WO2022117125A1 - 一种电子束系统 - Google Patents

一种电子束系统 Download PDF

Info

Publication number
WO2022117125A1
WO2022117125A1 PCT/CN2022/074101 CN2022074101W WO2022117125A1 WO 2022117125 A1 WO2022117125 A1 WO 2022117125A1 CN 2022074101 W CN2022074101 W CN 2022074101W WO 2022117125 A1 WO2022117125 A1 WO 2022117125A1
Authority
WO
WIPO (PCT)
Prior art keywords
control electrode
electron beam
detector
sample
electron
Prior art date
Application number
PCT/CN2022/074101
Other languages
English (en)
French (fr)
Inventor
李帅
Original Assignee
聚束科技(北京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 聚束科技(北京)有限公司 filed Critical 聚束科技(北京)有限公司
Priority to US17/757,133 priority Critical patent/US20230317404A1/en
Publication of WO2022117125A1 publication Critical patent/WO2022117125A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/147Arrangements for directing or deflecting the discharge along a desired path
    • H01J37/1472Deflecting along given lines
    • H01J37/1474Scanning means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/147Arrangements for directing or deflecting the discharge along a desired path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/10Lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/244Detectors; Associated components or circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/261Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/04Means for controlling the discharge
    • H01J2237/047Changing particle velocity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/244Detection characterized by the detecting means
    • H01J2237/2449Detector devices with moving charges in electric or magnetic fields

Definitions

  • the invention belongs to the field of microscope technology, in particular to an electron beam system.
  • a scanning electron microscope is a commonly used microscopic analysis instrument.
  • the electron beam is focused on the sample to be measured through the objective lens of the scanning electron microscope to generate a small beam spot, in which the electron beam acts on the sample to be measured.
  • Signal electrons such as secondary electrons (SE) and backscattered electrons (BSE) are generated on the sample, which can then be used to observe the surface morphology of the sample to be tested and analyze the material composition through the detector.
  • SE secondary electrons
  • BSE backscattered electrons
  • secondary electrons can characterize the morphological characteristics of the sample to be tested, and backscattered electrons are related to the atomic number of the observed material. More information on the material of the sample to be tested can be characterized, and the backscattered electrons emitted at a small angle relative to the surface of the sample to be tested are more information.
  • the electrons are affected by the surface undulations of the sample to be tested, and also reflect the information of the surface topography of the sample to be tested. Therefore, different types of signal electrons and signal electrons emitted from different angles reflect different sample information to be tested. Therefore, by separately detecting pure secondary electrons and backscattered electrons, an image with better contrast reflecting surface topography or material information can be formed, which is helpful for more accurate analysis of the sample to be tested.
  • the present invention has been made in view of this.
  • the technical problem to be solved by the embodiments of the present invention is to overcome the deficiencies of the related art and provide an electron beam system, in which the first detector disposed between the first beam conduit and the first control electrode can receive pure electron beams and act on them Backscattered electrons generated on the sample to be measured.
  • the technical solution adopted in the embodiment of the present invention is:
  • An electron beam system comprising:
  • an electron source configured to generate an electron beam
  • a first beam conduit configured to accelerate the electron beam
  • a second beam conduit configured to accelerate the electron beam
  • a first control electrode disposed between the first beam guide and the second beam guide, configured to change the moving direction of backscattered electrons and secondary electrons generated by the electron beam acting on the sample to be tested;
  • a first detector disposed between the first beam conduit and the first control electrode, is configured to receive backscattered electrons generated by the electron beam acting on the sample to be tested.
  • the first control electrode is annular, and the radial cross-sectional thickness of the first control electrode gradually increases from the center of the circle to the outside.
  • the first control electrode is annular, and the radial cross section of the first control electrode is rectangular, triangular, or trapezoidal.
  • system further includes:
  • the shielding device is in the shape of an annular shape, and the radial cross-section of the shielding device is a groove that opens outward from the center of the circle to the outside;
  • a second detector disposed in the groove of the shielding device, is configured to receive secondary electrons generated by the electron beam acting on the sample to be tested.
  • the shielding device is a porous structure, and the shielding device is arranged on the upper end of the second bundle of conduits.
  • a second control electrode is disposed between the second detector and the groove of the shielding device.
  • system further includes:
  • a first lens device disposed on the outer periphery of the first beam guide tube, configured to focus the electron beam
  • a second lens device disposed on the outer periphery of the second beam guide, is configured to focus the electron beam.
  • the system also includes:
  • a third detector disposed between the upper pole piece and the lower pole piece of the second lens device, configured to receive backscattered electrons generated by the electron beam acting on the sample to be tested;
  • the third control electrode is arranged between the upper pole piece of the second lens device and the third detector.
  • the third control electrode is annular, and the radial cross section of the third control electrode is L-shaped;
  • the third detector is connected to the third control electrode in insulation.
  • system further includes:
  • a fourth control electrode disposed between the lower pole shoe of the second lens device and the sample to be tested
  • the first detector is arranged at the lower end of the first bundle of conduits.
  • the embodiment of the present invention has the following beneficial effects compared with the related art.
  • An embodiment of the present invention provides an electron beam system.
  • a first control electrode is arranged between a first beam guide tube and a second beam guide tube, and the first control electrode changes the electron beam generated by the electron source to act on the sample to be tested.
  • the direction of movement of the backscattered electrons and secondary electrons generated on the surface enables the first detector disposed between the first beam guide tube and the first control electrode to receive the backscattering produced by the pure electron beam acting on the sample to be tested. electronic.
  • FIG. 1 is a schematic structural diagram of an implementation manner of an electron beam system provided in an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of another implementation manner of an electron beam system provided in an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of the electric field formed between the first control electrode and the first beam guide and the second beam guide according to the embodiment of the present invention.
  • an electron beam system provided by an embodiment of the present invention includes an electron source 1 , a first beam conduit 3 , a first detector 5 , a first control electrode 6 , a second Bundle catheter 10 .
  • the electron source 1 is configured to generate an electron beam
  • the first beam guide 3 is configured to accelerate the electron beam
  • the second beam guide 10 is configured to accelerate the electron beam.
  • the first control electrode 6 is disposed between the first beam guide 3 and the second beam guide 10 , and is configured to change the moving direction of backscattered electrons and secondary electrons generated by the electron beam acting on the sample 18 to be tested.
  • the first detector 5 is disposed between the first beam conduit 3 and the first control electrode 6 , and is configured to receive backscattered electrons generated by the electron beam acting on the sample 18 to be tested.
  • An electron beam system provided by an embodiment of the present invention is provided with an electron source 1, a first beam conduit 3, a first detector 5, a first control electrode 6, a second electron source 1, a first beam guide tube 3, a first detector 5, a first control electrode 6, a second Bundle guide 10 , sample stage 19 .
  • the electron beam generated by the electron source 1 sequentially passes through the first beam guide 3 , the first detector 5 , the first control electrode 6 , the second beam guide 10 , and acts on the sample to be tested 18 placed on the sample stage 19 .
  • the electron beam acts on the sample 18 to be tested to generate backscattered electrons and secondary electrons.
  • the first control electrode 6 changes the movement directions of backscattered electrons and secondary electrons generated by the electron beam acting on the sample to be tested 18 .
  • the first detector 5 receives backscattered electrons generated by the electron beam acting on the sample 18 to be measured.
  • the embodiment of the present invention provides an electron beam system.
  • the electron beam system is provided with a first control electrode 6 between the first beam guide tube 3 and the second beam guide tube 10 , and the first control electrode 6 changes the electron beam generated by the electron source 1 .
  • Acting on the movement direction of backscattered electrons and secondary electrons generated on the sample 18 to be tested enables the first detector 5 disposed between the first beam guide 3 and the first control electrode 6 to receive pure electron beam action Backscattered electrons generated on the sample 18 to be tested.
  • the first control electrode 6 is annular, and the radial section thickness of the first control electrode 6 increases gradually from the center of the circle to the outside.
  • the first control electrode 6 is annular, and the central hole of the first control electrode 6 is used for electron beams and backscattered electrons to pass through.
  • the radial section thickness of the first control electrode 6 increases gradually from the center of the circle to the outside. That is, the thickness of the annular first control electrode 6 gradually decreases from the outer circumference to the center of the circle.
  • the electric field formed by the first control electrode 6 with the above-mentioned shape can better change the movement directions of backscattered electrons and secondary electrons generated by the electron beam generated by the electron source 1 acting on the sample 18 to be tested. , so that the first detector 5 disposed between the first beam conduit 3 and the first control electrode 6 can receive the backscattered electrons generated by the pure electron beam acting on the sample 18 to be tested.
  • the first control electrode 6 is annular, and the radial cross section of the first control electrode 6 is rectangular, or triangular, or trapezoidal.
  • the upper base of the trapezoid faces the center of the circular first control electrode 6 .
  • the embodiment of the present invention provides an electron beam system
  • the electron beam system further includes a shielding device 7 and a second detector 9 .
  • the shielding device 7 is annular, and the radial cross section of the shielding device 7 is a groove opening outward from the center of the circle outward.
  • the second detector 9 is disposed in the groove of the shielding device 7 and is configured to receive secondary electrons generated by the electron beam acting on the sample 18 to be tested.
  • the shielding device 7 is a porous structure, and the shielding device 7 is disposed on the upper end of the second bundle of conduits 10 .
  • a second control electrode 8 is disposed between the second detector 9 and the groove of the shielding device 7 .
  • the shielding device 7 is annular, and the central hole of the shielding device 7 is used for electron beams, backscattered electrons and secondary electrons to pass through.
  • the radial cross-section of the shielding means 7 is a groove that opens outwards.
  • the second detector 9 is disposed in the groove of the shielding device 7 and is configured to receive secondary electrons generated by the electron beam acting on the sample 18 to be tested.
  • the shielding device 7 is arranged on the upper end of the second bundle of conduits 10 .
  • the shielding device 7 has a porous structure, and the secondary electrons generated by the electron beam acting on the sample 18 to be tested can pass through the holes on the shielding device 7 and be received by the second detector 9 arranged in the groove of the shielding device 7 .
  • a second control electrode 8 is disposed between the second detector 9 and the groove.
  • the second control electrode 8 is cylindrical and is arranged in the groove of the shielding device 7
  • the second detector 9 is arranged in the barrel of the cylindrical second control electrode 8
  • the second control electrode 8 connects the second detector 9 with the second detector 9 .
  • the inner walls of the grooves of the shielding means 7 are spaced apart.
  • the second control electrode 8 has a porous structure, and the secondary electrons generated by the electron beam acting on the sample to be tested 18 can pass through the holes on the shielding device 7 and the holes on the second control electrode 8 in sequence, and are received by the second detector 9 .
  • a second control electrode 8 is disposed between the second detector 9 and the groove.
  • the second control electrode 8 is annular and is disposed in the groove of the shielding device 7 .
  • the second control electrode 8 is directed outward from the center of the circle, and the radial cross section of the second control electrode 8 is a groove that opens outward.
  • the groove of the shielding device 7 fits into the groove of the second control electrode 8
  • the second detector 9 is arranged in the groove of the second control electrode 8
  • the second control electrode 8 connects the second detector 9 with the groove of the shielding device 7.
  • the inner walls of the grooves are separated.
  • the second control electrode 8 has a porous structure, and the secondary electrons generated by the electron beam acting on the sample to be tested 18 can pass through the holes on the shielding device 7 and the holes on the second control electrode 8 in sequence, and are received by the second detector 9 .
  • the number of the second detectors 9 may be one, or two, or more, and a plurality of the second detectors 9 may be distributed along the grooves of the annular shielding device 7 at intervals.
  • the second detector 9 can also be a ring-shaped detector. Due to the shielding effect of the shielding device 7 on the second detector 9, the second detector 9 will not interfere with the movement trajectory of the electron beam.
  • an electron beam system provided by an embodiment of the present invention further includes a first lens device 4 and a second lens device 13 .
  • the first lens device 4 is disposed on the outer periphery of the first beam guide 3 and is configured to converge the electron beams.
  • the second lens device 13 is disposed on the outer periphery of the second beam guide 10, and is configured to converge the electron beam.
  • the first lens device 4 may be a magnetic lens, an electric lens, or an electromagnetic compound lens.
  • the second lens device 13 may be a magnetic lens, an electric lens, or an electromagnetic compound lens.
  • the electron beam system further includes a third detector 16 and a third control electrode 14 .
  • the third detector 16 is disposed between the upper pole piece and the lower pole piece of the second lens device 13 , and is configured to receive backscattered electrons generated by the electron beam acting on the sample 18 to be tested.
  • the third control electrode 14 is disposed between the upper pole shoe of the second lens device 13 and the third detector 16 .
  • the third control electrode 14 is annular, and the radial cross section of the third control electrode 14 is L-shaped.
  • the third detector 16 is connected to the third control electrode 14 in isolation.
  • the third detector 16 is annular, and the central hole of the third detector 16 is used for electron beams, backscattered electrons and secondary electrons to pass through.
  • the third control electrode 14 is annular, and the radial cross section of the third control electrode 14 is L-shaped.
  • the circular tube formed by one side of the L-shape is inserted into the central hole of the third detector 16 , and the disk formed by the other side of the L-shape is disposed above the third detector 16 .
  • An insulator 15 is provided between the third detector 16 and the third control electrode 14 .
  • the third detector 16 is connected to the third control electrode 14 in isolation.
  • the radial cross-section of the annular third control electrode 14 is L-shaped, which can better cooperate with the second beam guide 10 and the fourth control electrode 17 to form the required electric field, thereby better controlling the electron beam to act on the to-be-beamed electron beam.
  • the direction of movement of backscattered electrons and secondary electrons generated on the sample 18 is measured.
  • an electron beam system provided by the embodiments of the present invention further includes a fourth control electrode 17 , and the fourth control electrode 17 is disposed on the lower pole shoe and the lower pole shoe of the second lens device 13 . between the samples to be tested 18 .
  • the fourth control electrode 17 can change the moving direction of the backscattered electrons generated by the electron beam acting on the sample 18 to be tested.
  • the first detector 5 is disposed at the lower end of the first bundle of conduits 3 .
  • the first detector 5 is connected to the lower end of the first bundle of conduits 3 .
  • the first detector 5 and the first bundle of conduits 3 are at the same voltage value.
  • the shielding device 7 is connected to the upper end of the second bundle of conduits 10 .
  • the shielding device 7 is at the same voltage value as the second bundle of conduits 10 .
  • the electron source 1 is configured to generate electron beams. Electron source 1 is divided into field emission source and thermal emission source. Field emission source is further divided into two types: hot field and cold field. In this embodiment, the electron source 1 may be any electron source 1 for generating electron beams. The voltage value of the electron source 1 provided in this embodiment is -5kV.
  • the voltage value of the electron acceleration structure 2 is -2kV. After the electron beam generated by the electron source 1 passes through the electron acceleration structure 2, the moving speed will increase.
  • the voltage value of the first bundle of conduits 3 is 10 kV.
  • An accelerating electric field is formed between the electron accelerating structure 2 and the first beam guide 3 , and the electron beam passing through the accelerating structure enters the first beam guide 3 after being accelerated.
  • the electron beam is kept moving at high speed in the first beam guide 3 for reducing the space charge effect in the electron beam.
  • the first lens device 4 is disposed on the outer periphery of the first beam guide 3 , and the first lens device 4 may be a magnetic lens, configured to focus the electron beams moving at high speed in the first beam guide 3 .
  • the electron beam passes through the first beam conduit 3, passes through the central hole of the annular first detector 5, the central hole of the annular first control electrode 6, and the central hole of the annular shielding device 7 in sequence, and enters the The second bundle of conduits 10, the voltage value of the second bundle of conduits 10 is 10 kV.
  • the electron beam is kept moving at high speed in the second beam guide 10 for reducing space charge effects in the electron beam.
  • the second lens device 13 is arranged on the outer periphery of the second beam guide 10 , and the second lens device 13 is a compound electromagnetic lens structure, which is composed of a magnetic lens and a deceleration electric lens formed between the lower end of the second beam guide 10 and the sample stage 19 .
  • the voltage value of the sample stage 19 is 0kV
  • the impact point energy of the electron beam incident on the sample to be tested 18 is 5keV
  • a deflection device is provided between the second beam guide 10 and the second lens device 13, and the deflection device is configured to change the incident
  • the moving direction of the electron beam before the sample to be tested 18 can generate a scanning field with any deflection direction.
  • the deflection device includes a first deflector 11 and a second deflector 12, and more deflectors can also participate in the electronic scanning.
  • the first deflector 11 may be a magnetic deflector or an electrical deflector
  • the second deflector 12 may be a magnetic deflector or an electrical deflector.
  • the first deflector 11 and the second deflector 12 cooperate to change the moving direction of the electron beam before it is incident on the sample to be tested 18 .
  • the second lens device 13 is arranged on the outer periphery of the second beam guide 10, the electron beam passes through the second beam guide 10, passes through the upper pole piece and the lower pole piece of the second lens device 13, and the second lens device 13 converges the electron beam to act on the to-be-beamed on test sample 18.
  • the focused scanning electron beam acts on backscattered electrons and secondary electrons generated on the sample 18 to be measured.
  • the secondary electron energy is low, less than 50eV, and the backscattered electron energy is 5keV.
  • the generated backscattered electrons and secondary electrons enter the second beam guide 10 through the second lens device 13 , and the movement trajectories of the backscattered electrons and the secondary electrons will form an intersection because the secondary electrons have low energy.
  • the trajectories of secondary electrons form intersections lower than the trajectories of backscattered electrons.
  • the shielding device 7 is arranged on the upper end of the second bundle of conduits 10 , the voltage of the shielding device 7 and the second bundle of conduits 10 is the same, and the shielding device 7 is a porous structure.
  • a second control electrode 8 is disposed between the second detector 9 and the groove of the shielding device 7 , and the second control electrode 8 separates the second detector 9 from the inner wall of the groove of the shielding device 7 .
  • the second control electrode 8 has a porous structure.
  • the voltage value of the second control electrode 8 was 0 kV.
  • the voltage value of the second detector 9 is 10 kV.
  • the voltage value of the first beam guide 3 is 10kV
  • the voltage value of the second beam guide 10 is 10kV
  • the voltage value of the first control electrode 6 is 7kV.
  • the second beam guide 10 A deceleration electric field is formed between it and the first control electrode 6 .
  • An accelerating electric field is formed between the first control electrode 6 and the first beam guide 3 .
  • the secondary electrons Due to the small energy of the secondary electrons, when moving to the decelerating electric field formed between the second beam guide 10 and the first control electrode 6, the secondary electrons will not continue to pass through the central hole of the first control electrode 6, and will be affected by the decelerating electric field. Because the voltage value of the shielding device 7 is the same as that of the second beam guide 10, the voltage value is 10kV, the voltage value of the second control electrode 8 is 0kV, and the voltage value of the second detector 9 is 0kV. 10kV. The secondary electrons moving in opposite directions will therefore pass through the shielding device 7 and the second control electrode 8 and be received by the second detector 9 .
  • the diameter of the central hole of the first detector 5 is smaller than that of the central hole of the first control electrode 6 . Due to the large energy of the backscattered electrons, the backscattered electrons will pass through the central hole of the first control electrode 6 and be received by the first detector 5 arranged at the lower end of the first beam guide 3 .
  • the first detector 5 and the first beam guide 3 At the same voltage value, the voltage value is 10kV.
  • the embodiment of the present invention provides an electron beam system.
  • the electron beam system is provided with a first control electrode 6 between the first beam guide tube 3 and the second beam guide tube 10 , and the first control electrode 6 changes the electron beam generated by the electron source 1 .
  • the electric field between the first control electrode 6 and the first beam guide 3 and the second beam guide 10 cooperates, so that the secondary electrons and the backscattered electrons can be combined.
  • the scattered electrons are separated. This enables the first detector 5 to receive backscattered electrons generated by the pure electron beam acting on the sample 18 to be tested.
  • the second detector 9 can receive the secondary electrons generated by the pure electron beam acting on the sample 18 to be tested.
  • an electron beam system provided by an embodiment of the present invention further includes a third detector 16 , a third control electrode 14 , and a fourth control electrode 17 .
  • the third detector 16 is disposed between the upper pole piece and the lower pole piece of the second lens device 13 .
  • the third detector 16 is annular and is configured to receive backscattered electrons generated by the electron beam acting on the sample 18 to be tested.
  • the third control electrode 14 is disposed between the upper pole piece of the second lens device 13 and the third detector 16, the radial cross section of the third control electrode 14 is L-shaped, and a circular tube formed by one side of the L-shape is inserted into the third detector 16.
  • the central hole of the detector 16 and the disk formed by the other side of the L-shape are arranged above the third detector 16 .
  • An insulator 15 is provided between the third detector 16 and the third control electrode 14 .
  • the third detector 16 is connected to the third control electrode 14 in isolation.
  • the fourth control electrode 17 is disposed between the lower pole piece of the second lens device 13 and the sample to be tested 18 , and the fourth control electrode 17 can change the movement direction of backscattered electrons generated by the electron beam acting on the sample to be tested 18 .
  • the voltage value of the third control electrode 14 is 5 kV, and the voltage value of the fourth control electrode 17 is 2 kV.
  • the voltage value of the sample stage 19 was 0 kV.
  • an accelerating electric field is formed between the third control electrode 14 and the second beam guide 10
  • an accelerating electric field is formed between the fourth control electrode 17 and the third control electrode 14
  • the sample is formed between the stage 19 and the fourth control electrode 17 .
  • Backscattered electrons with a small emission angle generated by the electron beam acting on the sample to be tested 18 pass through the accelerating electric field formed between the sample stage 19 and the fourth control electrode 17 and between the fourth control electrode 17 and the third control electrode 14 . After the acceleration electric field is accelerated, it is received by the third detector 16, and by adjusting the voltage value of the third control electrode 14, the third detector 16 can receive more backscattered electrons.
  • the voltage values of the fourth control electrode 17 and the sample stage 19 are not limited to the specific values in the above-mentioned embodiments, and those skilled in the art can set specific voltage values according to actual needs.
  • the electron source 1 is specifically configured to generate electron beams. Electron source 1 is divided into field emission source and thermal emission source. Field emission source is further divided into two types: hot field and cold field. In this embodiment, the electron source 1 may be any electron source 1 for generating electron beams.
  • the voltage value V1 of the electron source 1 provided in this embodiment may be any value between 0 kV and -15 kV.
  • the voltage value V2 of the electron acceleration structure 2 can be any value between 3kV and -12kV. After the electron beam generated by the electron source 1 passes through the electron acceleration structure 2, the moving speed will increase.
  • the voltage value V3 of the first bundle of conduits 3 is 10 kV.
  • An accelerating electric field is formed between the electron accelerating structure 2 and the first beam guide 3 , and the electron beam passing through the accelerating structure enters the first beam guide 3 after being accelerated.
  • the electron beam is kept moving at high speed in the first beam guide 3 for reducing the space charge effect in the electron beam.
  • the first lens device 4 is disposed on the outer periphery of the first beam guide 3 , and the first lens device 4 may be a magnetic lens, configured to focus the electron beams moving at high speed in the first beam guide 3 .
  • the electron beam passes through the first beam conduit 3, passes through the central hole of the annular first detector 5, the central hole of the annular first control electrode 6, and the central hole of the annular shielding device 7 in sequence, and enters the The second bundle of conduits 10, the voltage value of the second bundle of conduits 10 V8 is 10kV.
  • the electron beam is kept moving at high speed in the second beam guide 10 for reducing space charge effects in the electron beam.
  • the second lens device 13 is arranged on the outer periphery of the second beam guide 10 , and the second lens device 13 is a compound electromagnetic lens structure, which is composed of a magnetic lens and a deceleration electric lens formed between the lower end of the second beam guide 10 and the sample stage 19 .
  • the voltage value V12 of the sample stage 19 is 0kV
  • a deflection device is provided between the second beam guide 10 and the second lens device 13, and the deflection device is configured to change the moving direction of the electron beam before the incident to the sample to be tested 18, which can generate Scan field in arbitrary deflection direction.
  • the deflection device includes a first deflector 11 and a second deflector 12, and more deflectors can also participate in the electronic scanning.
  • the first deflector 11 may be a magnetic deflector or an electrical deflector
  • the second deflector 12 may be a magnetic deflector or an electrical deflector.
  • the first deflector 11 and the second deflector 12 cooperate to change the moving direction of the electron beam before incident on the sample to be tested 18 .
  • the second lens device 13 is arranged on the outer periphery of the second beam guide 10, the electron beam passes through the second beam guide 10, passes through the upper pole piece and the lower pole piece of the second lens device 13, and the second lens device 13 converges the electron beam to act on the to-be-beamed on test sample 18.
  • the focused scanning electron beam acts on backscattered electrons and secondary electrons generated on the sample 18 to be measured. Secondary electrons have low energy and backscattered electrons have high energy.
  • the generated backscattered electrons and secondary electrons enter the second beam guide 10 through the second lens device 13, and the movement trajectories of the backscattered electrons and the secondary electrons will form a cross point, because the secondary electrons have low energy.
  • the trajectories of secondary electrons form intersections lower than the trajectories of backscattered electrons.
  • the shielding device 7 is arranged on the upper end of the second bundle of conduits 10 , the voltage of the shielding device 7 and the second bundle of conduits 10 is the same, and the shielding device 7 is a porous structure.
  • a second control electrode 8 is disposed between the second detector 9 and the groove of the shielding device 7 , and the second control electrode 8 separates the second detector 9 from the inner wall of the groove of the shielding device 7 .
  • the second control electrode 8 has a porous structure.
  • the voltage value V6 of the second control electrode 8 is 0 kV.
  • the voltage value V7 of the second detector 9 is 10 kV.
  • the voltage value V3 of the first beam guide 3 is 10kV
  • the voltage value V8 of the second beam guide 10 is 10kV
  • the voltage value V5 of the first control electrode 6 can be any value between 0kV and 10kV.
  • a decelerating electric field is formed between the second beam guide 10 and the first control electrode 6 .
  • An accelerating electric field is formed between the first control electrode 6 and the first beam guide 3 .
  • the secondary electrons Due to the small energy of the secondary electrons, when moving to the decelerating electric field formed between the second beam guide 10 and the first control electrode 6, the secondary electrons will not continue to pass through the central hole of the first control electrode 6, and will be affected by the decelerating electric field. Due to the same voltage value of the shielding device 7 and the second beam guide 10, the voltage value V8 of the second beam guide 10 is 10kV, the voltage value V6 of the second control electrode 8 is 0kV, the second The voltage value V7 of the detector 9 is 10 kV. The secondary electrons moving in opposite directions will therefore pass through the shielding device 7 and the second control electrode 8 and be received by the second detector 9 .
  • the diameter of the central hole of the first detector 5 is smaller than that of the central hole of the first control electrode 6 . Due to the large energy of the backscattered electrons, the backscattered electrons will pass through the central hole of the first control electrode 6 and be received by the first detector 5 arranged at the lower end of the first beam guide 3.
  • the voltage value V4 of the first detector 5 is the same as that of the first detector 5.
  • the voltage value V3 of the beam guide tube 3 is at the same voltage value, the voltage value of V4 is 10 kV, and the voltage value of V3 is 10 kV.
  • the embodiment of the present invention provides an electron beam system.
  • the electron beam system is provided with a first control electrode 6 between the first beam guide tube 3 and the second beam guide tube 10 , and the first control electrode 6 changes the electron beam generated by the electron source 1 .
  • the electric field between the first control electrode 6 and the first beam guide 3 and the second beam guide 10 cooperates, so that the secondary electrons and the backscattered electrons can be combined.
  • the scattered electrons are separated. This enables the first detector 5 to receive backscattered electrons generated by the pure electron beam acting on the sample 18 to be tested.
  • the second detector 9 can receive the secondary electrons generated by the pure electron beam acting on the sample 18 to be tested.
  • an electron beam system provided by an embodiment of the present invention further includes a third detector 16 , a third control electrode 14 , and a fourth control electrode 17 .
  • the third detector 16 is disposed between the upper pole piece and the lower pole piece of the second lens device 13 .
  • the third detector 16 is annular and is configured to receive backscattered electrons generated by the electron beam acting on the sample 18 to be tested.
  • the third control electrode 14 is disposed between the upper pole piece of the second lens device 13 and the third detector 16, the radial cross section of the third control electrode 14 is L-shaped, and a circular tube formed by one side of the L-shape is inserted into the third The central hole of the detector 16 and the disk formed by the other side of the L-shape are arranged above the third detector 16 .
  • An insulator 15 is provided between the third detector 16 and the third control electrode 14 .
  • the third detector 16 is connected to the third control electrode 14 in isolation.
  • the fourth control electrode 17 is disposed between the lower pole piece of the second lens device 13 and the sample 18 to be tested.
  • the fourth control electrode 17 can change the direction of movement of backscattered electrons generated by the electron beam acting on the sample 18 to be tested.
  • the voltage value V9 of the third control electrode 14 can be selected from any value between 0 kV and 10 kV, and the voltage value V11 of the fourth control electrode 17 can be selected from any value between 0 kV and 10 kV.
  • the voltage value V12 of the sample stage 19 is 0 kV, and the voltage value V10 of the third detector 16 can be any value between 0 kV and 10 kV.
  • Backscattered electrons with a small emission angle generated by the electron beam acting on the sample to be tested 18 pass through the accelerating electric field formed between the sample stage 19 and the fourth control electrode 17 and between the fourth control electrode 17 and the third control electrode 14 . After the acceleration electric field is accelerated, it is received by the third detector 16, and by adjusting the voltage values of the third control electrode 14 and the fourth control electrode 17, the third detector 16 can receive more backscattered electrons.
  • the accelerating electric field formed between the sample stage 19 and the fourth control electrode 17 is formed between the sample stage 19 and the fourth control electrode 17 .
  • the accelerating electric field formed between the fourth control electrode 17 and the third control electrode 14 , and the accelerating electric field formed between the third control electrode 14 and the second beam guide 10 can be flexibly controlled, thereby controlling the intensity of each electric field, and then controlling the movement trajectories of backscattered electrons and secondary electrons.
  • a deceleration electric field is formed between the second beam guide 10 and the first control electrode 6 .
  • the strength of the decelerating electric field also changes.
  • An accelerating electric field is formed between the first control electrode 6 and the first beam guide 3 .
  • the first detector 5 and the second detector 9 can selectively detect signal electrons with different energies.
  • Those skilled in the art can adjust the electron source 1 , the electron acceleration structure 2 , the first beam guide 3 , the first control electrode 6 , the first detector 5 , the second beam guide 10 , the second control electrode 8 , and the third control electrode 14 , the voltage value of the fourth control electrode 17, the sample stage 19, etc., to obtain the required signal electrons with corresponding energy.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

本发明实施例公开了一种电子束系统,包括:电子源,配置为产生电子束;第一束导管,配置为加速所述电子束;第二束导管,配置为加速所述电子束;第一控制电极,设置于所述第一束导管和所述第二束导管之间,配置为改变所述电子束作用于待测样品上产生的背散射电子和二次电子的运动方向;第一探测器,设置于所述第一束导管和所述第一控制电极之间,配置为接收所述电子束作用于所述待测样品上产生的背散射电子。本发明实施例第一控制电极改变电子源产生的电子束作用于待测样品上产生的背散射电子和二次电子的运动方向,使得设置于第一束导管和第一控制电极之间的第一探测器能够接收到纯的电子束作用于待测样品上产生的背散射电子。

Description

一种电子束系统
相关申请的交叉引用
本申请基于申请号为202011389634.2、申请日为2020年12月02日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明属于显微镜技术领域,具体地说,涉及一种电子束系统。
背景技术
相关技术中,扫描电子显微镜是一种常用的显微分析仪器,通常电子束通过扫描电子显微镜的物镜汇聚到待测样品上,产生一个微小束斑,在该微区内电子束作用于待测样品上产生二次电子(SE)、背散射电子(BSE)等信号电子,进而可通过探测器对待测样品表面的形貌进行观察以及对材料成分进行分析。
其中,二次电子能够表征待测样品的形貌特征,背散射电子与被观察材料的原子序数有关,更多的表征待测样品的材质信息,相对于待测样品表面小角度发射的背散射电子受到了待测样品表面起伏的影响,也会反映出待测样品表面形貌的信息。因此,不同类别的信号电子、不同角度出射的信号电子反映不同的待测样品信息。因此,通过分别探测纯的二次电子和背散射电子,能够形成具有更好衬度的反映表面形貌或材质信息的图像,有助于更精确的分析待测样品。
有鉴于此特提出本发明。
发明内容
本发明实施例要解决的技术问题在于克服相关技术的不足,提供一种电子束系统,设置于第一束导管和第一控制电极之间的第一探测器能够接收到纯的电子束作用于待测样品上产生的背散射电子。
为解决上述技术问题,本发明实施例采用的技术方案是:
一种电子束系统,该系统包括:
电子源,配置为产生电子束;
第一束导管,配置为加速所述电子束;
第二束导管,配置为加速所述电子束;
第一控制电极,设置于所述第一束导管和所述第二束导管之间,配置为改变所述电子束作用于待测样品上产生的背散射电子和二次电子的运动方向;
第一探测器,设置于所述第一束导管和所述第一控制电极之间,配置为接收所述电子束作用于所述待测样品上产生的背散射电子。
在一些可选的实施方式中,所述第一控制电极为圆环形,由圆心向外的方向,所述第一控制电极的径向截面厚度逐渐增大。
在一些可选的实施方式中,所述第一控制电极为圆环形,所述第一控制电极的径向截面为矩形,或者是三角形,或者是梯形。
在一些可选的实施方式中,该系统还包括:
屏蔽装置,所述屏蔽装置为圆环形,由圆心向外的方向,所述屏蔽装置的径向截面为开口向外的凹槽;
第二探测器,设置于所述屏蔽装置的凹槽中,配置为接收所述电子束作用于所述待测样品上产生的二次电子。
其中,所述屏蔽装置为多孔结构,所述屏蔽装置设置于所述第二束导管的上端。
在一些可选的实施方式中,所述第二探测器与所述屏蔽装置的凹槽之间设置有第二控制电极。
在一些可选的实施方式中,该系统还包括:
第一透镜装置,设置于所述第一束导管外周,配置为汇聚所述电子束;
第二透镜装置,设置于所述第二束导管外周,配置为汇聚所述电子束。
上述方案中,该系统还包括:
第三探测器,设置于所述第二透镜装置的上极靴和下极靴之间,配置为接收所述电子束作用于所述待测样品上产生的背散射电子;
第三控制电极,设置于所述第二透镜装置的上极靴和所述第三探测器之间。
其中,所述第三控制电极为圆环形,所述第三控制电极的径向截面为L形;
所述第三探测器与所述第三控制电极绝缘连接。
在一些可选的实施方式中,该系统还包括:
第四控制电极,设置于所述第二透镜装置的下极靴和所述待测样品之间;
所述第一探测器设置于所述第一束导管下端。
采用上述技术方案后,本发明实施例与相关技术相比具有以下有益效果。
本发明实施例提供的一种电子束系统,该电子束系统在第一束导管和第二束导管之间设置第一控制电极,第一控制电极改变电子源产生的电子束作用于待测样品上产生的背散射电子和二次电子的运动方向,使得设置于第一束导管和第一控制电极之间的第一探测器能够接收到纯的电子束作用于待测样品上产生的背散射电子。
下面结合附图对本发明的具体实施方式作进一步详细的描述。
附图说明
附图作为本发明的一部分,用来提供对本发明的进一步的理解,本发明的示意性实施例及其说明用于解释本发明,但不构成对本发明的不当限定。显然,下面描述中的附图仅仅是一些实施例,对于本领域普通技术人员来说,在不付出创造性劳动的前提下,还可以根据这些附图获得其他附图。在附图中:
图1是本发明实施例提供的一种电子束系统的一种实施方式结构示意图;
图2是本发明实施例提供的一种电子束系统的另一种实施方式结构示意图;
图3是本发明实施例第一控制电极与第一束导管和第二束导管之间形成的电场示意图。
图中:1、电子源;2、电子加速结构;3、第一束导管;4、第一透镜装置;5、第一探测器;6、第一控制电极;7、屏蔽装置;8、第二控制电极;9、第二探测器;10、第二束导管;11、第一偏转器;12、第二偏转器;13、第二透镜装置;14、第三控制电极;15、绝缘体;16、第三探测器;17、第四控制电极;18、待测样品;19、样品台。
需要说明的是,这些附图和文字描述并不旨在以任何方式限制本发明的构思范围,而是通过参考特定实施例为本领域技术人员说明本发明的概念。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对实施例中的技术方案进行清楚、完整地描述,以下实施例用于说明本发明,但不用来限制本发明的范围。
在本发明的描述中,需要说明的是,术语“上”、“下”、“前”、“后”、“左”、 “右”、“竖直”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
如图1至图3所示,本发明实施例提供的一种电子束系统,该电子束系统包括电子源1、第一束导管3、第一探测器5、第一控制电极6、第二束导管10。电子源1配置为产生电子束,第一束导管3配置为加速电子束,第二束导管10配置为加速电子束。
第一控制电极6设置于第一束导管3和第二束导管10之间,配置为改变电子束作用于待测样品18上产生的背散射电子和二次电子的运动方向。
第一探测器5设置于第一束导管3和第一控制电极6之间,配置为接收电子束作用于待测样品18上产生的背散射电子。
具体的:
本发明实施例提供的一种电子束系统,沿着电子源1到待测样品18方向依次设置有电子源1、第一束导管3、第一探测器5、第一控制电极6、第二束导管10、样品台19。
电子源1产生的电子束,依次经过第一束导管3、第一探测器5、第一控制电极6、第二束导管10、作用于放置在样品台19上的待测样品18。电子束作用于待测样品18上产生背散射电子和二次电子。第一控制电极6改变电子束作用于待测样品18上产生的背散射电子和二次电子的运动方向。 第一探测器5接收电子束作用于待测样品18上产生的背散射电子。
本发明实施例提供的一种电子束系统,该电子束系统在第一束导管3和第二束导管10之间设置第一控制电极6,第一控制电极6改变电子源1产生的电子束作用于待测样品18上产生的背散射电子和二次电子的运动方向,使得设置于第一束导管3和第一控制电极6之间的第一探测器5能够接收到纯的电子束作用于待测样品18上产生的背散射电子。
在一些可选的实施方式中,第一控制电极6为圆环形,由圆心向外的方向,第一控制电极6的径向截面厚度逐渐增大。
第一控制电极6为圆环形,第一控制电极6的中心孔用于电子束和背散射电子穿过。由圆心向外的方向,第一控制电极6的径向截面厚度逐渐增大。即圆环形的第一控制电极6,由外周向圆心方向厚度逐渐减小。
如图3所示,采用上述形状的第一控制电极6形成的电场,可以更好的改变电子源1产生的电子束作用于待测样品18上产生的背散射电子和二次电子的运动方向,使得设置于第一束导管3和第一控制电极6之间的第一探测器5能够接收到纯的电子束作用于待测样品18上产生的背散射电子。
在一些可选的实施方式中,第一控制电极6为圆环形,第一控制电极6的径向截面为矩形,或者是三角形,或者是梯形。
当第一控制电极6的径向截面为三角形时,三角形的中的一个角朝向环形的第一控制电极6的圆心。
当第一控制电极6的径向截面为梯形时,梯形的上底边朝向圆环形的第一控制电极6的圆心。
在一些可选的实施方式中,本发明实施例提供的一种电子束系统,该电子束系统还包括屏蔽装置7和第二探测器9。屏蔽装置7为圆环形,由圆心向外的方向,屏蔽装置7的径向截面为开口向外的凹槽。第二探测器9 设置于屏蔽装置7的凹槽中,配置为接收电子束作用于待测样品18上产生的二次电子。
进一步的,屏蔽装置7为多孔结构,屏蔽装置7设置于第二束导管10上端。
进一步的,第二探测器9与屏蔽装置7的凹槽之间设置有第二控制电极8。
具体的:
屏蔽装置7为圆环形,屏蔽装置7的中心孔用于电子束、背散射电子和二次电子穿过。屏蔽装置7的径向截面为开口向外的凹槽。第二探测器9设置于屏蔽装置7的凹槽中,配置为接收电子束作用于待测样品18上产生的二次电子。
进一步的,屏蔽装置7设置于第二束导管10上端。屏蔽装置7为多孔结构,电子束作用于待测样品18上产生的二次电子可穿过屏蔽装置7上的孔,被设置在屏蔽装置7的凹槽中的第二探测器9接收。
进一步的,第二探测器9与凹槽之间设置有第二控制电极8。第二控制电极8为筒状,设置于屏蔽装置7的凹槽中,第二探测器9设置于筒状的第二控制电极8的筒内,第二控制电极8将第二探测器9与屏蔽装置7的凹槽内壁隔开。第二控制电极8为多孔结构,电子束作用于待测样品18上产生的二次电子可依次穿过屏蔽装置7上的孔、第二控制电极8上的孔,被第二探测器9接收。
在一些可选的实施方式中,第二探测器9与凹槽之间设置有第二控制电极8。第二控制电极8为圆环形,设置于屏蔽装置7的凹槽中,第二控制电极8由圆心向外的方向,第二控制电极8的径向截面为开口向外的凹槽。屏蔽装置7的凹槽套装第二控制电极8的凹槽,第二探测器9设置于第二控制电极8的凹槽内,第二控制电极8将第二探测器9与屏蔽装置7的凹 槽内壁隔开。第二控制电极8为多孔结构,电子束作用于待测样品18上产生的二次电子可依次穿过屏蔽装置7上的孔、第二控制电极8上的孔,被第二探测器9接收。
第二探测器9的数量可以为一个,或者两个,或者多个,多个第二探测器9可以沿着圆环形的屏蔽装置7的凹槽间隔分布。第二探测器9也可以是圆环形的探测器。由于屏蔽装置7对第二探测器9的屏蔽作用,第二探测器9不会对电子束的运动轨迹进行干扰。
在一些可选的实施方式中,本发明实施例提供的一种电子束系统,该电子束系统还包括第一透镜装置4和第二透镜装置13。
第一透镜装置4设置于第一束导管3外周,配置为汇聚电子束。
第二透镜装置13设置于第二束导管10外周,配置为汇聚电子束。
第一透镜装置4可以为磁透镜、或者是电透镜、或者是电磁复合透镜。第二透镜装置13可以为磁透镜、或者是电透镜、或者是电磁复合透镜。
进一步的,本发明实施例提供的一种电子束系统,该电子束系统还包括第三探测器16和第三控制电极14。
第三探测器16设置于第二透镜装置13的上极靴和下极靴之间,配置为接收电子束作用于待测样品18上产生的背散射电子。
第三控制电极14设置于第二透镜装置13的上极靴和第三探测器16之间。
更进一步的,第三控制电极14为圆环形,第三控制电极14的径向截面为L形。第三探测器16与第三控制电极14绝缘连接。
详细的,第三探测器16为圆环形,第三探测器16的中心孔用于电子束、背散射电子和二次电子穿过。第三控制电极14为圆环形,第三控制电极14的径向截面为L形。L形的一条边形成的圆管插入第三探测器16的中心孔,L形的另一条边形成的圆盘设置在第三探测器16的上方。第三探 测器16与第三控制电极14之间设置有绝缘体15。第三探测器16与第三控制电极14绝缘连接。圆环形的第三控制电极14的径向截面为L形,可以更好地与第二束导管10和第四控制电极17配合形成需要的电场,进而可以更好的控制电子束作用于待测样品18上产生的背散射电子和二次电子的运动方向。
在一些可选的实施方式中,本发明实施例提供的一种电子束系统,该电子束系统还包括第四控制电极17,第四控制电极17设置于第二透镜装置13的下极靴和待测样品18之间。第四控制电极17可以改变电子束作用于待测样品18上产生的背散射电子的运动方向。
在一些可选的实施方式中,第一探测器5设置于第一束导管3下端。第一探测器5与第一束导管3下端连接。第一探测器5与第一束导管3处于同一电压值。屏蔽装置7与第二束导管10上端连接。屏蔽装置7与第二束导管10处于同一电压值。
如图1至图3所示,在一些可选的实施方式中,下面以一个具体实施例说明,具体的,电子源1配置为产生电子束。电子源1分为场致发射源和热发射源,场致发射源又分为热场和冷场两种,热发射源分为钨丝、六硼化镧等。在本实施例中电子源1可以是任意一种用于产生电子束的电子源1。本实施例提供的电子源1的电压值为-5kV。
电子加速结构2的电压值为-2kV。电子源1产生的电子束经电子加速结构2后,运动速度会增加。
第一束导管3的电压值为10kV。电子加速结构2与第一束导管3之间形成加速电场,经过加速结构的电子束,加速后进入第一束导管3。电子束在第一束导管3中保持高速运动,用于降低电子束中的空间电荷效应。第一透镜装置4设置于第一束导管3外周,第一透镜装置4可以为磁透镜,配置为汇聚第一束导管3中高速运动的电子束。
电子束穿过第一束导管3,依次经过圆环形的第一探测器5的中心孔、圆环形的第一控制电极6的中心孔、圆环形的屏蔽装置7的中心孔,进入第二束导管10,第二束导管10的电压值为10kV。电子束在第二束导管10中保持高速运动,用于降低电子束中的空间电荷效应。
第二透镜装置13设置于第二束导管10外周,第二透镜装置13为一个复合式的电磁透镜结构,由磁透镜和第二束导管10下端与样品台19之间形成的减速电透镜构成,样品台19电压值为0kV,电子束入射到待测样品18上的落点能量为5keV,在第二束导管10和第二透镜装置13之间设置有偏转装置,偏转装置配置为改变入射到待测样品18前的电子束的运动方向,能够产生任意偏转方向的扫描场。进一步的,偏转装置包括第一偏转器11和第二偏转器12,也可以有更多的偏转器参与进来进行电子的扫描。第一偏转器11可以是磁偏转器或电偏转器,第二偏转器12可以是磁偏转器或电偏转器。第一偏转器11和第二偏转器12配合作用改变入射到待测样品18前的电子束的运动方向。
第二透镜装置13设置于第二束导管10外周,电子束穿过第二束导管10,经过第二透镜装置13的上极靴和下极靴,第二透镜装置13汇聚电子束作用于待测样品18上。汇聚后的扫描电子束作用于待测样品18上产生的背散射电子和二次电子。二次电子能量低,小于50eV,背散射电子能量为5keV。产生的背散射电子和二次电子经过第二透镜装置13进入第二束导管10,背散射电子和二次电子运动轨迹会形成交叉点,由于二次电子能量小。二次电子的轨迹形成交叉点低于背散射电子的轨迹形成交叉点。
屏蔽装置7设置于第二束导管10上端,屏蔽装置7与第二束导管10的电压值相同,屏蔽装置7为多孔结构。第二探测器9与屏蔽装置7的凹槽之间设置有第二控制电极8,第二控制电极8将第二探测器9与屏蔽装置7的凹槽内壁隔开。第二控制电极8为多孔结构。第二控制电极8的电压值 为0kV。第二探测器9的电压值为10kV。
由于圆环形的屏蔽装置7的中心孔的孔径小于第二束导管10的孔径,进入第二束导管10的二次电子,部分二次电子会直接穿过屏蔽装置7和第二控制电极8,被第二探测器9接收。
穿过屏蔽装置7的中心孔的背散射电子和二次电子向第一控制电极6运动。第一束导管3的电压值为10kV,第二束导管10的电压值为10kV,第一控制电极6的电压值为7kV,沿着背散射电子和二次电子运动方向,第二束导管10和第一控制电极6之间形成一个减速电场。第一控制电极6和第一束导管3之间形成一个加速电场。
由于二次电子能量小,在运动到第二束导管10和第一控制电极6之间形成的减速电场时,二次电子不会继续穿过第一控制电极6的中心孔,受到减速电场的作用,二次电子会反向运动,由于屏蔽装置7与第二束导管10的电压值相同,电压值为10kV,第二控制电极8的电压值为0kV,第二探测器9的电压值为10kV。所以反向运动的二次电子会穿过屏蔽装置7和第二控制电极8被第二探测器9接收。
第一探测器5的中心孔的孔径小于第一控制电极6的中心孔的孔径。由于背散射电子能量大,背散射电子会穿过第一控制电极6的中心孔,被设置在第一束导管3下端的第一探测器5接收,第一探测器5与第一束导管3处于同一电压值,电压值为10kV。
本发明实施例提供的一种电子束系统,该电子束系统在第一束导管3和第二束导管10之间设置第一控制电极6,第一控制电极6改变电子源1产生的电子束作用于待测样品18上产生的背散射电子和二次电子的运动方向,第一控制电极6与第一束导管3和第二束导管10之间的电场配合,可以将二次电子和背散射电子分开。使得第一探测器5能够接收到纯的电子束作用于待测样品18上产生的背散射电子。第二探测器9能够接收到纯的 电子束作用于待测样品18上产生的二次电子。
进一步的,本发明实施例提供的一种电子束系统还包括第三探测器16、第三控制电极14、第四控制电极17。
第三探测器16设置于第二透镜装置13的上极靴和下极靴之间,第三探测器16为圆环形,配置为接收电子束作用于待测样品18上产生的背散射电子。第三控制电极14设置于第二透镜装置13的上极靴和第三探测器16之间,第三控制电极14的径向截面为L形,L形的一条边形成的圆管插入第三探测器16的中心孔,L形的另一条边形成的圆盘设置在第三探测器16的上方。第三探测器16与第三控制电极14之间设置有绝缘体15。第三探测器16与第三控制电极14绝缘连接。
第四控制电极17设置于第二透镜装置13的下极靴和待测样品18之间,第四控制电极17可以改变电子束作用于待测样品18上产生的背散射电子的运动方向。
第三控制电极14的电压值为5kV,第四控制电极17的电压值为2kV。样品台19的电压值为0kV。
由于第二束导管10的电压值为10kV,所以第三控制电极14与第二束导管10之间形成一个加速电场,第四控制电极17与第三控制电极14之间形成一个加速电场,样品台19与第四控制电极17之间形成一个加速电场。
电子束作用于待测样品18上产生的发射角度小的背散射电子,经过样品台19与第四控制电极17之间形成的加速电场和第四控制电极17与第三控制电极14之间形成加速电场加速后,被第三探测器16接收,通过调节第三控制电极14的电压值,第三探测器16可以接收到更多的背散射电子。
需要说明的是,电子源1、电子加速结构2、第一束导管3、第一控制电极6、第一探测器5、第二束导管10、第二控制电极8、第三控制电极14、第四控制电极17、样品台19等电压值不局限于上述实施例的具体数值,本 领域技术人员可以根据实际情况需要自行设定具体的电压值。
如图1至图3所示,在一些可选的实施方式中,具体的,电子源1配置为产生电子束。电子源1分为场致发射源和热发射源,场致发射源又分为热场和冷场两种,热发射源分为钨丝、六硼化镧等。在本实施例中电子源1可以是任意一种用于产生电子束的电子源1。本实施例提供的电子源1的电压值V1可选0kV到-15kV之间任一值。
电子加速结构2的电压值V2可选3kV到-12kV之间任一值。电子源1产生的电子束经电子加速结构2后,运动速度会增加。
第一束导管3的电压值V3为10kV。电子加速结构2与第一束导管3之间形成加速电场,经过加速结构的电子束,加速后进入第一束导管3。电子束在第一束导管3中保持高速运动,用于降低电子束中的空间电荷效应。第一透镜装置4设置于第一束导管3外周,第一透镜装置4可以为磁透镜,配置为汇聚第一束导管3中高速运动的电子束。
电子束穿过第一束导管3,依次经过圆环形的第一探测器5的中心孔、圆环形的第一控制电极6的中心孔、圆环形的屏蔽装置7的中心孔,进入第二束导管10,第二束导管10的电压值为V8为10kV。电子束在第二束导管10中保持高速运动,用于降低电子束中的空间电荷效应。
第二透镜装置13设置于第二束导管10外周,第二透镜装置13为一个复合式的电磁透镜结构,由磁透镜和第二束导管10下端与样品台19之间形成的减速电透镜构成,样品台19电压值V12为0kV,在第二束导管10和第二透镜装置13之间设置有偏转装置,偏转装置配置为改变入射到待测样品18前的电子束的运动方向,能够产生任意偏转方向的扫描场。进一步的,偏转装置包括第一偏转器11和第二偏转器12,也可以有更多的偏转器参与进来进行电子的扫描。第一偏转器11可以是磁偏转器或电偏转器,第二偏转器12可以是磁偏转器或电偏转器。第一偏转器11和第二偏转器12 配合作用改变入射到待测样品18前的电子束的运动方向。
第二透镜装置13设置于第二束导管10外周,电子束穿过第二束导管10,经过第二透镜装置13的上极靴和下极靴,第二透镜装置13汇聚电子束作用于待测样品18上。汇聚后的扫描电子束作用于待测样品18上产生的背散射电子和二次电子。二次电子能量低,背散射电子能量高。产生的背散射电子和二次电子经过第二透镜装置13进入第二束导管10,背散射电子和二次电子运动轨迹会形成交叉点,由于二次电子能量小。二次电子的轨迹形成交叉点低于背散射电子的轨迹形成交叉点。
屏蔽装置7设置于第二束导管10上端,屏蔽装置7与第二束导管10的电压值相同,屏蔽装置7为多孔结构。第二探测器9与屏蔽装置7的凹槽之间设置有第二控制电极8,第二控制电极8将第二探测器9与屏蔽装置7的凹槽内壁隔开。第二控制电极8为多孔结构。第二控制电极8的电压值V6为0kV。第二探测器9的电压值V7为10kV。
由于圆环形的屏蔽装置7的中心孔的孔径小于第二束导管10的孔径,进入第二束导管10的二次电子,部分二次电子会直接穿过屏蔽装置7和第二控制电极8,被第二探测器9接收。
穿过屏蔽装置7的中心孔的背散射电子和二次电子向第一控制电极6运动。第一束导管3的电压值V3为10kV,第二束导管10的电压值V8为10kV,第一控制电极6的电压值V5可选0kV到10kV之间任一值,沿着背散射电子和二次电子运动方向,第二束导管10和第一控制电极6之间形成一个减速电场。第一控制电极6和第一束导管3之间形成一个加速电场。
由于二次电子能量小,在运动到第二束导管10和第一控制电极6之间形成的减速电场时,二次电子不会继续穿过第一控制电极6的中心孔,受到减速电场的作用,二次电子会反向运动,由于屏蔽装置7与第二束导管10的电压值相同,第二束导管10电压值V8为10kV,第二控制电极8的 电压值V6为0kV,第二探测器9的电压值V7为10kV。所以反向运动的二次电子会穿过屏蔽装置7和第二控制电极8被第二探测器9接收。
第一探测器5的中心孔的孔径小于第一控制电极6的中心孔的孔径。由于背散射电子能量大,背散射电子会穿过第一控制电极6的中心孔,被设置在第一束导管3下端的第一探测器5接收,第一探测器5电压值V4与第一束导管3电压值V3处于同一电压值,V4电压值为10kV,V3电压值为10kV。
本发明实施例提供的一种电子束系统,该电子束系统在第一束导管3和第二束导管10之间设置第一控制电极6,第一控制电极6改变电子源1产生的电子束作用于待测样品18上产生的背散射电子和二次电子的运动方向,第一控制电极6与第一束导管3和第二束导管10之间的电场配合,可以将二次电子和背散射电子分开。使得第一探测器5能够接收到纯的电子束作用于待测样品18上产生的背散射电子。第二探测器9能够接收到纯的电子束作用于待测样品18上产生的二次电子。
进一步的,本发明实施例提供的一种电子束系统还包括第三探测器16、第三控制电极14、第四控制电极17。
第三探测器16设置于第二透镜装置13的上极靴和下极靴之间,第三探测器16为圆环形,配置为接收电子束作用于待测样品18上产生的背散射电子。第三控制电极14设置于第二透镜装置13的上极靴和第三探测器16之间,第三控制电极14的径向截面为L形,L形的一条边形成的圆管插入第三探测器16的中心孔,L形的另一条边形成的圆盘设置在第三探测器16的上方。第三探测器16与第三控制电极14之间设置有绝缘体15。第三探测器16与第三控制电极14绝缘连接。
第四控制电极17设置于第二透镜装置13的下极靴和待测样品18之间,第四控制电极17可以改变电子束作用于待测样品18上产生的背散射电子 的运动方向。
第三控制电极14的电压值V9可选0kV到10kV之间任一值,第四控制电极17的电压值V11可选0kV到10kV之间任一值。样品台19的电压值V12为0kV,第三探测器16电压值V10可选0kV到10kV之间任一值。
由于第二束导管10的电压值V8为10kV,所以第三控制电极14与第二束导管10之间形成一个加速电场,第四控制电极17与第三控制电极14之间形成一个加速电场,样品台19与第四控制电极17之间形成一个加速电场。
电子束作用于待测样品18上产生的发射角度小的背散射电子,经过样品台19与第四控制电极17之间形成的加速电场和第四控制电极17与第三控制电极14之间形成加速电场加速后,被第三探测器16接收,通过调节第三控制电极14和第四控制电极17的电压值,第三探测器16可以接收到更多的背散射电子。
进一步的,样品台19与第四控制电极17之间形成的加速电场。第四控制电极17与第三控制电极14之间形成的加速电场,第三控制电极14与第二束导管10之间形成的加速电场。可以灵活控制样品台19、第四控制电极17、第三控制电极14、第二束导管10的具体的电压值,从而控制各个电场的强度,进而控制背散射电子和二次电子的运动轨迹。
举例说明,当对第一束导管3、第一控制电极6、第二束导管10加载的电压值进行改变时,第二束导管10和第一控制电极6之间形成一个减速电场。由于第二束导管10和第一控制电极6加载的电压值改变,所以减速电场的强度也发生改变。第一控制电极6和第一束导管3之间形成一个加速电场。由于第一控制电极6和第一束导管3加载的电压值改变,所以加速电场的强度也发生改变。汇聚后的扫描电子束作用于待测样品18上产生的背散射电子和二次电子等电子统称信号电子,信号电子具有不同的能量, 不同能量的信号电子反应不同的待测样品18信息。由于减速电场的强度和加速电场的强度均可以通过需要进行改变。所以不同能量的信号电子在进入减速电场和加速电场受到的电场力不同,所以不同能量的信号电子的运动轨迹会发生不同改变。第一探测器5和第二探测器9可以有选择性的探测不同能量的信号电子。本领域技术人员可以调节电子源1、电子加速结构2、第一束导管3、第一控制电极6、第一探测器5、第二束导管10、第二控制电极8、第三控制电极14、第四控制电极17、样品台19等的电压值,来获取需要的相应能量的信号电子。
以上所述仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专利的技术人员在不脱离本发明技术方案范围内,当可利用上述提示的技术内容作出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明方案的范围内。

Claims (10)

  1. 一种电子束系统,该系统包括:
    电子源,配置为产生电子束;
    第一束导管,配置为加速所述电子束;
    第二束导管,配置为加速所述电子束;
    第一控制电极,设置于所述第一束导管和所述第二束导管之间,配置为改变所述电子束作用于待测样品上产生的背散射电子和二次电子的运动方向;
    第一探测器,设置于所述第一束导管和所述第一控制电极之间,配置为接收所述电子束作用于所述待测样品上产生的背散射电子。
  2. 根据权利要求1所述的电子束系统,其中:所述第一控制电极为圆环形,由圆心向外的方向,所述第一控制电极的径向截面厚度逐渐增大。
  3. 根据权利要求1所述的电子束系统,其中:所述第一控制电极为圆环形,所述第一控制电极的径向截面为矩形、或者是三角形、或者是梯形。
  4. 根据权利要求1所述的电子束系统,其中:该系统还包括:
    屏蔽装置,所述屏蔽装置为圆环形,由圆心向外的方向,所述屏蔽装置的径向截面为开口向外的凹槽;
    第二探测器,设置于所述屏蔽装置的凹槽中,配置为接收所述电子束作用于所述待测样品上产生的二次电子。
  5. 根据权利要求4所述的电子束系统,其中:所述屏蔽装置为多孔结构,所述屏蔽装置设置于所述第二束导管的上端。
  6. 根据权利要求4所述的电子束系统,其中:所述第二探测器与所述屏蔽装置的凹槽之间设置有第二控制电极。
  7. 根据权利要求1所述的电子束系统,其中:该系统还包括:
    第一透镜装置,设置于所述第一束导管外周,配置为汇聚所述电子束;
    第二透镜装置,设置于所述第二束导管外周,配置为汇聚所述电子束。
  8. 根据权利要求7所述的电子束系统,其中:该系统还包括:
    第三探测器,设置于所述第二透镜装置的上极靴和下极靴之间,配置为接收所述电子束作用于所述待测样品上产生的背散射电子;
    第三控制电极,设置于所述第二透镜装置的上极靴和所述第三探测器之间。
  9. 根据权利要求8所述的电子束系统,其中:所述第三控制电极为圆环形,所述第三控制电极的径向截面为L形;
    所述第三探测器与所述第三控制电极绝缘连接。
  10. 根据权利要求7所述的电子束系统,其中:该系统还包括:
    第四控制电极,设置于所述第二透镜装置的下极靴和所述待测样品之间;
    所述第一探测器设置于所述第一束导管下端。
PCT/CN2022/074101 2020-12-02 2022-01-26 一种电子束系统 WO2022117125A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/757,133 US20230317404A1 (en) 2020-12-02 2022-01-26 Electron beam system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011389634.2 2020-12-02
CN202011389634.2A CN114256043B (zh) 2020-12-02 2020-12-02 一种电子束系统

Publications (1)

Publication Number Publication Date
WO2022117125A1 true WO2022117125A1 (zh) 2022-06-09

Family

ID=80789550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/074101 WO2022117125A1 (zh) 2020-12-02 2022-01-26 一种电子束系统

Country Status (3)

Country Link
US (1) US20230317404A1 (zh)
CN (1) CN114256043B (zh)
WO (1) WO2022117125A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116631830A (zh) * 2023-07-20 2023-08-22 北京惠然肯来科技中心(有限合伙) 偏转探测系统、探测方法及扫描电子显微镜

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116646229B (zh) * 2023-07-20 2023-11-03 北京惠然肯来科技中心(有限合伙) 带电粒子探测系统、探测方法及扫描电子显微镜

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060226360A1 (en) * 2005-03-17 2006-10-12 Juergen Frosien Charged particle beam device for high spatial resolution and multiple perspective imaging
CN103733299A (zh) * 2011-09-07 2014-04-16 株式会社日立高新技术 扫描电子显微镜
CN110869752A (zh) * 2017-06-20 2020-03-06 应用材料公司 用于检查样本的方法和设备

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6667476B2 (en) * 1998-03-09 2003-12-23 Hitachi, Ltd. Scanning electron microscope
JP4236742B2 (ja) * 1998-10-29 2009-03-11 株式会社日立製作所 走査形電子顕微鏡
JP3728956B2 (ja) * 1998-12-22 2005-12-21 株式会社日立製作所 回路パターン検査装置
JP5033310B2 (ja) * 2005-02-18 2012-09-26 株式会社日立ハイテクノロジーズ 検査装置
JP5054990B2 (ja) * 2007-01-30 2012-10-24 株式会社日立ハイテクノロジーズ 走査形電子顕微鏡
JP4586051B2 (ja) * 2007-08-03 2010-11-24 株式会社日立ハイテクノロジーズ 走査型電子顕微鏡
WO2012016198A2 (en) * 2010-07-30 2012-02-02 Pulsetor, Llc Electron detector including an intimately-coupled scintillator-photomultiplier combination, and electron microscope and x-ray detector employing same
CN106920723A (zh) * 2017-03-06 2017-07-04 聚束科技(北京)有限公司 一种扫描聚焦系统及电子束控制方法
DE112017007822B4 (de) * 2017-09-29 2023-06-01 Hitachi High-Technologies Corporation Rasterelektronenmikroskop
WO2019100600A1 (en) * 2017-11-21 2019-05-31 Focus-Ebeam Technology (Beijing) Co., Ltd. Low voltage scanning electron microscope and method for specimen observation
CN208256614U (zh) * 2018-02-09 2018-12-18 聚束科技(北京)有限公司 一种扫描电子显微镜物镜系统
CN108807118B (zh) * 2018-06-08 2024-05-07 聚束科技(北京)有限公司 一种扫描电子显微镜系统及样品探测方法
CN110376229B (zh) * 2019-06-12 2020-09-04 聚束科技(北京)有限公司 具备复合式探测系统的扫描电子显微镜和样品探测方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060226360A1 (en) * 2005-03-17 2006-10-12 Juergen Frosien Charged particle beam device for high spatial resolution and multiple perspective imaging
CN103733299A (zh) * 2011-09-07 2014-04-16 株式会社日立高新技术 扫描电子显微镜
CN110869752A (zh) * 2017-06-20 2020-03-06 应用材料公司 用于检查样本的方法和设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116631830A (zh) * 2023-07-20 2023-08-22 北京惠然肯来科技中心(有限合伙) 偏转探测系统、探测方法及扫描电子显微镜
CN116631830B (zh) * 2023-07-20 2023-10-27 北京惠然肯来科技中心(有限合伙) 偏转探测系统、探测方法及扫描电子显微镜

Also Published As

Publication number Publication date
CN114256043B (zh) 2024-04-05
US20230317404A1 (en) 2023-10-05
CN114256043A (zh) 2022-03-29

Similar Documents

Publication Publication Date Title
US10777382B2 (en) Low voltage scanning electron microscope and method for specimen observation
WO2022117125A1 (zh) 一种电子束系统
US6043491A (en) Scanning electron microscope
JP4287549B2 (ja) 粒子線装置
WO2016121225A1 (ja) 荷電粒子線装置及び走査電子顕微鏡
US6667478B2 (en) Particle beam apparatus
JPH0736321B2 (ja) 定量的電位測定用スペクトロメ−タ−対物レンズ装置
JP6880209B2 (ja) 走査電子顕微鏡
JP2632808B2 (ja) 定量的電位測定用スペクトロメーター対物レンズ装置
US3717761A (en) Scanning electron microscope
CN116190184A (zh) 扫描电子显微镜物镜系统和扫描聚焦方法
WO2022083789A1 (zh) 一种电子显微镜
US6232601B1 (en) Dynamically compensated objective lens-detection device and method
CN113035675A (zh) 带电粒子束设备
US6710340B2 (en) Scanning electron microscope and method of detecting electrons therein
US10665423B2 (en) Analyzing energy of charged particles
JP6204388B2 (ja) 荷電粒子線装置及び走査電子顕微鏡
JPH0773841A (ja) 走査電子顕微鏡と二次電子検出系
CN116646228B (zh) 快速聚焦扫描偏转装置、扫描电子显微镜
JP2001057172A (ja) 走査電子顕微鏡
CN217306438U (zh) 电极偏转同轴电子探测装置及扫描电子显微镜
WO2016121224A1 (ja) 荷電粒子線装置及び走査電子顕微鏡
JP3280187B2 (ja) 走査電子顕微鏡
JPH1186770A (ja) 走査電子顕微鏡
CN117096004A (zh) 一种低能高速扫描电子束成像系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22728020

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22728020

Country of ref document: EP

Kind code of ref document: A1