WO2022083789A1 - 一种电子显微镜 - Google Patents

一种电子显微镜 Download PDF

Info

Publication number
WO2022083789A1
WO2022083789A1 PCT/CN2021/135541 CN2021135541W WO2022083789A1 WO 2022083789 A1 WO2022083789 A1 WO 2022083789A1 CN 2021135541 W CN2021135541 W CN 2021135541W WO 2022083789 A1 WO2022083789 A1 WO 2022083789A1
Authority
WO
WIPO (PCT)
Prior art keywords
electron
detector
control electrode
electron microscope
electron beam
Prior art date
Application number
PCT/CN2021/135541
Other languages
English (en)
French (fr)
Inventor
李帅
Original Assignee
聚束科技(北京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 聚束科技(北京)有限公司 filed Critical 聚束科技(北京)有限公司
Priority to US17/758,363 priority Critical patent/US20230028903A1/en
Publication of WO2022083789A1 publication Critical patent/WO2022083789A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/261Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/147Arrangements for directing or deflecting the discharge along a desired path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/244Detectors; Associated components or circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/244Detection characterized by the detecting means
    • H01J2237/24485Energy spectrometers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/244Detection characterized by the detecting means
    • H01J2237/2449Detector devices with moving charges in electric or magnetic fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2803Scanning microscopes characterised by the imaging method
    • H01J2237/2804Scattered primary beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2803Scanning microscopes characterised by the imaging method
    • H01J2237/2806Secondary charged particle

Definitions

  • the invention belongs to the technical field of microscope equipment, in particular to an electron microscope.
  • a scanning electron microscope is a commonly used microscopic analysis instrument.
  • the electron beam is focused on the sample to be measured through the objective lens of the scanning electron microscope to generate a small beam spot, in which the electron beam acts on the sample to be measured.
  • Signal electrons such as secondary electrons (SE) and backscattered electrons (BSE) are generated on the sample, and then the surface morphology of the sample to be tested can be observed and the material composition can be analyzed by the detector.
  • SE secondary electrons
  • BSE backscattered electrons
  • secondary electrons can characterize the morphological characteristics of the sample to be tested, and backscattered electrons are related to the atomic number of the observed material. More information on the material of the sample to be tested can be characterized, and the backscattered electrons emitted at a small angle relative to the surface of the sample to be tested are more information.
  • the electrons are affected by the surface undulations of the sample to be tested, and also reflect the information of the surface topography of the sample to be tested. Therefore, different types of signal electrons and signal electrons emitted from different angles reflect different sample information to be tested. Therefore, by separately detecting pure secondary electrons and backscattered electrons, an image with better contrast reflecting surface topography or material information can be formed, which is helpful for more accurate analysis of the sample to be tested.
  • the present invention has been made in view of this.
  • the technical problem to be solved by the embodiments of the present invention is to overcome the deficiencies of the related art and provide an electron microscope capable of detecting secondary electrons generated by a pure electron beam acting on a sample to be tested.
  • An electron microscope comprising:
  • an electron source configured to generate an electron beam
  • a first beam conduit configured to accelerate the electron beam
  • a second beam conduit configured to accelerate the electron beam
  • a first detector disposed between the first beam guide tube and the second beam guide tube, configured to receive secondary electrons generated by the electron beam acting on the sample to be tested;
  • the control electrode is arranged between the first detector and the optical axis of the electron beam, and is configured to change the movement direction of backscattered electrons and secondary electrons generated by the electron beam acting on the sample to be tested.
  • control electrode has a porous structure.
  • control electrode is in the shape of an annular shape
  • the outer side wall of the annular shape is provided with a groove
  • the first detector is arranged in the groove.
  • the groove is an annular groove.
  • the radial cross-section of the groove includes a first segment, a second segment, and a third segment connected in sequence, and the third segment is inclined downward and is in the shape of a horizontal plane. first angle.
  • the angle range of the first included angle is fifteen degrees to seventy-five degrees.
  • the third segment is a curve.
  • the first section is inclined upward and forms a second included angle with the horizontal plane, the angle of the second included angle ranges from zero degrees to ninety degrees, and the second section is vertically arranged with the horizontal plane .
  • it also includes:
  • a second detector disposed between the first beam conduit and the control electrode, is configured to receive backscattered electrons generated by the electron beam acting on the sample to be measured.
  • the embodiment of the present invention has the following beneficial effects compared with the related art.
  • the embodiment of the present invention provides an electron microscope, in which a first detector is arranged between the first beam guide tube and the second beam guide tube, and a control electrode is arranged between the first detector and the optical axis of the electron beam, and controls the The electrode changes the movement direction of backscattered electrons and secondary electrons generated by the electron beam generated by the electron source acting on the sample to be tested, so that the first detector can receive the secondary electrons generated by the pure electron beam acting on the sample to be tested.
  • FIG. 1 is a schematic diagram of the overall structure of an embodiment of an electron microscope provided in an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of the control electrode in FIG. 1 according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of the overall structure of another embodiment of an electron microscope provided in an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of the control electrode in FIG. 2 according to an embodiment of the present invention.
  • an electron microscope provided in an embodiment of the present invention includes an electron source 1 , a first beam guide 3 , a second beam guide 8 , a first detector 7 , and a control electrode 6 .
  • the electron source 1 is configured to generate an electron beam
  • the first beam guide 3 is configured to accelerate the electron beam
  • the second beam guide 8 is configured to accelerate the electron beam
  • the first detector 7 is arranged between the first beam guide 3 and the second beam guide 8.
  • the control electrode 6 is arranged between the first detector 7 and the optical axis 17 of the electron beam, and is configured to change the effect of the electron beam on the sample to be measured. The direction of motion of backscattered electrons and secondary electrons generated on 12.
  • An electron microscope provided by the embodiment of the present invention is provided with an electron source 1, a first beam guide tube 3, a first detector 7, a control electrode 6, and a second beam guide tube 8 in sequence along the direction from the electron source 1 to the sample to be tested 12. , Sample stage 13 .
  • the control electrode 6 is arranged between the first detector 7 and the optical axis 17 of the electron beam.
  • the electron beam generated by the electron source 1 passes through the first beam guide tube 3 , the control electrode 6 , and the second beam guide tube 8 in sequence, and acts on the sample to be tested 12 placed on the sample stage 13 .
  • the electron beam acts on the sample 12 to be tested to generate backscattered electrons and secondary electrons.
  • the control electrode 6 changes the direction of movement of backscattered electrons and secondary electrons generated by the electron beam acting on the sample 12 to be tested.
  • the first detector 7 receives secondary electrons generated by the electron beam acting on the sample 12 to be tested.
  • control electrode 6 Due to the large difference in energy between the backscattered electrons and the secondary electrons, the control electrode 6 has different effects on the backscattered electrons and the secondary electrons, so that the movement directions of the backscattered electrons and the secondary electrons are changed differently.
  • Control can change the direction of movement of backscattered electrons and secondary electrons, so as to separate backscattered electrons and secondary electrons.
  • the change in the direction of movement of the secondary electrons is received by the first detector 7, which is capable of receiving pure secondary electrons.
  • the embodiment of the present invention provides an electron microscope.
  • a first detector 7 is arranged between the first beam guide tube 3 and the second beam guide tube 8, and the first detector 7 is arranged between the optical axis 17 of the electron beam.
  • control electrode 6 is a porous structure.
  • the control electrode 6 is arranged between the first detector 7 and the optical axis 17 of the electron beam.
  • the electron beam acts on the backscattered electrons and secondary electrons generated on the sample 12 to be tested. Since the energy of the secondary electrons is small, when the backscattered electrons and the secondary electrons pass through the second beam conduit 8 and pass through the control electrode 6, the secondary electrons will be lost.
  • the electrons are greatly influenced by the electric field between the control electrode 6 and the second beam guide 8 and the first beam guide 3 . The movement direction of the secondary electrons changes. Since the control electrode 6 has a porous structure, the secondary electrons will pass through the holes on the control electrode 6 and be received by the first detector 7 .
  • control electrode 6 is in the shape of an annular shape
  • the outer side wall of the annular shape is provided with a groove
  • the first detector 7 is arranged in the concave shape. in the slot.
  • the control electrode 6 is annular, and the central hole of the annular shape is configured for electron beams, backscattered electrons and secondary electrons to pass through.
  • a groove is formed on the outer side wall of the ring, and the first detector 7 is arranged in the groove. Since the control electrode 6 is a porous structure, the first detector 7 is arranged in the groove. The distance between a detector 7 and the optical axis 17 is closer, and the efficiency of receiving secondary electrons is higher.
  • the groove is an annular groove.
  • the control electrode 6 is annular, and the central hole of the annular shape is configured for electron beams, backscattered electrons and secondary electrons to pass through.
  • a groove is set on the outer side wall of the circular ring, and the shape of the groove is annular. Can be installed in grooves in any orientation.
  • FIG. 1 and FIG. 3 in an electron microscope provided by an embodiment of the present invention, there are multiple first detectors 7 , and the multiple first detectors 7 are distributed in annular grooves at intervals around the circumference.
  • a plurality of first detectors 7 can be provided, and a plurality of first detectors 7 can be distributed along the circumferential direction of the annular groove at intervals in the annular groove, and those skilled in the art can make their own The specific position of the first detector 7 is set.
  • the first detector 7 Due to the shielding effect of the control electrode 6 on the first detector 7, the first detector 7 will not interfere with the movement trajectory of the electron beam, so the first detector 7 can be arranged at any position in the annular groove.
  • the plurality of first detectors 7 are evenly spaced circumferentially in the annular groove.
  • the first detector 7 may also be an annular detector, which has a higher detection efficiency.
  • the radial cross section of the groove includes a first section 14 , a first section 14 , a first section 14 , a first section 14 , a first section 14 , a first section 14 , a first section 14 , a first section 14 , a first section 14 , a first section 14 , a first section 14 , a second section connected in sequence.
  • the second section 15, the third section 16, and the third section 16 are inclined downward and form a first included angle with the horizontal plane.
  • the radial cross section of the groove includes a first segment 14 , a second segment 15 , and a third segment 16 that are connected in sequence.
  • the third section 16 is inclined downward and forms a first included angle with the horizontal plane.
  • the third section 16 is inclined downward, and the electric field formed between the end face formed by the third section 16 and the second beam guide 8 can change the trajectory of the backscattered electrons and the secondary electrons, so that the secondary electrons will pass through the control
  • the hole in the electrode 6 is received by the first detector 7 .
  • the first detector 7 can receive more secondary electrons, and the receiving efficiency of the first detector 7 is higher.
  • the angle range of the first included angle is fifteen degrees to seventy-five degrees.
  • the third section 16 is inclined downward and forms a first included angle with the horizontal plane.
  • the angle range of the first included angle is fifteen degrees to seventy-five degrees.
  • the angle value of the first included angle formed by the third segment 16 and the horizontal plane is in the range of fifteen degrees to seventy-five degrees, the electric field formed between the end face formed by the third segment 16 and the second bundle of conduits 8 , the movement trajectory of the backscattered electrons and the secondary electrons can be better changed, so that the secondary electrons will pass through the holes on the control electrode 6 and be received by the first detector 7 .
  • the first detector 7 can receive more secondary electrons, and the receiving efficiency of the first detector 7 is higher.
  • the third segment 16 slopes downward at a first angle to the horizontal.
  • the angle of the first included angle is forty degrees.
  • the third segment 16 is a curve.
  • the third segment 16 can be a curve.
  • the lower side of the groove corresponding to the third segment 16 is a curved surface, and the bending angle of the curved surface can change the electric field intensity distribution formed between the control electrode 6 and the second bundle conduit 8.
  • the required curved surface bending angle can be set to form the required electric field intensity distribution, which can better change the trajectory of the backscattered electrons and the secondary electrons, so that the secondary electrons will pass through the holes on the control electrode 6, received by the first detector 7 .
  • the first detector 7 can receive more secondary electrons, and the receiving efficiency of the first detector 7 is higher.
  • the first section 14 is inclined upward and forms a second included angle with the horizontal plane, and the second included angle is at an angle.
  • the range is from zero degrees to ninety degrees, and the second segment 15 is arranged perpendicular to the horizontal plane.
  • the first section 14 is inclined upward and forms a second included angle with the horizontal plane.
  • the angle of the second included angle ranges from zero degrees to ninety degrees. In one embodiment, the included angle is forty degrees.
  • the second section 15 is arranged perpendicular to the horizontal plane.
  • the second segment 15 is perpendicular to the horizontal plane.
  • One end of the second segment 15 is connected to the first segment 14 , and the other end is connected to the third segment 16 .
  • the first section 14 slopes upward and the third section 16 slopes downward.
  • the notch width of the groove is greater than the width of the groove bottom, which can not only change the trajectory of backscattered electrons and secondary electrons, but also facilitates In the installation of the first detector 7 , since the width of the notch of the groove is larger than the width of the groove bottom, the groove has a larger accommodating space, which is convenient for accommodating the first detector 7 .
  • an electron microscope provided by an embodiment of the present invention further includes a second detector 5 , and the second detector 5 is disposed in the first bundle of conduits 3 Between it and the control electrode 6 , it is configured to receive backscattered electrons generated by the electron beam acting on the sample 12 to be tested.
  • the second detector 5 is disposed at the lower end of the first bundle of conduits 3 , and the second probe 5 is connected to the lower end of the first bundle of conduits 3 .
  • the second detector 5 is at the same voltage value as the first beam conduit 3 , and is configured to receive backscattered electrons generated by the electron beam acting on the sample 12 to be tested.
  • Electron source 1 is configured to generate electron beams.
  • Electron source 1 is divided into field emission source and thermal emission source. Field emission source is further divided into two types: hot field and cold field.
  • the electron source 1 in this application may be any electron source 1 configured to generate electron beams.
  • the voltage value of the electron source 1 provided in this embodiment is -5kV.
  • the voltage value of the electron acceleration structure 2 is -2kV. After the electron beam generated by the electron source 1 passes through the electron acceleration structure 2, the moving speed will increase.
  • the voltage value of the first bundle of conduits 3 is 10 kV.
  • An accelerating electric field is formed between the electron accelerating structure 2 and the first beam guide 3 , and the electron beam passing through the accelerating structure enters the first beam guide 3 after being accelerated.
  • the electron beam keeps moving at a high speed in the first beam guide 3, and is configured to reduce the space charge effect in the electron beam.
  • the first lens device 4 is arranged on the outer periphery of the first beam guide 3.
  • the first lens device 4 can be a magnetic lens, and is configured as The electron beams moving at high speed in the first beam conduit 3 are collected.
  • the electron beam passes through the first beam conduit 3, passes through the central hole of the annular second detector 5 and the central hole of the annular control electrode 6 in turn, and enters the second beam conduit 8.
  • the voltage of the second beam conduit 8 The value is 10kV.
  • the electron beam is kept in high velocity motion in the second beam guide 8, configured to reduce space charge effects in the electron beam.
  • the second lens device 11 is arranged on the outer periphery of the second beam guide 8 .
  • the second lens device 11 is a compound electromagnetic lens structure, and is composed of a magnetic lens and a deceleration electric lens formed between the lower end of the second beam guide 8 and the sample stage 13 .
  • the voltage value of the sample stage 13 is 0kV
  • the impact point energy of the electron beam incident on the sample to be tested 12 is 5keV
  • a deflection device is provided between the second beam guide 8 and the second lens device 11, and the deflection device is configured to change the incident
  • the moving direction of the electron beam before the sample 12 to be tested can generate a scanning field with any deflection direction.
  • the deflecting device includes a first deflector 9 and a second deflector 10, and more deflectors can also participate in the electronic scanning.
  • the first deflector 9 can be a magnetic deflector or an electrical deflector
  • the second deflector 10 can be a magnetic deflector or an electrical deflector.
  • the first deflector 9 and the second deflector 10 cooperate to change the moving direction of the electron beam before it is incident on the sample 12 to be tested.
  • the second lens device 11 is disposed on the outer periphery of the second beam guide 8, and the electron beam passes through the second beam guide 8 and passes through the upper pole piece and the lower pole piece of the second lens device 11.
  • the second lens device 11 concentrates the electron beam and acts on the to-be on sample 12.
  • the focused scanning electron beam acts on backscattered electrons and secondary electrons generated on the sample 12 to be tested.
  • the secondary electron energy is low, less than 50eV, and the backscattered electron energy is close to 5keV.
  • the generated backscattered electrons and secondary electrons enter the second beam guide 8 through the second lens device 11, and the movement trajectories of the backscattered electrons and the secondary electrons will form an intersection. Due to the small energy of the secondary electrons, the trajectories of the secondary electrons will form an intersection. Points below the trajectories of backscattered electrons form intersections.
  • the first detector 7 is disposed between the first beam guide 3 and the second beam guide 8 , and is configured to receive secondary electrons generated by the electron beam acting on the sample 12 to be tested.
  • the control electrode 6 is arranged between the first detector 7 and the optical axis 17 of the electron beam.
  • the voltage value of the first detector 7 is 10 kV, and the voltage value of the control electrode 6 is 1 kV.
  • the backscattered electrons passing through the second beam conduit 8 and The secondary electrons move toward the control electrode 6 .
  • the voltage value of the first beam guide 3 is 10 kV
  • the voltage value of the second beam guide 8 is 10 kV
  • the voltage value of the control electrode 6 is 1 kV.
  • the second beam guide 8 and control A decelerating electric field is formed between the electrodes 6 .
  • An accelerating electric field is formed between the control electrode 6 and the first beam guide 3 .
  • the control electrode 6 Due to the small energy of the secondary electrons, when they move to the deceleration electric field formed between the second beam guide 8 and the control electrode 6, they are greatly affected by the deceleration electric field. The movement direction of the secondary electrons will change. Since the diameter of the central hole of the annular control electrode 6 is smaller than the diameter of the second beam conduit 8, the control electrode 6 is a porous structure, and part of the secondary electrons will directly pass through the control electrode 6. The electrode 6 is received by the first detector 7 .
  • the secondary electrons entering the central hole of the control electrode 6 are affected by the decelerating electric field formed between the second beam guide 8 and the control electrode 6, and the movement speed of the secondary electrons decreases. Since the voltage value of the first detector 7 is 10kV, the control electrode The voltage value of 6 is 1kV, so the decelerated secondary electrons will be attracted by the first detector 7 , so that the decelerated secondary electrons pass through the hole of the control electrode 6 and are received by the first detector 7 .
  • the backscattered electrons will pass through the central hole of the control electrode 6 and be received by the second detector 5 disposed at the lower end of the first beam guide 3 , and the second detector 5 is in the same position as the first beam guide 3 .
  • Voltage value the voltage value is 10kV.
  • the embodiment of the present invention provides an electron microscope.
  • the electron microscope is provided with a control electrode 6 between the first beam guide tube 3 and the second beam guide tube 8 , and the control electrode 6 changes the electron beam generated by the electron source 1 to act on the sample 12 to be tested.
  • the detector 5 can receive the backscattered electrons generated by the pure electron beam acting on the sample 12 to be tested.
  • the first detector 7 can receive secondary electrons generated by the pure electron beam acting on the sample 12 to be tested.
  • the electron source 1 is configured to generate an electron beam. Electron source 1 is divided into field emission source and thermal emission source. Field emission source is further divided into two types: hot field and cold field.
  • the electron source 1 in this application may be any electron source 1 configured to generate electron beams.
  • the voltage value V1 of the electron source 1 provided in this embodiment may be any value between 0 kV and -15 kV.
  • the voltage value V2 of the electron acceleration structure 2 can be any value between 3kV and -12kV. After the electron beam generated by the electron source 1 passes through the electron acceleration structure 2, the moving speed will increase.
  • the voltage value V3 of the first bundle of conduits 3 is 10 kV.
  • An accelerating electric field is formed between the electron accelerating structure 2 and the first beam conduit 3 , and the electron beam passing through the accelerating structure enters the first beam conduit 3 after being accelerated.
  • the electron beam keeps moving at a high speed in the first beam guide 3, and is configured to reduce the space charge effect in the electron beam.
  • the first lens device 4 is arranged on the outer periphery of the first beam guide 3.
  • the first lens device 4 can be a magnetic lens, and is configured as The electron beams moving at high speed in the first beam conduit 3 are collected.
  • the electron beam passes through the first beam conduit 3, passes through the central hole of the annular second detector 5 and the central hole of the annular control electrode 6 in turn, and enters the second beam conduit 8.
  • the voltage of the second beam conduit 8 The value V7 is 10kV.
  • the electron beam is kept in high velocity motion in the second beam guide 8, configured to reduce space charge effects in the electron beam.
  • the second lens device 11 is arranged on the outer periphery of the second beam guide 8 .
  • the second lens device 11 is a compound electromagnetic lens structure, and is composed of a magnetic lens and a deceleration electric lens formed between the lower end of the second beam guide 8 and the sample stage 13 .
  • the voltage value V8 of the sample stage 13 is 0kV
  • a deflection device is provided between the second beam guide 8 and the second lens device 11, and the deflection device is configured to change the moving direction of the electron beam before the incident to the sample to be tested 12, which can generate Scan field in arbitrary deflection direction.
  • the deflecting device includes a first deflector 9 and a second deflector 10, and more deflectors can also participate in the electronic scanning.
  • the first deflector 9 can be a magnetic deflector or an electrical deflector
  • the second deflector 10 can be a magnetic deflector or an electrical deflector.
  • the first deflector 9 and the second deflector 10 cooperate to change the moving direction of the electron beam before it is incident on the sample 12 to be tested.
  • the second lens device 11 is disposed on the outer periphery of the second beam guide 8, and the electron beam passes through the second beam guide 8 and passes through the upper pole piece and the lower pole piece of the second lens device 11.
  • the second lens device 11 concentrates the electron beam and acts on the to-be on sample 12.
  • the converged scanning electron beam acts on the backscattered electrons and secondary electrons generated on the sample 12 to be tested.
  • the secondary electrons have low energy and the backscattered electrons have high energy.
  • the generated backscattered electrons and secondary electrons enter the second beam guide 8 through the second lens device 11 , and the movement trajectories of the backscattered electrons and the secondary electrons will form a cross point because the secondary electrons have low energy.
  • the trajectories of secondary electrons form intersections lower than the trajectories of backscattered electrons.
  • the first detector 7 is disposed between the first beam guide 3 and the second beam guide 8 , and is configured to receive secondary electrons generated by the electron beam acting on the sample 12 to be tested.
  • the control electrode 6 is arranged between the first detector 7 and the optical axis 17 of the electron beam, the voltage value V6 of the first detector 7 is 10kV, and the voltage value V5 of the control electrode 6 can be selected from any value between 0kV and 10kV.
  • the backscattered electrons and secondary electrons of the second beam guide 8 move toward the control electrode 6 .
  • the voltage value V3 of the first beam guide 3 is 10kV
  • the voltage value V7 of the second beam guide 8 is 10kV
  • the voltage value V5 of the control electrode 6 can be any value between 0kV and 10kV.
  • a decelerating electric field is formed between the second beam guide 8 and the control electrode 6 .
  • An accelerating electric field is formed between the control electrode 6 and the first beam guide 3 .
  • the control electrode 6 Due to the small energy of the secondary electrons, when they move to the deceleration electric field formed between the second beam guide 8 and the control electrode 6, they are greatly affected by the deceleration electric field. The movement direction of the secondary electrons will change. Since the diameter of the central hole of the annular control electrode 6 is smaller than the diameter of the second beam conduit 8, the control electrode 6 has a porous structure. Part of the secondary electrons will directly pass through the control electrode 6 and be received by the first detector 7 .
  • the secondary electrons entering the central hole of the control electrode 6 are affected by the decelerating electric field formed between the second beam guide 8 and the control electrode 6, and the movement speed of the secondary electrons decreases. Since the voltage value V4 of the first detector 7 is 10kV, the control The voltage value of electrode 6 can be any value between 0kV and 10kV for V5. Therefore, the decelerated secondary electrons will be attracted by the first detector 7 , so that the decelerated secondary electrons pass through the holes of the control electrode 6 and are received by the first detector 7 .
  • the backscattered electrons will pass through the central hole of the control electrode 6 and be received by the second detector 5 disposed at the lower end of the first beam guide 3.
  • the voltage value V4 of the first detector 5 and the first beam guide 3 The voltage value V3 is at the same voltage value, the voltage value of V4 is 10kV, and the voltage value of V3 is 10kV.
  • the embodiment of the present invention provides an electron microscope.
  • the electron microscope is provided with a control electrode 6 between the first beam guide tube 3 and the second beam guide tube 8 , and the control electrode 6 changes the electron beam generated by the electron source 1 to act on the sample 12 to be tested.
  • the detector 5 can receive the backscattered electrons generated by the pure electron beam acting on the sample 12 to be tested.
  • the first detector 7 can receive secondary electrons generated by the pure electron beam acting on the sample 12 to be tested.
  • the voltage values of the electron source 1, the electron acceleration structure 2, the first beam guide 3, the control electrode 6, the first detector 7, the second beam guide 8, the second detector 5, and the sample stage 13 are not limited.
  • those skilled in the art can set specific voltage values according to actual needs.
  • a deceleration electric field is formed between the second beam guide 8 and the control electrode 6 .
  • the strength of the decelerating electric field also changes.
  • An accelerating electric field is formed between the control electrode 6 and the first beam guide 3 .
  • the first detector 7 and the second detector 5 can selectively detect signal electrons with different energies. Those skilled in the art can adjust the voltage values of the electron source 1, the electron acceleration structure 2, the first beam guide 3, the control electrode 6, the first detector 7, the second beam guide 8, the second detector 5, the sample stage 13, etc. , to obtain the required signal electrons of the corresponding energy.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

本发明实施例公开了一种电子显微镜,包括:电子源,配置为产生电子束;第一束导管,配置为加速所述电子束;第二束导管,配置为加速所述电子束;第一探测器,设置于所述第一束导管和所述第二束导管之间,配置为接收所述电子束作用于待测样品上产生的二次电子;控制电极,设置于所述第一探测器与所述电子束的光轴之间,配置为改变所述电子束作用于待测样品上产生的背散射电子和二次电子的运动方向。本发明实施例提供的电子显微镜能够探测到纯的电子束作用于待测样品上产生的二次电子。

Description

一种电子显微镜
相关申请的交叉引用
本申请基于申请号为202011393110.0、申请日为2020年12月03日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明属于显微镜设备技术领域,具体地说,涉及一种电子显微镜。
背景技术
相关技术中,扫描电子显微镜是一种常用的显微分析仪器,通常电子束通过扫描电子显微镜的物镜汇聚到待测样品上,产生一个微小束斑,在该微区内电子束作用于待测样品上产生二次电子(SE),背散射电子(BSE)等信号电子,进而可通过探测器对待测样品表面的形貌进行观察以及对材料成分进行分析。
其中,二次电子能够表征待测样品的形貌特征,背散射电子与被观察材料的原子序数有关,更多的表征待测样品的材质信息,相对于待测样品表面小角度发射的背散射电子受到了待测样品表面起伏的影响,也会反映出待测样品表面形貌的信息。因此,不同类别的信号电子、不同角度出射的信号电子反映不同的待测样品信息。因此,通过分别探测纯的二次电子和背散射电子,能够形成具有更好衬度的反映表面形貌或材质信息的图像,有助于更精确的分析待测样品。
有鉴于此特提出本发明。
发明内容
本发明实施例要解决的技术问题在于克服相关技术的不足,提供一种电子显微镜,能够探测到纯的电子束作用于待测样品上产生的二次电子。
为解决上述技术问题,本发明实施例采用技术方案的基本构思是:
一种电子显微镜,包括:
电子源,配置为产生电子束;
第一束导管,配置为加速所述电子束;
第二束导管,配置为加速所述电子束;
第一探测器,设置于所述第一束导管和所述第二束导管之间,配置为接收所述电子束作用于待测样品上产生的二次电子;
控制电极,设置于所述第一探测器与所述电子束的光轴之间,配置为改变所述电子束作用于待测样品上产生的背散射电子和二次电子的运动方向。
上述方案中,所述控制电极为多孔结构。
上述方案中,所述控制电极为圆环形,所述圆环形的外侧壁开设凹槽,所述第一探测器设置于所述凹槽中。
上述方案中,所述凹槽为环形凹槽。
上述方案中,所述第一探测器为多个,多个所述第一探测器圆周间隔分布在所述环形凹槽中。
在一些可选的实施方式中,由上至下方向上,所述凹槽径向截面包括依次连接的第一段、第二段、第三段,所述第三段向下倾斜,与水平面呈第一夹角。
上述方案中,所述第一夹角的角度范围为十五度至七十五度。
在一些可选的实施方式中,所述第三段为曲线。
在一些可选的实施方式中,所述第一段向上倾斜,与水平面呈第二夹 角,所述第二夹角的角度范围为零度至九十度,所述第二段与水平面垂直设置。
在一些可选的实施方式中,还包括:
第二探测器,设置于所述第一束导管和所述控制电极之间,配置为接收所述电子束作用于待测样品上产生的背散射电子。
采用上述技术方案后,本发明实施例与相关技术相比具有以下有益效果。
本发明实施例提供的一种电子显微镜,该电子显微镜在第一束导管和第二束导管之间设置第一探测器,第一探测器与电子束的光轴之间设置有控制电极,控制电极改变电子源产生的电子束作用于待测样品上产生的背散射电子和二次电子的运动方向,使得第一探测器能够接收到纯的电子束作用于待测样品上产生的二次电子。
下面结合附图对本发明的具体实施方式作进一步详细的描述。
附图说明
附图作为本发明的一部分,用来提供对本发明的进一步的理解,本发明的示意性实施例及其说明用于解释本发明,但不构成对本发明的不当限定。显然,下面描述中的附图仅仅是一些实施例,对于本领域普通技术人员来说,在不付出创造性劳动的前提下,还可以根据这些附图获得其他附图。在附图中:
图1是本发明实施例提供的一种电子显微镜的一种实施方式整体结构示意图;
图2是本发明实施例图1中控制电极结构示意图;
图3是本发明实施例提供的一种电子显微镜的另一种实施方式整体结构示意图;
图4是本发明实施例图2中控制电极结构示意图。
图中:1、电子源;2、电子加速结构;3、第一束导管;4、第一透镜装置;5第二探测器;6、控制电极;7、第一探测器;8、第二束导管;9、第一偏转器;10、第二偏转器;11、第二透镜装置;12、待测样品;13、样品台;14、第一段;15、第二段;16、第三段;17、光轴。
需要说明的是,这些附图和文字描述并不旨在以任何方式限制本发明的构思范围,而是通过参考特定实施例为本领域技术人员说明本发明的概念。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对实施例中的技术方案进行清楚、完整地描述,以下实施例用于说明本发明,但不用来限制本发明的范围。
在本发明的描述中,需要说明的是,术语“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
如图1至图4所示,本发明实施例供的一种电子显微镜,该电子显微镜包括电子源1、第一束导管3、第二束导管8、第一探测器7、控制电极6。
电子源1配置为产生电子束,第一束导管3配置为加速电子束,第二束导管8配置为加速电子束,第一探测器7设置于第一束导管3和第二束 导管8之间,配置为接收电子束作用于待测样品12上产生的二次电子,控制电极6设置于第一探测器7与电子束的光轴17之间,配置为改变电子束作用于待测样品12上产生的背散射电子和二次电子的运动方向。
本发明实施例提供的一种电子显微镜,沿着电子源1到待测样品12方向依次设置有电子源1、第一束导管3、第一探测器7、控制电极6、第二束导管8、样品台13。控制电极6设置于第一探测器7与电子束的光轴17之间。
电子源1产生的电子束,依次经过第一束导管3、控制电极6、第二束导管8,作用于放置在样品台13上的待测样品12。电子束作用于待测样品12上产生背散射电子和二次电子。控制电极6改变电子束作用于待测样品12上产生的背散射电子和二次电子的运动方向。第一探测器7接收电子束作用于待测样品12上产生的二次电子。
由于背散射电子和二次电子的能量相差较大,控制电极6对背散射电子和二次电子影响不同,从而对背散射电子和二次电子运动方向改变不同,通过对控制电极6的电压值控制,可以改变背散射电子和二次电子运动方向,从而将背散射电子和二次电子分离。二次电子运动方向改变被第一探测器7接收,第一探测器7能够接收到纯的二次电子。
本发明实施例提供的一种电子显微镜,该电子显微镜在第一束导管3和第二束导管8之间设置第一探测器7,第一探测器7与电子束的光轴17之间设置有控制电极6,控制电极6改变电子源1产生的电子束作用于待测样品12上产生的背散射电子和二次电子的运动方向,使得第一探测器7能够接收到纯的电子束作用于待测样品12上产生的二次电子。
上述方案中,如图1和图3所示,本发明实施例提供的一种电子显微镜,控制电极6为多孔结构。
控制电极6设置于第一探测器7与电子束的光轴17之间。电子束作用 于待测样品12上产生的背散射电子和二次电子,由于二次电子能量小,所以当背散射电子和二次电子穿过第二束导管8经过控制电极6时,二次电子受控制电极6与第二束导管8和第一束导管3之间的电场影响较大。二次电子运动方向发生改变,由于控制电极6为多孔结构,二次电子会穿过控制电极6上的孔,被第一探测器7接收。
上述方案中,如图1至图4所示,本发明实施例提供的一种电子显微镜,控制电极6为圆环形,圆环形的外侧壁开设凹槽,第一探测器7设置于凹槽中。
控制电极6为圆环形,圆环形的中心孔配置为电子束、背散射电子以及二次电子穿过。沿着圆环形外周向中心孔方向上,在圆环形的外侧壁上开设凹槽,第一探测器7设置于凹槽中,由于控制电极6为多孔结构,设置于凹槽中的第一探测器7与光轴17的距离更近,接收二次电子的效率更高。
上述方案中,如图1至图4所示,本发明实施例提供的一种电子显微镜,凹槽为环形凹槽。
控制电极6为圆环形,圆环形的中心孔配置为电子束、背散射电子以及二次电子穿过。沿着圆环形外周向中心孔方向上,在圆环形的外侧壁上开设凹槽,凹槽的形状为环形,在控制电极6的外侧壁上开设环形凹槽,便于第一探测器7可以安装在任意方向上的凹槽中。
上述方案中,如图1和图3所示,本发明实施例提供的一种电子显微镜,第一探测器7为多个,多个第一探测器7圆周间隔分布在环形凹槽中。
第一探测器7可以设置多个,多个第一探测器7可以沿着环形凹槽的圆周方向上,在环形凹槽中间隔分布,本领域技术人员可以根据实际情况,例如空间等,自行设置第一探测器7的具体位置。
由于控制电极6对第一探测器7的屏蔽作用,第一探测器7不会对电 子束的运动轨迹进行干扰,所以第一探测器7可以设置在环形凹槽中的任一位置。
在一个实施例中,多个第一探测器7圆周均匀间隔分布在环形凹槽中。
在另一个实施例中,第一探测器7也可以是圆环形的探测器,探测效率更高。
在一些可选的实施方式中,如图1至图2所示,本发明实施例提供的一种电子显微镜,由上至下方向上,凹槽径向截面包括依次连接的第一段14、第二段15、第三段16,第三段16向下倾斜,与水平面呈第一夹角。
具体的,由上至下方向上,即沿着电子束运动的方向,凹槽径向截面包括依次连接的第一段14、第二段15、第三段16。第三段16向下倾斜,与水平面呈第一夹角。
第三段16向下倾斜,在第三段16形成的端面与第二束导管8之间形成的电场可以对背散射电子和二次电子进行运动轨迹的改变,使得二次电子会穿过控制电极6上的孔,被第一探测器7接收。第一探测器7可以接收更多的二次电子,第一探测器7的接收效率更高。
上述方案中,第一夹角的角度范围为十五度至七十五度。
第三段16向下倾斜,与水平面呈第一夹角。所述第一夹角的角度范围为十五度至七十五度。
当第三段16向下倾斜与水平面呈的第一夹角的角度值在十五度至七十五度范围时,在第三段16形成的端面与第二束导管8之间形成的电场,可以更好的对背散射电子和二次电子进行运动轨迹的改变,使得二次电子会穿过控制电极6上的孔,被第一探测器7接收。第一探测器7可以接收更多的二次电子,第一探测器7的接收效率更高。
在一个实施例中,第三段16向下倾斜,与水平面呈第一夹角。第一夹角的角度为四十度。
在一些可选的实施方式中,如图3至图4所示本发明实施例提供的一种电子显微镜,第三段16为曲线。
为了形成需要的电场,更好的对背散射电子和二次电子进行运动轨迹的改变,第三段16可以为曲线。
当第三段16为曲线时,则第三段16对应的凹槽下侧面为曲面,曲面的弯曲角度可以改变控制电极6与第二束导管8之间形成的电场强度分布,本领域技术人员可以根据实际需要,设置需要的曲面弯曲角度,形成需要的电场强度分布,更好的对背散射电子和二次电子进行运动轨迹的改变,使得二次电子会穿过控制电极6上的孔,被第一探测器7接收。第一探测器7可以接收更多的二次电子,第一探测器7的接收效率更高。
在一些可选的实施方式中,如图1至图4所示,本发明实施例提供的一种电子显微镜,第一段14向上倾斜,与水平面呈第二夹角,第二夹角的角度范围为零度至九十度,第二段15与水平面垂直设置。
其中,第一段14向上倾斜,与水平面呈第二夹角,第二夹角的角度范围为零度至九十度,在一个实施例中,夹角的角度为四十度。
第二段15与水平面垂直设置。第二段15是垂直于水平面上的,第二段15的一端与第一段14连接,另一端与第三段16连接。第一段14向上倾斜,第三段16向下倾斜。如此第一段14和第二段15以及第三段16形成的凹槽,凹槽的槽口宽度大于槽底的宽度,不仅可以对背散射电子和二次电子进行运动轨迹的改变,还便于第一探测器7的安装,由于凹槽的槽口宽度大于槽底的宽度,凹槽有了更大的容纳空间,便于容纳第一探测器7。
在一些可选的实施方式中,如图1和图3所示,本发明实施例提供的一种电子显微镜,还包括第二探测器5,第二探测器5,设置于第一束导管3和控制电极6之间,配置为接收电子束作用于待测样品12上产生的背散射电子。
在一个实施例中,在一些可选的实施方式中,第二探测器5设置于第一束导管3下端,第二探测器5与第一束导管3下端连接。第二探测器5与第一束导管3处于同一电压值,配置为接收电子束作用于待测样品12上产生的背散射电子。
如图1至图4所示,在一些可选的实施方式中,下面以一个实施例说明,其中,电子源1配置为产生电子束。电子源1分为场致发射源和热发射源,场致发射源又分为热场和冷场两种,热发射源分为钨丝、六硼化镧等。在本申请中电子源1可以是任意一种配置为产生电子束的电子源1。本实施例提供的电子源1的电压值为-5kV。
电子加速结构2的电压值为-2kV。电子源1产生的电子束经电子加速结构2后,运动速度会增加。
第一束导管3的电压值为10kV。电子加速结构2与第一束导管3之间形成加速电场,经过加速结构的电子束,加速后进入第一束导管3。电子束在第一束导管3中保持高速运动,配置为降低电子束中的空间电荷效应,第一透镜装置4设置于第一束导管3外周,第一透镜装置4可以为磁透镜,配置为汇聚第一束导管3中高速运动的电子束。
电子束穿过第一束导管3,依次经过圆环形的第二探测器5的中心孔、圆环形的控制电极6的中心孔,进入第二束导管8,第二束导管8的电压值为10kV。电子束在第二束导管8中保持高速运动,配置为降低电子束中的空间电荷效应。
第二透镜装置11设置于第二束导管8外周,第二透镜装置11为一个复合式的电磁透镜结构,由磁透镜和第二束导管8下端与样品台13之间形成的减速电透镜构成,样品台13电压值为0kV,电子束入射到待测样品12上的落点能量为5keV,在第二束导管8和第二透镜装置11之间设置有偏转装置,偏转装置配置为改变入射到待测样品12前的电子束的运动方向,能 够产生任意偏转方向的扫描场。
上述方案中,偏转装置包括第一偏转器9和第二偏转器10,也可以有更多的偏转器参与进来进行电子的扫描。第一偏转器9可以是磁偏转器或电偏转器,第二偏转器10可以是磁偏转器或电偏转器。第一偏转器9和第二偏转器10配合作用改变入射到待测样品12前的电子束的运动方向。第二透镜装置11设置于第二束导管8外周,电子束穿过第二束导管8,经过第二透镜装置11的上极靴和下极靴,第二透镜装置11汇聚电子束作用于待测样品12上。
汇聚后的扫描电子束作用于待测样品12上产生的背散射电子和二次电子。二次电子能量低,小于50eV,背散射电子能量接近于5keV。产生的背散射电子和二次电子经过第二透镜装置11进入第二束导管8,背散射电子和二次电子运动轨迹会形成交叉点,由于二次电子能量小,二次电子的轨迹形成交叉点低于背散射电子的轨迹形成交叉点。
第一探测器7设置于第一束导管3和第二束导管8之间,配置为接收电子束作用于待测样品12上产生的二次电子。控制电极6设置于第一探测器7与电子束的光轴17之间,第一探测器7电压值为10kV,控制电极6电压值为1kV,穿过第二束导管8的背散射电子和二次电子向控制电极6运动。
第一束导管3的电压值为10kV,第二束导管8的电压值为10kV,控制电极6的电压值为1kV,沿着背散射电子和二次电子运动方向,第二束导管8和控制电极6之间形成一个减速电场。控制电极6和第一束导管3之间形成一个加速电场。
由于二次电子能量小,在运动到第二束导管8和控制电极6之间形成的减速电场时,受减速电场的影响较大。二次电子的运动方向会发生改变,由于圆环形的控制电极6的中心孔的孔径小于第二束导管8的孔径,控制 电极6为多孔结构,部分二次电子会直接穿过所述控制电极6,被第一探测器7接收。
进入控制电极6的中心孔的二次电子,受到第二束导管8和控制电极6之间形成的减速电场影响,二次电子运动速度降低,由于第一探测器7电压值为10kV,控制电极6电压值为1kV,所以被减速的二次电子会被第一探测器7吸引,从而被减速的二次电子穿过控制电极6的孔,被第一探测器7接收。
由于背散射电子能量大,背散射电子会穿过控制电极6的中心孔,被设置在第一束导管3下端的第二探测器5接收,第二探测器5与第一束导管3处于同一电压值,电压值为10kV。
本发明实施例提供的一种电子显微镜,该电子显微镜在第一束导管3和第二束导管8之间设置控制电极6,控制电极6改变电子源1产生的电子束作用于待测样品12上产生的背散射电子和二次电子的运动方向,控制电极6与第一束导管3和第二束导管8之间的电场配合,可以将二次电子和背散射电子分开,使得第二探测器5能够接收到纯的电子束作用于待测样品12上产生的背散射电子。第一探测器7能够接收到纯的电子束作用于待测样品12上产生的二次电子。
如图1至图4所示,在一些可选的实施方式中,电子源1配置为产生电子束。电子源1分为场致发射源和热发射源,场致发射源又分为热场和冷场两种,热发射源分为钨丝、六硼化镧等。在本申请中电子源1可以是任意一种配置为产生电子束的电子源1。本实施例提供的电子源1的电压值V1可选0kV到-15kV之间任一值。
电子加速结构2的电压值V2可选3kV到-12kV之间任一值。电子源1产生的电子束经电子加速结构2后,运动速度会增加。
第一束导管3的电压值V3为10kV。电子加速结构2与第一束导管3 之间形成加速电场,经过加速结构的电子束,加速后进入第一束导管3。电子束在第一束导管3中保持高速运动,配置为降低电子束中的空间电荷效应,第一透镜装置4设置于第一束导管3外周,第一透镜装置4可以为磁透镜,配置为汇聚第一束导管3中高速运动的电子束。
电子束穿过第一束导管3,依次经过圆环形的第二探测器5的中心孔、圆环形的控制电极6的中心孔,进入第二束导管8,第二束导管8的电压值V7为10kV。电子束在第二束导管8中保持高速运动,配置为降低电子束中的空间电荷效应。
第二透镜装置11设置于第二束导管8外周,第二透镜装置11为一个复合式的电磁透镜结构,由磁透镜和第二束导管8下端与样品台13之间形成的减速电透镜构成,样品台13电压值V8为0kV,在第二束导管8和第二透镜装置11之间设置有偏转装置,偏转装置配置为改变入射到待测样品12前的电子束的运动方向,能够产生任意偏转方向的扫描场。
上述方案中,偏转装置包括第一偏转器9和第二偏转器10,也可以有更多的偏转器参与进来进行电子的扫描。第一偏转器9可以是磁偏转器或电偏转器,第二偏转器10可以是磁偏转器或电偏转器。第一偏转器9和第二偏转器10配合作用改变入射到待测样品12前的电子束的运动方向。第二透镜装置11设置于第二束导管8外周,电子束穿过第二束导管8,经过第二透镜装置11的上极靴和下极靴,第二透镜装置11汇聚电子束作用于待测样品12上。
汇聚后的扫描电子束作用于待测样品12上产生的背散射电子和二次电子,二次电子能量低,背散射电子能量高。产生的背散射电子和二次电子经过第二透镜装置11进入第二束导管8,背散射电子和二次电子运动轨迹会形成交叉点,由于二次电子能量小。二次电子的轨迹形成交叉点低于背散射电子的轨迹形成交叉点。
第一探测器7设置于第一束导管3和第二束导管8之间,配置为接收电子束作用于待测样品12上产生的二次电子。控制电极6设置于第一探测器7与电子束的光轴17之间,第一探测器7电压值V6为10kV,控制电极6电压值V5可选0kV到10kV之间任一值,穿过第二束导管8的背散射电子和二次电子向控制电极6运动。
第一束导管3的电压值V3为10kV,第二束导管8的电压值V7为10kV,控制电极6的电压值为V5可选0kV到10kV之间任一值,沿着背散射电子和二次电子运动方向,第二束导管8和控制电极6之间形成一个减速电场。控制电极6和第一束导管3之间形成一个加速电场。
由于二次电子能量小,在运动到第二束导管8和控制电极6之间形成的减速电场时,受减速电场的影响较大。二次电子的运动方向会发生改变,由于圆环形的控制电极6的中心孔的孔径小于第二束导管8的孔径,控制电极6为多孔结构。部分二次电子会直接穿过控制电极6,被第一探测器7接收。
进入控制电极6的中心孔的二次电子,受到第二束导管8和控制电极6之间形成的减速电场影响,二次电子运动速度降低,由于第一探测器7电压值V4为10kV,控制电极6电压值为V5可选0kV到10kV之间任一值。所以被减速的二次电子会被第一探测器7吸引,从而被减速的二次电子穿过控制电极6的孔,被第一探测器7接收。
由于背散射电子能量大,背散射电子会穿过控制电极6的中心孔,被设置在第一束导管3下端的第二探测器5接收,第一探测器5电压值V4与第一束导管3电压值V3处于同一电压值,V4电压值为10kV,V3电压值为10kV。
本发明实施例提供的一种电子显微镜,该电子显微镜在第一束导管3和第二束导管8之间设置控制电极6,控制电极6改变电子源1产生的电子 束作用于待测样品12上产生的背散射电子和二次电子的运动方向,控制电极6与第一束导管3和第二束导管8之间的电场配合,可以将二次电子和背散射电子分开,使得第二探测器5能够接收到纯的电子束作用于待测样品12上产生的背散射电子。第一探测器7能够接收到纯的电子束作用于待测样品12上产生的二次电子。
需要说明的是,电子源1、电子加速结构2、第一束导管3、控制电极6、第一探测器7、第二束导管8、第二探测器5、样品台13等电压值不局限于上述实施例的优选值,本领域技术人员可以根据实际情况需要自行设定具体的电压值。
举例说明,当对第一束导管3、控制电极6、第二束导管8加载的电压值进行改变时,第二束导管8和控制电极6之间形成一个减速电场。由于第二束导管8和控制电极6加载的电压值改变,所以减速电场的强度也发生改变。控制电极6和第一束导管3之间形成一个加速电场。由于控制电极6和第一束导管3加载的电压值改变,所以加速电场的强度也发生改变。汇聚后的扫描电子束作用于待测样品12上产生的背散射电子和二次电子等电子统称信号电子,信号电子具有不同的能量,不同能量的信号电子反应不同的待测样品12信息。由于减速电场的强度和加速电场的强度均可以通过需要进行改变,所以不同能量的信号电子在进入减速电场和加速电场受到的电场力不同,所以不同能量的信号电子的运动轨迹会发生不同改变。第一探测器7和第二探测器5可以有选择性的探测不同能量的信号电子。本领域技术人员可以调节电子源1、电子加速结构2、第一束导管3、控制电极6、第一探测器7、第二束导管8、第二探测器5、样品台13等的电压值,来获取需要的相应能量的信号电子。
以上所述仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明, 任何熟悉本专利的技术人员在不脱离本发明技术方案范围内,当可利用上述提示的技术内容作出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明方案的范围内。

Claims (10)

  1. 一种电子显微镜,包括:
    电子源,配置为产生电子束;
    第一束导管,配置为加速所述电子束;
    第二束导管,配置为加速所述电子束;
    第一探测器,设置于所述第一束导管和所述第二束导管之间,配置为接收所述电子束作用于待测样品上产生的二次电子;
    控制电极,设置于所述第一探测器与所述电子束的光轴之间,配置为改变所述电子束作用于待测样品上产生的背散射电子和二次电子的运动方向。
  2. 根据权利要求1所述的电子显微镜,其中:所述控制电极为多孔结构。
  3. 根据权利要求2所述的电子显微镜,其中:所述控制电极为圆环形,所述圆环形的外侧壁开设凹槽,所述第一探测器设置于所述凹槽中。
  4. 根据权利要求3所述的电子显微镜,其中:所述凹槽为环形凹槽。
  5. 根据权利要求4所述的电子显微镜,其中:所述第一探测器为多个,多个所述第一探测器圆周间隔分布在所述环形凹槽中。
  6. 根据权利要求3所述的电子显微镜,其中:由上至下方向上,所述凹槽径向截面包括依次连接的第一段、第二段、第三段,所述第三段向下倾斜,与水平面呈第一夹角。
  7. 根据权利要求6所述的电子显微镜,其中:所述第一夹角的角度范围为十五度至七十五度。
  8. 根据权利要求6所述的电子显微镜,其中:所述第三段为曲线。
  9. 根据权利要求6所述的电子显微镜,其中:所述第一段向上倾斜,与水平面呈第二夹角,所述第二夹角的角度范围为零度至九十度,所述第 二段与水平面垂直设置。
  10. 根据权利要求1-9中任一项所述的电子显微镜,其中:该电子显微镜还包括:
    第二探测器,设置于所述第一束导管和所述控制电极之间,配置为接收所述电子束作用于待测样品上产生的背散射电子。
PCT/CN2021/135541 2020-12-02 2021-12-03 一种电子显微镜 WO2022083789A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/758,363 US20230028903A1 (en) 2020-12-02 2021-12-03 Electron microscope

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011393110.0 2020-12-02
CN202011393110.0A CN114220725B (zh) 2020-12-02 2020-12-02 一种电子显微镜

Publications (1)

Publication Number Publication Date
WO2022083789A1 true WO2022083789A1 (zh) 2022-04-28

Family

ID=80695769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/135541 WO2022083789A1 (zh) 2020-12-02 2021-12-03 一种电子显微镜

Country Status (3)

Country Link
US (1) US20230028903A1 (zh)
CN (1) CN114220725B (zh)
WO (1) WO2022083789A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116631830B (zh) * 2023-07-20 2023-10-27 北京惠然肯来科技中心(有限合伙) 偏转探测系统、探测方法及扫描电子显微镜

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5608218A (en) * 1993-12-28 1997-03-04 Hitachi, Ltd. Scanning electron microscope
US5939720A (en) * 1997-04-18 1999-08-17 Hitachi, Ltd. Scanning electron microscope
US20020148960A1 (en) * 1998-10-29 2002-10-17 Hitachi, Ltd. Scanning electron microscope
US20030127604A1 (en) * 1998-03-09 2003-07-10 Hideo Todokoro Scanning electron microscope
CN103890895A (zh) * 2011-09-27 2014-06-25 Snu精度株式会社 具备反射电子检测功能的扫描电子显微镜
CN110383414A (zh) * 2017-02-22 2019-10-25 株式会社日立高新技术 带电粒子束装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5860642B2 (ja) * 2011-09-07 2016-02-16 株式会社日立ハイテクノロジーズ 走査電子顕微鏡
WO2019100600A1 (en) * 2017-11-21 2019-05-31 Focus-Ebeam Technology (Beijing) Co., Ltd. Low voltage scanning electron microscope and method for specimen observation
CN207425790U (zh) * 2017-11-21 2018-05-29 聚束科技(北京)有限公司 一种低能扫描电子显微镜系统
CN110376229B (zh) * 2019-06-12 2020-09-04 聚束科技(北京)有限公司 具备复合式探测系统的扫描电子显微镜和样品探测方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5608218A (en) * 1993-12-28 1997-03-04 Hitachi, Ltd. Scanning electron microscope
US5939720A (en) * 1997-04-18 1999-08-17 Hitachi, Ltd. Scanning electron microscope
US20030127604A1 (en) * 1998-03-09 2003-07-10 Hideo Todokoro Scanning electron microscope
US20020148960A1 (en) * 1998-10-29 2002-10-17 Hitachi, Ltd. Scanning electron microscope
CN103890895A (zh) * 2011-09-27 2014-06-25 Snu精度株式会社 具备反射电子检测功能的扫描电子显微镜
CN110383414A (zh) * 2017-02-22 2019-10-25 株式会社日立高新技术 带电粒子束装置

Also Published As

Publication number Publication date
US20230028903A1 (en) 2023-01-26
CN114220725B (zh) 2024-05-07
CN114220725A (zh) 2022-03-22

Similar Documents

Publication Publication Date Title
US6043491A (en) Scanning electron microscope
US20210110994A1 (en) Scanning electron microscope objective lens system and method for specimen observation
US9029766B2 (en) Scanning electron microscope
US9536703B2 (en) Scanning electron microscope
US7507962B2 (en) Electron-beam device and detector system
JP4482179B2 (ja) 粒子ビーム装置
JP4287549B2 (ja) 粒子線装置
JP2899629B2 (ja) 荷電二次粒子の検出装置
WO2022117125A1 (zh) 一种电子束系统
JP2000133194A5 (zh)
CN110376229B (zh) 具备复合式探测系统的扫描电子显微镜和样品探测方法
JP2006278329A (ja) 高空間分解能および多視点結像用の荷電粒子ビーム装置
JPS61288357A (ja) 定量的電位測定用スペクトロメ−タ−対物レンズ装置
US8471203B2 (en) Particle-beam microscope
WO2022083789A1 (zh) 一种电子显微镜
JP6880209B2 (ja) 走査電子顕微鏡
US7223974B2 (en) Charged particle beam column and method for directing a charged particle beam
EP2219204B1 (en) Arrangement and method for the contrast improvement in a charged particle beam device for inspecting a specimen
JP2632808B2 (ja) 定量的電位測定用スペクトロメーター対物レンズ装置
CN113035675A (zh) 带电粒子束设备
US6710340B2 (en) Scanning electron microscope and method of detecting electrons therein
US5689112A (en) Apparatus for detection of surface contaminations on silicon wafers
CN116646228B (zh) 快速聚焦扫描偏转装置、扫描电子显微镜
CN217306438U (zh) 电极偏转同轴电子探测装置及扫描电子显微镜
CZ2018221A3 (cs) Zdroj částic sloužící ke generování svazku částic a částicově optické zařízení

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21882201

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21882201

Country of ref document: EP

Kind code of ref document: A1