WO2022116626A1 - 一种具有种植和保温功能的免拆模板及制备方法 - Google Patents

一种具有种植和保温功能的免拆模板及制备方法 Download PDF

Info

Publication number
WO2022116626A1
WO2022116626A1 PCT/CN2021/117395 CN2021117395W WO2022116626A1 WO 2022116626 A1 WO2022116626 A1 WO 2022116626A1 CN 2021117395 W CN2021117395 W CN 2021117395W WO 2022116626 A1 WO2022116626 A1 WO 2022116626A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
planting
bottom plate
fiber
dismantling
Prior art date
Application number
PCT/CN2021/117395
Other languages
English (en)
French (fr)
Inventor
高育欣
杨文�
孔亚宁
余保英
程宝军
周建伟
Original Assignee
中建西部建设建材科学研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中建西部建设建材科学研究院有限公司 filed Critical 中建西部建设建材科学研究院有限公司
Publication of WO2022116626A1 publication Critical patent/WO2022116626A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/02Receptacles, e.g. flower-pots or boxes; Glasses for cultivating flowers
    • A01G9/022Pots for vertical horticulture
    • A01G9/025Containers and elements for greening walls
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/02Receptacles, e.g. flower-pots or boxes; Glasses for cultivating flowers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/14Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/66Sealings
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/84Walls made by casting, pouring, or tamping in situ
    • E04B2/86Walls made by casting, pouring, or tamping in situ made in permanent forms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/20Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2

Definitions

  • the invention relates to the technical field of green building materials, in particular to a dismantling-free template with planting and thermal insulation functions and a preparation method.
  • Wall greening has become a beautiful landscape in urban development. On the one hand, it can effectively improve the city's heat island effect, reduce energy consumption, and reduce noise pollution; on the other hand, it can improve the urban environment and create a harmonious and sustainable urban development model. .
  • the existing wall greening is hindered by the poor waterproof performance and short service life of the wall material, and there are problems such as difficulty in repairing and expensive repairing in the later stage, and at the same time, it causes great consumption of human and material resources.
  • Existing wall greening is a production process of a plant fiber thermal insulation exterior wall panel and its exterior wall panel. Including the following steps: 1) prepare the plant fiber inner wall board and the thermal insulation layer board, and set a number of corresponding rows of through holes on the upper layer of the inner wall board and the thermal insulation layer board; 2) Lay the thermal insulation layer board on the inner wall board, let The through holes of the thermal insulation layer are placed corresponding to the through holes of the inner wall panel, and a frame space is reserved around the thermal insulation layer board; 3) A mold frame is added to the inner wall panel and the thermal insulation layer board, and the frame is larger than the size of the through hole.
  • the plug of the concave port blocks the lower surface of the upper through hole of the inner wall board; 4) Pour the cement mortar into the mold, so that it passes through the through hole of the insulation layer board and the upper layer of the inner wall board, and fills the hole of the plug. Concave port, continue to pour and form an outer wall panel outside the thermal insulation layer; 5) Remove the plug after the cement mortar is solidified.
  • This fiber exterior wall panel has the function of heat preservation, but does not have the function of planting. It does not use the integrated molding process of grouting and extrusion, and does not have a good waterproof effect.
  • a greening and energy-saving building exterior wall structure with patent number 2018202900874 includes a plurality of inner wall panels arranged in a matrix, and one side of the inner wall panel is fixed on the outer wall by a plurality of fastening bolts; the other side of the inner wall panel An outer wall panel is connected, and a middle partition plate is clamped between the outer wall panel and the inner wall panel. Both sides of the middle partition are filled with thermal insulation fillers, and a plurality of mounting seats are evenly distributed on the side of the outer wall panel away from the inner wall panel. Installation slots are inclined in the installation bases, and planting baskets are inserted in the installation slots.
  • the bottom of the planting basket is provided with water leakage holes, and the outer wall panel is vertically provided with a plurality of drainage holes.
  • the above structure is provided with inner and outer wall panels and a middle partition, it can play a good heat preservation function, and the outer wall panels are provided with a plurality of inclined planting baskets. Although it has thermal insulation performance and planting function, the installation is complicated, there is a safety risk of falling, and the multi-structure combination is assembled, and the waterproof effect is not good.
  • the invention discloses a dismantling-free template with planting and thermal insulation functions, which integrates the functions of waterproofing, energy saving and heat preservation, and planting and greening, and a preparation method.
  • the technical scheme adopted in the present invention is: a dismantling-free formwork with planting and heat preservation functions, comprising a plurality of formwork units with the same structure, and the multiple formwork units are spliced by tongue and groove; There are a plurality of planting cavities on the base plate; the interior of the base plate is a hollow structure, and an insulating layer is arranged in the cavity; the planting cavity is provided with a planting mouth, and a drip irrigation water pipe is arranged inside the drip irrigation water pipe, and the drip irrigation water pipe is connected to the external water source; the base plate is connected to the installation wall.
  • the template unit adopts fiber-reinforced cementitious material slurry, which is prepared by grouting and extrusion integral molding.
  • the thermal insulation layer is prepared from foamed aluminum.
  • the fiber-reinforced cementitious material slurry includes the following components in parts by weight:
  • iron tailing powder 35-320 parts of gypsum, 200-300 parts of mineral powder, 3-30 parts of alkali activator, 0-10 parts of steel slag powder, 400-430 parts of fly ash, 22-30 parts of polyvinyl alcohol fiber parts, 5-10 parts of polycarboxylate water reducing agent, and 300-400 parts of water;
  • the above components are uniformly mixed, that is, the fiber-reinforced cementitious material slurry.
  • alkaline activator is calcium hydroxide.
  • the inner wall of the cavity of the bottom plate is coated with a waterproof layer.
  • the inner wall of the planting cavity is coated with a root-blocking layer, and the root-blocking layer is a root-blocking agent.
  • the bottom plate is provided with a pre-embedded nut, and the pre-embedded nut is connected to the steel bars in the installation wall through anchor bolts.
  • a preparation method of a dismantling-free template with planting and thermal insulation functions comprising the following steps:
  • Step 1 Assemble the mould for pouring the formwork unit
  • Step 2 Weigh each component of the fiber-reinforced cementitious material slurry material: 500 parts of iron tailing powder, 35-320 parts of gypsum, 200-300 parts of mineral powder, 3-30 parts of calcium hydroxide, and 0-10 parts of steel slag powder parts, 400-430 parts of fly ash, 22-30 parts of polyvinyl alcohol fiber, 5-10 parts of polycarboxylate water reducing agent, and 300-400 parts of water;
  • Step 3 squeeze the fiber-reinforced cementitious material slurry through grouting, and pour it into the mold of step 1 to obtain a template unit;
  • Step 4 Fill the insulation layer in the bottom plate
  • Step 5 Set pre-embedded nuts on the bottom plate, and the pre-embedded nuts are connected to the steel bars in the installation wall through anchor bolts;
  • Step 6 Assemble the formwork unit through tongue and groove to obtain the required dismantling-free formwork with planting and thermal insulation functions.
  • the dismantling-free formwork of the present invention utilizes industrial waste residue, gypsum, steel slag powder, iron tailings, etc. to prepare fiber-reinforced cementitious material, which is a clinker-free cementitious material system, with high utilization rate and environmental protection;
  • the present invention adopts a clinker-free cementitious material system. After the cementitious material slurry is hardened, it has a good water resistance effect, and is more suitable for the preparation of planting wall panels than the traditional silicate cementitious material system. better;
  • the thermal insulation layer of the present invention adopts foamed aluminum, which is different from inorganic thermal insulation materials or inorganic-organic composite thermal insulation materials such as traditional foamed concrete, aerated concrete, phase change energy-saving materials, etc., and has lighter weight and better thermal insulation. Energy-saving effect, at the same time, it is not easy to be damaged, and can be recycled many times;
  • the present invention integrates the functions of waterproofing, energy saving and heat preservation, planting and greening, and adopts inorganic materials as a whole, which greatly improves the lifespan of the existing planting system;
  • the present invention adopts grouting and extrusion integral molding, and is assembled by a plurality of formwork units, which can quickly and efficiently realize the installation and greening of building walls, and the formwork units can be reused, which greatly reduces resource consumption and product cost.
  • Fig. 1 is the installation schematic diagram of the dismantling-free formwork of the present invention.
  • FIG. 2 is a schematic view of the front structure of the dismantling-free formwork of the present invention.
  • FIG. 3 is a schematic side view of the structure of the dismantling-free formwork of the present invention.
  • a dismantling-free formwork with planting and heat preservation functions includes a plurality of formwork units 1 with the same structure 35, and the formwork units 1 are spliced by tongue and groove;
  • the formwork unit 1 includes a set of The bottom plate 2 and a plurality of planting cavities 3 arranged on the bottom plate 2;
  • the interior of the bottom plate 2 is a hollow structure, and a thermal insulation layer 10 is arranged in the cavity;
  • the drip irrigation pipe 4 is connected to the external water source;
  • the bottom plate 2 is connected to the installation wall 12 .
  • the structural wall thickness of the bottom plate 2 and the cavity of the implant cavity 3 is 8-20 mm, and the porosity of the cavity is not less than 60%.
  • the formwork unit 1 adopts fiber-reinforced cementitious material slurry, which is prepared by grouting and extrusion integral molding.
  • the thermal insulation layer 10 is made of foamed aluminum. Foamed aluminum chooses high-toughness foamed aluminum plate, the density is 0.1g/cm3 ⁇ 0.6g/cm3, the porosity is ⁇ 80%, the compressive strength is 10 ⁇ 20MPa, the pore diameter is 0.1 ⁇ 3mm, and the sound absorption rate is ⁇ 70%.
  • Fiber-reinforced cementitious material slurry including the following components in parts by weight:
  • iron tailing powder 35-320 parts of gypsum, 200-300 parts of mineral powder, 3-30 parts of alkali activator, 0-10 parts of steel slag powder, 400-430 parts of fly ash, 22-30 parts of polyvinyl alcohol fiber parts, 5-10 parts of polycarboxylate water reducing agent, and 300-400 parts of water;
  • the above components are uniformly mixed, that is, the fiber-reinforced cementitious material slurry, and the compressive strength of the fiber-reinforced cementitious material obtained by using the above-mentioned slurry material is not less than 60 MPa.
  • the polyvinyl alcohol fiber preferably has a length of 4 to 6 mm, a diameter of ⁇ 35 ⁇ m, an elastic modulus of ⁇ 35 GPa, and a tensile strength of 2300 to 2500 MPa.
  • the inner wall of the bottom plate 2 is coated with a waterproof layer, and the waterproof layer is prepared from waterproof paint.
  • the inner wall of the planting cavity 3 is coated with a root-blocking layer, and the root-blocking layer is a root-blocking agent.
  • the bottom plate 2 is provided with a pre-embedded nut 8 , and the pre-embedded nut 8 is connected to the steel bars in the installation wall 12 through the anchor bolts 11 .
  • a preparation method of a dismantling-free template with planting and thermal insulation functions comprising the following steps:
  • Step 1 Assemble the mold for pouring the formwork unit 1; the mold includes a bottom mold, an upper bottom mold, a lower bottom mold, a left mold, a right mold, a front side mold, a rear side mold, and a core mold.
  • Step 2 Weigh each component of the fiber-reinforced cementitious material slurry material: 500 parts of iron tailing powder, 35-320 parts of gypsum, 200-300 parts of mineral powder, 3-30 parts of alkali activator, and 0-10 parts of steel slag powder parts, 400-430 parts of fly ash, 22-30 parts of polyvinyl alcohol fiber, 5-10 parts of polycarboxylate water reducing agent, and 300-400 parts of water;
  • Step 3 squeeze the fiber-reinforced cementitious material slurry through grouting, and pour it into the mold of step 1 to obtain template unit 1;
  • Step 4 Fill the bottom plate 2 with a thermal insulation layer 10; the thermal insulation layer 10 is prepared from a foamed aluminum plate.
  • Step 5 Set pre-embedded nuts 8 on the bottom plate 2, and the pre-embedded nuts 8 are connected to the steel bars in the installation wall 12 through the anchor bolts 11; For fixing the removable formwork for planting and insulation functions.
  • Step 6 Assemble the formwork unit 1 through tongue and groove to obtain the required dismantling-free formwork with planting and heat preservation functions.
  • the formwork unit 1 is assembled vertically through the upper and lower tongues; horizontally, it is assembled through the left and right tongues.
  • the planting of green plants is realized in the planting cavity 3 of the dismantling-free formwork, and the formwork unit 1 and the formwork 13 on the inner side of the installation outer wall 12 form a cast-in-place concrete pouring bin 14 .
  • Step 1 Assemble the mold, assemble the bottom mold, the upper bottom mold, the lower bottom mold, the left mold, the right mold, the front mold, the rear mold, and the core mold.
  • Step 2 Weigh each component of the fiber-reinforced cementitious material slurry material: 500 parts of iron tailing powder, 320 parts of gypsum, 200 parts of mineral powder, 30 parts of calcium hydroxide, 10 parts of steel slag powder, 430 parts of fly ash, 30 parts of polyvinyl alcohol fibers, 10 parts of polycarboxylate water-reducing agent, and 300 parts of water, and fully stirred to obtain a fiber-reinforced cementitious material slurry.
  • 500 parts of iron tailing powder 500 parts of iron tailing powder, 320 parts of gypsum, 200 parts of mineral powder, 30 parts of calcium hydroxide, 10 parts of steel slag powder, 430 parts of fly ash, 30 parts of polyvinyl alcohol fibers, 10 parts of polycarboxylate water-reducing agent, and 300 parts of water, and fully stirred to obtain a fiber-reinforced cementitious material slurry.
  • Step 3 The fiber-reinforced cementitious material slurry obtained in step 2 is extruded by grouting and poured into the mold of step 1. After the fiber-reinforced cementitious material is hardened, the core mold is pulled out, and the side mold and side mold are removed to obtain Template unit 1.
  • Step 4 Fill the bottom plate 2 with an insulation layer 10, the insulation layer is a foamed aluminum plate, the density of the foamed aluminum plate is 0.6g/cm3, the porosity is 82%, the compressive strength is 18.9MPa, the pore diameter is 0.5mm, and the sound absorption rate is 71 %.
  • the insulation layer is a foamed aluminum plate
  • the density of the foamed aluminum plate is 0.6g/cm3
  • the porosity is 82%
  • the compressive strength is 18.9MPa
  • the pore diameter is 0.5mm
  • the sound absorption rate is 71 %.
  • Step 5 Pre-embedded nuts 8 are arranged on the bottom plate 2, and the embedded nuts 8 are connected to the steel bars in the installation wall 12 through the anchor bolts 11; they are used to fix the formwork unit 1.
  • Step 6 Assemble the formwork unit 1 through the tongue and groove, horizontally through the left tongue and right tongue, and vertically through the upper tongue and the lower tongue to obtain the required dismantling-free template with planting and thermal insulation functions.
  • the dismantling-free template structure chamber with planting and heat preservation functions obtained by the above method has a thermal conductivity of 0.08W/(m ⁇ K), a cavity structure wall thickness of 12mm in the planting cavity 3 and the bottom plate 2, and a cavity porosity of 65% ,
  • the late strength of fiber-reinforced cementitious material slurry is 64MPa.
  • Step 1 Assemble the mold, assemble the bottom mold, the upper bottom mold, the lower bottom mold, the left mold, the right mold, the front mold, the rear mold, and the core mold.
  • Step 2 Weigh each component of the fiber-reinforced cementitious material slurry material: 500 parts of iron tailing powder, 35 parts of gypsum, 300 parts of mineral powder, 3 parts of calcium hydroxide, 10 parts of steel slag powder, 430 parts of fly ash, 22 parts of polyvinyl alcohol fibers, 5 parts of polycarboxylate water-reducing agent, and 400 parts of water, and fully stirred to obtain a fiber-reinforced cementitious material slurry.
  • the polyvinyl alcohol fiber length is 6mm.
  • Step 3 The fiber-reinforced cementitious material slurry obtained in step 2 is extruded by grouting and poured into the mold of step 1. After the fiber-reinforced cementitious material is hardened, the core mold is pulled out, and the side mold and side mold are removed to obtain Template unit 1.
  • Step 4 Fill the bottom plate 2 with an insulation layer 10, the insulation layer is a foamed aluminum plate, the density of the foamed aluminum plate is 0.2g/cm3, the porosity is 88%, the compressive strength is 10MPa, the aperture is 1mm, and the sound absorption rate is 79%.
  • Step 5 Pre-embedded nuts 8 are arranged on the bottom plate 2, and the embedded nuts 8 are connected to the steel bars in the installation wall 12 through the anchor bolts 11; they are used to fix the formwork unit 1.
  • Step 6 Assemble the formwork unit 1 through the tongue and groove, horizontally through the left tongue and right tongue, and vertically through the upper tongue and the lower tongue to obtain the required dismantling-free template with planting and thermal insulation functions.
  • the dismantling-free template structure chamber with planting and thermal insulation functions obtained by the above method has a thermal conductivity of 0.07W/(m ⁇ K), a cavity structure wall thickness of 10mm in the planting cavity 3 and the bottom plate 2, and a cavity porosity of 68%.
  • the late strength of fiber reinforced cementitious material slurry is 66MPa.
  • Step 1 prepare a prefabricated sandwich thermal insulation wall panel, the prefabricated sandwich thermal insulation external wall panel includes an inner leaf plate, a thermal insulation board and an outer leaf board, the inner leaf board and the outer leaf board are both C30 ordinary silicon cement concrete, and the unit weight is 2360kg/m3;
  • the insulation board is a polystyrene board, and the inner blade, insulation board and outer blade are connected by imported high-performance FRP connectors.
  • Step 2 Install the planting basket on the outside of the prefabricated sandwich thermal insulation exterior wall panel by tightening the bolts.
  • the inner and outer blades are prone to split. Due to the method of installing the basket, the risk of falling of the planting basket is prone to occur, and to a certain extent, the appearance of the prefabricated sandwich thermal insulation exterior wall panel is damaged, of which the later strength of C30 ordinary silicon cement concrete is 34MPa.
  • Example 1 Compared with the traditional prefabricated sandwich thermal insulation exterior wall panel and the method of setting planting baskets in the later stage, Example 1 has more structural integrity. Due to the integrated molding process of grouting and extrusion, the planting cavity is reserved, which solves the problem of planting baskets. Risk of falling. The dismantling-free formwork formed on the inner wall of the inner cavity is closely combined with the post-cast concrete, and there is no delamination and cracking. The foam aluminum plate is used as the thermal insulation layer, which has better thermal insulation effect.
  • Step 1 Assemble the mold, assemble the bottom mold, the upper bottom mold, the lower bottom mold, the left mold, the right mold, the front mold, the rear mold, and the core mold.
  • Step 2 Weigh the components according to the following mass ratios: 500 parts of iron tailings powder, 35 parts of gypsum, 300 parts of mineral powder, 5 parts of calcium hydroxide, 10 parts of steel slag powder, 430 parts of fly ash, and polyvinyl alcohol fiber 22 parts, 5.5 parts of polycarboxylate water-reducing agent, and 300 parts of water, and stir well to obtain fiber-reinforced cementitious material slurry.
  • the polyvinyl alcohol fiber length is 6mm.
  • Step 3 The fiber-reinforced cementitious material slurry obtained in step 2 is poured into the mold of step 1 through a self-leveling pouring process. After the fiber-reinforced cementitious material is hardened, the core mold is pulled out, and the side mold and side mold are removed to obtain Template unit 1.
  • Step 4 Fill the bottom plate 2 with a thermal insulation layer 10, and the thermal insulation layer is gypsum thermal insulation mortar.
  • Step 5 Pre-embedded nuts 8 are arranged on the bottom plate 2, and the embedded nuts 8 are connected to the steel bars in the installation wall 12 through the anchor bolts 11; they are used to fix the formwork unit 1.
  • Step 6 Assemble the formwork unit 1 through the tongue and groove, horizontally through the left tongue and right tongue, and vertically through the upper tongue and the lower tongue to obtain the required dismantling-free template with planting and thermal insulation functions.
  • the dismantling-free template prepared above has many holes and is not dense, and the thermal insulation performance is significantly lower than that of the embodiment.
  • the wall thickness of the implant cavity 3 and the bottom plate 2 is 20mm, the cavity porosity is 75%, the later strength of the fiber-reinforced cementitious material slurry is 36MPa, and the mechanical properties are low. Due to the self-leveling pouring process, there are many holes in the inner wall of the cavity, and even the honeycomb pockmarked surface, the structure is not compact, which seriously affects the safety of the later waterproof effect wallboard.
  • the fiber-reinforced cementitious material used in the present invention is a clinker-free cementitious material system, and is a low-carbon and environmentally friendly cementitious material prepared by using industrial waste residue, industrial by-product gypsum, steel slag powder, tailing iron ore, etc. Environmental friendly. And the clinker-free cementitious material system is based on the sulfate excitation effect of industrial by-product gypsum. After the prepared cementitious material slurry is hardened, it has a good water resistance effect, which is more suitable for planting walls than the traditional silicate cementitious material system. The preparation of templates has better weather resistance.
  • the high-toughness aluminum foam board is used as the thermal insulation material, which is different from the traditional inorganic thermal insulation materials such as foamed concrete, aerated concrete, phase change energy-saving materials or inorganic-organic composite thermal insulation materials. It has lighter weight, better thermal insulation and energy-saving effect. At the same time, it is not easy to be damaged and can be recycled many times.
  • the dismantling-free formwork of the invention integrates the functions of waterproofing, energy saving and heat preservation, and planting and greening, and adopts inorganic materials as a whole, which greatly improves the life of the existing planting system; and can be reused, greatly reduces resource consumption and product cost, and can Quickly and efficiently realize the installation and greening of building walls.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Environmental Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Building Environments (AREA)
  • Producing Shaped Articles From Materials (AREA)

Abstract

本发明公开了一种具有种植和保温功能的免拆模板及制备方法,包括多个结构相同的模板单元,多个模板单元通过企口拼接;模板单元包括设置在下部的底板和设置在底板上的多个种植腔;底板内部为中空结构,空腔内设置有保温层;种植腔设置有种植口,其内部设置有滴灌水管,滴灌水管连接外部水源;底板连接安装墙面;本发明采用注浆、挤压一体成型,并且由多个模板单元组装构成,可快速高效实现建筑墙面的安装及绿化,并且模板单元可重复利用,极大降低了资源消耗及产品成本;集防水、节能保温、种植绿化功能于一体,整体采用无机材料,极大的提升了现有种植系统的寿命。

Description

一种具有种植和保温功能的免拆模板及制备方法 技术领域
本发明涉及绿色建材技术领域,具体涉及一种具有种植和保温功能的免拆模板及制备方法。
背景技术
墙面绿化已经成为城市发展中的一道亮丽风景线,一方面可以有效改善城市的热岛效应、降低能耗、削弱噪音污染等;另一方面可以改善城市的环境面貌,创建和谐可持续的城市发展模式。但是现有墙面绿化因为墙面材料的防水性能差、使用寿命短等问题而受到阻碍,后期存在修复困难、修复费用昂贵等问题,同时造成极大的人力和物力资源的消耗。
现有的墙面绿化如专利号为2005100023790的一种植物纤维保温外墙板的制作工艺及其外墙板。包括以下步骤:1)准备植物纤维内墙板和保温层板,在内墙板上层和保温层板上设置相对应的若干排通孔;2)将保温层板铺设在内墙板上,让保温层的通孔与内墙板的通孔对应放置,并在保温层板的四周留出边框空间;3)在所述内墙板和保温层板外加模具边框,用带有大于通孔尺寸的凹形端口的堵头堵住内墙板上层通孔的下表面;4)将水泥沙浆灌注入模具中,使其穿过保温层板和内墙板上层的通孔,并充满堵头的凹形端口,继续灌注并在保温层板外形成外墙板;5)待水泥沙浆固化后去掉堵头。这种纤维外墙板具备保温功能,但不具备种植功能,未采用注浆挤压一体化成型工艺,不具备良好的防水效果。如专利号为2018202900874的一种绿化节能型建筑外墙结构,包括多块矩阵排布的内墙板,内墙板的一面通过多个紧固螺栓固定在外墙面上;内墙板的另一面连接有外墙板,外墙板与内墙板之间夹持有中隔板。中隔板的两侧均填充有保温填料,外墙板远离内墙板的一面上均布有多个安装座。安装座内均倾斜设有安装槽,安装槽内插装有种植篮。种植篮的底部设有漏水孔,外墙板内竖直设有多个排水孔。上述结构虽然设置了内外墙板和中隔板,能够起到良好的保温功能,外墙板上设有多个倾斜设置的种植篮。虽然具备保温性能,同时具备种植功能,但安装复杂,存在掉落的安全风险,且多结构组合拼装,防水效果欠佳。
发明内容
本发明公开了一种集防水、节能保温、种植绿化功能于一体的具有种植和保温功能的免拆模板及制备方法。
本发明采用的技术方案是:一种具有种植和保温功能的免拆模板,包括多个结构相同的模板单元,多个模板单元之间通过企口拼接;模板单元包括设置在下部的底板和设置在底板上的多个种植腔;底板内部为中空结构,空腔内设置有保温层;种植腔设置有种植口,其内部设置有滴灌水管,滴灌水管连接外部水源;底板连接安装墙面。
进一步的,所述模板单元采用纤维增强胶凝材料浆体,通过注浆、挤压一体成型制备。
进一步的,所述保温层为泡沫铝制备。
进一步的,所述纤维增强胶凝材料浆体,以重量份数包括以下组分:
铁尾矿粉500份、石膏35~320份、矿粉200~300份、碱激发剂3~30份、钢渣粉0~10份、粉煤灰400~430份、聚乙烯醇纤维22~30份、聚羧酸减水剂5~10份、水300~400份;
上述组分混合均匀即纤维增强胶凝材料浆体。
进一步的,所述的碱性激发剂为氢氧化钙。
进一步的,所述底板空腔内壁涂覆有防水层。
进一步的,所述种植腔内壁涂覆有阻根层,阻根层为阻根剂。
进一步的,所述底板内设置有预埋螺帽,预埋螺帽通过锚固螺栓连接安装墙面内的钢筋。
一种具有种植和保温功能的免拆模板的制备方法,包括以下步骤:
步骤1:组装浇筑模板单元的模具;
步骤2:称取纤维增强胶凝材料浆体材料各组分:铁尾矿粉500份、石膏35~320份、矿粉200~300份、氢氧化钙3~30份、钢渣粉0~10份、粉煤灰400~430份、聚乙烯醇纤维22~30份、聚羧酸减水剂5~10份、水300~400份;
充分搅拌均匀,得到纤维增强胶凝材料浆体;
步骤3:将纤维增强胶凝材料浆体通过注浆挤压,浇筑到步骤1的模具中,得到模板单元;
步骤4:在底板内填充保温层;
步骤5:在底板上设置预埋螺帽,预埋螺帽通过锚固螺栓连接安装墙面内的钢筋;
步骤6:将模板单元通过企口组装,即得到所需具有种植和保温功能的免拆模板。
本发明的有益效果是:
(1)本发明的免拆模板,利用工业废渣、石膏、钢渣粉、尾铁矿等制备得到纤维增强胶凝材料,其是无熟料胶凝材料体系,利废率高,绿色环保;
(2)本发明采用的是无熟料胶凝材料体系,胶凝材料浆体硬化后,具有良好的耐水效果,比传统硅酸盐胶凝材料体系更加适用于种植墙面板的制备,耐候性更优;
(3)本发明保温层采用泡沫铝,其区别于传统的泡沫混凝土、加气混凝土、相变节能材料等无机保温材料或无机-有机复合保温材料,具有更轻质的重量、更好的保温节能效果,同时不容易发生破坏,可多次循环利用;
(4)本发明集防水、节能保温、种植绿化功能于一体,整体采用无机材料,极大的提升了 现有种植系统的寿命;
(5)本发明采用注浆、挤压一体成型,并且由多个模板单元组装构成,可快速高效实现建筑墙面的安装及绿化,并且模板单元可重复利用,极大降低了资源消耗及产品成本。
附图说明
图1为本发明免拆模板的安装示意图。
图2为本发明免拆模板的正视结构示意图。
图3为本发明免拆模板的侧视结构示意图。
图中:1-模板单元,2-底板,3-种植腔,4-滴灌水管,5-种植口,6-上企口,7-下企口,8-预埋螺帽,9-种植土,10-保温层,11-锚固螺栓,12-安装墙面,13-内侧模板,14-浇筑仓。
发明内容
下面结合附图和具体实施例对本发明做进一步说明。
如图1、2、3所示,一种具有种植和保温功能的免拆模板,包括多个结构相同35的模板单元1,多个模板单元1之间通过企口拼接;模板单元1包括设置在下部的底板2和设置在底板2上的多个种植腔3;底板2内部为中空结构,空腔内设置有保温层10;种植腔3设置有种植口5,其内部设置有滴灌水管4,滴灌水管4连接外部水源;底板2连接安装墙面12。底板2和种植腔3腔体的结构壁厚为8~20mm,腔体孔隙率不小于60%。
模板单元1采用纤维增强胶凝材料浆体,通过注浆、挤压一体成型制备。保温层10为泡沫铝制备。泡沫铝选择高韧性泡沫铝板,密度为0.1g/cm 3~0.6g/cm 3,孔隙率≥80%,抗压强度为10~20MPa,孔径为0.1~3mm,吸声率≥70%。
纤维增强胶凝材料浆体,以重量份数包括以下组分:
铁尾矿粉500份、石膏35~320份、矿粉200~300份、碱激发剂3~30份、钢渣粉0~10份、粉煤灰400~430份、聚乙烯醇纤维22~30份、聚羧酸减水剂5~10份、水300~400份;
上述组分混合均匀即纤维增强胶凝材料浆体,采用上述浆体材料得到的纤维增强胶凝材料抗压强度不低于60MPa。聚乙烯醇纤维优选长度为4~6mm,直径≥35μm,弹性模量≥35GPa,抗拉强度2300~2500MPa。
底板2内壁涂覆有防水层,防水层为防水涂料制备。种植腔3内壁涂覆有阻根层,阻根层为阻根剂。底板2内设置有预埋螺帽8,预埋螺帽8通过锚固螺栓11连接安装墙面12内的钢筋。
一种具有种植和保温功能的免拆模板的制备方法,包括以下步骤:
步骤1:组装浇筑模板单元1的模具;模具包括底模、上底模、下底模、左边模、右边 模、前侧模、后侧模、芯模。
步骤2:称取纤维增强胶凝材料浆体材料各组分:铁尾矿粉500份、石膏35~320份、矿粉200~300份、碱激发剂3~30份、钢渣粉0~10份、粉煤灰400~430份、聚乙烯醇纤维22~30份、聚羧酸减水剂5~10份、水300~400份;
充分搅拌均匀,得到纤维增强胶凝材料浆体;
步骤3:将纤维增强胶凝材料浆体通过注浆挤压,浇筑到步骤1的模具中,得到模板单元1;
步骤4:在底板2内填充保温层10;保温层10为泡沫铝板制备。
步骤5:在底板2上设置预埋螺帽8,预埋螺帽8通过锚固螺栓11连接安装墙面12内的钢筋;锚固螺栓11与安装墙面12中内部钢筋进行绑扎或焊接牢固连接,用于固定用于种植和保温功能的免拆模板。
步骤6:将模板单元1通过企口组装,即得到所需具有种植和保温功能的免拆模板。模板单元1纵向通过上企口和下企口实现拼装;横向通过左企口和右企口实现拼装。
免拆模板中种植腔3内实现绿植的种植,模板单元1与安装外墙12内侧模板13形成现浇混凝土浇筑仓14。
实施例1
按照以下方法制备具有种植和保温功能的免拆模板:
步骤1:对模具进行组装,对底模、上底模、下底模、左边模、右边模、前侧模、后侧模、芯模进行组装。
步骤2:称取纤维增强胶凝材料浆体材料各组分:铁尾矿粉500份、石膏320份、矿粉200份、氢氧化钙30份、钢渣粉10份、粉煤灰430份、聚乙烯醇纤维30份、聚羧酸减水剂10份、水300份,充分搅拌均匀,即可得到纤维增强胶凝材料浆体。
步骤3:将步骤2得到的纤维增强胶凝材料浆体通过注浆挤压,浇筑到步骤1的模具中,纤维增强胶凝材料硬化后,拔出芯模,拆除边模和侧模,得到模板单元1。
步骤4:在底板2内填充保温层10,保温层为泡沫铝板,泡沫铝板密度为0.6g/cm 3,孔隙率82%,抗压强度为18.9MPa,孔径为0.5mm,吸声率为71%。
步骤5:在底板2上设置预埋螺帽8,预埋螺帽8通过锚固螺栓11连接安装墙面12内的钢筋;用于固定模板单元1。
步骤6:将模板单元1通过企口组装,横向通过左企口和右企口拼装,纵向通过上企口和下企口拼装,即可得到所需具有种植和保温功能的免拆模板。
通过上述方法得到的具有种植和保温功能的免拆模板结构密室,导热系数为 0.08W/(m·K),种植腔3和底板2空腔结构壁厚为12mm,腔体孔隙率为65%,纤维增强胶凝材料浆体后期强度64MPa。
实施例2
按照以下方法制备具有种植和保温功能的免拆模板:
步骤1:对模具进行组装,对底模、上底模、下底模、左边模、右边模、前侧模、后侧模、芯模进行组装。
步骤2:称取纤维增强胶凝材料浆体材料各组分:铁尾矿粉500份、石膏35份、矿粉300份、氢氧化钙3份、钢渣粉10份、粉煤灰430份、聚乙烯醇纤维22份、聚羧酸减水剂5份、水400份,充分搅拌均匀,即可得到纤维增强胶凝材料浆体。其中聚乙烯醇纤维长度为6mm。
步骤3:将步骤2得到的纤维增强胶凝材料浆体通过注浆挤压,浇筑到步骤1的模具中,纤维增强胶凝材料硬化后,拔出芯模,拆除边模和侧模,得到模板单元1。
步骤4:在底板2内填充保温层10,保温层为泡沫铝板,泡沫铝板密度为0.2g/cm 3,孔隙率88%,抗压强度为10MPa,孔径为1mm,吸声率为79%。
步骤5:在底板2上设置预埋螺帽8,预埋螺帽8通过锚固螺栓11连接安装墙面12内的钢筋;用于固定模板单元1。
步骤6:将模板单元1通过企口组装,横向通过左企口和右企口拼装,纵向通过上企口和下企口拼装,即可得到所需具有种植和保温功能的免拆模板。
通过上述方法得到的具有种植和保温功能的免拆模板结构密室,导热系数为0.07W/(m·K),种植腔3和底板2空腔结构壁厚为10mm,腔体孔隙率为68%,纤维增强胶凝材料浆体后期强度66MPa。
对比例1
按照以下方法制备外墙板:
步骤1:制备预制夹心保温墙板,预制夹心保温外墙板包括内叶板、保温板和外叶板,内叶板和外叶板均为C30普硅水泥混凝土,单方容重2360kg/m 3;保温板为聚苯板,内叶板、保温板和外叶板通过进口高性能FRP连接件连接。
按照以下步骤预制夹心保温外墙板:
1)预制夹心保温外墙板模具组装;
2)绑扎钢筋笼,在模具中安装钢筋笼;
3)制备并在模具中浇筑C30普硅水泥混凝土,浇筑厚度为6cm,即得内叶板;
4)在内叶板上,铺设聚苯板;
5)在聚苯板上浇筑C30普硅水泥混凝土20cm厚度,振捣、密实,即为外叶板;
6)以上三层组合,普硅水泥混凝土硬化后,脱模,即得预制夹心保温外墙板。
步骤2:在预制夹心保温外墙板外侧通过紧固螺栓的方式安装种植篮。
由于采用了三层结构,导热系数为1.02W/(m·K),内叶板和外叶板容易发生分裂的现象。由于采用安装篮的方式,容易发生种植篮掉落的风险,且一定程度上破坏了预制夹心保温外墙板外观,其中C30普硅水泥混凝土后期强度34MPa。
实施例1与传统的预制夹心保温外墙板,后期设置种植篮的方式相比,更具有结构上的整体性,由于采用注浆挤压一体化成型工艺,预留种植腔,解决了种植篮掉落的风险。内侧腔体内壁形成的免拆模板,与后浇混凝土结合紧密,不存在脱层、开裂的显现。采用泡沫铝板作为保温层,具有更好的保温隔热效果。
对比例2
按照以下步骤制备免拆模板:
按照以下方法制备具有种植和保温功能的免拆模板:
步骤1:对模具进行组装,对底模、上底模、下底模、左边模、右边模、前侧模、后侧模、芯模进行组装。
步骤2:按以下质量比称取各组分:铁尾矿粉500份、石膏35份、矿粉300份、氢氧化钙5份、钢渣粉10份、粉煤灰430份、聚乙烯醇纤维22份、聚羧酸减水剂5.5份、水300份,充分搅拌均匀,即可得到纤维增强胶凝材料浆体。其中聚乙烯醇纤维长度为6mm。
步骤3:将步骤2得到的纤维增强胶凝材料浆体通过自流平浇筑工艺,浇筑到步骤1的模具中,纤维增强胶凝材料硬化后,拔出芯模,拆除边模和侧模,得到模板单元1。
步骤4:在底板2内填充保温层10,保温层为石膏保温砂浆。
步骤5:在底板2上设置预埋螺帽8,预埋螺帽8通过锚固螺栓11连接安装墙面12内的钢筋;用于固定模板单元1。
步骤6:将模板单元1通过企口组装,横向通过左企口和右企口拼装,纵向通过上企口和下企口拼装,即可得到所需具有种植和保温功能的免拆模板。
上述制备得到的免拆模板,孔洞较多,不密实,与实施例相比保温隔热性能显著较低。种植腔3和底板2壁厚为20mm,腔体孔隙率75%,纤维增强胶凝材料浆体后期强度为36MPa,力学性能较低。由于自流平浇筑工艺,腔体内壁多有孔洞,甚至蜂窝麻面情况,结构不密实,严重影响后期防水效果墙板的安全性。
本发明中采用的纤维增强胶凝材料为无熟料胶凝材料体系,利用工业废渣、工业副产石膏、钢渣粉、尾铁矿等制备的低碳环保胶凝材料,利废率高,绿色环保。并且无熟料胶凝材料体系基于工业副产石膏的硫酸盐激发效果,制备的胶凝材料浆体硬化后,具有良好的耐水效果, 比传统硅酸盐胶凝材料体系更加适用于种植墙面模板的制备,耐候性更优。采用高韧性泡沫铝板为保温材料,区别于传统的泡沫混凝土、加气混凝土、相变节能材料等无机保温材料或无机-有机复合保温材料,具有更轻质的重量、更好的保温节能效果,同时不容易发生破坏,可多次循环利用。本发明免拆模板集防水、节能保温、种植绿化功能于一体,整体采用无机材料,极大的提升了现有种植系统的寿命;并且可重复利用,极大降低了资源消耗及产品成本,可快速高效实现建筑墙面的安装及绿化。

Claims (9)

  1. 一种具有种植和保温功能的免拆模板,其特征在于,包括多个结构相同的模板单元(1),多个模板单元(1)之间通过企口拼接;模板单元(1)包括设置在下部的底板(2)和设置在底板(2)上的多个种植腔(3);底板(2)内部为中空结构,空腔内设置有保温层(10);种植腔(3)设置有种植口(5),其内部设置有滴灌水管(4),滴灌水管(4)连接外部水源;底板(2)连接安装墙面(12)。
  2. 根据权利要求1所述的一种具有种植和保温功能的免拆模板,其特征在于,所述模板单元(1)采用纤维增强胶凝材料浆体,通过注浆、挤压一体成型制备。
  3. 根据权利要求1所述的一种具有种植和保温功能的免拆模板,其特征在于,所述保温层(10)为泡沫铝制备。
  4. 根据权利要求2所述的一种具有种植和保温功能的免拆模板,其特征在于,所述纤维增强胶凝材料浆体,以重量份数包括以下组分:
    铁尾矿粉500份、石膏35~320份、矿粉200~300份、碱激发剂3~30份、钢渣粉0~10份、粉煤灰400~430份、聚乙烯醇纤维22~30份、聚羧酸减水剂5~10份、水300~400份;
    上述组分混合均匀即纤维增强胶凝材料浆体。
  5. 根据权利要求4所述的一种纤维增强胶凝材料浆体,其特征在于所述的碱性激发剂为氢氧化钙。
  6. 根据权利要求1所述的一种具有种植和保温功能的免拆模板,其特征在于,所述底板(2)空腔内壁涂覆有防水层。
  7. 根据权利要求1所述的一种具有种植和保温功能的免拆模板,其特征在于,所述种植腔(3)内壁涂覆有阻根层,阻根层为阻根剂。
  8. 根据权利要求1所述的一种具有种植和保温功能的免拆模板,其特征在于,所述底板(2)内设置有预埋螺帽(8),预埋螺帽(8)通过锚固螺栓(11)连接安装墙面(12)内的钢筋。
  9. 根据权利要求4所述的一种具有种植和保温功能的免拆模板的制备方法,其特征在于,包括以下步骤:
    步骤1:组装浇筑模板单元(1)的模具;
    步骤2:称取纤维增强胶凝材料浆体材料各组分:铁尾矿粉500份、石膏35~320份、矿粉200~300份、碱激发剂3~30份、钢渣粉0~10份、粉煤灰400~430份、聚乙烯醇纤维22~30份、聚羧酸减水剂5~10份、水300~400份;
    充分搅拌均匀,得到纤维增强胶凝材料浆体;
    步骤3:将纤维增强胶凝材料浆体通过注浆挤压,浇筑到步骤1的模具中,得到模板单 元(1);
    步骤4:在底板(2)内填充保温层(10);
    步骤5:在底板(2)上设置预埋螺帽(8),预埋螺帽(8)通过锚固螺栓(11)连接安装墙面(12)内的钢筋;
    步骤6:将模板单元(1)通过企口组装,即得到所需具有种植和保温功能的免拆模板。
PCT/CN2021/117395 2020-12-01 2021-09-09 一种具有种植和保温功能的免拆模板及制备方法 WO2022116626A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011384995.8A CN112554356A (zh) 2020-12-01 2020-12-01 一种具有种植和保温功能的免拆模板及制备方法
CN202011384995.8 2020-12-01

Publications (1)

Publication Number Publication Date
WO2022116626A1 true WO2022116626A1 (zh) 2022-06-09

Family

ID=75045971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/117395 WO2022116626A1 (zh) 2020-12-01 2021-09-09 一种具有种植和保温功能的免拆模板及制备方法

Country Status (2)

Country Link
CN (1) CN112554356A (zh)
WO (1) WO2022116626A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117774118A (zh) * 2023-12-27 2024-03-29 南京天运塑业有限公司 建筑用外墙免拆保温模板及其加工方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112554356A (zh) * 2020-12-01 2021-03-26 中建西部建设建材科学研究院有限公司 一种具有种植和保温功能的免拆模板及制备方法
EP4391791A1 (en) * 2021-08-24 2024-07-03 Sika Technology AG A modular green wall element with improved thermal insulation properties

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000080612A (ja) * 1998-09-04 2000-03-21 Asanuma Corp 部分緑化型防音壁
JP2002233235A (ja) * 2001-02-09 2002-08-20 Nuru House:Kk 緑化断熱建築材及びその施工方法
CN202014493U (zh) * 2011-04-11 2011-10-26 上海中卉生态科技有限公司 生态移动容器
CN103306389A (zh) * 2013-07-04 2013-09-18 许浒 一种干挂外墙保温板及其作为免拆除建筑模板的新用途
CN104620963A (zh) * 2014-12-22 2015-05-20 济宁伯兰克立体绿化有限公司 立体绿化保温模块
CN111732375A (zh) * 2020-06-29 2020-10-02 张建华 一种微粉泡沫轻质土及其制备方法
CN211873570U (zh) * 2020-04-07 2020-11-06 童静 一种钢结构建筑的绿色生态屋面结构
CN112554356A (zh) * 2020-12-01 2021-03-26 中建西部建设建材科学研究院有限公司 一种具有种植和保温功能的免拆模板及制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101748823B (zh) * 2010-01-01 2012-09-26 张宇顺 生态绿化墙及其施工方法
US20140000204A1 (en) * 2011-03-08 2014-01-02 Harbin Wushuhuan Construction Engineering Technology Research Co., Ltd. Outer thermal insulating composite wall with supporters for outer walls
CN202099924U (zh) * 2011-05-26 2012-01-04 寇宝义 植物纤维轻质复合条型墙体板及其成型模具
CN103343617B (zh) * 2013-07-17 2016-06-22 临沂铭泰建材科技有限公司 保温外模板及免拆外模板保温体系与该体系的制作方法
CN107989239A (zh) * 2017-11-03 2018-05-04 湖南诚友绿色建材科技有限公司 一种免拆钢筋砼剪力墙生态外模板
CN111593879A (zh) * 2020-03-25 2020-08-28 湖南盛安鑫高科技股份有限公司 一种自稳定可种植免拆保温模板

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000080612A (ja) * 1998-09-04 2000-03-21 Asanuma Corp 部分緑化型防音壁
JP2002233235A (ja) * 2001-02-09 2002-08-20 Nuru House:Kk 緑化断熱建築材及びその施工方法
CN202014493U (zh) * 2011-04-11 2011-10-26 上海中卉生态科技有限公司 生态移动容器
CN103306389A (zh) * 2013-07-04 2013-09-18 许浒 一种干挂外墙保温板及其作为免拆除建筑模板的新用途
CN104620963A (zh) * 2014-12-22 2015-05-20 济宁伯兰克立体绿化有限公司 立体绿化保温模块
CN211873570U (zh) * 2020-04-07 2020-11-06 童静 一种钢结构建筑的绿色生态屋面结构
CN111732375A (zh) * 2020-06-29 2020-10-02 张建华 一种微粉泡沫轻质土及其制备方法
CN112554356A (zh) * 2020-12-01 2021-03-26 中建西部建设建材科学研究院有限公司 一种具有种植和保温功能的免拆模板及制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117774118A (zh) * 2023-12-27 2024-03-29 南京天运塑业有限公司 建筑用外墙免拆保温模板及其加工方法

Also Published As

Publication number Publication date
CN112554356A (zh) 2021-03-26

Similar Documents

Publication Publication Date Title
WO2022116626A1 (zh) 一种具有种植和保温功能的免拆模板及制备方法
CN102561532A (zh) 一种功能梯度泡沫混凝土保温材料及其制备方法
CN101100887A (zh) 轻质混凝土复合墙板、楼板及公路声屏障板的制造方法
CN101956430A (zh) 一种节能低碳保温复合墙板及其生产方法和设备
CN105587073B (zh) 轻质自保温复合墙板的制备方法
CN105971166A (zh) 一种型钢骨架石膏板、新型免拆模板
CN107602039A (zh) 一种注浆陶粒轻质复合墙板及其制备方法
CN102248575B (zh) 采用现浇法制作超轻水泥基保温防水板的工艺
CN112624716B (zh) 砂浆及其应用、墙板及其制备方法和应用
CN112079602A (zh) 整浇装配式聚苯颗粒混凝土轻质隔墙板及其制备方法
CN104775554A (zh) 一种免拆模现浇混凝土隔墙及其施工方法
CN102643057A (zh) 一种eps轻集料混凝土保温砌模及其施工方法
CN111844362A (zh) 一种复合保温墙板及制备方法
CN108049521A (zh) 一种装配式轻质生土与仿生土rpc材料的组合墙体结构
CN103590515B (zh) 一种自平衡预制面、现浇芯填充墙
CN106677424A (zh) 一种抗震轻质墙板及其生产方法
CN100365230C (zh) 一种纤维增强薄板复合多孔轻质隔墙条板
CN102674759A (zh) 一种eps轻集料混凝土保温砌模及其施工方法
CN102011458B (zh) 无热桥格构式自保温砌块
CN217128561U (zh) 预置有固定件的发泡建筑外保温结构
CN201671216U (zh) 泡沫混凝土复合空心墙板
CN206110324U (zh) 一种用预制装配式墙板构件组合的墙体
CN113250372B (zh) 一种轻质外墙板的制备方法
CN101619598B (zh) 生态防火保温板材及其制作方法
CN114182874A (zh) 利用废旧建筑垃圾或工业废渣制备高性能复合墙板的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21899662

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21899662

Country of ref document: EP

Kind code of ref document: A1