WO2022116379A1 - 一种催化剂的制备方法及降低聚醚多元醇中voc含量的方法 - Google Patents

一种催化剂的制备方法及降低聚醚多元醇中voc含量的方法 Download PDF

Info

Publication number
WO2022116379A1
WO2022116379A1 PCT/CN2021/073090 CN2021073090W WO2022116379A1 WO 2022116379 A1 WO2022116379 A1 WO 2022116379A1 CN 2021073090 W CN2021073090 W CN 2021073090W WO 2022116379 A1 WO2022116379 A1 WO 2022116379A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyether polyol
catalyst
temperature
voc
metal oxide
Prior art date
Application number
PCT/CN2021/073090
Other languages
English (en)
French (fr)
Inventor
刘佳奇
叶天
姜明
Original Assignee
万华化学集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 万华化学集团股份有限公司 filed Critical 万华化学集团股份有限公司
Publication of WO2022116379A1 publication Critical patent/WO2022116379A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/076Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/10Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
    • B01J29/14Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/30Post-polymerisation treatment, e.g. recovery, purification, drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/40Special temperature treatment, i.e. other than just for template removal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/60Synthesis on support
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the application belongs to the technical field of polyether polyols, and in particular relates to a preparation method of a catalyst and a method for reducing VOC content in polyether polyols.
  • Polyether polyol is an important chemical raw material, and the polyurethane foam produced using it is widely used in furniture, home appliances, automobiles, aerospace, construction, clothing, packaging and other fields.
  • traditional polyether polyol products will contain a certain amount of volatile organic compounds (VOC). VOC will cause harm to air quality and human health. At the same time, it will also cause unpleasant odors to polyurethane products, which will affect the user's health. experience.
  • VOC volatile organic compounds
  • VOC content has become an important factor restricting the application of polyether polyols. Reducing the VOC content of polyether polyols is the common goal pursued by major manufacturers at present.
  • the VOCs in polyether polyols are mainly small molecular aldehydes and ketones.
  • the most important method reported so far to reduce the VOC content in polyether polyols is the steam stripping method. Water or steam is added to the polyether polyol at high temperature, and then vacuum removal is performed to obtain a polyether polyol product with a lower VOC content.
  • this method has high processing temperature, requires a large amount of steam, takes a long time and increases the production cost.
  • CN 104130389 reports a method for reducing the VOC content of polyether polyols.
  • the oxide is added to the polyether polyol through a feed line extending into the bottom of the reactor in a closed reaction kettle, mixed under a certain pressure and temperature, and then the mixture is post-treated to obtain a low VOC content.
  • Polyether polyol products are a batch method, and still has the problems of low production efficiency, high processing temperature and high production cost.
  • Heterogeneous catalytic oxidation catalysts have been widely used in the VOC oxidation and removal process of waste water and exhaust gas. They mainly include noble metal supported and composite metal oxide catalysts, etc., which have the advantages of low treatment temperature and high catalytic efficiency. If it is directly applied to the VOC removal process of polyether polyols, the direct contact of polyether molecules with catalysts may lead to oxidation of polyether polyol molecules, affecting product quality, and there may also be a problem of loss of catalyst active components.
  • the present application provides a method for preparing a catalyst for catalytic oxidation and VOC removal in the field of polyether polyols, which can process polyether polyols in a continuous, high-capacity and low-cost manner. VOCs in .
  • a first aspect of the present application provides a method for preparing a catalyst for removing VOC from polyether polyol, comprising the steps of:
  • step 1) Add the composite metal oxide obtained in step 1) into deionized water, slowly add ethyl orthosilicate, filter and wash the obtained precipitate and disperse it into the molecular sieve precursor solution, and heat the mixed solution at 180-240° C. Crystallization at temperature, filtration, washing, drying, and calcination to obtain the catalyst.
  • step 3 Add the composite metal oxide obtained in step 1) into deionized water, stir for uniform dispersion, slowly add ethyl orthosilicate dropwise at room temperature, stir for 3-6 hours, filter and wash the obtained precipitate and disperse it into molecular sieves
  • the precursor solution stir at a temperature of 60-90 °C for 10-15 h, then transfer the mixture into a hydrothermal reaction kettle, crystallize at a temperature of 180-240 °C for 2-6 days, filter and wash after cooling to room temperature , drying at 100 ⁇ 130°C for 8 ⁇ 16h, and then calcining at 300 ⁇ 600°C for 4 ⁇ 24h, the obtained solid can be ground to obtain the target catalyst.
  • the Cu salt and Mn salt are corresponding soluble salts, preferably one or more of nitrate, sulfate or hydrochloride, and the mol ratio of Cu and Mn in the mixed solution is 1:9 ⁇ 9:1, preferably 3:7 ⁇ 5:5;
  • the reagent used to adjust the pH value of the mixed solution is ammonia water.
  • step 1) the amount of SnCl 2 added accounts for 0.1% to 1% of the total molar amount of Cu and Mn.
  • the aluminum source is one or more of sodium aluminate, pseudo-boehmite or aluminum isopropoxide
  • the silicon source is ethyl orthosilicate
  • the template agent is tetrapropylammonium hydroxide
  • the molar ratio of aluminum source (calculated as Al 2 O 3 ), silicon source (calculated as SiO 2 ), template agent and deionized water is 1 ⁇ 4:100:25 ⁇ 55:1000 ⁇ 10000;
  • the reagent used to adjust the pH value is ammonia water.
  • step 3 the mass of the dropwise addition of ethyl orthosilicate accounts for 0.1% to 1% of the mass of the composite metal oxide.
  • the purpose is to slowly hydrolyze ethyl orthosilicate in an aqueous solution to generate SiO 2 deposited on the surface of the composite metal oxide, which is beneficial to serve as a crystal nucleus and make it easier for molecular sieves to grow on the composite metal oxide core later.
  • step 3 the mass ratio of the precipitate to the molecular sieve precursor solution is 1:10-1:100.
  • the present application also relates to catalysts prepared according to the above method.
  • the catalyst has a core-shell structure, the core is a composite metal oxide, and as the active component, the shell is a molecular sieve membrane.
  • Another aspect of the present application provides a method for continuously removing VOC from polyether polyol using the above catalyst, comprising the steps of:
  • the polyether polyol with low VOC content can be obtained by degassing the treated polyether polyol.
  • the total VOC content is 200-500 ppm, including but not limited to one or more of formaldehyde, acetaldehyde, propionaldehyde, acrolein, acetone, and the like.
  • the temperature in the reactor is 50-130°C.
  • the reactor temperature can be adjusted using the residual heat of the polyether polyol in the reaction stage.
  • the surface of the catalyst has a dense molecular sieve membrane, and its small pore size can prevent the polyether molecules from being oxidized by direct contact with the catalyst, and can also ensure that small molecules of VOC and oxygen can smoothly pass through the pores and be adsorbed on the active oxide core to react.
  • the catalyst space velocity (WHSV) is controlled in the range of 10h -1 to 1000h -1 , preferably 200 to 500h -1 .
  • the amount of oxygen in the introduced dry air or oxygen is 0.1% to 10% of the mass flow rate of the crude polyether polyol.
  • the temperature of the degassing tank is 20-60° C. and the pressure is 5-15 kPa (A).
  • the VOC content is not higher than 3 ppm.
  • the main active component of the prepared catalyst is transition metal oxide, which has low cost and simple preparation process.
  • the active components are oxidized by contact, and the tiny pores of the molecular sieve provide the in and out channels of small VOCs and product molecules, and at the same time ensure the processing efficiency and product quality;
  • the application uses catalytic oxidation to treat VOC, with low reaction temperature and high efficiency, and the total content of VOC in the obtained product is below 3ppm.
  • Test method for VOC content refer to GB/T 37196-2018.
  • the crude polyether polyol has a functionality of 3, a molecular weight of 3000, a VOC content of 256 ppm, and an initial temperature of 130°C.
  • the crude polyether polyol was passed through a fluidized bed reactor filled with catalyst at a space velocity (WHSV) of 250 h -1 , and the temperature in the fluidized bed reactor was 98°C.
  • WHSV space velocity
  • Oxygen which accounts for 1.5% of the mass of the crude polyether polyol, was introduced into the reactor inlet, and the treated polyether polyol entered a degassing tank for vacuum degassing.
  • the temperature of the degassing tank was 33 °C and the pressure was 10 kPa (A).
  • the VOC content of the polyether polyol was reduced to 2 ppm.
  • the crude polyether polyol has a functionality of 3, a molecular weight of 3000, a VOC content of 215 ppm, and an initial temperature of 130°C.
  • the crude polyether polyol was passed through a fluidized bed reactor filled with catalyst at a space velocity (WHSV) of 200 h -1 , and the temperature in the fluidized bed reactor was 102°C.
  • WHSV space velocity
  • Oxygen which accounts for 5% of the mass of the polyether polyol, was introduced into the reactor inlet, and the treated polyether polyol entered a degassing tank for vacuum degassing.
  • the temperature of the degassing tank was 30° C. and the pressure was 10 kPa (A).
  • the VOC content of the polyether polyol was reduced to 2 ppm.
  • the crude polyether polyol has a functionality of 3, a molecular weight of 3000, a VOC content of 450 ppm, and an initial temperature of 131°C.
  • the crude polyether polyol was passed through a fluidized bed reactor filled with a catalyst at a space velocity (WHSV) of 300 h -1 , and the temperature in the fluidized bed reactor was 110°C.
  • WHSV space velocity
  • Oxygen which accounts for 2% of the mass of the polyether polyol, was introduced into the reactor inlet, and the treated polyether polyol entered a degassing tank for vacuum degassing.
  • the temperature of the degassing tank was 33°C and the pressure was 13kPa(A).
  • the VOC content of the polyether polyol was reduced to 3 ppm.
  • the crude polyether polyol has a functionality of 2, a molecular weight of 2000, a VOC content of 305 ppm, and an initial temperature of 126°C.
  • the crude polyether polyol was passed through a fluidized bed reactor filled with a catalyst at a space velocity (WHSV) of 500 h -1 , and the temperature in the fluidized bed reactor was 112°C.
  • WHSV space velocity
  • Dry air which accounts for 5% of the mass of the polyether polyol, is introduced into the reactor inlet, and the treated polyether polyol enters a degassing tank for vacuum degassing.
  • the temperature of the degassing tank is 40 °C and the pressure is 10 kPa (A).
  • the VOC content of the polyether polyol was reduced to 2 ppm.
  • the catalyst preparation process of the present application is simple.
  • the prepared catalyst adopts Mn, Cu and Sn composite metal oxide cores as active components, and a molecular sieve film is covered on its surface as a protective layer.
  • the catalyst has high catalytic activity, high mechanical strength, long service life and convenient separation, and can meet the needs of continuous production of industrial polyether polyols.
  • the prepared catalyst particles are filled in a fluidized bed reactor, and at a certain temperature, polyether polyol and dry air or oxygen are continuously introduced into the reactor inlet. After the reaction is completed, vacuum degassing can be used to obtain low VOC polyether. Polyol.
  • VOC When the catalyst is used for the refined production of polyether polyol, VOC can be efficiently oxidized and decomposed at low temperature, and no three wastes are generated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Polyethers (AREA)
  • Catalysts (AREA)

Abstract

本文公布了一种用于降低聚醚多元醇中VOC含量的催化剂,该催化剂采用Mn、Cu、Sn复合金属氧化物核为活性组分,在其表面覆盖一层分子筛膜作为保护层。将制备得到的催化剂颗粒填充于流化床反应器中,在一定温度下,在反应器入口连续通入聚醚多元醇和干燥空气或氧气,反应完成后采用真空脱气即可得到低VOC聚醚多元醇。该催化剂制备工艺简单、催化活性高,采用本催化剂进行聚醚多元醇的精制生产时,可以在低温下高效氧化分解VOC,且无三废产生;该催化剂机械强度高、使用寿命长、分离方便,可以满足工业化聚醚多元醇连续化生产的需求。

Description

一种催化剂的制备方法及降低聚醚多元醇中VOC含量的方法 技术领域
本申请属于聚醚多元醇技术领域,具体涉及一种催化剂的制备方法及降低聚醚多元醇中VOC含量的方法。
背景技术
聚醚多元醇是一种重要的化工原料,使用其生产的聚氨酯泡沫广泛应用于家具家电、汽车、航空航天、建筑、服装、包装等领域。但传统的聚醚多元醇产品中会含有一定量的挥发性有机物(VOC),VOC会对空气质量和人的身体健康造成危害,同时还会使聚氨酯产品产生难闻的气味,影响使用者的体验。
随着国家环保政策的日趋严格以及人们环保意识的逐步增强,VOC含量成为了制约聚醚多元醇应用的重要因素。降低聚醚多元醇中VOC含量是目前各大厂商共同追求的目标。
聚醚多元醇中的VOC主要以小分子醛酮类物质为主。目前所报道的最主要的降低聚醚多元醇中VOC含量的方法为汽提法。在高温下向聚醚多元醇中加入水或者通入蒸汽,然后进行真空脱除,可以得到较低VOC含量的聚醚多元醇产品。但该方法处理温度高,需要大量蒸汽,处理时间长、增加了生产成本。
CN 104130389报道了一种降低聚醚多元醇VOC含量的方法。该发明在密闭反应釜中,将氧化物通过伸入釜底的进料管线将其加入到聚醚多元醇中,在一定压力和温度下进行混合,然后对混合物进行后处理得到VOC含量低的聚醚多元醇产品。但该方法为间歇方法,仍然存在生产效率低,处理温度高,生产成本高的问题。
非均相催化氧化催化剂已经被广泛应用于废水、废气的VOC氧化脱除过程 中,其主要包括贵金属负载和复合金属氧化物催化剂等等,具有处理温度低、催化效率高的优点。若将其直接应用于聚醚多元醇的VOC脱除过程中,聚醚分子与催化剂直接接触可能导致聚醚多元醇分子被氧化,影响产品品质,还可能会存在催化剂活性组分流失的问题。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请针对现有技术中存在的问题,提供了一种应用于聚醚多元醇领域的催化氧化脱除VOC的催化剂的制备方法,以连续化、高处理量、低成本地处理聚醚多元醇中的VOC。
为实现上述目的,本申请采用如下技术方案:
本申请的第一个方面,提供一种用于聚醚多元醇脱除VOC的催化剂的制备方法,包括如下步骤:
1)配制含Cu盐和Mn盐的混合溶液,调节混合溶液pH至10-12,然后再缓慢加入SnCl 2溶液,将得到的沉淀过滤、洗涤、干燥,焙烧,得到复合金属氧化物;
2)向去离子水中加入铝源、硅源和模板剂,搅拌溶解,调节pH为9~12,得到分子筛前驱体溶液;
3)将步骤1)所得复合金属氧化物加入到去离子水中,缓慢加入正硅酸乙酯,将得到的沉淀物过滤、洗涤后分散到分子筛前驱体溶液中,将混合液在180~240℃温度下晶化,过滤、洗涤、干燥,焙烧,得到所述催化剂。
具体包括以下步骤:
1)常温下向去离子水中加入Cu盐和Mn盐,搅拌均匀得到混合溶液,调 节混合溶液pH至10-12,然后再缓慢滴加SnCl 2溶液,将得到的沉淀过滤、洗涤,在100~130℃温度下干燥8~16h,然后在300~600℃温度下焙烧4~24h,所得固体经研磨即可得到复合金属氧化物;
2)向去离子水中加入铝源、硅源和模板剂,搅拌溶解,调节pH为9~12,得到分子筛前驱体溶液;
3)将步骤1)所得复合金属氧化物加入到去离子水中,搅拌进行均匀分散,常温下缓慢滴加正硅酸乙酯,搅拌3~6h,将得到的沉淀物过滤、洗涤后分散到分子筛前驱体溶液中,在60~90℃温度下搅拌10-15h,然后将混合液转入水热反应釜中,在180~240℃温度下晶化2~6天,降至室温后过滤、洗涤,在100~130℃温度下干燥8~16h,然后在300~600℃温度下焙烧4~24h,所得固体经研磨可得到目标催化剂。
步骤1)中,所述Cu盐和Mn盐为相应的可溶性盐,优选为硝酸盐、硫酸盐或盐酸盐中的一种或多种,且所述混合溶液中Cu和Mn的摩尔比为1:9~9:1,优选为3:7~5:5;
调节混合溶液pH值所用试剂为氨水。
步骤1)中,加入SnCl 2的量占Cu和Mn总摩尔量的0.1%~1%。
步骤2)中,铝源为铝酸钠、拟薄水铝石或异丙醇铝中的一种或多种,硅源为正硅酸乙酯,模板剂为四丙基氢氧化铵;
铝源(以Al 2O 3计)、硅源(以SiO 2计)、模板剂、去离子水的摩尔比为1~4:100:25~55:1000~10000;
调节pH值所用试剂为氨水。
步骤3)中,滴加正硅酸乙酯的质量占复合金属氧化物质量的0.1%~1%。目的是使正硅酸乙酯在水溶液中缓慢水解,生成SiO 2沉积在复合金属氧化物表 面,有利于作为晶核从而后期使分子筛更容易在复合金属氧化物核上生长。
步骤3)中,沉淀物与分子筛前驱体溶液的质量比为1:10~1:100。
本申请还涉及根据上述方法制备的催化剂。该催化剂具有核壳结构,核为复合金属氧化物,作为活性组分,壳为分子筛膜。
本申请的另一个方面,提供一种利用上述催化剂连续化脱除聚醚多元醇中VOC的方法,包括如下步骤:
1)将粗聚醚多元醇连续地通入填充有催化剂颗粒的反应器,在反应器的入口连续地加入干燥空气或氧气;
2)经过处理之后的聚醚多元醇脱气即可得到低VOC含量的聚醚多元醇。
具体包括如下步骤:
1)将待精制的粗聚醚多元醇连续地通入填充有催化剂颗粒的流化床反应器;
2)在流化床反应器的入口连续地加入干燥空气或氧气,在催化剂作用下,粗聚醚多元醇中含有的VOC被氧化为CO 2和水;
3)经过流化床反应器处理之后的聚醚多元醇进入脱气罐进行真空脱气即可得到低VOC含量的聚醚多元醇。
所述待精制的粗聚醚多元醇中,VOC总含量是200~500ppm,包括但不限于甲醛、乙醛、丙醛、丙烯醛和丙酮等等中的一种或多种。
所述方法中,反应器内的温度为50~130℃。可以利用反应阶段聚醚多元醇的余热调整反应器温度。
催化剂表面具有致密的分子筛膜,其微小的孔径可以避免聚醚分子直接与催化剂接触而被氧化,还可以保证小分子VOC和氧气能够顺利通过孔道并且吸附在活性氧化物核上发生反应。
所述方法中,控制催化剂空速(WHSV)范围为10h -1~1000h -1,优选200~500h -1
所述方法中,通入的干燥空气或氧气中氧气量为粗聚醚多元醇质量流量的0.1%~10%。
所述方法中,脱气罐的温度为20~60℃、压力为5~15kPa(A)。
所述方法中,所得低VOC含量的聚醚多元醇中,VOC含量不高于3ppm。
本申请具有以下优点:
1)所制备的催化剂主要活性组分为过渡金属氧化物,成本低廉,制备工艺简单,壳层为分子筛薄膜,一方面保护了催化剂活性组分的流失,另一方面有效阻止了聚醚分子与活性组分接触而被氧化,分子筛所具有的微小孔道提供了小分子VOC和产物分子的进出通道,同时保证了处理效率及产品品质;
2)将高效催化氧化VOC技术应用于聚醚多元醇后处理过程,工艺简单,处理量大,催化剂易分离,可以满足大规模生产高质量产品的需求;
3)本申请采用催化氧化处理VOC,反应温度低,效率高,所得产品VOC总含量在3ppm以下。
在阅读并理解了详细描述后,可以明白其他方面。
具体实施方式
VOC含量的测试方法:参考GB/T 37196-2018。
实施例1
(1)催化剂的制备
向100g去离子水中加入20g Cu(NO 3) 2和15g Mn(NO 3) 2,搅拌溶解,然后滴加氨水调节pH至11,溶液中有沉淀产生,继续向溶液中滴加溶解有0.1g SnCl 2的水溶液,所得沉淀过滤、洗涤,在100℃下干燥12h,在500℃下焙烧6h,即 得到含有Cu、Mn和Sn的复合氧化物。
向1000g去离子水中加入200g正硅酸乙酯、4g拟薄水铝石(以AlOOH计)、90g四丙基氢氧化铵,滴加氨水调节pH为11,搅拌4h溶解得到前驱体溶液。
取所得复合氧化物10g加入到去离子水中,搅拌分散均匀,滴加0.1g正硅酸乙酯,搅拌4h,将沉淀过滤洗涤,加入到500g配制好的前驱体溶液中,在70℃下搅拌15h,然后将混合液转入水热反应釜中于200℃温度下晶化3天,将沉淀过滤洗涤后在100℃下干燥12h,500℃下焙烧6h,将所得固体研磨后即可得到目标催化剂。
(2)粗聚醚多元醇VOC的脱除
粗聚醚多元醇官能度为3,分子量3000、VOC含量为256ppm,初始温度130℃。
将粗聚醚多元醇以空速(WHSV)250h -1通过填充有催化剂的流化床反应器,流化床反应器内温度为98℃。
在反应器入口通入占粗聚醚多元醇质量1.5%的氧气,处理之后的聚醚多元醇进入脱气罐进行真空脱气,脱气罐温度为33℃,压力为10kPa(A)。
经脱气处理后,聚醚多元醇中VOC含量降至2ppm。
实施例2
(1)催化剂的制备
向100g去离子水中加入10g Cu(NO 3) 2和25g Mn(NO 3) 2,搅拌溶解,然后滴加氨水调节pH至10,溶液中有沉淀产生,继续向溶液中滴加溶解有0.1g SnCl 2的水溶液,所得沉淀过滤、洗涤,在110℃下干燥15h,在450℃下焙烧10h,即得到含有Cu、Mn和Sn的复合氧化物。
向1000g去离子水中加入300g正硅酸乙酯、4g拟薄水铝石(以AlOOH计)、 120g四丙基氢氧化铵,滴加氨水调节pH为10,搅拌3h溶解得到前驱体溶液。
取所得复合氧化物14g加入到去离子水中,搅拌分散均匀,滴加0.11g正硅酸乙酯,搅拌4h,将沉淀过滤洗涤,加入到900g配制好的前驱体溶液中,在90℃下搅拌10h,然后将混合液转入水热反应釜中于210℃温度下晶化3天,将沉淀过滤洗涤后在100℃下干燥12h,450℃下焙烧6h,将所得固体研磨后即可得到目标催化剂。
(2)聚醚多元醇VOC的脱除
粗聚醚多元醇官能度为3,分子量3000、VOC含量为215ppm,初始温度130℃。
将粗聚醚多元醇以空速(WHSV)200h -1通过填充有催化剂的流化床反应器,流化床反应器内温度为102℃。
在反应器入口通入占聚醚多元醇质量5%的氧气,处理之后的聚醚多元醇进入脱气罐进行真空脱气,脱气罐温度为30℃,压力为10kPa(A)。
经脱气处理后,聚醚多元醇中VOC含量降至2ppm。
实施例3
(1)催化剂的制备
向100g去离子水中加入14g Cu(NO 3) 2和15g Mn(NO 3) 2,搅拌溶解,然后滴加氨水调节pH至11,溶液中有沉淀产生,继续向溶液中滴加溶解有0.11g SnCl 2的水溶液,所得沉淀过滤、洗涤,在100℃下干燥16h,在550℃下焙烧5h,即得到含有Cu、Mn和Sn的复合氧化物。
向1000g去离子水中加入200g正硅酸乙酯、4g铝酸钠、100g四丙基氢氧化铵,滴加氨水调节pH为12,搅拌5h溶解得到前驱体溶液。
取所得复合氧化物10g加入到去离子水中,搅拌分散均匀,滴加0.07g正硅 酸乙酯,搅拌5h,将沉淀过滤洗涤,加入到800g配制好的前驱体溶液中,在80℃下搅拌12h,然后将混合液转入水热反应釜中于220℃温度下晶化3天,将沉淀过滤洗涤后在120℃下干燥10h,550℃下焙烧5h,将所得固体研磨后即可得到目标催化剂。
(2)聚醚多元醇VOC的脱除
粗聚醚多元醇官能度为3,分子量3000、VOC含量为450ppm,初始温度131℃。
将粗聚醚多元醇以空速(WHSV)300h -1通过填充有催化剂的流化床反应器,流化床反应器内温度为110℃。
在反应器入口通入占聚醚多元醇质量2%的氧气,处理之后的聚醚多元醇进入脱气罐进行真空脱气,脱气罐温度为33℃,压力为13kPa(A)。
经脱气处理后,聚醚多元醇中VOC含量降至3ppm。
实施例4
(1)催化剂的制备
向100g去离子水中加入30g Cu(NO 3) 2和6g Mn(NO 3) 2,搅拌溶解,然后滴加氨水调节pH至12,溶液中有沉淀产生,继续向溶液中滴加溶解有0.09g SnCl 2的水溶液,所得沉淀过滤、洗涤,在120℃下干燥8h,在600℃下焙烧4h,即得到含有Cu、Mn和Sn的复合氧化物。
向1000g去离子水中加入150g正硅酸乙酯、10g异丙醇铝、70g四丙基氢氧化铵,滴加氨水调节pH为11,搅拌6h溶解得到前驱体溶液。
取所得复合氧化物10g加入到去离子水中,搅拌分散均匀,滴加0.03g正硅酸乙酯,搅拌4h,将沉淀过滤洗涤,加入到300g配制好的前驱体溶液中,在80℃下搅拌14h,然后将混合液转入水热反应釜中于200℃温度下晶化4天,将 沉淀过滤洗涤后在110℃下干燥12h,400℃下焙烧20h,将所得固体研磨后即可得到目标催化剂。
(2)聚醚多元醇VOC的脱除
粗聚醚多元醇官能度为2,分子量2000、VOC含量为305ppm,初始温度126℃。
将粗聚醚多元醇以空速(WHSV)500h -1通过填充有催化剂的流化床反应器,流化床反应器内温度为112℃。
在反应器入口通入占聚醚多元醇质量5%的干燥空气,处理之后的聚醚多元醇进入脱气罐进行真空脱气,脱气罐温度为40℃,压力为10kPa(A)。
经脱气处理后,聚醚多元醇中VOC含量降至2ppm。
本申请的催化剂制备工艺简单。制得的催化剂采用Mn、Cu、Sn复合金属氧化物核为活性组分,在其表面覆盖一层分子筛膜作为保护层。催化剂的催化活性高、机械强度高、使用寿命长、分离方便,可以满足工业化聚醚多元醇连续化生产的需求。
将制备得到的催化剂颗粒填充于流化床反应器中,在一定温度下,在反应器入口连续通入聚醚多元醇和干燥空气或氧气,反应完成后采用真空脱气即可得到低VOC聚醚多元醇。
采用本催化剂进行聚醚多元醇的精制生产时,可以在低温下高效氧化分解VOC,且无三废产生。

Claims (14)

  1. 一种催化剂的制备方法,其包括如下步骤:
    1)配制含Cu盐和Mn盐的混合溶液,调节混合溶液pH至10-12,然后再缓慢加入SnCl 2溶液,将得到的沉淀过滤、洗涤、干燥,焙烧,得到复合金属氧化物;
    2)向去离子水中加入铝源、硅源和模板剂,搅拌溶解,调节pH为9~12,得到分子筛前驱体溶液;
    3)将步骤1)所得复合金属氧化物加入到去离子水中,缓慢加入正硅酸乙酯,将得到的沉淀物过滤、洗涤后分散到分子筛前驱体溶液中,将混合液在180~240℃温度下晶化,过滤、洗涤、干燥,焙烧,得到所述催化剂。
  2. 根据权利要求1所述的方法,其中,步骤1)中,所述混合溶液中Cu和Mn的摩尔比为1:9~9:1,优选为3:7~5:5;
    加入SnCl 2的量占Cu和Mn总摩尔量的0.1%~1%。
  3. 根据权利要求1或2所述的方法,其中,步骤1)中,干燥温度为100~130℃,干燥时间为8~16h。
  4. 根据权利要求1-3任一项所述的方法,其中,步骤1)中,焙烧温度为300~600℃,焙烧时间为4~24h。
  5. 根据权利要求1-4任一项所述的方法,其中,步骤2)中,铝源为铝酸钠、拟薄水铝石或异丙醇铝中的一种或多种,硅源为正硅酸乙酯,模板剂为四丙基氢氧化铵。
  6. 根据权利要求1-5任一项所述的方法,其中,步骤2)中,铝源(以Al 2O 3计)、硅源(以SiO 2计)、模板剂、去离子水的摩尔比为1~4:100:25~55:1000~10000。
  7. 根据权利要求1-6任一项所述的方法,其中,步骤3)中,正硅酸乙酯的质量占复合金属氧化物质量的0.1%~1%。
  8. 根据权利要求1-7任一项所述的方法,其中,步骤3)中,沉淀物与分子筛前驱体溶液的质量比为1:10~1:100。
  9. 根据权利要求1-8任一项所述的方法,其中,步骤3)中,干燥温度为100~130℃,干燥时间为8~16h。
  10. 根据权利要求1-9任一项所述的方法,其中,步骤3)中,焙烧温度为300~600℃,焙烧时间为4~24h。
  11. 一种根据权利要求1-10任一项所述的方法制备的催化剂,其具有核壳结构,核为复合金属氧化物,壳为分子筛膜。
  12. 一种连续化脱除聚醚多元醇中VOC的方法,其包括如下步骤:
    1)将粗聚醚多元醇连续地通入填充有催化剂颗粒的反应器,在反应器的入口连续地加入干燥空气或氧气;所述催化剂为权利要求11所述的催化剂;
    2)经过处理之后的聚醚多元醇脱气即可得到低VOC含量的聚醚多元醇。
  13. 根据权利要求12所述的方法,其中,所述粗聚醚多元醇中,VOC总含量是200~500ppm,包括甲醛、乙醛、丙醛、丙烯醛和丙酮中的一种或多种;
    反应器内的温度为50~130℃,催化剂空速范围为10h -1~1000h -1
  14. 根据权利要求12或13所述的方法,其中,干燥空气或氧气中氧气量为粗聚醚多元醇质量流量的0.1%~10%;脱气用的脱气罐的温度为20~60℃、压力为5~15kPa(A)。
PCT/CN2021/073090 2020-12-03 2021-01-21 一种催化剂的制备方法及降低聚醚多元醇中voc含量的方法 WO2022116379A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011407058.XA CN114602536B (zh) 2020-12-03 2020-12-03 一种催化剂的制备方法及降低聚醚多元醇中voc含量的方法
CN202011407058.X 2020-12-03

Publications (1)

Publication Number Publication Date
WO2022116379A1 true WO2022116379A1 (zh) 2022-06-09

Family

ID=81853755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/073090 WO2022116379A1 (zh) 2020-12-03 2021-01-21 一种催化剂的制备方法及降低聚醚多元醇中voc含量的方法

Country Status (2)

Country Link
CN (1) CN114602536B (zh)
WO (1) WO2022116379A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112121871A (zh) * 2020-09-11 2020-12-25 中国天辰工程有限公司 一种提高成型钛硅分子筛催化剂机械强度的处理方法
CN117986563A (zh) * 2024-04-02 2024-05-07 山东理工大学 一种聚醚合成用多孔型复合金属催化剂及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115403753B (zh) * 2022-09-16 2024-01-09 南京美思德新材料有限公司 一种负载型还原剂及其制备方法、改善聚醚多元醇或有机硅共聚物气味的方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5672768A (en) * 1995-08-18 1997-09-30 Bayer Aktiengesellschaft Low-odor, higher molecular weight polyether polyols, a process for producing them, and their use for the production of polymers, cosmetics and pharmaceutical products synthesized from polyether polyols
US6504062B2 (en) * 1998-03-13 2003-01-07 Shell Oil Company Process for the preparation of odor-lean polyether polyols
CN101259428A (zh) * 2008-04-24 2008-09-10 福州大学 一种处理工业废水催化剂的制备及其使用方法
CN102458655A (zh) * 2009-04-21 2012-05-16 约翰逊马西有限公司 氧化一氧化碳和挥发性有机化合物的含铜和锰的普通金属催化剂
CN102515198A (zh) * 2011-11-21 2012-06-27 浙江大学 一种整体型杂原子取代多级孔道分子筛及其合成方法
CN104707646A (zh) * 2013-12-11 2015-06-17 中国科学院青岛生物能源与过程研究所 一种二甲醚氧化脱氢制备甲苯的催化剂及其制备方法和应用
CN109718789A (zh) * 2018-12-29 2019-05-07 万华化学集团股份有限公司 一种核壳结构负载型催化剂及其制备方法
CN109865518A (zh) * 2017-12-04 2019-06-11 北京化工大学 一种用于微波无极光催化净化voc的催化剂制备方法
JP2020179327A (ja) * 2019-04-24 2020-11-05 時空化学株式会社 Voc除去用触媒の製造方法、voc除去用触媒及びvoc除去方法
CN112517059A (zh) * 2020-12-16 2021-03-19 万华化学集团股份有限公司 一种二甲基苄醇氢解催化剂及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105772071B (zh) * 2014-12-26 2018-04-06 中国科学院青岛生物能源与过程研究所 一种低碳烯烃歧化用核壳结构催化剂及其制备方法和应用
KR101685044B1 (ko) * 2016-03-24 2016-12-12 한국화학연구원 휘발성 유기화합물 제거용 다성분계 세리아-지르코니아 기반 복합 금속 산화물 촉매 및 이의 제조방법
CN106732539B (zh) * 2016-11-29 2019-05-17 西安元创化工科技股份有限公司 用于催化燃烧甲苯的复合型非贵金属氧化物催化剂及其制备方法和应用
CN106589345B (zh) * 2016-12-16 2019-02-01 江苏钟山化工有限公司 一种降低voc含量及气味的聚醚多元醇精制方法
CN107349954B (zh) * 2017-07-05 2020-10-09 江南大学 一种合成气直接制备芳香族化合物的多级纳米反应器催化剂及其制备与应用
CN109908944B (zh) * 2019-04-12 2020-09-15 西南化工研究设计院有限公司 一种丙烯齐聚制备壬烯和十二烯的催化剂及其制备方法
CN111644180B (zh) * 2020-03-18 2022-10-25 河北科技大学 用于VOCs低温燃烧的催化剂及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5672768A (en) * 1995-08-18 1997-09-30 Bayer Aktiengesellschaft Low-odor, higher molecular weight polyether polyols, a process for producing them, and their use for the production of polymers, cosmetics and pharmaceutical products synthesized from polyether polyols
US6504062B2 (en) * 1998-03-13 2003-01-07 Shell Oil Company Process for the preparation of odor-lean polyether polyols
CN101259428A (zh) * 2008-04-24 2008-09-10 福州大学 一种处理工业废水催化剂的制备及其使用方法
CN102458655A (zh) * 2009-04-21 2012-05-16 约翰逊马西有限公司 氧化一氧化碳和挥发性有机化合物的含铜和锰的普通金属催化剂
CN102515198A (zh) * 2011-11-21 2012-06-27 浙江大学 一种整体型杂原子取代多级孔道分子筛及其合成方法
CN104707646A (zh) * 2013-12-11 2015-06-17 中国科学院青岛生物能源与过程研究所 一种二甲醚氧化脱氢制备甲苯的催化剂及其制备方法和应用
CN109865518A (zh) * 2017-12-04 2019-06-11 北京化工大学 一种用于微波无极光催化净化voc的催化剂制备方法
CN109718789A (zh) * 2018-12-29 2019-05-07 万华化学集团股份有限公司 一种核壳结构负载型催化剂及其制备方法
JP2020179327A (ja) * 2019-04-24 2020-11-05 時空化学株式会社 Voc除去用触媒の製造方法、voc除去用触媒及びvoc除去方法
CN112517059A (zh) * 2020-12-16 2021-03-19 万华化学集团股份有限公司 一种二甲基苄醇氢解催化剂及其制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112121871A (zh) * 2020-09-11 2020-12-25 中国天辰工程有限公司 一种提高成型钛硅分子筛催化剂机械强度的处理方法
CN112121871B (zh) * 2020-09-11 2023-01-10 中国天辰工程有限公司 一种提高成型钛硅分子筛催化剂机械强度的处理方法
CN117986563A (zh) * 2024-04-02 2024-05-07 山东理工大学 一种聚醚合成用多孔型复合金属催化剂及其制备方法
CN117986563B (zh) * 2024-04-02 2024-05-28 山东理工大学 一种聚醚合成用多孔型复合金属催化剂及其制备方法

Also Published As

Publication number Publication date
CN114602536B (zh) 2023-07-11
CN114602536A (zh) 2022-06-10

Similar Documents

Publication Publication Date Title
WO2022116379A1 (zh) 一种催化剂的制备方法及降低聚醚多元醇中voc含量的方法
CN109746029B (zh) 丙烷脱氢催化剂及其制备方法以及丙烷脱氢制丙烯的方法
CN111377522B (zh) 一种臭氧催化湿式氧化处理废水的方法
CN107999082A (zh) 一种铜系苯乙酮加氢催化剂的制备方法及其应用
CN115090319B (zh) 一种臭氧催化剂及其制备方法和应用
CN111377523B (zh) 一种有机废水的催化湿式氧化处理方法
CN109772350B (zh) 一种生产1,4-丁炔二醇联产丙炔醇的负载型催化剂及其制备方法和应用
CN107983348A (zh) 一种高效臭氧分解催化剂
CN108069827B (zh) 一种制备1,4-丁炔二醇联产丙炔醇的方法
CN110433782B (zh) 一种硫酸钙晶须担载多孔氧化物除氟材料的制备方法
JP5495763B2 (ja) 金属担持結晶性シリカアルミノフォスフェート触媒の製造方法および金属担持結晶性シリカアルミノフォスフェート触媒
CN108940307B (zh) 金钴双金属负载锌铝水滑石及其制备方法与应用
CN101433864A (zh) 一种含硅和锆的氧化铝干胶粉的制备方法
CN113457669B (zh) 一种MnO2@纳晶核壳结构催化剂及其制备方法和应用
CN113083357B (zh) 一种利用CO选择性还原NOx的低温烟气脱硝催化剂及其应用
CN105642301B (zh) 一种用于合成1,4‑丁炔二醇的铜铋催化剂的制备方法
CN113663689B (zh) 一种用于净化空气中甲醛污染物的光热催化炭材料
CN106669698B (zh) 一种用于合成1,4-丁炔二醇的铜铋催化剂及其制备方法
CN110876920B (zh) 选择性硝酸根吸附剂的制备方法
CN115041167A (zh) 一种基于氧化铝骨架的双活性催化剂制备方法及其应用
CN109467420B (zh) 一种净化甲醛用滤芯的制备方法
CN110876918B (zh) 高效硝酸根处理剂的制备方法
KR20120054477A (ko) 철촉매의 제조방법
CN111377521B (zh) 一种利用臭氧催化氧化处理有机废水的方法
CN108855121B (zh) 一种镍基催化空气净化剂的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21899423

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21899423

Country of ref document: EP

Kind code of ref document: A1