WO2021167176A1 - 태양전지 셀의 태빙방법 - Google Patents

태양전지 셀의 태빙방법 Download PDF

Info

Publication number
WO2021167176A1
WO2021167176A1 PCT/KR2020/008228 KR2020008228W WO2021167176A1 WO 2021167176 A1 WO2021167176 A1 WO 2021167176A1 KR 2020008228 W KR2020008228 W KR 2020008228W WO 2021167176 A1 WO2021167176 A1 WO 2021167176A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire
solar cell
tabbing
solar cells
soldering
Prior art date
Application number
PCT/KR2020/008228
Other languages
English (en)
French (fr)
Inventor
김성현
Original Assignee
전자부품연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전자부품연구원 filed Critical 전자부품연구원
Publication of WO2021167176A1 publication Critical patent/WO2021167176A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1876Particular processes or apparatus for batch treatment of the devices
    • H01L31/188Apparatus specially adapted for automatic interconnection of solar cells in a module
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for tabbing a solar cell, and more particularly, to a method for tabbing a solar cell capable of preventing damage to the solar cell during a tabbing process.
  • solar cell modules include a cell test process for classifying solar cells, a tabbing process for connecting solar cells in series using wires, a horizontal arrangement of solar cells arranged in a line, and low iron tempered glass, EVA It is manufactured through a layup process of laminating a back sheet, etc., a lamination process for high-temperature vacuum compression of a solar cell module, and a module test process to check whether the completed solar cell module operates normally.
  • the tabbing process includes a process of applying and drying flux to a wire, a process of cutting a wire, a process of aligning the wire cut in a solar cell using a gripper, and a process of soldering the wire to a solar cell.
  • 1A is a view for explaining a wire soldering process of a general solar cell.
  • the wire is pressed at a high temperature to the upper surface of the first solar cell 1 and the rear of the second solar cell 2 to be soldered.
  • the interval between the first solar cell 1 and the second solar cell 2 is 2 mm to 5 mm.
  • FIG. 1B is a view for explaining a soldering process of a gapless type solar cell module.
  • wires are soldered to the upper surface of the first solar cell 1 and the rear of the second solar cell 2 adjacent to each other. Meanwhile, in the wire soldering process, since the edge portions A and B of each of the first solar cell 1 and the second solar cell 2 overlap each other, during the soldering process, the first solar cell 1 or There is a high probability that the edge portion of the second solar cell 2 is damaged by being pressed by the wire. Therefore, in the soldering process of the gapless type solar cell, a quality problem may occur due to the damage of the solar cell.
  • an object of the present invention is to provide a method of tabbing a solar cell capable of preventing damage to a gapless type solar cell.
  • a method for tabbing a solar cell includes a wire cutting process of cutting a wire; a wire rolling process of rolling a first portion of the wire; A wire alignment process of aligning the wire to the upper surface of the first solar cell and the rear surface of the second solar cell so that the first portion of the wire is positioned at the boundary between the first and second solar cells adjacent to each other ; and a wire soldering process of soldering the aligned wires to the solar cell.
  • the wire includes a first portion positioned at a boundary between first and second solar cells adjacent to each other, a second portion soldered to the first and second solar cells, and a gripper. and a third part secured by
  • the first portion of the wire is spaced apart from the edge ends of the first and second solar cells adjacent to each other.
  • the first portion of the wire is deformed into a concave groove shape.
  • the third part of the wire is held in a fixed state by the gripper.
  • the method further includes a wire cutting process of removing a third portion of the wire.
  • the first portion of the wire is between 5 mm and 20 mm.
  • the first solar cell and the second solar cell are arranged to overlap 0.5mm to 5mm in the horizontal direction.
  • the second part and the third part of the wire are not rolled.
  • the method before the wire cutting process, the method further includes applying and drying the flux to the wire.
  • the first portion of the wire corresponding to the boundary portion of the adjacent solar cells is rolled, so that the edge end of the solar cell is spaced apart from the first portion of the wire, and the wire soldering process is performed is carried out Therefore, according to the tabbing method of the present invention, by including the process of rolling the first part of the wire, it is possible to prevent the edge end of the solar cell from being damaged during the wire soldering process.
  • 1 is a view for explaining a wire soldering process of a solar cell.
  • FIG. 2 is a flowchart for explaining a method of tabbing a solar cell according to an embodiment of the present invention.
  • FIG. 3 is a view for explaining a wire cut in the wire cutting process of FIG. 2 .
  • FIG. 4 is a view for explaining the wire rolling process of FIG. 2 .
  • FIG. 5 is a view showing a wire on which the wire rolling process of FIG. 4 is completed.
  • FIG. 6 is a view for explaining the wire alignment process of FIG. 2 .
  • FIG. 7 is a view for explaining the wire soldering process of FIG. 2 .
  • FIG. 8 is a view for explaining the wire cutting process of FIG. 2 .
  • FIG. 2 is a flowchart for explaining a method of tabbing a solar cell according to an embodiment of the present invention.
  • the method of tabbing a solar cell includes a flux application process (S100), a wire cutting process (S200), a wire rolling process (S300), a wire alignment process (S400), a wire soldering process (S500), and a wire It includes a cutting process (S600).
  • the flux application process ( S100 ) is a process of applying and drying the flux on the wire.
  • the flux is applied to the surface of the wire (W), and the flux applied to the surface of the wire (W) is dried.
  • the wire W may include a core layer (not shown) made of a metal, and a solder layer (not shown) coated with a thin thickness on the surface of the core layer and made of a solder material.
  • the flux applied to the wire W may be coated on the surface of the solder layer (not shown), which is the surface of the wire.
  • a method of applying the flux to the wire As a method of applying the flux to the wire (W), a method of spraying the flux onto the wire in the form of a spray, a method of applying the flux to the surface of the wire using a roller, a dipping method of immersing the wire in a water bath containing flux, etc. may be used.
  • a method of drying the flux either a method of drying the flux by supplying hot air supplying air higher than room temperature or a method of drying the flux by irradiating infrared light to the flux using an infrared lamp may be used.
  • FIG. 3 is a view for explaining a wire cut in the wire cutting process of FIG. 2 .
  • the wire to which the flux is applied in the flux application process (S100) is cut to a length suitable for connecting two adjacent solar cells (C1, C2).
  • the wire W is a first portion W1 positioned at the boundary between the two solar cells C1 and C2 and a second portion soldered to the solar cells C1 and C2, respectively. It includes (W2) and a third portion (W3) positioned in the process direction and fixed by the gripper (G). In the cutting process, the third part of the wire W is gripped by the gripper G, and the cut wire is transferred to the next process by the gripper G.
  • FIG. 4 is a view for explaining the wire rolling process of FIG. 2
  • FIG. 5 is a view showing the wire after the wire rolling process of FIG. 4 is completed.
  • the first part W1 of the cut wire is rolled by a rolling means R such as a roller.
  • the rolled wire W is, as described above, the first part W1 positioned at the boundary of the two solar cells C1 and C2, and the solar cells C1 and C2 respectively soldered to It includes a second part W2 and a third part W3 positioned in the process progress direction and fixed by the gripper G.
  • the first portion (W1) of the wire (W) is a portion located at the boundary between the two adjacent solar cells (C1, C2), and is rolled by the rolling means (R). And the second part W2 and the third part W3 of the wire W are not rolled.
  • the length of the first portion W1 of the wire W may be 5 mm to 20 mm. Alternatively, the first portion W1 of the wire W may have a different length. The length of the first portion W1 of the wire W may be determined by a gap between the solar cells C1 and C2 connected in a gapless form.
  • the thickness of the first portion W1 of the wire W is formed to be thinner than the thickness of the remaining portions except for the first portion that is not rolled. Therefore, in the wire rolling process, the first portion W1 of the wire W is deformed into a concave groove shape on both the upper surface and the rear surface of the wire. Since the first portion W1 of the wire W is aligned with the boundary portion of the solar cells C1 and C2 adjacent to each other, the edge ends of the solar cells C1 and C2 in the soldering process S400 are connected to the wire ( It exists spaced apart from the first part of W).
  • the second part W2 of the wire W is located on one side and the other side of the first part W1 of the wire W, respectively, and the third part of the wire W is the wire W located in the process progress direction. located at one end of the
  • the third part of the wire (W) is a part for fixing the gripper (G) in order to prevent misalignment of the aligned wire (W) when the wire (W) is aligned and the wire (W) is soldered.
  • the third part W3 of the wire W is removed in the wire cutting process S600 after the wire soldering process S500. At this time, if there is no concern about the position of the wire, the third portion of the wire W may be cut while being omitted.
  • FIG. 6 is a view for explaining the wire alignment process of FIG. 2 .
  • the wire alignment process S400 at least one cut wire W is aligned on the top and back surfaces of the first and second solar cells C1 and C2 adjacent to each other, respectively.
  • the solar cells C1 and C2 connected in a gapless form to include the maximum number of solar cells per area may be connected by a wire W in a partially overlapping state without a gap as shown in FIG. 6 .
  • the solar cells C1 and C2 may be overlapped between 0.5 mm and 5 mm and connected by a wire W.
  • the solar cells may have an interval between 0 and 2 mm and may be connected by a wire (W).
  • the aligned wires W are soldered in the subsequent soldering process S500, terminals formed on the upper surfaces of the first solar cells C1 adjacent to each other, and the rear surfaces of the second solar cells C1 and C2. Electrically connect the terminals formed on the Also, another rolled wire W may be aligned on the rear surface of the first solar cell C1 and soldered at the same time.
  • At least one wire aligned on the upper surface of the first solar cell C1 is also aligned with the rear surface of the adjacent second solar cell C2 located in the process progress direction.
  • the first portion W1 of the wire W is arranged at the boundary portion of the first and second solar cells C1 and C2 adjacent to each other.
  • a first portion of another rolled wire (W) is a boundary portion of the first solar cell (C1) It may be arranged to be located in .
  • a gripper (G) for fixing the wire (W) may be used. Even after the alignment of the wire W is completed, the gripper G maintains the third portion W3 of the wire W in a fixed state until the soldering process S400 is completed.
  • FIG. 7 is a view for explaining the wire soldering process of FIG. 2 .
  • the wire and the solar cell are pressed using a pressing means such as a pressing jig capable of pressing the wire W and the solar cell C1, C2, and the infrared rays
  • the wire W is soldered to the solar cells C1 and C2 by applying heat to the wire using a heating means such as an IR lamp.
  • the first part W1 of the wire W is located at the boundary of the solar cells C1 and C2 adjacent to each other, the first part W1 of the wire W is adjacent to the solar cells (C1, C2) exists spaced apart from the edge end of the solar cell (C1, C2) in the boundary portion. Therefore, since the wire W does not come into direct contact with the edge end of the solar cell C1, C2, the edge end of the solar cell C1, C2 is connected to the wire W in the soldering process including the heating and pressing process. damage can be prevented.
  • the third portion W3 of the wire W is maintained in a fixed state by the gripper G.
  • the gripper G fixes the third portion W3 of the wire W, it is possible to prevent the rolled wire W from being twisted by elasticity during the soldering process S500 and separated from the original position.
  • FIG. 8 is a view for explaining a wire cutting process. Referring to FIG. 8 , in the wire cutting process S600 , the third part W3 of the soldered wire W is removed.
  • the first portion of the wire corresponding to the boundary portion of the adjacent solar cells is rolled, so that the edge end of the solar cell is spaced apart from the first portion of the wire, and the wire soldering process is performed is carried out Therefore, according to the tabbing method of the present invention, by including the process of rolling the first part of the wire, it is possible to prevent the edge end of the solar cell from being damaged during the wire soldering process. Therefore, according to the tabbing method of the present invention, it is possible to improve the quality of the solar cells connected to each other in a gapless form in which the distance between the adjacent solar cells is reduced.
  • W2 second part of wire
  • W3 third part of wire

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

본 발명에 따른 태양전지 셀의 태빙방법은, 와이어를 재단하는 와이어 재단과정; 상기 와이어의 제1 부분을 압연하는 와이어 압연과정; 상기 와이어의 제1 부분이 서로 인접하는 제1 및 제2 태양전지 셀의 경계부분에 위치하도록, 상기 와이어를 상기 제1 태양전지 셀의 상면 및 제2 태양전지 셀의 배면에 정렬하는 와이어 정렬과정; 및 상기 정렬된 와이어를 상기 태양전지 셀에 솔더링하는 와이어 솔더링과정을 포함한다.

Description

태양전지 셀의 태빙방법
본 발명은 태양전지 셀의 태빙방법에 관한 것으로서, 보다 상세하게는 태빙공정 중 태양전지 셀의 파손을 방지할 수 있는 태양전지 셀의 태빙방법에 관한 것이다.
일반적으로 태양전지 모듈은, 태양전지 셀을 분류하는 셀 테스트 공정, 와이어를 이용하여 태양전지 셀을 직렬로 연결하는 태빙 공정, 일렬로 배열된 태양전지를 가로 형태로 배열하고 저철분 강화유리, EVA, 백시트 등을 적층하는 레이업 공정, 태양전지모듈을 고온 진공압착하는 라미네이션, 완성된 태양전지모듈의 정상동작 여부를 확인하는 모듈테스트 공정을 거쳐 제조된다.
태빙공정은 와이어에 플럭스를 도포 및 건조하는 과정과, 와이어를 재단하는 과정과, 태양전지 셀에 재단된 와이어가 그리퍼를 이용하여 정렬하는 과정과, 태양전지에 와이어가 솔더링하는 과정을 포함한다.
도 1a는 일반적인 태양전지 셀의 와이어 솔더링 과정을 설명하기 위한 도면이다. 도 1a를 참조하면, 제1 태양전지 셀(1)의 상면부와 제2 태양전지 셀(2)의 배면부에 와이어가 고온상태에서 가압되어 솔더링된다. 이때 제1 태양전지 셀(1)과 제2 태양전지 셀(2) 사이 간격은 2mm 내지 5mm이다.
최근에는 태양전지 모듈 내에 더 많은 태양전지 셀을 포함할 수 있도록, 태양전지 셀과 태양전지 셀 사이의 간격을 줄인 갭리스 형태의 태양전지 모듈이 개시되었다.
도 1b는 갭리스 형태의 태양전지 모듈의 솔더링 과정을 설명하기 위한 도면이다. 도 1b를 참조하면, 서로 인접하는 제1 태양전지 셀(1)의 상면부와 제2 태양전지 셀(2)의 배면부에 와이어가 솔더링된다. 한편 와이어 솔더링 과정에서, 제1 태양전지 셀(1)과 제2 태양전지 셀(2) 각각의 가장자리 부분(A, B)이 서로 중첩되기 때문에, 솔더링 과정 중에서 제1 태양전지 셀(1) 또는 제2 태양전지 셀(2)의 가장자리 부분이 와이어에 눌려 파손될 확률이 높다. 따라서 갭리스 형태의 태양전지 셀의 솔더링 과정에서 태양전지 셀의 파손에 의한 품질문제가 발생할 수 있다.
상기와 같은 과제를 해결하기 위해, 본 발명은 갭리스 형태의 태양전지 셀의 파손을 방지할 수 있는 태양전지 셀의 태빙 방법을 제공하는 데에 그 목적이 있다.
본 발명에 따른 태양전지 셀의 태빙방법은, 와이어를 재단하는 와이어 재단과정; 상기 와이어의 제1 부분을 압연하는 와이어 압연과정; 상기 와이어의 제1 부분이 서로 인접하는 제1 및 제2 태양전지 셀의 경계부분에 위치하도록, 상기 와이어를 상기 제1 태양전지 셀의 상면 및 제2 태양전지 셀의 배면에 정렬하는 와이어 정렬과정; 및 상기 정렬된 와이어를 상기 태양전지 셀에 솔더링하는 와이어 솔더링과정을 포함한다.
또한 실시예에 있어서, 상기 와이어는 서로 인접하는 제1 및 제2 태양전지 셀의 경계부분에 위치하는 제1 부분과, 상기 제1 및 제2 태양전지 셀에 솔더링되는 제2 부분과, 그리퍼에 의해 고정되는 제3 부분을 포함한다.
또한 실시예에 있어서, 상기 와이어 솔더링 과정에서, 상기 와이어의 제1 부분은, 상기 서로 인접하는 제1 및 제2 태양전지 셀의 가장자리 단부와 이격된다.
또한 실시예에 있어서, 상기 압연과정에서, 상기 와이어의 제1 부분은 오목한 홈 형태로 변형된다.
또한 실시예에 있어서, 상기 솔더링 과정에서, 상기 와이어의 제3 부분은 상기 그리퍼에 의해 고정된 상태로 유지된다.
또한 실시예에 있어서, 상기 와이어 솔더링 과정 이후, 상기 와이어의 제3 부분을 제거하는 와이어 커팅과정을 더 포함한다.
또한 실시예에 있어서, 상기 와이어의 제1 부분은 5mm 내지 20mm이다.
또한 실시예에 있어서, 상기 와이어 정렬과정에서, 상기 제1 태양전지 셀과 상기 제2 태양전지 셀은 수평방향으로 0.5mm 내지 5mm 중첩 배치된다.
또한 실시예에 있어서, 상기 와이어의 제2 부분 및 제3 부분은 압연되지 않는다.
또한 실시예에 있어서, 상기 와이어 재단과정 이전에, 와이어에 플럭스를 도포 및 건조하는 과정을 더 포함한다.
본 발명의 태빙방법에 따르면, 서로 인접하는 태양전지 셀의 경계부분에 대응되는 와이어의 제1 부분이 압연됨으로써, 태양전지 셀의 가장자리 단부가 와이어의 제1 부분과 이격된 상태로 와이어 솔더링 과정이 수행된다. 따라서 본 발명의 태빙방법에 따르면, 와이어의 제1 부분을 압연하는 과정을 포함함으로써, 와이어 솔더링 과정 중 태양전지 셀의 가장자리 단부가 파손되는 것을 방지할 수 있다.
도 1은 태양전지 셀의 와이어 솔더링 과정을 설명하기 위한 도면이다.
도 2는 본 발명의 실시예에 따른 태양전지 셀의 태빙방법을 설명하기 위한 플로우 차트이다.
도 3은 도 2의 와이어 재단과정에서 재단된 와이어를 설명하기 위한 도면이다.
도 4는 도 2의 와이어 압연과정을 설명하기 위한 도면이다.
도 5는 도 4의 와이어 압연과정이 완료된 와이어를 도시한 도면이다.
도 6은 도 2의 와이어 정렬과정을 설명하기 위한 도면이다.
도 7은 도 2의 와이어 솔더링 과정을 설명하기 위한 도면이다.
도 8은 도 2의 와이어 커팅 과정을 설명하기 위한 도면이다.
도 2는 본 발명의 실시예에 따른 태양전지 셀의 태빙방법을 설명하기 위한 플로우 차트이다.
도 2를 참조하면, 태양전지 셀의 태빙 방법은, 플럭스 도포과정(S100), 와이어 재단과정(S200), 와이어 압연과정(S300), 와이어 정렬과정(S400), 와이어 솔더링과정(S500), 와이어 커팅과정(S600)을 포함한다.
플럭스 도포과정(S100)은 와이어에 플럭스를 도포 및 건조하는 과정이다.
구체적으로 플럭스 도포과정(S100)에서는, 와이어(W) 표면에 플럭스가 도포되고, 와이어(W) 표면에 도포된 플럭스가 건조된다.
와이어(W)는 금속으로 이루어진 코어층(미도시)과, 코어층 표면에 얇은 두께로 코팅되며 솔더물질로 이루어진 솔더층(미도시)를 포함할 수 있다. 와이어(W)에 도포되는 플럭스는 와이어의 표면인 솔더층(미도시)의 표면에 코팅될 수 있다.
플럭스를 와이어(W)에 도포하는 방법으로서, 플럭스를 스프레이 형태로 와이어에 분사하는 방법, 롤러를 이용하여 와이어 표면에 플럭스를 도포하는 방법, 와이어를 플럭스가 담긴 수조에 담그는 디핑 방법 등이 이용될 수 있다.
그리고 플럭스를 건조하는 방법으로서, 상온보다 높은 공기를 공급하는 열풍을 공급하여 플럭스를 건조하는 방법 또는 적외선 램프를 이용하여 플럭스에 적외선광을 조사하여 건조시키는 방법 중 어느 하나가 이용될 수 있다.
도 3은 도 2의 와이어 재단과정에서 재단된 와이어를 설명하기 위한 도면이다.
와이어 재단과정(S200)에서는 플럭스 도포공정(S100)에서 플럭스가 도포된 와이어를 2개의 인접한 태양전지 셀(C1, C2)을 연결하기에 적당한 길이로 재단된다.
도 3을 참조하면, 와이어(W)는 2개의 태양전지 셀(C1, C2)의 경계 부분에 위치하는 제1 부분(W1)과, 태양전지 셀(C1, C2)에 각각 솔더링되는 제2 부분(W2)과, 공정진행방향 쪽에 위치하여 그리퍼(G)에 의해 고정되는 제3 부분(W3)을 포함한다. 재단과정에서 와이어(W)의 제3 부분은 그리퍼(G)에 의해 그립된 상태이며, 재단된 와이어는 그리퍼(G)에 의해 다음 공정으로 이송된다.
도 4는 도 2의 와이어 압연과정을 설명하기 위한 도면이고, 도 5는 도 4의 와이어 압연과정이 완료된 와이어를 도시한 도면이다.
도 4 및 도 5를 참조하면, 와이어 압연과정(S300)에서는 재단된 와이어의 제1 부분(W1)이 롤러와 같은 압연수단(R)에 의해 압연된다.
이때 압연된 와이어(W)는, 상술한 바와 같이, 2개의 태양전지 셀(C1, C2)의 경계 부분에 위치하는 제1 부분(W1)과, 태양전지 셀(C1, C2)에 각각 솔더링되는 제2 부분(W2)과, 공정진행방향 쪽에 위치하여 그리퍼(G)에 의해 고정되는 제3 부분(W3)을 포함한다.
와이어(W)의 제1 부분(W1)은 서로 인접하는 2개의 태양전지 셀(C1, C2) 사이 경계부분에 위치하는 부분으로서, 압연수단(R)에 의해 압연된다. 그리고 와이어(W)의 제2 부분(W2) 및 제3 부분(W3)은 압연되지 않는다.
와이어(W)의 제1 부분(W1)의 길이는 5mm 내지 20mm일 수 있다. 또는 와이어(W)의 제1 부분(W1)은 다른 길이로 형성될 수도 있다. 와이어(W)의 제1 부분(W1)의 길이는 갭리스(Gapless) 형태로 연결되는 태양전지 셀들(C1, C2) 간의 간격에 의해 결정될 수 있다.
와이어(W)의 제1 부분(W1)의 두께는 압연되지 않는 제1 부분을 제외한 나머지 부분의 두께보다 얇게 형성된다. 따라서 와이어 압연과정에서 와이어(W)의 제1 부분(W1)은 와이어의 상면과 배면에 모두 오목한 홈 형태로 변형된다. 와이어(W)의 제1 부분(W1)은 서로 인접하는 태양전지 셀(C1, C2)의 경계 부분에 정렬되므로, 솔더링 과정(S400)에서 태양전지 셀(C1, C2)의 가장자리 단부가 와이어(W)의 제1 부분과 이격된 상태로 존재한다.
와이어(W)의 제2 부분(W2)은 와이어(W)의 제1 부분(W1)의 일측 및 타측에 각각 위치하며, 와이어(W)의 제3 부분은 공정진행방향에 위치한 와이어(W)의 일측 단부에 위치한다.
와이어(W)의 제3 부분은 와이어(W)의 정렬 및 와이어(W)의 솔더링 시, 정렬된 와이어(W) 위치의 틀어짐을 방지하기 위해 그리퍼(G)가 고정하기 위한 부분이다. 와이어(W)의 제3 부분(W3)은 와이어 솔더링과정(S500) 이후 와이어 커팅과정(S600)에서 제거된다. 이때 와이어 위치의 틀어짐 염려가 없는 경우, 와이어(W)의 제3 부분은 생략된 채로 재단될 수도 있다.
도 6은 도 2의 와이어 정렬과정을 설명하기 위한 도면이다. 도 6을 참조하면, 와이어 정렬과정(S400)에서는 적어도 하나의 재단된 와이어(W)가 서로 인접하는 제1 및 제2 태양전지 셀(C1, C2)의 상면과 배면에 각각 정렬된다.
이때 면적 당 태양전지 셀을 최대로 포함하기 위해 갭리스 형태로 연결되는 태양전지 셀들(C1, C2)은 도 6과 같이 이격간격없이 일부 중첩된 상태로 와이어(W)에 의해 연결될 수 있다. 구체적으로 태양전지 셀들(C1, C2)은 0.5mm 내지 5mm 사이로 중첩 배치되어 와이어(W)에 의해 연결될 수 있다. 이외에도 태양전지 셀들은 0 내지 2mm 사이 간격을 갖고 와이어(W)에 의해 연결될 수도 있다. 갭리스 형태로 연결되는 태양전지 셀의 연결구조에 따르면, 태양전지 셀 사이 간격을 줄이면 줄일수록 모듈 내 태양전지 셀 개수가 증가하여 효율이 상승될 수 있다
정렬된 와이어(W)는 이후 진행되는 솔더링 과정(S500)에서 솔더링되면서, 서로 인접하는 제1 태양전지 셀(C1)의 상면에 형성된 단자들과, 제2 태양전지 셀(C1, C2)의 배면에 형성된 단자들을 전기적으로 연결한다. 또한 제1 태양전지 셀(C1)의 배면에 또다른 압연된 와이어(W)가 정렬되어 동시에 솔더링될 수도 있다.
와이어 정렬과정(S400)에서는, 제1 태양전지 셀(C1)의 상면에 정렬되는 적어도 하나의 와이어는 공정 진행방향에 위치한 인접한 제2 태양전지 셀(C2)의 배면에도 정렬된다. 이때 서로 인접하는 제1 및 제2 태양전지셀(C1, C2)의 경계부분에는 와이어(W)의 제1 부분(W1)이 위치하도록 정렬된다. 또한 제1 태양전지 셀(C1)의 배면에 또다른 압연된 와이어(W)가 정렬되는 경우에도, 또다른 압연된 와이어(W)의 제1 부분이 제1 태양전지 셀(C1)의 경계부분에 위치하도록 정렬될 수도 있다.
와이어(W)의 정렬을 위해, 와이어(W)를 고정하는 그리퍼(G)가 이용될 수 있다. 와이어(W)의 정렬이 완료된 후에도 그리퍼(G)는 솔더링 공정(S400)이 완료될까지 와이어(W)의 제3 부분(W3)을 고정한 상태로 유지한다.
도 7은 도 2의 와이어 솔더링 과정을 설명하기 위한 도면이다. 도 7을 참조하면, 와이어 솔더링과정(S500)에서는 와이어(W) 및 태양전지 셀(C1, C2)를 가압할 수 있는 누름지그 등과 같은 가압수단을 이용하여 와이어 및 태양전지셀을 가압하고, 적외선 램프(IR lamp) 등의 가열수단을 이용하여 와이어에 열을 가하여 와이어(W)를 태양전지 셀(C1, C2)에 솔더링한다.
이때 와이어(W)의 제1 부분(W1)은 서로 인접하는 태양전지 셀(C1, C2)의 경계부분에 위치하므로, 와이어(W)의 제1 부분(W1)은, 서로 인접하는 태양전지 셀(C1, C2)의 경계부분에서의 태양전지셀(C1, C2)의 가장자리 단부와 이격하여 존재한다. 따라서 와이어(W)가 태양전지셀(C1, C2)의 가장자리 단부와 직접 접촉하지 않으므로, 가열 및 가압과정을 포함하는 솔더링 과정에서 태양전지 셀(C1, C2)의 가장자리 단부가 와이어(W)에 의해 파손되는 것이 방지될 수 있다.
솔더링 과정(S500)에서 와이어(W)의 제3 부분(W3)은 그리퍼(G)에 의해 고정된 상태로 유지된다. 그리퍼(G)가 와이어(W)의 제3 부분(W3)를 고정함으로서, 솔더링 과정(S500) 중 압연된 와이어(W)가 탄성에 의해 뒤틀려 정위치로부터 이탈되는 것을 방지할 수 있다.
도 8은 와이어 커팅 과정을 설명하기 위한 도면이다. 도 8을 참조하면, 와이어 커팅과정(S600)에서는 솔더링이 완료된 와이어(W)의 제3 부분(W3)이 제거된다.
본 발명의 태빙방법에 따르면, 서로 인접하는 태양전지 셀의 경계부분에 대응되는 와이어의 제1 부분이 압연됨으로써, 태양전지 셀의 가장자리 단부가 와이어의 제1 부분과 이격된 상태로 와이어 솔더링 과정이 수행된다. 따라서 본 발명의 태빙방법에 따르면, 와이어의 제1 부분을 압연하는 과정을 포함함으로써, 와이어 솔더링 과정 중 태양전지 셀의 가장자리 단부가 파손되는 것을 방지할 수 있다. 따라서 본 발명의 태빙방법에 따르면, 서로 인접하는 태양전지 셀 사이 간격이 감소된 갭리스 형태로 연결된 태양전지 셀의 품질을 향상시킬 수 있다.
S100: 플럭스 도포과정 S200: 와이어 재단과정
S300: 와이어 압연과정 S400: 와이어 정렬과정
S500: 와이어 솔더링과정 S600: 와이어 커팅과정
C1: 제1 태양전지 셀 C2: 제2 태양전지 셀
W: 와이어 W1: 와이어의 제1 부분
W2: 와이어의 제2 부분 W3: 와이어의 제3 부분

Claims (10)

  1. 와이어를 재단하는 와이어 재단과정;
    상기 와이어의 제1 부분을 압연하는 와이어 압연과정;
    상기 와이어의 제1 부분이 서로 인접하는 제1 및 제2 태양전지 셀의 경계부분에 위치하도록, 상기 와이어를 상기 제1 태양전지 셀의 상면 및 제2 태양전지 셀의 배면에 정렬하는 와이어 정렬과정; 및
    상기 정렬된 와이어를 상기 제1 및 제2 태양전지 셀에 솔더링하는 와이어 솔더링과정을 포함하는 태양전지 셀의 태빙방법.
  2. 제1항에 있어서,
    상기 와이어는 상기 서로 인접하는 제1 및 제2 태양전지 셀의 경계부분에 위치하는 제1 부분과, 상기 제1 및 제2 태양전지 셀에 솔더링되는 제2 부분과, 그리퍼에 의해 고정되는 제3 부분을 포함하는 것을 특징으로 하는 태양전지 셀의 태빙방법.
  3. 제1항에 있어서,
    상기 와이어 솔더링 과정에서, 상기 와이어의 제1 부분은, 상기 서로 인접하는 제1 및 제2 태양전지 셀의 가장자리 단부와 이격되는 것을 특징으로 하는 태양전지 셀의 태빙방법.
  4. 제1항에 있어서,
    상기 압연과정에서, 상기 와이어의 제1 부분은 오목한 홈 형태로 변형되는 것을 특징으로 하는 태양전지 셀의 태빙방법.
  5. 제2항에 있어서,
    상기 솔더링 과정에서, 상기 와이어의 제3 부분은 상기 그리퍼에 의해 고정된 상태로 유지되는 것을 특징으로 하는 태양전지 셀의 태빙방법.
  6. 제2항에 있어서,
    상기 와이어 솔더링 과정 이후, 상기 와이어의 제3 부분을 제거하는 와이어 커팅과정을 더 포함하는 태양전지 셀의 태빙방법.
  7. 제2항에 있어서,
    상기 와이어의 제1 부분은 5mm 내지 20mm 인 것을 특징으로 하는 태양전지 셀의 태빙방법.
  8. 제7항에 있어서,
    상기 와이어 정렬과정에서, 상기 제1 태양전지 셀과 상기 제2 태양전지 셀은 수평방향으로 0.5mm 내지 5mm 중첩 배치되는 것을 특징으로 하는 태양전지 셀의 태빙방법.
  9. 제2항에 있어서,
    상기 와이어의 제2 부분 및 제3 부분은 압연되지 않는 것을 특징으로 하는 태양전지 셀의 태빙방법.
  10. 제1항에 있어서,
    상기 와이어 재단과정 이전에, 와이어에 플럭스를 도포 및 건조하는 과정을 더 포함하는 태양전지 셀의 태빙방법.
PCT/KR2020/008228 2020-02-18 2020-06-24 태양전지 셀의 태빙방법 WO2021167176A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200019483A KR102457009B1 (ko) 2020-02-18 2020-02-18 태양전지 셀의 태빙방법
KR10-2020-0019483 2020-02-18

Publications (1)

Publication Number Publication Date
WO2021167176A1 true WO2021167176A1 (ko) 2021-08-26

Family

ID=77392014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/008228 WO2021167176A1 (ko) 2020-02-18 2020-06-24 태양전지 셀의 태빙방법

Country Status (2)

Country Link
KR (1) KR102457009B1 (ko)
WO (1) WO2021167176A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110065226A1 (en) * 2009-09-12 2011-03-17 Yuhao Luo Method to break and assemble solar cells
US20110300664A1 (en) * 2010-06-08 2011-12-08 Kevin Kwong-Tai Chung Solar cell interconnection, module and panel method
KR20130077794A (ko) * 2011-12-29 2013-07-09 닛신보 메카트로닉스 가부시키가이샤 태양전지용 탭리드의 솔더링 장치
KR20170113749A (ko) * 2016-03-24 2017-10-13 주식회사 제우스 태빙장치의 와이어 처리장치 및 방법
KR20190000367A (ko) * 2014-05-27 2019-01-02 선파워 코포레이션 슁글드 태양 전지 모듈

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102200988B1 (ko) * 2014-07-15 2021-01-12 주식회사 제우스 태빙장치 및 그 제어방법
KR20160051594A (ko) * 2014-10-27 2016-05-11 주식회사 제우스 태빙장치의 솔더링장치
KR20180084440A (ko) * 2017-01-17 2018-07-25 슈미드코리아 주식회사 태빙 장치의 와이어 적재 장치
CN110137290A (zh) * 2019-04-18 2019-08-16 泰州隆基乐叶光伏科技有限公司 一种光伏焊带及太阳能电池串的制作方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110065226A1 (en) * 2009-09-12 2011-03-17 Yuhao Luo Method to break and assemble solar cells
US20110300664A1 (en) * 2010-06-08 2011-12-08 Kevin Kwong-Tai Chung Solar cell interconnection, module and panel method
KR20130077794A (ko) * 2011-12-29 2013-07-09 닛신보 메카트로닉스 가부시키가이샤 태양전지용 탭리드의 솔더링 장치
KR20190000367A (ko) * 2014-05-27 2019-01-02 선파워 코포레이션 슁글드 태양 전지 모듈
KR20170113749A (ko) * 2016-03-24 2017-10-13 주식회사 제우스 태빙장치의 와이어 처리장치 및 방법

Also Published As

Publication number Publication date
KR102457009B1 (ko) 2022-10-24
KR20210105454A (ko) 2021-08-27

Similar Documents

Publication Publication Date Title
US9899554B2 (en) Method of installing a strain relief apparatus to a solar cell
WO2015046711A1 (ko) 이차전지용 단위체 적층장치 및 적층방법
WO2011062408A2 (ko) 유리기판의 레이저 실링장치
WO2011155724A2 (ko) 전지모듈 및 전지의 셀 단자를 상호 접속부재에 결합하는 방법들
WO2020004780A1 (ko) 전극 리드를 버스바에 밀착시키는 자동 가압 지그 장치
JP2023539887A (ja) 相互接続部品の製造方法及び製造装置
WO2017213384A1 (ko) 센싱 와이어 하네스의 접속 구조가 개선된 배터리 모듈 및 그 조립방법
WO2021167176A1 (ko) 태양전지 셀의 태빙방법
WO2020189975A1 (ko) 전지 모듈 및 그 제조 방법
WO2015178521A1 (ko) 2차전지 전극 연결용 접착테이프
WO2023158218A1 (ko) 단위셀 검사장치
WO2021112313A1 (ko) 태양광 모듈용 전극 선재, 그 제조 방법 및 태양광 모듈
WO2013077674A1 (en) Solar cell module and method of fabricating the same
WO2021080255A1 (ko) 이차전지용 파우치 필름 성형 장치 및 방법
WO2022211242A1 (ko) 전극 건조 장치
WO2014058215A1 (ko) 태양전지 셀 연결부재 및 이의 제조방법, 태양전지 셀 연결부재 제조장치
WO2023090842A1 (ko) 전극조립체, 그의 제조장치 및 제조방법
WO2023128538A1 (ko) 셀 탭 장력 측정 장치 및 셀 탭 장력 측정 방법
WO2023018210A1 (ko) 3면 실링 파우치형 이차전지의 돌출부 성형장치
WO2022045644A1 (ko) 전극 건조 장치
WO2023214600A1 (ko) 솔라 셀 절단장치
WO2023096469A1 (ko) 전극탭 용접 장치, 전극탭 용접 방법 및 이차 전지
WO2023003247A1 (ko) 전극 시트 가공 방법 및 가공 장치
WO2023182865A1 (ko) 태양전지 모듈 제조용 태빙 장치
WO2023200301A1 (ko) 이차전지 제조장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20920081

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20920081

Country of ref document: EP

Kind code of ref document: A1