WO2022116554A1 - 空调室内机及其控制方法、空调器和可读存储介质 - Google Patents

空调室内机及其控制方法、空调器和可读存储介质 Download PDF

Info

Publication number
WO2022116554A1
WO2022116554A1 PCT/CN2021/107309 CN2021107309W WO2022116554A1 WO 2022116554 A1 WO2022116554 A1 WO 2022116554A1 CN 2021107309 W CN2021107309 W CN 2021107309W WO 2022116554 A1 WO2022116554 A1 WO 2022116554A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
air
machine
air supply
fan
Prior art date
Application number
PCT/CN2021/107309
Other languages
English (en)
French (fr)
Inventor
王波
马列
张强
张�杰
Original Assignee
邯郸美的制冷设备有限公司
广东美的制冷设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202011396767.2A external-priority patent/CN114593456A/zh
Priority claimed from CN202022865406.XU external-priority patent/CN213955428U/zh
Application filed by 邯郸美的制冷设备有限公司, 广东美的制冷设备有限公司 filed Critical 邯郸美的制冷设备有限公司
Publication of WO2022116554A1 publication Critical patent/WO2022116554A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0071Indoor units, e.g. fan coil units with means for purifying supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices

Definitions

  • the present application relates to the technical field of air conditioning, and in particular, to an air conditioner indoor unit, a control method for an air conditioner indoor unit, an air conditioner, and a readable storage medium.
  • the air treatment products on the market are diversified.
  • the treatment of room air is mainly controlled by individual products such as air conditioners, purifiers, and humidifiers.
  • individual products such as air conditioners, purifiers, and humidifiers.
  • there is no linkage between the products which is inconvenient to use. If the position is relatively fixed, the air outlet range is small and the air supply distance is short, which has the disadvantages of inconvenient movement and inability to flexibly supply air.
  • the main purpose of this application is to propose an air conditioner indoor unit, which aims to solve the technical problem that the air conditioner cannot flexibly supply air.
  • the air conditioner indoor unit proposed by the present application includes a main unit and a sub unit;
  • the host includes an indoor heat exchange module
  • the sub-machine is detachably installed on the main machine, the sub-machine includes a casing, a first fan and a second fan, and the casing is provided with a sub-air inlet, a sub-air outlet, and communicates the sub-air inlet and the
  • the sub-machine air duct of the sub-air outlet, the second fan is arranged in the sub-machine air duct, and the second fan is used to drive the airflow to flow into the sub-machine air duct from the sub-air inlet, and blow to the sub-machine air duct.
  • the first fan is used to drive the airflow in the air duct of the sub-machine to blow out through the sub-air outlet.
  • the first fan is movably installed at the sub air outlet to adjust the air outlet direction and/or the air outlet height of the sub air outlet.
  • the sub-machine further includes an installation casing, the first fan is installed in the installation casing, and the installation casing is rotatably installed at the sub-air outlet, so as to have a cover to cover the air outlet.
  • the first position of the sub air outlet and the second position arranged at an angle with the plane where the sub air outlet is located.
  • the sub-machine further includes a driving device, the driving device is connected with the mounting shell to drive the mounting shell to switch between the first position and the second position.
  • the cross section of the housing is set in a rectangular shape, and the inversion axis of the mounting shell is consistent with the diagonal extension direction of the cross section of the housing.
  • the sub-air outlet is opened on the top wall surface of the casing
  • the sub-machine further includes a lifting mechanism, the lifting mechanism is mounted on the casing, and the lifting mechanism is connected to the mounting casing. connected to drive the mounting shell to switch between a raised position extending out of the sub-air outlet and a lowered position accommodated in the sub-air outlet.
  • the sub-machine further includes a drive motor mounted on the lifting mechanism, and an output shaft of the drive motor is connected to the mounting shell to drive the mounting shell to the first position and the other position. switch between the second positions.
  • the housing has a vertically extending axis of rotation about which the housing is circumferentially rotatable.
  • the sub air inlet is opened on the peripheral wall of the casing, and the sub air outlet is opened on the top wall of the casing.
  • the air duct of the sub-machine includes a main air duct and a humidifying air duct communicating with the main air duct, and the sub-machine further includes a humidifying air duct for blocking and conducting the main air duct and the humidifying air duct.
  • the opening and closing door of the device, the first fan and the second fan are installed in the main air duct, and a humidification module is arranged in the humidifying air duct.
  • the first fan is an axial flow fan
  • the second fan is a centrifugal fan
  • the air duct of the sub-machine is further provided with one or more of a purification module, a humidification module, a fragrance module, and an allergen removal module.
  • the present application also proposes an air conditioner, including an air conditioner outdoor unit and an air conditioner indoor unit, and the air conditioner indoor unit includes a main unit and a sub unit;
  • the host includes an indoor heat exchange module
  • the sub-machine is detachably installed on the main machine, the sub-machine includes a casing, a first fan and a second fan, and the casing is provided with a sub-air inlet, a sub-air outlet, and communicates the sub-air inlet and the
  • the sub-machine air duct of the sub-air outlet, the first fan and the second fan are arranged in the sub-machine air duct, and the first fan is used to drive the air flow from the sub-air inlet into the sub-machine fan
  • the second fan is used to drive the airflow in the air duct of the sub-machine to blow out through the sub-air outlet.
  • the present application also proposes a control method for an air conditioner indoor unit, which is used to control the above air conditioner indoor unit, and the control method for the air conditioner indoor unit includes:
  • the sub-machine is controlled to execute the air-transfer action according to the air-transfer instruction, so as to deliver the airflow blown by the host to the target air-supply position.
  • the step of controlling the sub-machine to perform the air-transfer action according to the air-transfer instruction, so as to deliver the airflow blown from the host to the target air-supply position includes:
  • the host position, the target air supply position and the current position of the sub-machine are obtained;
  • the sub-machine is controlled to be in the air supply area of the main machine, and the sub-machine is controlled to supply air, so as to deliver the airflow blown by the main machine to the target air supply position.
  • the described control of the sub-machine to be in the air supply area of the main machine according to the current position of the sub-machine, and the control of the sub-machine to carry out air supply, the step of conveying the airflow blown by the main machine to the target air supply position comprises:
  • the sub-machine is controlled to move to the air supply working position, and the air supply angle of the sub-machine is adjusted to the target air supply angle.
  • the steps of controlling the sub-machine to move to the air supply working position and adjusting the air supply angle of the sub-machine to the target air supply angle include:
  • control the sub-machine When it is determined that the target air supply position is within the air supply area of the host, control the sub-machine to move to the connection line between the main air outlet of the host and the target air supply position, and adjust the air supply angle of the sub-machine to the target air supply angle;
  • control the sub-machine When it is determined that the target air supply position is outside the air supply area of the main machine, control the sub-machine to move to the air supply boundary where the air supply area of the main machine is close to the target air supply position, and adjust the air supply angle of the sub-machine and the sub-machine to the target air supply angle.
  • the sub-machine when it is determined that the target air supply position is located in the air supply area of the main unit, the sub-machine is controlled to move to the connecting line between the main air outlet of the main unit and the target air supply position, and the air supply of the sub-machine is adjusted.
  • the steps from the wind angle to the target air supply angle are as follows:
  • control the sub-machine When it is determined that the target air supply position is within the air supply area of the main unit, control the sub-machine to move to the connection line between the main air outlet of the main unit and the target air supply position, and control the air between the main air outlet of the sub-machine and the main air outlet of the main unit.
  • the ratio of the distance to the distance between the sub-machine and the target air supply position is greater than or equal to 0.5 and less than or equal to 2, and the sub-machine air supply angle is adjusted to the target air supply angle.
  • the sub-machine when it is determined that the target air supply position is outside the air supply area of the main unit, the sub-machine is controlled to move to the air supply boundary where the air supply area of the main unit is close to the target air supply position, and the air supply of the sub-machine and the sub-machine is adjusted.
  • the steps from the wind angle to the target air supply angle are as follows:
  • control the sub-machine When it is determined that the target air supply position is outside the air supply area of the main unit, control the sub-machine to move to the air supply boundary where the air supply area of the main unit is close to the target air supply position, and control the distance between the sub-machine and the main air outlet of the main unit
  • the ratio to the distance between the sub-machine and the target air supply position is greater than or equal to 0.3 and less than or equal to 3, and the sub-machine air supply angle is adjusted to the target air supply angle.
  • the step of adjusting the air supply angle of the sub-machine to the target air supply angle includes:
  • the sub-machine is circumferentially rotated to the target air supply angle according to the rotation amount and the rotation direction.
  • the step of determining the rotation amount and the rotation direction of the circumferential rotation from the current air outlet angle to the target air supply angle further includes: determining the air outlet height. target location;
  • Rotating the sub-machine circumferentially to the target air supply angle according to the rotation amount and the rotation direction further includes: controlling the first fan to adjust the air outlet airflow height position of the sub-machine according to the target air outlet height position.
  • controlling the first fan to adjust the height position of the air outlet of the sub-machine according to the target position of the outlet height is specifically: adjusting the lifting height of the first fan and/or adjusting the height of the first fan according to the target position of the outlet height Turn the angle up and down to adjust the height position of the air outlet of the handset.
  • executing the air-transmitting action according to the air-transmitting instruction, so as to deliver the airflow blown by the host to the target air-supplying position includes:
  • the first blower and/or the second blower are controlled to work according to the delivered blowing instruction, so as to deliver the airflow blown by the host to the target blowing position.
  • the step of performing a transfer air blow action according to the air transfer instruction to deliver the airflow blown from the host to the target air supply position includes:
  • the movement position of the sub-machine itself is adjusted according to the received manual adjustment signal, and the sub-machine is controlled to supply air, so as to deliver the air blown by the main machine to the target air supply. wind location.
  • the step of adjusting the mobile position of the slave itself according to the received manual adjustment signal includes:
  • control the sub-machine to move the preset motion amount according to the preset motion trajectory
  • the step of controlling the sub-machine to move a preset amount of motion according to a preset motion trajectory according to the obtained single operation signal of the user specifically includes:
  • the step of controlling the sub-machine to move according to the preset trajectory according to the obtained first operation signal of the user specifically includes:
  • the peripheral rotation of the sub-machine is controlled according to the obtained first operation signal of the user.
  • the sub-machine includes an airflow adjustment device for adjusting the height position of the outlet airflow
  • the adjusting the mobile position of the sub-machine itself according to the received manual adjustment signal further includes:
  • the airflow adjustment device includes a first fan and a drive mechanism for adjusting the upper and lower air outlet positions of the first fan;
  • the adjustment of the mobile position of the sub-machine itself according to the received manual adjustment signal is specifically:
  • the present application also proposes a readable storage medium on which a control program of an air conditioner is stored, wherein when the program is executed by a processor, the steps of the above-mentioned control method for an indoor unit of an air conditioner are implemented.
  • the air conditioner indoor unit provided by the present application enables the sub-unit to be detachably installed on the main unit, and enables the sub-unit to work independently from the main unit. While ensuring the rapid heat exchange in the whole room, the sub-unit can be separated from the main unit to realize mobile air supply in the whole house. High degree of air supply can meet the different air supply needs of users.
  • the sub-machine can relay air supply to the heat exchange airflow blown by the main machine, so as to achieve long-distance, multi-directional and fixed-point directional air supply.
  • the sub-unit is installed on the main unit, so as to realize the integration of multi-machine storage, save room space, and improve space utilization.
  • the air supply volume, air supply distance and air supply range of the sub-machine can be greatly improved, thereby realizing The air supply distance of the relay air supply to the host is farther, and the air supply effect is better.
  • FIG. 1 is a schematic diagram of a hardware operating environment of a terminal involved in a solution according to an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a first embodiment of a control method for an indoor unit of an air conditioner of the present application
  • FIG. 3 is a schematic structural diagram of a second embodiment of a control method for an indoor unit of an air conditioner of the present application
  • FIG. 4 is a schematic structural diagram of a third embodiment of a control method for an indoor unit of an air conditioner of the present application.
  • FIG. 5 is a schematic structural diagram of a fourth embodiment of a control method for an indoor unit of an air conditioner of the present application.
  • FIG. 6 is a schematic structural diagram of a fifth embodiment of a control method for an indoor unit of an air conditioner of the present application.
  • FIG. 7 is a schematic structural diagram of a sixth embodiment of a control method for an indoor unit of an air conditioner of the present application.
  • FIG. 8 is a schematic structural diagram of a seventh embodiment of a control method for an indoor unit of an air conditioner of the present application.
  • FIG. 9 is a schematic structural diagram of an eighth embodiment of a control method for an indoor unit of an air conditioner of the present application.
  • FIG. 10 is a schematic structural diagram of a ninth embodiment of a control method for an indoor unit of an air conditioner of the present application.
  • FIG. 11 is a schematic structural diagram of a tenth embodiment of a control method for an indoor unit of an air conditioner of the present application.
  • FIG. 12 is a schematic structural diagram of an eleventh embodiment of a control method for an indoor unit of an air conditioner of the present application.
  • FIG. 13 is a schematic structural diagram of a twelfth embodiment of a control method for an indoor unit of an air conditioner of the present application
  • FIG. 14 is a schematic structural diagram of an air conditioner according to an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of another embodiment of the air conditioner of the present application.
  • 16 is a schematic structural diagram of an embodiment of a sub-unit of an air conditioner of the present application.
  • FIG. 17 is a schematic structural diagram of another embodiment of a sub-unit of an air conditioner of the present application.
  • FIG. 18 is a schematic diagram of a partially exploded structure of the sub-machine in FIG. 17;
  • 19 is a schematic diagram of the position state of the main unit and the sub unit of the air conditioner of the application.
  • FIG. 20 is a state schematic diagram of another position of the main unit and the sub unit of the air conditioner of the application.
  • FIG. 21 is a schematic structural diagram of another embodiment of the sub-unit of the air conditioner of the present application.
  • FIG. 22 is a schematic structural diagram of another angle of the sub-machine in FIG. 21;
  • FIG. 23 is a schematic structural diagram of the sub-machine from another angle in FIG. 21 , wherein the installation casing and the first fan are removed;
  • Fig. 24 is a wind speed simulation diagram of an embodiment of the inventive air conditioner
  • FIG. 25 is a wind speed simulation diagram of another embodiment of the air conditioner of the present application.
  • the present application proposes an air conditioner indoor unit.
  • the air conditioner indoor unit may be a wall-mounted air conditioner indoor unit, a floor-standing air conditioner indoor unit, etc.
  • the following is an example of an air conditioner indoor unit being a floor-standing air conditioner indoor unit.
  • the air conditioner indoor unit can relay the heat exchange air flow of the main unit to the target position through the sub-unit, so as to realize flexible air supply in the whole house, so that the air supply distance of the whole air conditioner is longer and the air supply range is wider.
  • the air conditioner indoor unit includes a main unit 100 and a sub unit 200; the main unit 100 includes an indoor heat exchange module; the sub unit 200 is detachably installed on the main unit 100.
  • the sub-machine 200 includes a casing 240, a first fan 221 and a second fan 230.
  • the casing 240 is provided with a sub-air inlet 241, a sub-air outlet 210, and a sub-machine air duct connecting the sub-air inlet 241 and the sub-air outlet 210.
  • the second fan 230 is arranged in the sub-machine air duct 250, the second fan 230 is used to drive the air flow from the sub-air inlet 241 into the sub-machine air duct 250, and blows to the first fan 221, and the first fan 221 is used to drive the air.
  • the airflow in the sub-machine air duct 250 is blown out through the sub-air outlet 210 .
  • the overall shapes of the host 100 and the slave 200 may be cylindrical, elliptical, square or other shapes, and the shapes of the host 100 and the slave 200 may be the same or different. Specifically, it can be selected and designed according to actual use requirements, which is not limited here.
  • the main unit 100 extends along the up-down direction as a whole, and the main unit 100 and the sub-machine 200 may be arranged in the up-down direction with equal cross-sections, or may be arranged in variable cross-sections.
  • the main engine 100 is provided with a main air outlet, a main air inlet, and a heat exchange air duct connecting the main air outlet and the main air inlet.
  • the indoor heat exchange module is installed in the heat exchange air duct for changing the airflow passing through the heat exchange air duct. heat for cooling or heating.
  • the indoor heat exchange module can only have a cooling function, or can have both cooling and heating functions.
  • the indoor heat exchange module includes a heat exchanger and a heat exchange fan. The heat exchange fan drives the air flow into the heat exchange air duct from the main air inlet, and then blows out from the main air outlet after heat exchange through the heat exchanger, thereby realizing indoor cooling or heating.
  • the indoor heat exchange fan drives the air flow into the heat exchange air duct from the main air inlet, and then blows out from the main air outlet after heat exchange through the heat exchanger, thereby realizing indoor cooling or heating.
  • the sub-machine 200 can be detachably installed in the host 100, then the sub-machine 200 can be connected inside the host 100.
  • a accommodating cavity is provided inside the host 100, so that the sub-machine 200 is installed in the accommodating cavity, and the accommodating cavity can be located in the host 100 at this time. upper, middle or lower part.
  • the sub-machine 200 can also be connected to the outside of the host computer 100 , such as being spliced to the bottom, top, and peripheral side of the host computer 100 .
  • the connection between the sub-machine 200 and the host 100 can be a structural connection, for example, by means of clip connection, magnetic connection, plug-in connection, etc., and the connection between the sub-machine 200 and the host 100
  • the sub-machine air duct 250 is communicated with the air duct in the main unit 100 , such as the fresh air air duct and the heat exchange air duct of the main unit 100 . It can be understood that the sub-machine 200 can be separated from the host 100 by manual disassembly by the user, or the sub-machine 200 can be actively separated from the host 100 by controlling the control device without manual operation by the user.
  • the sub-machine 200 can circulate and move indoors independently, and work independently, so as to meet the needs of the whole indoor air treatment and make the whole space evenly supplied with air. It is also possible to manually move the sub-machine 200 to a desired position indoors or make the sub-machine 200 move autonomously to a certain position, such as an area where many people are concentrated, so as to meet the fixed-point air supply in a certain area and realize remote control. Distance, fixed point and directional air supply to improve the air treatment effect. Compared with moving the entire air conditioner indoor unit, the movement of the sub-unit 200 is more flexible and convenient, so that it can meet the different usage needs of users.
  • the sub-unit 200 when the sub-unit 200 is installed outside the main unit 100, it can relay air to the airflow blown out from the main air outlet of the main unit 100, so that the air supply distance of the heat exchange air flow of the indoor unit of the air conditioner is longer, and the air supply range is wider, and It can realize fixed-point directional air supply, which greatly improves the comfort of the indoor unit of the air conditioner.
  • first fan 221 and the second fan 230 are arranged in sequence in the air outlet direction of the sub-machine air duct 250 .
  • the second fan 230 is installed in the sub-machine air duct 250
  • the first fan 221 may be installed in the sub-machine air duct 250 or at the sub-air outlet 210 .
  • the second fan 230 can drive the airflow to flow into the sub-machine air duct 250 through the sub-air inlet 241 and blow air toward the first fan 221 .
  • the first fan 221 can relay the airflow blown out by the first fan 221 , so that the airflow is blown out through the sub-air outlet 210 .
  • the first fan 221 and the second fan 230 may be an axial fan, a centrifugal fan, a cross-flow fan, or the like.
  • the types of the first fan 221 and the second fan 230 may be the same or different. It can be understood that, the first fan 221 and the second fan 230 may be turned on at the same time, or one of them may be turned on. The user can select different air supply modes according to usage requirements, and then choose whether to turn on the first fan 221 and the second fan 230 .
  • the indoor unit of the air conditioner of the present application enables the sub-unit 200 to be detachably installed on the main unit 100 , and enables the sub-unit 200 to work independently from the main unit 100 . While ensuring the rapid heat exchange in the whole room, the sub-unit 200 can be separated from the main unit 100 to realize the whole house mobile air supply, etc., and the sub-unit 200 can flexibly adjust the air supply demand of a certain area or the entire area in the room, so that the entire air conditioner can be flexibly adjusted.
  • the indoor unit is highly flexible and can meet the different air supply needs of users.
  • the sub-machine 200 can relay air supply to the heat exchange air flow blown out by the main machine 100, so as to achieve long-distance, multi-directional and fixed-point directional air supply.
  • the sub-unit 200 is installed on the main unit 100 while the indoor unit of the air conditioner can supply air in multiple directions, long-distance, and the whole house, so as to realize the storage and integration of multiple units, save room space, and improve space utilization.
  • the air supply volume, air supply distance and air supply of the sub-machine 200 can be greatly improved Therefore, the air supply distance of the relay air supply to the host 100 can be farther, and the air supply effect is better.
  • the first fan 221 is movably installed at the sub air outlet 210 to adjust the air outlet direction and/or air outlet of the sub air outlet 210 high.
  • the first fan 221 may be installed at the sub-air outlet 210 so as to be reversible, liftable, and circumferentially rotatable, so as to adjust the air outlet direction and/or the air outlet height of the sub-air outlet 210 .
  • the first fan 221 can adjust the air outlet direction of the sub air outlet 210
  • the first fan 221 can be reversibly installed at the sub air outlet 210 , so that the air outlet direction of the first fan 221 can be aligned with the sub air outlet 210
  • the air outlet direction of the fan is arranged at an included angle, and the air inlet end of the first fan 221 is arranged towards the sub air outlet 210 .
  • the second fan 230 drives the air flow into the sub-machine air duct 250 from the sub-air inlet 241 , and is blown out from the sub-air outlet 210 , and then enters the first fan 221 and is blown out through the first fan 221 . Then, the first fan 221 can change the air supply direction of the air flow blown from the sub air outlet 210, and make the air flow farther, the air supply volume is larger, and the air supply range is wider.
  • the first fan 221 can adjust the air outlet height of the sub-air outlet 210
  • the first fan 221 can be installed at the sub-air outlet 210 so as to be able to lift or turn upside down, then the second fan 230 drives the airflow to blow out from the sub-air outlet 210, Then the first fan 221 relays the air flow from the sub-air outlet 210, and changes the air outlet height of the air flow from the sub-air outlet 210, so as to meet the user's requirements for different air outlet heights, and increase the air supply angle and air supply. wind range.
  • the sub-machine 200 further includes a mounting shell 220 , the first fan 221 is mounted in the mounting shell 220 , and the mounting shell 220 is reversibly mounted on the sub-air outlet 210 At the position, there is a first position covering the sub-air outlet 210 and a second position arranged at an included angle with the plane where the sub-air outlet 210 is located.
  • the mounting shell 220 may be configured in a cylindrical shape, and the overall shape of the mounting shell 220 is adapted to the shape of the sub-air outlet 210 .
  • the sub-air outlet 210 is arranged in a circle, and the cross section of the installation shell 220 is also arranged in a circle.
  • the installation shell 220 provides installation and support for the first fan 221 on the one hand, and can guide the airflow of the first fan 221 on the other hand, so that the airflow blown by the first fan 221 is more concentrated and the air supply distance is longer.
  • the installation casing 220 is provided with an air inlet and an air outlet, and the first fan 221 is used to drive the air flow in the installation casing 220 to flow from the air inlet to the air outlet.
  • a grille structure may be provided at both the air inlet and the air outlet.
  • the axis of the mounting shell 220 is parallel to or coincides with the axis of the sub air outlet 210 .
  • the axis of the mounting shell 220 and the axis of the sub-air outlet 210 can be arranged at an included angle. For example, the entire installation shell 220 is turned over to the outside of the sub air outlet 210 .
  • the cross section parallel to the plane where the sub-air outlet 210 is located is defined as the installation surface of the installation shell 220
  • the plane where the installation shell 220 and the sub-air outlet 210 are located is defined as the installation surface of the installation shell 220. It is arranged at an included angle, that is, the installation surface of the installation shell 220 is arranged at an included angle with the plane where the sub-air outlet 210 is located.
  • the included angle between the mounting surface of the mounting shell 220 and the plane where the sub air outlet 210 is located may be 0 degrees to 180 degrees, optionally, the included angle between the mounting surface of the mounting shell 220 and the plane where the sub air outlet 210 is located is 30 degrees to 80 degrees. In this way, on the one hand, it is convenient for the driving mechanism to adjust the overall angle of the installation shell 220, and on the other hand, it can meet the air supply requirements of users from different angles.
  • the installation casing 220 can be turned up and down and/or left and right to drive the first fan 221 to adjust the up and down and left and right air outlet directions of the sub air outlet 210 .
  • the installation casing 220 can be turned up and down, so as to drive the first fan 221 to adjust the air outlet direction of the sub-air outlet 210 up and down.
  • the mounting shell 220 is rotatably installed at the sub air outlet 210 to have a first position covering the sub air outlet 210 and a second position set at an angle with the plane where the sub air outlet 210 is located.
  • the first fan 221 and the second fan 230 both drive the air flow through the sub-air inlet 241 into the sub-machine air duct 250 and blow out through the sub-air outlet 210 . Then, the air volume of the entire sub-machine 200 can be greatly increased, and the effect of efficient indoor air treatment and strong air supply can be achieved.
  • the airflow blown by the second fan 230 is sent to the first fan 221, and part of the indoor air also enters the first fan 221 due to the negative pressure, and the first fan 221
  • the air outlet direction of the sub-air outlet 210 can be changed by the first fan 221, which can meet the air supply requirements of the user from different angles and directions.
  • the sub-machine 200 further includes a driving device 260, the driving device 260 is connected with the mounting shell 220 to drive the mounting shell 220 in the first position and switch between the second positions.
  • the driving device 260 may specifically include a driving motor, and the output shaft of the driving motor is directly connected to the mounting shell 220, so that the driving and mounting can be turned over between the first position and the second position.
  • the driving device 260 can also include a driving motor and a gear, and an arc-shaped rack structure that meshes with the gear is provided on the mounting shell 220, and the arc-shaped rack is driven by the driving motor driving the gear to rotate. The structure moves, thereby realizing the switching of the first position and the second position of the mounting shell 220 .
  • the driving device 260 can switch the first position and the second position of the installation shell 220 in real time, that is, after receiving the turning instruction, control the installation shell 220 to continuously turn over.
  • the driving device 260 may also only drive the mounting shell 220 to switch from the first position to the second position or from the second position to the first position.
  • the cross-section of the housing 240 is arranged in a rectangular shape, and the inversion axis of the installation housing 220 and the diagonal extension direction of the cross-section of the housing 240 Consistent.
  • the cross section of the casing 240 is rectangular, and the casing 240 is in the shape of a square cabinet as a whole.
  • the cross-sectional shape of the installation casing 220 and the shape of the sub-air outlet 210 are arranged in a circle.
  • the inversion axis of the mounting shell 220 is consistent with the diagonal extension direction of the cross-section of the shell 240, and the two may be completely consistent, or there may be a deviation of no more than 5 degrees.
  • the space in the casing 240 can be maximized, so that the sizes of the installation casing 220 and the first fan 221 can be enlarged. Then, the air supply volume and air supply distance of the entire sub-machine 200 can be further increased.
  • the sub-air outlet 210 is opened on the top wall of the casing 240 , and the sub-machine 200 further includes a lifting mechanism 222 , and the lifting mechanism 222 is installed on the casing 240 .
  • the lifting mechanism 222 is connected with the installation casing 220 to drive the installation casing 220 to switch between a raised position extending out of the sub air outlet 210 and a lowered position accommodated in the sub air outlet 210 .
  • the second fan 230 can drive the air flow in the air duct 250 of the sub-machine to be blown upward from the sub-air outlet 210 , and the first fan 221 can The airflow blown from the sub-air outlet 210 is sent to positions of different heights, so as to meet the air supply requirements of different heights. And due to the partial blocking effect of the installation shell 220, the airflow blown out by the sub-air outlet 210 will also be ventilated around, thereby realizing the mode of the top-out air of the sub-machine 200 and the surrounding air, increasing the air supply range of the sub-machine 200.
  • the mounting shell 220 is rotatably installed at the sub air outlet 210 to have a first position covering the sub air outlet 210 and a second position arranged at an angle with the plane where the sub air outlet 210 is located.
  • the installation shell 220 can be turned over to the second position when the installation shell 220 is in the raised position, thereby reducing the movement space inside the main body required by the installation shell 220 when turning over, making the whole structure of the sub-machine 200 more compact, and at the same time increasing the Air supply height to achieve air volume adjustment at different heights.
  • the installation shell 220 When the sub-machine 200 is in a shutdown state, the installation shell 220 can be placed in a landing position accommodated in the sub-machine air duct 250, thereby preventing the installation shell 220 and the first fan 221 from accumulating dust, and making the overall occupied space of the sub-machine 200 small, The appearance is more beautiful.
  • the installation casing 220 and the second fan 230 when the installation casing 220 and the second fan 230 are in the landing position that is accommodated and hidden in the sub-machine air duct 250, the first fan 221 and the second fan 230 can jointly discharge air upward, thereby increasing the air supply. It can improve the efficiency and effect of air treatment, and can prevent the airflow from blowing directly to the user.
  • the lifting mechanism 222 is connected to the mounting shell 220 by driving, and the mounting shell 220 is driven to drive the first fan 221 to switch between the lifting position and the lowering position, which is more intelligent than manually adjusting the lifting position and the lowering position of the mounting shell 220. to improve the user experience.
  • the elevating mechanism 222 may specifically include a drive motor, a gear and a rack structure connected in a transmission.
  • the drive motor is fixed on the housing 240, and the rack structure is connected to the installation housing 220.
  • the drive motor drives the gear to rotate, and drives the rack structure to move up and down, so as to drive the installation and the first fan 221 to move up and down as a whole, so as to realize the rise and fall of the first fan 221. switch between the start position and the landing position.
  • the sub-machine 200 further includes a drive motor mounted on the lifting mechanism 222 , and the output shaft of the drive motor is connected with the mounting shell 220 to drive the mounting shell 220 to switch between the first position and the second position .
  • the installation shell 220 is directly driven to turn over by the driving motor, which is simpler in structure and easier to control than driving the installation shell 220 to turn over through other transmission structures.
  • the driving motor may be a stepping motor.
  • a driving motor may be provided on opposite sides of the mounting shell 220 to synchronously drive the mounting shell 220 to flip between the first position and the second position, or only one driving motor may be provided to drive the mounting shell 220 to flip.
  • the drive device 260 that drives the lifting and turning of the mounting shell 220 is integrated into one, and the overall structure is more compact, and on the other hand, the lifting mechanism 222 can drive the entire installation.
  • the casing 220 , the first fan 221 and the driving motor are lifted and lowered together, so that when the installation casing 220 is in the raised position, the installation casing 220 can be driven to turn over in real time by the driving motor.
  • FIGS. 16 to 18 and FIGS. 21 to 23 there are two lifting mechanisms 222 , and the two lifting mechanisms 222 are respectively provided in the installation shell 220 . on both sides.
  • the two lifting mechanisms 222 move synchronously, thereby realizing the synchronous driving of the mounting shell 220 to move up and down.
  • the simulated wind velocity diagram is a simulated wind velocity diagram of the air conditioner indoor unit of the present application when the installation casing of the sub-unit 200 is reversibly installed on the sub-air outlet 210 and connected to the lifting mechanism 222 through the installation casing 220 .
  • the abscissa of the simulated wind speed map represents the horizontal position
  • the ordinate represents the height position
  • the center of the wind tunnel is the position with the highest wind speed.
  • the simulated wind speed map on the left shows the wind speed map of a certain area near the handset 200 when the handset 200 is not turned on
  • the simulated wind speed map on the right shows the wind speed map of the area after a period of time after the handset 200 is turned on.
  • the simulated wind speed map shows that after the air conditioner indoor unit adopts the embodiment of the present application, it can adjust the areas of different heights, and the wind speed and air volume in the areas of different heights can be effectively improved.
  • the housing 240 has a vertically extending axis of rotation about which the housing 240 is circumferentially rotatable.
  • a universal wheel may be provided at the bottom of the casing 240 , and the circumferential rotation of the entire sub-machine 200 may be realized through the universal wheel.
  • the sub-machine 200 may also include a chassis, so that the casing 240 is rotatably mounted on the chassis. That is, the chassis does not move, and the casing 240 can rotate relative to the chassis in the circumferential direction. In short, it is only necessary to make the housing 240 rotatable circumferentially about its axis of rotation extending vertically.
  • the entire sub-machine 200 can not only adjust the air outlet angle up and down, but also rotate the air 360 degrees in the horizontal direction, thereby greatly increasing the The air supply range of the sub-machine 200 is adjusted to meet the needs of users with different air supply angles.
  • FIG. 25 shows the installation shell 220 of the sub-unit 200 of the air conditioner indoor unit of the present application, which is rotatably mounted on the sub-air outlet 210, connected to the lifting mechanism 222 through the installation shell 220, and the casing 240 can extend around the vertical axis of rotation.
  • Simulated wind speed map for the rotating example.
  • the abscissa of the simulated wind speed map represents the horizontal position
  • the ordinate represents the height position
  • the center of the wind tunnel is the position with the highest wind speed.
  • the simulated wind speed map on the left shows the wind speed map of a certain area near the handset 200 when the handset 200 is not turned on
  • the simulated wind speed map on the right shows the wind speed map of the area after a period of time after the handset 200 is turned on.
  • the simulated wind speed map shows that after the air conditioner indoor unit adopts the embodiment of the present application, it can adjust the area of different heights and different positions in the circumferential direction, and the wind speed and air volume of different height areas and different positions in the circumferential direction are all the same. can be effectively improved.
  • the sub-air inlet 241 is opened on the peripheral wall of the casing 240
  • the sub-air outlet 210 is opened on the top wall of the casing 240 .
  • the area of the sub-air inlet 241 can be increased, thereby increasing the air intake volume in the air duct 250 of the sub-machine.
  • the peripheral wall of the housing 240 is provided with sub-air inlets 241, and the sub-air inlets 241 can be a plurality of micro-holes, and the micro-holes can be circular, oval, rectangular, triangular, or the like. Then, the air intake volume in the sub-machine air duct 250 can be increased, and the air supply effect can be improved.
  • the sub-air outlet 210 on the top wall of the casing 240 By opening the sub-air outlet 210 on the top wall of the casing 240, the airflow blown out from the sub-air outlet 210 is directed upward, so as to satisfy the user's requirement that the wind does not blow directly on the body.
  • the first fan 221 and the second fan 230 can simultaneously supply air upwards, which on the one hand realizes a large air volume and fast air supply to improve the overall air treatment efficiency and effect of the sub-unit 200, and on the other hand, it can meet the user's requirement of not wanting the wind to blow directly on the body, that is, realize the windless mode of the air conditioner indoor unit.
  • the installation shell 220 is adjusted from the first position to the second position, the adjustment of the air outlet direction of the sub-air outlet 210 can be realized.
  • the sub-unit 200 can concentrate the heat-exchange airflow blown out of the main air outlet of the main unit 100 to a specific location and supply air over a long distance, so that air treatment can be performed on a specific location, that is, the air-mixed air mode of the air-conditioning indoor unit can be realized, thereby satisfying the user’s needs. different usage requirements.
  • the sub-machine air duct 250 includes a main air duct 251 and a humidifying air duct 252 communicating with the main air duct 251
  • the sub-machine 200 further includes a main air duct 251 for blocking and conducting The opening and closing door of the humidifying air duct 252 , the first fan 221 and the second fan 230 are installed in the main air duct 251
  • the humidifying air duct 252 is provided with a humidifying module 280 .
  • the humidification module 280 may specifically be a wet film assembly.
  • the main air duct 251 and the humidifying air duct 252 can be communicated through the air flow opening, and the switch door can be movably installed at the airflow opening to block and conduct the main air duct 251 and the humidifying air duct 252 .
  • the outflow of the humidified airflow can be achieved by connecting the sub-air outlet 210 with the humidifying air duct 252 , or by additionally providing a humidifying air outlet communicating with the humidifying air duct 252 on the housing 240 .
  • the first fan 221 and the second fan 230 drive the air flow into the main air duct 251, and part of the air flow flows into the humidifying air duct 252, and is humidified by the humidifying module 280. Then, it is blown out from the sub air outlet 210 and/or the humidification air outlet.
  • the opening and closing door blocks the main air duct 251 and the humidifying air duct 252 , the airflow in the main air duct 251 will not flow through the humidification module 280 for humidification, but is directly blown out from the sub air outlet 210 .
  • the humidification mode of the sub-machine 200 can be turned on and off, thereby satisfying the user's humidification needs.
  • the first fan 221 is an axial flow fan
  • the second fan 230 is a centrifugal fan.
  • the centrifugal fan can drive a sufficient amount of airflow to enter the sub-machine air duct 250 from the sub-air inlet 241 and blow toward the first fan 221 in a concentrated manner.
  • the first fan 221 is an axial flow fan
  • the airflow blown by the centrifugal fan can be quickly and uniformly sent out from the sub-air outlet 210, thereby enhancing the air supply effect of the sub-unit 200, that is, greatly improving the overall air-conditioning indoor unit.
  • the air supply volume, air supply distance and air supply range are examples of the air supply of the sub-unit 200.
  • the first fan 221 and the second fan 230 can be turned on at the same time, or one of them can be turned on, so that the sub-machine 200 has different air supply modes, and the user can select different air supply modes according to usage requirements.
  • the first fan 221 may also be set as a bladeless fan.
  • an air treatment module is disposed in the air duct 250 of the sub-machine, so as to be used for blowing out the air entering the air duct 250 of the sub-machine after corresponding treatment.
  • the air treatment module may specifically be one or more of a purification module, a humidification module 280, a heating module, a dehumidification module, a fragrance module, and an allergen removal module.
  • the humidification module 280 may specifically be a wet film component
  • the heating module may specifically be an electric heating component
  • the purification module may specifically include a plasma module, an anion module, a sterilization module, an electrostatic precipitator module, and a filter screen module, such as a HEPA filter screen.
  • the allergen removal module may specifically include a dust removal module, a mite removal module, and the like. The user can choose to set different air handling modules in the sub-machine air duct 250 to meet different usage requirements.
  • the present application also proposes an air conditioner, which includes an air conditioner outdoor unit and an air conditioner indoor unit that are connected through a refrigerant pipe.
  • the specific structure of the air conditioner indoor unit refers to the above-mentioned embodiments. All technical solutions, therefore at least have all the beneficial effects brought by the technical solutions of the above embodiments, and will not be repeated here.
  • FIG. 1 is a schematic diagram of a hardware operating environment of a terminal involved in the solution of the embodiment of the present application.
  • the terminal in the embodiment of the present application is an air conditioning device, such as an air conditioner.
  • the air conditioner is used as an example for illustration below.
  • the air conditioner includes a main unit 100 and a sub-unit 200, the main unit 100 includes an indoor heat exchange module, and the main unit 100 is provided with a main outlet.
  • the terminal may include: a processor 1001 , such as a CPU, a network interface 1004 , a user interface 1003 , a memory 1005 , and a communication bus 1002 .
  • the communication bus 1002 is used to realize the connection and communication between these components.
  • the user interface 1003 may include a display screen, an input unit such as a keyboard (Keyboard), and a remote control, and the optional user interface 1003 may also include a standard wired interface and a wireless interface.
  • the network interface 1004 may include a standard wired interface, a wireless interface (such as a non-volatile memory, such as a disk memory).
  • the memory 1005 may optionally be a storage device independent of the aforementioned processor 1001 .
  • the structure of the terminal shown in FIG. 1 does not constitute a limitation on the terminal, and may include more or less components than the one shown, or combine some components, or arrange different components.
  • the memory 1005 as a computer storage medium may include an operating system, a network communication module, a user interface module and a control program of the air conditioner 10 .
  • the network interface 1004 is mainly used to connect to the background server and perform data communication with the background server;
  • the user interface 1003 is mainly used to connect to the client (client) and perform data communication with the client;
  • the processor 1001 can be used to call the control program of the air conditioner 10 stored in the memory 1005 and perform the following operations:
  • the sub-machine 200 receives and transmits the air supply instruction
  • the transmission air blowing action is performed according to the transmission air blowing instruction, so as to deliver the airflow blown out of the host 100 to the target air blowing position.
  • processor 1001 can call the control program of the air conditioner 10 stored in the memory 1005, and also perform the following operations:
  • the position of the host 100, the target air supply position and the current position of the sub-machine 200 are obtained;
  • the sub-machine 200 is controlled to be in the air supply area of the main machine 100, and the fan of the sub-machine 200 is turned on to deliver the airflow blown by the main machine 100 to the target air supply position.
  • processor 1001 can call the control program of the air conditioner 10 stored in the memory 1005, and also perform the following operations:
  • the slave 200 is controlled to be in the air supply area of the host 100, and after the fan of the slave 200 is turned on, the air supply of the slave 200 in the host 100 is also determined according to the position of the host 100, the target position of air supply and the current position of the slave 200. Air supply working position and target air supply angle in the wind area;
  • processor 1001 can call the control program of the air conditioner 10 stored in the memory 1005, and also perform the following operations:
  • the target air supply position is located in the air supply area of the main unit 100. After controlling the sub-machine 200 to move to the connecting line between the main air outlet 110 of the main unit 100 and the target air supply position, adjust the air supply angle of the sub-machine 200 to the target air supply position. wind angle;
  • the target air supply position is outside the air supply area of the main unit 100. After controlling the sub-machine 200 to move to the air supply boundary where the main air outlet 110 of the main unit 100 is close to the target air supply position, adjust the air supply angle of the sub-machine 200 to Target air supply angle.
  • processor 1001 can call the control program of the air conditioner 10 stored in the memory 1005, and also perform the following operations:
  • control the sub-machine When it is determined that the target air supply position is within the air supply area of the main unit, control the sub-machine to move to the connection line between the main air outlet of the main unit and the target air supply position, and control the air between the main air outlet of the sub-machine and the main air outlet of the main unit.
  • the ratio of the distance to the distance between the sub-machine and the target air supply position is greater than or equal to 0.5 and less than or equal to 2, and the sub-machine air supply angle is adjusted to the target air supply angle.
  • processor 1001 can call the control program of the air conditioner 10 stored in the memory 1005, and also perform the following operations:
  • control the sub-machine When it is determined that the target air supply position is outside the air supply area of the main unit, control the sub-machine to move to the air supply boundary where the air supply area of the main unit is close to the target air supply position, and control the distance between the sub-machine and the main air outlet of the main unit
  • the ratio to the distance between the sub-machine and the target air supply position is greater than or equal to 0.3 and less than or equal to 3, and the sub-machine air supply angle is adjusted to the target air supply angle.
  • processor 1001 can call the control program of the air conditioner 10 stored in the memory 1005, and also perform the following operations:
  • the sub-machine 200 is rotated circumferentially to the target air supply angle according to the rotation amount and the rotation direction.
  • the processor 1001 may call the control program of the air conditioner 10 stored in the memory 1005, and further perform the following operations:
  • the first fan 221 is controlled according to the target position of the air outlet height to adjust the height position of the air outlet airflow of the sub-machine 200 .
  • processor 1001 can call the control program of the air conditioner 10 stored in the memory 1005, and also perform the following operations:
  • processor 1001 can call the control program of the air conditioner 10 stored in the memory 1005, and also perform the following operations:
  • the first blower 221 and/or the second blower 230 are controlled to work according to the delivered blowing instruction, so as to deliver the airflow blown from the host 100 to the target blowing position.
  • processor 1001 can call the control program of the air conditioner 10 stored in the memory 1005, and also perform the following operations:
  • the movement position of the sub-machine 200 itself is adjusted according to the received manual adjustment signal, and the fan of the sub-machine 200 is turned on to deliver the airflow blown by the host 100 to the target air supply Location.
  • processor 1001 can call the control program of the air conditioner 10 stored in the memory 1005, and also perform the following operations:
  • the slave 200 is controlled to move the preset motion amount according to the preset motion trajectory; or,
  • the slave 200 is controlled to stop moving according to the acquired second operation signal of the user.
  • processor 1001 can call the control program of the air conditioner 10 stored in the memory 1005, and also perform the following operations:
  • the steps of controlling the sub-machine 200 to move according to the preset trajectory according to the obtained first operation signal of the user specifically include:
  • the peripheral rotation of the sub-machine 200 is controlled according to the obtained first operation signal of the user.
  • processor 1001 can call the control program of the air conditioner 10 stored in the memory 1005, and also perform the following operations:
  • the first fan 221 is controlled to stop moving upward or downward according to the acquired second height adjustment signal of the user.
  • processor 1001 can call the control program of the air conditioner 10 stored in the memory 1005, and also perform the following operations:
  • control method of the indoor unit of the air conditioner includes:
  • Step S10 receiving and transmitting an air supply instruction
  • Step S20 controlling the sub-machine 200 to execute the air-transmitting action according to the air-transmitting instruction, so as to deliver the airflow blown out by the host 100 to the target air-supplying position.
  • the air supply instruction may be issued by the user, for example, the user transmits the air supply instruction by means of a remote control, a key, or a voice.
  • the air supply instruction can also be issued by the air conditioner autonomously.
  • the air conditioner senses that the user enters the air supply area through infrared sensors and other sensors, and then autonomously sends the air supply instruction.
  • the air conditioner includes a detection module and a control module.
  • the detection module is used to detect whether the user is in the air supply area in real time or regularly through sensing technologies such as voice sensors, infrared sensors, and video images, and the control module is used to receive the data detected by the detection module. And according to the received data, it sends the air blowing instruction to the slave 200 .
  • the control module may be provided on the slave 200 or the host 100 .
  • the air blowing instruction may be sent directly to the slave 200 , or may be sent to the host 100 first, and then sent to the slave 200 by the host 100 .
  • the sub-machine 200 When the sub-machine 200 executes the air-transmitting action according to the transmission air-supply instruction, the sub-machine 200 specifically turns on the fan of the sub-machine 200 to make the fan of the sub-machine 200 operate. In this way, the heat exchange airflow blown out by the main air outlet 110 of the main unit 100 can be blown to the sub-unit 200, and then the sub-unit 200 can relay air to deliver the air blown out of the main unit 100 to the target position. That is, the cooling or heat blown from the main unit 100 is delivered to the target position through the sub-machine 200 .
  • the sub-machine 200 can also move or rotate autonomously according to the target air supply position to adjust the air supply direction of the sub-machine 200 so that the sub-machine 200 can deliver the air flow of the host 100 to the target position.
  • the user can move or rotate the sub-machine 200 to a corresponding position by manually moving or the like, so that the sub-machine 200 can deliver the airflow blown out of the host computer 100 to the target air supply position.
  • the control method for the air conditioner indoor unit is to make the sub-machine 200 receive the air-transmitting instruction, and make the sub-machine 200 execute the air-transmitting action according to the air-transmitting instruction, so as to deliver the airflow blown by the main unit 100 to the target air supply position . Then the sub-unit 200 can relay the air supply to the heat exchange air flow blown out by the main unit 100, so that the whole air conditioner can realize the flexible air supply in the whole house, the air supply distance is longer, the air supply range is wider, and the fixed-point directional air output can be realized. Improve the comfort of the air conditioner.
  • the step of controlling the sub-machine 200 to execute the air-transfer action according to the air-transfer instruction, so as to deliver the airflow blown from the host 100 to the target air-supply position includes:
  • Step S30 when it is determined that the sub-machine 200 is currently in the automatic transmission air-supply mode according to the transmission air supply instruction, obtain the position of the host 100, the target air supply position and the current position of the sub-machine 200;
  • the transmission air blowing command includes the relevant information of the transmission air supply mode.
  • the slave 200 can simultaneously receive the transmission air supply mode selection signal to determine the transmission air supply mode selected by the user. . Specifically, it can be determined by the mode set by the user that the sub-machine 200 is currently in the automatic transmission air supply mode. For example, the user can select different delivery air supply modes through remote control, keys, voice, etc.
  • the user selects the automatic transmission air supply mode
  • the user sends a transmission air supply instruction to the slave 200, and selects the automatic transmission air supply mode signal.
  • the slave 200 can determine that it is currently in the automatic transmission air supply mode.
  • the user can also select the manual delivery air supply mode or the semi-automatic delivery air supply mode, and the sub-machine 200 performs the corresponding air delivery action according to the air supply instruction in the corresponding delivery air supply mode.
  • the position of the host 100 , the target air-supplying position and the current position of the sub-machine 200 can be obtained through infrared sensors, ultrasonic sensors, and Hall sensors.
  • the methods used to obtain the position of the host 100, the target air supply position, and the current position of the sub-machine 200 may be the same or different, and may be selected and designed according to actual needs, which are not specifically limited here.
  • Step S40 determining the air supply area of the host 100 according to the position of the host 100;
  • the main air outlet 110 of the host 100 has a maximum air outlet range, for example, the air outlet angle range value of the main air outlet 110 in the horizontal direction.
  • the air outlet range of the host 100 has been determined at the factory. Then, the air supply area of the host 100 can be determined by determining the current position of the host 100 and the parameter value of the air outlet range of the main air outlet 110 .
  • Step S50 according to the current position of the slave 200 , control the slave 200 to be in the air supply area of the host 100 , and control the slave 200 to supply air, so as to deliver the airflow blown by the host 100 to the target air supply position.
  • the slave 200 By acquiring the current position parameters of the slave 200 and comparing it with the determined air supply area of the host 100 in the simulated three-dimensional coordinate system, it is determined whether the current position of the slave 200 is within the air supply area of the host 100 . If it is determined that the current position of the slave 200 is within the air supply area of the host 100, it means that the slave 200 can relay the air flow to the air flow of the host 100 at this time, so as to turn on the fan of the slave 200 and make the slave 200 blow the host 100 The blown air is delivered to the target air supply position.
  • the slave 200 can be controlled to move to the air supply area of the main unit 100 autonomously.
  • the air conditioner can also send prompt information, such as indicator lights or voice messages, to remind the user to move the slave 200 to the air supply area of the main unit 100.
  • the slave 200 can relay the air flow out of the host 100 , and then turn on the fan to deliver the air blown from the host 100 to the target position.
  • the step of controlling the sub-machine 200 to be in the air supply area of the host 100 and the step of controlling the sub-machine 200 to supply air may be performed simultaneously, or one step may be preceded and the other step may be followed.
  • the slave 200 is controlled to be in the air supply area of the host 100 , and the slave 200 is controlled to supply air, so as to deliver the airflow blown from the host 100 to the target air supply
  • the steps for location include:
  • Step S51 After controlling the sub-machine 200 to be in the air supply area of the main machine 100 according to the current position of the sub-machine 200, and after controlling the sub-machine 200 to supply air, the sub-machine 200 is also determined according to the position of the main machine 100, the target position of air supply and the current position of the sub-machine 200. The air supply working position and target air supply angle in the air supply area of the host 100;
  • Step S52 controlling the sub-machine 200 to move to the air supply working position, and adjusting the air supply angle of the sub-machine 200 to the target air supply angle.
  • the position of the sub-machine 200 is precisely adjusted, so that after the sub-machine 200 moves to the air-supply working position, the air supply angle of the sub-machine 200 is adjusted, so as to realize the precise adjustment of the sub-machine 200
  • the position and air outlet angle of the sub-machine 200 can accurately deliver the air flow of the main unit 100 to the target air supply position.
  • the air supply working position refers to the position where the sub-machine 200 can accurately deliver the air flow of the main machine 100 to the target air supply position after the sub-machine 200 is in the air supply area of the main machine 100 .
  • the air supply working position and target air supply angle of the sub-machine 200 can be determined according to parameters such as the shortest air supply distance and the minimum transfer angle.
  • the data fitting difference is performed according to the pre-established mapping relationship table or calculation formula, so as to determine the air supply of the sub-machine 200 in the air supply area of the host 100. Wind working position and target air supply angle.
  • the sub-machine 200 can finely adjust the current position of the air supply area according to the determined air-supply working position and the target air-supply angle, so that after the sub-machine 200 moves to the air-supply working position, it can accurately adjust the air supply of the main machine 100.
  • the heat exchange air flow is delivered to the target air supply position.
  • the steps of controlling the movement of the sub-machine 200 to the air supply working position and the steps of adjusting the air supply angle of the sub-machine 200 to the target air supply angle may be performed simultaneously, or one step may be preceded and the other step may be followed.
  • the steps of controlling the sub-machine 200 to move to the air supply working position and adjusting the air supply angle of the sub-machine 200 to the target air supply angle include:
  • Step S521 When it is determined that the target air supply position (the position shown by point C in FIG. 19 ) is located in the air supply area of the host 100 (the area shown by the straight line AB turning around the point A through the angle ⁇ in FIG. 19 ), Controlling the sub-machine 200 to move to the connecting line between the main air outlet 110 of the host 100 and the target air supply position (the straight line AC in FIG. 19 ), and adjusting the air supply angle of the sub-machine 200 to the target air supply angle;
  • the target air supply position is within the air supply area of the host 100, and control the sub-machine 200 to move to the connection line between the main air outlet 110 of the host 100 and the target air supply position, that is, make the main air outlet 110 of the host 100,
  • the sub-machine 200 and the target air supply position are on the same straight line.
  • the position of the host 100 and the target air supply position can be simulated in the coordinate system to obtain the air supply working position of the sub-machine 200 .
  • the distance for the slave 200 to relay the airflow blown from the air outlet of the host 100 to the target air supply position is the shortest, so that the loss of air volume of the slave 200 relay air supply is small, the airflow is more concentrated, and the wind feeling is stronger.
  • the step of controlling the movement of the sub-machine 200 to the connection line between the main air outlet 110 of the host 100 and the target air supply position and the step of adjusting the air supply angle of the sub-machine 200 to the target air supply angle can be performed at the same time, or can be performed in one step One step ahead.
  • step S521 is specifically as follows: when it is determined that the target air supply position is located in the air supply area of the host computer 100, the sub-machine 200 is controlled to move to the connecting line between the main air outlet 110 of the host computer 100 and the target air supply position, and Controlling the ratio between the distance between the sub-machine 200 and the main air outlet 110 of the host 100 and the distance between the sub-machine 200 and the target air supply position is greater than or equal to 0.5 and less than or equal to 2, and adjusts the air supply angle of the sub-machine 200 to the target air supply angle.
  • the ratio of the distance between the sub-machine 200 and the main air outlet 110 of the host 100 to the distance between the sub-machine and the target air supply position may be 0.5, 0.6, 0.8, 1, 1.2, 1.5 or 2, etc. It can be understood that when the ratio of the distance between the sub-machine 200 and the main air outlet 110 of the main machine 100 to the distance between the sub-machine 200 and the target air supply position is less than 0.5, the sub-machine 200 is made too close to the main air outlet of the main machine 100.
  • the air outlet 110 makes the distance that the air flow from the sub-machine 200 reaches the target air supply position is too far, so that the cooling or heat received by the sub-machine 200 from the main machine 100 is transferred to the target air supply position. Air volume is small.
  • the sub-machine 200 is made too close to the target air supply position, although the target air supply position is The air volume at the air supply position is large, but because the distance between the sub-unit 200 and the main air outlet 110 of the main unit 100 is too large, after the heat exchange air blown from the main air outlet 110 of the main unit 100 is transmitted to the sub-unit 200, the cooling capacity and The heat loss is too large, so that the target air supply position cannot be effectively heat exchanged.
  • the sub-machine 200 can effectively Therefore, while transferring the cold or heat of the heat exchange airflow from the main air outlet 110 of the host 100 to the target air supply position, the air supply volume of the target air supply position is larger and the wind force is more concentrated.
  • the distance between the sub-machine 200 and the main air outlet 110 of the main machine 100 is less than or equal to the distance between the sub-machine 200 and the target air supply position, so that the heat exchange airflow blown out from the main air outlet 110 of the main machine 100 It can be directly blown into the sub-machine 200, and the cooling capacity or heat loss of the heat exchange air flow of the main machine 100 is small, and the relay air supply effect of the sub-machine 200 to the heat exchange air flow of the main machine 100 is better.
  • Step S522 When it is determined that the target air supply position (the position shown by point C in FIG. 20 ) is outside the air supply area of the host 100 (the area shown by the straight line AB turning around point A through the angle ⁇ in FIG. 20 ), control the The sub-machine 200 is moved to the air supply boundary of the air supply area of the host 100 close to the target air supply position, and the air supply angle of the sub-machine 200 and the sub-machine 200 is adjusted to the target air supply angle.
  • the air supply area will have a corresponding air supply boundary, that is, the air flow of the main unit 100 can be felt within the air supply boundary. , the air flow out of the host 100 cannot be felt outside the air supply boundary. Then, through the acquired position of the host 100 and the air supply boundary position of the main air outlet 110 of the host 100, the air supply working position of the slave 200 can be confirmed. By moving the sub-machine 200 to the air supply boundary where the main air outlet 110 of the main machine 100 is close to the target air supply position, the air flow out of the main machine 100 is relayed and delivered to the target air supply position.
  • the machine 200 is moved to another position in the air supply area for relay air supply, so that the distance from the main air outlet 110 of the main machine 100 to the sub-machine 200 and the distance between the sub-machine 200 and the target air supply position are the shortest, so that the sub-machine 200 is relayed.
  • the air volume loss of the supply air is small, the airflow is more concentrated, and the wind sense is stronger.
  • compared with controlling the sub-machine 200 to move to other positions in the air supply area, and then adjusting the air supply angle of the sub-machine 200, making the adjustment range of the air-supply angle of the sub-machine 200 to the minimum is easier to control.
  • the steps of controlling the movement of the sub-machine 200 to the air supply boundary where the air supply area of the host 100 is close to the target air supply position, and the steps of adjusting the air supply angle of the sub-machine 200 to the target air supply angle can be performed simultaneously, or one can be performed at the same time. One in front and one behind.
  • step S522 is specifically as follows: when it is determined that the target air supply position is located outside the air supply area of the main unit 100, the sub-machine 200 is controlled to move to the air supply boundary where the air supply area of the main unit 100 is close to the target air supply position, and is located in the main unit. 100 and the target air supply position, and control the ratio of the distance between the main air outlet 110 of the sub-machine 200 and the main machine 100 to the distance between the sub-machine 200 and the target air supply position is greater than or equal to 0.3, and less than or equal to 3, and adjust the air supply angle of the sub-machine 200 to the target air supply angle.
  • the ratio of the distance between the sub-machine 200 and the main air outlet 110 of the host 100 to the distance between the sub-machine 200 and the target air supply position may specifically be 0.3, 0.5, 0.6, 0.8, 0.85, 1, 1.2, 1.5, 1.8 , 2, 2.5, 2.8, 3, etc. Specifically, it can be understood that when the ratio between the distance between the sub-machine 200 and the main air outlet 110 of the host 100 and the distance between the sub-machine 200 and the target air supply position is less than 0.3, the sub-machine 200 is made too close to the host.
  • the main air outlet 110 of 100 makes the distance that the air flow from the sub-machine 200 reaches the target air supply position is too far, so that the cooling or heat received by the sub-machine 200 from the main machine 100 is transferred to the target air supply position. , and make the air volume small.
  • the sub-machine 200 is made too close to the target air supply position, although the target air supply position is The air volume at the air supply position is large, but because the distance between the sub-unit 200 and the main air outlet 110 of the main unit 100 is too large, after the heat exchange air blown from the main air outlet 110 of the main unit 100 is transmitted to the sub-unit 200, the cooling capacity and The heat loss is too large, so that the target air supply position cannot be effectively heat exchanged.
  • the sub-machine 200 can effectively Therefore, while transferring the cold or heat of the heat exchange airflow from the main air outlet 110 of the host 100 to the target air supply position, the air supply volume of the target air supply position is larger and the wind force is more concentrated.
  • the distance between the sub-machine 200 and the main air outlet 110 of the main machine 100 is less than or equal to the distance between the main target air supply positions of the sub-machine 200, so that the heat exchange airflow blown from the air outlet of the main machine 100 can be directly blown.
  • the cooling capacity or heat loss of the heat exchange air flow of the main machine 100 is small, and the sub-machine 200 has a better effect of relay air supply to the heat exchange air flow of the main machine 100.
  • the steps of controlling the sub-machine 200 to move to the air supply working position and adjusting the air supply angle of the sub-machine 200 to the target air supply angle include:
  • Step S61 after controlling the sub-machine 200 to move to the air supply working position, determine the rotation amount and rotation direction from the current air outlet angle circumferentially to the target air supply angle;
  • Step S62 the sub-machine 200 is rotated circumferentially to the target air supply angle according to the rotation amount and the rotation direction.
  • the sub-machine 200 specifically includes a chassis assembly and a main body disposed on the chassis assembly, and a sub-air inlet and a sub-air outlet 210 are opened on the main body. Then, the chassis assembly can be driven to rotate by controlling the driving mechanism 222 to drive the entire sub-machine 200 to rotate in the circumferential direction.
  • the chassis assembly can also be made stationary, and the entire main body can be driven to rotate relative to the chassis assembly, so as to adjust the air supply direction of the sub-machine 200 . It can be understood that when the sub-machine 200 moves to the air supply working position, the air flow of the sub-machine 200 at this time may not necessarily be able to be sent to the target air supply position.
  • the air outlet direction of the sub-machine 200 and the target air supply position after determining the rotation amount and rotation direction of the sub-machine 200 circumferentially rotating to the target air-supply position, control the sub-machine 200 to determine the direction.
  • the air outlet angle of the sub-machine 200 can be adjusted to the target air supply angle, so that the sub-machine 200 can accurately deliver the air flow of the main unit 100 to the target Air supply location.
  • the steps of determining the rotation amount and the rotation direction of the circumferential rotation from the current air outlet angle to the target air supply angle are further. include:
  • Step S611 determining the target position of the air outlet height
  • the peripheral rotation of the sub-machine 200 to the target air supply angle according to the rotation amount and the rotation direction further includes:
  • Step S621 controlling the first fan 221 to adjust the height position of the air outlet airflow of the sub-machine 200 according to the target air outlet height position.
  • the first fan 221 may be a housing that can be mounted on the sub-machine 200 so as to be lifted up and down, or a housing of the sub-machine 200 that can be installed upside down to be turned upside down. It is attached to the casing of the sub-machine 200 .
  • the air outlet height requirements thereof are different. When the user is an adult, the required air outlet height is higher, and when the user is a child, the required air outlet height is lower. And different states of the same user will also lead to different air outlet height requirements. For example, when the user is sitting or squatting, the required air outlet height is lower, and when the user is standing, the required air outlet height is higher. .
  • the air outlet height target position refers to the height of the target object at the target air supply position, that is, the height of the user.
  • the height of the air-supplying sign can be detected by sensing technologies such as infrared sensors, ultrasonic sensors, and video images.
  • the detected height of the user can be directly used as the target position of the air outlet height.
  • the heights of different users can be obtained and related calculations can be performed to obtain a more suitable The height value is used as the target position of the wind height.
  • the sub-machine 200 can control the first fan 221 to adjust the air outlet airflow height position of the sub-machine 200 according to the air outlet height target position, so that the sub-machine 200 can deliver the air flow to the corresponding high.
  • the sub-machine 200 can independently confirm the height of the user, and provide targeted air supply to different users, so as to meet the usage requirements of different users. It can be understood that since the height of the sub-machine 200 is limited to a certain extent, the sub-machine 200 can be set to different height levels, and different height levels can be selected for users of different heights to meet the air supply requirements of different heights.
  • controlling the first fan 221 to adjust the height position of the air outlet air flow of the sub-machine 200 according to the target air outlet height position is as follows:
  • Step S6211 adjusting the lift height of the first fan 221 and/or the up and down turning angle of the first fan 221 according to the target position of the air outlet height, so as to adjust the height position of the outlet air flow of the sub-machine 200 .
  • the first fan 221 needs to be raised or lowered, and the height value of the first fan 221 to be raised or lowered.
  • the upward or downward turning of the first fan 221 and the value of the turning angle can also be determined, so as to ensure that the first fan 221 can supply air toward the target position of the air outlet height.
  • the sub-air outlet 210 of the sub-machine 200 may be disposed on the top wall of the sub-machine 200 .
  • the first fan 221 is installed at the sub-air outlet 210 of the sub-machine 200 .
  • the entire airflow adjustment device 220 can move up and down or flip up and down, so as to adjust the height of the airflow blown out from the sub-air outlet 210 .
  • the sub-machine 200 is made to supply air in a no-wind mode and a wind-mixed air mode.
  • the first fan 221 is placed in the first position covering the air outlet 210 of the sub-machine, and the outlet of the sub-machine 200 is in the first position.
  • the airflow is blown upwards, and the airflow does not hit the user directly.
  • the first fan 221 is in the second position set at an angle with the plane where the sub-air outlet 210 is located, then the sub-machine 200 supplies air to the user, which can meet the requirements of different heights and different angles of the user. air demand.
  • the sub-machine 200 includes a first fan 221 and a second fan 230;
  • Executing the air delivery action according to the delivery air supply instruction to deliver the airflow blown from the host 100 to the target air supply position includes:
  • Step S21 controlling the operation of the first fan 221 and/or the second fan 230 according to the transmission air supply instruction, so as to deliver the air flow blown by the host 100 to the target air supply position.
  • the operation of the first fan 221 and/or the second fan 230 can be controlled by controlling the rotation of the motors of the first fan 221 and the second fan 230 .
  • the first fan 221 is arranged above the second fan 230 .
  • the first fan 221 may be an axial flow fan
  • the second fan 230 may be an axial flow fan or a centrifugal fan.
  • air treatment devices such as a purification module and a humidification module may also be provided in the sub-machine 200, so as to perform corresponding treatment on the air.
  • the operation of the first fan 221 and/or the second fan 230 is controlled according to the transmitted air supply command, so as to realize the air supply of the sub-machine 200, so as to deliver the air flow blown by the main machine 100 to the target air supply position.
  • the air conditioner has a humidification mode and a normal mode, and after the sub-machine 200 receives and transmits the air blowing command, the steps include:
  • the switch door is controlled to open, so that the airflow in the main air duct flows through the humidification air duct, and after being humidified by the humidification module, it is blown out from the sub air outlet 210;
  • the switch door When the reception is switched to the normal mode, the switch door is controlled to be closed, so as to prevent the airflow in the main air duct from flowing into the humidifying air duct, and make the airflow in the main air duct blown out from the sub-air outlet 210 .
  • the step of executing the air-transmitting action according to the air-transmitting instruction so as to deliver the airflow blown from the host 100 to the target air-supplying position includes:
  • Step S70 When it is determined that the slave 200 is currently in the manual transmission air supply mode according to the transmission air supply instruction, the movement position of the slave 200 itself is adjusted according to the received manual adjustment signal, and the slave 200 is controlled to supply air so as to blow the air out of the host 100. The airflow is delivered to the target supply air location.
  • the transmission air supply instruction includes the relevant information of the transmission air supply mode.
  • the slave 200 receives the transmission air supply instruction, it can simultaneously receive the transmission air supply mode selection signal to determine the transmission selected by the user.
  • Air supply mode Specifically, it can be determined by the mode set by the user that the sub-machine 200 is currently in the manual transmission air supply mode. For example, the user can select different delivery air supply modes through remote control, buttons, voice, etc.
  • the user selects the manual delivery air supply mode (for example, pressing the corresponding button)
  • the user sends a delivery air supply instruction to the slave 200, and With the selection of the manual adjustment signal, the sub-unit 200 can determine that it is currently in the manual transmission air blowing mode.
  • the sub-machine 200 adjusts the movement position of the sub-machine 200 itself according to the received manual adjustment signal, and turns on the fan of the sub-machine 200 to transport the airflow blown by the host 100 to the target air supply position.
  • the steps of adjusting the movement position of the slave 200 itself according to the received manual adjustment signal include:
  • Step S71 obtaining a single operation signal of the user
  • Step S72 controlling the sub-machine 200 to move a preset motion amount according to a preset motion track according to the obtained single operation signal of the user.
  • this mode is referred to as a full manual mode.
  • the preset motion trajectory may be circumferential rotation or translation.
  • the sub-machine 200 is controlled to move a preset motion amount according to a preset motion trajectory. That is, once the user operates, the sub-machine 200 moves once, and the amount of movement each time is a preset amount of exercise. After several adjustments by the user, the sub-machine 200 can be adjusted to the desired air supply position. In this way, the position of the sub-machine 200 can be precisely adjusted, so that the airflow of the sub-machine 200 can be delivered to the user's use position.
  • the step of adjusting the movement position of the slave 200 itself according to the received manual adjustment signal includes:
  • Step S73 obtaining the first operation signal of the user
  • Step S74 controlling the sub-machine 200 to move according to the preset trajectory according to the obtained first operation signal of the user;
  • Step S75 obtaining the second operation signal of the user
  • Step S76 controlling the slave 200 to stop moving according to the acquired second operation signal of the user.
  • this mode is referred to as a semi-automatic mode.
  • the sub-machine 200 After acquiring the user's first operation signal, the sub-machine 200 is controlled to continue to move according to the preset trajectory, and after acquiring the user's second operation signal, the sub-machine 200 is controlled to stop moving. That is, after the user only needs to press the start key, the handset 200 can continue to move, and when the user presses the end key, the handset 200 can stop moving. In this way, the movement time and the movement amount of the child machine 200 can be controlled manually, so that the child machine 200 can deliver the airflow to the target position, and the control method is simple and fast.
  • steps S71 and S72 are entered. That is, after the semi-automatic mode is performed once, the user can also enter the full manual mode to operate. In this way, after rough adjustment in the semi-automatic mode, the position of the sub-machine 200 can be precisely adjusted in the full-manual mode, so that the sub-machine 200 can finally accurately supply air.
  • the steps of controlling the sub-machine 200 to move the preset motion amount according to the preset motion trajectory according to the obtained single operation signal of the user specifically include:
  • Step S721 controlling the sub-machine 200 to rotate by a preset angle in the circumferential direction according to the obtained single operation signal of the user. That is, every time the user operates once, the sub-machine 200 is rotated by a preset angle in the circumferential direction. In this way, the circumferential rotation angle of the sub-machine 200 can be adjusted manually, and the circumferential air supply direction of the sub-machine 200 can be adjusted precisely.
  • the steps of controlling the sub-machine 200 to move according to the preset trajectory according to the obtained first operation signal of the user specifically include:
  • Step S741 controlling the peripheral rotation of the sub-machine 200 according to the obtained first operation signal of the user. That is, the user can realize the circumferential rotation of the sub-machine 200 in the semi-automatic mode, and adjust the circumferential air outlet direction of the sub-machine 200, and the adjustment method is simple, quick, and easy to implement.
  • adjusting the movement position of the slave 200 itself according to the received manual adjustment signal further includes:
  • Step S711 obtaining a single height adjustment signal of the user
  • Step S722 according to the obtained single height adjustment signal of the user, adjust a preset adjustment amount of the first fan 221 moving upward or downward.
  • the first fan 221 is controlled to move up or down by a preset adjustment amount. Specifically, whether the first fan 221 is adjusted upward or downward can be determined through corresponding operation keys. That is to say, once the user operates, the first fan 221 moves upwards or downwards by a certain amount, and each adjustment amount is a preset adjustment amount, then after the user adjusts several times, the first fan 221 can be adjusted. to the desired air supply height. In this way, the air supply height of the first fan 221 can be precisely adjusted, so that the airflow of the sub-machine 200 can be delivered to the user's use position.
  • adjusting the movement position of the slave 200 itself according to the received manual adjustment signal further includes:
  • Step S731 acquiring the user's first height adjustment signal
  • Step S742 controlling the first fan 221 to move upward or downward according to the obtained first height adjustment signal of the user;
  • Step S751 obtaining the second height adjustment signal of the user
  • Step S761 controlling the first fan 221 to stop moving upward or downward according to the acquired second height adjustment signal of the user.
  • the first fan 221 is controlled to move upward or downward continuously, and after the user's second operation signal is obtained, the first fan 221 is controlled to stop sports. That is, after the user only needs to press the start key, the first fan 221 can continue to move up or down, and when the user presses the end key, the first fan 221 can stop moving. In this way, the air flow height of the first fan 221 can be manually controlled, so that the sub-machine 200 can deliver the air flow to the target position, and the control method is simple and fast.
  • the step further includes: determining that the sub-machine 200 has not moved to the target position of the air outlet height, then entering step S711. and step S722. That is, after adjusting the upper and lower heights in the semi-automatic mode once, the user can also enter the full manual mode to fine-tune the air supply height of the first fan 221 . In this way, after rough adjustment in the semi-automatic mode, the height position of the air outlet airflow of the first fan 221 can be precisely adjusted in the full manual mode, so that the sub-machine 200 can finally supply air accurately.
  • the adjustment of the movement position of the sub-machine 200 itself is as follows:
  • Step S711 obtaining a single height adjustment signal of the user
  • Step S7221 adjust the first fan 221 according to the obtained single height of the user, adjust the first fan 221 to ascend and descend a preset height and/or adjust the first fan 221 to turn up and down by a preset angle.
  • the user can determine whether the first fan 221 needs to be raised or lowered according to the target position of the air outlet height and the current height of the first fan 221 . At the same time, it can also be determined that the first fan 221 is turned up or down, so as to ensure that the first fan 221 can supply air toward the target position of the air outlet height.
  • the user can only adjust the first fan 221 to rise or fall, or only adjust the first fan 221 to turn up or down, or adjust the first fan 221 to rise or fall at the same time, and adjust the first fan 221 to go up or down. It is turned down to adjust the height of the outlet air flow of the first fan 221 so as to blow the air flow of the sub-machine 200 to the target position of the outlet air height.
  • the lifting operation of the first fan 221 and the up-down turning operation of the first fan 221 are provided separately. Then, the user can select the lifting operation key of the first fan 221 or the up and down operation key of the first fan 221 to realize the lifting operation or the turning operation of the first fan 221 .
  • the first fan 221 moves upward by a certain amount or downward by a certain amount, and each adjustment amount is a preset adjustment amount. Adjust the first fan 221 to the required air supply height.
  • the first fan 221 is flipped up or down to a preset angle correspondingly, and after the user adjusts several times, the first fan 221 can be adjusted to the desired air supply angle , so that the first fan 221 blows air toward the target position of the air outlet height. In this way, the air supply height of the first fan 221 can be precisely adjusted, so that the airflow of the sub-machine 200 can be delivered to the user's use position.
  • adjusting the movement position of the slave 200 itself according to the received manual adjustment signal is specifically:
  • Step S731 acquiring the user's first height adjustment signal
  • Step S7421 controlling the first fan 221 to ascend and descend and/or control the first fan 221 to turn up and down according to the obtained first height adjustment signal of the user;
  • Step S751 obtaining the second height adjustment signal of the user
  • Step S761 controlling the first fan 221 to stop moving upward or downward according to the acquired second height adjustment signal of the user.
  • the user can determine whether the first fan 221 needs to be raised or lowered according to the target position of the air outlet height and the current height of the first fan 221 . At the same time, it can also be determined that the first fan 221 is turned up or down, so as to ensure that the first fan 221 can supply air toward the target position of the air outlet height.
  • the user can only adjust the first fan 221 to rise or fall, or only adjust the first fan 221 to turn up or down, or adjust the first fan 221 to rise or fall at the same time, and adjust the first fan 221 to go up or down. It is turned down to adjust the height of the outlet air flow of the first fan 221 so as to blow the air flow of the sub-machine 200 to the target position of the outlet air height.
  • the lifting operation of the first fan 221 and the up-down turning operation of the first fan 221 are provided separately. Then, the user can select the lifting operation key of the first fan 221 or the up and down operation key of the first fan 221 to realize the lifting operation or the turning operation of the first fan 221 .
  • the first fan 221 continues to move up or down accordingly, and when the user presses the up key or the down key again, the handset 200 can stop moving.
  • the first fan 221 is flipped up or down correspondingly, so that the first fan 221 continues to flip up or down.
  • the handset 200 can stop moving. In this way, the air supply height and air supply angle of the first fan 221 can be precisely adjusted, so that the airflow of the sub-machine 200 can be delivered to the user's use position.
  • the step further includes: determining that the sub-machine 200 has not moved to the target position of the air outlet height, then obtaining the user's height.
  • Single height adjustment signal
  • the driving mechanism 222 is controlled to adjust the height of the first fan 221 up and down to a preset height and/or to control the first fan 221 to turn up and down by a preset angle according to the acquired height of the user. That is, after adjusting the upper and lower heights in the semi-automatic mode once, the user can also enter the full manual mode to fine-tune the air supply height of the first fan 221 . In this way, after rough adjustment in the semi-automatic mode, the height position of the air outlet airflow of the first fan 221 can be precisely adjusted in the full manual mode, so that the sub-machine 200 can finally supply air accurately.
  • the present application also provides a computer-readable storage medium, where the computer-readable storage medium includes a control program for an air conditioner, and when the air conditioner is executed by a processor, implements the steps of the control method for an air conditioner indoor unit as in the above embodiments.

Abstract

提供了一种空调室内机、空调室内机的控制方法、空调器和可读存储介质。空调室内机包括主机(100)和子机(200);主机(100)包括室内换热模块;子机(200)可分离地安装于主机(100),子机(200)包括壳体(240)、第一风机(221)及第二风机(230),壳体(240)设有子进风口(241)、子出风口(210)、连通子进风口(241)和子出风口(210)的子机风道(250),第二风机(230)设于子机风道(250)内,第二风机(230)用以驱动气流由子进风口(241)流入子机风道(250)内,并吹向第一风机(221),第一风机(221)用于驱动子机风道(250)内的气流经由子出风口(210)吹出。子机(200)能够对主机(100)吹出的换热气流进行接力送风,使得整个空调器实现全屋灵活送风,可实现定点定向出风,且子机的送风量更大、送风距离更远,送风范围更广。

Description

空调室内机及其控制方法、空调器和可读存储介质
优先权信息
本申请要求于2020年12月3日申请的、申请号为202011396767.2以及202022865406.X的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及空气调节技术领域,特别涉及一种空调室内机、空调室内机的控制方法、空调器和可读存储介质。
背景技术
目前市场上的空气处理产品多样化,房间空气的处理主要通过空调、净化器、加湿器等单个产品分别控制,一方面产品之间没有联动,使用不方便,另一方面出风方向和出风位置相对固定,则使得出风范围小,送风距离近,具有不便于移动,不能灵活送风的缺点。
上述内容仅用于辅助理解发明的技术方案,并不代表承认上述内容是现有技术。
发明内容
本申请的主要目的是提出一种空调室内机,旨在解决空调器不能灵活送风的技术问题。
为实现上述目的,本申请提出的空调室内机包括主机和子机;
所述主机包括室内换热模块;
子机可分离地安装于所述主机,所述子机包括壳体、第一风机及第二风机,所述壳体设有子进风口、子出风口、连通所述子进风口与所述子出风口的子机风道,所述第二风机设于所述子机风道内,所述第二风机用以驱动气流由所述子进风口流入所述子机风道内,并吹向所述第一风机,所述第一风机用于驱动所述子机风道内的气流经由所述子出风口吹出。
在一实施例中,所述第一风机可活动地安装于所述子出风口处,以调节所述子出风口的出风方向和/或出风高度。
在一实施例中,所述子机还包括安装壳,所述第一风机安装于所述安装壳内,所述安装壳可翻转地安装于所述子出风口处,以具有盖合所述子出风口的第一位置及与所述子出风口所在平面呈夹角设置的第二位置。
在一实施例中,所述子机还包括驱动装置,所述驱动装置与所述安装壳连接,以驱动所述安装壳在所述第一位置和所述第二位置之间切换。
在一实施例中,所述壳体的横截面呈矩形设置,所述安装壳的翻转轴线与所述壳体的横截面的对角线延伸方向一致。
在一实施例中,所述子出风口开设于所述壳体的顶壁面,所述子机还包括升降机构,所述升降机构安装于所述壳体,所述升降机构与所述安装壳连接,以驱动所述安装壳在伸出所述子出风口的升起位置和收容于所述子出风口的降落位置之间切换。
在一实施例中,所述子机还包括安装于所述升降机构的驱动电机,所述驱动电机的输出轴与所述安装壳连接,以驱动所述安装壳在所述第一位置和所述第二位置之间切换。
在一实施例中,所述升降机构设置有两个,两所述升降机构分设于所述安装壳的两侧。
在一实施例中,所述壳体具有竖向延伸的旋转轴线,所述壳体可绕所述旋转轴线周向转动。
在一实施例中,所述子进风口开设于所述壳体的周壁面,所述子出风口开设于所述壳体的顶壁面。
在一实施例中,所述子机风道包括主风道及与主风道连通的加湿风道,所述子机还包括用于阻隔和导通所述主风道与所述加湿风道的开关门,所述第一风机与所述第二风机安装于所述主风道,所述加湿风道内设有加湿模块。
在一实施例中,所述第一风机为轴流风机,所述第二风机为离心风机。
在一实施例中,所述子机风道内还设有净化模块、加湿模块、加香模块、除过敏源模块中的一种或多种。
本申请还提出一种空调器,包括空调室外机和空调室内机,空调室内机包括主机和子机;
所述主机包括室内换热模块;
子机可分离地安装于所述主机,所述子机包括壳体、第一风机及第二风机,所述壳体设有子进风口、子出风口、连通所述子进风口与所述子出风口的子机风道,所述第一风机及所述第二风机设于所述子机风道内,所述第一风机用以驱动气流由所述子进风口流入所述子机风道内,并吹向所述第二风机,所述第二风机用于驱动所述子机风道内的气流经由所述子出风口吹出。
本申请还提出一种空调室内机的控制方法,用于控制如上述的空调室内机,该空调室内机的控制方法包括:
接收传递送风指令;以及
根据所述传递送风指令控制子机执行传递送风动作,以将主机吹出的气流输送至目标送风位置。
在一实施例中,所述根据所述传递送风指令控制子机执行传递送风动作,以将主机吹出的气流输送至目标送风位置的步骤包括:
根据所述传递送风指令确定子机当前为自动传递送风模式时,获取主机位置、目标送风位置和子机当前位置;
根据主机位置确定主机的送风区域;
根据子机当前位置控制子机处于主机的送风区域,并控制子机进行送风,以将主机吹出的气流输送至目标送风位置。
在一实施例中,所述根据子机当前位置控制子机处于主机的送风区域,并控制子机进行送风,以将 主机吹出的气流输送至目标送风位置的步骤包括:
根据子机当前位置控制子机处于主机的送风区域,并控制子机进行送风后,还根据主机位置、送风目标位置和子机当前位置确定子机在主机的送风区域的送风工作位置和目标送风角度;
控制子机运动至所述送风工作位置,并调节子机送风角度至所述目标送风角度。
在一实施例中,所述控制子机运动至所述送风工作位置,并调节子机送风角度至所述目标送风角度的步骤包括:
当确定目标送风位置位于主机的送风区域内时,控制子机运动至主机的主出风口与目标送风位置之间的连线上,以及调节子机送风角度至所述目标送风角度;
当确定目标送风位置位于主机的送风区域外时,控制子机运动至主机的送风区域靠近目标送风位置的送风边界上,以及调节子机子机送风角度至所述目标送风角度。
在一实施例中,所述当确定目标送风位置位于主机的送风区域内时,控制子机运动至主机的主出风口与目标送风位置之间的连线上,以及调节子机送风角度至所述目标送风角度的步骤具体为:
当确定目标送风位置位于主机的送风区域内时,控制子机运动至主机的主出风口与目标送风位置之间的连线上,并控制子机和主机的主出风口之间的距离与子机和目标送风位置之间的距离的比值大于或等于0.5,且小于或等于2,以及调节子机送风角度至所述目标送风角度。
在一实施例中,所述当确定目标送风位置位于主机的送风区域外时,控制子机运动至主机的送风区域靠近目标送风位置的送风边界上,以及调节子机子机送风角度至所述目标送风角度的步骤具体为:
当确定目标送风位置位于主机的送风区域外时,控制子机运动至主机的送风区域靠近目标送风位置的送风边界上,并控制子机和主机的主出风口之间的距离与子机和目标送风位置之间的距离的比值大于或等于0.3,且小于或等于3,以及调节子机送风角度至所述目标送风角度。
在一实施例中,所述控制子机运动至所述送风工作位置后,调节子机送风角度至所述目标送风角度的步骤包括:
控制子机运动至所述送风工作位置,并确定从当前出风角度周向转动至目标送风角度的转动量和转动方向;
子机根据所述转动量和转动方向周向转动至所述目标送风角度。
在一实施例中,所述控制子机运动至所述送风工作位置后,确定从当前出风角度周向转动至目标送风角度的转动量和转动方向的步骤还包括:确定出风高度目标位置;
所述子机根据所述转动量和转动方向周向转动至所述目标送风角度还包括:根据所述出风高度目标位置控制第一风机调节子机出风气流高度位置。
在一实施例中,根据所述出风高度目标位置控制第一风机调节子机出风气流高度位置具体为:根据所述出风高度目标位置调节第一风机升降高度和/或调节第一风机上下翻转角度,以调节子机的出风气流高度位置。
在一实施例中,根据所述传递送风指令执行传递送风动作,以将主机吹出的气流输送至目标送风位置包括:
根据所述传递送风指令控制所述第一风机和/或第二风机工作,以将所述主机吹出的气流输送至目标送风位置。
在一实施例中,所述根据所述传递送风指令执行传递送风动作,以将主机吹出的气流输送至目标送风位置的步骤包括:
根据所述传递送风指令确定子机当前为手动传递送风模式时,根据接收的手动调节信号调节子机自身移动位置,并控制子机进行送风,以将主机吹出的气流输送至目标送风位置。
在一实施例中,所述根据接收的手动调节信号调节子机自身移动位置的步骤包括:
获取用户的单次操作信号;
根据获取到的用户的单次操作信号控制子机按照预设运动轨迹运动预设运动量;或者,
获取用户的第一次操作信号;
根据获取到的用户的第一次操作信号控制子机按预设轨迹运动;
获取用户的第二次操作信号;
根据获取到的用户的第二次操作信号控制子机停止运动。
在一实施例中,所述根据获取到的用户的单次操作信号控制子机按照预设运动轨迹运动预设运动量的步骤具体包括:
根据获取到的用户的单次操作信号控制子机周向转动预设角度;
所述根据获取到的用户的第一次操作信号控制子机按预设轨迹运动的步骤具体包括:
根据获取到的用户的第一次操作信号控制所述子机周向转动。
在一实施例中,所述子机包括用于调节出风气流高度位置的气流调节装置;
所述根据接收的手动调节信号调节子机自身移动位置还包括:
获取用户的单次高度调节信号;
根据获取到的用户的单次高度调节信号调节第一风机向上或向下运动预设调节量;或者,
获取用户的第一次高度调节信号;
根据获取到的用户的第一次高度调节信号控制第一风机向上或向下运动;
获取用户的第二次高度调节信号;
根据获取到的用户的第二次高度调节信号控制第一风机停止向上或向下运动。
在一实施例中,所述气流调节装置包括第一风机和用于调节所述第一风机上下出风位置的驱动机构;
所述根据接收的手动调节信号调节子机自身移动位置具体为:
获取用户的单次高度调节信号;
根据获取到的用户的单次高度调节第一风机升降预设高度和/或调节第一风机上下翻转预设角度;或者,
获取用户的第一次高度调节信号;
根据获取到的用户的第一次高度调节信号控制第一风机升降和/或控制第一风机上下翻转;
获取用户的第二次高度调节信号;
根据获取到的用户的第二次高度调节信号控制第一风机停止向上或向下运动。
本申请还提出一种可读存储介质,其上存储有空调器的控制程序,其中,该程序被处理器执行时实现如上述的空调室内机的控制方法的步骤。
本申请提供的空调室内机通过使得子机可分离地安装于主机,且使得子机能够脱离主机独立工作。在保证整个室内快速换热的同时,子机可脱离主机实现全屋移动送风等,则可通过子机灵活调节房间内某一区域或整个区域的送风需求,从而使得整个空调室内机灵活度高,能够满足用户的不同送风需求。且子机可对主机吹出的换热气流进行接力送风,从而达到远距离、多方位和定点定向送风。同时,在使得空调室内机能够多方位、远距离、全屋送风的同时,使得子机安装于主机,从而实现多机器收纳整合,节省房间空间,提高空间利用率。此外,通过使得子机设有第一风机及第二风机,则相比于仅在子机内设置单个风机,可大幅提升子机的送风量、送风距离和送风范围,从而可实现对主机的接力送风的送风距离更远,送风效果更佳。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本申请实施例方案涉及的终端的硬件运行环境示意图;
图2为本申请空调室内机的控制方法第一实施例的结构示意图;
图3为本申请空调室内机的控制方法第二实施例的结构示意图;
图4为本申请空调室内机的控制方法第三实施例的结构示意图;
图5为本申请空调室内机的控制方法第四实施例的结构示意图;
图6为本申请空调室内机的控制方法第五实施例的结构示意图;
图7为本申请空调室内机的控制方法第六实施例的结构示意图;
图8为本申请空调室内机的控制方法第七实施例的结构示意图;
图9为本申请空调室内机的控制方法第八实施例的结构示意图;
图10为本申请空调室内机的控制方法第九实施例的结构示意图;
图11为本申请空调室内机的控制方法第十实施例的结构示意图;
图12为本申请空调室内机的控制方法第十一实施例的结构示意图;
图13为本申请空调室内机的控制方法第十二实施例的结构示意图;
图14为本申请空调器一实施例的结构示意图;
图15为本申请空调器另一实施例的结构示意图;
图16为本申请空调器的子机一实施例的结构示意图;
图17为本申请空调器的子机另一实施例的结构示意图;
图18为图17中子机的部分分解结构示意图;
图19为本申请空调器的主机和子机的位置状态示意图;
图20为本申请空调器的主机和子机另一位置的状态示意图;
图21为本申请空调器的子机又一实施例的结构示意图;
图22为图21中子机另一角度的结构示意图;
图23为图21中子机又一角度的结构示意图,其中,安装壳及第一风机被移除;
图24为发明空调器一实施例的风速仿真图;
图25为本申请空调器另一实施例的风速仿真图。
附图标号说明:
标号 名称 标号 名称
100 主机 240 壳体
110 主出风口 241 子进风口
200 子机 250 子机风道
210 子出风口 251 主风道
220 安装壳 252 加湿风道
221 第一风机 260 驱动装置
222 升降机构 270 开关门
230 第二风机 280 加湿模块
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
需要说明,若本申请实施例中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,全文中出现的“和/或”的含义为,包括三个并列的方案,以“A和/或B”为例,包括A方案,或B方案,或A和B同时满足的方案。
本申请提出一种空调室内机,该空调室内机具体可以为壁挂式空调室内机、落地式空调室内机等,以下均以空调室内机为落地式空调室内机为例进行示例性说明。该空调室内机能够通过子机实现将主机的换热气流接力送达至目标位置,从而实现全屋灵活送风,使得整个空调器的送风距离更远,送风范围更广。
在本申请实施例中,如图14至图18、图21至图23所示,该空调室内机包括主机100和子机200;主机100包括室内换热模块;子机200可分离地安装于主机100,子机200包括壳体240、第一风机221 及第二风机230,壳体240设有子进风口241、子出风口210、连通子进风口241与子出风口210的子机风道250,第二风机230设于子机风道250内,第二风机230用以驱动气流由子进风口241流入子机风道250内,并吹向第一风机221,第一风机221用于驱动子机风道250内的气流经由子出风口210吹出。
在本实施例中,主机100与子机200的整体形状均可以呈圆柱状,椭圆柱状、方形柱状或者其他形状,主机100与子机200的形状可以相同,也可以不同。具体可根据实际使用需求进行选择和设计,在此不做限定。主机100整体沿上下方向延伸,主机100和子机200在上下方向上可以为等截面设置,也可以为变截面设置。主机100内设有主出风口、主进风口、连通主出风口与主进风口的换热风道,室内换热模块安装于换热风道内,用于对流经换热风道的气流进行换热,以实现制冷或制热。室内换热模块可以仅具有制冷功能,也可以同时具有制冷和制热功能。室内换热模块包括换热器及换热风机,换热风机驱动气流从主进风口进入换热风道,并经由换热器换热后从主出风口吹出,从而实现室内制冷或制热。空调室内机的其他具体结构可以参照已有的技术,在此不再赘述。
子机200可分离地安装于主机100,则子机200可以连接在主机100的内部,如在主机100内部设置容纳腔,使得子机200安装于容纳腔内,此时容纳腔可以位于主机100的上部、中部或下部。子机200也可以连接在主机100的外侧,如拼接在主机100的底部,顶部、周侧面等。子机200与主机100的连接可以为结构连接,例如通过卡接、磁吸连接、插接等方式连接,子机200与主机100的连接也可以仅为通道的连接,如使得子机200的子机风道250与主机100内的风道连通,如主机100的新风风道、换热风道等。可以理解的是,可通过用户手动拆卸的方式将子机200从主机100上分离,也可以通过控制装置控制子机200主动从主机100上分离,而无需用户手动操作。当子机200脱离主机100时,可由子机200自主在室内进行循环移动,并独立工作,以满足整个室内空气处理的需求,且使得整个空间送风均匀。还可以通过用户手动移动,将子机200移动至室内所需的位置或使得子机200自主移动至某一位置,如多人集中的区域,从而能够满足某一区域的定点送风,实现远距离、定点、定向送风,提高空气处理效果。相比于移动整个空调室内机,子机200的移动更加灵活、便捷,从而能够满足用户的不同使用需求。且子机200设置在主机100外时,可对主机100的主出风口吹出的气流进行接力送风,从而使得空调室内机的换热气流的送风距离更远,送风范围更广,且可实现定点定向送风,大幅提升了空调室内机的使用舒适性。
可以理解的是,第一风机221与第二风机230在子机风道250的出风方向上依次设置。第二风机230安装于子机风道250内,第一风机221可以安装在子机风道250内,也可以安装在子出风口210处。则第二风机230能够驱动气流由子进风口241流入子机风道250内,并朝向第一风机221送风。第一风机221能够对第一风机221吹出的气流进行接力送风,以使得气流经由子出风口210吹出。第一风机221与第二风机230具体可以为轴流风机、离心风机、贯流风机等。第一风机221与第二风机230的类型可以相同,也可以不同。可以理解的是,第一风机221与第二风机230可以同时开启,也可以择一开启。用户可根据使用需求选择不同的送风模式,进而选择是否开启第一风机221和第二风机230。
本申请空调室内机通过使得子机200可分离地安装于主机100,且使得子机200能够脱离主机100独立工作。在保证整个室内快速换热的同时,子机200可脱离主机100实现全屋移动送风等,则可通过子机200灵活调节房间内某一区域或整个区域的送风需求,从而使得整个空调室内机灵活度高,能够满足用户的不同送风需求。且子机200可对主机100吹出的换热气流进行接力送风,从而达到远距离、多方位和定点定向送风。同时,在使得空调室内机能够多方位、远距离、全屋送风的同时,使得子机200安装于主机100,从而实现多机器收纳整合,节省房间空间,提高空间利用率。此外,通过使得子机200设有第一风机221及第二风机230,则相比于仅在子机200内设置单个风机,可大幅提升子机200的送风量、送风距离和送风范围,从而可实现对主机100的接力送风的送风距离更远,送风效果更佳。
在一实施例中,请参照图17、图18、图21及图22,第一风机221可活动地安装于子出风口210处,以调节子出风口210的出风方向和/或出风高度。
在本实施例中,第一风机221可以为可翻转、可升降、可周向转动地安装于子出风口210处,以用于调节子出风口210的出风方向和/或出风高度。当第一风机221能够调节子出风口210的出风方向时,可使得第一风机221可翻转地安装于子出风口210处,以使得第一风机221的出风方向可与子出风口210的出风方向呈夹角设置,且第一风机221的进风端朝向子出风口210设置。如此,第二风机230驱动气流由子进风口241进入子机风道250内,并由子出风口210吹出,随后进入第一风机221内,经由第一风机221吹出。则第一风机221可改变子出风口210吹出的气流的送风方向,且使得气流吹的更远,送风量更大,送风范围更广。当第一风机221能够调节子出风口210的出风高度时,可使得第一风机221可升降或上下翻转地安装于子出风口210处,则第二风机230驱动气流由子出风口210吹出,随后第一风机221对子出风口210吹出的气流进行接力送风,改变子出风口210吹出气流的出风高度,进而可满足用户对不同出风高度的使用需求,增大送风角度和送风范围。
进一步地,如图17、图18、图21及图22所示,子机200还包括安装壳220,第一风机221安装于安装壳220内,安装壳220可翻转地安装于子出风口210处,以具有盖合子出风口210的第一位置及与子出风口210所在平面呈夹角设置的第二位置。
在本实施例中,安装壳220具体可以呈筒状设置,且使得安装壳220的整体形状与子出风口210的形状相适配。通常地,子出风口210呈圆形设置,安装壳220的横截面也呈圆形设置。安装壳220一方面为第一风机221提供安装和支撑,另一方面能够对第一风机221的气流进行导流,进而使得第一风机221吹出的气流更加集中,送风距离更远。安装壳220上开设有进风口和出风口,第一风机221用于驱动安装壳220内的气流由进风口流向出风口。为了对第一风机221进行防护,可在进风口及出风口处均设置格栅结构。通过使得安装壳220可翻转地安装于子出风口210处,则安装壳220能够带动第一风机221一起翻转。
可以理解的是,安装壳220在盖合子出风口210的时候,安装壳220的轴线与子出风口210的轴线相平行或重合。通过使得安装壳220可翻转地安装于子出风口210处,也即使得安装壳220的轴线与子出风口210的轴线可呈夹角设置。例如使得安装壳220整体向子出风口210外侧翻转。定义安装壳220 在第一位置时与子出风口210所在平面平行的横截面为安装壳220的安装面,则安装壳220在翻转至第二位置时,安装壳220与子出风口210所在平面呈夹角设置,也即安装壳220的安装面与子出风口210所在平面呈夹角设置。安装壳220的安装面与子出风口210所在平面之间的夹角可以为0度至180度,可选地,安装壳220的安装面与子出风口210所在平面的夹角为30度至80度。如此,一方面便于驱动机构调节安装壳220整体的角度,另一方面可满足用户不同角度的送风需求。
当子出风口210开设在壳体240的周壁面时,则安装壳220可上下和/或左右翻转,以带动第一风机221实现调节子出风口210的上下、左右出风方向。当子出风口210开设在壳体240的顶壁面时,则安装壳220可上下翻转,以实现带动第一风机221调节子出风口210的上下出风方向。通过使得安装壳220可翻转地安装于子出风口210处,以具有盖合子出风口210的第一位置及与子出风口210所在平面呈夹角设置的第二位置。则在安装壳220位于第一位置时,第一风机221及第二风机230均驱动气流由子进风口241进入子机风道250内,并经由子出风口210吹出。则可大大提升整个子机200的风量,实现高效处理室内空气及强劲送风的效果。而当安装壳220处于第二位置时,第二风机230吹出的气流送到第一风机221中,且部分室内空气由于负压的作用也会进入到第一风机221内,由第一风机221吹出,通过第一风机221改变子出风口210的出风方向,能够满足用户不同角度和方向的送风需求。
在上述实施例的基础上,进一步地,请参照图18、图22及图23,子机200还包括驱动装置260,驱动装置260与安装壳220连接,以驱动安装壳220在第一位置和第二位置之间切换。
在本实施例中,驱动装置260具体可以包括驱动电机,通过使得该驱动电机的输出轴直接与安装壳220连接,以驱动安装可在第一位置和第二位置之间翻转。当然,在其他实施例中,还可以使得驱动装置260包括驱动电机及齿轮,在安装壳220上设置与齿轮啮合的弧形齿条结构,通过使得驱动电机驱动齿轮转动,以带动弧形齿条结构移动,进而实现安装壳220的第一位置和第二位置的切换。驱动装置260驱动安装壳220翻转的结构还可以有很多,在此不做一一列举。可以理解的是,驱动装置260可以实时切换安装壳220的第一位置和第二位置,也即在接收到翻转指令后,控制安装壳220持续翻转。当然,在接收到翻转指令后,驱动装置260也可以仅驱动安装壳220由第一位置切换到第二位置或由第二位置切换到第一位置。通过采用驱动装置260驱动安装壳220在第一位置和第二位置切换,相比于手动调节安装壳220的第一位置和第二位置,更加自动化和智能化,可提升用户使用体验。在其他实施例中,也可以手动来切换安装壳220的第一位置和第二位置。
在一实施例中,如图17、图18、图21至图23所示,壳体240的横截面呈矩形设置,安装壳220的翻转轴线与壳体240的横截面的对角线延伸方向一致。壳体240的横截面呈矩形设置,则壳体240整体呈方柜状。为了便于安装壳220及第一风机221整体的翻转,安装壳220的横截面形状及子出风口210的形状呈圆形设置。安装壳220的翻转轴线与壳体240的横截面的对角线延伸方向一致,则两者可以完全一致,也可以有不大于5度夹角的偏差。通过使得安装壳220的翻转轴线与壳体240的横截面的对角线延伸方向一致,则能够最大化利用壳体240内的空间,使得安装壳220及第一风机221的尺寸可以做大,则可进一步提升子机200整体的送风量和送风距离。
在一实施例中,请参照图16至图18、图21至图23,子出风口210开设于壳体240的顶壁面,子机200还包括升降机构222,升降机构222安装于壳体240,升降机构222与安装壳220连接,以驱动安装壳220在伸出子出风口210的升起位置和收容于子出风口210的降落位置之间切换。
在本实施例中,在安装壳220处于伸出子出风口210的升起位置时,第二风机230能够驱动子机风道250内的气流由子出风口210向上吹出,通过第一风机221能够将子出风口210吹出的气流送往不同高度的位置,从而满足不同高度送风的需求。且由于安装壳220的部分阻挡作用,使得由子出风口210吹出的气流还会向四周出风,进而实现子机200的顶出风加四周出风的模式,增大子机200的送风范围和送风角度,满足不同方向的空气处理和送风需求。结合安装壳220可翻转地安装于子出风口210处,以具有盖合子出风口210的第一位置及与子出风口210所在平面呈夹角设置的第二位置的上述实施例。可使得安装壳220在升起位置时实现翻转至第二位置,进而可减小安装壳220在翻转时所需主体内部的运动空间,则可使得子机200整机结构更加紧凑,同时可增加送风高度,以实现不同高度上的风量调节。
在子机200处于关机状态时,可使得安装壳220处于收容于子机风道250内的降落位置,进而避免安装壳220及第一风机221堆积灰尘,且使得子机200整体占用空间小,外形更加美观。同时,当安装壳220及第二风机230处于收容且隐藏于子机风道250内的降落位置时,第一风机221则可实现与第第二风机230共同向上出风,进而增大送风效果,提升空气处理的效率和效果,且可避免气流直吹用户。
通过升降机构222与安装壳220传动连接,驱动安装壳220带动第一风机221在在升起位置和降落位置之间切换,相比于手动调节安装壳220的升起位置和降落位置,更加智能化,可提升用户使用体验。升降机构222具体可包括传动连接的驱动电机、齿轮及齿条结构。驱动电机固定于壳体240,齿条结构与安装壳220相连接,通过驱动电机驱动齿轮转动,带动齿条结构上下移动,进而实现带动安装可及第一风机221整体上下移动,以实现在升起位置和降落位置之间切换。
进一步地,如图23所示,子机200还包括安装于升降机构222的驱动电机,驱动电机的输出轴与安装壳220连接,以驱动安装壳220在第一位置和第二位置之间切换。通过驱动电机直接驱动安装壳220翻转,相比于通过其他传动结构驱动安装壳220翻转,结构更加简单,且更加易于控制。该驱动电机具体可以为步进电机。可通过在安装壳220的相对两侧各设置一个驱动电机,以同步驱动安装壳220在第一位置和第二位置之间翻转,也可以仅设置一个驱动电机驱动安装壳220翻转。通过使得驱动安装壳220翻转的驱动电机安装在升降结构上,则一方面使得驱动安装壳220升降和翻转的驱动装置260集成为一体,整体结构更加紧凑,另一方面升降机构222能够带动整个安装壳220、第一风机221及驱动电机一起升降,从而可实现在安装壳220处于升起位置时,通过驱动电机实时驱动安装壳220翻转。
在结合上述设有升降机构222的实施例的基础上,进一步地,请再次参照图16至图18、图21至图23,升降机构222设置有两个,两升降机构222分设于安装壳220的两侧。通过在安装壳220的两侧分别设置一个升降机构222,则使得安装壳220整体的升降运动更加平稳可靠。可以理解的是,两升降机构222为同步运动,进而实现同步驱动安装壳220上下移动。
图24为本申请空调室内机在子机200的安装壳可翻转地安装于子出风口210,以及通过安装壳220 与升降机构222连接的实施例下的仿真风速图。该仿真风速图的横坐标代表水平位置,纵坐标代表高度位置,风洞中心为风速最高位置。左侧仿真风速图表明在子机200未开机时子机200附近某一区域的风速图,右侧仿真风速图表明在子机200开机后一段时间后该区域的风速图。通过该仿真风速图表明空调室内机采用本申请的实施例后,能够对不同高度的区域进行调节,且在不同高度区域的风速和风量均能够得到有效提升。
在一实施例中,壳体240具有竖向延伸的旋转轴线,壳体240可绕旋转轴线周向转动。具体可在壳体240的底部设置万向轮,通过该万向轮实现整个子机200的周向转动。当然,还可以使得子机200包括底盘,使得壳体240可周向转动地安装于底盘。也即底盘不动,壳体240可相对底盘周向转动。总之,只需使得壳体240可绕其竖向延伸的旋转轴线周向转动即可。通过使得壳体240可绕竖向延伸的旋转轴线的旋转轴线周向转动,则使得整个子机200不仅能够实现上下调节出风角度,还能够在水平方向360度旋转出风,从而极大地增加了子机200的送风范围,满足用户不同送风角度的使用需求。
图25为本申请空调室内机在子机200的安装壳220可翻转地安装于子出风口210、通过安装壳220与升降机构222连接,以及壳体240可绕竖向延伸的旋转轴线周向转动的实施例下的仿真风速图。该仿真风速图的横坐标代表水平位置,纵坐标代表高度位置,风洞中心为风速最高位置。左侧仿真风速图表明在子机200未开机时子机200附近某一区域的风速图,右侧仿真风速图表明在子机200开机后一段时间后该区域的风速图。通过该仿真风速图表明空调室内机采用本申请的实施例后,能够对不同高度的区域和周向方向上不同位置进行调节,且在不同高度区域和周向方向上不同位置的风速和风量均能够得到有效提升。
在一实施例中,如图15至图18、图21至图23所示,子进风口241开设于壳体240的周壁面,子出风口210开设于壳体240的顶壁面。
在本实施例中,通过使得子进风口241开设在壳体240的周壁面,可增大子进风口241的面积,进而提升子机风道250内的进风量。具体使得壳体240的周壁均开设有子进风口241,子进风口241具体可以为多个微孔,该微孔可以为圆形、椭圆形、矩形、三角形等。则能够增大子机风道250内的进风量,提升送风效果。通过使得子出风口210开设在壳体240的顶壁,使得子出风口210吹出的气流朝上,从而可满足用户不想风直吹身体的使用需求。
结合安装壳220可翻转地安装于子出风口210处的上述实施例,则在安装壳220处于第一位置时,第一风机221与第二风机230能够同时向上送风,一方面实现大风量和快速送风,以提升子机200整体的空气处理效率和效果,另一方面能够满足用户不想风直吹身体的使用需求,也即实现空调室内机的无风感模式。而当安装壳220由第一位置调节至第二位置时,可实现子出风口210出风方向的调整,一方面子出风口210吹出的气流能够实现顶出风和四周出风,另一方面子机200能够将主机100的主出风口吹出的换热气流进行特定位置集中及远距离送风,从而可对特定位置进行空气处理,也即实现空调室内机的风拌风模式,进而满足用户的不同使用需求。
在一实施例中,请参照图18,子机风道250包括主风道251及与主风道251连通的加湿风道252,子机200还包括用于阻隔和导通主风道251与加湿风道252的开关门,第一风机221与第二风机230安装于主风道251,加湿风道252内设有加湿模块280。
在本实施例中,加湿模块280具体可以为湿膜组件。主风道251与加湿风道252具体可通过气流流通口连通,开关门可活动地安装于气流流通口处,以阻隔和导通主风道251与加湿风道252。可通过使得子出风口210与加湿风道252连通,也可以通过另外在壳体240上设置与加湿风道252连通的加湿出风口,以实现加湿气流的流出。则当开关门导通主风道251与加湿风道252时,第一风机221及第二风机230驱动气流流入主风道251内,且部分气流流入加湿风道252内,经由加湿模块280加湿后由子出风口210和/或加湿出风口吹出。当开关门阻隔主风道251和加湿风道252时,主风道251内的气流不会流经加湿模块280加湿,而直接由子出风口210吹出。如此,通过设置加湿风道252,通过开关门实现开启和关闭子机200的加湿模式,则可实现子机200的加湿模式的开启可关闭,进而可满足用户的加湿需求。
在一实施例中,如图18所示,第一风机221为轴流风机,第二风机230为离心风机。通过使得第二风机230为离心风机,则离心风机能够驱动足量的气流由子进风口241进入子机风道250内,并集中吹向第一风机221。而使得第一风机221为轴流风机,则可对离心风机吹出的气流进行快速且均匀的由子出风口210送出,进而增强子机200的送风效果,也即极大地提升了空调室内机整体的送风量、送风距离和送风范围。当然,第一风机221与第二风机230可以同时开启,也可以择一开启,则使得子机200具有不同的送风模式,用户可根据使用需求选择不同的送风模式。第一风机221具体还可以设置为无叶风扇。
在一实施例中,子机风道250内设置有空气处理模块,以用于对进入子机风道250内的气流进行相应的处理后吹出。该空气处理模块具体可以为净化模块、加湿模块280、加热模块、除湿模块、加香模块、除过敏源模块中的一种或多种。加湿模块280具体可以为湿膜组件,加热模块具体可以为电加热组件,净化模块具体可以包括等离子模块、负离子模块、杀菌模块、静电除尘模块、过滤网模块,例如HEPA过滤网等。除过敏原模块具体可以包括除粉尘模块,除螨虫模块等。用户可选择在子机风道250内设置不同的空气处理模块,以满足不同的使用需求。
本申请还提出一种空调器,该空调器包括通过冷媒管相连通的空调室外机和空调室内机,该空调室内机的具体结构参照上述实施例,由于本空调器采用了上述所有实施例的全部技术方案,因此至少具有上述实施例的技术方案所带来的所有有益效果,在此不再一一赘述。
如图1所示,图1是本申请实施例方案涉及的终端的硬件运行环境示意图。
本申请实施例终端为空气调节设备,比如空调器,以下以空调器为例进行示例性说明,其中,空调器包括主机100和子机200,主机100包括室内换热模块,主机100设有主出风口110及连通主出风口110的换热风道,室内换热模块安装于换热风道,子机200可分离地安装于主机100,子机200设有子机风道。
如图1所示,该终端可以包括:处理器1001,例如CPU,网络接口1004,用户接口1003,存储器 1005,通信总线1002。其中,通信总线1002用于实现这些组件之间的连接通信。用户接口1003可以包括显示屏(Display)、输入单元比如键盘(Keyboard)、遥控器,可选用户接口1003还可以包括标准的有线接口、无线接口。网络接口1004可选的可以包括标准的有线接口、无线接口(如存储器(non-volatilememory),例如磁盘存储器。存储器1005可选的还可以是独立于前述处理器1001的存储装置。
本领域技术人员可以理解,图1中示出的终端的结构并不构成对终端的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
如图1所示,作为一种计算机存储介质的存储器1005中可以包括操作系统、网络通信模块、用户接口模块以及空调器10的控制程序。
在图1所示的终端中,网络接口1004主要用于连接后台服务器,与后台服务器进行数据通信;用户接口1003主要用于连接客户端(用户端),与客户端进行数据通信;而处理器1001可以用于调用存储器1005中存储的空调器10的控制程序,并执行以下操作:
子机200接收传递送风指令;
根据传递送风指令执行传递送风动作,以将主机100吹出的气流输送至目标送风位置。
进一步地,处理器1001可以调用存储器1005中存储的空调器10的控制程序,还执行以下操作:
根据传递送风指令确定子机200当前为自动传递送风模式时,获取主机100位置、目标送风位置和子机200当前位置;
根据主机100位置确定主机100的送风区域;
根据子机200当前位置控制子机200处于主机100的送风区域,并开启子机200风机以将主机100吹出的气流输送至目标送风位置。
进一步地,处理器1001可以调用存储器1005中存储的空调器10的控制程序,还执行以下操作:
根据子机200当前位置控制子机200处于主机100的送风区域,并开启子机200风机后,还根据主机100位置、送风目标位置和子机200当前位置确定子机200在主机100的送风区域的送风工作位置和目标送风角度;
控制子机200运动至送风工作位置后,调节子机200送风角度至目标送风角度。
进一步地,处理器1001可以调用存储器1005中存储的空调器10的控制程序,还执行以下操作:
确定目标送风位置位于主机100的送风区域内,控制子机200运动至主机100的主出风口110与目标送风位置之间的连线上后,调节子机200送风角度至目标送风角度;
确定目标送风位置位于主机100的送风区域外,控制子机200运动至主机100的主出风口110靠近目标送风位置的送风边界上后,调节子机200子机200送风角度至目标送风角度。
进一步地,处理器1001可以调用存储器1005中存储的空调器10的控制程序,还执行以下操作:
当确定目标送风位置位于主机的送风区域内时,控制子机运动至主机的主出风口与目标送风位置之间的连线上,并控制子机和主机的主出风口之间的距离与子机和目标送风位置之间的距离的比值大于或等于0.5,且小于或等于2,以及调节子机送风角度至所述目标送风角度。
进一步地,处理器1001可以调用存储器1005中存储的空调器10的控制程序,还执行以下操作:
当确定目标送风位置位于主机的送风区域外时,控制子机运动至主机的送风区域靠近目标送风位置的送风边界上,并控制子机和主机的主出风口之间的距离与子机和目标送风位置之间的距离的比值大于或等于0.3,且小于或等于3,以及调节子机送风角度至所述目标送风角度。
进一步地,处理器1001可以调用存储器1005中存储的空调器10的控制程序,还执行以下操作:
控制子机200运动至送风工作位置后,确定从当前出风角度周向转动至目标送风角度的转动量和转动方向;
子机200根据转动量和转动方向周向转动至目标送风角度。
在一实施例中,处理器1001可以调用存储器1005中存储的空调器10的控制程序,还执行以下操作:
确定出风高度目标位置;
根据出风高度目标位置控制第一风机221调节子机200出风气流高度位置。
进一步地,处理器1001可以调用存储器1005中存储的空调器10的控制程序,还执行以下操作:
根据出风高度目标位置调节第一风机221升降高度和/或调节第一风机221上下翻转角度,以调节子机200的出风气流高度位置。
进一步地,处理器1001可以调用存储器1005中存储的空调器10的控制程序,还执行以下操作:
根据传递送风指令控制第一风机221和/或第二风机230工作,以将主机100吹出的气流输送至目标送风位置。
进一步地,处理器1001可以调用存储器1005中存储的空调器10的控制程序,还执行以下操作:
根据传递送风指令确定子机200当前为手动传递送风模式时,根据接收的手动调节信号调节子机200自身移动位置,并开启子机200风机以将主机100吹出的气流输送至目标送风位置。
进一步地,处理器1001可以调用存储器1005中存储的空调器10的控制程序,还执行以下操作:
获取用户的单次操作信号;
根据获取到的用户的单次操作信号控制子机200按照预设运动轨迹运动预设运动量;或者,
获取用户的第一次操作信号;
根据获取到的用户的第一次操作信号控制子机200按预设轨迹运动;
获取用户的第二次操作信号;
根据获取到的用户的第二次操作信号控制子机200停止运动。
进一步地,处理器1001可以调用存储器1005中存储的空调器10的控制程序,还执行以下操作:
根据获取到的用户的单次操作信号控制子机200周向转动预设角度;
根据获取到的用户的第一次操作信号控制子机200按预设轨迹运动的步骤具体包括:
根据获取到的用户的第一次操作信号控制子机200周向转动。
进一步地,处理器1001可以调用存储器1005中存储的空调器10的控制程序,还执行以下操作:
获取用户的单次高度调节信号;
根据获取到的用户的单次高度调节信号调节第一风机221向上或向下运动预设调节量;或者,
获取用户的第一次高度调节信号;
根据获取到的用户的第一次高度调节信号控制第一风机221向上或向下运动;
获取用户的第二次高度调节信号;
根据获取到的用户的第二次高度调节信号控制第一风机221停止向上或向下运动。
进一步地,处理器1001可以调用存储器1005中存储的空调器10的控制程序,还执行以下操作:
获取用户的单次高度调节信号;
根据获取到的用户的单次高度调节控制调节第一风机221升降预设高度和/或调节第一风机221上下翻转预设角度;或者,
获取用户的第一次高度调节信号;
根据获取到的用户的第一次高度调节信号控制第一风机221升降和/或控制第一风机221上下翻转;
获取用户的第二次高度调节信号;
根据获取到的用户的第二次高度调节信号控制第一风机停止向上或向下运动。
参请照图2及图15,在一实施例中,该空调室内机的控制方法包括:
步骤S10、接收传递送风指令;
步骤S20、根据传递送风指令控制子机200执行传递送风动作,以将主机100吹出的气流输送至目标送风位置。
传递送风指令可以由用户发出,例如用户通过遥控器、按键、语音等方式发射传递送风指令。传递送风指令也可以由空调器自主发出,例如空调器通过红外等传感器感应到用户进入送风区域,则自主发出传递送风指令。则空调器包括检测模块和控制模块,检测模块用于通过语音传感器、红外传感器、视频图像等感知技术实时或定时检测用户是否处于送风区域内,控制模块用于接收检测模块检测到的数据,并根据接收到的数据向子机200发送传递送风指令。控制模块可以设置在子机200或主机100上。传递送风指令可以直接发送至子机200,也可以先发送至主机100,然后由主机100发送至子机200。
子机200根据传递送风指令执行传递送风动作,则子机200具体为开启子机200风机,使得子机200风机运行。如此,由主机100的主出风口110吹出的换热气流能够吹向子机200,然后由子机200进行接力送风,以将主机100吹出的气流输送至目标位置。也即通过子机200将主机100吹出的冷量或热量输送至目标位置。当然,子机200还可以根据目标送风位置自主移动或转动,以调整子机200的送风方向,使得子机200能够将主机100的气流输送至目标位置。或者用户可通过手动移动等方式将子机200移动或转动至对应位置,使得子机200能够将主机100吹出的气流输送至目标送风位置。
本申请提供的空调室内机的控制方法通过使得子机200接收传递送风指令,并使得子机200根据传递送风指令执行传递送风动作,以将主机100吹出的气流输送至目标送风位置。则子机200能够对主机100吹出的换热气流进行接力送风,使得整个空调器实现全屋灵活送风,送风距离更远,送风范围更广,且可实现定点定向出风,大幅提升空调器的使用舒适性。
在一实施例中,如图3所示,根据传递送风指令控制子机200执行传递送风动作,以将主机100吹出的气流输送至目标送风位置的步骤包括:
步骤S30、根据传递送风指令确定子机200当前为自动传递送风模式时,获取主机100位置、目标送风位置和子机200当前位置;
也即,传递送风指令包含了传递送风模式的相关信息,则当子机200接收到传递送风指令时,能够同时接收到传递送风模式选择信号,以确定用户选择的传递送风模式。具体可通过用户设定的模式进行确定子机200当前为自动传递送风模式。例如,用户可通过遥控器、按键、语音等方式选择不同的传递送风模式,当用户选择自动传递送风模式时,向子机200发送传递送风指令,并附带选择自动传递送风模式信号,则子机200能够确定当前为自动传递送风模式。当然,用户还可以选择手动传递送风模式或半自动传递送风模式,则子机200根据相应传递送风模式下的送风指令执行相应的传递送风动作。当根据传递送风指令确定子机200当前为自动传递送风模式时,可通过红外传感器、超声波传感器、霍尔传感器等实现获取主机100的位置、目标送风位置和子机200当前位置。获取主机100的位置、目标送风位置、子机200当前位置采用的方式可以相同,也可以不同,可根据实际需求进行选择和设计,在此不做具体限定。
步骤S40、根据主机100位置确定主机100的送风区域;
可以理解的是,主机100的主出风口110具有一个最大出风范围,例如主出风口110在水平方向上的出风角度范围值。主机100的出风范围是在出厂时就已经确定的。则通过确定主机100的当前位置及主出风口110的出风范围参数值即能够确定主机100的送风区域。
步骤S50、根据子机200当前位置控制子机200处于主机100的送风区域,并控制子机200进行送风,以将主机100吹出的气流输送至目标送风位置。
通过获取子机200当前位置参数,并与确定的主机100的送风区域在模拟的三维坐标系中进行比较,确定子机200当前位置是否处于主机100的送风区域内。若确定子机200当前位置处于主机100的送风区域内,则表明子机200此时能够对主机100的出风气流进行接力送风,从而开启子机200风机并使得子机200将主机100吹出的气流输送至目标送风位置。若确定子机200当前位置处于主机100的送风区域外,则表明子机200此时不能够对主机100的出风气流进行接力送风,此时需要控制子机200处于主机100的送风区域内。具体可通过控制子机200自主移动至主机100的送风区域内,当然,也可以由空调器发出提示信息,例如指示灯或语音信息,提醒用户将子机200移动至主机100的送风区域内。从而当子机200处于主机100的送风区域内后,便能够对主机100的出风气流进行接力送风,进而以开启风机实现将主机100吹出的气流输送至目标位置。控制子机200处于主机100的送风区域的步骤与控制子机200进行送风的步骤可以同时进行,也可以使得一个步骤在前,一个步骤在后。
通过根据主机100位置确定主机100的送风区域,根据子机200当前位置控制子机200处于主机100的 送风区域,并开启子机200风机以将主机100吹出的气流输送至目标送风位置的步骤。则能够确保子机200在需要接力送风的时候均处于主机100的送风区域内,进而提升空调器在接力送风模式下的送风稳定性,避免子机200移出主机100送风区域外后出现不能送风到目标送风位置的情况。
在一实施例中,请参照图4,根据子机200当前位置控制子机200处于主机100的送风区域,并控制子机200进行送风,以将主机100吹出的气流输送至目标送风位置的步骤包括:
步骤S51、根据子机200当前位置控制子机200处于主机100的送风区域,并控制子机200进行送风后,还根据主机100位置、送风目标位置和子机200当前位置确定子机200在主机100的送风区域的送风工作位置和目标送风角度;
步骤S52、控制子机200运动至送风工作位置,并调节子机200送风角度至目标送风角度。
在本实施例中,可以理解的是,仅控制子机200处于主机100的送风区域,并不能够精确的将主机100的出风气流输送至目标送风位置。因此,通过控制子机200处于主机100的送风位置,相当于粗调子机200的接力送风位置,然后通过主机100位置、送风目标位置和子机200当前位置确定子机200在主机100的送风区域的送风工作位置和目标送风角度后,精确调整子机200的位置,使得子机200运动至送风工作位置后,调节子机200的送风角度,从而实现精调子机200的位置和出风角度,使得子机200能够精确的将主机100的出风气流输送至目标送风位置。需要说明的是,送风工作位置指的是子机200在处于主机100的送风区域后,能够精确的将主机100的气流输送至目标送风位置的位置。可根据最短送风距离,最小转接角等参数确定子机200的送风工作位置和目标送风角度。
通过将获取到的主机100位置、送风目标位置和子机200当前位置,根据预先建立的映射关系表或计算公式进行数据拟合差值,以确定子机200在主机100的送风区域的送风工作位置和目标送风角度。如此,子机200则可在送风区域的当前位置根据确定的送风工作位置和目标送风角度进行精调,以使得子机200运动至送风工作位置后,能够精确的将主机100的换热气流传递送达至目标送风位置。控制子机200运动至送风工作位置的步骤,和调节子机200送风角度至目标送风角度的步骤可以同时进行,也可以使得一个步骤在前,一个步骤在后。
进一步地,如图5、图19及图20所示,控制子机200运动至送风工作位置,并调节子机200送风角度至目标送风角度的步骤包括:
步骤S521、当确定目标送风位置(如图19中的C点所示位置)位于主机100的送风区域(如图19中的直线AB绕A点转过θ角所示区域)内时,控制子机200运动至主机100的主出风口110与目标送风位置之间的连线(如图19中的直线AC)上,以及调节子机200送风角度至目标送风角度;
确定目标送风位置处于主机100的送风区域内,控制子机200运动至主机100的主出风口110与目标送风位置之间的连线上,也即使得主机100的主出风口110、子机200、目标送风位置三者处于同一直线上。则可通过主机100的位置及目标送风位置,在坐标系中进行模拟,以得到子机200的送风工作位置。如此,使得子机200将主机100出风口吹出的气流接力送达至目标送风位置的距离最短,从而使得子机200接力送风的风量损失小,气流更加集中,风感更强。同时,相比于控制子机200移动至送风区域的其他位置,然后调整子机200送风角度而言,使得子机200送风角度的调整幅度最小,则更加易于控制。控制子机200运动至主机100的主出风口110与目标送风位置之间的连线上的步骤,与调节子机200送风角度至目标送风角度的步骤可以同时进行,也可以一个步骤在前,一个步骤在后。
进一步地,步骤S521具体为:当确定目标送风位置位于主机100的送风区域内时,控制子机200运动至主机100的主出风口110与目标送风位置之间的连线上,并控制子机200和主机100的主出风口110之间的距离与子机200和目标送风位置之间的距离的比值大于或等于0.5,且小于或等于2,以及调节子机200送风角度至所述目标送风角度。
子机200和主机100的主出风口110之间的距离与子机和目标送风位置之间的距离的比值大于具体可以为0.5、0.6、0.8、1、1.2、1.5或2等。可以理解的是,当子机200和主机100的主出风口110之间的距离与子机200和目标送风位置之间的距离的比值小于0.5时,使得子机200过于靠近主机100的主出风口110,则使得子机200出风气流送达至目标送风位置的距离过远,从而子机200从主机100接过的冷量或热量传达至目标送风位置后损失大,且使得风量小。而当子机200和主机100的主出风口110之间的距离与子机200和目标送风位置之间的距离的比值大于2时,使得子机200过于靠近目标送风位置,虽然使得目标送风位置的风量大,但是由于子机200与主机100的主出风口110之间的距离过大,则主机100的主出风口110吹出的换热气流传达至子机200后,冷量和热量损耗过大,进而不能够对目标送风位置进行有效换热。而通过使得子机200和主机100的主出风口110之间的距离与子机200和目标送风位置之间的距离的比值大于或等于0.5,且小于或等于2,则子机200能够有效的将主机100的主出风口110的换热气流的冷量或热量传递至送风目标位置的同时,使得目标送风位置的送风量较大,风力更加集中。
可选地,子机200至主机100的主出风口110之间的距离小于或等于子机200至目标送风位置之间的距离,如此,使得主机100的主出风口110吹出的换热气流能够直接吹入子机200,主机100的换热气流的冷量或热量损失小,进而子机200进行对主机100换热气流的接力送风效果更佳。
步骤S522、当确定目标送风位置(如图20中的C点所示位置)位于主机100的送风区域(如图20中直线AB绕A点转过θ角所示区域)外时,控制子机200运动至主机100的送风区域靠近目标送风位置的送风边界上,以及调节子机200子机200送风角度至目标送风角度。
可以理解的是,主机100的主出风口110具有一定范围的送风区域,则该送风区域会具有相对应的送风边界,也即在送风边界内能够感受到主机100的出风气流,在送风边界外不能感受到主机100的出风气流。则通过获取的主机100位置和主机100的主出风口110的送风边界位置,可以确认子机200的送风工作位置。通过使得子机200运动至主机100的主出风口110靠近目标送风位置的送风边界上对主机100的出风气流进行接力送风,将其输送至目标送风位置,相比于将子机200移动至送风区域的其他位置进行接力送风,使得主机100的主出风口110至子机200的距离与子机200至目标送风位置之间的距离最短,从而使得子机200接力送风的风量损失小,气流更加集中,风感更强。同时,相比于控制子机200移动至送风区域的其他位置,然后调整子机200送风角度而言,使得子机200送风角度的调整幅度最小,则更加易于控 制。控制子机200运动至主机100的送风区域靠近目标送风位置的送风边界上的步骤,以及调节子机200子机200送风角度至目标送风角度的步骤可以同时进行,也可以一个在前,一个在后。
进一步地,步骤S522具体为:当确定目标送风位置位于主机100的送风区域外时,控制子机200运动至主机100的送风区域靠近目标送风位置的送风边界上,且位于主机100和目标送风位置之间,并控制子机200和主机100的主出风口110之间的距离与子机200和目标送风位置之间的距离的比值大于或等于0.3,且小于或等于3,以及调节子机200送风角度至所述目标送风角度。
子机200和主机100的主出风口110之间的距离与子机200和目标送风位置之间的距离的比值具体可以为0.3、0.5、0.6、0.8、0.85、1、1.2、1.5、1.8、2、2.5、2.8、3等。具体地,可以理解的是,当子机200和主机100的主出风口110之间的距离与子机200和目标送风位置之间的距离的比值小于0.3时,使得子机200过于靠近主机100的主出风口110,则使得子机200出风气流送达至目标送风位置的距离过远,从而子机200从主机100接过的冷量或热量传达至目标送风位置后损失大,且使得风量小。而当子机200和主机100的主出风口110之间的距离与子机200和目标送风位置之间的距离的比值大于3时,使得子机200过于靠近目标送风位置,虽然使得目标送风位置的风量大,但是由于子机200与主机100的主出风口110之间的距离过大,则主机100的主出风口110吹出的换热气流传达至子机200后,冷量和热量损耗过大,进而不能够对目标送风位置进行有效换热。而通过使得子机200和主机100的主出风口110之间的距离与子机200和目标送风位置之间的距离的比值大于或等于0.3,且小于或等于3,则子机200能够有效的将主机100的主出风口110的换热气流的冷量或热量传递至送风目标位置的同时,使得目标送风位置的送风量较大,风力更加集中。
可选地,子机200至主机100的主出风口110之间的距离小于或等于子机200主目标送风位置之间的距离,如此,使得主机100出风口吹出的换热气流能够直接吹入子机200,主机100的换热气流的冷量或热量损失小,进而子机200进行对主机100换热气流的接力送风效果更佳。
在一实施例中,请参照图6,控制子机200运动至送风工作位置,并调节子机200送风角度至目标送风角度的步骤包括:
步骤S61、控制子机200运动至送风工作位置后,确定从当前出风角度周向转动至目标送风角度的转动量和转动方向;
步骤S62、子机200根据转动量和转动方向周向转动至目标送风角度。
在本实施例中,子机200具体包括底盘组件和设于底盘组件上的主体,主体上开设有子进风口和子出风口210。则可通过控制驱动机构222驱动底盘组件转动,以带动整个子机200周向转动。当然,还可以使得底盘组件不动,驱动整个主体相对底盘组件转动,以实现调节子机200的送风方向。可以理解的是,当子机200运动至送风工作位置时,子机200此时的出风气流并不一定能够送到至目标送风位置。则此时根据子机200当前位置、子机200的出风方向和目标送风位置进行确定子机200周向转动至目标送风位置的转动量和转动方向后,通过控制子机200向确定的转动方向周向转动,并转动确定的转动量,便能够将子机200的出风角度调整至目标送风角度,以使得子机200能够将主机100的出风气流精确地送达至目标送风位置。
进一步地,如图7、图16至图18所示,控制子机200运动至送风工作位置后,确定从当前出风角度周向转动至目标送风角度的转动量和转动方向的步骤还包括:
步骤S611、确定出风高度目标位置;
子机200根据转动量和转动方向周向转动至目标送风角度还包括:
步骤S621、根据出风高度目标位置控制第一风机221调节子机200出风气流高度位置。
在本实施例中,第一风机221可以为可升降地安装于子机200的壳体,也可为上下翻转地安装于子机200的壳体,还可以为同时可升降且可上下翻转地安装于子机200的壳体。可以理解的是,由于用户的高矮情况不同,则使其出风高度需求不同。当用户为成人时,其所需的出风高度较高,当用户为儿童时,其所需的出风高度较低。且同一用户的不同状态也会导致其出风高度需求不同,例如,当用户坐着或蹲着时,其所需出风高度较低,当用户站着时,其所需出风高度较高。出风高度目标位置指的是目标送风位置的标的物的高度,也即用户的高度。具体可通过红外传感器、超声波传感器、视频图像等感知技术检测送风标的物的高度。
当用户为一人时,可直接将检测到的用户高度作为出风高度目标位置,而当用户为多人,且高矮情况不同,可通过获取不同用户的高度,并进行相关计算,以得到较为合适的高度值作为出风高度目标位置。如此,当确定出风高度目标位置后,子机200可根据出风高度目标位置进行控制第一风机221调节子机200的出风气流高度位置,以使得子机200能够将气流输送至对应的高度。则子机200可自主确认用户的高度,并对不同的用户进行针对性送风,从而可满足不同用户的使用需求。可以理解的是,由于子机200的高度具有一定的限制,因此,可使得子机200设置不同的高度等级,针对不同高度的用户进行选择不同的高度等级,以满足不同高度的送风需求。
在一实施例中,请参照图8、图16至图18,根据出风高度目标位置控制第一风机221调节子机200出风气流高度位置具体为:
步骤S6211、根据出风高度目标位置调节第一风机221升降高度和/或调节第一风机221上下翻转角度,以调节子机200的出风气流高度位置。
在本实施例中,根据出风高度目标位置和第一风机221的当前高度,可确定第一风机221是否需要升起或降落,以及第一风机221升起或降落的高度值。同时还可以确定第一风机221向上或向下翻转,以及翻转的角度值,以保证第一风机221能够朝向出风高度目标位置送风。
子机200的子出风口210具体可以设置在子机200的顶壁。第一风机221安装在子机200的子出风口210处。气流调节装置220整体可上下移动或上下翻转运动,进而能够调节由子出风口210吹出的气流的高度。则使得子机200送风具有无风感模式和风拌风模式,当子机200处于无风感模式时,使得第一风机221处于盖合子出风口210的第一位置,则子机200的出风气流向上吹出,气流不会直吹用户。当子机200处于风拌风模式时,使得第一风机221处于与子出风口210所在平面呈夹角设置的第二位置,则子机200朝向用户送风,可满足用户不同高度和不同角度的送风需求。
在一实施例中,如图9及图18所示,子机200包括第一风机221和第二风机230;
根据传递送风指令执行传递送风动作,以将主机100吹出的气流输送至目标送风位置包括:
步骤S21、根据传递送风指令控制第一风机221和/或第二风机230工作,以将主机100吹出的气流输送至目标送风位置。
在本实施例中,具体可通过控制第一风机221及第二风机230的电机转动,以实现控制第一风机221和/或第二风机230工作。通过在子机200内设置第一风机221和第二风机230,则可提升整个子机200的风量。第一风机221设于第二风机230的上方。第一风机221具体可以为轴流风机,第二风机230可以为轴流风机,也可以为离心风机。子机200内具体还可以设置净化模块、加湿模块等空气处理装置,以实现对空气进行相应的处理。根据传递送风指令控制第一风机221和/或第二风机230工作,实现子机200的送风,以将主机100吹出的气流输送至目标送风位置。
在一实施例中,请参照图18,空调器具有加湿模式和常规模式,子机200接收传递送风指令的步骤之后包括:
接收切换至加湿模式时,控制开关门打开,以使主风道内的气流流经加湿风道,经由加湿模块加湿后,由子出风口210吹出;
接收切换至常规模式时,控制开关门关闭,以阻隔主风道内的气流流入加湿风道,并使主风道内的气流由子出风口210吹出。
在一实施例中,如图3所示,根据传递送风指令执行传递送风动作,以将主机100吹出的气流输送至目标送风位置的步骤包括:
步骤S70、根据传递送风指令确定子机200当前为手动传递送风模式时,根据接收的手动调节信号调节子机200自身移动位置,并控制子机200进行送风,以将主机100吹出的气流输送至目标送风位置。
在本实施例中,传递送风指令包含了传递送风模式的相关信息,则当子机200接收到传递送风指令时,能够同时接收到传递送风模式选择信号,以确定用户选择的传递送风模式。具体可通过用户设定的模式进行确定子机200当前为手动传递送风模式。例如,用户可通过遥控器、按键、语音等方式选择不同的传递送风模式,当用户选择手动传递送风模式时(例如按下相应的按键),向子机200发送传递送风指令,并附带选择手动调节信号,则子机200能够确定当前为手动传递送风模式。子机200根据接收到的手动调节信号调节子机200自身移动位置,并开启子机200风机将主机100吹出的气流输送至目标送风位置。
在一实施例中,请参照图10,根据接收的手动调节信号调节子机200自身移动位置的步骤包括:
步骤S71、获取用户的单次操作信号;
步骤S72、根据获取到的用户的单次操作信号控制子机200按照预设运动轨迹运动预设运动量。
在本实施例中,将该模式称为全手动模式。该预设运动轨迹可以为周向转动,也可以平移。当获取到用户的单次操作信号时,控制子机200按照预设运动轨迹运动预设运动量。也即用户操作一次,子机200便运动一次,且每次的运动量均为预设运动量,则在用户若干次调整后,可将子机200调节至所需送风位置。如此,可实现精确调节子机200的位置,以使得子机200的气流送达至用户使用位置。
在另一实施例中,如图10所示,根据接收的手动调节信号调节子机200自身移动位置的步骤包括:
步骤S73、获取用户的第一次操作信号;
步骤S74、根据获取到的用户的第一次操作信号控制子机200按预设轨迹运动;
步骤S75、获取用户的第二次操作信号;
步骤S76、根据获取到的用户的第二次操作信号控制子机200停止运动。
在本实施例中,将该模式称为半自动模式。当获取到用户的第一次操作信号后,控制子机200按预设轨迹持续运动,则当获取到用户的第二次操作信号后,控制子机200停止运动。也即,用户只需要按开始键后,子机200便可持续运动,则当用户按结束键后,子机200便可停止运动。如此,可通过人为控制子机200的运动时间和运动量,来使得子机200将气流输送至目标位置,控制方式简单快捷。
可选地,在根据获取到的用户的第二次操作信号控制子机200停止运动的步骤之后还包括,确定子机200未运动至出风高度目标位置,则进入步骤S71和步骤S72。也即,用户在一次半自动模式后,还可进入全手动模式操作。如此,在通过半自动模式粗调后,可通过全手动模式进行精确调整子机200的位置,进而使得子机200最终能够进行精确送风。
进一步地,请参照图11,根据获取到的用户的单次操作信号控制子机200按照预设运动轨迹运动预设运动量的步骤具体包括:
步骤S721、根据获取到的用户的单次操作信号控制子机200周向转动预设角度。也即,用户每操作一次,子机200便周向转动预设角度。如此,可实现全手动调节子机200的周向转动角度,进而实现精确调整子机200的周向送风方向。
根据获取到的用户的第一次操作信号控制子机200按预设轨迹运动的步骤具体包括:
步骤S741、根据获取到的用户的第一次操作信号控制子机200周向转动。也即,用户可通过半自动模式实现子机200的周向转动,调节子机200的周向出风方向,调节方式简单快捷,易于实现。
在一实施例中,根据接收的手动调节信号调节子机200自身移动位置还包括:
步骤S711、获取用户的单次高度调节信号;
步骤S722、根据获取到的用户的单次高度调节信号调节第一风机221向上或向下运动预设调节量。
当获取到用户的单次高度调节信号时,控制第一风机221往上或往下运动预设调节量。具体地,可通过对应的操作按键确定第一风机221是往上调节还是往下调节。也即用户操作一次,第一风机221便向上运动一定量或向下运动一定量,且每次的调节量均为预设调节量,则在用户若干次调整后,可将第一风机221调节至所需送风高度。如此,可实现精确调节第一风机221的送风高度,以使得子机200的气流能够送达至用户使用位置。
在另一实施例中,如图12所示,根据接收的手动调节信号调节子机200自身移动位置还包括:
步骤S731、获取用户的第一次高度调节信号;
步骤S742、根据获取到的用户的第一次高度调节信号控制第一风机221向上或向下运动;
步骤S751、获取用户的第二次高度调节信号;
步骤S761、根据获取到的用户的第二次高度调节信号控制第一风机221停止向上或向下运动。
在本实施例中,当获取到用户的第一次高度调节信号后,控制第一风机221向上或向下持续运动,则当获取到用户的第二次操作信号后,控制第一风机221停止运动。也即,用户只需要按开始键后,第一风机221便可持续向上或向下运动,则当用户按结束键后,第一风机221便可停止运动。如此,可通过人为控制第一风机221的出风气流高度,来使得子机200将气流输送至目标位置,控制方式简单快捷。
可选地,根据获取到的用户的第二次高度调节信号控制第一风机221停止向上或向下运动的步骤之后还包括,确定子机200未运动至出风高度目标位置,则进入步骤S711和步骤S722。也即,用户在一次半自动模式的上下高度调节后,还可进入全手动模式进行微调第一风机221的送风高度。如此,在通过半自动模式粗调后,可通过全手动模式进行精确调整第一风机221的出风气流高度位置,进而使得子机200最终能够进行精确送风。
进一步地,请参照图13、图16至图18,根据接收的手动调节信号调节子机200自身移动位置具体为:
步骤S711、获取用户的单次高度调节信号;
步骤S7221、根据获取到的用户的单次高度调节第一风机221调节第一风机221升降预设高度和/或调节第一风机221上下翻转预设角度。
在本实施例中,用户可根据出风高度目标位置和第一风机221的当前高度,可确定第一风机221是否需要升起或降落。同时还可以确定第一风机221向上或向下翻转,以保证第一风机221能够朝向出风高度目标位置送风。用户可以仅通过调节第一风机221升起或降落,也可以仅调节第一风机221向上或向下翻转,还可以同时调节第一风机221升起或降落,以及调节第一风机221向上或向下翻转,进而实现调节第一风机221的出风气流高度,以满足将子机200的气流吹向出风高度目标位置。可以理解的是,第一风机221的升降操作与第一风机221的上下翻转操作分开设置。则用户可以通过选择第一风机221升降操作键,或第一风机221上下翻转操作键,以实现第一风机221的升降操作或翻转操作。
例如,用户按压升起键或降落键,第一风机221便对应向上运动一定量或向下运动一定量,且每次的调节量均为预设调节量,则在用户若干次调整后,可将第一风机221调节至所需送风高度。当用户按压向上翻转键或向下翻转键时,第一风机221便对应向上翻转或向下翻转预设角度,则在用户若干次调整后,可将第一风机221调节至所需送风角度,以使得第一风机221朝向出风高度目标位置送风。如此,可实现精确调节第一风机221的送风高度,以使得子机200的气流能够送达至用户使用位置。
进一步地,如图13所示,根据接收的手动调节信号调节子机200自身移动位置具体为:
步骤S731、获取用户的第一次高度调节信号;
步骤S7421、根据获取到的用户的第一次高度调节信号控制第一风机221升降和/或控制第一风机221上下翻转;
步骤S751、获取用户的第二次高度调节信号;
步骤S761、根据获取到的用户的第二次高度调节信号控制第一风机221停止向上或向下运动。
在本实施例中,用户可根据出风高度目标位置和第一风机221的当前高度,可确定第一风机221是否需要升起或降落。同时还可以确定第一风机221向上或向下翻转,以保证第一风机221能够朝向出风高度目标位置送风。用户可以仅通过调节第一风机221升起或降落,也可以仅调节第一风机221向上或向下翻转,还可以同时调节第一风机221升起或降落,以及调节第一风机221向上或向下翻转,进而实现调节第一风机221的出风气流高度,以满足将子机200的气流吹向出风高度目标位置。可以理解的是,第一风机221的升降操作与第一风机221的上下翻转操作分开设置。则用户可以通过选择第一风机221升降操作键,或第一风机221上下翻转操作键,以实现第一风机221的升降操作或翻转操作。
例如,用户按压升起键或降落键,第一风机221便对应向上或向下持续运动,当用户再次按压升起键或降落键时,子机200便可停止运动。当用户按压向上翻转键或向下翻转键时,第一风机221便对应向上翻转或向下翻转,以使得第一风机221持续朝上翻转或朝下翻转,当用户再次按压向上翻转键或向下翻转键时,子机200便可停止运动。如此,可实现精确调节第一风机221的送风高度和送风角度,以使得子机200的气流能够送达至用户使用位置。
可选地,根据获取到的用户的第二次高度调节信号控制第一风机221停止向上或向下运动的步骤之后还包括,确定子机200未运动至出风高度目标位置,则获取用户的单次高度调节信号;
根据获取到的用户的单次高度调节控制驱动机构222调节第一风机221升降预设高度和/或控制第一风机221上下翻转预设角度。也即,用户在一次半自动模式的上下高度调节后,还可进入全手动模式进行微调第一风机221的送风高度。如此,在通过半自动模式粗调后,可通过全手动模式进行精确调整第一风机221的出风气流高度位置,进而使得子机200最终能够进行精确送风。
本申请还提出一种计算机可读存储介质,计算机可读存储介质包括空调器的控制程序,空调器被处理器执行时实现如以上实施例的空调室内机的控制方法的步骤。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在如上的一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是电视机,手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例的方法。
以上仅为本申请的可选实施例,并非因此限制本申请的专利范围,凡是在本申请的发明构思下,利用本申请说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本申请的专利保护范围内。

Claims (30)

  1. 一种空调室内机,其中,包括:
    主机,所述主机包括室内换热模块;以及
    子机,可分离地安装于所述主机,所述子机包括壳体、第一风机及第二风机,所述壳体设有子进风口、子出风口、连通所述子进风口与所述子出风口的子机风道,所述第二风机设于所述子机风道内,所述第二风机用以驱动气流由所述子进风口流入所述子机风道内,并吹向所述第一风机,所述第一风机用于驱动所述子机风道内的气流经由所述子出风口吹出。
  2. 如权利要求1所述的空调室内机,其中,所述第一风机可活动地安装于所述子出风口处,以调节所述子出风口的出风方向和/或出风高度。
  3. 如权利要求2所述的空调室内机,其中,所述子机还包括安装壳,所述第一风机安装于所述安装壳内,所述安装壳可翻转地安装于所述子出风口处,以具有盖合所述子出风口的第一位置及与所述子出风口所在平面呈夹角设置的第二位置。
  4. 如权利要求3所述的空调室内机,其中,所述子机还包括驱动装置,所述驱动装置与所述安装壳连接,以驱动所述安装壳在所述第一位置和所述第二位置之间切换。
  5. 如权利要求3所述的空调室内机,其中,所述壳体的横截面呈矩形设置,所述安装壳的翻转轴线与所述壳体的横截面的对角线延伸方向一致。
  6. 如权利要求3至5中任意一项所述的空调室内机,其中,所述子出风口开设于所述壳体的顶壁面,所述子机还包括升降机构,所述升降机构安装于所述壳体,所述升降机构与所述安装壳连接,以驱动所述安装壳在伸出所述子出风口的升起位置和收容于所述子出风口的降落位置之间切换。
  7. 如权利要求6所述的空调室内机,其中,所述子机还包括安装于所述升降机构的驱动电机,所述驱动电机的输出轴与所述安装壳连接,以驱动所述安装壳在所述第一位置和所述第二位置之间切换。
  8. 如权利要求6所述的空调室内机,其中,所述升降机构设置有两个,两所述升降机构分设于所述安装壳的两侧。
  9. 如权利要求1所述的空调室内机,其中,所述壳体具有竖向延伸的旋转轴线,所述壳体可绕所述旋转轴线周向转动。
  10. 如权利要求1所述的空调室内机,其中,所述子进风口开设于所述壳体的周壁面,所述子出风口开设于所述壳体的顶壁面。
  11. 如权利要求1所述的空调室内机,其中,所述子机风道包括主风道及与主风道连通的加湿风道,所述子机还包括用于阻隔和导通所述主风道与所述加湿风道的开关门,所述第一风机与所述第二风机安装于所述主风道,所述加湿风道内设有加湿模块。
  12. 如权利要求1所述的空调室内机,其中,所述第一风机为轴流风机,所述第二风机为离心风机。
  13. 如权利要求1所述的空调室内机,其中,所述子机风道内还设有净化模块、加湿模块、加香模块、除过敏源模块中的一种或多种。
  14. 一种空调器,其中,包括空调室外机及如权利要求1至13中任意一项所述的空调室内机。
  15. 一种空调室内机的控制方法,其中,所述空调室内机为如权利要求1至13中任意一项所述的空调室内机,所述空调室内机的控制方法包括:
    接收传递送风指令;以及
    根据所述传递送风指令控制子机执行传递送风动作,以将主机吹出的气流输送至目标送风位置。
  16. 如权利要求15所述的空调室内机的控制方法,其中,所述根据所述传递送风指令控制子机执行传递送风动作,以将主机吹出的气流输送至目标送风位置的步骤包括:
    根据所述传递送风指令确定子机当前为自动传递送风模式时,获取主机位置、目标送风位置和子机当前位置;
    根据主机位置确定主机的送风区域;
    根据子机当前位置控制子机处于主机的送风区域,并控制子机进行送风,以将主机吹出的气流输送至目标送风位置。
  17. 如权利要求16所述的空调室内机的控制方法,其中,所述根据子机当前位置控制子机处于主机的送风区域,并控制子机进行送风,以将主机吹出的气流输送至目标送风位置的步骤包括:
    根据子机当前位置控制子机处于主机的送风区域,并控制子机进行送风后,还根据主机位置、送风目标位置和子机当前位置确定子机在主机的送风区域的送风工作位置和目标送风角度;
    控制子机运动至所述送风工作位置,并调节子机送风角度至所述目标送风角度。
  18. 如权利要求17所述的空调室内机的控制方法,其中,所述控制子机运动至所述送风工作位置,并调节子机送风角度至所述目标送风角度的步骤包括:
    当确定目标送风位置位于主机的送风区域内时,控制子机运动至主机的主出风口与目标送风位置之间的连线上,以及调节子机送风角度至所述目标送风角度;
    当确定目标送风位置位于主机的送风区域外时,控制子机运动至主机的送风区域靠近目标送风位置的送风边界上,以及调节子机子机送风角度至所述目标送风角度。
  19. 如权利要求18所述的空调室内机的控制方法,其中,所述当确定目标送风位置位于主机的送风区域内时,控制子机运动至主机的主出风口与目标送风位置之间的连线上,以及调节子机送风角度至所述目标送风角度的步骤具体为:
    当确定目标送风位置位于主机的送风区域内时,控制子机运动至主机的主出风口与目标送风位置之间的连线上,并控制子机和主机的主出风口之间的距离与子机和目标送风位置之间的距离的比值大于或等于0.5,且小于或等于2,以及调节子机送风角度至所述目标送风角度。
  20. 如权利要求18所述的空调室内机的控制方法,其中,所述当确定目标送风位置位于主机的送 风区域外时,控制子机运动至主机的送风区域靠近目标送风位置的送风边界上,以及调节子机子机送风角度至所述目标送风角度的步骤具体为:
    当确定目标送风位置位于主机的送风区域外时,控制子机运动至主机的送风区域靠近目标送风位置的送风边界上,并控制子机和主机的主出风口之间的距离与子机和目标送风位置之间的距离的比值大于或等于0.3,且小于或等于3,以及调节子机送风角度至所述目标送风角度。
  21. 如权利要求17至20中任意一项所述的空调室内机的控制方法,其中,所述控制子机运动至所述送风工作位置,并调节子机送风角度至所述目标送风角度的步骤包括:
    控制子机运动至所述送风工作位置后,确定从当前出风角度周向转动至目标送风角度的转动量和转动方向;
    子机根据所述转动量和转动方向周向转动至所述目标送风角度。
  22. 如权利要求21所述的空调室内机的控制方法,其中,所述控制子机运动至所述送风工作位置后,确定从当前出风角度周向转动至目标送风角度的转动量和转动方向的步骤还包括:确定出风高度目标位置;
    所述子机根据所述转动量和转动方向周向转动至所述目标送风角度还包括:根据所述出风高度目标位置控制第一风机调节子机出风气流高度位置。
  23. 如权利要求22所述的空调室内机的控制方法,其中,根据所述出风高度目标位置控制第一风机调节子机出风气流高度位置具体为:根据所述出风高度目标位置调节第一风机升降高度和/或调节第一风机上下翻转角度,以调节子机的出风气流高度位置。
  24. 如权利要求15所述的空调室内机的控制方法,其中,根据所述传递送风指令执行传递送风动作,以将主机吹出的气流输送至目标送风位置包括:
    根据所述传递送风指令控制第一风机和/或第二风机工作,以将所述主机吹出的气流输送至目标送风位置。
  25. 如权利要求15所述的空调室内机的控制方法,其中,所述根据所述传递送风指令执行传递送风动作,以将主机吹出的气流输送至目标送风位置的步骤包括:
    根据所述传递送风指令确定子机当前为手动传递送风模式时,根据接收的手动调节信号调节子机自身移动位置,并控制子机进行送风,以将主机吹出的气流输送至目标送风位置。
  26. 如权利要求25所述的空调室内机的控制方法,其中,所述根据接收的手动调节信号调节子机自身移动位置的步骤包括:
    获取用户的单次操作信号;
    根据获取到的用户的单次操作信号控制子机按照预设运动轨迹运动预设运动量;或者,
    获取用户的第一次操作信号;
    根据获取到的用户的第一次操作信号控制子机按预设轨迹运动;
    获取用户的第二次操作信号;
    根据获取到的用户的第二次操作信号控制子机停止运动。
  27. 如权利要求26所述的空调室内机的控制方法,其中,所述根据获取到的用户的单次操作信号控制子机按照预设运动轨迹运动预设运动量的步骤具体包括:
    根据获取到的用户的单次操作信号控制子机周向转动预设角度;
    所述根据获取到的用户的第一次操作信号控制子机按预设轨迹运动的步骤具体包括:
    根据获取到的用户的第一次操作信号控制所述子机周向转动。
  28. 如权利要求25至27中任意一项所述的空调室内机的控制方法,其中;所述根据接收的手动调节信号调节子机自身移动位置还包括:
    获取用户的单次高度调节信号;
    根据获取到的用户的单次高度调节信号调节第一风机向上或向下运动预设调节量;或者,
    获取用户的第一次高度调节信号;
    根据获取到的用户的第一次高度调节信号控制第一风机向上或向下运动;
    获取用户的第二次高度调节信号;
    根据获取到的用户的第二次高度调节信号控制第一风机停止向上或向下的运动。
  29. 如权利要求28所述的空调室内机的控制方法,其中,所述根据接收的手动调节信号调节子机自身移动位置具体为:
    获取用户的单次高度调节信号;
    根据获取到的用户的单次高度调节第一风机升降预设高度和/或调节第一风机上下翻转预设角度;或者,
    获取用户的第一次高度调节信号;
    根据获取到的用户的第一次高度调节信号控制第一风机升降和/或控制第一风机上下翻转;
    获取用户的第二次高度调节信号;
    根据获取到的用户的第二次高度调节信号控制第一风机停止向上或向下运动。
  30. 一种可读存储介质,其上存储有空调器的控制程序,其中,该程序被处理器执行时实现如权利要求15至29中任意一项所述的空调室内机的控制方法。
PCT/CN2021/107309 2020-12-03 2021-07-20 空调室内机及其控制方法、空调器和可读存储介质 WO2022116554A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202011396767.2 2020-12-03
CN202011396767.2A CN114593456A (zh) 2020-12-03 2020-12-03 空调室内机及其控制方法、空调器和可读存储介质
CN202022865406.XU CN213955428U (zh) 2020-12-03 2020-12-03 空调室内机和空调器
CN202022865406.X 2020-12-03

Publications (1)

Publication Number Publication Date
WO2022116554A1 true WO2022116554A1 (zh) 2022-06-09

Family

ID=81852922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/107309 WO2022116554A1 (zh) 2020-12-03 2021-07-20 空调室内机及其控制方法、空调器和可读存储介质

Country Status (1)

Country Link
WO (1) WO2022116554A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115180112A (zh) * 2022-07-15 2022-10-14 上海外高桥造船有限公司 一种船舶上的空调控制系统

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6294740A (ja) * 1985-10-18 1987-05-01 Matsushita Seiko Co Ltd 壁掛形室内機
JP2012032038A (ja) * 2010-07-29 2012-02-16 Fujitsu General Ltd 空気調和システム
CN204629738U (zh) * 2015-04-10 2015-09-09 陈意媜 子母式空气清净机
KR20160012796A (ko) * 2014-07-25 2016-02-03 엘지전자 주식회사 가습청정기
CN106678964A (zh) * 2016-12-23 2017-05-17 青岛海尔空调器有限总公司 一种子母空调器
CN107366983A (zh) * 2016-02-26 2017-11-21 Lg电子株式会社 空气清洁器
CN210532530U (zh) * 2019-09-09 2020-05-15 海信(山东)空调有限公司 一种子母空调器
CN212057512U (zh) * 2020-04-27 2020-12-01 广东美的制冷设备有限公司 落地式空调室内机和空调器
CN213514131U (zh) * 2020-10-29 2021-06-22 芜湖美智空调设备有限公司 落地式空调室内机以及空调器
CN213713281U (zh) * 2020-11-17 2021-07-16 广东美的制冷设备有限公司 空调室内机和空调器
CN213713279U (zh) * 2020-11-17 2021-07-16 广东美的制冷设备有限公司 空气处理装置、空调室内机和空调器

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6294740A (ja) * 1985-10-18 1987-05-01 Matsushita Seiko Co Ltd 壁掛形室内機
JP2012032038A (ja) * 2010-07-29 2012-02-16 Fujitsu General Ltd 空気調和システム
KR20160012796A (ko) * 2014-07-25 2016-02-03 엘지전자 주식회사 가습청정기
CN204629738U (zh) * 2015-04-10 2015-09-09 陈意媜 子母式空气清净机
CN107366983A (zh) * 2016-02-26 2017-11-21 Lg电子株式会社 空气清洁器
CN106678964A (zh) * 2016-12-23 2017-05-17 青岛海尔空调器有限总公司 一种子母空调器
CN210532530U (zh) * 2019-09-09 2020-05-15 海信(山东)空调有限公司 一种子母空调器
CN212057512U (zh) * 2020-04-27 2020-12-01 广东美的制冷设备有限公司 落地式空调室内机和空调器
CN213514131U (zh) * 2020-10-29 2021-06-22 芜湖美智空调设备有限公司 落地式空调室内机以及空调器
CN213713281U (zh) * 2020-11-17 2021-07-16 广东美的制冷设备有限公司 空调室内机和空调器
CN213713279U (zh) * 2020-11-17 2021-07-16 广东美的制冷设备有限公司 空气处理装置、空调室内机和空调器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115180112A (zh) * 2022-07-15 2022-10-14 上海外高桥造船有限公司 一种船舶上的空调控制系统
CN115180112B (zh) * 2022-07-15 2023-12-22 上海外高桥造船有限公司 一种船舶上的空调控制系统

Similar Documents

Publication Publication Date Title
WO2021036405A1 (zh) 室内机、空调器及空调器控制的方法
CN111780241B (zh) 一种双出风口的空调器
WO2021051895A1 (zh) 室内机、空调器及空调器控制的方法
CN213955428U (zh) 空调室内机和空调器
WO2021212861A1 (zh) 双贯流空调内机及空调器
CN213713279U (zh) 空气处理装置、空调室内机和空调器
WO2019024822A1 (zh) 壁挂式空调室内机
WO2022116554A1 (zh) 空调室内机及其控制方法、空调器和可读存储介质
WO2022242113A1 (zh) 进风结构、新风装置及空调
JPH01234725A (ja) 空気調和機
CN2519182Y (zh) 四维送风空调器
JPH11248223A (ja) 空気調和機の運転制御装置およびその方法
CN111780245B (zh) 一种双出风口的空调器
CN114593456A (zh) 空调室内机及其控制方法、空调器和可读存储介质
CN207422364U (zh) 壁挂式空调室内机
WO2020172940A1 (zh) 空调室内机、空调器及空调器的控制方法
CN111623415B (zh) 一种空调器
CN100414198C (zh) 吸顶式空调机控制风量的装置及方法
CN111780243B (zh) 一种双出风口的空调器
CN207179959U (zh) 一种遥控型电动变风量风口
CN215597466U (zh) 立式空调室内机
WO2021218495A1 (zh) 落地式空调室内机和空调器
CN111780228B (zh) 一种单出风口的空调器
CN215597689U (zh) 附加风道及壁挂式空调室内机
CN112902300B (zh) 一种空调器及其控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21899593

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21899593

Country of ref document: EP

Kind code of ref document: A1