WO2022124460A1 - 몰리브덴 산화물을 주된 성분으로 하는 금속 산화물 소결체 및 이를 포함하는 스퍼터링 타겟{metal oxide sintered body containing molybdenum oxide as the main component and sputtering target comprising the same} - Google Patents

몰리브덴 산화물을 주된 성분으로 하는 금속 산화물 소결체 및 이를 포함하는 스퍼터링 타겟{metal oxide sintered body containing molybdenum oxide as the main component and sputtering target comprising the same} Download PDF

Info

Publication number
WO2022124460A1
WO2022124460A1 PCT/KR2020/018386 KR2020018386W WO2022124460A1 WO 2022124460 A1 WO2022124460 A1 WO 2022124460A1 KR 2020018386 W KR2020018386 W KR 2020018386W WO 2022124460 A1 WO2022124460 A1 WO 2022124460A1
Authority
WO
WIPO (PCT)
Prior art keywords
moo
thin film
molybdenum oxide
sintered body
powder
Prior art date
Application number
PCT/KR2020/018386
Other languages
English (en)
French (fr)
Inventor
이효원
이승이
양승호
박재성
황병진
장봉중
Original Assignee
엘티메탈 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200172235A external-priority patent/KR102315308B1/ko
Priority claimed from KR1020200172262A external-priority patent/KR102315283B1/ko
Application filed by 엘티메탈 주식회사 filed Critical 엘티메탈 주식회사
Priority to CN202080084740.1A priority Critical patent/CN114916228B/zh
Publication of WO2022124460A1 publication Critical patent/WO2022124460A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering

Definitions

  • the present invention relates to a metal oxide sintered body, and more particularly, to a metal oxide sintered body capable of forming a thin film having low reflection properties and excellent chemical resistance and heat resistance using molybdenum oxide as a main component, and a sputtering target including the same.
  • FPDs flat panel displays
  • LEDs light emitting diodes
  • OLEDs organic light emitting diodes
  • ITO indium oxide-tin oxide
  • ITO composition is used to form a conductive thin film having high visible light transmittance and electrical conductivity.
  • ITO composition has excellent low reflectance performance
  • research on materials that replace all or part of indium oxide is ongoing because it is economical.
  • the area of interest in these studies is the low reflectivity of the thin film formed through the target material, and it is necessary to consider the characteristics of chemical resistance and heat resistance that can increase the reliability of the thin film for long-term use.
  • the present invention provides a metal oxide sintered body containing molybdenum oxide as a main component and having low reflection properties while having excellent chemical resistance and heat resistance, and a sputtering target capable of depositing a metal oxide thin film using the metal oxide sintered body.
  • the present invention provides a metal oxide thin film containing molybdenum oxide as a main component and having low reflection properties while having excellent chemical resistance and heat resistance, and a thin film transistor and display device having such a metal oxide thin film formed thereon.
  • the present invention is an embodiment, MoO 2 and MoO 3 75 to 90% by weight of molybdenum oxide containing MoO 3 and Nb 2 O 5 , Ta 2 O 5 , ZrO 2 , TiO 2 , SnO 2 , WO 3 10 to 25% by weight of at least one component is mixed, and the content of MoO 2 in the molybdenum oxide is 50 to 94.1% by weight of the molybdenum oxide It presents a metal oxide sintered body.
  • the specific resistance of the metal oxide sintered body may be 1x10 -2 ⁇ cm or less, and the sintered density may be 95% or more.
  • the present invention is an embodiment, and 75 to 90% by weight of molybdenum oxide containing MoO 2 and MoO 3 and Nb 2 O 5 , Ta 2 O 5 , ZrO 2 , TiO 2 , SnO 2 , WO At least one component of 3 is made by mixing 10 to 25% by weight, and the content of MoO 2 in the molybdenum oxide is 50 to 94.1% of the molybdenum oxide It provides a sputtering target formed by bonding an oxide sintered body to a backing plate.
  • the sputtering target may have a light reflectance of 6% or less for a wavelength of 550 nm after heat treatment at a temperature of 350° C. for 30 minutes or more after forming a thin film by sputtering.
  • the damaged depth of the thin film may be less than 0.5 ⁇ m.
  • the present invention is an example, to prepare MoO 2 powder, MoO 3 powder, and M powder, and to make the weight% ratio of MoO 2 /MoO 3 1 to 16, and the weight% ratio of each component
  • the first step of mixing (MoO 2 +MoO 3 +M)/(MoO 2 +MoO 3 ) to be 1.11 to 1.33, the second step of sintering the mixed powder after the first step, the second step A third step of processing the upper and lower surfaces of the finished sintered body to be smooth and a fourth step of bonding the sintered body after the third step to a backing plate is provided.
  • the amounts of MoO 2 and MoO 3 in the numerator and denominator of (MoO 2 +MoO 3 +M)/(MoO 2 +MoO 3 ) are the same, respectively, and M is Nb 2 O 5 , Ta 2 O 5 , ZrO 2 , TiO 2 , SnO 2 , and WO 3 at least one component.
  • the present invention is an embodiment, and 75 to 90% by weight of molybdenum oxide containing MoO 2 and MoO 3 and Nb 2 O 5 , Ta 2 O 5 , ZrO 2 , TiO 2 , SnO 2 , WO It is made by mixing 10 to 25% by weight of at least one component out of 3 , and the content of MoO 2 in the molybdenum oxide is 50 to 94.1% by weight of the molybdenum oxide, and the reflectance for a 550nm wavelength is 6% or less. .
  • the thin film may have a difference in light reflectance with respect to a wavelength of 550 nm of 7% or less after heat treatment at a temperature of 350° C. for 30 minutes or more.
  • the thin film may have a damage depth of less than 0.5 ⁇ m when a lithography process is performed on the thin film.
  • the present invention provides a thin film transistor in which the above-described thin film is used as a gate layer, a source layer and a drain layer, and a display device in which the above-described thin film is formed as an embodiment.
  • the thin film formed when a thin film is formed using a sputtering target, the thin film formed has low reflection properties and is excellent in chemical resistance and heat resistance. Accordingly, it is possible to secure the operational reliability of the thin film transistor or display device including the thin film.
  • FIG. 1 is a view showing a cross section of a thin film formed using a metal oxide sintered body according to an embodiment of the present invention.
  • FIG. 2 is a view showing a cross section of a thin film formed using a metal oxide sintered body according to a comparative example of the present invention.
  • FIG. 3 is a flowchart illustrating a method of manufacturing a sputtering target using a metal oxide sintered body according to an embodiment of the present invention.
  • the metal oxide sintered body according to an embodiment of the present invention is 75 to 90 wt% of molybdenum oxide containing MoO 2 and MoO 3 and Nb 2 O 5 , Ta 2 O 5 , ZrO 2 , TiO 2 , SnO 2 , WO 3 at least 10-25% by weight of one or more components are mixed.
  • the content of MoO 2 in the molybdenum oxide is 50 to 94.1% by weight in 100% by weight of the molybdenum oxide.
  • MoO 2 /MoO 3 wt% it becomes 1 to 16.
  • the formed thin film has low reflection properties, and at the same time, chemical resistance and heat resistance properties are improved through optimization of the ratio and composition of molybdenum oxide.
  • Molybdenum oxide is, for example, MoO 2 , MoO 3 , MoO 4 is a component having a form in which oxygen is bonded to molybdenum. Among them, in this embodiment, MoO 2 and MoO 3 are used.
  • the proportion of molybdenum oxide occupies 75% by weight or more in the entire metal oxide sintered body. Accordingly, it has low reflection properties when deposited as a thin film.
  • MoO 2 and MoO 3 constituting the molybdenum oxide MoO 2 has a content of 50 to 94.1 wt%, and MoO 3 has a content of 5.9 to 50 wt%.
  • MoO 2 content is less than 50% by weight, the amount of MoO 3 is relatively large, resulting in low sintering density and poor chemical stability when deposited as a thin film.
  • the content of MoO 2 exceeds 94.1% by weight, as the content of MoO 2 increases, the sintering density may be high, but the target strength may be lowered, and thus cracks may occur in the target.
  • Nb 2 O 5 , Ta 2 O 5 , ZrO 2 , TiO 2 , SnO 2 , and WO 3 is added as an additive component.
  • Chemical resistance and heat resistance characteristics of molybdenum oxide can be improved by these additive components.
  • at least one component of Nb 2 O 5 , Ta 2 O 5 , ZrO 2 , TiO 2 , SnO 2 , and WO 3 is symbolized and denoted as M.
  • the sintered body and the target can be manufactured with the composition as described above, and this will be described below.
  • a method for manufacturing a metal oxide target according to an embodiment of the present invention includes a first step (S10) of mixing material powder, a second step (S20) of sintering the mixed material powder, and a first step of processing the sintered body in which the material powder is sintered Step 3 (S30) and a fourth step (S40) of bonding the sintered body to the backing plate to complete the target.
  • the first step at least one of Nb 2 O 5 , Ta 2 O 5 , ZrO 2 , TiO 2 , SnO 2 , WO 3 powder in 75 to 90% by weight of molybdenum oxide powder consisting of MoO 2 and MoO 3 (M ) is added at 10 to 25% by weight and then mixed. At this time, the ratio of MoO 2 in the molybdenum oxide powder can be selected within 50 to 94.1% by weight.
  • the (MoO 2 +MoO 3 +M)/(MoO 2 +MoO 3 ) weight% ratio of each powder is 1.11 to 1.33%.
  • the content of MoO 2 and the content of MoO 3 are the same in the numerator and denominator, respectively.
  • the mixed powder is subjected to a dry ball mill process using zirconia balls. Zirconia balls can be weighed 1 to 3 times the amount of powder, and the ball mill can be performed at 100 to 300 rpm for 7 to 9 hours. Powder mixing can be completed by sieving after the dry ball mill is completed.
  • the carbon sheet is wrapped in 0.1 to 0.5 mm inside the carbon mold and the lower punch, and 100 to 300 g of the mixed powder may be charged. After loading the powder, cover the carbon sheet and install the upper punch.
  • the sintering mold When the preparation of the sintering mold is completed through this process, the sintering mold may be loaded into the hot press and the sintering process may be performed.
  • the temperature increase rate is 2 ⁇ 10°C/min, and the highest heat treatment temperature can be maintained at 700 ⁇ 900°C for 1 ⁇ 3 hours.
  • the pressure at the elevated temperature and the holding temperature can be maintained at 20-50 MPa.
  • the sintered body is taken out and processed. Specifically, after taking out the sintered body, the carbon sheet is removed from the upper and lower parts of the target, and then the surface of the target is polished. In order to remove the carbon sheet, each of the upper and lower parts can be processed by 1 mm or more.
  • the processed sintered body is bonded to the backing plate.
  • Indium can be used as the adhesive, and the bonding rate is preferably 95% or more.
  • a metal oxide target may be manufactured.
  • the target density of the manufactured target is 96% or more, and in particular, it is preferable to be 98% or more.
  • a metal oxide thin film may be formed (deposited) by sputtering using the thus prepared target. Sputtering may be performed using DC sputtering.
  • Such a thin film may be used as a gate layer, a source layer, and a drain layer of a thin film transistor.
  • such thin film transistors can be used in display devices such as OLED TVs, mobile phones, and tablets.
  • the metal oxide thin film according to an embodiment of the present invention may be used as a low reflection layer under the gate layer.
  • a thin film for this purpose lowers the reflectance of the substrate and improves the adhesion of the gate electrode.
  • the substrate may be any one of various substrates usable in a typical display device process, such as a glass substrate, a metal substrate, a plastic substrate, and a plastic film.
  • the substrate may be a transparent front panel in an OLED TV, mobile phone, or tablet.
  • the gate electrode may be formed of a general electrode material such as copper or silver.
  • Thin film deposition may be performed at room temperature in an argon gas atmosphere with a power density of 1.0 to 2.0 w/cm 2 of DC sputtering.
  • the thickness of the metal oxide thin film may be 300 to 500 ⁇ .
  • a copper (Cu) thin film may be deposited on the metal oxide thin film.
  • the copper thin film may be deposited to a thickness of 3000 to 6000 ⁇ .
  • the reflectance can be measured on the surface of the substrate on which the metal oxide thin film is formed, and the light reflectance for a wavelength of 550 nm is measured.
  • the light reflectance may be 6% or less.
  • the metal oxide thin film according to an embodiment of the present invention has excellent heat resistance and chemical resistance properties.
  • Heat resistance and chemical resistance evaluation can be performed as follows.
  • a method of heat-treating the deposited thin film in an atmosphere of 200 to 400° C. for 30 minutes or longer as described above may be used.
  • the heat treatment may be performed in a general vacuum heat treatment furnace.
  • Heat resistance can be evaluated by observing the change in properties of the thin film after heat treatment.
  • the difference in reflectance may be 7% or less of the reflectance of the thin film before measuring the heat resistance.
  • a method of forming a fine pattern using a lithography method on the formed thin film and observing a cross section of the formed fine pattern may be used. Specifically, after applying 1 ⁇ 2 ⁇ m photoresist (Positive PR Strip) to the thin film formed of two layers of metal oxide and copper of the present invention as described above, baking is performed at 60 ⁇ 80°C for about 1 hour. solidify the register. Then, after aligning the PR Mask, exposure is performed to make a pattern with a certain line width. By etching the pattern made in this way, it is possible to form a two-layer fine pattern composed of metal oxide and copper.
  • 1 ⁇ 2 ⁇ m photoresist Photoresist
  • the damaged depth of the thin film should be less than 2 ⁇ m, particularly preferably less than 0.5 ⁇ m.
  • the powder is weighed so that the MoO 2 /MoO 3 wt % ratio is 6.5 and the wt % ratio of (MoO 2 +MoO 3 +Nb 2 O 5 )/(MoO 2 +MoO 3 ) is 1.333.
  • After weighing the powder put it in a 1L plastic bucket and put the alumina ball 3 times the amount of powder.
  • Alumina balls are 3 ⁇ 10mm balls.
  • dry mixing is performed for 8 hours at 170-230 rpm in the ball mill.
  • the obtained dry powder is subjected to pressure sintering using a hot press.
  • the vacuum condition inside the hot press is 10 -1 torr, the temperature increase rate is 3 ⁇ 7°C, the maximum temperature is 750 ⁇ 800°C, and the holding time is 1 ⁇ 3 hours. got it
  • the sintered density of the thus obtained sintered compact was 98.6%, and the specific resistance was measured to be 8.7x10 -4 ⁇ cm.
  • the powder is weighed so that the MoO 2 /MoO 3 wt % ratio is 16 and the wt % ratio of (MoO 2 +MoO 3 +Nb 2 O 5 )/(MoO 2 +MoO 3 ) is 1.176.
  • After weighing the powder put it in a 1L plastic bucket and put the alumina ball 3 times the amount of powder.
  • Alumina balls are 3 ⁇ 10mm balls.
  • the vacuum condition inside the hot press was 10 -1 torr, the temperature increase rate was 3 to 7 ° C, the maximum temperature was 750 to 800 ° C, and the holding time was 1 to 3 hours. .
  • the sintered compact thus obtained had a sintered density of 98.3% and a specific resistance of 2.9x10 -4 ⁇ cm.
  • the powder is weighed so that the weight% ratio of MoO 2 /MoO 3 is 1 and the weight% ratio of (MoO 2 +MoO 3 +Nb 2 O 5 )/(MoO 2 +MoO 3 ) is 1.174.
  • After weighing the powder put it in a 1L plastic bucket and put the alumina ball 3 times the amount of powder.
  • Alumina balls are 3 ⁇ 10mm balls.
  • dry mixing is performed for 8 hours at 170-230 rpm in a ball mill machine.
  • the obtained dry powder is pressure-sintered by a hot press.
  • the vacuum condition inside the hot press was 10 -1 torr, the temperature increase rate was 3 to 7 ° C, the maximum temperature was 750 to 800 ° C, and the holding time was 1 to 3 hours. .
  • the sintered compact thus obtained had a sintered density of 98.0% and a specific resistance of 4.3x10 -4 ⁇ cm.
  • the powder is weighed so that the MoO 2 /MoO 3 wt % ratio is 6.64 and the wt % ratio of (MoO 2 +MoO 3 +Nb 2 O 5 )/(MoO 2 +MoO 3 ) is 1.19.
  • After weighing the powder put it in a 1L plastic bucket and put the alumina ball 3 times the amount of powder.
  • Alumina balls are 3 ⁇ 10mm balls.
  • dry mixing is performed for 8 hours at 170-230 rpm in a ball mill machine. The obtained dry powder is pressure-sintered by a hot press.
  • the vacuum condition inside the hot press was 10 -1 torr, the temperature increase rate was 3 to 7 ° C, the maximum temperature was 750 to 800 ° C, and the holding time was 1 to 3 hours. .
  • the sintered compact thus obtained had a sintered density of 98.0% and a specific resistance of 1.4x10 -4 ⁇ cm.
  • the powder is weighed so that the MoO 2 /MoO 3 wt % ratio is 6.72 and the wt % ratio of (MoO 2 +MoO 3 +Ta 2 O 5 )/(MoO 2 +MoO 3 ) is 1.176.
  • After weighing the powder put it in a 1L plastic bucket and put the alumina ball 3 times the amount of powder.
  • Alumina balls are 3 ⁇ 10mm balls.
  • dry mixing is performed for 8 hours at 170-230 rpm in a ball mill machine. The obtained dry powder is subjected to pressure sintering using a hot press.
  • the vacuum condition inside the hot press was 10 -1 torr, the temperature increase rate was 3 to 7 ° C, the maximum temperature was 750 to 800 ° C, and the holding time was 1 to 3 hours. .
  • the sintered compact thus obtained had a sintered density of 96.0% and a specific resistance of 5.8x10 -4 ⁇ cm.
  • the powder is weighed so that the weight % ratio of ( MoO 2 +MoO 3 )/(MoO 2 +MoO 3 ) is 1 .
  • After weighing the powder put it in a 1L plastic bucket and put the alumina ball 3 times the amount of powder.
  • Alumina balls are 3 ⁇ 10mm balls.
  • dry mixing is performed for 8 hours at 170-230 rpm in a ball mill machine.
  • the obtained dry powder is pressure-sintered by a hot press.
  • the vacuum condition inside the hot press is 10 -1 torr, the temperature increase rate is 3 ⁇ 7°C, the maximum temperature is 750 ⁇ 800°C, and the holding time is 1 ⁇ 3 hours. got it
  • the sintered compact thus obtained had a sintered density of 96.1% and a specific resistance of 5.8x10 -4 ⁇ cm.
  • the thin film was formed by depositing a target including the sintered body of the above-described Examples and Comparative Examples on a transparent glass substrate in an argon gas atmosphere with a power density of 0.5 to 3.6 w/cm 2 using DC sputtering. At this time, the thin film thickness was 350 ⁇ .
  • an electrode was formed on this thin film.
  • the electrode was formed in an argon gas atmosphere with a power density of 0.5 to 3.6 w/cm 2 using a copper target using DC sputtering, and a thin film thickness of 6000 ⁇ .
  • photoresist was applied to the deposited thin film (the copper thin film formed on the thin film formed in Examples or Comparative Examples), followed by aligning the mask and exposure. Then, for etching the thin film, an etchant based on hydrogen peroxide (H 2 O 2 ) was used. Through this process, a fine pattern was formed, the remaining photoresist was removed with a photoresist cleaning solution, and then, it was checked whether the fine pattern was damaged.
  • H 2 O 2 hydrogen peroxide
  • the two-layer fine pattern composed of metal oxide and copper according to Example 1 was not damaged after etching and cleaning, and a cross-section as shown in FIG. 1 was obtained.
  • the depth of damage to the thin film of the fine pattern according to Examples and Comparative Examples is shown in Table 2.
  • Example 2 separately from Example 1, in the case of Examples 2 to 4, the damage depth of the thin film was less than 0.5 ⁇ m, and it was confirmed that the thin film had good chemical resistance.
  • the damaged depth of the thin film was slightly increased to 1.41 ⁇ m, but it was confirmed that Ta 2 O 5 of Example 5 was more preferably mixed with TiO 2 as in Example 4.
  • the damage depth of the thin film in terms of chemical resistance was 3.29 ⁇ m, which was quite large. This is shown in FIG. 2 .
  • Examples 1 to 3 in which the sintered density was 98% or more and the thin film damage depth was less than 0.2 ⁇ m, had particularly excellent properties. Meanwhile, ZrO 2 , SnO 2 , and WO 3 having similar properties are also expected to have superior heat resistance and chemical resistance compared to Comparative Examples.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

본 발명은 금속 산화물 소결체와 관련된다. 본 발명은 실시예로 MoO2와 MoO3를 포함하는 몰리브덴 산화물 70~90% 및 Nb2O5, Ta2O5, ZrO2, TiO2, SnO2, WO3 중 적어도 1 개 이상의 성분 10%~30%가 혼합되어 이루어지고, 상기 몰리브덴 산화물에서 MoO2의 함량은 몰리브덴 산화물 중 50~94.1%인 산화물 소결체를 제시한다.

Description

[규칙 제26조에 의한 보정 13.01.2021] 몰리브덴 산화물을 주된 성분으로 하는 금속 산화물 소결체 및 이를 포함하는 스퍼터링 타겟
본 발명은 금속 산화물 소결체에 관한 것으로서, 상세하게는 몰리브덴 산화물을 주된 성분으로 하여 저반사 특성을 가지고 내화학성 및 내열성이 우수한 박막을 형성할 수 있는 금속 산화물 소결체 및 이를 포함하는 스퍼터링 타겟에 관한 것이다.
일반적으로 평판 디스플레이(flat panel display; "FPD"), 터치 스크린 패널, 태양 전지, 발광 다이오드(light emitting diode; "LED"), 유기 발광 다이오드(organic light emitting diode; "OLED")에 저반사율의 도전성 박막이 사용되고 있다.
이에 대한 소재로서 산화인듐-산화주석(In2O3-SnO2)("ITO")이 대표적이며 ITO 조성물은 가시광선 투과도와 전기 전도율이 높은 도전성 박막을 형성하는 데 사용된다.
이러한 ITO 조성물은 우수한 저반사율 성능을 가지기는 하지만, 경제성이 떨어지기 때문에 산화인듐의 전부 또는 일부를 대체하는 소재들에 대한 연구가 계속되고 있다.
하지만 이러한 연구들에서 관심이 있는 부분은 타겟 재료를 통해 형성된 박막의 저반사율로서, 장시간 사용에 대한 박막의 신뢰도를 높일 수 있는 내화학성, 내열성의 특성에 대한 고려가 필요하다.
본 발명은 몰리브덴 산화물을 주된 성분으로 하고, 저반사 특성을 가지는 동시에 내화학성 및 내열성이 우수한 금속 산화물 소결체 및 이러한 금속 산화물 소결체를 이용하고 금속 산화물 박막을 증착할 수 있는 스퍼터링 타겟을 제시한다.
또한 본 발명은 몰리브덴 산화물을 주된 성분으로 하고, 저반사 특성을 가지는 동시에 내화학성 및 내열성이 우수한 금속 산화물 박막 및 이러한 금속 산화물 박막이 형성된 박막트랜지스터와 디스플레이장치를 제시한다.
그 외 본 발명의 세부적인 목적은 이하에 기재되는 구체적인 내용을 통하여 이 기술분야의 전문가나 연구자에게 자명하게 파악되고 이해될 것이다.
위 과제를 해결하기 위하여 본 발명은 실시예로, MoO2와 MoO3를 포함하는 몰리브덴 산화물 75~90중량% 및 Nb2O5, Ta2O5, ZrO2, TiO2, SnO2, WO3 중 적어도 하나 이상의 성분 10~25중량%가 혼합되어 이루어지고, 상기 몰리브덴 산화물에서 MoO2의 함량은 몰리브덴 산화물 중 50~94.1중량%인 금속 산화물 소결체를 제시한다.
여기에서 상기 금속 산화물 소결체의 비저항은 1x10-2 Ωcm이하이고, 소결밀도는 95% 이상일 수 있다.
또한 위 과제를 해결하기 위하여 본 발명은 실시예로, MoO2와 MoO3를 포함하는 몰리브덴 산화물 75~90중량% 및 Nb2O5, Ta2O5, ZrO2, TiO2, SnO2, WO3 중 적어도 하나 이상의 성분 10~25중량%가 혼합되어 이루어지고, 상기 몰리브덴 산화물에서 MoO2의 함량은 몰리브덴 산화물 중 50~94.1%인 산화물 소결체가 백킹플레이트에 접합되어 이루어지는 스퍼터링 타겟을 제시한다.
여기에서 상기 스퍼터링 타겟은, 스퍼터링에 의한 박막 형성 후 350℃의 온도에서 30분 이상의 열처리 후에 550nm 파장에 대한 광 반사율이 6% 이하일 수 있다.
한편 상기 스퍼터링 타겟은, 스퍼터링에 의한 박막을 형성한 다음 형성된 박막 상에 리소그라피 공정을 수행하였을 때 상기 박막의 손상된 깊이가 0.5㎛ 미만일 수 있다.
또한 위 과제를 해결하기 위하여 본 발명은 실시예로, MoO2 분말, MoO3 분말 및 M 분말을 준비하고 MoO2/MoO3의 중량% 비율을 1~16이 되도록 하고, 각 성분의 중량% 비율 (MoO2+MoO3+M)/(MoO2+MoO3)을 1.11~1.33이 되도록 하여 혼합하는 제1단계, 상기 제1단계를 마친 혼합 분말을 소결하는 제2단계, 상기 제2단계를 마친 소결체의 상면과 하면이 매끄럽도록 가공하는 제3단계 및 상기 제3단계를 마친 소결체를 백킹플레이트에 본딩하는 제4단계를 포함하는 스퍼터링 타겟의 제조방법을 제시한다.
여기에서, (MoO2+MoO3+M)/(MoO2+MoO3)의 분자와 분모의 MoO2의 양과 MoO3의 양은 각각 서로 동일하고, M은 Nb2O5, Ta2O5, ZrO2, TiO2, SnO2, WO3 중 적어도 하나 이상의 성분이다.
또한 위 과제를 해결하기 위하여 본 발명은 실시예로, MoO2와 MoO3를 포함하는 몰리브덴 산화물 75~90중량% 및 Nb2O5, Ta2O5, ZrO2, TiO2, SnO2, WO3 중 적어도 1 개 이상의 성분 10~25중량%가 혼합되어 이루어지고, 상기 몰리브덴 산화물에서 MoO2의 함량은 몰리브덴 산화물 중 50~94.1중량%이고, 550nm 파장에 대한 반사율이 6% 이하인 박막을 제시한다.
상기 박막은 350℃의 온도에서 30분 이상의 열처리 후에 550nm 파장에 대한 광 반사율의 차이가 7% 이하일 수 있다.
한편 상기 박막은 박막 상에 리소그라피 공정을 수행하였을 때 박막의 손상 깊이가 0.5㎛ 미만일 수 있다.
또한 위 과제를 해결하기 위하여 본 발명은 실시예로, 상술한 박막이 게이트층, 소스층 및 드레인층으로 이용되는 박막 트랜지스터와 상술한 박막이 형성되는 디스플레이 장치를 제시한다.
본 발명의 실시예에 따른 금속 산화물 소결체는, 스퍼터링 타겟으로 사용하여 박막을 형성하였을 때 형성된 박막이 저반사 특성을 가지는 동시에 내화학성 및 내열성이 우수하다. 이에 따라 이러한 박막을 포함하여 이루어지는 박막 트랜지스터 또는 디스플레이장치의 동작 신뢰성을 확보할 수 있다.
그 외 본 발명의 효과들은 이하에 기재되는 구체적인 내용을 통하여, 또는 본 발명을 실시하는 과정 중에 이 기술분야의 전문가나 연구자에게 자명하게 파악되고 이해될 것이다.
도 1은 본 발명의 실시예에 따른 금속 산화물 소결체를 이용하여 형성한 박막의 단면을 나타내는 도면.
도 2는 본 발명의 비교예에 따른 금속 산화물 소결체를 이용하여 형성한 박막의 단면을 나타내는 도면.
도 3은 본 발명의 실시예에 따른 금속 산화물 소결체를 이용하여 스퍼터링 타겟을 제조하는 방법을 나타내는 순서도.
상술한 본 발명의 특징 및 효과는 첨부된 도면과 관련한 다음의 상세한 설명을 통하여 보다 분명해 질 것이며, 그에 따라 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 것이다. 본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시 예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 개시형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 출원에서 사용한 용어는 단지 특정한 실시 예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다.
이하, 본 발명의 일 실시예에 따른 금속 산화물 소결체 및 이를 포함하는 스퍼터링 타겟에 대해 도면을 참조하여 상세하게 설명한다. 본 명세서에서는 서로 다른 실시예라도 동일유사한 구성에 대해서는 동일유사한 참조번호를 부여하고, 그 설명은 처음 설명으로 갈음한다.
본 발명의 실시예에 따른 금속 산화물 소결체는 MoO2와 MoO3를 포함하는 몰리브덴 산화물 75~90중량% 및 Nb2O5, Ta2O5, ZrO2, TiO2, SnO2, WO3 중 적어도 하나 이상의 성분 10~25중량%가 혼합되어 이루어진다. 또한 몰리브덴 산화물에서 MoO2의 함량은 몰리브덴 산화물 100중량% 중에서 50~94.1중량%이다. 한편 이를 MoO2/MoO3 중량% 비율로 나타내면 1~16이 된다.
이와 같이 이루어진 금속 산화물 소결체는 타겟 재료로 사용하여 박막을 형성하였을 경우 형성된 박막이 저반사 특성을 가지는 것과 동시에 몰리브덴 산화물의 비율과 조성의 최적화를 통해 내화학성, 내열성 특성이 향상된다.
이하, 각 성분에 대하여 상세하게 설명한다.
몰리브덴 산화물은 예를 들면 MoO2, MoO3, MoO4와 같이 몰리브덴에 산소가 결합된 형태를 가지는 성분이다. 이 중 본 실시예에서는 MoO2와 MoO3을 사용하고 있다.
또한 몰리브덴 산화물의 비율은 금속 산화물 소결체 전체에서 75중량% 이상을 차지한다. 이에 따라 박막으로 증착시 저반사 특성을 가진다.
한편 몰리브덴 산화물을 이루는 MoO2와 MoO3의 함량에 있어서 MoO2가 50~94.1중량%의 함량을 가지고 MoO3는 5.9~50중량%의 함량을 가진다. MoO2 함량이 50중량% 미만일 경우 상대적으로 MoO3의 양이 많아져서 소결밀도가 낮게 나오고 박막으로 증착 시 화학안정성 또한 좋지 않다. 한편 MoO2의 함량이 94.1중량%를 초과하는 경우, MoO2 함량이 많아짐에 따라 소결밀도는 높게 나올 수 있지만 타겟 강도가 낮아져서 타겟 내에 균열이 발생할 수 있다.
한편 첨가성분으로서 Nb2O5, Ta2O5, ZrO2, TiO2, SnO2, WO3 중 적어도 하나 이상의 조성이 10~25중량% 첨가된다. 이들 첨가성분에 의해 몰리브덴 산화물의 내화학성 및 내열성 특성을 높일 수 있다. 이하의 설명에서는 Nb2O5, Ta2O5, ZrO2, TiO2, SnO2, WO3 중 적어도 하나 이상의 성분을 기호화 하여 M으로 표시한다.
상술한 바와 같은 조성으로 소결체와 타겟을 제조할 수 있으며 이하에서는 이에 대하여 설명한다.
본 발명의 실시예에 따른 금속 산화물 타겟 제조 방법은, 재료분말을 혼합하는 제1단계(S10), 혼합된 재료분말을 소결하는 제2단계(S20), 재료분말이 소결된 소결체를 가공하는 제3단계(S30) 및 소결체를 백킹플레이트에 본딩하여 타겟을 완성하는 제4단계(S40)를 포함하여 이루어진다.
먼저 제1단계에서는, MoO2와 MoO3로 이루어진 몰리브덴 산화물 분말 75~90중량%에 Nb2O5, Ta2O5, ZrO2, TiO2, SnO2, WO3 분말 중 적어도 어느 하나(M)를 10~25중량% 첨가한 후 혼합한다. 이때 몰리브덴 산화물 분말에서 MoO2의 비율은 50~94.1중량% 내에서 선택할 수 있다.
한편 이에 따른 각 분말의 (MoO2+MoO3+M)/(MoO2+MoO3) 중량% 비율은 1.11~1.33%가 된다. 여기에서 MoO2의 함량과 MoO3의 함량은 분자와 분모에서 각각 동일하다. 혼합된 분말은 지르코니아 볼을 이용하여 건식 볼밀 공정을 수행한다. 지르코니아 볼은 분말량의 1~3배로 칭량할 수 있고, 볼밀은 100~300rpm으로 7~9시간 동안 수행할 수 있다. 건식 볼밀을 완료한 후에 채질하여 분말 혼합을 완료할 수 있다.
다음으로 제2단계에서는, 혼합된 분말을 소결하기 위하여 카본 몰드 내부와 하부 펀치에 카본 시트를 0.1~0.5mm로 감싸고 혼합된 분말을 100~300g을 장입할 수 있다. 분말을 장입한 후에 카본 시트를 덮고 상부 펀치를 설치한다.
이와 같은 과정을 통해 소결 몰드의 준비가 완료되면 핫프레스에 소결 몰드를 장입하고 소결 과정을 수행할 수 있다. 소결시 승온속도는 2~10℃/분으로 하고, 최고 열처리 온도는 700~900℃에서 1~3시간으로 유지할 수 있다. 승온 및 유지 온도에서의 압력은 20~50MPa로 유지할 수 있다.
다음으로 제3단계에서는 소결체를 꺼내고 가공한다. 구체적으로는 소결체를 꺼낸 후에 타겟 상하부에 카본 시트를 제거한 다음 타겟의 표면을 연마 가공한다. 카본 시트를 제거하기 위하여 상하부에 각 1mm 이상 가공을 할 수 있다.
다음으로 제4단계에서는 가공된 소결체를 백킹플레이트에 본딩한다. 접착제로는 인듐을 사용할 수 있고, 본딩율은 95%이상이 되도록 함이 바람직하다.
이와 같은 과정을 통해 금속 산화물 타겟을 제조할 수 있다. 제조된 타겟의 타겟밀도는 96% 이상이고 특히 98% 이상이 되도록 함이 바람직하다.
이와 같이 제조된 타겟을 이용하여 스퍼터링에 의해 금속 산화물 박막을 형성(증착)할 수 있다. 스퍼터링은 DC 스퍼터(Sputter)를 이용하여 수행할 수 있다.
이러한 박막은 박막 트랜지스터의 게이트층, 소스층 및 드레인층으로 이용될 수 있다. 또한 이러한 박막 트랜지스터는 OLED TV, 모바일폰, 태블릿 등의 디스플레이 장치에 사용될 수 있다.
구체적인 예로서 본 발명의 실시예에 따른 금속 산화물 박막은 게이트층 하부의 저반사층으로 사용될 수 있다. 이와 같은 용도의 박막은 기판의 반사율을 낮추고 게이트 전극의 접착성을 향상시킨다.
여기에서 기판은 유리기판, 금속기판, 플라스틱 기판, 플라스틱 필름 등 통상의 디스플레이 소자 공정에서 사용 가능한 다양한 기판 중 어느 하나일 수 있다. 구체적으로 기판은 OLED TV, 모바일폰, 태블릿에 있어서 투명하게 이루어진 전면패널일 수 있다. 한편 게이트 전극은 구리, 은 등의 일반적인 전극 물질로 형성될 수 있다.
박막 증착은 DC 스퍼터의 전력밀도(Power density)를 1.0~2.0w/cm2하고 아르곤 가스(Ar Gas) 분위기에서 상온에서 실시할 수 있다. 이때 금속 산화물 박막 두께는 300~500Å으로 할 수 있다. 또한 금속 산화물 박막 위에는 구리(Cu) 박막이 증착될 수 있다. 이때 구리 박막은 3000~6000Å의 두께로 증착될 수 있다.
한편 반사율의 측정은 금속 산화물 박막이 형성된 기판면에서 측정할 수 있고 550nm 파장에 대한 광 반사율을 측정한다. 이때 광 반사율은 6% 이하일 수 있다.
본 발명의 실시예에 따른 금속 산화물 박막은 내열성, 내화학성 특성이 우수하다. 내열성, 내화학성 평가는 아래와 같이 수행할 수 있다.
내열성을 평가하기 위해 상술한 바와 같이 증착된 박막을 200~400℃의 분위기에서 30분 이상의 열처리를 하는 방법을 사용할 수 있다. 열처리는 일반적인 진공 열처리로에서 수행할 수 있다. 열처리 후 박막의 특성 변화를 관찰함으로써 내열성을 평가할 수 있다. 내열성 지표로는 예를 들면 반사율 차이가 내열성 측정을 하기 전 박막의 반사율의 7% 이하일 수 있다.
내화학성을 평가하기 위해 형성된 박막에 리소그라피 방법을 이용하여 미세 패턴을 형성하고 형성된 미세 패턴의 단면을 관찰하는 방법을 사용할 수 있다. 구체적으로 위와 같이 본 발명의 금속 산화물과 구리의 2개 층으로 형성된 박막에 포토레지스트(Positive PR Strip)를 1~2㎛ 도포한 후 베이킹(Backing)을 60~80℃에서 1시간 정도 실시하여 포토레지스터를 고형화한다. 이어서 마스크(PR Mask)를 정렬한 후 노광을 하여 일정 선폭의 패턴을 만든다. 이렇게 만든 패턴을 에칭(etching)하여 금속 산화물과 구리로 구성된 2층의 미세 패턴을 형성할 수 있다. 이와 같이 미세 패턴이 형성된 기판에서 포토레지스트를 제거한 후 미세 패턴에서 금속 산화물의 단면을 FIB-SEM으로 관찰할 수 있다. 이때 박막의 손상된 깊이는 2㎛ 미만이어야 하며, 특히 0.5㎛ 미만임이 바람직하다.
다음으로 본 발명의 금속 산화물 소결체를 제조하는 실시예에 대하여 상세하게 설명한다. 하기 실시예는 본 발명의 한 형태를 예시하는 것에 불과할 뿐이며, 본 발명의 범위가 하기 실시예에 의해 제한되는 것은 아니다.
[실시예 1]
MoO2/MoO3 중량% 비율이 6.5이고 (MoO2+MoO3+Nb2O5)/(MoO2+MoO3)의 중량% 비율이 1.333가 되도록 분말을 계량한다. 분말 계량 후에 1L 플라스틱 통에 넣고 알루미나 볼을 분말량의 3배수로 넣는다. 알루미나 볼은 3~10mm 볼을 사용한다. 분말과 볼의 투입이 완료되면 볼밀 기계에서 170~230rpm으로 8시간 동안 건식 혼합을 실시한다. 수득한 건식 분말을 핫프레스(Hot Press)로 가압 소결을 한다. 핫프레스 내부의 진공 조건은 10-1 torr로 하고, 승온속도는 3~7℃, 최고 온도는 750~800℃, 유지시간은 1~3시간으로 하여 소결을 진행한 후 노냉을 수행함으로써 소결체를 얻었다. 이렇게 얻어진 소결체의 소결 밀도는 98.6%이고, 비저항은 8.7x10-4 Ωcm로 측정되었다.
[실시예 2]
MoO2/MoO3 중량% 비율이 16이고 (MoO2+MoO3+Nb2O5)/(MoO2+MoO3)의 중량% 비율이 1.176이 되도록 분말을 계량한다. 분말 계량 후에 1L 플라스틱 통에 넣고 알루미나 볼을 분말량의 3배수로 넣는다. 알루미나 볼은 3~10mm 볼을 사용한다. 분말과 볼의 투입이 완료되면 볼밀 기계에서 170~230rpm에서 8시간 동안 건식 혼합을 실시한다. 수득한 건식 분말을 핫프레스(Hot Press)로 가압 소결을 한다. 핫프레스 내부 진공 조건은 10-1 torr로 하고, 승온속도는 3~7℃, 최고 온도는 750~800℃, 유지시간은 1~3시간으로 하여 소결을 진행한 후 노냉을 수행함으로써 소결체를 얻었다. 이렇게 얻어진 소결체의 소결 밀도가 98.3%이고, 비저항은 2.9x10-4 Ωcm로 측정되었다.
[실시예 3]
MoO2/MoO3 중량% 비율이 1이고 (MoO2+MoO3+Nb2O5)/(MoO2+MoO3)의 중량% 비율이 1.174가 되도록 분말을 계량을 한다. 분말 계량 후에 1L 플라스틱 통에 넣고 알루미나 볼을 분말량의 3배수로 넣는다. 알루미나 볼은 3~10mm 볼을 사용한다. 분말과 볼의 투입이 완료되면 볼밀 기계에서 170~230rpm에서 8시간 동안 건식 혼합을 실시한다. 수득한 건식 분말을 핫프레스(Hot Press)로 가압 소결을 한다. 핫프레스 내부 진공 조건은 10-1 torr로 하고, 승온속도는 3~7℃, 최고 온도는 750~800℃, 유지시간은 1~3시간으로 하여 소결을 진행한 후 노냉을 수행함으로써 소결체를 얻었다. 이렇게 얻어진 소결체의 소결 밀도가 98.0%이고, 비저항은 4.3x10-4 Ωcm로 측정되었다.
[실시예4]
MoO2/MoO3 중량% 비율이 6.64이고 (MoO2+MoO3+Nb2O5)/(MoO2+MoO3)의 중량% 비율이 1.19가 되도록 분말을 계량한다. 분말 계량 후에 1L 플라스틱 통에 넣고 알루미나 볼을 분말량의 3배수로 넣는다. 알루미나 볼은 3~10mm 볼을 사용한다. 분말과 볼의 투입이 완료되면 볼밀 기계에서 170~230rpm에서 8시간 동안 건식 혼합을 실시한다. 수득한 건식 분말을 핫프레스(Hot Press)로 가압 소결을 한다. 핫프레스 내부 진공 조건은 10-1 torr로 하고, 승온속도는 3~7℃, 최고 온도는 750~800℃, 유지시간은 1~3시간으로 하여 소결을 진행한 후 노냉을 수행함으로써 소결체를 얻었다. 이렇게 얻어진 소결체는 소결 밀도가 98.0%이고, 비저항은 1.4x10-4 Ωcm로 측정되었다.
[실시예 5]
MoO2/MoO3 중량% 비율이 6.72이고 (MoO2+MoO3+Ta2O5)/(MoO2+MoO3)의 중량% 비율이 1.176이 되도록 분말을 계량한다. 분말 계량 후에 1L 플라스틱 통에 넣고 알루미나 볼을 분말량의 3배수로 넣는다. 알루미나 볼은 3~10mm 볼을 사용한다. 분말과 볼의 투입이 완료되면 볼밀 기계에서 170~230rpm에서 8시간 동안 건식 혼합을 실시 한다. 수득한 건식 분말을 핫프레스(Hot Press)로 가압 소결을 한다. 핫프레스 내부 진공 조건은 10-1 torr로 하고, 승온속도는 3~7℃, 최고 온도는 750~800℃, 유지시간은 1~3시간으로 하여 소결을 진행한 후 노냉을 수행함으로써 소결체를 얻었다. 이렇게 얻어진 소결체는 소결 밀도가 96.0%이고, 비저항은 5.8x10-4 Ωcm로 측정되었다.
[비교예]
MoO2/MoO3 중량% 비율이 6.7이고 첨가되는 성분이 없어 (MoO2+MoO3)/(MoO2+MoO3)의 중량% 비율이 1이 되도록 분말을 계량한다. 분말 계량 후에 1L 플라스틱 통에 넣고 알루미나 볼을 분말량의 3배수로 넣는다. 알루미나 볼은 3~10mm 볼을 사용한다. 분말과 볼의 투입이 완료되면 볼밀 기계에서 170~230rpm에서 8시간 동안 건식 혼합을 실시한다. 수득한 건식 분말을 핫프레스(Hot Press)로 가압 소결을 한다. 핫프레스 내부의 진공 조건은 10-1 torr로 하고, 승온속도는 3~7℃, 최고 온도는 750~800℃, 유지시간은 1~3시간으로 하여 소결을 진행한 후 노냉을 수행함으로써 소결체를 얻었다. 이렇게 얻어진 소결체는 소결 밀도가 96.1%이고, 비저항은 5.8x10-4 Ωcm로 측정되었다.
이에 따른 결과를 표 1에 정리하였다.
소결체 성분 MoO2/MoO3 (MoO2+MoO3+M)/(MoO2+MoO3) 소결밀도(%) 비저항(Ωcm)
실시예1 MoO2+MoO3+Nb2O5 6.5 1.333 98.6 8.7x10-4
실시예2 MoO2+MoO3+Nb2O5 16 1.176 98.3 2.9x10-4
실시예3 MoO2+MoO3+Nb2O5 1 1.174 98.0 4.3x10-4
실시예4 MoO2+MoO3+Ta2O5+TiO2 6.64 1.19 98.0 1.4x10-4
실시예5 MoO2+MoO3+Ta2O5 6.72 1.176 96.1 5.8x10-4
비교예 MoO2+MoO3 6.7 1 96.1 5.8x10-4
실시예와 비교예 모두에서 기준치에 해당하는 비저항 1x10-2 Ωcm이하, 타겟밀도는 95% 이상을 만족하였다. 다만, 타켓밀도의 측면에서 실시예 1 내지 실시예 4가 특히 우수함을 확인하였다. 이에 따라 타겟밀도가 높은 실시예 1 내지 실시예 4의 경우 박막 증착 시 더 안정적으로 플라즈마 형성이 가능하게 된다.
상술한 실시예와 비교예의 금속 산화물 소결체를 타겟 재료로 하여 박막을 형성한 후 박막의 내열성과 내화학성을 평가하였다.
박막은 상술한 실시예와 비교예의 소결체를 포함하는 타겟을 DC스퍼터를 이용하여 전력밀도(Power density)는 0.5~3.6w/cm2로 하고 아르곤 가스 분위기에서 투명한 글래스 기판 위에 증착하여 형성하였다. 이때 박막두께는 350Å이었다.
추가로 이러한 박막 위에 전극을 형성하였다. 전극은 구리 타겟을 DC스퍼터를 이용하여 전력밀도(Power density)는 0.5~3.6w/cm2로 하고 아르곤 가스 분위기에서 형성하였으며, 박막두께는 6000Å으로 하였다.
이러한 상태에서 글래스 기판 면에서 박막의 반사율을 측정한 후 진공열처리로에서 350℃의 온도로 30분 이상 열처리한 후 반사율을 다시 측정하고 양 반사율을 비교하였다. 표 2에 이에 따른 결과를 제시하였다.
실시예와 비교예 모두 표 2와 같이 최초 반사율은 양호하였고 열처리 후의 반사율의 변화도 크지 않음을 확인하였다. 다만, 실시예들의 경우 최초 반사율로부터 7% 이내의 반사율 변화를 보임으로써 비교예에 비해 내열성이 더 우수함을 확인하였다.
화학안정성을 확인하기 위하여 증착이 완료된 박막(실시예 또는 비교예로 형성된 박막 위에 구리 박막이 형성된 것)에 포토레지스트를 도포한 후 마스크를 정렬하고 노광을 하였다. 이어서 박막의 에칭을 위하여 과산화수소(H2O2) 베이스의 에칭액을 사용하였다. 이러한 과정을 통해 미세 패턴을 형성하고 포토레지스트 세정액으로 잔여 포토리지스트를 제거한 다음 미세 패턴의 손상 여부를 확인하였다.
실시예 1에 따른 금속 산화물과 구리로 구성된 2층의 미세 패턴은 에칭 및 세정 후에 손상이 없었으며, 도 1과 같은 단면을 얻을 수 있었다. 실시예와 비교예에 따른 미세 패턴의 박막 손상 깊이를 표 2에 표시하였다.
타겟 성분 금속산화물/구리박막
반사율(열처리전)
금속산화물/구리박막
반사율(열처리후)
박막 손상 깊이
실시예1 MoO2+MoO3+Nb2O5 4.7% 4.73% 없음
실시예2 MoO2+MoO3+Nb2O5 5.29% 5.18% 0.17㎛
실시예3 MoO2+MoO3+Nb2O5 5.70% 5.47% 0.11㎛
실시예4 MoO2+MoO3+Ta2O5+TiO2 5.47% 5.13% 0.35㎛
실시예5 MoO2+MoO3+Ta2O5 5.81% 5.88% 1.41㎛
비교예 MoO2+MoO3 5.78% 5.35% 3.29㎛
표 2를 참조하면 실시예 1과 별도로 실시예 2 내지 실시예 4의 경우도 박막의 손상된 깊이가 0.5㎛ 미만으로서 양호한 내화학성을 가짐을 확인하였다. 실시예 5의 경우 박막의 손상된 깊이가 1.41㎛로 다소 커졌는데 실시예 5인 Ta2O5의 경우 실시예 4와 같이 TiO2와 혼합하여 사용하는 것이 더 바람직하다는 것을 확인하였다. 한편 비교예의 경우 내화학성의 측면에서 박막의 손상된 깊이가 3.29㎛로 상당히 큰 편이었다. 이를 도 2에 도시하였다.
이와 같이 전체적인 특성으로 볼 때 소결밀도 98% 이상이고 박막 손상 깊이가 0.2㎛ 미만인 실시예 1~실시예 3의 경우가 특히 우수한 특성을 가지는 것으로 확인되었다. 한편 유사한 특성을 가진 ZrO2, SnO2, WO3 의 경우도 비교예에 비해 우수한 내열성, 내화학성의 특징을 갖을 것으로 예상된다.
앞서 설명한 본 발명의 상세한 설명에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술분야의 숙련된 당업자 또는 해당 기술분야에 통상의 지식을 갖는 자라면 후술될 특허청구범위에 기재된 본 발명의 사상 및 기술 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.

Claims (11)

  1. MoO2와 MoO3를 포함하는 몰리브덴 산화물 75~90중량% 및
    Nb2O5, Ta2O5, ZrO2, TiO2, SnO2, WO3 중 적어도 하나 이상의 성분 10~25중량%가 혼합되어 이루어지고,
    상기 몰리브덴 산화물에서 MoO2의 함량은 몰리브덴 산화물 중 50~94.1중량%인 금속 산화물 소결체.
  2. 제1항에 있어서,
    비저항은 1x10-2 Ωcm이하이고, 소결밀도는 95% 이상인 것을 특징으로 하는 금속 산화물 소결체.
  3. MoO2와 MoO3를 포함하는 몰리브덴 산화물 75~90중량% 및
    Nb2O5, Ta2O5, ZrO2, TiO2, SnO2, WO3 중 적어도 하나 이상의 성분 10~25중량%가 혼합되어 이루어지고,
    상기 몰리브덴 산화물에서 MoO2의 함량은 몰리브덴 산화물 중 50~94.1%인 산화물 소결체가 백킹플레이트에 접합되어 이루어지는 스퍼터링 타겟.
  4. 제3항에 있어서,
    스퍼터링에 의한 박막 형성 후 350℃의 온도에서 30분 이상의 열처리 후에 550nm 파장에 대한 광 반사율이 6% 이하인 것을 특징으로 하는 스퍼터링 타겟.
  5. 제3항에 있어서,
    스퍼터링에 의한 박막을 형성한 다음 형성된 박막 상에 리소그라피 공정을 수행하였을 때 상기 박막의 손상된 깊이가 0.5㎛ 미만인 것을 특징으로 하는 스퍼터링 타겟.
  6. MoO2 분말, MoO3 분말 및 M 분말을 준비하고 MoO2/MoO3의 중량% 비율을 1~16이 되도록 하고, 각 성분의 중량% 비율 (MoO2+MoO3+M)/(MoO2+MoO3)을 1.11~1.33이 되도록 하여 혼합하는 제1단계,
    상기 제1단계를 마친 혼합 분말을 소결하는 제2단계,
    상기 제2단계를 마친 소결체의 상면과 하면이 매끄럽도록 가공하는 제3단계 및
    상기 제3단계를 마친 소결체를 백킹플레이트에 본딩하는 제4단계
    를 포함하는 스퍼터링 타겟의 제조방법.
    (여기에서, (MoO2+MoO3+M)/(MoO2+MoO3)의 분자와 분모의 MoO2의 양과 MoO3의 양은 각각 서로 동일하고, M은 Nb2O5, Ta2O5, ZrO2, TiO2, SnO2, WO3 중 적어도 하나 이상의 성분임.)
  7. MoO2와 MoO3를 포함하는 몰리브덴 산화물 75~90중량% 및
    Nb2O5, Ta2O5, ZrO2, TiO2, SnO2, WO3 중 적어도 1 개 이상의 성분 10~25중량%가 혼합되어 이루어지고,
    상기 몰리브덴 산화물에서 MoO2의 함량은 몰리브덴 산화물 중 50~94.1중량%이고, 550nm 파장에 대한 반사율이 6% 이하인 박막.
  8. 제7항에 있어서,
    350℃의 온도에서 30분 이상의 열처리 후에 550nm 파장에 대한 광 반사율의 차이가 7% 이하인 것을 특징으로 하는 박막.
  9. 제7항에 있어서,
    박막 상에 리소그라피 공정을 수행하였을 때 박막의 손상 깊이가 0.5㎛ 미만인 것을 특징으로 하는 박막.
  10. 제7항 내지 제9항 중 어느 한 항의 박막이 게이트층, 소스층 및 드레인층으로 이용되는 박막 트랜지스터.
  11. 제7항 내지 제9항 중 어느 한 항의 박막이 형성되는 디스플레이 장치.
PCT/KR2020/018386 2020-12-10 2020-12-15 몰리브덴 산화물을 주된 성분으로 하는 금속 산화물 소결체 및 이를 포함하는 스퍼터링 타겟{metal oxide sintered body containing molybdenum oxide as the main component and sputtering target comprising the same} WO2022124460A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080084740.1A CN114916228B (zh) 2020-12-10 2020-12-15 以钼氧化物为主成分的金属氧化物烧结体及包含其的溅射靶材

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020200172235A KR102315308B1 (ko) 2020-12-10 2020-12-10 몰리브덴 산화물을 주된 성분으로 하는 금속 산화물 소결체 및 이를 포함하는 스퍼터링 타겟
KR1020200172262A KR102315283B1 (ko) 2020-12-10 2020-12-10 몰리브덴 산화물을 주된 성분으로 하는 금속 산화물 박막 및 이러한 박막이 형성된 박막트랜지스터와 디스플레이 장치
KR10-2020-0172262 2020-12-10
KR10-2020-0172235 2020-12-10

Publications (1)

Publication Number Publication Date
WO2022124460A1 true WO2022124460A1 (ko) 2022-06-16

Family

ID=81973373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/018386 WO2022124460A1 (ko) 2020-12-10 2020-12-15 몰리브덴 산화물을 주된 성분으로 하는 금속 산화물 소결체 및 이를 포함하는 스퍼터링 타겟{metal oxide sintered body containing molybdenum oxide as the main component and sputtering target comprising the same}

Country Status (2)

Country Link
CN (1) CN114916228B (ko)
WO (1) WO2022124460A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060165572A1 (en) * 2004-06-29 2006-07-27 Mchugh Lawrence F Method of making MoO2 powders, products made from MoO2 powders, deposition of MoO2 thin films, and methods of using such materials
KR20080019839A (ko) * 2006-08-29 2008-03-05 엘지.필립스 엘시디 주식회사 박막 트랜지스터 소자 및 그 제조방법
KR20190120272A (ko) * 2018-03-13 2019-10-23 제이엑스금속주식회사 산화물 박막 및 당해 박막을 제조하기 위한 스퍼터링 타깃용 산화물 소결체
KR20200020855A (ko) * 2018-08-09 2020-02-26 제이엑스금속주식회사 산화물 스퍼터링 타깃 및 그 제조 방법, 그리고 당해 산화물 스퍼터링 타깃을 사용하여 성막한 산화물 박막
KR20200069314A (ko) * 2017-10-06 2020-06-16 플란제 에스이 몰리브덴 옥사이드 층의 증착을 위한 타겟 재료

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002275624A (ja) * 2001-03-19 2002-09-25 Sumitomo Metal Mining Co Ltd 透明導電性薄膜形成用焼結体ターゲット、その製造方法、及びそれより得られる透明導電性薄膜
RU2396210C2 (ru) * 2003-07-22 2010-08-10 Х.К.Штарк Инк. ПОРОШОК MoO2, СПОСОБЫ ИЗГОТОВЛЕНИЯ ПЛАСТИНЫ ИЗ ПОРОШКА MoO2 (ИХ ВАРИАНТЫ), ЭЛЕМЕНТ И СПОСОБ ИЗГОТОВЛЕНИЯ ТОНКОЙ ПЛЕНКИ ИЗ НЕЕ, СПОСОБ РАСПЫЛЕНИЯ С ПРИМЕНЕНИЕМ УКАЗАННОЙ ПЛАСТИНЫ
JP2012148950A (ja) * 2010-07-12 2012-08-09 Central Glass Co Ltd 低反射膜およびその形成方法およびそれを用いた低反射部材
EP3018111A1 (en) * 2014-11-07 2016-05-11 Plansee SE Metal oxide thin film, method for depositing metal oxide thin film and device comprising metal oxide thin film
WO2019234248A1 (en) * 2018-06-08 2019-12-12 Cambridge Enterprise Limited Metal oxide-based electrode compositions
EP3715496A1 (de) * 2019-03-29 2020-09-30 Plansee SE Sputteringtarget zur herstellung molybdänoxidhaltiger schichten

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060165572A1 (en) * 2004-06-29 2006-07-27 Mchugh Lawrence F Method of making MoO2 powders, products made from MoO2 powders, deposition of MoO2 thin films, and methods of using such materials
KR20080019839A (ko) * 2006-08-29 2008-03-05 엘지.필립스 엘시디 주식회사 박막 트랜지스터 소자 및 그 제조방법
KR20200069314A (ko) * 2017-10-06 2020-06-16 플란제 에스이 몰리브덴 옥사이드 층의 증착을 위한 타겟 재료
KR20190120272A (ko) * 2018-03-13 2019-10-23 제이엑스금속주식회사 산화물 박막 및 당해 박막을 제조하기 위한 스퍼터링 타깃용 산화물 소결체
KR20200020855A (ko) * 2018-08-09 2020-02-26 제이엑스금속주식회사 산화물 스퍼터링 타깃 및 그 제조 방법, 그리고 당해 산화물 스퍼터링 타깃을 사용하여 성막한 산화물 박막

Also Published As

Publication number Publication date
CN114916228A (zh) 2022-08-16
CN114916228B (zh) 2023-08-15

Similar Documents

Publication Publication Date Title
JP5306308B2 (ja) スパッタリングターゲット、透明導電性酸化物、およびスパッタリングターゲットの製造方法
EP1720175B1 (en) Transparent conductive film and transparent conductive base material utilizing the same
WO2012036527A2 (ko) 시인성이 우수한 투명 전도성 필름 및 그 제조 방법
WO2013036038A2 (en) Transparent conductive film, method of manufacturing the same, and touch panel having the same
KR20150027845A (ko) 투명 도전성 필름 및 그 제조 방법
KR20050086413A (ko) 발광 디스플레이 디바이스 제조용 물질
WO2010038954A2 (ko) 투명 도전막 및 이를 구비한 투명 전극
EP2299536A1 (en) Substrate for solar cell and oxide semiconductor electrode for dye-sensitized solar cell
EP3276634B1 (en) Transparent conductor and touch panel
WO2012091487A2 (ko) 전극 및 이를 포함하는 전자소자
WO2016017999A1 (ko) 저방사 코팅, 및 저방사 코팅을 포함하는 창호용 기능성 건축 자재
WO2022124460A1 (ko) 몰리브덴 산화물을 주된 성분으로 하는 금속 산화물 소결체 및 이를 포함하는 스퍼터링 타겟{metal oxide sintered body containing molybdenum oxide as the main component and sputtering target comprising the same}
CN109313964A (zh) 透明导电体
WO2016047936A4 (ko) 플렉서블 기판 및 그 제조방법
WO2011046390A2 (en) Plate member for touch panel and method of manufacturing the same
KR102315283B1 (ko) 몰리브덴 산화물을 주된 성분으로 하는 금속 산화물 박막 및 이러한 박막이 형성된 박막트랜지스터와 디스플레이 장치
KR102315308B1 (ko) 몰리브덴 산화물을 주된 성분으로 하는 금속 산화물 소결체 및 이를 포함하는 스퍼터링 타겟
TWI663761B (zh) 用於oled的透明支撐電極與其製造方法
WO2016186394A1 (ko) 전도성 적층체 및 이를 포함하는 투명 전극
WO2023059071A1 (ko) 몰리브덴 산화물계 소결체, 상기 소결체를 이용한 박막, 상기 박막을 포함하는 박막트랜지스터 및 디스플레이 장치
KR102646917B1 (ko) 몰리브덴 산화물계 소결체, 상기 소결체를 이용한 박막, 상기 박막을 포함하는 박막트랜지스터 및 디스플레이 장치
WO2016148515A1 (ko) 전도성 구조체 및 이를 포함하는 전자 소자
WO2011007925A1 (en) Hole transporting layer for light emitting devices and solar cells and method for manufacturing the same
WO2022050623A1 (ko) 투명 전극 적층체 및 이를 포함하는 터치센서
JP7184510B2 (ja) 調光フィルム用光透過性導電フィルム及び調光フィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20965215

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20965215

Country of ref document: EP

Kind code of ref document: A1