WO2022123951A1 - 電動ホイール - Google Patents

電動ホイール Download PDF

Info

Publication number
WO2022123951A1
WO2022123951A1 PCT/JP2021/040028 JP2021040028W WO2022123951A1 WO 2022123951 A1 WO2022123951 A1 WO 2022123951A1 JP 2021040028 W JP2021040028 W JP 2021040028W WO 2022123951 A1 WO2022123951 A1 WO 2022123951A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
electric wheel
rotor
support
outer peripheral
Prior art date
Application number
PCT/JP2021/040028
Other languages
English (en)
French (fr)
Inventor
哲也 須藤
暁史 高橋
誠 伊藤
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2022123951A1 publication Critical patent/WO2022123951A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B19/00Wheels not otherwise provided for or having characteristics specified in one of the subgroups of this group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B9/00Wheels of high resiliency, e.g. with conical interacting pressure-surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel

Definitions

  • the present invention relates to an electric wheel.
  • Patent Document 1 describes that "an exhaust hole for exhausting air flowing from the inside of the wheel through the through hole to the outside of the inner cylinder portion to the outside is provided in the film-like support wall.”
  • the number one cause of automobile failure is "damage to tires and wheels", that is, flat tires. Punk is difficult to have redundancy, and will be a major obstacle to the spread of autonomous driving in the future. Monthly inflating is required (most people can't do it at home), and driving under insufficient air pressure can lead to flat tires, bursts, and poor fuel economy.
  • the maintenance cycle is shorter than that of oil change or replenishment of washer fluid, which may cause problems not only in automatic driving but also in car sharing.
  • An object of the present invention is to provide an electric wheel capable of improving the cooling efficiency of a motor.
  • the electric wheel of the present invention includes a motor having a rotor, a support connected to the outer peripheral portion of the rotor, and a tire supported by the outer peripheral portion of the support.
  • the outer peripheral portion of the tire has a plurality of flow paths that guide the traveling wind to the outer peripheral portion of the rotor at a position overlapping the rotor when viewed from the radial direction of the tire.
  • the cooling efficiency of the motor can be improved. Issues, configurations and effects other than those described above will be clarified by the following description of the embodiments.
  • FIG. 2 It is an exploded perspective view of the electric wheel according to the embodiment of this invention. It is a perspective view of the finished product of the electric wheel shown in FIG. It is a figure when the electric wheel shown in FIG. 2 is seen in the y-axis direction (-). It is a figure when the electric wheel shown in FIG. 2 is seen in the x-axis direction (+). It is a figure when the electric wheel shown in FIG. 2 is seen in the y-axis direction (+). It is sectional drawing of the electric wheel shown in FIG. It is a schematic diagram which shows the cross section of the electric wheel by this embodiment. It is sectional drawing (schematic diagram) which shows the deformation example of the through hole provided in a tire.
  • FIG. 1 is an exploded perspective view of the electric wheel 100 according to the embodiment of the present invention
  • FIG. 2 is a perspective view of a finished product of the electric wheel shown in FIG. 3A, 3B, and 3C are views when the electric wheels shown in FIG. 2 are viewed in the y-axis direction ( ⁇ ), the x-axis direction (+), and the y-axis direction (+), respectively.
  • FIG. 4 is a cross-sectional view of the electric wheel shown in FIG.
  • the rotor core, stator, etc. are not shown to make the drawings easier to see.
  • the electric wheel 100 includes an in-wheel motor 10, a support 20, a tire 30, and a tire fixing body 40.
  • the in-wheel motor 10 includes a stator and an outer rotor 11.
  • the in-wheel motor 10 is an outer rotor type motor as an example, but may be an inner rotor type motor as long as the driving force of the motor can be transmitted to the support 20 described later.
  • an inner rotor type motor a motor whose magnetic pole is located on the inner peripheral side of the stator coil
  • the feature of this embodiment is that, for example, the traveling wind introduced from the through hole 31 provided on the tire tread surface is directly applied to the motor housing (outer peripheral portion of the outer rotor 11), and the inner rotor, the outer rotor, the direct drive, and the like.
  • the type of motor such as a geared motor does not matter.
  • the support 20 needs to have a high flatness to some extent from the viewpoint of cooling efficiency and vehicle weight support, the diameter of the motor itself becomes large and a large torque is obtained. Therefore, the outer rotor direct drive motor is more suitable.
  • the cooling effect is exhibited only during running. Therefore, in a low-speed, large-torque operation mode such as starting on a slope, the entire heat capacity of the electric wheel 100 may be used for a short period of time, or cooling such as water cooling / oil cooling may be performed. May be provided.
  • the outer rotor 11 (housing as the outer peripheral portion) be made of a lightweight material having high thermal conductivity such as aluminum and magnesium alloy.
  • a resin composite material having high thermal conductivity has been progressing, and if it is such a material, a carbon fiber-based resin composite material such as CFRP (Carbon Fiber Reinforced Plastics) may be used.
  • the vehicle weight may be supported by the outer rotor 11, or the support 20 and the hub bearing may be connected so that the vehicle weight is not applied to the outer rotor 11.
  • the number of parts is reduced, but it is necessary to increase the strength of the outer rotor 11 and the bearing between the rotor and the stator.
  • a low radial load type bearing can be used and the rotor housing can be made lighter. It is desirable to connect the housing cover to the hub bearing to support the support 20.
  • cooling fins 11A fins
  • the cooling fins 11A are provided in the circumferential direction, but cooling fins may be provided in the axial direction. Further, a pin may be adopted instead of the fin.
  • the support 20 is a component that connects the outer rotor 11 of the in-wheel motor 10 and the tire 30, and directly supports the vehicle weight via the tire 30. Since it is necessary to have a vibration absorbing function during running, the material is an elastic material.
  • the elastic material is, for example, rubber, resin, or a metal such as aluminum-based, copper-based, or steel-based. You may combine these materials.
  • High frequency (about 40 to several hundred Hz) road noise that cannot be absorbed by the suspension is absorbed by the tire 30 and the support 20 (and the bush on the spring, etc.).
  • the support 20 is provided with propeller-shaped wings 21 like a turbocharger.
  • the propeller-shaped blade 21 can further efficiently inhale and exhaust the traveling wind. That is, the air is taken in from the tire contact patch and exhausted from the side surface of the support 20.
  • the propeller wings are oriented so that air flows from the inside to the outside of the vehicle body when moving forward.
  • the annular rib 20A which is a radial rib provided on the support 20, and the tire fixing body 40 pressurize the tire 30 in the axial direction and fasten the tires with bolts.
  • the support 20 In addition to casting, die casting, and injection molding, if the support is made of metal, the strength will be higher if the support 20 is manufactured by forging. With a 3D printer, more complicated shapes can be manufactured. However, the manufacturing method of the support 20 is not limited to these. Since the support 20 is a conspicuous part, it also has a design function.
  • an annular mounting portion such as the tire fixing body 40 is provided on the inner circumference of the support body 20, and a disk-shaped cover covering the side surface of the outer rotor 11 is mounted from above the mounting portion and fixed with bolts or the like.
  • the tire 30 is a portion of the outermost circumference of the electric wheel 100 that comes into contact with the road surface, and for automobiles, for example, it is made of a composite material containing rubber and fibers.
  • the material of the tire 30 is, for example, metal.
  • the material of the tire 30 is not limited to these.
  • An airless tire is suitable because it opens a through hole 31, but a plurality of narrow pneumatic tires may be arranged in the axial direction and the space between the tires may be used as an air inlet. The details will be described later with reference to FIG.
  • Figure 1 assumes an airless tire.
  • the tire can be replaced by removing the tire fixing body 40 and pulling out the tire 30 in the axial direction.
  • the tire 30 may be adhered to the support 20, or the support 20 and the tire 30 may be integrally molded.
  • the storage space for tires can be significantly reduced. Since the through hole 31 also functions as a tread groove, it can be applied to various tires such as summer tires, studless tires, and all-season tires. Characteristics such as rigidity and quietness can be changed by the size and number of through holes 31.
  • FIG. 5 is a schematic view showing a cross section of the electric wheel 100 according to the present embodiment. Note that FIG. 5 schematically shows the shapes of the through hole 31 and the support 20 in order to make the drawing easier to see.
  • the electric wheel 100 includes an in-wheel motor 10 (motor) having an outer rotor 11 (rotor), a support 20 connected to the outer peripheral portion of the outer rotor 11, and a tire 30 supported by the outer peripheral portion of the support. ..
  • motor having an outer rotor 11 (rotor), a support 20 connected to the outer peripheral portion of the outer rotor 11, and a tire 30 supported by the outer peripheral portion of the support. ..
  • the outer peripheral portion of the tire 30 has a plurality of through holes 31 (flow paths) that guide the traveling wind to the outer peripheral portion of the outer rotor 11 at a position overlapping the outer rotor 11 (rotor) when viewed from the radial direction of the tire 30.
  • the running wind introduced from the tread surface of the tire 30 cools the outer rotor 11 and cools the in-wheel motor 10.
  • the through hole 31 is a hole for introducing a running wind. It is necessary to continuously open the tire / support so that the running wind directly hits the outer rotor 11 of the in-wheel motor 10. Both holes do not have to have the same shape and size, and may be a space that is continuous to the outer rotor 11 even in the gap between the propeller blades of the support 20.
  • a plurality of through holes 31 are provided along between two adjacent wings 21 (blades) of the support 20.
  • the running wind introduced from the tread surface smoothly flows along the wings of the support 20.
  • the right end of the end portion of the wing 21 (blade) on the outer rotor 11 (rotor) side is located forward of the left end of the end portion of the wing 21 on the outer rotor 11 side in the rotational direction. This facilitates the flow of air from the inside to the outside of the vehicle body.
  • FIG. 6 is a cross-sectional view (schematic diagram) showing a modified example of the through hole 31 provided in the tire 30.
  • the inlet 31A of the through hole 31 (flow path) is located on the rotational direction side in the circumferential direction with respect to the outlet 31B of the through hole 31 (flow path). This makes it easier for the running wind to enter from the tread surface of the tire 30.
  • the entrance 31A of the through hole 31 is located on the outer peripheral surface of the tire 30. From here, the running wind (including the wind taken in by rotating) is taken in. The effect of taking in the wind is improved when the angle is sharp with respect to the outer peripheral surface of the tire 30, but the length of the through hole becomes long and the influence of the centrifugal force becomes large. If the air introduced from the inlet can be discharged from the outlet immediately, there is no effect of centrifugal force, but if the introduced air rotates with the tire, it will be discharged from the inlet due to the centrifugal force, so the effect of taking in the wind is effective. become weak.
  • the outlet 31B of the through hole 31 is located at a portion (inner peripheral surface of the tire 30) close to the outer rotor 11.
  • the outer peripheral surface of the tire 30 is hit by the magnitude and direction of the combined vector of the running wind and the peripheral speed. As shown in FIG. 7, since the composite vector has an angle with respect to the tire normal line, the air introduction efficiency is the best when the direction thereof and the direction of the through hole are matched.
  • the vector W shown in FIG. 7 is a composite vector of peripheral speed and running wind.
  • the magnitude of the vector W represents the magnitude of the wind actually received by the tire.
  • the vector V is a peripheral speed vector of the tire.
  • the magnitude of the vector V is equal to the wind speed of the running wind and the running speed of the vehicle.
  • the magnitude of the vector W is 2V, which is twice the wind speed or the peripheral speed.
  • the magnitude of the vector W becomes smaller because the angle of the peripheral speed vector follows the traveling wind.
  • the magnitude of the vector W can be obtained by the formula shown in FIG.
  • FIG. 8 is a diagram for explaining the function of the propeller-shaped wings 21 of the support 20.
  • the support 20 has a plurality of wings 21 (blades) arranged in the circumferential direction.
  • the running wind introduced from the through hole 31 of the tire takes heat from the outer rotor 11 and then flows along the gap between the adjacent wings 21 and is discharged from the side surface of the support 20.
  • the wings 21 also function as cooling fins.
  • the support 20 since the support 20 has a propeller shape, air can be exhausted from the side surface during rotation and air can be taken in more efficiently. Since the air flow is from the outer peripheral side to the inner peripheral side, the volume of air becomes smaller or the flow velocity becomes faster at the outlet. Therefore, the Reynolds number becomes large in the outer peripheral portion of the outer rotor near the outlet, and heat is easily transferred by turbulent flow (heat conductivity becomes large).
  • the propeller-shaped blade 21 is shaped like a fan blade and is inclined in the direction of tire rotation, and when it rotates, it takes in air regardless of the running wind.
  • the air taken in from the outer peripheral side of the tire is exhausted from the side surface (outside of the vehicle body) of the support 20.
  • a plurality of feathers 21 are provided in the circumferential direction, a plurality of feathers 21 may be provided in the axial direction instead of one.
  • the wing 21 also has a function of supporting the weight of the vehicle, it is composed of an elastic body so as to absorb vibration like a leaf spring. It may be integrally molded by casting, or the annular ring part and the wings may be manufactured and assembled as separate parts.
  • FIG. 9 is a diagram showing a modified example of the propeller-shaped wings 21 of the support 20.
  • the inclination ⁇ in of the wing 21 (blade) on the inner side in the axial direction is larger than the inclination ⁇ out of the wing 21 (blade) on the outer side in the axial direction.
  • the cushioning property on the inner side of the tread surface in the axial direction is improved as compared with the cushioning property on the outer side in the axial direction of the tread surface.
  • the inside of the tire can be set to be soft and the outside of the tire can be set to be hard.
  • the tire becomes soft when going straight and hard when cornering, and both ride comfort and high-speed curve stability can be achieved.
  • the tire 30 when going straight, touches the ground as a whole or inside, so that the tire becomes softer and the ride quality becomes better. Further, the tire 30 becomes harder as it collapses in the radial direction, so that the characteristics are similar to those of a pneumatic tire.
  • the tire 30 when cornering, touches the ground as a whole or on the outside, so that the tire becomes stiff and the stability is improved by firmly stepping on the tire against centrifugal force.
  • FIG. 11 is a diagram for explaining a method of fixing the tire 30.
  • the electric wheel 100 includes an annular tire fixing body 40 for fixing the tire 30.
  • the support 20 has an annular rib 20A inside in the axial direction.
  • the tire 30 is sandwiched and fixed in the axial direction by the tire fixing body 40 and the annular rib 20A. This makes it easy to put on and take off the tire 30.
  • the support 20 and the tire 30 are made into separate parts (not integrally molded) to facilitate tire replacement.
  • the fixing method shown in FIG. 11 is superior in reliability and maintainability to fixing by adhesion. If the support 20 is not provided with the propeller-shaped wings 21 or the wings 21 are provided in two rows in the axial direction, the support 20 can be divided at the center position in the axial direction with the image of a three-piece wheel.
  • the annular rib 20A is integrally molded with the support 20 because the radial sectional moment of the support 20 can be increased.
  • the support 20 and the tire fixing body 40 are fixed by bolting so that the tire 30 can be removed.
  • FIG. 12 is a diagram for explaining the function of the cooling fins 11A provided on the outer peripheral portion of the outer rotor 11.
  • the outer peripheral portion of the outer rotor 11 (rotor) has a plurality of cooling fins 11A. This increases the surface area and thus improves the cooling efficiency. Further, if the cross-sectional area is the same, the geometrical moment of inertia can be increased, so that the weight can be reduced.
  • the cooling fin 11A is an uneven surface provided to increase the heat dissipation area (surface area).
  • the outer rotor rotates, so the heat transfer coefficient increases (convection heat transfer), and the effect is greater.
  • it can also have a function as a rib, which leads to weight reduction and high output density.
  • it is desirable to integrally mold the outer rotor 11 (housing as the outer peripheral portion).
  • each cooling fin 11A is formed in the circumferential direction, and the plurality of cooling fins 11A are provided at intervals in the axial direction.
  • the cooling efficiency is better when the cooling fins 11A are provided parallel to the rotation direction than when they are provided vertically.
  • it is easier to maintain a perfect circle by forming ribs in the circumferential direction, and the weight can be further reduced.
  • FIG. 13 is a schematic view showing a cross section of the divided tire.
  • the tire 30 is divided into a plurality of tires 30 in the axial direction.
  • a running wind flow path 32 (introduction port) is formed between the divided tires.
  • the joint between the tires can be a flow path 32 (introduction port) by dividing (arranging) the tires into a plurality of parts in the axial direction, so that the effect of the through hole 31 can be obtained.
  • the axial movement of each tire may be restricted by providing a spacer between the divided tires.
  • the cooling efficiency of the in-wheel motor 10 can be improved.
  • the present invention is not limited to the above-described embodiment, and includes various modifications.
  • the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the described configurations.
  • the propeller-shaped wings 21 and the through holes 31 of the support 20 may be arranged as shown in FIG.
  • the wing 21 and the through hole 31 are provided on a plane including the center of the tread surface in Sakai.
  • the embodiment of the present invention may have the following aspects.
  • the tire includes an in-wheel motor having an outer rotor, a tire having an annular outer peripheral surface arranged on the outer peripheral side of the in-wheel motor, and a support for connecting the outer rotor and the tire.
  • the tire is an electric wheel having a plurality of through holes at positions on the outer peripheral surface of the tire and overlapping with the outer rotor.
  • the first issue is efficient cooling of the inside of the tire (inside the wheel) assuming an in-wheel motor
  • the second issue is the tire for the purpose of reducing puncture risk and maintenance work.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Abstract

電動ホイール(100)は、アウターロータ(11((ロータ)を有するインホイールモータ(10)(モータ)と、アウターロータ(11)の外周部に接続される支持体(20)と、支持体(20)の外周部に支持されるタイヤ(30)を備える。タイヤ(30)の外周部は、タイヤ(30)の径方向から見たときにアウターロータ(11)(ロータ)と重なる位置に走行風をアウターロータ(11)の外周部へ導く複数の貫通穴(31)(流路)を有する。

Description

電動ホイール
 本発明は、電動ホイールに関する。
 現在、インホイールモータ、電動ホイールなどの技術が研究されている。これまでのタイヤと大きく異なるのは、ホイール内を冷却する必要があるということである。今までもブレーキ類は冷やす必要があったが、これは減速時に限られていた。
 背景技術として、冷却効果に優れたタイヤ・ホイール組立体が知られている(例えば、特許文献1参照)。特許文献1には、「ホイールの内側から貫通穴を通って内側筒部の外側に流入した空気を外側に排出するための排気穴を膜状支持壁に設ける。」と記載されている。
特開2015-113077号公報
 自動車の故障原因の第一位は「タイヤ・ホイール破損」、つまりパンクである。パンクは冗長性を持たせるのが困難であり、今後自動運転普及の大きな障害になる。毎月の空気入れ(ほとんどの人が自宅ではできない)が必要で、空気圧不足の状態で走行するとパンクやバーストの原因、燃費の悪化に繋がる。オイル交換やウォッシャー液の補充などと比較してもメンテナンス周期が短く、自動運転だけでなくカーシェアリングなどで課題になる可能性がある。
 一方、特許文献1に開示されるような技術では、パンクのリスクは低いものの冷却効率に改善の余地があった。
 本発明の目的は、モータの冷却効率を向上することができる電動ホイールを提供することにある。
 上記目的を達成するために、本発明の電動ホイールは、ロータを有するモータと、前記ロータの外周部に接続される支持体と、前記支持体の外周部に支持されるタイヤと、を備え、前記タイヤの外周部は、前記タイヤの径方向から見たときに前記ロータと重なる位置に走行風を前記ロータの外周部へ導く複数の流路を有する。
 本発明によれば、モータの冷却効率を向上することができる。上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
本発明の実施形態による電動ホイールの分解斜視図である。 図1に示す電動ホイールの完成品の斜視図である。 図2に示す電動ホイールをy軸方向(-)に見たときの図である。 図2に示す電動ホイールをx軸方向(+)に見たときの図である。 図2に示す電動ホイールをy軸方向(+)に見たときの図である。 図2に示す電動ホイールの断面図である。 本実施形態による電動ホイールの断面を示す模式図である。 タイヤに設けられる貫通穴の変形例を示す断面図(模式図)である。 走行風と周速の合成ベクトルを説明するための図である。 支持体のプロペラ形状の羽の機能を説明するための図である。 支持体のプロペラ形状の羽の変形例を示す図である。 直進時のタイヤの荷重を説明するための図である。 コーナリング時のタイヤの荷重を説明するための図である。 タイヤの固定方法を説明するための図である。 アウターロータの外周部に設けられる冷却フィンの機能を説明するための図である。 分割されたタイヤの断面を示す模式図である。 電動ホイールの変形例を示す斜視図である。
 以下、図面を用いて、本発明の実施形態による電動ホイールの構成を説明する。なお、各図において、同一符号は同一部分を示す。
 初めに、図1~図4を用いて、電動ホイール100の概略構成を説明する。図1は、本発明の実施形態による電動ホイール100の分解斜視図であり、図2は、図1に示す電動ホイールの完成品の斜視図である。図3A、3B、3Cは、図2に示す電動ホイールをそれぞれy軸方向(-)、x軸方向(+)、y軸方向(+)に見たときの図である。図4は、図2に示す電動ホイールの断面図である。なお、図面を見やすくするため、ロータコア、ステータ等は表示していない。
 図1に示すように、電動ホイール100は、インホイールモータ10、支持体20、タイヤ30、タイヤ固定体40を備える。
 (インホイールモータ)
 インホイールモータ10は、ステータとアウターロータ11を備える。インホイールモータ10は、一例としてアウターロータ型のモータであるが、後述する支持体20にモータの駆動力を伝達できれば、インナーロータ型のモータであってもよい。換言すれば、インナーロータ型のモータ(磁極がステータコイルの内周側に位置しているもの)でも、支持体20と接続される外周部があれば広義にアウターロータを有するモータと解釈する。
 本実施形態の特徴は、例えば、タイヤトレッド面に設けた貫通穴31から導入した走行風を直接モータハウジング(アウターロータ11の外周部)に当てることであり、インナーロータ、アウターロータ、ダイレクトドライブ、ギヤードモータなどモータの形式は問わない。しかし、支持体20は冷却効率と車重支持の観点からある程度扁平率を高くする必要があるので、モータ自体の径が大きくなり、大トルクとなる。そのため、アウターロータダイレクトドライブモータがより適している。
 本実施形態では走行時しか冷却効果を発揮しないので、例えば坂道発進など低速大トルクの運転モードでは、短時間を想定し電動ホイール100の全体の熱容量でカバーするか、水冷/油冷などの冷却を設けても良い。
 アウターロータ11(外周部としてのハウジング)は、アルミ、マグネシウム合金などの熱伝導率が高い軽量の素材で製作することが望ましい。近年熱伝導率の高い樹脂複合材の開発が進んでいるが、そのような材料であればCFRP(Carbon Fiber Reinforced Plastics)など炭素繊維系の樹脂複合材を使用してもよい。
 アウターロータ11で車重を支えても良いし、支持体20とハブベアリングを接続してアウターロータ11に車重をかけない構造としても良い。前者では、部品点数が少なくなるがアウターロータ11やロータ・ステータ間の軸受の強度を上げる必要がある。後者では、アウターロータ11は回転支持だけされていればよいので低ラジアル荷重タイプの軸受を使用できるほかロータハウジングを軽量化することができる。ハブベアリングにハウジングカバーを接続し、支持体20を支えることが望ましい。
 アウターロータ11の外周には冷却効率の向上のために冷却フィン11A(フィン)を設けるのが望ましい。本実施形態では、周方向に冷却フィン11Aを設けたが、軸方向に冷却フィンを設けても良い。また、フィンの代わりにピンを採用しても良い。
 (支持体)
 支持体20は、インホイールモータ10のアウターロータ11とタイヤ30を接続する部品で、タイヤ30を介して直接車重を支持する。走行時の振動吸収機能を有する必要があるため、材料は弾性素材とする。弾性素材は、例えば、ゴム、樹脂、又はアルミ系・銅系・鋼系などの金属などである。これらの素材を組み合わせても良い。
 車重支持や加速又は減速時の回転トルクの伝達、走行時の振動と衝撃、環境温度の変化、日光(紫外線)による劣化など、過酷な環境で長期間(自動車であれば10万キロ・10年以上)使用されるので、耐久性があり高靭性の材料を使用する。しなやかで破断しないように引張強度が高くヤング率が小さい材料が望ましい。板バネ状にするなど形状的に弾性を増大すれば金属でも使用可能である。
 サスペンションで吸収できない高い周波数(大体40から数百Hz)のロードノイズなどはタイヤ30と支持体20(とバネ上のブッシュなど)で吸収される。
 本実施形態では、支持体20にターボチャージャーのようにプロペラ形状の羽21が設けられている。プロペラ形状の羽21は、板バネとして機能することに加えて、さらに走行風を効率的に吸排気することができる。すなわち、タイヤ接地面から吸気し支持体20の側面から排気する。
 タイヤハウス内及びタイヤ・ホイール側面の空気流れの乱れによって空気抵抗が増加することが知られている。本実施形態のようにタイヤ接地面からタイヤ側面に空気を流すようにすれば、空気の流れを層流化して空気抵抗を低減することも可能である。この場合には前進時に車体内側から外側へ空気が流れるようなプロペラ羽向きとする。
 タイヤ30を固定する機能も必要であるため、タイヤ空転防止のために軸方向の凹凸を設けたり、ボルトで締結したりする。本実施形態では、支持体20に設けた径方向のリブである環状リブ20Aと、タイヤ固定体40で軸方向にタイヤ30を加圧してボルト締結する構造としている。
 鋳造やダイキャスト、射出成型以外にも金属であれば鍛造で支持体20を製作するとより高強度になる。3Dプリンタであればより複雑な形状も製作可能である。ただし、支持体20の製作方法はこれらに限定されない。なお、支持体20は、目立つ部品なので意匠的な機能も持つ。
 なお、アウターロータ11と支持体20の固定方法には種々の方法がある。例えば、支持体20の内周にタイヤ固定体40のような環状の取付部を設け、アウターロータ11の側面を覆う円盤状のカバーを前記取付部の上から取り付けてボルト等で固定する。
 (タイヤ)
 タイヤ30は、電動ホイール100の最外周で路面と接地する部分であり、自動車用は例えば、ゴムと繊維とを含む複合材料からなる。鉄道用に採用する場合には、タイヤ30の材質は例えば金属になる。ただし、タイヤ30の材質はこれらに限定されない。
 貫通穴31を開けるのでエアレスタイヤが適しているが、細幅の空気入りタイヤを軸方向に複数個並べてそのタイヤ間を空気導入口としてもよい。その詳細は図13を用いて後述する。
 図1ではエアレスタイヤを想定している。図1の構造では、タイヤ固定体40を外して軸方向にタイヤ30を抜き取ることでタイヤ交換が可能である。支持体20にタイヤ30を接着したり、支持体20とタイヤ30を一体成型としたりしても良い。
 チェーンのようなイメージで支持体20に巻く構造とすれば、タイヤの収納場所を大幅に縮小することができる。貫通穴31がトレッド溝の機能も果たすので、サマータイヤ、スタッドレス、オールシーズンタイヤなど、種々のタイヤに適用が可能である。貫通穴31のサイズと数で剛性や静音性などの特性を変化させることができる。
 次に、図5~図13を用いて、各部位の詳細とその効果を説明する。
 (タイヤの貫通穴)
 図5は、本実施形態による電動ホイール100の断面を示す模式図である。なお、図5では、図面を見やすくするため、貫通穴31と支持体20の形状等を模式的に表わしている。
 電動ホイール100は、アウターロータ11(ロータ)を有するインホイールモータ10(モータ)と、アウターロータ11の外周部に接続される支持体20と、支持体の外周部に支持されるタイヤ30を備える。
 タイヤ30の外周部は、タイヤ30の径方向から見たときにアウターロータ11(ロータ)と重なる位置に走行風をアウターロータ11の外周部へ導く複数の貫通穴31(流路)を有する。タイヤ30のトレッド面から導入される走行風により、アウターロータ11が冷却され、インホイールモータ10が冷却される。
 すなわち、貫通穴31は、走行風導入用の穴である。インホイールモータ10のアウターロータ11に直接走行風が当たるようにタイヤ・支持体に連続して開いている必要がある。両者の穴は形状やサイズが同じである必要はなく、支持体20のプロペラ羽間の隙間でもアウターロータ11まで連続している空間になっていればよい。
 走行風と一緒に水、塵埃、砂利などが貫通穴31を通過するのは許容する。小石などが詰まるとその多くは高速走行時の遠心力で取れるが、残ってしまった場合にはその部分の冷却効率は若干落ちる。このため開口面積が同じであれば大きい穴を少数設けるより、小さい穴を多数設ける方が望ましい。大部分の穴が塞がった場合でも支持体の側面から空気が導入されるので冷却機能が完全に失われることはない。
 なお、図1、2に示すように、複数の貫通穴31(流路)は、支持体20の隣接する2つの羽21(ブレード)の間に沿って設けられる。これにより、トレッド面から導入された走行風が支持体20の羽に沿ってスムーズに流れる。また、羽21(ブレード)のアウターロータ11(ロータ)側の端部の右端は、羽21のアウターロータ11側の端部の左端よりも回転方向に対し前方に位置する。これにより、車体の内側から外側へ空気が流れやすくなる。
 (貫通穴の変形例)
 図6は、タイヤ30に設けられる貫通穴31の変形例を示す断面図(模式図)である。貫通穴31(流路)の入口31Aは、貫通穴31(流路)の出口31Bよりも周方向で回転方向側に位置する。これにより、タイヤ30のトレッド面から走行風が入りやすくなる。
 すなわち、貫通穴31を回転軸に向かって(タイヤ接線に垂直に)開けるのではなく、回転方向に倒すように斜めの穴にする。タイヤ全体で走行風を受けるが、タイヤ上半分は走行速+αの風速を、タイヤ下半分は走行速-αの風速を受けるので、より効率的に風を導入することができる。角度を付けることで、タイヤ内の穴長さが長くなり前方を向く位置も上側になるので飛び石などが直接アウターロータや支持体に到達する可能性を低減することもできる。
 貫通穴31の入口31Aはタイヤ30の外周面に位置する。ここから走行風(回転することで取り込まれる風も含む)を取り込む。タイヤ30の外周面に対して鋭角になっていた方が風を取り込む効果は向上するが、貫通穴の長さが長くなり遠心力の影響が大きくなってくる。入口から導入した空気がすぐに出口から抜けるようになっていれば遠心力の影響は無いが、導入した空気がタイヤと共に回転すると遠心力により逆に入口から排出されてしまうので風を取り込む効果が弱くなる。貫通穴31の出口31Bは、アウターロータ11に近接する部分(タイヤ30の内周面)に位置する。
 タイヤ30の外周面には走行風と周速の合成ベクトルの大きさ・向きの風が当たる。図7に示すように合成ベクトルはタイヤ法線に対して角度がつくので、その向きと貫通穴の向きを合わせると最も空気導入効率が良い。
 図7に示すベクトルWは、周速と走行風の合成ベクトルである。ベクトルWの大きさは、実際にタイヤが受ける風の大きさを表す。ベクトルVは、タイヤの周速ベクトルである。ベクトルVの大きさは、走行風の風速と車両の走行速度に等しい。図7に示す(I)の位置では、ベクトルWの大きさは2Vとなり、風速又は周速の2倍となる。図7に示す(II)~(IV)の位置では、走行風に対して周速ベクトルの角度がついてくるのでベクトルWの大きさは小さくなっていく。ベクトルWの大きさは図7に示す式により求めることができる。
 (支持体のプロペラ形状の羽)
 図8は、支持体20のプロペラ形状の羽21の機能を説明するための図である。支持体20は、周方向に配置された複数の羽21(ブレード)を有する。これにより、タイヤの貫通穴31から導入された走行風は、アウターロータ11の熱を奪った後、隣接する羽21の間の隙間に沿って流れ、支持体20の側面から排出される。また、羽21は冷却フィンとしても機能する。
 すなわち、支持体20がプロペラ状になっているので、回転時に空気を側面から排気し、より効率的に空気を取り込むことができる。外周側から内周側へという空気の流れになるので、出口では空気の体積が小さくなるかもしくは流速が速くなる。このため、出口近くのアウターロータの外周部ではレイノルズ数が大きくなり乱流で熱が伝わりやすくなる(熱伝導率が大きくなる)。
 プロペラ形状の羽21は、扇風機の羽のような形状で、タイヤ回転方向に傾いた形状になっており、回転すると走行風に関係なく空気を取り込む。タイヤの外周側から取り込んだ空気は支持体20の側面(車体外側)から排気される。周方向には複数枚の羽21を設けているが、軸方向も1枚でなく複数枚で構成しても良い。
 羽21は、車重を支持する機能も有するので、板バネのように振動を吸収するよう弾性体で構成される。鋳造などの一体成型でも良いし、円環状のリング部と羽を別部品で製作し組み立てても良い。
 (プロペラ形状の羽の変形例)
 図9は、支持体20のプロペラ形状の羽21の変形例を示す図である。軸方向内側の羽21(ブレード)の傾きθinは、軸方向外側の羽21(ブレード)の傾きθoutよりも大きい。これにより、トレッド面の軸方向内側のクッション性がトレッド面の軸方向外側よりも向上する。
 コーナリング時には車体にかかる遠心力でタイヤ外側に荷重がかかる。本構成であればタイヤの内側を柔らかめに、タイヤの外側を硬めにという設定ができる。図10Aに示すようにニュートラルキャンバーか僅かにネガティブキャンバーにしておけば、直進時には柔らかめのタイヤに、コーナリング時には硬めのタイヤになり、乗り心地と高速カーブ安定性を両立できる。
 詳細には、図10Aに示すように、直進時にはタイヤ30(トレッド面)の全体もしくは内側で接地するため、柔らかめになり乗り心地が良くなる。さらにタイヤ30が径方向に潰れるほど硬くなっていくので空気タイヤと似た特性になる。図10Bに示すように、コーナリング時には、タイヤ30(トレッド面)の全体もしくは外側で接地するため、硬めになり遠心力に対してしっかりと踏ん張ることで安定性が向上する。
 (環状リブとタイヤ固定体)
 図11は、タイヤ30の固定方法を説明するための図である。電動ホイール100は、タイヤ30を固定するための環状のタイヤ固定体40を備える。支持体20は、軸方向内側に環状リブ20Aを有する。タイヤ30は、タイヤ固定体40と環状リブ20Aで軸方向に挟んで固定される。これにより、タイヤ30の着脱が容易となる。
 すなわち、支持体20とタイヤ30を別部品にする(一体成型しない)ことでタイヤ交換を容易にする。図11に示す固定方法は、接着による固定よりも信頼性とメンテナンス性で勝る。支持体20にプロペラ形状の羽21を設けない、もしくは羽21を軸方向に2列設ければ、3ピースホイールのようなイメージで、軸方向中心位置で支持体20を分割することもできる。
 環状リブ20Aは、支持体20の径方向断面係数を大きくできるため支持体20と一体成型されることが望ましい。本実施形態では、タイヤ30を外せるようにボルト締結により支持体20とタイヤ固定体40を固定している。
 (アウターロータの冷却フィン)
 図12は、アウターロータ11の外周部に設けられる冷却フィン11Aの機能を説明するための図である。アウターロータ11(ロータ)の外周部は、複数の冷却フィン11Aを有する。これにより、表面積が増えるため、冷却効率が向上する。また、同じ断面積であれば断面係数を大きくすることができるので、軽量化することが可能である。
 すなわち、冷却フィン11Aは、放熱面積(表面積)を増大するために設けられた凹凸である。通常の静止したヒートシンクと比較してアウターロータは回転しているので熱伝達率が上がり(対流熱伝達)、より効果が大きくなる。ピンではなく周方向または軸方向に連続した凸部とすることでリブとしての機能も持つことができ、軽量化や高出力密度化に繋がる。熱伝導率と断面係数を低下させないためにアウターロータ11(外周部としてのハウジング)と一体成型とすることが望ましい。
 本実施形態では、それぞれの冷却フィン11Aは、周方向に形成され、複数の冷却フィン11Aは、軸方向に間隔をあけて設けられる。冷却フィン11Aを回転方向に対して平行に設ける方が垂直に設けるよりも冷却効率が良い。また、周方向にリブを形成する方が真円を保ちやすく、より軽量化できる。
 (タイヤの分割)
 図13は、分割されたタイヤの断面を示す模式図である。タイヤ30は、軸方向に複数に分割されている。分割されたタイヤの間に走行風の流路32(導入口)が形成される。空気入りタイヤでも軸方向に複数に分割(配置)することでタイヤ同士の合わせ目を流路32(導入口)とすることができるので、貫通穴31の効果を得ることが可能である。なお、分割されたタイヤの間にスペーサを設けることで各タイヤの軸方向の移動を規制してもよい。
 以上説明したように、本実施形態によれば、インホイールモータ10の冷却効率を向上することができる。
 なお、本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上述した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
 例えば、メンテンス性、デザイン性等の観点から、支持体20のプロペラ形状の羽21と貫通穴31を図14に示すように配置してもよい。図14の例では、羽21と貫通穴31は、トレッド面の中央を含む平面を堺に面対象に設けられている。
 なお、本発明の実施形態は、以下の態様であってもよい。
 (1).アウターロータを有するインホイールモータと、当該インホイールモータの外周側に配置される外周面が円環状のタイヤと、前記アウターロータと前記タイヤとを接続する支持体と、を備え、前記タイヤの径方向から見たときに、前記タイヤは、前記外周面であって前記アウターロータと重なる位置に複数の貫通穴を有する電動ホイール。
 (2).(1)の電動ホイールであって、前記貫通穴の入口が前記貫通穴の出口よりも周方向で回転方向側に位置する電動ホイール。
 (3).(1)又は(2)のいずれかの電動ホイールであって、支持体がプロペラ形状の羽を有する電動ホイール。
 (4).(3)の電動ホイールであって、前記羽の軸方向内側の傾きが軸方向外側角度よりも大きい電動ホイール。
 (5).(1)~(4)のいずれかの電動ホイールであって、前記タイヤを、前記支持部に構成された環状リブと、タイヤ固定体で軸方向に挟んで固定する電動ホイール。
 (6).(1)~(5)のいずれかの電動ホイールであって、前記アウターロータ外周面に複数の冷却フィンを備える電動ホイール。
 (7).(6)の電動ホイールであって、前記複数の冷却フィンが周方向に形成される電動ホイール。
 (8).(1)~(7)のいずれかの電動ホイールであって、前記タイヤが軸方向に複数に分割されたタイヤで形成される電動ホイール。
 (1)~(8)では、第一の課題としてインホイールモータを前提としたタイヤ内部(ホイール内部)の効率的な冷却、第二の課題としてパンクリスクやメンテナンスの手間の低減を目的としてタイヤトレッド面に冷却口の開いた電動ホイールを提案する。
 また、低燃費車の開発が進められているが、低燃費のためには空気抵抗を減らす必要がある。タイヤ最外径のトレッド面の開口部が大きければ、走行風が正面から当たるインホイールモータ外周面が実質的な投影面になり、投影面が小径化してその分空気抵抗を低減することができる。
10…インホイールモータ
11…アウターロータ
11A…冷却フィン
20…支持体
20A…環状リブ
21…羽(ブレード)
30…タイヤ
31…貫通穴(流路)
31A…入口
31B…出口
32…流路
40…タイヤ固定体
100…電動ホイール

Claims (10)

  1.  ロータを有するモータと、
     前記ロータの外周部に接続される支持体と、
     前記支持体の外周部に支持されるタイヤと、を備え、
     前記タイヤの外周部は、
     前記タイヤの径方向から見たときに前記ロータと重なる位置に走行風を前記ロータの外周部へ導く複数の流路を有する
     ことを特徴とする電動ホイール。
  2.  請求項1に記載の電動ホイールであって、
     前記流路の入口は、
     前記流路の出口よりも周方向で回転方向側に位置する
     ことを特徴とする電動ホイール。
  3.  請求項1に記載の電動ホイールであって、
     前記支持体は、
     周方向に配置された複数のブレードを有する
     ことを特徴とする電動ホイール。
  4.  請求項3に記載の電動ホイールであって、
     軸方向内側の前記ブレードの傾きは、
     軸方向外側の前記ブレードの傾きよりも大きい
     ことを特徴とする電動ホイール。
  5.  請求項1に記載の電動ホイールであって、
     前記タイヤを固定するための環状のタイヤ固定体を備え、
     前記支持体は、
     軸方向内側に環状リブを有し、
     前記タイヤは、
     前記タイヤ固定体と前記環状リブで軸方向に挟んで固定される
     ことを特徴とする電動ホイール。
  6.  請求項1に記載の電動ホイールであって、
     前記ロータの外周部は、
     複数の冷却フィンを有する
     ことを特徴とする電動ホイール。
  7.  請求項6に記載の電動ホイールであって、
     それぞれの前記冷却フィンは、
     周方向に形成され、
     複数の前記冷却フィンは、
     軸方向に間隔をあけて設けられる
     ことを特徴とする電動ホイール。
  8.  請求項1に記載の電動ホイールであって、
     前記タイヤは、
     軸方向に複数に分割されており、
     分割された前記タイヤの間に前記走行風の前記流路が形成される
     ことを特徴とする電動ホイール。
  9.  請求項3に記載の電動ホイールであって、
     複数の前記流路は、
     隣接する2つの前記ブレードの間に沿って設けられる
     ことを特徴とする電動ホイール。
  10.  請求項3に記載の電動ホイールであって、
     前記ブレードの前記ロータ側の端部の右端は、
     前記ブレードの前記ロータ側の端部の左端よりも回転方向に対し前方に位置する
     ことを特徴とする電動ホイール。
PCT/JP2021/040028 2020-12-09 2021-10-29 電動ホイール WO2022123951A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020204385A JP2022091511A (ja) 2020-12-09 2020-12-09 電動ホイール
JP2020-204385 2020-12-09

Publications (1)

Publication Number Publication Date
WO2022123951A1 true WO2022123951A1 (ja) 2022-06-16

Family

ID=81972906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/040028 WO2022123951A1 (ja) 2020-12-09 2021-10-29 電動ホイール

Country Status (2)

Country Link
JP (1) JP2022091511A (ja)
WO (1) WO2022123951A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2617653A (en) * 2022-11-29 2023-10-18 Oxdrive Ltd Hub powertrain

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4331867A1 (fr) 2022-08-29 2024-03-06 Venturi Lab SA Roue deformable a support de charge non-pneumatique pour des conditions lunaires et martiennes

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5583104U (ja) * 1978-12-04 1980-06-07
JPS59199301A (ja) * 1983-04-26 1984-11-12 ル−ロン・アラベ・ウイリアムス 乗物用の自己冷却性、空気なし、衝撃吸収性車輪及びそのタイヤ
JPH0522133U (ja) * 1991-09-06 1993-03-23 株式会社四国総合研究所 電気自動車用電動機の冷却構造
WO2010061831A1 (ja) * 2008-11-28 2010-06-03 住友ゴム工業株式会社 タイヤ用ホイールリム
JP2012176664A (ja) * 2011-02-25 2012-09-13 Topy Industries Ltd モータ内蔵型ホイール装置及びその組立方法並びに組立・分解装置
US20130264861A1 (en) * 2012-04-05 2013-10-10 Samsung Electronics Co., Ltd. Wheel assembly of in-wheel system
JP2014004921A (ja) * 2012-06-25 2014-01-16 Yokohama Rubber Co Ltd:The 特殊リム用タイヤ及びタイヤホイール組立体
CN105539015A (zh) * 2016-01-14 2016-05-04 厦门正新橡胶工业有限公司 实心轮胎与轮辋组合结构

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5583104U (ja) * 1978-12-04 1980-06-07
JPS59199301A (ja) * 1983-04-26 1984-11-12 ル−ロン・アラベ・ウイリアムス 乗物用の自己冷却性、空気なし、衝撃吸収性車輪及びそのタイヤ
JPH0522133U (ja) * 1991-09-06 1993-03-23 株式会社四国総合研究所 電気自動車用電動機の冷却構造
WO2010061831A1 (ja) * 2008-11-28 2010-06-03 住友ゴム工業株式会社 タイヤ用ホイールリム
JP2012176664A (ja) * 2011-02-25 2012-09-13 Topy Industries Ltd モータ内蔵型ホイール装置及びその組立方法並びに組立・分解装置
US20130264861A1 (en) * 2012-04-05 2013-10-10 Samsung Electronics Co., Ltd. Wheel assembly of in-wheel system
JP2014004921A (ja) * 2012-06-25 2014-01-16 Yokohama Rubber Co Ltd:The 特殊リム用タイヤ及びタイヤホイール組立体
CN105539015A (zh) * 2016-01-14 2016-05-04 厦门正新橡胶工业有限公司 实心轮胎与轮辋组合结构

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2617653A (en) * 2022-11-29 2023-10-18 Oxdrive Ltd Hub powertrain
GB2617653B (en) * 2022-11-29 2024-04-17 Oxdrive Ltd Hub powertrain

Also Published As

Publication number Publication date
JP2022091511A (ja) 2022-06-21

Similar Documents

Publication Publication Date Title
WO2022123951A1 (ja) 電動ホイール
US10350939B2 (en) Lightweight aerodynamic wheel assembly
CA2499893C (en) Aerodynamic surfaced bicycle wheel
JP4656998B2 (ja) インホイールモータの冷却構造
JP2016505448A (ja) 一方向にエアを搬送するよう構成されたリム、エアレスタイヤ、およびハブキャップの設計およびそれらを使用する方法
US20070006951A1 (en) Ventilated tires
WO2015174405A1 (ja) 発電システム
CN104527326A (zh) 一种新型汽车轮毂
CN109347259A (zh) 一种同步四驱驱动电机
WO2010090241A1 (ja) タイヤ昇温装置
US20070046067A1 (en) Rollers for aerodynamic impact
US20160272000A1 (en) Aerodynamically efficient spoke design for a vehicle wheel
CN215720409U (zh) 散热叶片及轮扇组件
CN211844394U (zh) 一种附设风扇的机动车车桥总成
CN205311220U (zh) 一种高效散热汽车轮毂
JPH09272301A (ja) 自動車用ホイール
CN220904585U (zh) 轮胎及车辆
JP2011116195A (ja) 車両用ホイール
JP2009090736A (ja) インホイールモータ
JP2021031014A (ja) ダウンフォース発生装置および車両
CN212386231U (zh) 一种螺旋状轮毂
CN204641254U (zh) 一种新型汽车轮毂
JP2011189857A (ja) ホイールカバー及び車両用ホイール
CN215513073U (zh) 一种轻量化高强度车轮
US20230243367A1 (en) Fan wheel of a motor vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21903055

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21903055

Country of ref document: EP

Kind code of ref document: A1