WO2022124260A1 - 蒸発濃縮機構、これを備えた分析装置、および、蒸発濃縮機構の制御方法 - Google Patents

蒸発濃縮機構、これを備えた分析装置、および、蒸発濃縮機構の制御方法 Download PDF

Info

Publication number
WO2022124260A1
WO2022124260A1 PCT/JP2021/044695 JP2021044695W WO2022124260A1 WO 2022124260 A1 WO2022124260 A1 WO 2022124260A1 JP 2021044695 W JP2021044695 W JP 2021044695W WO 2022124260 A1 WO2022124260 A1 WO 2022124260A1
Authority
WO
WIPO (PCT)
Prior art keywords
concentration mechanism
liquid level
evaporation
sample liquid
evaporation concentration
Prior art date
Application number
PCT/JP2021/044695
Other languages
English (en)
French (fr)
Inventor
翔 岩佐
淳 前田
Original Assignee
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク filed Critical 株式会社日立ハイテク
Priority to JP2022568262A priority Critical patent/JP7456004B2/ja
Priority to CN202180076683.7A priority patent/CN116547517A/zh
Priority to EP21903361.0A priority patent/EP4257949A1/en
Priority to US18/036,920 priority patent/US20240019347A1/en
Publication of WO2022124260A1 publication Critical patent/WO2022124260A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4022Concentrating samples by thermal techniques; Phase changes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1009Characterised by arrangements for controlling the aspiration or dispense of liquids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4022Concentrating samples by thermal techniques; Phase changes
    • G01N2001/4027Concentrating samples by thermal techniques; Phase changes evaporation leaving a concentrated sample
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00346Heating or cooling arrangements
    • G01N2035/00356Holding samples at elevated temperature (incubation)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1009Characterised by arrangements for controlling the aspiration or dispense of liquids
    • G01N2035/1025Fluid level sensing

Definitions

  • the present invention relates to an evaporative concentration device for evaporating and concentrating a sample liquid as a pre-measurement treatment of the analyzer.
  • Patent Document 1 describes a storage rate detector that detects the storage rate of the condensed liquid generated from the gas drawn from the evaporation can, and a radioactive waste liquid so that the storage rate becomes a predetermined value.
  • a solidifying device for a radioactive liquid liquid having a heating control device for controlling the heating of the radioactive liquid waste liquid is disclosed.
  • an analyzer is required to analyze a small amount of a sample composed of various kinds of sample components and solvent compositions accurately in a short time.
  • the evaporation rate varies depending on the solvent composition, ambient temperature, exhaust conditions, etc., and if the evaporation rate is too slow, the concentration of the component to be analyzed cannot be sufficiently increased within a predetermined time. Further, if the evaporation rate is too fast and the sample liquid is excessively concentrated, the amount of sample liquid required for analysis cannot be secured, and additional treatment such as adding a solvent and re-diluting is required.
  • the present invention is configured as follows.
  • the temperature of the container for accommodating the sample liquid, the heating unit for heating the container, the liquid level sensor for detecting the liquid level height of the sample liquid contained in the container, and the temperature of the heating unit are controlled.
  • the control unit controls the temperature of the heating unit based on the liquid level of the sample liquid detected by the liquid level sensor.
  • a small amount of sample liquid can be accurately evaporated and concentrated in a short time regardless of the composition of the sample liquid and the ambient environmental conditions.
  • FIG. It is a schematic diagram which shows the whole structure of the analyzer which concerns on Example 1.
  • FIG. It is a schematic diagram which shows the structure of the evaporation concentration mechanism of Example 1.
  • It is a flowchart which shows the evaporation concentration procedure of Example 1.
  • It is a graph which shows the transition of the liquid level at the time of carrying out the evaporation concentration procedure of Example 1.
  • the analyzer 100 has a pretreatment unit 101 and an analysis unit 102, and the pretreatment unit 101 includes an evaporation concentration mechanism 103.
  • the operator installs the sample container 1 containing the sample liquid containing the component to be analyzed in the pretreatment section 101, and the pretreatment section 101 performs analysis pretreatment such as adjustment and purification.
  • the evaporation concentration mechanism 103 evaporates the solvent in the sample liquid to increase the concentration of the component to be analyzed.
  • the sample liquid for which the pretreatment has been completed is automatically or manually supplied to the analysis unit 102, and when the analysis is completed, the analysis result is output from the analysis unit 102.
  • the evaporative concentration mechanism 103 includes a sample container 1 for accommodating the sample liquid and a container holding portion 2, and by heating these with the heating means 3, the solvent in the sample liquid is evaporated and the sample liquid is concentrated.
  • the heating means 3 is a heat generating element capable of controlling the amount of heat generated, and examples thereof include a heater and a Pelche element.
  • the control unit 5 measures the temperature of the container holding unit by a temperature sensor 4 attached to the container holding unit 2, and controls the heating means 3 so that this coincides with a predetermined heating temperature Th.
  • a liquid level sensor 6 having detection positions at two points, an upper detection point hu and a lower detection point hd.
  • An example of a liquid level sensor is a photodiode.
  • the liquid level sensor 6 detects transmitted light emitted from the opposite light source 7 and passing through the light source side slit 8, the sample container 1, and the liquid level sensor side slit 9.
  • the material of the sample container 1 is light transmissive, and the transmitted light intensity changes depending on the presence or absence of the sample liquid on the optical path. From this change, the control unit 5 detects that the sample liquid level has passed the upper detection point hu or the lower detection point hd.
  • liquid level detecting means is an optical sensor in this embodiment, the same effect can be realized by substituting the liquid level detecting means such as an ultrasonic sensor or a weight sensor. These alternative means do not require a slit and simplify the structure of the container holding portion 2. Further, a material having no light transmission can be used for the sample container 1.
  • the exhaust means 10 may be provided in order to increase the evaporation efficiency.
  • An example of an exhaust means is a vacuum pump.
  • the evaporative gas is discharged to the outside by the exhaust means 10 through the exhaust pipe 11.
  • the control unit 5 controls the exhaust by switching the opening and closing of the exhaust valve 12 on the exhaust pipe 11.
  • FIG. 3 is a flowchart showing the procedure for evaporation and concentration
  • FIGS. 4A and 4B are graphs showing changes in the liquid level and the temperature of the container holding portion during evaporation and concentration.
  • the operator sets the heating temperature Th and the target liquid level he in the control unit 5 as evaporation concentration conditions (S101). These parameters are determined in consideration of the boiling point of the solvent species, the heat denaturation temperature of the component to be analyzed, the target evaporation rate, the target concentration rate, and the like.
  • the sample container 1 containing the sample liquid is installed in the container holding unit 2 (S102), and the control unit 5 is instructed to start evaporation concentration (S103).
  • the control unit 5 starts heating by the heating means 3, opens the exhaust valve 12, and starts evaporation concentration.
  • the liquid level drops and passes through the upper detection point hu and the lower detection point hd in sequence (S104, S105).
  • the control unit 5 obtains the evaporation rate from the time when the liquid level passes each detection point, and calculates the expected time te to reach the target liquid level he (S106). At time te, the control unit 5 stops heating, closes the exhaust valve 12, and ends evaporation concentration (S107).
  • FIG. 5 is a schematic view showing the configuration of the evaporation concentration mechanism 103 according to the second embodiment.
  • the overall configuration of the analyzer 100 in the second embodiment is the same as that of the first embodiment, the illustration and description will be omitted. Further, the configuration of the evaporation concentration mechanism 103 is the same as that of the first embodiment, and the same reference numerals in FIGS. 2 and 5 indicate the same parts, and thus the description thereof will be omitted again.
  • the difference from the first embodiment is that the liquid level sensor 6, the light source 7, the light source side slit 8, and the liquid level sensor side slit 9 have a width in the height direction, and the transmitted light intensity pattern can be measured in this range.
  • An example of such a liquid level sensor 6 is a CCD image sensor.
  • the control unit 5 can continuously measure the sample liquid level and perform more precise control than in the first embodiment.
  • FIG. 6 is a flowchart showing the procedure for evaporation and concentration
  • FIGS. 7A and 7B are graphs showing changes in the liquid level and the temperature of the container holding portion during evaporation and concentration.
  • Example 2 The basic procedure of Example 2 is the same as that of Example 1, but as shown in the liquid level graph of FIG. 7A, first evaporating and concentrating at the rapid evaporation rate vf until the liquid level is close to the target (hsd). When it goes down, it switches to the slow evaporation rate vsd. Further, as shown in the container holding portion temperature graph of FIG. 7B, the heating temperature Th is adjusted within the range of the heating temperature upper limit Thorium and the environmental temperature ta, and feedback control is performed so that the evaporation rate matches the target value (vf or vsd). I do.
  • the operator sets the heating temperature upper limit Tlim, the rapid evaporation rate vf, the low-speed evaporation rate vsd, the deceleration liquid level hsd, and the target liquid level he as the evaporation concentration conditions in the control unit 5 (S201). Similar to Example 1, these parameters are determined in consideration of the boiling point of the solvent species, the heat denaturation temperature of the component to be analyzed, the target evaporation rate, the target concentration rate, and the like.
  • the sample container 1 containing the sample liquid is installed in the container holding unit 2 (S202), and the control unit 5 is instructed to start evaporation concentration (S203).
  • control unit 5 starts heating by the heating means 3 with the evaporation rate target value as vf, opens the exhaust valve 12, and starts evaporation concentration (S204).
  • the evaporation rate target value is switched to vsd (S205).
  • the heating means 3 is stopped, the exhaust valve 12 is closed, and evaporation concentration is completed (S206).
  • Example 2 the same method is effective in Example 2 as a countermeasure when the sample container 1 shown in Example 1 has a non-constant cross-sectional area and a countermeasure for an evaporation amount error due to a cooling delay after the completion of evaporation concentration.
  • the second embodiment of the present invention has the following advantages in addition to obtaining the same effects as those of the first embodiment. -By switching the evaporation rate, it is possible to achieve both high-speed evaporation and concentration and precise control of the amount of evaporation near the target liquid level. -Since the evaporation rate is continuously controlled by feedback control, it is not easily affected by changes in conditions during evaporation and concentration (changes in ambient temperature and exhaust conditions, changes in solvent composition when a mixed solvent is used).
  • the evaporation concentration mechanism is shown as a part of the pretreatment unit for the sake of explanation, but the evaporation concentration mechanism according to the present invention may be incorporated into a sample pretreatment device independent of the analyzer. However, it may be mounted as an evaporation concentrator independent of the pretreatment section.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

試料液の組成や周囲環境条件によらず、少量の試料液を短時間で精度よく蒸発濃縮する蒸発濃縮機構を実現する。蒸発濃縮機構において、試料液を収容する容器1と、前記容器を加熱する加熱部3と、前記容器に収容された試料液の液面高さを検知する液位センサ6と、前記加熱部の温度を制御する制御部5とを備え、前記制御部5が、前記液位センサ6により検知した前記試料液の液位に基づいて、前記加熱部の温度を制御する。これにより、試料液の組成や周囲環境条件によらず、少量の試料液を短時間で精度よく蒸発濃縮することができる。

Description

蒸発濃縮機構、これを備えた分析装置、および、蒸発濃縮機構の制御方法
 本発明は、分析装置の測定前処理として試料液を蒸発濃縮するための蒸発濃縮装置に関する。
 分析装置の高感度化を実現するため、分析対象成分を含む試料液中の溶媒を蒸発させて分析対象成分の濃度を高める蒸発濃縮が実施される場合がある。
 蒸発濃縮を行う技術として、例えば特許文献1には、蒸発缶から引き出したガスから生成される凝縮液の貯留速度を検出する貯留速度検出器と、この貯留速度が所定値となるように放射性廃液の加熱を制御する加熱制御装置とを有する、放射性廃液の固化装置が開示されている。
特開2002-148389号公報
 分析装置では一般に、様々な種類の試料成分や溶媒組成からなる少量の試料を、短時間で精度よく分析することが求められる。一方、蒸発速度は溶媒組成や周囲温度、排気条件等によって変わり、蒸発速度が遅すぎると所定時間内に分析対象成分の濃度を十分に高めることができない。また、蒸発速度が速すぎて過剰に濃縮してしまうと、分析に必要な試料液量が確保できず、溶媒を添加して再希釈するなどの追加処理が必要となる。
 特許文献1の手法は、凝縮液の貯留速度が所定値となるように蒸発濃縮を行うが、試料液の液量を直接検知しないため、蒸発量の検出に遅延や誤差が生じやすい。このため、この手法では、少量の試料液において蒸発量を精度よく制御することが難しい。
 そこで、本発明では、試料液の組成や周囲環境条件によらず、少量の試料液を短時間で精度よく蒸発濃縮することを目的とする。
 上記目的を達成するために、本発明は、次のように構成される。
 蒸発濃縮機構において、試料液を収容する容器と、前記容器を加熱する加熱部と、前記容器に収容された試料液の液面高さを検知する液位センサと、前記加熱部の温度を制御する制御部とを備え、前記制御部が、前記液位センサにより検知した前記試料液の液位に基づいて、前記加熱部の温度を制御する。
 本発明により、試料液の組成や周囲環境条件によらず、少量の試料液を短時間で精度よく蒸発濃縮することができる。
実施例1に係る分析装置の全体構成を示す概略図である。 実施例1の蒸発濃縮機構の構成を示す概略図である。 実施例1の蒸発濃縮手順を示すフローチャートである。 実施例1の蒸発濃縮手順実施時の液位の推移を示すグラフである。 実施例1の蒸発濃縮手順実施時の容器保持部温度の推移を示すグラフである。 実施例2の蒸発濃縮機構の構成を示す概略図である。 実施例2の蒸発濃縮手順を示すフローチャートである。 実施例2の蒸発濃縮手順実施時の液位の推移を示すグラフである。 実施例2の蒸発濃縮手順実施時の容器保持部温度の推移を示すグラフである。
 以下、本発明の実施形態について図面を参照して説明する。
 (実施例1)
 まず、図1および図2を用いて、実施例1の構成を説明する。
 図1は、実施例1に係る分析装置100の全体構成を示す概略図である。
 分析装置100は前処理部101と分析部102とを有し、前処理部101は蒸発濃縮機構103を備える。操作者は分析対象成分を含む試料液が収容された試料容器1を前処理部101に設置し、前処理部101は調整・精製などの分析前処理を行う。この過程で、蒸発濃縮機構103は、試料液中の溶媒を蒸発させて分析対象成分の濃度を高める。前処理が完了した試料液は自動または手動で分析部102に供給され、分析が完了すると分析部102より分析結果が出力される。
 図2は、蒸発濃縮機構103の構成を示す概略図である。
 蒸発濃縮機構103は試料液を収容する試料容器1と容器保持部2を備え、これらを加熱手段3により加熱することで、試料液中の溶媒を蒸発させて試料液を濃縮する。加熱手段3は発熱量を制御可能な発熱素子であり、例としてはヒータやペルチェ素子があげられる。制御部5は容器保持部2に取り付けられた温度センサ4により容器保持部温度を測定し、これが所定の加熱温度Thと一致するように加熱手段3を制御する。
 また、試料液位を測定する手段として、上部検知点huおよび下部検知点hdの2ヶ所に検出位置をもつ液位センサ6を備える。液位センサの例としてはフォトダイオードがあげられる。液位センサ6は、対向する光源7から発せられ、光源側スリット8、試料容器1、液位センサ側スリット9を通過した透過光を検出する。試料容器1の材質は光透過性であり、光路上の試料液有無によって透過光強度が変化する。制御部5はこの変化から、試料液位が上部検知点huまたは下部検知点hdを通過したことを検知する。
 なお、本実施例では液位検出手段を光学センサとしたが、これを超音波センサや重量センサなどの液位検出手段に代替しても同様の効果を実現できる。これらの代替手段ではスリットが不要であり、容器保持部2の構造が簡単になる。また、試料容器1に光透過性のない材質を使用できる。
 上記に加え、蒸発効率を高めるために排気手段10を備えてもよい。排気手段の例としては真空ポンプがあげられる。蒸発気体は排気配管11を通って排気手段10により外部に排出される。制御部5は、排気配管11上にある排気バルブ12の開閉を切り替えることで排気を制御する。
 次に、図3、図4Aおよび図4Bを用いて、実施例1による蒸発濃縮手順を説明する。
 図3は蒸発濃縮手順を示すフローチャートであり、図4Aおよび図4Bは蒸発濃縮中の液位と容器保持部温度の推移を示すグラフである。
 まず操作者は蒸発濃縮条件として加熱温度Thと目標液位heを制御部5に設定する(S101)。これらのパラメータは、溶媒種の沸点、分析対象成分の熱変性温度、目標蒸発速度、目標濃縮率などを考慮して決定する。次に、試料液を収容した試料容器1を容器保持部2に設置し(S102)、制御部5に蒸発濃縮開始を指示する(S103)。これを受けて、制御部5は加熱手段3による加熱を開始し、排気バルブ12を空けて蒸発濃縮を開始する。蒸発が始まると液面が低下し、上部検知点huと下部検知点hdを順次通過する(S104,S105)。制御部5は、液面が各検知点を通過した時刻から蒸発速度を求め、目標液位heに達する予想時刻teを算出する(S106)。時刻teになると制御部5は加熱を停止し、排気バルブ12を閉じて蒸発濃縮を終了する(S107)。
 なお、試料容器1が円錐など断面積一定でない形状の場合、液位と液量が単純な比例関係にならない。この場合は、あらかじめ試料容器1の液位と液量の関係式を制御部5に記憶させておき、S106ではこの式を用いて時刻teを算出する。
 また、蒸発濃縮終了後も液温が十分冷めるまで一定の冷却遅延があり、この間に溶媒が蒸発すると液位は目標液位heより低くなる(図4A中のΔhe)。この影響は以下のような方法で軽減することが可能である。
・試料容器1と排気バルブ12間の排気配管11内の容積を極力小さくする。
・試料液を冷却する図示しない冷却手段13をさらに備え、蒸発濃縮終了直後に試料液を速やかに冷却する。加熱手段3をペルチェ素子とすれば、冷却手段13を兼ねることができる。
 以上のように、本発明の実施例1によれば、試料液の組成や周囲環境条件によらず、少量の試料液を精度よく蒸発濃縮することが可能である。
(実施例2)
 つづいて、図5を用いて実施例2の構成を説明する。
 図5は、実施例2による蒸発濃縮機構103の構成を示す概略図である。
 なお、実施例2における分析装置100の全体構成は実施例1と同様であるため、図示および説明は省略する。また、蒸発濃縮機構103の構成も実施例1と同様であり、図2と図5の同一符号は同一部品を示すので、再度の説明は省略する。
 実施例1との違いは、液位センサ6、光源7、光源側スリット8、液位センサ側スリット9が高さ方向に幅をもち、この範囲で透過光強度パターンを測定できることである。このような液位センサ6の例としては、CCDイメージセンサがあげられる。これにより、制御部5は試料液位を連続的に測定し、実施例1よりも精密な制御を行うことが可能となる。
 次に、図6、図7Aおよび図7Bを用いて、実施例2による蒸発濃縮手順を説明する。
 図6は蒸発濃縮手順を示すフローチャートであり、図7Aおよび図7Bは蒸発濃縮中の液位と容器保持部温度の推移を示すグラフである。
 実施例2も基本的な手順は実施例1と同じであるが、図7Aの液位グラフに示すように、最初は急速蒸発速度vfで蒸発濃縮を行い、液位が目標近く(hsd)まで下がると低速蒸発速度vsdに切り替える。また、図7Bの容器保持部温度グラフに示すように、加熱温度Thを加熱温度上限Tlimと環境温度taの範囲内で調節し、蒸発速度が目標値(vfまたはvsd)に一致するようフィードバック制御を行う。
 まず操作者は、蒸発濃縮条件として加熱温度上限Tlim、急速蒸発速度vf、低速蒸発速度vsd、減速液位hsd、目標液位heを制御部5に設定する(S201)。これらのパラメータは、実施例1と同様に、溶媒種の沸点、分析対象成分の熱変性温度、目標蒸発速度、目標濃縮率などを考慮して決定する。次に、試料液を収容した試料容器1を容器保持部2に設置し(S202)、制御部5に蒸発濃縮開始を指示する(S203)。これを受けて、制御部5は蒸発速度目標値をvfとして加熱手段3による加熱を開始し、排気バルブ12を空けて蒸発濃縮を開始する(S204)。液位が減速液位hsdに達すると、蒸発速度目標値をvsdに切り替える(S205)。液位が目標液位heに達すると加熱手段3を停止し、排気バルブ12を閉じて蒸発濃縮を終了する(S206)。
 また、実施例1で示した試料容器1が断面積一定でない場合の対策、および蒸発濃縮終了後の冷却遅延による蒸発量誤差の対策は、実施例2においても同様の方法が有効である。
 以上のように、本発明の実施例2では、実施例1と同様の効果を得られることに加えて、以下の利点がある。 
・蒸発速度を切り替えることにより、蒸発濃縮の高速化と目標液位付近での精密な蒸発量制御を両立できる。 
・フィードバック制御により連続的に蒸発速度を制御するため、蒸発濃縮中の条件変化(周囲温度や排気条件の変化、混合溶媒使用時の溶媒組成変化)の影響を受けにくい。
 なお、本発明は上述した実施形態や変形例に限定されるものではなく、他の様々な変形例が含まれる。上述した実施形態は本願発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
 また、上述した実施例においては、説明のために蒸発濃縮機構を前処理部の一部として示したが、本発明に係る蒸発濃縮機構は、分析装置から独立した試料前処理装置に組み込んでもよいし、前処理部から独立した蒸発濃縮装置として実装してもよい。
 100・・・分析装置、101・・・前処理部、102・・・分析部、103・・・蒸発濃縮機構、1・・・試料容器、2・・・容器保持部、3・・・加熱手段、4・・・温度センサ、5・・・制御部、6・・・液位センサ、7・・・光源、8・・・光源側スリット、9・・・液位センサ側スリット、10・・・排気手段、11・・・排気配管、12・・・排気バルブ、13・・・冷却手段

Claims (15)

  1.  試料液を収容する容器と、
     前記容器を加熱する加熱部と、
     前記容器に収容された試料液の液面高さを検知する液位センサと、
     前記加熱部の温度を制御する制御部と、を備え、
     前記制御部が、前記液面センサにより検知した前記試料液の液位に基づいて、前記加熱部の温度を制御する蒸発濃縮機構。
  2.  請求項1に記載の蒸発濃縮機構であって、
     前記制御部が、前記容器に収容された前記試料液の液位が所定の高さまで減衰したことを検知した時、前記加熱部による加熱を停止することで蒸発量を制御する蒸発濃縮機構。
  3.  請求項1に記載の蒸発濃縮機構であって、
     前記制御部が、前記容器に収容された前記試料液の液位変化速度から、前記試料液の液位が所定の高さまで減衰するのにかかる時間を予測し、この時間が経過した時に、前記加熱部による加熱を停止することで蒸発量を制御する蒸発濃縮機構。
  4.  請求項1に記載の蒸発濃縮機構であって、
     前記制御部が、前記容器に収容された前記試料液の蒸発速度が所定の値になるように、前記加熱部の温度を制御する蒸発濃縮機構。
  5.  請求項1に記載の蒸発濃縮機構であって、
     前記制御部が、前記試料液に含まれる分析対象成分または溶媒の特性に応じて、前記加熱部の温度を制御する蒸発濃縮機構。
  6.  請求項1に記載の蒸発濃縮機構であって、
     蒸発した気体を排気する排気部をさらに備え、前記制御部が、前記液位センサにより検知した前記試料液の液位に基づいて、前記排気部の排気量を制御する蒸発濃縮機構。
  7.  請求項1に記載の蒸発濃縮機構であって、
     前記試料液を冷却する冷却部をさらに備え、前記制御部が、前記液位センサにより検知した前記試料液の液位に基づいて、前記冷却部の温度を制御する蒸発濃縮機構。
  8.  請求項1乃至7のいずれか一項に記載の蒸発濃縮機構を備えた分析装置。
  9.  試料液を収容する容器と、
     前記容器を加熱する加熱部と、
     前記容器に収容された試料液の液面高さを検知する液位センサと、
    を備えた蒸発濃縮機構の制御方法であって、
     前記液面センサにより検知した前記試料液の液位に基づいて、前記加熱部の温度を制御する蒸発濃縮機構の制御方法。
  10.  請求項9に記載の蒸発濃縮機構の制御方法であって、
     前記容器に収容された前記試料液の液位が所定の高さまで減衰したことを検知した時、前記加熱部による加熱を停止することで蒸発量を制御する蒸発濃縮機構の制御方法。
  11.  請求項9に記載の蒸発濃縮機構の制御方法であって、
     前記容器に収容された前記試料液の液位変化速度から、前記試料液の液位が所定の高さまで減衰するのにかかる時間を予測し、この時間が経過した時に、前記加熱部による加熱を停止することで蒸発量を制御する蒸発濃縮機構の制御方法。
  12.  請求項9に記載の蒸発濃縮機構の制御方法であって、
     前記容器に収容された前記試料液の蒸発速度が所定の値になるように、前記加熱部の温度を制御する蒸発濃縮機構の制御方法。
  13.  請求項9に記載の蒸発濃縮機構の制御方法であって、
     前記試料液に含まれる分析対象成分または溶媒の特性に応じて、前記加熱部の温度を制御する蒸発濃縮機構の制御方法。
  14.  請求項9に記載の蒸発濃縮機構の制御方法であって、
     蒸発した気体を排気する排気部をさらに備え、前記液位センサにより検知した前記試料液の液位に基づいて、前記排気部の排気量を制御する蒸発濃縮機構の制御方法。
  15.  請求項9に記載の蒸発濃縮機構の制御方法であって、
     前記試料液を冷却する冷却部をさらに備え、前記液位センサにより検知した前記試料液の液位に基づいて、前記冷却部の温度を制御する蒸発濃縮機構の制御方法。
PCT/JP2021/044695 2020-12-07 2021-12-06 蒸発濃縮機構、これを備えた分析装置、および、蒸発濃縮機構の制御方法 WO2022124260A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022568262A JP7456004B2 (ja) 2020-12-07 2021-12-06 蒸発濃縮機構、これを備えた分析装置、および、蒸発濃縮機構の制御方法
CN202180076683.7A CN116547517A (zh) 2020-12-07 2021-12-06 蒸发浓缩机构、具备该蒸发浓缩机构的分析装置以及蒸发浓缩机构的控制方法
EP21903361.0A EP4257949A1 (en) 2020-12-07 2021-12-06 Evaporative concentration mechanism, analysis device provided with same, and control method for evaporative concentration mechanism
US18/036,920 US20240019347A1 (en) 2020-12-07 2021-12-06 Evaporative concentration mechanism, analyzer including the same, and method of controlling evaporative concentration mechanism

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020202947 2020-12-07
JP2020-202947 2020-12-07

Publications (1)

Publication Number Publication Date
WO2022124260A1 true WO2022124260A1 (ja) 2022-06-16

Family

ID=81973235

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/044695 WO2022124260A1 (ja) 2020-12-07 2021-12-06 蒸発濃縮機構、これを備えた分析装置、および、蒸発濃縮機構の制御方法

Country Status (5)

Country Link
US (1) US20240019347A1 (ja)
EP (1) EP4257949A1 (ja)
JP (1) JP7456004B2 (ja)
CN (1) CN116547517A (ja)
WO (1) WO2022124260A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5819901A (ja) * 1981-07-29 1983-02-05 Hitachi Ltd 温度制御装置
JPH10330104A (ja) * 1997-03-31 1998-12-15 Fujitsu Ltd 廃硫酸連続精製装置及び精製方法並びにガラス製加熱装置におけるヒーター支持構造
JP2001305031A (ja) * 2000-04-20 2001-10-31 Japan Organo Co Ltd 加熱濃縮装置
JP2008203170A (ja) * 2007-02-22 2008-09-04 Jasco Corp 旋光度測定方法及びその装置
JP2008246369A (ja) * 2007-03-30 2008-10-16 Daisho Seiki Kk 液体濃縮装置
JP2012181092A (ja) * 2011-03-01 2012-09-20 Taiyo Nippon Sanso Corp 加熱濃縮装置、及び加熱濃縮方法
CN203618746U (zh) * 2013-12-24 2014-06-04 云南乍甸乳业有限责任公司 一种具有状态监视控制功能的食品浆料浓缩装置
WO2020017070A1 (ja) * 2018-07-18 2020-01-23 リファインホールディングス株式会社 溶液処理装置および溶液処理方法
CN210448119U (zh) * 2019-08-15 2020-05-05 中触媒新材料股份有限公司 一种季铵碱水溶液连续浓缩装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100349076C (zh) 2005-08-26 2007-11-14 哈药慈航制药股份有限公司 中药生产浓缩过程中蒸发速度的控制方法
FI122606B (fi) 2009-05-25 2012-04-13 Outotec Oyj Menetelmä laimean rikkihapon väkevöimiseksi sekä väkevöintilaitteisto laimean rikkihapon väkevöimiseksi
JP6179192B2 (ja) 2013-05-27 2017-08-16 宇部興産株式会社 濃縮溶液の製造方法及び溶液濃縮用容器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5819901A (ja) * 1981-07-29 1983-02-05 Hitachi Ltd 温度制御装置
JPH10330104A (ja) * 1997-03-31 1998-12-15 Fujitsu Ltd 廃硫酸連続精製装置及び精製方法並びにガラス製加熱装置におけるヒーター支持構造
JP2001305031A (ja) * 2000-04-20 2001-10-31 Japan Organo Co Ltd 加熱濃縮装置
JP2008203170A (ja) * 2007-02-22 2008-09-04 Jasco Corp 旋光度測定方法及びその装置
JP2008246369A (ja) * 2007-03-30 2008-10-16 Daisho Seiki Kk 液体濃縮装置
JP2012181092A (ja) * 2011-03-01 2012-09-20 Taiyo Nippon Sanso Corp 加熱濃縮装置、及び加熱濃縮方法
CN203618746U (zh) * 2013-12-24 2014-06-04 云南乍甸乳业有限责任公司 一种具有状态监视控制功能的食品浆料浓缩装置
WO2020017070A1 (ja) * 2018-07-18 2020-01-23 リファインホールディングス株式会社 溶液処理装置および溶液処理方法
CN210448119U (zh) * 2019-08-15 2020-05-05 中触媒新材料股份有限公司 一种季铵碱水溶液连续浓缩装置

Also Published As

Publication number Publication date
JPWO2022124260A1 (ja) 2022-06-16
JP7456004B2 (ja) 2024-03-26
EP4257949A1 (en) 2023-10-11
US20240019347A1 (en) 2024-01-18
CN116547517A (zh) 2023-08-04

Similar Documents

Publication Publication Date Title
JP5180392B2 (ja) 水分重量測定のための測定装置
US8894822B2 (en) Rotary evaporator
US8253093B2 (en) Optoelectronic detector assembly and method of operating same
JP5741770B2 (ja) 分光測定装置
US10465332B2 (en) Condenser tumble dryer comprising a temperature sensor, and method for the operation thereof
JP2018141768A (ja) 水分量センサ及び衣類乾燥装置
US20030034443A1 (en) Absolute humidity sensor to control drying equipment
WO2022124260A1 (ja) 蒸発濃縮機構、これを備えた分析装置、および、蒸発濃縮機構の制御方法
CA2729603C (en) Aerosol sensor
JP2006010697A (ja) ガスセンサ構造内の結露防止方法
CN1898570A (zh) 收容物的升温方法和分析装置
JP5976885B1 (ja) 低流速の排ガスでも測定可能な光散乱式ダスト濃度計並びにダスト濃度の測定方法
JP6136800B2 (ja) 炭素測定装置
US20160116424A1 (en) X-ray fluorescence spectrometer
JP5358466B2 (ja) 液体クロマトグラフ装置
SE516643C2 (sv) Förfarande och anordning för framställning av ett gasformigt medium
CN117916040A (zh) 用于增材制造的设备的传感器装置及其所属设备和基于其的测量方法
JP6204941B2 (ja) 気化装置入り口側に汚れ防止機能を備えた光散乱式ダスト濃度計
JP5497720B2 (ja) 試料表面温度センサ及び該センサを用いた腐食試験機
US11717767B2 (en) Laboratory device for evaporating a substance
JP2904507B2 (ja) 誘導結合プラズマ質量分析方法
JP4247093B2 (ja) 水分測定方法及び水分測定装置
JP6515749B2 (ja) 検出器システム
JP2005010007A (ja) 赤外線ガス分析装置
US20230266240A1 (en) Infrared spectrometer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21903361

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022568262

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18036920

Country of ref document: US

Ref document number: 202180076683.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021903361

Country of ref document: EP

Effective date: 20230707