직하다. 구체적인 예로는 8-히드록시-퀴놀린 알루미늄 착물 (Alq3), 카르바졸 계열 화합물, 이량체화 스티릴 (dimerized styryl) 화합물, BAlq, 10-히드록시벤조 퀴놀린-금속 화합물, 벤족사졸, 벤즈티아졸 및 벤즈이미다졸 계열의 화합물, 폴리(p-페닐렌비닐렌) (PPV) 계열의 고분자, 스피로(spiro) 화합물, 폴리플루오렌, 루브렌 등이 있으나, 이들에만 한정되는 것은 아니다.
전자 수송 물질로는 음극으로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 8-히드록시퀴놀린의 Al 착물, Alq3를 포함한 착물, 유기 라디칼 화합물, 히드록시플라본-금속 착물 등이 있으나, 이들에만 한정되는 것은 아니다.
본 발명에 따른 유기발광소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다.
또한, 본 발명에 따른 유기 화합물은 유기 태양 전지, 유기 감광체, 유기 트랜지스터 등을 비롯한 유기 전자 소자에서도 유기발광소자에 적용되는 것과 유사한 원리로 작용할 수 있다.
이하, 바람직한 실시예를 들어 본 발명을 더욱 상세하게 설명한다. 그러나, 이들 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이에 의하여 제한되지 않고, 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업계의 통상의 지식을 가진 자에게 자명할 것이다.
합성예 1 : 화합물 1의 합성
(1) 제조예 1 : 중간체 1-1의 합성
Figure PCTKR2021013092-appb-img-000028
3,6-Dibromocarbazole (10.0 g, 0.031 mol), 4-Fluorobenzonitrile (4.47 g, 0.037 mol), Cs2CO3 (6.38 g, 0.046 mol)에, DMF 150 mL를 넣고 12시간 동안 150 ℃에서 환류 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼하여 <중간체 1-1>을 10.0 g (수율 76.3%) 수득하였다.
(2) 제조예 2 : 중간체 1-2의 합성
Figure PCTKR2021013092-appb-img-000029
중간체 1-1 (10.0 g, 0.019 mol), Bis(pinacolato)diboron (9.14 g, 0.046 mol), KOAc (15.94 g, 0.115 mol), Pd(dppf)Cl2 (10.44 g, 0.4 mmol)에 Dioxane 120 mL를 넣고, 100 ℃에서 12시간 동안 환류 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼 및 재결정하여 <중간체 1-2>를 9.1 g (수율 74.5%) 수득하였다.
(3) 제조예 3 : 화합물 1의 합성
Figure PCTKR2021013092-appb-img-000030
중간체 1-2 (10.0 g, 0.019 mol), 2-Bromobenzoxazole (9.14 g, 0.046 mol), K2CO3 (15.94 g, 0.115 mol), Pd(PPh3)4 (0.44 g, 0.4 mmol)에 Toluene 100 mL, EtOH 25 mL, H2O 25 mL를 넣고 6시간 동안 100 ℃에서 환류 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼 및 재결정하여 <화합물 1>을 6.7 g (수율 69.4%) 수득하였다.
LC/MS: m/z=502[(M+1)+]
합성예 2 : 화합물 16의 합성
(1) 제조예 1 : 중간체 16-1의 합성
Figure PCTKR2021013092-appb-img-000031
3,6-Dibromocarbazole (10.0 g, 0.031 mol), 2-Fluorobenzonitrile (4.47 g, 0.037 mol), Cs2CO3 (6.38 g, 0.046 mol)에 DMF 150 mL를 넣고 12시간 동안 150 ℃에서 환류 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼하여 <중간체 16-1>을 9.9 g (수율 75.5%) 수득하였다.
(2) 제조예 2 : 중간체 16-2의 합성
Figure PCTKR2021013092-appb-img-000032
중간체 16-1 (10.0 g, 0.024 mol), Bis(pinacolato)diboron (14.30 g, 0.056 mol), KOAc (9.21 g, 0.094 mol), Pd(dppf)Cl2 (1.03 g, 0.001 mol)에 Dioxane 120 mL를 넣고, 100 ℃에서 12시간 동안 환류 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼 및 재결정하여 <중간체 16-2>을 8.34 g (수율 68.3%) 수득하였다.
(3) 제조예 3 : 화합물 16의 합성
Figure PCTKR2021013092-appb-img-000033
중간체 16-2 (10.0 g, 0.019 mol), 2-Bromobenzoxazole (9.14 g, 0.046 mol), K2CO3 (15.94 g, 0.115 mol), Pd(PPh3)4 (0.44 g, 0.4 mmol)에 Toluene 100 mL, EtOH 25 mL, H2O 25 mL를 넣고 6시간 동안 100 ℃에서 환류 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼 및 재결정하여 <화합물 16>을 6.8 g (수율 70.4%) 수득하였다.
LC/MS: m/z=502[(M+1)+]
합성예 3 : 화합물 26의 합성
(1) 제조예 1 : 중간체 26-1의 합성
Figure PCTKR2021013092-appb-img-000034
9-(4-Bromophenyl)-carbazole (10.0 g, 0.031 mol), 4-Cyanophenylboronic acid (5.47 g, 0.037 mol), K2CO3 (12.87 g, 0.093 mol), Pd(PPh3)4 (0.72 g, 0.6 mmol)에 Toluene 150 mL, EtOH 38 mL, H2O 38 mL를 넣고 6시간 동안 100 ℃에서 환류 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼하여 <중간체 26-1>을 8.3 g (수율 77.7%) 수득하였다.
(2) 제조예 2 : 중간체 26-2의 합성
Figure PCTKR2021013092-appb-img-000035
중간체 26-1 (10.0 g, 0.029 mol), N-Bromosuccinimide (12.4 g, 0.070 mol)에 DMF 150 mL를 넣고 상온에서 5시간 동안 환류 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼하여 <중간체 26-2>를 9.86 g (수율 67.6%) 수득하였다.
(3) 제조예 3 : 중간체 26-3의 합성
Figure PCTKR2021013092-appb-img-000036
중간체 26-2 (10.0 g, 0.020 mol), Bis(pinacolato)diboron (12.14 g, 0.048 mol), KOAc (7.82 g, 0.08 mol), Pd(dppf)Cl2 (0.87 g, 0.001 mol)에 Dioxane 100 mL 넣고 100 ℃에서 12시간 동안 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼 및 재결정하여 <중간체 26-3>을 8.5 g (수율 71.6%) 수득하였다.
(4) 제조예 4 : 화합물 26의 합성
Figure PCTKR2021013092-appb-img-000037
중간체 26-3 (10.0 g, 0.017 mol), 2-Bromobenzoxazole (7.97 g, 0.040 mol), K2CO3 (13.91 g, 0.101 mol), Pd(PPh3)4 (0.39 g, 0.3 mmol)에 Toluene 100 mL, Ethanol 25 mL, H2O 25 mL를 넣고 6시간 동안 100 ℃에서 환류 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼 및 재결정하여 <화합물 26>을 6.8 g (수율 70.1%) 수득하였다.
LC/MS: m/z=578[(M+1)+]
합성예 4 : 화합물 30의 합성
(1) 제조예 1 : 중간체 30-1의 합성
Figure PCTKR2021013092-appb-img-000038
2-Bromobenzonitrile (10.0 g, 0.055 mol), 4-(9-Carbazolyl)phenylboronic acid (15.44 g, 0.066 mol), K2CO3 (22.78 g, 0.165 mol), Pd(PPh3)4 (1.27 g, 0.001 mol)에 Toluene 280 mL, EtOH 70 mL, H2O 70 mL를 넣고 6시간 동안 100 ℃에서 환류 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼하여 <중간체 30-1>을 15.7 g (수율 83.0%) 수득하였다.
(2) 제조예 2 : 중간체 30-2의 합성
Figure PCTKR2021013092-appb-img-000039
중간체 30-1 (10.0 g, 0.029 mol), N-Bromosuccinimide (12.4 g, 0.070 mol)에 DMF 150 mL를 넣고 상온에서 5시간 동안 환류 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼하여 <중간체 30-2>를 10.0 g (수율 68.6%) 수득하였다.
(3) 제조예 3 : 중간체 30-3의 합성
Figure PCTKR2021013092-appb-img-000040
중간체 30-2 (10.0 g, 0.020 mol), Bis(pinacolato)diboron (12.14 g, 0.048 mol), KOAc (7.82 g, 0.080 mol), Pd(dppf)Cl2 (0.87 g, 0.001 mol)에 Dioxane 100 mL를 넣고, 100 ℃에서 12시간 동안 환류 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼 및 재결정하여 <중간체 30-3>을 14.5 g (수율 75.4%) 수득하였다.
(4) 제조예 4 : 화합물 30의 합성
Figure PCTKR2021013092-appb-img-000041
중간체 30-3 (10.0 g, 0.017 mol), 2-Bromobenzoxazole (7.97 g, 0.040 mol), K2CO3 (13.91 g, 0.101 mol), Pd(PPh3)4 (0.39 g, 0.3 mmol)에 Toluene 100 mL, EtOH 25 mL, H2O 25 mL를 넣고 6시간 동안 100 ℃에서 환류 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼 및 재결정하여 <화합물 30>을 5.94 g (수율 70.5%) 수득하였다.
LC/MS: m/z=578[(M+1)+]
합성예 5 : 화합물 31의 합성
(1) 제조예 1 : 중간체 31-1의 합성
Figure PCTKR2021013092-appb-img-000042
4-Bromobenzonitrile (10.0 g, 0.055 mol), 3-(9-Carbazolyl)phenylboronic acid (17.35 g, 0.066 mol), K2CO3 (22.78 g, 0.165 mol), Pd(PPh3)4 (1.27 g, 0.001 mol)에 Toluene 275 mL, EtOH 69 mL, H2O 69 mL 넣고 100 ℃에서 6시간 동안 환류 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼하여 <중간체 31-1>을 15.0 g (수율 79.3%) 수득하였다.
(2) 제조예 2 : 중간체 31-2의 합성
Figure PCTKR2021013092-appb-img-000043
중간체 31-1 (10.0 g, 0.029 mol), N-Bromosuccinimide (18.6 g, 0.070 mol)에 DMF 150 mL를 넣고 상온에서 5시간 동안 환류 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼하여 <중간체 31-2>를 9.7 g (수율 66.5%) 수득하였다.
(3) 제조예 3 : 중간체 31-3의 합성
Figure PCTKR2021013092-appb-img-000044
중간체 31-2 (10.0 g, 0.020 mol), Bis(pinacolato)diboron (12.14 g, 0.048 mol), KOAc (7.82 g, 0.080 mol), Pd(dppf)Cl2 (0.87 g, 0.001 mol)에 Dioxane 100 mL를 넣고, 100 ℃에서 12시간 동안 환류 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼 및 재결정하여 <중간체 31-3>을 8.4 g (수율 70.7%) 수득하였다.
(4) 제조예 4 : 중간체 31의 합성
Figure PCTKR2021013092-appb-img-000045
중간체 31-3 (10.0 g, 0.017 mol), 2-Bromobenzoxazole (7.97 g, 0.040 mol), K2CO3 (13.91 g, 0.101 mol), Pd(PPh3)4 (0.39 g, 0.3 mmol)에 Toluene 100 mL, EtOH 25 mL, H2O 25 mL를 넣고 6시간 동안 100 ℃에서 환류 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼 및 재결정하여 <화합물 31>을 6.8 g (수율 70.0%) 수득하였다.
LC/MS: m/z=578[(M+1)+]
합성예 6 : 화합물 35의 합성
(1) 제조예 1 : 중간체 35-1의 합성
Figure PCTKR2021013092-appb-img-000046
3,6-Dibromocarbazole (10.0 g, 0.031 mol), Bis(pinacolato)diboron (18.75 g, 0.074 mol), KOAc (12.08 g, 0.123 mol), Pd(dppf)Cl2 (1.35 g, 0.002 mol)에 Dioxane 155 mL 넣고 100 ℃에서 12시간 동안 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼하여 <중간체 35-1>을 9.9 g (수율 80.2%) 수득하였다.
(2) 제조예 2 : 중간체 35-2의 합성
Figure PCTKR2021013092-appb-img-000047
중간체 35-1 (10.0 g, 0.024 mol), 2-Bromobenzoxazole (11.34 g, 0.057 mol), K2CO3 (19.79 g, 0.143 mol), Pd(PPh3)4 (0.55 g, 0.5 mmol)에 Toluene 120 mL, EtOH 30 mL, H2O 30 mL를 넣고 6시간 동안 100 ℃에서 환류 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼하여 <중간체 35-2>를 7.2 g (수율 75.2%) 수득하였다.
(3) 제조예 3 : 중간체 35-3의 합성
Figure PCTKR2021013092-appb-img-000048
중간체 35-2 (10.0 g, 0.025 mol), 1-Bromo-2-fluorobenzene (7.59 g, 0.030 mol), Cs2CO3 (5.16 g, 0.037 mol)에 DMF 130 mL를 넣고 12시간 동안 150 ℃에서 환류 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼 및 재결정하여 <중간체 35-3>을 9.8 g (수율 70.7%) 수득하였다.
(4) 제조예 4 : 화합물 35의 합성
Figure PCTKR2021013092-appb-img-000049
중간체 35-3 (10.0 g, 0.018 mol), 4-Cyanophenylboronic acid (3.17 g, 0.022 mol), K2CO3 (7.45 g, 0.054 mol), Pd(PPh3)4 (0.42 g, 0.4 mmol)에 Toluene 120 mL, EtOH 30 mL, H2O 30 mL를 넣고 6시간 동안 100 ℃에서 환류 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼 및 재결정하여 <화합물 35>를 6.8 g (수율 65.4%) 수득하였다.
LC/MS: m/z=578[(M+1)+]
합성예 7 : 화합물 38의 합성
(1) 제조예 1 : 중간체 38-1의 합성
Figure PCTKR2021013092-appb-img-000050
5-Hydroxyisophthalonitrile (10.0 g, 0.069 mol), Et3N in dichloromethane (9.78 g, 0.153 mol)에 Tf2O (19.7 g, 0.153 mol)을 dropwise로 적가한다. 천천히 상온까지 올린 후, 12시간 환류 교반하여 반응시켰다. 반응 종료 후, 추출하고 컬럼 정제하여 <중간체 38-1>을 16.7 g (수율 87.2%) 수득하였다.
(2) 제조예 2 : 중간체 38-2의 합성
Figure PCTKR2021013092-appb-img-000051
중간체 38-1 (10.0 g, 0.036 mol), 4-(9-Carbazolyl)phenylboronic acid (12.47 g, 0.043 mol), K2CO3 (15.01 g, 0.109 mol), Pd(PPh3)4 (0.84 g, 0.7 mmol)에 Dioxane 180 mL, H2O 18 mL를 넣고 4시간 동안 100 ℃에서 환류 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼 하여 <중간체 38-2>를 9.9 g (수율 74.0%) 수득하였다.
(3) 제조예 3 : 중간체 38-3의 합성
Figure PCTKR2021013092-appb-img-000052
중간체 38-2 (10.0 g, 0.027 mol), N-Bromosuccinimide (11.6 g, 0.065 mol)에 DMF 140 mL를 넣고 상온에서 5시간 동안 환류 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼하여 <중간체 38-3>을 9.1 g (수율 63.8%) 수득하였다.
(4) 제조예 4 : 중간체 38-4의 합성
Figure PCTKR2021013092-appb-img-000053
중간체 38-3 (10.0 g, 0.019 mol), Bis(pinacolato)diboron (11.56 g, 0.046 mol), KOAc (7.45 g, 0.076 mol), Pd(dppf)Cl2 (0.83 g, 0.001 mol)에 Dioxane 100 mL를 넣고, 100 ℃에서 12시간 동안 환류 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼 및 재결정하여 <중간체 38-4>를 7.9 g (수율 67.0%) 수득하였다.
(5) 제조예 5 : 화합물 38의 합성
Figure PCTKR2021013092-appb-img-000054
중간체 38-4 (10.0 g, 0.016 mol), 2-Bromobenzoxazole (7.65 g, 0.039 mol), K2CO3 (13.35 g, 0.097 mol), Pd(PPh3)4 (0.37 g, 0.3 mmol)에 Toluene 100 mL, EtOH 25 mL, H2O 25 mL를 넣고 6시간 동안 100 ℃에서 환류 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼 및 재결정하여 <화합물 38>을 6.2 g (수율 63.8%) 수득하였다.
LC/MS: m/z=603[(M+1)+]
합성예 8 : 화합물 43의 합성
(1) 제조예 1 : 중간체 43-1의 합성
Figure PCTKR2021013092-appb-img-000055
4-Bromo-1-naphthonitrile (10.0 g, 0.043 mol), 4-(9H-carbazol-9-yl)phenylboronic acid (14.85 g, 0.052 mol), K2CO3 (17.87 g, 0.129 mol), Pd(PPh3)4 (1.00 g, 0.9 mmol)에 Toluene 220 mL, EtOH 55 mL, H2O 55 mL를 넣고 6시간 동안 100 ℃에서 환류 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼 및 재결정하여 <중간체 43-1>을 13.5 g (수율 79.4%) 수득하였다.
(2) 제조예 2 : 중간체 43-2의 합성
Figure PCTKR2021013092-appb-img-000056
중간체 43-1 (10.0 g, 0.025 mol), N-Bromosuccinimide (10.8 g, 0.061 mol)에 DMF 130 mL를 넣고 상온에서 5시간 동안 환류 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼하여 <중간체 43-2>를 9.2 g (수율 65.7%) 수득하였다.
(2) 제조예 2 : 중간체 43-3의 합성
Figure PCTKR2021013092-appb-img-000057
중간체 43-2 (10.0 g, 0.021 mol), Bis(pinacolato)diboron (12.80 g, 0.050 mol), KOAc (8.24 g, 0.084 mol), Pd(dppf)Cl2 (0.92 g, 0.001 mol)에 Dioxane 100 mL 넣고 100 ℃에서 12시간 동안 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼 및 재결정하여 <중간체 43-3>을 17.4 g (수율 76.2%) 수득하였다.
(3) 제조예 3 : 화합물 43의 합성
Figure PCTKR2021013092-appb-img-000058
중간체 43-3 (10.0 g, 0.018 mol), 2-Bromobenzoxazole (8.33 g, 0.042 mol), K2CO3 (14.54 g, 0.105 mol), Pd(PPh3)4 (0.41 g, 0.4 mmol)에 Toluene 100 mL, EtOH 25 mL, H2O 25 mL를 넣고 6시간 동안 100 ℃에서 환류 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼 및 재결정하여 <화합물 43>을 7.1 g (수율 73.3%) 수득하였다.
LC/MS: m/z=628[(M+1)+]
합성예 9 : 화합물 45의 합성
(1) 제조예 1 : 중간체 45-1의 합성
Figure PCTKR2021013092-appb-img-000059
3,6-Dibromocarbazole (10.0 g, 0.031 mol), 4-Fluoro-1-naphthonitrile (6.32 g, 0.037 mol), Cs2CO3 (6.38 g, 0.046 mol)에 DMF 155 mL를 넣고 12시간 동안 150 ℃에서 환류 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼하여 <중간체 45-1>을 11.2 g (수율 76.4%) 수득하였다.
(2) 제조예 2 : 중간체 45-2의 합성
Figure PCTKR2021013092-appb-img-000060
중간체 45-1 (10.0 g, 0.021 mol), Bis(pinacolato)diboron (12.80 g, 0.050 mol), KOAc (8.24 g, 0.084 mol), Pd(dppf)Cl2 (0.92 g, 0.001 mol)에 Dioxane 100 mL 넣고 100 ℃에서 12시간 동안 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼 및 재결정하여 <중간체 45-2>를 8.6 g (수율 71.8%) 수득하였다.
(3) 제조예 3 : 화합물 45의 합성
Figure PCTKR2021013092-appb-img-000061
중간체 45-2 (10.0 g, 0.018 mol), 2-Bromobenzoxazole (8.33 g, 0.042 mol), K2CO3 (14.54 g, 0.105 mol), Pd(PPh3)4 (0.41 g, 0.4 mmol)에 Toluene 100 mL, EtOH 25 mL, H2O 25 mL를 넣고 6시간 동안 100 ℃에서 환류 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼 및 재결정하여 <화합물 45>를 5.9 g (수율 61.0%) 수득하였다.
LC/MS: m/z=552[(M+1)+]
합성예 10 : 화합물 55의 합성
(1) 제조예 1 : 중간체 55-1의 합성
Figure PCTKR2021013092-appb-img-000062
중간체 35-2 (10.0 g, 0.025 mol), 1,3-Dibromo-5-fluorobenzene (7.59 g, 0.030 mol), Cs2CO3 (5.16 g, 0.037 mol)에 DMF 130 mL를 넣고 12시간 동안 150 ℃에서 환류 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼하여 <중간체 55-1>을 12.1 g (수율 75.8%) 수득하였다.
(2) 제조예 2 : 화합물 55의 합성
Figure PCTKR2021013092-appb-img-000063
중간체 55-1 (10.0 g, 0.016 mol), 4-Cyanophenylboronic acid (5.55 g, 0.038 mol), K2CO3 (13.05 g, 0.094 mol), Pd(PPh3)4 (0.36 g, 0.3 mmol)에 Toluene 80 mL, EtOH 20 mL, H2O 20 mL를 넣고 6시간 동안 100 ℃에서 환류 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼 및 재결정하여 <화합물 55>를 6.8 g (수율 63.6%) 수득하였다.
LC/MS: m/z=679[(M+1)+]
합성예 11 : 화합물 65의 합성
(1) 제조예 1 : 화합물 65의 합성
Figure PCTKR2021013092-appb-img-000064
중간체 1-2 (10.0 g, 0.019 mol), 2-Bromobenzothiazole (9.88 g, 0.046 mol), K2CO3 (15.94 g, 0.115 mol), Pd(PPh3)4 (0.44 g, 0.4 mmol)에 Toluene 100 mL, EtOH 25 mL, H2O 25 mL를 넣고 6시간 동안 100 ℃에서 환류 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼 및 재결정하여 <화합물 65>를 7.2 g (수율 70.0%) 수득하였다.
LC/MS: m/z=534[(M+1)+]
소자 실시예 (capping layer)
본 발명에 따른 실시예에서, 양극은 25 mm × 25 mm × 0.7 mm의 Ag를 포함하는 ITO 유리 기판을 이용하여, 발광 면적이 2 mm × 2 mm 크기가 되도록 패터닝한 후 세정하였다. 패터닝된 ITO 기판을 진공 챔버에 장착한 후, 1 × 10-6 torr 이상의 공정 압력에서 기판 위에 하기 구조로 유기물과 금속을 증착하였다.
소자 실시예 1 내지 20
본 발명에 따라 구현되는 화합물을 광효율 개선층에 채용하여, 하기와 같은 소자 구조를 갖는 청색 유기발광소자를 제작 후, 본 발명에 따라 구현되는 화합물에 따른 발광 및 구동 특성을 측정하였다.
Ag/ITO / 정공주입층 (HAT-CN, 5 nm) / 정공수송층 (α-NPB, 100 nm) / 전자저지층 (TCTA, 10 nm) / 발광층 (20 nm) / 전자수송층 (201:Liq, 30 nm) / LiF (1 nm) / Mg:Ag (15 nm) / 광효율 개선층 (70 nm)
유리 기판상에 Ag를 포함하는 ITO 투명 전극 상부에 [HAT-CN]을 5 nm 두께로 성막하여 정공주입층을 형성한 후에, [α-NPB]를 100 nm로 성막하여 정공수송층을 형성하고, [TCTA]를 10 nm 두께로 성막하여 전자저지층을 형성하였으며, 호스트 화합물로 [BH1], 도펀트 화합물로 [BD1]을 사용하여 20 nm로 공증착하여 발광층을 형성하였으며, 전자수송층 (하기 [201] 화합물 Liq 50% 도핑)을 30 nm 증착 후, LiF를 1 nm의 두께로 성막하여 전자주입층을 형성하고, Mg:Ag를 1:9의 비율로 15 nm의 두께로 성막하여 캐소드를 형성하였으며, 광효율 개선층 (capping layer)은 하기 [표 1]에 기재된 본 발명으로 구현되는 화합물을 70 nm의 두께로 성막하여 유기발광소자를 제작하였다.
소자 비교예 1
소자 비교예 1을 위한 유기발광소자는 상기 실시예 1의 소자구조에서 광효율 개선층을 사용하지 않는 점을 제외하고 동일하게 제작하였다.
소자 비교예 2
소자 비교예 2를 위한 유기발광소자는 상기 실시예 1의 소자구조에서 광효율 개선층 화합물로 본 발명의 화합물 대신에 하기 Alq3를 사용한 것을 제외하고 동일하게 제작하였다.
소자 비교예 3
소자 비교예 3을 위한 유기발광소자는 상기 실시예 1의 소자구조에서 광효율 개선층 화합물로 본 발명의 화합물 대신에 하기 CP1을 사용한 것을 제외하고 동일하게 제작하였다.
소자 비교예 4
소자 비교예 4를 위한 유기발광소자는 상기 실시예 1의 소자구조에서 광효율 개선층 화합물로 본 발명의 화합물 대신에 하기 CP2를 사용한 것을 제외하고 동일하게 제작하였다.
실험예 1 : 소자 실시예 1 내지 20의 발광 특성
상기 실시예 및 비교예 따라 제조된 유기발광소자에 대해서 Source meter (Model 237, Keithley)와 휘도계 (PR-650, Photo Research)를 이용하여 구동 전압, 전류 효율 및 색좌표를 측정하였고, 1,000 nit 기준의 결과값은 하기 [표 1]과 같다.
실시예 광효율 개선층 V cd/A CIEx CIEy
1 화학식 1 3.7 8.5 0.139 0.051
2 화학식 16 3.8 8.1 0.140 0.050
3 화학식 21 3.6 8.8 0.143 0.048
4 화학식 26 3.5 8.9 0.139 0.054
5 화학식 30 3.7 8.5 0.138 0.053
6 화학식 31 3.5 8.9 0.142 0.051
7 화학식 35 3.7 8.3 0.143 0.048
8 화학식 43 3.6 8.7 0.141 0.053
9 화학식 45 3.7 8.4 0.139 0.056
10 화학식 55 3.6 8.8 0.141 0.051
11 화학식 65 3.8 8.2 0.141 0.050
12 화학식 80 3.7 8.6 0.143 0.048
13 화학식 89 3.4 9.0 0.141 0.052
14 화학식 91 3.7 8.5 0.138 0.053
15 화학식 93 3.8 8.1 0.141 0.050
16 화학식 94 3.6 8.8 0.140 0.049
17 화학식 97 3.5 8.9 0.139 0.055
18 화학식 103 3.7 8.5 0.140 0.048
19 화학식 108 3.5 8.9 0.140 0.049
20 화학식 119 3.7 8.3 0.141 0.049
비교예 1 사용 안 함 4.2 7.0 0.146 0.141
비교예 2 Alq3 4.0 7.5 0.144 0.062
비교예 3 CP1 3.9 8.0 0.138 0.058
비교예 4 CP2 3.9 7.8 0.135 0.061
상기 [표 1]에 나타낸 결과를 살펴보면, 본 발명에 따른 화합물을 광효율 개선층으로 소자에 적용한 경우 종래 광효율 개선층을 채용하지 않은 소자, 종래 광효율 개선층 재료로 사용된 화합물 및 본 발명에 따른 화합물 갖는 구조적 특징과 대비되는 화합물을 각각 채용한 소자 (비교예 1 내지 4)에 비하여 구동 전압이 감소하고, 전류 효율이 향상되는 것을 확인할 수 있다.
Figure PCTKR2021013092-appb-img-000065
[HAT-CN] [α-NPB] [BH1] [BD1] [201]
Figure PCTKR2021013092-appb-img-000066
[TCTA] [CP1] [CP2]
소자 실시예 ( ETL )
본 발명에 따른 실시예에서, ITO 투명 전극은 25 mm × 25 mm × 0.7 mm의 유리 기판 위에, ITO 투명 전극이 부착된 ITO 유리 기판을 이용하여, 발광 면적이 2 mm × 2 mm 크기가 되도록 패터닝한 후 세정하였다. 기판을 진공 챔버에 장착한 후 베이스 압력이 1 × 10-6 torr 이상 되도록 한 후 유기물을 상기 ITO 위에 하기 구조로 유기물과 금속을 증착하였다.
소자 실시예 21 내지 31
본 발명에 따라 구현되는 화합물을 전자수송층으로 사용하였다. 하기와 같은 소자 구조를 갖는 청색 유기발광소자를 제작하여, 전류 효율을 포함한 발광 특성을 측정하였다
ITO / 정공주입층 (HAT-CN, 5 nm) / 정공수송층 (α-NPB, 100 nm) / 전자저지층 (EBL1 10 nm) / 발광층 (20 nm) / 정공저지층 (HBL1, 50 nm) / 전자수송층 (201:Liq, 30 nm) / LiF (1 nm) / Al (100 nm)
ITO 투명 전극에 정공주입층을 형성하기 위해 [HAT-CN]을 이용하여 5 nm로 증착하고, 정공수송층은 α-NPB를 사용하여 100 nm 성막하였으며, 전자저지층은 [EBL1]을 사용하여 10 nm의 두께로 증착하고, 발광층에는 호스트 화합물로 [BH1]을 사용하고, 도판트 화합물은 [BD1]을 사용하여 두께가 20 nm 되도록 공증착하였다. 추가로 전자수송층은 하기 [표 2]에 기재된 본 발명으로 구현되는 화합물을 사용하여 30 nm (Liq 도핑) 두께로 성막하였다. LiF 1 nm 및 Al 100 nm를 성막하여 유기발광소자를 제작하였다.
소자 비교예 5
소자 비교예 5를 위한 유기발광소자는 상기 실시예 21의 소자구조에서 전자수송층에 본 발명으로 구현되는 화합물 대신에 하기 [201]을 사용한 것을 제외하고 동일하게 제작하였다.
소자 비교예 6
소자 비교예 6을 위한 유기발광소자는 상기 실시예 21의 소자구조에서 전자수송층에 본 발명으로 구현되는 화합물 대신에 하기 [ET1]을 사용한 것을 제외하고 동일하게 제작하였다.
소자 비교예 7
소자 비교예 7을 위한 유기발광소자는 상기 실시예 21의 소자구조에서 전자수송층을 본 발명으로 구현되는 화합물 대신에 하기 [ET2]를 사용한 것을 제외하고 동일하게 제작하였다.
실험예 2 : 소자 실시예 21 내지 31의 발광 특성
상기 실시예 및 비교예에 따라 제조된 유기발광소자에 대해서 Source meter (Model 237, Keithley)와 휘도계 (PR-650, Photo Research)를 이용하여 전압, 전류 및 발광 효율을 측정하였고, 1000 nit 기준의 결과값은 하기 [표 2]와 같다.
실시예 전자수송층 V cd/A CIEx CIEy
21 화학식 1 4.3 6.9 0.133 0.148
22 화학식 16 4.5 7.2 0.132 0.149
23 화학식 26 4.5 7.1 0.130 0.151
24 화학식 30 4.5 7.1 0.131 0.151
25 화학식 38 4.4 7.2 0.134 0.149
26 화학식 65 4.5 7.2 0.132 0.148
27 화학식 80 4.6 7.1 0.133 0.149
28 화학식 89 4.4 7.3 0.134 0.152
29 화학식 93 4.4 7.2 0.131 0.152
30 화학식 94 4.2 7.0 0.132 0.150
31 화학식 97 4.5 7.0 0.131 0.148
비교예 5 201 4.7 6.6 0.135 0.151
비교예 6 ET1 5.7 4.9 0.135 0.130
비교예 7 ET2 5.8 4.8 0.133 0.133
상기 [표 2]에 나타낸 결과를 살펴보면, 본 발명에 따른 화합물을 소자 내 전자수송층에 적용한 경우에 종래 전자수송층 재료로 사용된 화합물 [201]과 본 발명에 따른 화합물이 갖는 특징적 구조와 차이를 갖는 [ET1], [ET2]를 채용한 소자(비교예 5 내지 7)에 비하여 저전압 구동 및 발광 효율 등의 발광 특성이 현저히 우수함을 확인할 수 있다.
Figure PCTKR2021013092-appb-img-000067
[HAT-CN] [α-NPB] [BH1] [BD1] [201]
Figure PCTKR2021013092-appb-img-000068
[EBL1] [ET1] [ET2]
본 발명에 따른 유기 화합물을 유기발광소자 내의 유기층 또는 유기발광소자에 구비되는 광효율 개선층 재료로 채용할 경우에 소자의 저전압 구동과 우수한 발광 효율 등의 발광 특성을 구현할 수 있어 다양한 조명 및 디스플레이 소자에 산업적으로 유용하게 사용될 수 있다.

Claims (9)

  1. 하기 [화학식 Ⅰ]로 표시되는 유기 화합물:
    [화학식 Ⅰ]
    Figure PCTKR2021013092-appb-img-000069
    상기 [화학식 Ⅰ]에서,
    Ar은 적어도 하나 이상의 시아노기(CN)가 치환된 치환 또는 비치환된 탄소수 6 내지 30의 아릴기이고 (m은 1 또는 2의 정수이고, m이 2인 경우 복수 개의 Ar은 서로 동일하거나 상이함),
    L은 단일결합이거나, 치환 또는 비치환된 탄소수 6 내지 30의 아릴렌기이며 (n은 0 내지 2의 정수이고, n이 2인 경우 복수 개의 L은 서로 동일하거나 상이함),
    R1 내지 R2는 각각 독립적으로 하기 [구조식 1]로 표시되고,
    [구조식 1]
    Figure PCTKR2021013092-appb-img-000070
    상기 [구조식 1]에서,
    X는 O 또는 S이고, Z는 CR이며 (복수의 R은 서로 동일하거나 상이함),
    R 및 R3은 각각 독립적으로 수소, 중수소, 할로겐기, 시아노기, 치환 또는 비치환된 탄소수 1 내지 20의 알킬기, 치환 또는 비치환된 탄소수 2 내지 20의 알케닐기, 치환 또는 비치환된 탄소수 3 내지 20의 시클로알킬기, 치환 또는 비치환된 탄소수 1 내기 20의 알콕시기, 치환 또는 비치환된 탄소수 1 내지 20의 할로겐화된 알킬기, 치환 또는 비치환된 탄소수 1 내지 20의 할로겐화된 알콕시기, 치환 또는 비치환된 탄소수 6 내지 30의 아릴기 및 치환 또는 비치환된 탄소수 3 내지 30의 헤테로아릴기 중에서 선택되고,
    상기 복수의 R 및 R3 중 어느 하나는 상기 [구조식 1]이 R1과 R2 위치에서 각각 상기 [화학식 Ⅰ]에서 연결되는 부분이며,
    상기 복수의 R 및 R3은 서로 결합하거나 인접한 치환기와 연결되어 방향족의 단일환 또는 다환 고리를 형성할 수 있다.
  2. 제1항에 있어서,
    상기 [구조식 1]은 하기 [구조식 2] 내지 [구조식 6]으로 표시되는 구조식 중에서 선택되는 어느 하나인 것을 특징으로 하는 유기 화합물:
    [구조식 2] [구조식 3] [구조식 4]
    Figure PCTKR2021013092-appb-img-000071
    [구조식 5] [구조식 6]
    Figure PCTKR2021013092-appb-img-000072
    상기 [구조식 2] 내지 [구조식 6]에서,
    X는 O 또는 S이고, Z는 CR이며 (복수의 R은 서로 동일하거나 상이함),
    R 및 R3은 각각 독립적으로 수소, 중수소, 할로겐기, 시아노기, 치환 또는 비치환된 탄소수 1 내지 20의 알킬기, 치환 또는 비치환된 탄소수 2 내지 20의 알케닐기, 치환 또는 비치환된 탄소수 3 내지 20의 시클로알킬기, 치환 또는 비치환된 탄소수 1 내기 20의 알콕시기, 치환 또는 비치환된 탄소수 1 내지 20의 할로겐화된 알킬기, 치환 또는 비치환된 탄소수 1 내지 20의 할로겐화된 알콕시기, 치환 또는 비치환된 탄소수 6 내지 30의 아릴기 및 치환 또는 비치환된 탄소수 3 내지 30의 헤테로아릴기 중에서 선택되고,
    상기 복수의 R 및 R3 중 어느 하나는 상기 [구조식 1]이 R1과 R2 위치에서 각각 상기 [화학식 Ⅰ]에서 연결되는 부분이다.
  3. 제1항 또는 제2항에 있어서,
    상기 Ar, L, R 및 R3의 정의에서, '치환 또는 비치환된'이라 함은 중수소, 할로겐기, 시아노기, 니트로기, 히드록시기, 실릴기, 알킬기, 할로겐화된 알킬기, 중수소화된 알킬기, 시클로알킬기, 헤테로시클로알킬기, 알콕시기, 할로겐화된 알콕시기, 중수소화된 알콕시기, 아릴기, 헤테로아릴기, 알킬아민기, 아릴아민기 및 실릴기로 이루어진 군에서 선택된 1 또는 2 이상의 치환기로 치환되거나, 상기 치환기 중 2 이상의 치환기가 연결된 치환기로 치환되거나, 또는 어떠한 치환기도 갖지 않는 것인 것을 특징으로 하는 유기 화합물.
  4. 제1항에 있어서,
    상기 [화학식 Ⅰ]은 하기 [화합물 1] 내지 [화합물 134] 중에서 선택되는 어느 하나인 것을 특징으로 하는 유기 화합물:
    Figure PCTKR2021013092-appb-img-000073
    Figure PCTKR2021013092-appb-img-000074
    Figure PCTKR2021013092-appb-img-000075
    Figure PCTKR2021013092-appb-img-000076
    Figure PCTKR2021013092-appb-img-000077
    Figure PCTKR2021013092-appb-img-000078
    Figure PCTKR2021013092-appb-img-000079
    Figure PCTKR2021013092-appb-img-000080
    Figure PCTKR2021013092-appb-img-000081
    Figure PCTKR2021013092-appb-img-000082
    Figure PCTKR2021013092-appb-img-000083
    Figure PCTKR2021013092-appb-img-000084
    Figure PCTKR2021013092-appb-img-000085
  5. 제1 전극, 제2 전극, 및 상기 제1 전극과 제2 전극 사이에 배치된 1층 이상의 유기층을 포함하는 유기발광소자로서,
    상기 유기층 중 1 층 이상은 제1항에 따른 [화학식 Ⅰ]의 유기 화합물을 포함하는 것인 유기발광소자.
  6. 제5항에 있어서,
    상기 유기층은 정공주입층, 정공수송층, 정공주입과 정공수송 기능을 동시에 하는 층, 전자수송층, 전자주입층, 전자수송과 전자주입 기능을 동시에 하는 층, 전자저지층, 정공저지층 및 발광층 중에서 선택되는 1층 이상을 포함하고,
    상기 층들 중 1층 이상이 상기 [화학식 Ⅰ]로 표시되는 유기 화합물을 포함하는 것을 특징으로 하는 유기발광소자.
  7. 제5항에 있어서,
    상기 전자수송층, 전자주입층 및 전자수송과 전자주입 기능을 동시에 하는 층 중 어느 하나에 상기 [화학식 Ⅰ]로 표시되는 유기 화합물을 포함하는 것을 특징으로 하는 유기발광소자.
  8. 제5항에 있어서,
    상기 제1 전극과 제2 전극의 상부 또는 하부 중에서 상기 유기층과 반대되는 적어도 일측에 형성되는 광효율 개선층 (Capping layer)을 더 포함하고,
    상기 광효율 개선층은 상기 [화학식 Ⅰ]로 표시되는 유기 화합물을 포함하는 것을 특징으로 하는 유기발광소자.
  9. 제8항에 있어서,
    상기 광효율 개선층은 상기 제1 전극의 하부 또는 상기 제2 전극의 상부 중 적어도 하나에 형성되는 것을 특징으로 하는 유기발광소자.
PCT/KR2021/013092 2020-12-08 2021-09-27 유기 화합물 및 이를 포함하는 유기발광소자 WO2022124540A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180082553.4A CN116724684A (zh) 2020-12-08 2021-09-27 有机化合物及包含其的有机发光器件
US18/256,597 US20240124433A1 (en) 2020-12-08 2021-09-27 Organic Compound And Organic Light-Emitting Device Comprising Same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0170000 2020-12-08
KR1020200170000A KR102356004B1 (ko) 2020-12-08 2020-12-08 유기발광 화합물 및 이를 포함하는 유기발광소자

Publications (1)

Publication Number Publication Date
WO2022124540A1 true WO2022124540A1 (ko) 2022-06-16

Family

ID=80253335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/013092 WO2022124540A1 (ko) 2020-12-08 2021-09-27 유기 화합물 및 이를 포함하는 유기발광소자

Country Status (4)

Country Link
US (1) US20240124433A1 (ko)
KR (1) KR102356004B1 (ko)
CN (1) CN116724684A (ko)
WO (1) WO2022124540A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230131993A (ko) * 2022-03-07 2023-09-15 주식회사 랩토 카바졸 유도체 및 이를 포함한 유기전계발광소자

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030129448A1 (en) * 2001-10-19 2003-07-10 Lightronik Technology Inc. Organic EL device
KR20160123511A (ko) * 2015-04-16 2016-10-26 에스에프씨 주식회사 유기발광 화합물 및 이를 포함하는 유기발광소자
KR20180015209A (ko) * 2014-09-02 2018-02-12 주식회사 엘지화학 유기 발광 소자
CN111777602A (zh) * 2020-08-11 2020-10-16 长春海谱润斯科技有限公司 一种含有咔唑的化合物及其有机电致发光器件
US20200377492A1 (en) * 2019-05-29 2020-12-03 P&H Tech Co., Ltd Organic electroluminescent compound and organic electroluminescent device including the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030129448A1 (en) * 2001-10-19 2003-07-10 Lightronik Technology Inc. Organic EL device
KR20180015209A (ko) * 2014-09-02 2018-02-12 주식회사 엘지화학 유기 발광 소자
KR20160123511A (ko) * 2015-04-16 2016-10-26 에스에프씨 주식회사 유기발광 화합물 및 이를 포함하는 유기발광소자
US20200377492A1 (en) * 2019-05-29 2020-12-03 P&H Tech Co., Ltd Organic electroluminescent compound and organic electroluminescent device including the same
CN111777602A (zh) * 2020-08-11 2020-10-16 长春海谱润斯科技有限公司 一种含有咔唑的化合物及其有机电致发光器件

Also Published As

Publication number Publication date
US20240124433A1 (en) 2024-04-18
KR102356004B1 (ko) 2022-02-07
CN116724684A (zh) 2023-09-08

Similar Documents

Publication Publication Date Title
WO2011081423A2 (ko) 트리페닐렌계 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2014081168A1 (ko) 플루오란텐 화합물 및 이를 포함하는 유기 전자 소자
WO2017171376A1 (ko) 화합물 및 이를 포함하는 유기 전자 소자
WO2013191428A1 (ko) 함질소 헤테로환 화합물 및 이를 포함한 유기 전자소자
WO2020085797A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2018182297A1 (ko) 벤조카바졸계 화합물 및 이를 포함하는 유기 발광 소자
WO2014014307A1 (ko) 다환 화합물 및 이를 포함하는 유기 전자 소자
WO2020171531A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2019194617A1 (ko) 아민 화합물 및 이를 포함하는 유기 발광 소자
WO2019164218A1 (ko) 다환 화합물 및 이를 포함하는 유기 발광 소자
WO2013027902A1 (ko) 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
WO2019240473A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2020262861A1 (ko) 신규한 화합물 및 이를 포함하는 유기발광 소자
WO2022270835A1 (ko) 유기발광 화합물 및 이를 포함하는 유기발광소자
WO2019143223A9 (ko) 다환 화합물 및 이를 포함하는 유기 발광 소자
WO2019027189A1 (ko) 유기 전계 발광 소자
WO2021194141A1 (ko) 유기발광 화합물 및 이를 포함하는 유기발광소자
WO2020222433A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2022124540A1 (ko) 유기 화합물 및 이를 포함하는 유기발광소자
WO2022108258A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2022059923A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2022031013A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2022031016A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2022173265A1 (ko) 유기발광 화합물 및 이를 포함하는 유기발광소자
WO2023008644A1 (ko) 유기 화합물 및 이를 포함하는 유기발광소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21903587

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180082553.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21903587

Country of ref document: EP

Kind code of ref document: A1