WO2022119283A1 - 전극 압연 장치 및 전극 압연 방법 - Google Patents

전극 압연 장치 및 전극 압연 방법 Download PDF

Info

Publication number
WO2022119283A1
WO2022119283A1 PCT/KR2021/017909 KR2021017909W WO2022119283A1 WO 2022119283 A1 WO2022119283 A1 WO 2022119283A1 KR 2021017909 W KR2021017909 W KR 2021017909W WO 2022119283 A1 WO2022119283 A1 WO 2022119283A1
Authority
WO
WIPO (PCT)
Prior art keywords
uncoated
electrode
rolling
coil unit
electrode substrate
Prior art date
Application number
PCT/KR2021/017909
Other languages
English (en)
French (fr)
Inventor
안상범
김환한
이호경
최상훈
설정수
홍수형
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US17/792,068 priority Critical patent/US20230047465A1/en
Priority to CN202180013467.8A priority patent/CN115088094B/zh
Priority to JP2022542999A priority patent/JP7451019B2/ja
Priority to EP21900971.9A priority patent/EP4075535A4/en
Publication of WO2022119283A1 publication Critical patent/WO2022119283A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0435Rolling or calendering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/34Heating or cooling presses or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C9/00Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important
    • B05C9/08Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important for applying liquid or other fluent material and performing an auxiliary operation
    • B05C9/14Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important for applying liquid or other fluent material and performing an auxiliary operation the auxiliary operation involving heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • B30B11/18Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using profiled rollers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an electrode rolling apparatus and an electrode rolling method, and more particularly, to an electrode rolling apparatus and an electrode rolling method having improved electrode defects.
  • the secondary battery may be formed by inserting an electrode assembly including a positive electrode plate, a negative electrode plate, and a separator into a case and then sealing the electrode assembly.
  • a positive electrode plate or negative electrode plate (hereinafter referred to as “electrode plate”) is coated with an active material slurry to a certain thickness on a positive conductive current collector or a negative conductive current collector, respectively, and a separator is interposed between the positive conductive current collector and the negative conductive current collector
  • the electrode assembly can be formed by winding a plurality of times in the form of a jelly roll or stacking it in a plurality of layers.
  • the electrode plate may be formed of an active material coated portion coated with the active material slurry and an uncoated portion not coated.
  • the active material coating portion may include a rolling process to increase adhesion to the electrode current collector and increase the active material capacity density. After drying, the rolled electrode plate may be cut into a predetermined size by passing through a cutter having a predetermined width.
  • a rolling process of rolling the coated portion 30 and the uncoated portion 40 formed on the electrode current collector 20 by the rolling roll 10 may be performed.
  • a difference occurs between the stretching degree of the coated part 30P and the stretching degree of the uncoated part 40 , and the uncoated part 40 .
  • wrinkles may occur. Due to the wrinkles of the uncoated portion 40 occurring during rolling, process defects such as electrode disconnection may occur in a subsequent process.
  • the electrode is continuously subjected to a weak stress due to contraction and expansion and may become vulnerable to fracture.
  • the possibility that swell occurs and the process defect rate increases may increase.
  • the problem to be solved by the present invention is to provide an electrode rolling apparatus and an electrode rolling method having improved electrode defects.
  • An electrode rolling apparatus is an apparatus for rolling an electrode substrate having a coated portion and an uncoated portion, a coil portion having an effective area in which a uniform magnetic field is generated, and an electrode rolling for rolling the electrode substrate and a portion, wherein the coated portion and the uncoated portion each include a plurality of pattern portions, and the uncoated portion includes a first uncoated pattern portion positioned at at least one of both ends of the electrode substrate and a coating pattern portion adjacent to each other.
  • the coil portion includes a first coil portion for heating the first uncoated pattern portion, and a second coil portion for heating the second uncoated pattern portion, the The heating temperature of the second coil unit is lower than the heating temperature of the first coil unit.
  • the second uncoated pattern portion may be a portion to which a force is directly applied by a rolling roll.
  • the second coil unit may inductively heat the second uncoated pattern unit while having mobility.
  • the first coil unit includes a coil unit disposed on at least one side of both sides based on the traveling direction of the electrode substrate, and the coil unit is disposed on at least one of an upper portion and a lower portion of the electrode substrate, and in the effective area
  • the electrode substrate may be induction heated.
  • the coil unit may include a first coil unit and a second coil unit respectively disposed above and below the electrode substrate.
  • the coil unit may inductively heat the entire area of the uncoated portion and a partial area of the coated portion located on both sides of the boundary line between the coated portion and the uncoated portion.
  • the effective region in which the magnetic field is generated by the first coil part includes the uncoated part, a partial region of the coated part adjacent to the uncoated part, and an air region outside one side of the uncoated part spaced apart from the coated part. can do.
  • a magnetic core may be formed in each of the first coil unit and the second coil unit corresponding to the effective area.
  • the coil unit may further include a connection unit electrically connecting the first coil unit and the second coil unit, and the connection unit may extend in a direction perpendicular to a surface of the electrode substrate.
  • an electrode rolling method in a method of rolling an electrode substrate comprising an electrode current collector layer and a coating formed on one or both surfaces of the electrode current collector layer, induction heating the electrode substrate step, and rolling the electrode substrate, wherein the coated portion and the uncoated portion each include a plurality of pattern portions, and the uncoated portion is located at at least one end of both ends of the electrode substrate. and a second uncoated pattern portion positioned between the coating pattern portion and the adjacent coating pattern portion, wherein the induction heating of the electrode substrate includes induction heating the first uncoated pattern portion, and the second uncoated pattern portion. and induction heating the coating pattern portion, wherein a temperature of heating the second uncoated pattern portion is lower than a temperature of heating the first uncoated pattern portion.
  • the step of induction heating the electrode substrate may be performed before and/or after the step of rolling the electrode substrate.
  • a force may be directly applied to the second uncoated pattern portion by a rolling roll.
  • the second uncoated pattern part may be induction heated by the coil part having mobility.
  • FIG. 2 is a plan view showing an electrode plate after rolling.
  • FIG. 3 is a perspective view illustrating an electrode rolling apparatus according to an embodiment of the present invention.
  • FIG. 4 is a view schematically illustrating a side view of the rolling apparatus of FIG. 3 .
  • FIG. 5 is a diagram schematically illustrating a heating unit included in the electrode rolling apparatus of FIG. 4 .
  • FIG. 6 is a partial view of the electrode rolling apparatus of FIG. 5 as viewed from the front.
  • FIG. 7 is a view showing a coil unit according to an embodiment of the present invention.
  • FIG. 8 is a perspective view illustrating the coil unit of FIG. 7 .
  • FIG. 9 is a view showing a coil effective area in the electrode rolling apparatus according to the present embodiment.
  • a part of a layer, film, region, plate, etc. when a part of a layer, film, region, plate, etc. is said to be “on” or “on” another part, it includes not only cases where it is “directly on” another part, but also cases where another part is in between. . Conversely, when we say that a part is “just above” another part, we mean that there is no other part in the middle.
  • the reference part means to be located above or below the reference part, and to necessarily mean to be located “on” or “on” in the direction opposite to the gravity not.
  • planar it means when the target part is viewed from above, and "cross-sectional” means when viewed from the side when a cross-section of the target part is vertically cut.
  • FIG. 3 is a perspective view illustrating an electrode rolling apparatus according to an embodiment of the present invention.
  • FIG. 4 is a view schematically illustrating a side view of the rolling apparatus of FIG. 3 .
  • the electrode rolling method includes coating an active material on the electrode current collector layer 300 to form a coated portion 400 and an uncoated portion 500 , and an electrode Induction heating the electrode substrate 250 including the coated portion 400 and the uncoated portion 500 formed on one or both surfaces of the current collector layer 300, and rolling the electrode substrate 250 do.
  • the electrode rolling apparatus 100 includes a coated portion 400 in which a coating material is formed on the electrode current collector layer 300 and an uncoated portion 500 corresponding to the uncoated portion. ) having a first roller 101 for unwinding the electrode substrate 250 , a second roller 102 for winding the electrode substrate 250 , located between the first roller 101 and the second roller 102 . and a rolling roll 109 for rolling the coated portion 400 and the uncoated portion 500 of the electrode substrate 250 according to the movement direction of the electrode substrate 250 .
  • the uncoated portion 500 may indicate an area excluding the coated portion 400 formed on the electrode current collector layer 300 .
  • the first roller 101 provides the electrode substrate 250, which is an object to be rolled, to the rolling apparatus 100, and moves the electrode substrate 250 in the arrow direction D1 of FIG. 4 according to clockwise rotation.
  • the electrode substrate 250 unwound by the first roller 101 passes between the rolling rolls 109 while moving along the arrow direction.
  • the rolling rolls 109 are respectively positioned on both sides with respect to the electrode substrate 250 , and the electrode substrate 250 passing between the two rolling rolls 109 is pressed. Thereafter, the electrode substrate 250 passing between the two rolling rolls 109 is wound around the second roller 102 again.
  • the electrode substrate 250 is induction heating.
  • the step of induction heating the electrode substrate 250 may be performed by the coil unit 600 positioned between the first roller 101 and the rolling roll 109 in the electrode rolling apparatus 100 according to the present embodiment. have.
  • the coil unit 600 may reduce a difference in draw ratio with the coated unit 400 by applying heat to the uncoated unit 500 according to the present embodiment.
  • the coil unit 600 is positioned between the rolling roll 109 and the second roller 102 instead of between the first roller 101 and the rolling roll 109, and after the rolling process, the electrode substrate 250 ) can also be induction heated.
  • FIG. 5 is a diagram schematically illustrating a heating unit included in the electrode rolling apparatus of FIG. 4 .
  • 6 is a partial view of the electrode rolling apparatus of FIG. 5 as viewed from the front.
  • the electrode rolling apparatus 100 is an apparatus for rolling an electrode substrate 250 having a coated portion 400 and an uncoated portion 500, A first coil unit 600 having an effective area in which a uniform magnetic field is generated, and a second coil unit 800 located between the first coil unit 600 located at both ends of the electrode substrate 250 , and and the electrode rolling unit 700 of FIG. 4 for rolling the electrode substrate 250 .
  • the coil unit according to the present embodiment includes a first coil unit 600 in the form of a fixed induction heating coil and a second coil unit 800 in the form of a moving induction heating coil.
  • the second coil unit 800 may have mobility.
  • the coated portion 400 and the uncoated portion 500 each include a plurality of pattern portions, and the uncoated portion 500 is a first uncoated pattern portion ( 510) and a second uncoated pattern portion 520 positioned between the adjacent coating pattern portions 400.
  • the first coil unit 600 described above includes the first coil unit 600 heating the first uncoated pattern unit 510 and the second coil unit 800 heating the second uncoated pattern unit 520 . ) is included. In this case, the heating temperature of the second coil unit 800 is lower than the heating temperature of the first coil unit 600 .
  • the second uncoated pattern portion 520 may be a portion to which a force is directly applied by the rolling roll 109 of FIGS. 3 and 4 .
  • the second uncoated pattern portion 520 to which the force is directly applied by the rolling roll 109 may be stretched well compared to the first uncoated pattern portion 510 located at the edge of the electrode substrate 250 .
  • the second uncoated pattern portion 520 increases toward the large-area electrode, and accordingly, the number of parts that need to be heated locally increases, so the number of coatings and the length of the coil increases, and the induction heating power and controller increase, which takes up a lot of space in the process line. will occupy In addition, uniform heating of the electrode pattern portion becomes difficult.
  • the first uncoated pattern portion 510 and the second uncoated pattern portion 510 are 2 It is possible to match the draw ratio of the uncoated pattern part 520 . Through this, it is possible to improve problems due to swell and folding due to elongation failure of the coated portion 400 and the uncoated portion 500 .
  • the heating temperature of the second coil part 800 is increased to the first coil part 600 . It can be set lower than the heating temperature of The temperature setting is adjusted according to the shape of the first and second coil units 600 and 800 and the type of the magnetic core, and the electrode rolling process can be applied to the large-area electrode through these process conditions.
  • the second coil part 800 is in the form of a moving induction heating coil, and after determining the position and shape of the uncoated part pattern through the sensor part 650 , the second coil part 800 moves and the second uncoated pattern part ( 520) can be induction heating.
  • the second coil part 800 can be moved up, down, left, and right by the transfer member 680, and thus, an accurate location can be locally heated even if the uncoated part pattern is changed.
  • the first coil unit 600 includes a coil unit disposed on at least one side of both sides based on the traveling direction (MD direction; the direction in which the rolling roll is wound) of the electrode substrate 250, and the coil unit is the electrode substrate. At least one may be disposed above and below the 250 . In this embodiment, it will be described that the coil unit includes the first coil unit 600a and the second coil unit 600b respectively disposed on the upper and lower portions of the electrode substrate 250 . The first coil unit 600a and the second coil unit 600b may be covered by the covering member 610 having insulation and/or heat resistance, respectively.
  • the effective region in which a magnetic field is generated by the coil unit 600 according to the present embodiment is spaced apart from the uncoated portion 500 , a partial region of the coated portion 400 adjacent to the uncoated portion 500 and the coated portion 400 .
  • the uncoated portion 500 includes an air region 550 outside one side. In a direction perpendicular to the direction in which the rolling roll is wound (TD direction), the uncoated portion 500 and a partial region of the coated portion 400 adjacent to the uncoated portion 500 , the uncoated portion 500 , and the uncoated portion spaced apart from the coated portion 400 . Air regions 550 outside one side of the coating unit 500 may be sequentially arranged.
  • the coil unit according to this embodiment inductively heats the entire area of the uncoated portion 500 and a partial area of the coated portion 400 located on both sides around the boundary line between the coated portion 400 and the uncoated portion 500 . can do.
  • a magnetic core 620 may be formed in each of the first coil unit 600a and the second coil unit 600b corresponding to the effective area. The magnetic core 620 may correspond to the uncoated portion 500 and a partial region of the coated portion 400 adjacent to the uncoated portion 500 .
  • the magnetic core 620 may serve to concentrate the magnetic field emitted from the coil.
  • the magnetic field on the surface of the coil spreads and a difference may occur in uniformity, but the region to be heated by adjusting the resistance, permeability, and frequency band of the magnetic core 620 or adjusting the area and position of the magnetic core 620 . can be controlled and heated uniformly.
  • a desired magnetic field depth may be adjusted through a combination of different magnetic cores 620 .
  • the coil unit 600 may further include a connection unit 600c electrically connecting the first coil unit 600a and the second coil unit 600b.
  • the connection unit 600c may extend in a direction perpendicular to the surface of the electrode base 250 .
  • FIG. 7 is a view showing a coil unit according to an embodiment of the present invention.
  • 8 is a perspective view illustrating the coil unit of FIG. 7 .
  • a current may enter the first coil unit 600a and a current may flow out of the second coil unit 600b.
  • the current flow rotation direction of the first coil unit 600a and the current flow rotation direction of the second coil unit 600b may be the same as each other.
  • the direction of the magnetic field can be determined by Fleming's left hand rule for the flow of current. If the current flow directions of the first coil unit 600a and the second coil unit 600b are different from each other, the magnetic field is canceled and the efficiency by induction heating This can fall.
  • the first coil unit 600a and the second coil unit 600b may be covered by a covering member 610 having insulation and/or heat resistance, respectively, and a coil within the covering member 610 . It is possible to form a cooling path passing around the unit. When a current flows through the coil, when an induced current in the opposite direction is generated, heat is generated by offsetting, so cooling is required. Air cooling is also possible, but a solvent such as water cooling may be used for high output and stability.
  • FIG. 9 is a view showing a coil effective area in the electrode rolling apparatus according to the present embodiment.
  • the effective region EP is a region in which a magnetic field in a vertical direction is formed, and the uncoated region L2 and the uncoated region L2 are adjacent to the partial region of the coating ( L3) and an air region L1 outside of one side of the uncoated region L2 spaced apart from the coated region L3.
  • the effective region EP may have a length W in the MD direction, and an optimal induction heating condition may be controlled according to a ratio between the TD direction and the MD direction.
  • the range of W/L0 may be in the range of 0.1 to 0.9, preferably in the range of 0.4 to 0.8.
  • the ratio of the length of the air region L1 to the length L0 of the effective region EP in the TD direction may be greater than 0 and less than or equal to 0.9, preferably greater than or equal to 0 and less than or equal to 0.6.
  • a ratio of the length of the uncoated area L2 to the length L0 of the effective area EP in the TD direction may be 0.1 to 1.0, preferably 0.4 to 0.8.
  • a ratio of the length of the coating area L3 to the length L0 of the effective area EP in the TD direction may be greater than 0 and less than or equal to 0.6, preferably 0.1 to 0.5.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명의 일 실시예에 따른 전극 압연 장치는 코팅부와 미코팅부를 갖는 전극 기재를 압연하는 장치에 있어서, 균일한 자기장이 발생하는 유효 영역을 갖는 코일부, 및 상기 전극 기재를 압연하는 전극 압연부를 포함하고, 상기 코팅부와 상기 미코팅부는 각각 복수의 패턴부를 포함하고, 상기 미코팅부는 상기 전극 기재의 양 단부 중 적어도 일 단부에 위치하는 제1 미코팅 패턴부 및 서로 이웃하는 코팅 패턴부 사이에 위치하는 제2 미코팅 패턴부를 포함하며, 상기 코일부는, 상기 제1 미코팅 패턴부를 가열하는 제1 코일부와, 상기 제2 미코팅 패턴부를 가열하는 제2 코일부를 포함하고, 상기 제2 코일부의 가열 온도는 상기 제1 코일부의 가열 온도보다 낮다.

Description

전극 압연 장치 및 전극 압연 방법
관련 출원(들)과의 상호 인용
본 출원은 2020년 12월 04일자 한국 특허 출원 제10-2020-0168505호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 전극 압연 장치 및 전극 압연 방법에 관한 것으로서, 보다 구체적으로 전극 불량이 개선된 전극 압연 장치 및 전극 압연 방법에 관한 것이다.
이차 전지는 양극판, 음극판 및 분리막으로 이루어진 전극 조립체를 케이스에 삽입한 후 밀봉되어 형성될 수 있다. 양극판 또는 음극판(이하 “전극판”이라 함)은 양극 도전 집전체 또는 음극 도전 집전체에 각각 활물질 슬러리를 일정한 두께로 코팅하고, 상기 양극 도전 집전체와 상기 음극 도전 집전체 사이에는 분리막이 개재되도록 하여 젤리롤 형태로 다수회 권취하거나 복수층으로 적층하여 전극 조립체를 형성할 수 있다.
전극판은 활물질 슬러리가 코팅된 활물질 코팅부와 코팅되지 않은 미코팅부로 형성될 수 있다. 상기 활물질 코팅부는 전극 집전체와 접착성이 증가되고, 활물질 용량 밀도가 증가되도록 압연 공정이 포함될 수 있다. 상기 압연된 전극판은 건조 후 일정한 폭의 커터를 통과하여 소정의 크기로 절단되어 사용될 수 있다.
상기 압연 공정은 전극판의 압연시 상기 코팅부와 상기 미코팅부의 두께 차이로 인해 압박 편차가 발생하는 문제가 있다. 이러한 편차에 의해 전극 집전체의 불균형한 소성 변형이 발생할 수 있고, 이에 의해 잔류 응력이 발생할 수 있다. 특히, 인장 형태의 잔류 응력은 부품의 피로 내구성 저하 및 파괴 강도 저하를 유발할 수 있다.
도 1은 종래의 압연 장치에 의한 압연 공정을 나타내는 개략도이다. 도 2는 압연 이후의 전극판을 나타내는 평면도이다.
도 1을 참고하면, 전극 집전체(20) 상에 형성된 코팅부(30)과 미코팅부(40)를 압연롤(10)에 의해 압연하는 압연 공정이 수행될 수 있다. 이때, 압력이 코팅부(30)에 집중되면서 도 2에 도시한 바와 같이, 코팅부(30P)의 연신 정도와 미코팅부(40)의 연신 정도에 차이가 발생되며, 미코팅부(40)에 주름이 발생할 수 있다. 압연 시 발생하는 미코팅부(40)의 주름 때문에 이후 공정에서 전극 단선과 같은 공정 불량이 발생할 수 있다. 특히, 코팅부(30P)와 미코팅부(40) 경계면에서 높은 인장 잔류 응력이 남으면서 전극의 수축 팽창으로 인해 약한 응력을 지속적으로 받으며 파괴에 취약한 상태가 될 수 있다.
특히, 전극 크기가 대면적으로 갈수록 너울이 발생하고 공정 불량률이 증가할 가능성이 높아질 수 있다.
본 발명이 해결하고자 하는 과제는, 전극 불량이 개선된 전극 압연 장치 및 전극 압연 방법을 제공하기 위한 것이다.
그러나, 본 발명의 실시예들이 해결하고자 하는 과제는 상술한 과제에 한정되지 않고 본 발명에 포함된 기술적 사상의 범위에서 다양하게 확장될 수 있다.
본 발명의 일 실시예에 따른 전극 압연 장치는 코팅부와 미코팅부를 갖는 전극 기재를 압연하는 장치에 있어서, 균일한 자기장이 발생하는 유효 영역을 갖는 코일부, 및 상기 전극 기재를 압연하는 전극 압연부를 포함하고, 상기 코팅부와 상기 미코팅부는 각각 복수의 패턴부를 포함하고, 상기 미코팅부는 상기 전극 기재의 양 단부 중 적어도 일 단부에 위치하는 제1 미코팅 패턴부 및 서로 이웃하는 코팅 패턴부 사이에 위치하는 제2 미코팅 패턴부를 포함하며, 상기 코일부는, 상기 제1 미코팅 패턴부를 가열하는 제1 코일부와, 상기 제2 미코팅 패턴부를 가열하는 제2 코일부를 포함하고, 상기 제2 코일부의 가열 온도는 상기 제1 코일부의 가열 온도보다 낮다.
상기 제2 미코팅 패턴부는 압연롤에 의해 직접적으로 힘이 가해지는 부분일 수 있다.
상기 제2 코일부는 이동성을 가지면서 상기 제2 미코팅 패턴부를 유도 가열할 수 있다.
상기 제1 코일부는, 상기 전극 기재의 주행 방향 기준으로 양 측 중 적어도 한 측에 배치된 코일 유닛을 포함하고, 상기 코일 유닛은 상기 전극 기재의 상부과 하부 중 적어도 하나에 배치되며, 상기 유효 영역에서 상기 전극 기재가 유도 가열될 수 있다.
상기 코일 유닛은 상기 전극 기재의 상부과 하부에 각각 배치된 제1 코일 유닛과 제2 코일 유닛을 포함할 수 있다.
상기 코일 유닛은 상기 코팅부와 상기 미코팅부의 경계선을 중심으로 양측에 위치하는 상기 미코팅부의 전체 영역과 상기 코팅부의 일부 영역을 유도 가열할 수 있다.
상기 제1 코일부에 의해 자기장이 발생하는 상기 유효 영역은, 상기 미코팅부, 상기 미코팅부와 인접한 상기 코팅부 일부 영역 및 상기 코팅부로부터 이격된 상기 미코팅부 일측을 벗어난 에어 영역을 포함할 수 있다.
상기 유효 영역에 대응하는 상기 제1 코일 유닛과 상기 제2 코일 유닛 각각에 자성 코어가 형성될 수 있다.
상기 코일부는, 상기 제1 코일 유닛과 상기 제2 코일 유닛을 전기적으로 연결하는 연결 유닛을 더 포함하고, 상기 연결 유닛은 상기 전극 기재 면에 수직한 방향으로 뻗을 수 있다.
본 발명의 다른 일 실시예에 다른 전극 압연 방법은, 전극 집전체층 및 상기 전극 집전체층의 일면 또는 양면에 형성된 코팅부를 포함하는 전극 기재를 압연하는 방법에 있어서, 상기 전극 기재를 유도 가열하는 단계, 및 상기 전극 기재를 압연하는 단계를 포함하고, 상기 코팅부와 상기 미코팅부는 각각 복수의 패턴부를 포함하고, 상기 미코팅부는 상기 전극 기재의 양 단부 중 적어도 일 단부에 위치하는 제1 미코팅 패턴부 및 서로 이웃하는 코팅 패턴부 사이에 위치하는 제2 미코팅 패턴부를 포함하며, 상기 전극 기재를 유도 가열하는 단계는, 상기 제1 미코팅 패턴부를 유도 가열하는 단계, 및 상기 제2 미코팅 패턴부를 유도 가열하는 단계를 포함하고, 상기 제2 미코팅 패턴부를 가열하는 온도는 상기 제1 미코팅 패턴부를 가열하는 온도보다 낮다.
상기 전극 기재를 유도 가열하는 단계는, 상기 전극 기재를 압연하는 단계 이전 및/또는 이후에 수행할 수 있다.
상기 제2 미코팅 패턴부는 압연롤에 의해 직접 힘이 가해질 수 있다.
상기 제2 미코팅 패턴부는 이동성을 갖는 코일부에 의해 유도 가열될 수 있다.
실시예들에 따르면, 고정 유도 가열 코일과 이동 유도 가열 코일의 조합으로 대면적 전극에서 압연롤에 의해 힘이 가해지는 무지부와 가장자리에 위치하는 무지부의 연신비를 조절할 수 있다.
본 발명의 효과들은 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 청구범위의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
도 1은 종래의 압연 장치에 의한 압연 공정을 나타내는 개략도이다.
도 2는 압연 이후의 전극판을 나타내는 평면도이다.
도 3은 본 발명의 일 실시예에 따른 전극 압연 장치를 나타내는 사시도이다.
도 4는 도 3의 압연 장치를 측면에서 바라본 모습을 개략적으로 나타내는 도면이다.
도 5는 도 4의 전극 압연 장치에 포함된 가열부를 개략적으로 나타내는 도면이다.
도 6은 도 5의 전극 압연 장치를 정면에서 바라본 부분 도면이다.
도 7은 본 발명의 일 실시예에 따른 코일부를 나타내는 도면이다.
도 8은 도 7의 코일부를 나타내는 사시도이다.
도 9는 본 실시예에 따른 전극 압연 장치에서 코일 유효 영역을 나타내는 도면이다.
이하, 첨부한 도면을 참고로 하여 본 발명의 여러 실시예들에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예들에 한정되지 않는다.
본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조 부호를 붙이도록 한다.
또한, 도면에서 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 임의로 나타내었으므로, 본 발명이 반드시 도시된 바에 한정되지 않는다. 도면에서 여러 층 및 영역을 명확하게 표현하기 위하여 두께를 확대하여 나타내었다. 그리고 도면에서, 설명의 편의를 위해, 일부 층 및 영역의 두께를 과장되게 나타내었다.
또한, 층, 막, 영역, 판 등의 부분이 다른 부분 "위에" 또는 "상에" 있다고 할 때, 이는 다른 부분 "바로 위에" 있는 경우뿐 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 반대로 어떤 부분이 다른 부분 "바로 위에" 있다고 할 때에는 중간에 다른 부분이 없는 것을 뜻한다. 또한, 기준이 되는 부분 "위에" 또는 "상에" 있다고 하는 것은 기준이 되는 부분의 위 또는 아래에 위치하는 것이고, 반드시 중력 반대 방향을 향하여 "위에" 또는 "상에" 위치하는 것을 의미하는 것은 아니다.
또한, 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
또한, 명세서 전체에서, "평면상"이라 할 때, 이는 대상 부분을 위에서 보았을 때를 의미하며, "단면상"이라 할 때, 이는 대상 부분을 수직으로 자른 단면을 옆에서 보았을 때를 의미한다.
도 3은 본 발명의 일 실시예에 따른 전극 압연 장치를 나타내는 사시도이다. 도 4는 도 3의 압연 장치를 측면에서 바라본 모습을 개략적으로 나타내는 도면이다.
도 3을 참고하면, 본 발명의 일 실시예에 따른 전극 압연 방법은 전극 집전체층(300) 상에 활물질을 코팅하여 코팅부(400)와 미코팅부(500)를 형성하는 단계, 및 전극 집전체층(300)의 일면 또는 양면에 형성된 코팅부(400) 및 미코팅부(500)를 포함하는 전극 기재(250)를 유도 가열하는 단계, 및 전극 기재(250)를 압연하는 단계를 포함한다.
도 3 및 도 4를 참고하면, 본 실시예에 따른 전극 압연 장치(100)는 전극 집전체층(300) 상에 코팅 물질이 형성된 코팅부(400)와 무지부에 해당하는 미코팅부(500)를 갖는 전극 기재(250)를 언와인딩하는 제1 롤러(101), 전극 기재(250)를 와인딩하는 제2 롤러(102), 제1 롤러(101)와 제2 롤러(102) 사이에 위치하며, 전극 기재(250)의 이동 방향에 따라 전극 기재(250)의 코팅부(400) 및 미코팅부(500)를 압연하는 압연롤(109)을 포함한다. 미코팅부(500)는 전극 집전체층(300) 상에 형성된 코팅부(400)을 제외한 영역을 가리킬 수 있다.
제1 롤러(101)는 압연하려는 대상인 전극 기재(250)를 압연 장치(100)에 제공하며, 시계 방향 회전에 따라 전극 기재(250)를 도 4의 화살표 방향(D1)으로 이동시킨다. 제1 롤러(101)에 의해 풀린 전극 기재(250)가 화살표 방향을 따라 이동하면서 압연롤(109) 사이를 통과하게 된다. 압연롤(109)은 전극 기재(250)를 기준으로 양 측에 각각 위치하며, 2개의 압연롤(109) 사이를 통과한 전극 기재(250)는 가압된다. 이후 2개의 압연롤(109) 사이를 통과한 전극 기재(250)는 제2 롤러(102)에 다시 감기게 된다.
본 실시예에 따른 전극 압연 방법은, 코팅부(400)와 미코팅부(500)를 갖는 전극 기재(250)가 언와인딩된 후 압연롤(109)에 의해 압연되기 전에 전극 기재(250)를 유도 가열하는 단계를 포함한다. 전극 기재(250)를 유도 가열하는 단계는, 본 실시예에 따른 전극 압연 장치(100)에서 제1 롤러(101)와 압연롤(109) 사이에 위치하는 코일부(600)에 의해 수행될 수 있다. 코일부(600)는 본 실시예에 따른 미코팅부(500)에 열을 가하여 코팅부(400)와의 연신비 차이를 줄일 수 있다. 코일부(600)는 제1 롤러(101)와 압연롤(109) 사이에 위치하는 것 대신에 압연롤(109)과 제2 롤러(102) 사이에 위치하여, 압연 공정 이후에 전극 기재(250)를 유도 가열할 수도 있다.
도 5는 도 4의 전극 압연 장치에 포함된 가열부를 개략적으로 나타내는 도면이다. 도 6은 도 5의 전극 압연 장치를 정면에서 바라본 부분 도면이다.
도 5 및 도 6을 참고하면, 본 발명의 일 실시예에 따른 전극 압연 장치(100)는 코팅부(400)와 미코팅부(500)를 갖는 전극 기재(250)를 압연하는 장치에 있어서, 균일한 자기장이 발생하는 유효 영역을 갖는 제1 코일부(600)와, 전극 기재(250)의 양 단부에 위치하는 제1 코일부(600) 사이에 위치하는 제2 코일부(800), 및 전극 기재(250)를 압연하는 도 4의 전극 압연부(700)를 포함한다. 본 실시예에 따른 코일부는, 고정 유도 가열 코일 형태인 제1 코일부(600)와, 이동 유도 가열 코일 형태인 제2 코일부(800)를 포함한다. 다시 말해, 제2 코일부(800)는 이동성을 가질 수 있다.
코팅부(400)와 미코팅부(500)는 각각 복수의 패턴부를 포함하고, 미코팅부(500)는 전극 기재(250)의 양 단부 중 적어도 일 단부에 위치하는 제1 미코팅 패턴부(510) 및 서로 이웃하는 코팅 패턴부(400) 사이에 위치하는 제2 미코팅 패턴부(520)를 포함한다. 앞에서 설명한 제1 코일부(600)는, 제1 미코팅 패턴부(510)를 가열하는 제1 코일부(600)와, 제2 미코팅 패턴부(520)를 가열하는 제2 코일부(800)를 포함한다. 이때, 제2 코일부(800)의 가열 온도는 제1 코일부(600)의 가열 온도보다 낮다.
본 실시예에 따른 제2 미코팅 패턴부(520)는 도 3 및 도 4의 압연롤(109)에 의해 직접적으로 힘이 가해지는 부분일 수 있다. 이처럼, 압연롤(109)에 의해 직접적으로 힘이 가해지는 제2 미코팅 패턴부(520)는, 전극 기재(250)의 가장자리에 위치하는 제1 미코팅 패턴부(510) 대비하여 연신이 잘될 수 있다. 대면적 전극으로 갈수록 제2 미코팅 패턴부(520)가 늘어나고 이에 따라 국부적으로 가열해야 하는 부분이 많아져서 코팅수와 코일의 길이가 길어지고, 유도 가열 파워 및 컨트롤러가 늘어나 공정 라인의 공간을 많이 차지하게 된다. 또한, 전극 패턴부에 대한 균일한 가열이 어려워진다. 본 실시예에 따르면, 제2 미코팅 패턴부(520)를 가열하는 온도가 제1 미코팅 패턴부(510)를 가열하는 온도보다 낮도록 설정함으로써, 제1 미코팅 패턴부(510)와 제2 미코팅 패턴부(520)의 연신비를 맞출 수 있다. 이를 통해, 코팅부(400)와 미코팅부(500)의 연신 불량에 의한 너울 및 접힘에 의한 문제를 개선할 수 있다.
제2 미코팅 패턴부(520)의 가열 온도를 제1 미코팅 패턴부(510)의 가열 온도 대비하여 낮도록 하기 위해, 제2 코일부(800)의 가열 온도를 제1 코일부(600)의 가열 온도보다 낮게 설정할 수 있다. 이러한 온도 설정을 위해 제1, 2 코일부(600, 800)의 형상 및 자성 코어의 종류에 따라 조절하고, 이러한 공정 조건을 통해 대면적 전극에 전극 압연 공정을 적용할 수 있다. 제2 코일부(800)는 이동 유도 가열 코일 형태로서, 센서부(650)를 통해 미코팅부 패턴의 위치 및 형태를 파악한 후 제2 코일부(800)가 이동하여 제2 미코팅 패턴부(520)를 유도 가열할 수 있다. 제2 코일부(800)는 이송 부재(680)에 의해 상하좌우로 위치 변경을 할 수 있고, 이로 인해 미코팅부 패턴이 변경되더라도 정확한 위치를 국부적으로 가열할 수 있다.
제1 코일부(600)는, 전극 기재(250)의 주행 방향(MD 방향; 압연롤이 감기는 방향) 기준으로 양 측 중 적어도 한 측에 배치된 코일 유닛을 포함하고, 코일 유닛은 전극 기재(250)의 상부과 하부에 적어도 하나 배치될 수 있다. 본 실시예에서는 코일 유닛이 전극 기재(250)의 상부과 하부에 각각 배치된 제1 코일 유닛(600a)과 제2 코일 유닛(600b)을 포함하는 것으로 설명한다. 제1 코일 유닛(600a)과 제2 코일 유닛(600b)은 각각 절연성 및/또는 내열성을 갖는 피복 부재(610)에 의해 덮일 수 있다.
본 실시예에 따른 코일부(600)에 의해 자기장이 발생하는 유효 영역은, 미코팅부(500), 미코팅부(500)와 인접한 코팅부(400) 일부 영역 및 코팅부(400)로부터 이격된 미코팅부(500) 일측을 벗어난 에어 영역(550)을 포함한다. 압연롤이 감기는 방향에 수직한 방향(TD 방향)을 따라, 미코팅부(500)와 인접한 코팅부(400) 일부 영역, 미코팅부(500), 및 코팅부(400)로부터 이격된 미코팅부(500) 일측을 벗어난 에어 영역(550)이 순차적으로 배열될 수 있다.
본 실시예에 따른 코일 유닛은 코팅부(400)와 미코팅부(500)의 경계선을 중심으로 양측에 위치하는 미코팅부(500)의 전체 영역과 코팅부(400)의 일부 영역을 유도 가열할 수 있다. 유효 영역에 대응하는 제1 코일 유닛(600a)과 제2 코일 유닛(600b) 각각에 자성 코어(620)가 형성될 수 있다. 자성 코어(620)는 미코팅부(500) 및 미코팅부(500)와 인접한 코팅부(400) 일부 영역에 대응할 수 있다.
본 실시예에 따른 자성 코어(620)는, 코일에서 나오는 자기장을 집중시키는 역할을 할 수 있다. 코일 표면에서의 자기장은 퍼지게 되어 균일도에 차이가 발생할 수 있으나, 자성 코어(620)의 저항, 투자율, 및 주파수 영역대를 조절하거나, 자성 코어(620)의 면적과 위치를 조절함으로써 가열하고자 하는 영역을 제어하고, 균일하게 가열할 수 있다. 또한, 서로 다른 자성 코어(620)의 조합을 통해 원하는 자기장 깊이를 조절할 수도 있다.
본 실시예에 따른 코일부(600)는, 제1 코일 유닛(600a)과 제2 코일 유닛(600b)을 전기적으로 연결하는 연결 유닛(600c)을 더 포함할 수 있다. 연결 유닛(600c)은 전극 기재(250) 면에 수직한 방향으로 뻗을 수 있다.
도 7은 본 발명의 일 실시예에 따른 코일부를 나타내는 도면이다. 도 8은 도 7의 코일부를 나타내는 사시도이다.
도 7 및 도 8을 참고하면, 제1 코일 유닛(600a)으로 전류가 들어오고, 제2 코일 유닛(600b)으로 전류가 흘러 나갈 수 있다. 이때, 제1 코일 유닛(600a)의 전류 흐름 회전 방향과 제2 코일 유닛(600b)의 전류 흐름 회전 방향은 서로 동일할 수 있다. 전류의 흐름은 플레밍의 왼손 법칙에 의해 자기장의 방향이 결정될 수 있는데, 만약 제1 코일 유닛(600a)과 제2 코일 유닛(600b)의 전류 흐름 방향이 서로 다르면 자기장이 상쇄되어 유도 가열에 의한 효율이 떨어질 수 있다.
도 6에 도시한 바와 같이, 제1 코일 유닛(600a)과 제2 코일 유닛(600b)은 각각 절연성 및/또는 내열성을 갖는 피복 부재(610)에 의해 덮일 수 있는데, 피복 부재(610) 내에 코일 유닛 주변으로 지나가는 냉각로를 형성할 수 있다. 코일에 전류가 흐르게 되면 이에 반대 방향의 유도 전류가 생성되면 상쇄에 의한 발열이 발생하기 때문에 냉각이 필요하다. 공냉도 가능하지만, 높은 출력과 안정성을 위해 수냉 등의 용매를 이용할 수 있다.
도 9는 본 실시예에 따른 전극 압연 장치에서 코일 유효 영역을 나타내는 도면이다.
도 9를 참고하면, 본 실시예에 따른 유효 영역(EP)은 수직한 방향의 자기장이 형성되는 영역이며, 미코팅부 영역(L2), 미코팅부 영역(L2)과 인접한 코팅부 일부 영역(L3) 및 코팅부 영역(L3)으로부터 이격된 미코팅부 영역(L2) 일측을 벗어난 에어 영역(L1)을 포함할 수 있다. 또한, 유효 영역(EP)은 MD 방향으로의 길이(W)를 가질 수 있고, TD 방향과 MD 방향의 비에 따라 최적의 유도 가열 조건을 제어할 수 있다.
본 실시예에 따르면, W/L0의 범위는 0.1 내지 0.9일 수 있고, 바람직하게는 0.4 내지 0.8의 범위를 가질 수 있다. 이때, 유효 영역(EP)의 TD 방향의 길이(L0)에 대한 에어 영역(L1)의 길이 비율은 0 초과 0.9 이하일 수 있고, 바람직하게는 0 초과 0.6 이하일 수 있다. 유효 영역(EP)의 TD 방향의 길이(L0)에 대한 미코팅부 영역(L2)의 길이 비율은 0.1 내지 1.0일 수 있고, 바람직하게는 0.4 내지 0.8일 수 있다. 유효 영역(EP)의 TD 방향의 길이(L0)에 대한 코팅부 영역(L3)의 길이 비율은 0 초과 0.6 이하일 수 있고, 바람직하게는 0.1 내지 0.5일 수 있다.
이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.
[부호의 설명]
100: 전극 압연 장치
250: 전극 기재
400: 코팅부
500, 510, 520: 미코팅부
550: 에어 영역
600: 제1 코일부
620: 자성 코어
650: 센서부
680: 이송 부재
800: 제2 코일부
EP: 유효 영역

Claims (13)

  1. 코팅부와 미코팅부를 갖는 전극 기재를 압연하는 장치에 있어서,
    균일한 자기장이 발생하는 유효 영역을 갖는 코일부, 및
    상기 전극 기재를 압연하는 전극 압연부를 포함하고,
    상기 코팅부와 상기 미코팅부는 각각 복수의 패턴부를 포함하고, 상기 미코팅부는 상기 전극 기재의 양 단부 중 적어도 일 단부에 위치하는 제1 미코팅 패턴부 및 서로 이웃하는 코팅 패턴부 사이에 위치하는 제2 미코팅 패턴부를 포함하며,
    상기 코일부는, 상기 제1 미코팅 패턴부를 가열하는 제1 코일부와, 상기 제2 미코팅 패턴부를 가열하는 제2 코일부를 포함하고,
    상기 제2 코일부의 가열 온도는 상기 제1 코일부의 가열 온도보다 낮은 전극 압연 장치.
  2. 제1항에서,
    상기 제2 미코팅 패턴부는 압연롤에 의해 직접적으로 힘이 가해지는 부분인 전극 압연 장치.
  3. 제2항에서,
    상기 제2 코일부는 이동성을 가지면서 상기 제2 미코팅 패턴부를 유도 가열하는 전극 압연 장치.
  4. 제1항에서,
    상기 제1 코일부는, 상기 전극 기재의 주행 방향 기준으로 양 측 중 적어도 한 측에 배치된 코일 유닛을 포함하고,
    상기 코일 유닛은 상기 전극 기재의 상부과 하부 중 적어도 하나에 배치되며,
    상기 유효 영역에서 상기 전극 기재가 유도 가열되는 전극 압연 장치.
  5. 제4항에서,
    상기 코일 유닛은 상기 전극 기재의 상부과 하부에 각각 배치된 제1 코일 유닛과 제2 코일 유닛을 포함하는 전극 압연 장치.
  6. 제5항에서,
    상기 코일 유닛은 상기 코팅부와 상기 미코팅부의 경계선을 중심으로 양측에 위치하는 상기 미코팅부의 전체 영역과 상기 코팅부의 일부 영역을 유도 가열하는 전극 압연 장치.
  7. 제6항에서,
    상기 제1 코일부에 의해 자기장이 발생하는 상기 유효 영역은, 상기 미코팅부, 상기 미코팅부와 인접한 상기 코팅부 일부 영역 및 상기 코팅부로부터 이격된 상기 미코팅부 일측을 벗어난 에어 영역을 포함하는 전극 압연 장치.
  8. 제7항에서,
    상기 유효 영역에 대응하는 상기 제1 코일 유닛과 상기 제2 코일 유닛 각각에 자성 코어가 형성되는 전극 압연 장치.
  9. 제5항에서,
    상기 코일부는, 상기 제1 코일 유닛과 상기 제2 코일 유닛을 전기적으로 연결하는 연결 유닛을 더 포함하고, 상기 연결 유닛은 상기 전극 기재 면에 수직한 방향으로 뻗는 전극 압연 장치.
  10. 전극 집전체층 및 상기 전극 집전체층의 일면 또는 양면에 형성된 코팅부를 포함하는 전극 기재를 압연하는 방법에 있어서,
    상기 전극 기재를 유도 가열하는 단계, 및
    상기 전극 기재를 압연하는 단계를 포함하고,
    상기 코팅부와 상기 미코팅부는 각각 복수의 패턴부를 포함하고, 상기 미코팅부는 상기 전극 기재의 양 단부 중 적어도 일 단부에 위치하는 제1 미코팅 패턴부 및 서로 이웃하는 코팅 패턴부 사이에 위치하는 제2 미코팅 패턴부를 포함하며,
    상기 전극 기재를 유도 가열하는 단계는, 상기 제1 미코팅 패턴부를 유도 가열하는 단계, 및 상기 제2 미코팅 패턴부를 유도 가열하는 단계를 포함하고,
    상기 제2 미코팅 패턴부를 가열하는 온도는 상기 제1 미코팅 패턴부를 가열하는 온도보다 낮은 전극 압연 방법.
  11. 제10항에서,
    상기 전극 기재를 유도 가열하는 단계는, 상기 전극 기재를 압연하는 단계 이전 및/또는 이후에 수행하는 전극 압연 방법.
  12. 제10항에서,
    상기 제2 미코팅 패턴부는 압연롤에 의해 직접 힘이 가해지는 전극 압연 방법.
  13. 제10항에서,
    상기 제2 미코팅 패턴부는 이동성을 갖는 코일부에 의해 유도 가열되는 전극 압연 방법.
PCT/KR2021/017909 2020-12-04 2021-11-30 전극 압연 장치 및 전극 압연 방법 WO2022119283A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/792,068 US20230047465A1 (en) 2020-12-04 2021-11-30 Electrode Rolling Apparatus and Electrode Rolling Method
CN202180013467.8A CN115088094B (zh) 2020-12-04 2021-11-30 电极轧制装置和电极轧制方法
JP2022542999A JP7451019B2 (ja) 2020-12-04 2021-11-30 電極圧延装置および電極圧延方法
EP21900971.9A EP4075535A4 (en) 2020-12-04 2021-11-30 ELECTRODE ROLLING APPARATUS AND ELECTRODE ROLLING METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0168505 2020-12-04
KR1020200168505A KR20220079084A (ko) 2020-12-04 2020-12-04 전극 압연 장치 및 전극 압연 방법

Publications (1)

Publication Number Publication Date
WO2022119283A1 true WO2022119283A1 (ko) 2022-06-09

Family

ID=81854259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/017909 WO2022119283A1 (ko) 2020-12-04 2021-11-30 전극 압연 장치 및 전극 압연 방법

Country Status (6)

Country Link
US (1) US20230047465A1 (ko)
EP (1) EP4075535A4 (ko)
JP (1) JP7451019B2 (ko)
KR (1) KR20220079084A (ko)
CN (1) CN115088094B (ko)
WO (1) WO2022119283A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004335374A (ja) * 2003-05-09 2004-11-25 Denso Corp 電極の製造方法
KR20100116027A (ko) * 2009-04-21 2010-10-29 에스비리모티브 주식회사 유도가열 장치
KR20120126303A (ko) * 2011-05-11 2012-11-21 삼성에스디아이 주식회사 극판 및 이를 포함하는 이차전지 및 극판의 제조방법
KR20130033318A (ko) * 2011-09-26 2013-04-03 닛산 지도우샤 가부시키가이샤 띠 형상 전극의 제조 장치 및 제조 방법
KR20170092062A (ko) * 2016-02-02 2017-08-10 (주)피엔티 무지부 가열 장치
KR20200059001A (ko) * 2018-11-20 2020-05-28 주식회사 엘지화학 무지부의 가열을 위한 가열 유닛을 구비하는 전극 압연 장치 및 이를 포함하는 전극 제조 시스템

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005093236A (ja) 2003-09-17 2005-04-07 Toyota Motor Corp シート電極の製造方法
JP4954585B2 (ja) 2006-03-31 2012-06-20 株式会社デンソー リチウムイオン電池用電極の製造方法
JP5272564B2 (ja) 2008-08-04 2013-08-28 日産自動車株式会社 電極材乾燥方法および電極材乾燥装置
JP5760366B2 (ja) * 2010-10-04 2015-08-12 日産自動車株式会社 電池用電極箔のプレス方法
JP5390721B1 (ja) * 2013-05-08 2014-01-15 株式会社日立パワーソリューションズ 電極材料のロールプレス方法及びロールプレス設備
JP2017084545A (ja) 2015-10-27 2017-05-18 東レエンジニアリング株式会社 ロールプレス機及びロールプレス方法
JP6027701B1 (ja) * 2016-05-20 2016-11-16 大野ロール株式会社 しわ発生防止装置付ロールプレス機とロールプレス方法
US20180151887A1 (en) * 2016-11-29 2018-05-31 GM Global Technology Operations LLC Coated lithium metal negative electrode
KR102538852B1 (ko) * 2018-01-03 2023-06-01 주식회사 엘지에너지솔루션 전극시트 압연 장치 및 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004335374A (ja) * 2003-05-09 2004-11-25 Denso Corp 電極の製造方法
KR20100116027A (ko) * 2009-04-21 2010-10-29 에스비리모티브 주식회사 유도가열 장치
KR20120126303A (ko) * 2011-05-11 2012-11-21 삼성에스디아이 주식회사 극판 및 이를 포함하는 이차전지 및 극판의 제조방법
KR20130033318A (ko) * 2011-09-26 2013-04-03 닛산 지도우샤 가부시키가이샤 띠 형상 전극의 제조 장치 및 제조 방법
KR20170092062A (ko) * 2016-02-02 2017-08-10 (주)피엔티 무지부 가열 장치
KR20200059001A (ko) * 2018-11-20 2020-05-28 주식회사 엘지화학 무지부의 가열을 위한 가열 유닛을 구비하는 전극 압연 장치 및 이를 포함하는 전극 제조 시스템

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4075535A4 *

Also Published As

Publication number Publication date
JP7451019B2 (ja) 2024-03-18
CN115088094B (zh) 2024-07-23
JP2023510560A (ja) 2023-03-14
CN115088094A (zh) 2022-09-20
EP4075535A4 (en) 2023-08-16
US20230047465A1 (en) 2023-02-16
EP4075535A1 (en) 2022-10-19
KR20220079084A (ko) 2022-06-13

Similar Documents

Publication Publication Date Title
WO2020130184A1 (ko) 이차전지의 셀 스택 제조장치
WO2022145905A1 (ko) 전극시트의 불량 검출 시스템
WO2022119283A1 (ko) 전극 압연 장치 및 전극 압연 방법
US20210036356A1 (en) Electrode Sheet Rolling Apparatus, Guide Roll System Used Therein, and Method of Winding Electrode Sheet Using the Same
WO2022108349A1 (ko) 전극 제조 장치
WO2022108305A1 (ko) 전극 지지용 롤 및 이를 포함하는 전극 제조 장치
WO2022119285A1 (ko) 전극 압연 장치 및 전극 압연 방법
WO2022191591A1 (ko) 포일 탭 포밍 장치 및 포일 탭 포밍 방법
WO2023204455A1 (ko) 전극 제조 장치
WO2022145716A1 (ko) 전극 제조 장치
WO2022045644A1 (ko) 전극 건조 장치
WO2021112418A1 (ko) 이차 전지용 전극 및 이차 전지용 전극 제조 방법
WO2014035208A2 (ko) 이차 전지용 전극 제조 방법 및 장치
WO2021080255A1 (ko) 이차전지용 파우치 필름 성형 장치 및 방법
WO2020218891A1 (ko) 이차전지용 전극 노칭장치와, 이를 통해 제조된 이차전지용 전극 및 이차전지
WO2017052283A1 (ko) 전극용 압연 롤 및 이를 포함하는 압연 장치
WO2022145687A1 (ko) 전극 압연 장치 및 전극 압연 방법
WO2023146288A1 (ko) 가림막 자동 조절 가능한 건조 장치
WO2020106017A1 (ko) 전극 조립체 제조장치 및 전극 조립체 제조방법
WO2024136182A1 (ko) 전극을 압연하는 방법
WO2024186035A1 (ko) 전극 제조용 건조 장치
WO2023096376A1 (ko) 젤리롤 전극 조립체 및 이를 포함하는 이차전지
WO2023075426A1 (ko) 이차 전지용 전극 제조 장치
WO2024075984A1 (ko) 전극 압연 장치
WO2021167176A1 (ko) 태양전지 셀의 태빙방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022542999

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21900971

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021900971

Country of ref document: EP

Effective date: 20220711

NENP Non-entry into the national phase

Ref country code: DE